CH469746A - Verfahren zur Herstellung von festen, kristallinen Polymeren - Google Patents

Verfahren zur Herstellung von festen, kristallinen Polymeren

Info

Publication number
CH469746A
CH469746A CH1325262A CH1325262A CH469746A CH 469746 A CH469746 A CH 469746A CH 1325262 A CH1325262 A CH 1325262A CH 1325262 A CH1325262 A CH 1325262A CH 469746 A CH469746 A CH 469746A
Authority
CH
Switzerland
Prior art keywords
polymerized
diolefinic
propylene
polymers
crystalline
Prior art date
Application number
CH1325262A
Other languages
English (en)
Inventor
John Jr Hagemeyer Hugh
Becton Edwards Marvin
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US156975A external-priority patent/US3254140A/en
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of CH469746A publication Critical patent/CH469746A/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Compounds Of Unknown Constitution (AREA)

Description


  



  Verfahren zur Herstellung von festen, kristallinen Polymeren
Die vorliegende Erfindung bezieht sich auf die Herstellung von neuen, festen, kristallinen Polymeren.



   Das erfindungsgemässe Verfahren zur Herstellung von festen, kristallinen Polymeren, welche polymerisiertes Propylen und einen oder mehr polymerisierte diolefinische und/oder azetylenische Kohlenwasserstoffe enthalten, ist dadurch gekennzeichnet, dass man zuerst Propylen oder mindestens einen diolefinischen oder azetylenischen Kohlenwasserstoff polymerisiert und anschliessend das oder die verbleibenden Monomeren polymerisiert, um ein festes, kristallines Produkt zu erhalten, dass ein stereospezifischer Polymerisationskatalysator verwendet wird und dass bei Verwendung von diolefinischem Kohlenwasserstoff ohne azetylenischen Kohlenwasserstoff die gesamte Polymerisation bei einer Temperatur von   130-3000    C und bei erhöhtem Druck durchgeführt wird.



   Es wurde gefunden, dass feste, kristalline Polymere, welche aus kristallinem, polymerisiertem Propylen und kristallinem, polymerisiertem diolefinischem und/oder azetylenischem Kohlenwasserstoff bestehen oder solche enthalten, sich merklich von bisher bekannten kristallinen Polymeren in ihrer einzigartigen Kombination physikalischer Eigenschaften unterscheiden. Diese neuen Polymeren sind nicht zu verwechseln mit bekannten amorphen oder kristallinen Copolymeren, da diese Copolymere nicht die ausgezeichnete Kombination von Eigenschaften oder die chemische Struktur, welche den erfindungsgemäss erhaltenen Polymeren eigen ist, aufweisen.

   So kann, wie beispielsweise im US-Patent Nr.   2918 457    beschrieben, ein kristallines Copolymer in Aufschlämmphase in einem inerten Reaktionsmedium auf einfache Weise erhalten werden, indem man ein Gemisch von Propylen und einem oder mehreren anderen Monomeren den Polymerisationsbedingungen in Gegenwart eines festen, stereospezifischen Polymerisationskatalysator aussetzt. Diese Art von Verfahren führt jedoch zu einem Copolymer, welches eine zufällige Verteilung von jedem der polymerisierten Monomeren in der Polymerkette aufweist und nicht die stereoreguläre Struktur, wie sie den erfindungsgemäss hergestellten Polymeren eigen ist, besitzt.

   Wie in US-Patent Nr.   2918 457    in Kolonne 3, Zeilen 1-7 erwähnt, sind derartige Copolymere, beispielsweise diejenigen, welche aus Propylen und zweifach ungesättigten Kohlenwasserstoffen, wie Butadien, hergestellt sind, entweder zu brüchig oder weisen infolge ihres niederen Schmelzpunktes unerwünschte Eigenschaften auf.



   Bei den früher bekannten Polymeren, welche aus zwei oder mehr polymerisierbaren Monomeren hergestellt wurden, wurde ferner öfters festgestellt, dass das Polymer ein Gemisch darstellt, welches grosse Mengen von Homopolymeren enthält, die aus jeder der Monomerkomponenten entstanden sind. Bei der erfindungsgemässen Herstellung der neuen Polymeren wird mit Vorteil nicht mehr polymerisierbares Monomer verwendet, als in die Polymerketten des Polymers eingebaut werden kann, wobei die genauen Mengen durch die zu erzeugenden Polymeren und die verwendeten Polymerisationsbedingungen gegeben sind. Arbeitet man auf diese Weise, so entstehen keine Homopolymeren und daher weder die bekannten homopolymerhaltigen Gemische noch die bisher bekannten Polymeren.



   Die erfindungsgemäss hergestellten Polymeren sind von besonderem Interesse, da sie ausgezeichnete Vicat Erweichungsprodukte, Schlagfestigkeit, Dehnung, Härte und niedere Sprödigkeitstemperaturen und ausserdem eine völlig unerwartete Erhöhung der Zugfestigkeit und Steifheit im Vergleich mit früher bekannten kristallinen Polymeren aufweisen.



   Die erfindungsgemäss hergestellten kristallinen Polymeren können verschiedene Mengen der einzelnen Polymerkomponenten in einer einzigen Kette enthalten, wie es für den Fachmann ohne weiteres verständlich ist.



  Auch kann eine starke Variation spezifischer Eigenschaften erzielt werden durch geeignete Auswahl der verwendeten Monomeren, der Mengen von jedem verwendeten Monomer   bei - der    Herstellung des Polymers, den Polymerisationsbedingungen und Wahl und Menge der Katalysatorkomponenten. So weisen beispielsweise kristalline Polymere, in welchen ein kristallines, polymerisiertes Propylen mit kristallinem, polymerisiertem Butadien vereint ist und welche nur 1,78   Gew. %    polymerisiertes Butadien enthalten, eine   Sprödigkeitstempe-    ratur   von -180    C auf, während ein Polymer mit einem Gehalt von 4,63   Gew. %    polymerisiertem Butadien eine Sprödigkeitstemperatur von   -410    C aufweist.



   Um kristalline Polymere zu erhalten, welche die   optimale    Kombination physikalischer Eigenschaften aufweisen, ist es wünschenswert, dass das Polymer mindestens 80   Ges.%    polymerisiertes Polypropylen und mindestens etwa 0,1   Ges. %    diolefinischen oder azetylenischen Kohlenwasserstoff in polymerisierter Form enthält. So sind sehr erwünschte kristalline Polymere diejenigen, in welchen die kristallinen Segmente aus etwa 80 bis etwa 99,9   Ges.%    polymerisiertem Propylen und etwa 0,1 bis etwa 20   Ges.%    des diolefinischen oder azetylenischen Kohlenwasserstoffs in polymerisierter Form bestehen.

   Im allgemeinen weisen derartige Polymere bei Extraktion in siedendem Hexan Kristallinitäten von mindestens   80 5S,    Molekulargewichte (Staudinger) von mindestens 10 000 und üblicherweise Molekulargewichte im Bereich von etwa 15 000 bis etwa 100000 auf. Die Molekulargewichte dieser Polymeren können leicht aus ihrer inhärenten Viskosität in Tetralin bei 1450 C bestimmt werden, welche mindestens 0,40 und im allgemeinen im Bereich von etwa 0,55 bis etwa 2,4 beträgt. Ausserdem weisen diese Polymere Dichten (ASTM Di505-57T) von mindestens 0,85 auf, wobei Dichten im Bereich von etwa 0,87 bis etwa 0,92 üblich sind, und Sprödigkeitstemperaturen, welche im allgemeinen   00    C oder weniger betragen.



   Die Polymeren werden in einem mehrstufigen Polymerisationsverfahren   hergestellt,    indem man zuerst ein polymerisierbares Monomer, beispielsweise Propylen, polymerisiert und   anschlie. ssend    mindestens ein polymerisierbares diolefinisches oder azetylenisches Kohlenwasserstoffmonomer, z. B. Butadien, in Gegenwart der Polymerkette des ersten Monomers, unter Verwendung eines festen, stereospezifischen Polymerisationskatalysators polymerisiert. So wird z. B. Propylen oder diolefinischer und/oder azetylenischer Kohlenwasserstoff mit einem festen, stereospezifischen Polymerisationskatalysator in Berührung gebracht, um eine kristalline Polymerkette zu bilden, und das zweite Monomer wird sodann an die vorgebildete Polymerkette in Gegenwart des festen, stereospezifischen Katalysators polymerisiert.



  Die Polymerisationsreaktion wird im allgemeinen fortgesetzt, bis das entstandene Polymer mindestens 80   Gew. 5S    polymerisiertes Propylen enthält. Dieses mehrstufige Verfahren kann in einem einzigen Reaktor mit abgetrennten Reaktionszonen, die vorzugsweise durch eine Trennwand oder andere Trennvorrichtungen abgetrennt sind, durchgeführt werden. Die einzelnen Polymerisationsreaktionen des Verfahrens können aber auch in getrennten Reaktoren, welche in Serie angeordnet sind   durchgefüh, t    werden, oder das ganze Verfahren kann in einem langgestreckten rohrförmigen Reaktor durchgeführt werden.

   Die erfindungsgemäss hergestellten, kristallinen Polymeren können auch chargenweise erhalten werden, indem man die erste Stufe der Polymerisation mit einem polymerisierbaren Monomer, beispielsweise diolefinischem Kohlenwasserstoff durchführt, und das Propylen zusetzt, nachdem ein Teil des ersten Monomers, beispielsweise   20-30 %,    polymerisiert ist. Im allgemeinen wird jedoch bevorzugt, das Propylen als Monomer in der ersten Stufe zu verwenden. Die genaue Menge des nach der ersten Stufe der Reaktion zugesetzten, Monomers unterliegt weiten   Varia-    tionen, je nach den verwendeten Reaktionsbedingungen, dem Prozentsatz des in der ersten Stufe umgewandelten Monomers, dem gewünschten Molekulargewicht des entstehenden Polymers und ähnlichen Faktoren.



   Die bei der Durchführung des erfindungsgemässen Verfahrens verwendeten, stereospezifischen Polymerisationskatalysatoren sind wichtig für das Verfahren. Eine Anzahl dieser festen, stereospezifischen Katalysatoren waren bereits bekannt. Diese Katalysatoren sind im allgemeinen anfänglich Gemische von mindestens zwei Komponenten, wobei die erste Komponente, z.

   B. ein Halogenid eines Transitionselementes der vierten bis sechsten Untergruppe des Periodischen Systems und die zweite Komponente ein Metall der Gruppe I-A oder II oder Aluminium oder eine Legierung von Metallen der Gruppe I-A und/oder II und/oder Aluminium oder ein Halogenid oder eine metallorganische Verbindung eines Metalls der Gruppe I-A oder II und/oder Aluminium oder ein komplexes Hydrid oder eine komplexe metallorganische Verbindung von Bor oder Aluminium und einem Metall der Gruppe I-A oder II des Periodischen Systems sind.



   Die in den Gruppen IV-B bis VI-B des Periodischen Systems enthaltenen Transitionsmetalle sind z. B. Metalle wie Titan, Zirkon, Vanadin, Molybdän, Chrom und dergleichen. Die   Transitionsmetallhalogenid-Katalysator-    komponenten können in ihrer höchsten Valenz oder, falls erwünscht, in reduzierter Valenz des Metalles verwendet werden. Vorzugsweise werden die Titanchloride verwendet, welche in Form von Titantetrachlorid, Titantrichlorid oder Titandichlorid vorliegen können. Beispiele anderer verwendbarer Transitionsmetallhalogenide umfassen Titantetrabromid, Titantribromid, Zirkontetrachlorid, Zirkontetrabromid, Vanadiumtrichlorid, Molybdänpentachlorid,   Chromtrichlorid und    dergleichen.



   Geeignete zweite Komponenten, welche zusammen mit den Transitionsmetallhalogeniden zur Bildung eines wirksamen, stereospezifischen   Polymerisationskatalysa    tors verwendet werden können, umfassen z. B. Metallalkyle, Metallalkylhalogenide und Metallhydride von Aluminium oder Metallen der Gruppe I-A und II, wie auch die Metalle allein. Die bevorzugte Komponente ist eine Lithiumverbindung, beispielsweise Lithium metall, Lithiumalkyl, Lithiumaluminiumhydrid, Lithium  alumininmalkyle,    Lithiumborhydrid und Lithiumaluminiumverbindungen der Formel
LiAlHxRy, in welcher x und y ganze Zahlen von 0-4 darstellen, die Summe von x und y 4 beträgt und R ein Kohlenwasserstoffrest darstellt. Geeignete Metalle der Gruppe I-A oder II umfassen Natrium, Kalium, Lithium, Zink und dergleichen.

   Die Legierungen, Halogenide, Hydride oder metallorganischen Verbindungen dieser Metalle, welche sich als Katalysatorkomponente eignen, umfassen z. B. Natriumamyl, Kaliumbutyl, Lithiumpropyl, Zinkdibutyl, Zinkdiamyl, Zinkdipropyl,   Sithylmagnesium-    bromid, Natriumhydrid, Calciumhydrid, Lithiumalumi  niumtributyl,      Äthylaluminiumdichlorid,    Cyclohexylaluminiumdichlorid, Cyclobutylaluminiumdichlorid,   Sithylalu-    miniumdibromid,   Äthylaluminiumsesquichlorid,      Sithyl-    aluminiumsesquibromid, Dimethylaluminiumbromid,  Propylaluminiumdichlorid, Dibutylaluminiumchlorid, Di äthylaluminiumchlorid und dergleichen.



   Auf Wunsch kann eine dritte Komponente verwendet werden, um die Stereospezifität des Katalysators zu erhöhen. Geeignete dritte Komponenten umfassen die Halogenide der Alkalimetalle, Magnesiumoxyd, aromatische Äther, z. B. Diphenyläther, Hydride des Natrium, Kalium und Lithium und Alkoholage von Natrium, Kalium, Lithium, Calcium, Magnesium, Barium, Strontium, Aluminium, Titan und Zirkon. Ausserdem ist es oft wünschenswert, tertiäre Amine und tertiäre Phosphoramide als dritte Komponente mit Alkylaluminiumhalogeniden zu verwenden.



   Katalysatoren, welche Lithiumalkyle, Lithiumaluminiumhydrid, Lithiumhydrid und Lithiumaluminiumtetraalkyle zusammen mit der niederen Valenzform der Transitionselemente der vierten und sechsten Gruppe des Periodischen Systems enthalten, werden bevorzugt für   Hochtemperaturlösungs- oder    Schmelzpolymerisationsverfahren. Diese Katalysatoren sind besonders wirkungsvoll bei Temperaturen oberhalb 1200 C, beispielsweise bei 1700 C oder höher.



   Im allgemeinen ist in diesen Katalysatoren ein Molverhältnis der zweiten Komponente zum Metallhalogenid von   0,1:1    bis 12:1 befriedigend für die Durchführung des Verfahrens. Wird eine dritte Komponente verwendet, so sind im allgemeinen Molverhältnisse des Metallhalogenids zur dritten Komponente von   0,25 :1    bis etwa   1:1    befriedigend. Die Konzentration des Katalysators im Reaktionsmedium kann innerhalb weiter Grenzen variieren. Beispielsweise können Katalysatorkonzentrationen von   0,1 %    oder weniger bis zu   3 %    oder mehr verwendet werden.



   Die Temperatur des mehrstufigen Polymerisationsverfahrens kann stark variieren. Temperaturen im Bereich von etwa 0 bis etwa 3000 C können jedoch üblicherweise angewandt werden. Wenn feste, stereospezifische Katalysatoren, welche andere zweite Komponenten als Lithium und Lithiumverbindungen enthalten, verwendet werden, ist es wünschenswert, Temperaturen von 1000 C oder weniger anzuwenden. Bei Aufschlämmpolymerisationen bei Temperaturen unter 1000 C, z. B.



  800 C, können die inhärenten Viskositäten des Polymers durch Verwendung eines Kettenbeendigungsmittels, z. B. Wasserstoff, reguliert werden. Bei Schmelz- oder   Lösungspolymerisationen    bei Temperaturen oberhalb 1000 C, möglichst über 1300 C und vorzugsweise über 1500 C, können die inhärenten Viskositäten durch Verwendung von Wasserstoff reguliert werden, doch ist dies nicht notwendig, da sie durch sorgfältige Auswahl der Reaktionstemperatur und bis zu einem gewissen Grad durch Regulierung des Druckes reguliert werden können.



   Ein geeigneter Druckbereich für die Durchführung des erfindungsgemässen Verfahrens umfasst Drücke von Atmosphärendruck bis etwa 2000 Atmosphären oder mehr. Im allgemeinen ist es wünschenswert, Drücke oberhalb von 15 oder sogar 30 Atmosphären und Drücke im Bereich von etwa 50 bis etwa 100 oder sogar 500 Atmosphären zu verwenden, um befriedigende Reaktionsgeschwindigkeiten zu erzielen. Erhöhte Drücke, z. B. 2 bis 1500 Atmosphären, werden oft benötigt, um die Polymerisationsreaktionen in Abwesenheit eines Lösungsmittels durchzuführen.



   Die organischen Vehikel oder Lösungsmittel, welche als Reaktionsmedien im erfindungsgemässen Verfahren verwendet werden können, umfassen aliphatische Alkane oder Cycloalkane, wie Propan, Pentan, Hexan, Heptan, Cyclohexan und dergleichen, oder hydrierte aromatische Verbindungen, wie Tetrahydronaphthalin oder Dekahydronaphthalin oder ein flüssiges Paraffin von hohem Molekulargewicht oder Gemische von Paraffinen, welche bei der Reaktionstemperatur flüssig sind oder ein aromatischer Kohlenwasserstoff, wie Benzol, Toluol, Xylol und dergleichen. Die Natur des Vehikels oder Lösungsmittels variiert stark, doch sollte das Lösungsmittel unter den Reaktionsbedingungen in flüssiger Form vorliegen und gegenüber den Reaktionsteilnehmern und Reaktionsprodukten verhältnismässig inert sein. Andere Verbindungen, welche mit guten Resultaten verwendet werden können, sind z.

   B.   Athyl-    benzol, Isopropylbenzol, Athyltoluol, n-Propylbenzol, die Diäthylbenzole, Mono- und Dialkylnaphthaline, n Pentan, n-Octan, Isooctan, Methylcyclohexan, Lackbenzin, und alle anderen bekannten inerten Kohlenwasserstoffe.



   Die zweite Monomerkomponente, welche erfindungsgemäss zur Herstellung der kristallinen Polymeren verwendet wird, besteht aus mindestens einem leicht polymerisierbaren diolefinische Kohlenwasserstoff mit zwei konjugierten oder nichtkonjugierten Doppelbindungen und/oder azetylenischem Kohlenwasserstoff, vorzugsweise mit 2-100 Kohlenstoffatomen, wie z. B. 1,3-Butadien, Isopren,   2-Sithyl-1, 3-butadien,      2,3 -Dimethylbuta-    dien, 1,1 ,4,4-Tetramethylbutadien, Piperylen, Hexadien, Heptadien, Azetylen, Methylazetylen,   Äthylazetylen,    Propylazetylen, Butylazetylen und dergleichen.



   Beispiel I
0,75 g   LiAlHs    (0,02 Mol) und 3,06 g   TiC13    (0,02 Mol) werden in 900 ml Lackbenzin aufgeschlämmt und in einen mit Rührer versehenen 2-Liter-Autoklav eingefüllt. Die Polymerisation wird bei einem Druck von 70 kg/cm- und einer Temperatur von 1500 C unter Zusatz von Propylen durchgeführt. Nach 15 Minuten werden 3,2 ml Isopren in den Autoklav gepumpt und die Polymerisation während 5 Minuten fortgesetzt. Der Autoklav wird sodann auf einen Filter entlelert, um den Katalysator zu entfernen. Die heisse Polymerlösung wird durch Strippen mit Propylen bei 1900 C konzentriert und das geschmolzene Polymer in ein Wasserbad extrudiert und in Kügelchen von 0,32 cm zerkleinert. Die Kügelchen enthalten 13 % flüchtige Stoffe (Lackbenzin), welche durch Extraktion mit Aceton entfernt werden.



  Die Kügelchen werden sodann während 24 Stunden mit siedendem Hexan extrahiert, um amorphes Polymer zu entfernen. Die Ausbeute an kristallinem Polymer beträgt 203 g, und 19 g amorphes Polymer wird aus dem Hexan gewonnen. Das kristalline Polymer enthält 0,3 % Isopren. Auf ähnliche Art wird einem Reaktor, welcher das polymerisierte Propylen enthält, Azetylen, absorbiert in Lackbenzin, zugesetzt. Man erhält ein kristallines Polymer mit einem Gehalt von 0,5   Ges. %    Azetylenresten.



   Die folgende Tabelle zeigt die hervorragende Kombination physikalischer Eigenschaften derart erhaltener Polymeren gegenüber bekannten kristallinen Polymeren:  Tabelle 1    Kristallines Kristallines Physikalische Eigenschaften Polypropylen Propylenisoprenpolymer Propylenazetylenpolymer    Dichte (ASTM D1505) 0,9086 0,9150 0,9111 Sprödigkeitstemperatur  C (ASTM D746)   +20 - 7    +20 Inhärente Viskosität in Tetralin (ASTM 72-39) 1,70 1,72 1,72 Zugfestigkeit bei 5   cmiMin.,    kg/cm2 (ASTM D638)
Bruchdehnung 182 344 375
Fliessgrenze 318 368 375
Dehnung, % 210 300 nicht gemessen Biegesteifheit kg/cm2 (ASTM   M47)    8750 12,390 11,340 Vicat-Erweichungspunkt,  C (ASTM D1525) 144 150 nicht gemessen
Aus der obigen Tabelle ist leicht ersichtlich,

   dass das erfindungsgemäss hergestellte Polymer wesentlich verbesserte Zugfestigkeit, Vicat-Erweichungspunkt und Steifheit sowie eine beträchtlich herabgesetzte Sprödigkeitstemperatur im Vergleich zum früher bekannten kristallinen Polypropylen aufweist. Die Herabsetzung der Sprödigkeitstemperatur und die Erhöhung der Zugfestigkeit und Steifheit verleihen diesen Polymeren einen deutlichen Vorteil gegenüber dem bisher bekannten kristallinen Polypropylen für Spritzguss und Film- und Faserherstellung.



   Beispiel 2
Es werden fünf Ansätze durchgeführt, um kristalline Polymere herzustellen, welche polymerisiertes Polypropylen enthalten, und die Verfahrensmerkmale sowie die Resultate dieser Ansätze sind in der folgenden Tabelle zusammengestellt. Das rohe Polymer wird durch Kochen am Rückfluss in Hexan während 24 Stunden extrahiert.



  Tabelle 2   Katalysator- Molverhältnis    der Temperatur Druck % Isopren Sprödigkeitskomponenten Komponenten Lösungsmittel   o C    kg/cm2 im Polymer temp., o C Li TiCI3 Diphenyläther 5/1/1 Cyclohexan 190 70 11,0 - 42 Li LiAlH4 TiCl3 NaF 2/0,5/1/1 Lackbenzin 175 70 2,78 - 33   (C2HsOH) 3Al2Cl3    TiCl3 MgO 1/1/1 Lackbenzin 80 54 1,12 -18 (C2H5OH)3Al VCI3   Al (OPr) 3    2/1/0,5 Cyclohexan 85 28 1,92   -20      (C2H50H) 3Al2Cl3    TiCl3   ([CH3]2N P    - 0 2/3/1 Lackbenzin 80 54 3,65   -26   
Beispiel 3
Aluminiumtriäthyl (5,0 ml) und Titantetrachlorid (2,4 ml) werden zu 900 ml Heptan zugesetzt und in einen mit Rührer versehenen 2-Liter-Autoklav eingefüllt.

   Propylen wird eingeleitet und die Polymerisation bei 80-85 C und 49 kg/cm2 begonnen. Nach 30 Minuten werden 5 g Budadien eingefüllt und die Polymerisation während einer Stunde fortgesetzt.



   Der Autoklav wird sodann gekühlt und das Propylenbutadien-polyallomer durch Filtration gewonnen und mit Isobutanol bei 1060 C vom Katalysator frei gewaschen. Das derart erhaltene rohe Polymer wiegt 266 g und weist eine Kristallinität von 83 % auf. Das amorphe Polymer wird durch Extraktion mit Hexan am Rückfluss abgetrennt.



   Die Eigenschaften des rohen Polymers sind die folgenden: 1,89 Gew.% Butadien; Dichte: 0,9001; Sprödigkeitstemperatur: -33 C und Biegesteifheit: 6440 kg/cm2.



   Die Eigenschaften des völlig kristallinen Polymers sind die folgenden: 1,12 % budadien; Dichte: 0.9150; Sprödigkeitstemperatur: -19 C und Biegesteifheit: 10,570 kg/cm2.



   Beispiel 4
Kristalline Polymere, die aus polymerisiertem Propylen vereint mit kristallinem polymerisiertem Butadien, Isopren oder Piperylen bestehen, werden in einer zwei stufigen Reaktion unter Verwendung von zwei etwa 1900 Liter (500 Gallons) fassenden, mit Rührer versehenen Reaktoren in Serie wie folgt hergestellt:
Propylen und Lackbenzin werden in den ersten Reaktor mit solcher Geschwindigkeit eingeführt, dass   25-30 %    Polymer und   18-20 %    Propylen beibehalten werden. Die Polymerisationsbedingungen sind 70   kg/cm2    und Temperaturen im   Bereich    von   155-175     C, wie erforderlichen, um eine durchschnittliche inhärente Viskosität in den Reaktoren von 2,1-2,3 beizubehalten.



   Das Produkt des ersten Reaktors wird in den zweiten Reaktor geleitet, wo dieselben Temperatur- und Druckverhältnisse beibehalten werden. Das Diolefin wird sodann in der gewünschten Menge in den zweiten Reaktor eingeleitet.



   Die Polymerlösung des zweiten Reaktors wird auf einen Druck von 35 kg/cm2 entspannt und in einem Verdünnungstank auf 1800 C erhitzt. In diesen Verdünnungstank wird genügend Lackbenzin eingefüllt, um eine Feststoffkonzentration von   8-10 %    zu erhalten.



  Die Polymerlösung wird sodann durch ein   Druckfilter    gepumpt, um den Katalysator zu entfernen. Anschlie ssend wird das Polymer konzentriert, indem man einen Propylenstrom von   180-1900C    im Gegenstrom zur Polymerschmelze durchleitet, um das Lösungsmittel zu entfernen. Das geschmolzene Polymer wird sodann im Wasser extrudiert, zu Kügelchen zerkleinert und die Kügelchen in ein kontinuierliches Extraktionssystem geführt, wo die amorphe Fraktion durch Extraktion mit siedendem Hexan entfernt wird.

   Die Resultate von sechs Ansätzen, welche nach dem oben beschriebenen Verfahren durchgeführt wurden, sind in der folgenden Tabelle zusammengestellt:
Tabelle 3 Polymerisationsbedingungen
Molverhältnis   Gew.%Diolefin    Ansatz Katalysator- der Temperatur Druck Diolefin in den Kristallinität Sprödigkeits
Nr.

   komponenten Komponenten   CC    kg/cm2 Polymeren temp.,   oC   
1   LiAlH4       TiC13   
NaF 1/1/1 158 70 Butadien 4,63 76,0 -41
2 LiAlH4
TiC13
NaF 1/1/1 163 70 Isopren 2,12 77,9 - 26
3   LiAdH4       TiCM3   
NaF 1/1/1 161 70 Piperylen   3, 01      85,6      -27   
4 Li    LiAdH4
TiC13   
NaF 2/0,5/1/1 174 70 Butadien 1,78 91,4   - 18   
5 Li
LiAlH4
TiCl3
NaF 2/0,5/1/1 171 70 Isopren 1,24 92,0 - 23
6 Li    LiAdH4
TiC13       NaF 2/0,5/1/1    176 70 Piperylen 3,71 88,

  6 - 19
Auf ähnliche Weise werden kristalline Polymere mit ausgezeichneten Eigenschaften hergestellt unter Verwendung von Methylazetylen und Azetylen in genügender Menge, um Produkte mit einem Gehalt von 0,7 und 0,56   Ges. %    Azetylen und   04    20   0,32,    0,41 und 0,24   Gewd    Methylazetylen zu erzielen, wobei der Rest aus polymerisiertem Propylen besteht.



   Die erfindungsgemäss hergestellten kristallinen Polymere werden infolge ihrer ausgezeichneten Kombination physikalischer Eigenschaften einschliesslich niedere Sprödigkeitstemperatur, hohe Steifheit und hohe Zugfestigkeit für zahlreiche Anwendungen bevorzugt. Infolge dieser verbesserten Eigenschaften können diese Polymere als Ersatz für kristallines Polypropylen in Anwendungen verwendet werden, in denen ihre Eigenschaften von Bedeutung sind, wie   z. 3.    beim Pressen, Film und Faseranwendungen. Ausserdem weisen die erfindungsgemäss hergestellten kristallinen Polymere zahlreiche Vorteile in spezifischen Anwendungen auf. Beispielsweise sind sie in Fasern und Endlosfäden, kristallinem Polypropylen überlegen, indem sie sich weniger verziehen (draw down) und zähere Filamente ergeben, welche beim Spinnen feinerer Deniers weniger Fadenbrüche bewirken.

   Derartige Fasern und Filamente können in verschiedenen Deniers und Querschnitten hergestellt werden und finden sowohl als Stapelfasern wie als Endlosfasern, Garnen und Seilen sowohl gefüllt wie ungefüllt Verwendung. Derartige Fasern, Fäden, Kabel und Garne finden Verwendung in Textilanwendungen, Teppichen, industriellen Geweben, Polstermaterialien, Filtern (einschliesslich Zigarettenfiltern) und zahlreichen anderen Anwendungen, bei welchen sie infolge ihrer   emzigartigen    Kombination von Eigenschaften besonders nützlich sind. In Filmen weisen die erfindungsgemäss hergestellten Polymeren besondere Zähigkeit, Zerreissfestigkeit und Schlagfestigkeit auf, und besitzen gleichzeitig ausgezeichnete optische Eigenschaften.

   Dieselben Vorteile sind auch bei Magnetbandunterlagen und photographischen Filmunterlagen zu beobachten, welche aus diesen Polymeren hergestellt wurden.



   In Drahtüberzügen und Kabelmänteln weisen die neuen Polymeren den Vorteil einer besseren Schlagfestigkeit, Dehnung, Reissfestigkeit und Zähigkeit bei nie derer Temperatur auf. Dieselben Vorteile können erzielt werden, wenn diese Polymeren in Papierüberzügen sowie zum Beschichten anderer Oberflächen und Laminate sowohl mit faserigen wie nichtfaserigen Materialien, wie Laminaten mit anderen Harzen oder mit Folien und dergleichen, verwendet werden. In all den oben erwähnten Anwendungen ist die Leichtigkeit der Verarbeitbarkeit dieser neuen Polymeren ein wichtiger Vorteil gegenüber zahlreichen bekannten festen Polymeren mit hohem Molekulargewicht.



   Die erfindungsgemäss hergestellten Polymeren können mit einer grossen Anzahl Antioxydantien allein oder gemischt stabilisiert werden. Eine besonders wirkungsvolle, synergistische Mischung ist eine solche, welche Dilauryl-thiodipropionat mit 4,4'-Butyliden-bis-(6 tert.butyl-meta-cresol) oder Butylhydroxytoluol enthält.



  Metallseifen wie Calciumstearat können ebenfalls zugesetzt werden, vorzugsweise in Konzentrationen von   1 S    oder weniger, um die Stabilität zu erhöhen und die Ablösung von der Form zu erleichtern. Gleitmittel wie Oleamid oder Erucylamid oder Antiblockmittel, wie kolloidales Siliciumoxyd, können ebenfalls zugesetzt werden, insbesondere wenn die kristallinen Polymeren für Filme verwendet werden sollen. Ferner können Pigmente, Streckmittel, Weichmacher oder Füllmittel, wie z. B. Titanoxyde, Calciumhydroxyd oder Silicate, diesen Polymeren zugesetzt werden. Zur Verwendung in der Faserbildung können Gemische der erfindungsgemäss hergestellten kristallinen Polymere mit Polyestern oder Polyamiden, z. B. Nylon, verwendet werden, um verbesserte Affinität zur Farbe sowie optimale Fasereigenschaften zu erzielen.

   Ausserdem können die erfindungsgemäss hergestellten Polymeren in der Wärme abgebaut werden bei Temperaturen oberhalb ihrer kritischen Temperaturen, um nützliche Produkte zu bilden. Auch können gemäss der vorliegenden Erfindung flüssige und wachsartige Polymere von niederem Molekulargewicht hergestellt werden, welche ausgezeichnete Verwendbarkeit für Spezialzwecke aufweisen. Die erfindungsgemäss erhaltenen kristallinen Polymere sind nützlich in Packmaterialien, Flüssigkeitsbehältern, Flüssigkeitsleitungen und dergleichen Artikel.

Claims (1)

  1. PATENTANSPRUCH Verfahren zur Herstellung von festen, kristallinen Polymeren, welche polymerisiertes Propylen und einen oder mehr polymerisierte diolefinische und/oder azetylenische Kohlenwasserstoffe enthalten, dadurch gekennzeichnet, dass man zuerst Propylen oder mindestens einen diolefinischen oder azetylenischen Kohlenwasserstoff polymerisiert und anschliessend das oder die verbleibenden Monomeren polymerisiert, um ein festes, kristallines Produkt zu erhalten, dass ein stereospezifischer Polymerisationskatalysator verwendet wird, und dass bei Verwendung von diolefinischem Kohlenwasserstoff ohne azetylenischen Kohlenwasserstoff die gesamte Polymerisation bei einer Temperatur von 130 bis 3000 C und bei erhöhtem Druck durchgeführt wird.
    UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass die verwendete Menge diolefinischen oder azetylenischen Kohlenwasserstoffes derart bemessen ist, dass das entstehende Produkt kein Homopolymer enthält.
    2. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man zuerst Propylen polymerisiert und anschliessend mindestens einen diolefinischen und/oder azetylenischen Kohlenwasserstoff polymerisiert.
    3. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man zuerst mindestens einen diolefinischen und/oder azetylenischen Kohlenwasserstoff polymerisiert und anschliessend Propylen polymerisiert.
    4. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass die Reaktionstemperatur 0-300 C und der Druck 1-2000 A beträgt.
    5. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass der diolefinische Kohlenwasserstoff Butadien ist.
    6. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass der azetylenische Kohlenwasserstoff Azetylen oder Methylazetylen ist.
    7. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass ein Polymerisat hergestellt wird, das mindestens 80 Ges.%, vorzugsweise 90-99,9 Ges. %, Polypropylensegmente enthält.
CH1325262A 1957-07-01 1962-11-13 Verfahren zur Herstellung von festen, kristallinen Polymeren CH469746A (de)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US66884057A 1957-07-01 1957-07-01
US2882660A 1960-05-13 1960-05-13
US15200161A 1961-11-13 1961-11-13
US15697461A 1961-12-04 1961-12-04
US156975A US3254140A (en) 1961-12-04 1961-12-04 Propylene-acetylenic hydrocarbon block copolymers and process for preparing same
US04/505,227 US4310639A (en) 1957-07-01 1965-10-26 Polyallomers and process for preparing same

Publications (1)

Publication Number Publication Date
CH469746A true CH469746A (de) 1969-03-15

Family

ID=27556137

Family Applications (3)

Application Number Title Priority Date Filing Date
CH1301162A CH460351A (de) 1957-07-01 1962-11-07 Verfahren zur Herstellung eines festen, kristallinen Polymers
CH1301262A CH456160A (de) 1957-07-01 1962-11-07 Verfahren zur Herstellung von kristallinen Polymeren
CH1325262A CH469746A (de) 1957-07-01 1962-11-13 Verfahren zur Herstellung von festen, kristallinen Polymeren

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CH1301162A CH460351A (de) 1957-07-01 1962-11-07 Verfahren zur Herstellung eines festen, kristallinen Polymers
CH1301262A CH456160A (de) 1957-07-01 1962-11-07 Verfahren zur Herstellung von kristallinen Polymeren

Country Status (10)

Country Link
US (1) US4310639A (de)
BE (3) BE624652A (de)
CH (3) CH460351A (de)
DE (1) DE1495565A1 (de)
DK (1) DK116395B (de)
FR (2) FR1290523A (de)
GB (4) GB989724A (de)
NL (3) NL285400A (de)
NO (4) NO115719B (de)
SE (2) SE316013B (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1495055B1 (de) * 1964-02-21 1971-01-07 Avisun Corp Verfahren zur Herstellung von pentanunloeslichen Blockmischpolymerisaten aus AEthylen und Propylen
DE1495054B1 (de) * 1964-02-21 1971-02-04 Avisun Corp Verfahren zur Herstellung von in Pentan unloeslichen Blockmischpolymerisaten aus AEthylen und Propylen
DE1495056C2 (de) * 1964-02-25 1973-09-20 Avisun Corp., Philadelphia, Pa. (V.St.A.) Verfahren zur Herstellung von praktisch kristallinen Blockmischpolymerisaten aus Äthylen und Propylen
US3679775A (en) * 1968-04-03 1972-07-25 Eastman Kodak Co Olefin polymerization process and catalyst
JPS54139693A (en) 1978-04-21 1979-10-30 Sumitomo Chem Co Ltd Preparation of propylene-ethylene block copolymer
DE2849114C2 (de) * 1978-11-11 1982-12-23 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung einer Polypropylen-Formmasse und ihre Verwendung zur Herstellung von Formkörpern
DE3417442A1 (de) * 1984-05-11 1985-11-14 Hoechst Ag, 6230 Frankfurt Polyacetylen-formmasse, verfahren zu ihrer herstellung und ihre verwendung
DE3933695C2 (de) * 1989-10-09 2001-02-08 Hoechst Trespaphan Gmbh Polypropylenfolie mit guten Hafteigenschaften
KR100545514B1 (ko) * 1997-11-21 2006-01-24 짓쏘 세끼유 가가꾸 가부시키가이샤 폴리프로필렌-b-폴리(에틸렌-co-프로필렌)의 제조방법
EP1834970B1 (de) * 2006-03-15 2014-05-14 Styrolution GmbH Ein Verfahren zur Herstellung von Polyolefin-Polyvinylaromatischen-Blockcopolymeren

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970719A (en) * 1958-01-16 1976-07-20 Phillips Petroleum Company Preparation of block copolymers
US3529037A (en) * 1966-10-25 1970-09-15 Hugh John Hagemeyer Jr Polyallomers and process for preparing same

Also Published As

Publication number Publication date
BE624653A (de)
NL285401A (de)
CH456160A (de) 1968-05-15
NO115363B (de) 1968-09-23
BE624654A (de)
GB1009718A (en) 1965-11-10
DE1495565A1 (de) 1969-05-14
NO115362B (de) 1968-09-23
FR1416316A (fr) 1965-11-05
GB989724A (en) 1965-04-22
SE316012B (de) 1969-10-13
NL285399A (de)
DK116395B (da) 1970-01-05
SE316013B (de) 1969-10-13
NL285400A (de)
GB993752A (en) 1965-06-02
US4310639A (en) 1982-01-12
NO118630B (de) 1970-01-19
NO115719B (de) 1968-11-18
GB1018283A (en) 1966-01-26
FR1290523A (fr) 1962-04-13
CH460351A (de) 1968-07-31
BE624652A (de)

Similar Documents

Publication Publication Date Title
EP0023249B1 (de) Verfahren zur Herstellung von weitgehend amorphen Buten-1-Propen-Ethen-Terpolymeren mit hohem Erweichungspunkt
DE1094985B (de) Verfahren zur Polymerisation von Olefinen zu linearen, im wesentlichen unverzweigten hochmolekularen Polymerisaten
DE2329641A1 (de) Verfahren zur polymerisation von alpha-olefinen
DE1420364A1 (de) Verfahren zur Herstellung fester kristalliner Polymerisate aus Olefinen
DD245201A5 (de) Verfahren zur herstellung von 1,4-cis-polybutadien oder butadien-copolymeren
DE2347577A1 (de) Verfahren zur stereospezifischen polymerisation von alpha-olefinen
EP0135834A2 (de) Verfahren zur Herstellung einer Polypropylen-Formmasse
CH469746A (de) Verfahren zur Herstellung von festen, kristallinen Polymeren
EP0010814B1 (de) Verfahren zur Herstellung von pulverförmigen, thermoplastischen Copolymeren aus Äthylen und Buten-(1)
DE2418772C3 (de) Verfahren zur Herstellung von klaren Blockcopolymerisaten
DE3140664A1 (de) "blockpolymerisationsverfahren zur herstellung von schlagfesten aethylen/propylen-blockpolymeren bei hoher produktivitaet"
DE3226488A1 (de) Kontinuierliches, aufeinanderfolgendes dampfphasenblockpolymerisationsverfahren zur herstellung schlagfester ethylen/propylen-polymerisate
DE1158714B (de) Verfahren zur Herstellung von Mischpolymerisaten des AEthylens mit 1-Olefinen
DE1302896C2 (de) Verfahren zur selektiven polymerisation von alpha-olefinen
DE3140665A1 (de) Verbessertes verfahren zur herstellung eines propylenpolymeren
DE1100956B (de) Verfahren zur Polymerisation von ungesaettigten Kohlenwasserstoffen
DE1645048A1 (de) Polymere von ungesaettigten tertiaeren Aminen,ihre Herstellung und Verwendung
DE3876411T2 (de) Katalysator fuer propylenpolymerisierung sowie verfahren.
DE1024715B (de) Kontinuierliches Verfahren zur Polymerisation von AEthylen allein oder in Mischung mit anderen Olefinen
DE3317335A1 (de) Lineares polyaethylen mit geringer dichte und verfahren zu dessen herstellung
AT239523B (de) Verfahren zum Polymerisieren von Olefinen
AT223373B (de) Verfahren zum Polymerisieren von α-Olefinen
DE1292854B (de) Verfahren zur Herstellung von Homo- und Mischpolymerisaten von Mono- und Diolefinen
AT261199B (de) Verfahren zur Herstellung eines festen, kristallinen Polymers aus Äthylen und Propylen
AT210624B (de) Verfahren zur Polymerisation und Mischpolymerisation von im Kern halogenhaltigen arylsubstituierten Olefinen