CA2291709A1 - Novel angiogenesis inhibitors - Google Patents

Novel angiogenesis inhibitors Download PDF

Info

Publication number
CA2291709A1
CA2291709A1 CA002291709A CA2291709A CA2291709A1 CA 2291709 A1 CA2291709 A1 CA 2291709A1 CA 002291709 A CA002291709 A CA 002291709A CA 2291709 A CA2291709 A CA 2291709A CA 2291709 A1 CA2291709 A1 CA 2291709A1
Authority
CA
Canada
Prior art keywords
pyrazolo
pyrimidine
pyridyl
compound
comprised
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002291709A
Other languages
French (fr)
Inventor
Mark T. Bilodeau
Randall W. Hungate
Richard L. Kendall
Ruth Rutledge
Kenneth A. Thomas, Jr.
Robert Rubino
Mark E. Fraley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck and Co Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9800681.0A external-priority patent/GB9800681D0/en
Application filed by Individual filed Critical Individual
Publication of CA2291709A1 publication Critical patent/CA2291709A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers

Abstract

The present invention relates to compounds which inhibit tyrosine kinase enzymes, compositions which contain tyrosine kinase inhibiting compounds and methods of using tyrosine kinase inhibitors to treat tyrosine kinase-dependent diseases/conditions such as angiogenesis, cancer, atherosclerosis, diabetic retinopathy or autoimmune diseases, in mammals.

Description

TITLE OF THE INVENTION
NOVEL ANGIOGENESIS INHIBITORS
BACKGROUND OF THE INVENTION
The present invention relates to compounds which inhibit tyrosine kinase enzymes, compositions which contain tyrosine kinase inhibiting compounds and methods of using tyrosine kinase inhibitors to treat tyrosine kinase-dependent diseases/conditions such as neoangiogenesis, cancer, atherosclerosis, diabetic retinopathy or inflammatory diseases, in mammals.
Tyrosine kinases are a class of enzymes that catalyze the transfer of the terminal phosphate of adenosine triphospate to tyrosine residues in protein substrates. Tyrosine kinases are believed, by way of substrate phosphorylation, to play critical roles in signal transduction for a number of cell functions. Though the exact mechanisms of signal transduction is still unclear, tyrosine kinases have been shown to be important contributing factors in cell proliferation, carcinogenesis and cell differentiation.
2o Accordingly, inhibitors of these tyrosine kinases are useful for the prevention and treatment chemotherapy of proliferative diseases dependent on these enzymes.
For example, a method of treatment described herein relates to neoangiogenesis. Neoangiogenesis occurs in conjunction with tumor growth and in certain diseases of the eye. It is characterized by excessive activity of vascular endothelial growth factor.
Vascular endothelial growth factor (VEGF) binds the high affinity membrane-spanning tyrosine kinase receptors KDR
and Flt-I. Cell culture and gene knockout experiments indicate that each receptor contributes to different aspects of angiogenesis.
KDR mediates the mitogenic function of VEGF whereas Flt- I
appears to modulate non-mitogenic functions such as those associated with cellular adhesion. Inhibiting KDR thus modulates the level of mitogenic VEGF activity.
Vascular growth in the retina leads to visual degeneration culminating in blindness. VEGF accounts for most of the angiogenic activity produced in or near the retina in diabetic retinopathy. Ocular VEGF mRNA and protein are elevated by conditions such as retinal vein occlusion in primates and decreased p02 levels in mice that lead to neovascularization. Intraocular injections of anti-VEGF monoclonal antibodies or VEGF receptor immunofusions inhibit ocular neovascularization in both primate and rodent models. Regardless of the cause of induction of VEGF
in human diabetic retinopathy, inhibition of ocular VEGF is useful in treating the disease.
Expression of VEGF is also significantly increased in hypoxic regions of animal and human tumors adjacent to areas of necrosis. Monoclonal anti-VEGF antibodies inhibit the growth of human tumors in nude mice. Although these same tumor cells continue to express VEGF in culture, the antibodies do not diminish their mitotic rate. Thus tumor-derived VEGF does not function as an autocrine mitogenic factor. Therefore, VEGF contributes to tumor growth in vivo by promoting angiogenesis through its paracrine vascular endothelial cell chemotactic and mitogenic activities. These monoclonal antibodies also inhibit the growth of typically less well vascularized human colon cancers in athymic mice and decrease the number of tumors arising from inoculated cells. Viral expression of a VEGF-binding construct of Flk-1, the mouse KDR receptor homologue, truncated to eliminate the cytoplasmic tyrosine kinase domains but retaining a membrane anchor, virtually abolishes the growth of a transplantable 3o glioblastoma in mice presumably by the dominant negative mechanism of heterodimer formation with membrane spanning endothelial cell VEGF receptors. Embryonic stem cells, which normally grow as solid tumors in nude mice, do not produce detectable tumors if both VEGF alleles are knocked out. Taken together, these data indicate the role of VEGF in the growth of solid tumors. Inhibition of KDR or Flt-1 is implicated in pathological neoangiogenesis, and these are useful in the treatment of diseases in which neoangiogenesis is part of the overall pathology, e.g., diabetic retinal vascularization, as well as various forms of cancer.
Cancers which are treatable in accordance with the present invention demonstrate high levels of gene and protein expression. Examples of such cancers include cancers of the brain, genitourinary tract, lymphatic system, stomach, larynx and lung. These include histiocytic lymphoma, lung adenocarcinoma and small cell lung cancers. Additional examples include cancers in which overexpression or activation of Raf activating oncogenes {e.g., K-ras, erb-B) is observed. More particularly, such cancers include pancreatic and breast carcinoma.
SUMMARY OF THE INVENTION
A compound is disclosed in accordance with formula I:

\ N/

Rs N
R~
I
or a pharmaceutically acceptable salt, hydrate or prodrug thereof, wherein R, is H, C~_,o alkyl, C3_6 cycloalkyl, CS_,o aryl, halo, OH, C3_ ,o heterocyclyl, or CS_~o heteroaryl; said alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
RZ&R3 are independently H, C,_6 alkyl, CS_,o aryl, C3-6 cycloalkyl, OH, N02, -NHS, or halogen;
R4 is H, C ~ _ ~ o alkyl, C3_6 cycloalkyl, C, _6 alkoxy C2_ I o alkenyl, CZ_~o alkynyl, CS_,o aryl, C3_lo heterocyclyl, C,_6 alkoxyNR7Rg, N02, OH, -NH2 or CS_lo heteroaryl, said alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
RS is H, or C,_6 alkyl, OR, halo, NH2 or N02;
Ra is H, C,_lo alkyl, halogen, N02, OR, -NR~ NR7Rg~ R7Rb CS_~o aryl, CS_~o heteroaryl or C3_~o heterocyclyl, 2o R is H, or C1_6 alkyl; and R~&Rg are independently H, C1_,o alkyl, C3-6 cycloalkyl, COR, COOR, COO-, CS_,o aryl, C3_~o heterocyclyl, or CS_~o heteroaryl or NR~Rg can be taken together to form a heterocyclic 5-10 membered saturated or unsaturated ring containing, in addition to the nitrogen atom, one to two additional heteroatoms selected from the group consisting of N, O and S.
Also disclosed is a pharmaceutical composition which is comprised of a compound represented by the formula I:
/N
N

~"i5 N
Ri wherein Rl, R2, R3, R4 and RS are described as above or a pharmaceutically acceptable salt or hydrate or prodrug thereof in combination with a carrier.
Also included is a method of treating a tyrosine kinase dependent disease or condition in a mammal which comprises administering to a mammalian patient in need of such treatment a tyrosine kinase dependent disease or condition treating amount of a compound of formula I or a pharmaceutically acceptable salt, hydrate or pro-drug thereof.
Also included is a method of treating cancer in a mammalian patient in need of such treatment which is comprised of admininstering to said patient an anti-cancer effective amount of a compound of formula I or a pharmaceutically acceptable salt, hydrate or pro-drug thereof.
Also included in the present invention is a method of treating diseases in which neoangiogenesis is implicated, which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt, hydrate or pro-drug thereof in an amount which is effective for reducing neoangiogenesis.
More particularly, a method of treating ocular disease in which neoangiogenesis occurs is included herein, which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt hydrate or pro-drug thereof in an amount which is effective for treating said ocular disease.
More particularly, a method of treating retinal vascularization is included herein, which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt, hydrate or pro-drug thereof in an amount which is effective for treating retinal vascularization. Diabetic retinopathy is an example of a disease in which neoangiogenesis or retinal vascularization is part of the overall disease etiology. Also included is a method of treating age-related macular degeneration.
These and other aspects of the invention will be apparent from the teachings contained herein.
DETAILED DESCRIPTION OF THE INVENTION
The invention is described herein in detail using the terms defined below unless otherwise specified.
The term "alkyl" refers to a monovalent alkane (hydrocarbon) derived radical containing from 1 to I O carbon atoms unless otherwise defined. It may be straight, branched or cyclic. Preferred straight or branched alkyl groups include methyl, ethyl, propyl, isopropyl, butyl and t-butyl. Preferred cycloalkyl groups include cyclopropyl, cyclobutyl, cycloheptyl, cyclopentyl and cyclohexyl.
Alkyl also includes a straight or branched alkyl group which contains or is interrupted by a cycloalkylene portion.
Examples include the following:
and - (CH2)W ~ (CH2)Z
-(CH2)x U (CH2)y wherein: x plus y = from 0-10; and w plus z = from 0-9.
The alkylene and monovalent alkyl portions) of the alkyl group can be attached at any available point of attachment to the cycloalkylene portion.
7 _ When substituted alkyl is present, this refers to a straight, branched or cyclic alkyl group as defined above, substituted with 1-3 groups of Ra, described herein.
The term "alkenyl" refers to a hydrocarbon radical straight, branched or cyclic containing from 2 to 10 carbon atoms and at least one carbon to carbon double bond. Preferably one carbon to carbon double bond is present, and up to four non-aromatic (non-resonating) carbon-carbon double bonds may be present. Preferred alkenyl groups include ethenyl, propenyl, 1 o butenyl and cyclohexenyl. As described above with respect to alkyl, the straight, branched or cyclic portion of the alkenyl group may contain double bonds and may be substituted with one to three groups of Ra, when a substituted alkenyl group is provided.
The term "alkynyl" refers to a hydrocarbon radical straight, branched or cyclic, containing from 2 to 10 carbon atoms and at least one carbon to carbon triple bond. Up to three carbon-carbon triple bonds may be present. Preferred alkynyl groups include ethynyl, propynyl and butynyl. As described above with respect to alkyl, the straight, branched or cyclic portion of the alkynyl group may contain triple bonds and may be substituted with 1-3 groups of Ra, when a substituted alkynyl group is provided.
Aryl refers to 5-10 membered aromatic rings e.g., phenyl, substituted phenyl and like groups as well as rings which are fused, e.g., naphthyl and the like. Aryl thus contains at least one ring having at least 5 atoms, with up to two such rings being present, containing up to 10 atoms therein, with alternating {resonating) double bonds between adjacent carbon atoms. The preferred aryl groups are phenyl and naphthyl. Aryl groups may likewise be substituted with 1-3 groups of Ra as defined herein.
Preferred substituted aryls include phenyl and naphthyi substituted with one or two groups.
The term heterocycle, heteroaryl or heterocyclic, as used herein except where noted, represents a stable 5- to 7-membered mono- or bicyclic or stable 7- to 10-membered bicyclic _ g -heterocyclic ring system, any ring of which may be saturated or unsaturated, and which consists of carbon atoms and from one to three heteroatoms selected from the group consisting of N, O and S, and wherein the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure. The heterocycle, heteroaryl or heterocyclic may be substituted with 1-3 groups of Ra. Examples of such heterocyclic elements include piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolodinyl, 2-oxoazepinyl, azepinyl, pyrrolyl, 4-piperidonyl, pyrrolidinyl, pyrazolyl, pyrazolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazolidinyl, isoxazolyl, isoxazolidinyl, morpholinyl, thiazolyl, thiazolidinyl, isothiazolyl, quinuclidinyl, isothiazolidinyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, thiadiazoyl, benzopyranyl, benzothiazolyl, benzoxazolyl, furyl, tetrahydrofuryl, tetrahydropyranyl, thiophenyl, imidazopyridinyl, tetrazolyl, triazinyl, thienyl, benzothienyl, thiamorpholinyl sulfoxide, thiamorpholinyl sulfone, and oxadiazolyl. The term "alkoxy" refers to those groups of the designated length in either a straight or branched configuration and if two or more carbon atoms in length, they may include a double or a triple bond. Exemplary of such alkoxy groups are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tertiary butoxy, pentoxy, isopentoxy, hexoxy, isohexoxy allyloxy, propargyloxy, and the like.
The term "halogen" is intended to include the halogen atom fluorine, chlorine, bromine and iodine.
The term "prodrug" refers to compounds which are drug precursors which, following administration and absorption, release the drug in vivo via some metabolic process. Exemplary prodrugs include acyl amides of the amino compounds of this inventon such as amides of alkanoic(C~_~)acids, amides of aryl acids (e.g., benzoic acid) and alkane(C1_6)dioic acids.
Tyrosine kinase dependent diseases or conditions refers to hyperproliferative disorders which are initiated/maintained by aberrant tyrosine kinase enzyme activity. Examples include psoriasis, cancer, immunoregulation (graft rejection), atherosclerosis, rheumatoid arthritis, angiogenesis (e.g. tumor growth, diabetic retinopathy), etc.
The compounds of the present invention are in 1 o accordance with formula I:

\N/

Ri I
or a pharmaceutically acceptable salt, hydrate or prodrug thereof, wherein R~ is H, C,_lo alkyl, C3_6 cycloalkyl, CS_~o aryl, halo, OH, C3_ to heterocyclyl, or CS_~o heteroaryl; said alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
R2&R3 are independently H, CI_6 alkyl, CS_lo aryl, C3_g cycloalkyl, OH, N02, -NH2, or halogen;
R4 is H, C,_,o alkyl, C3_6 cycloalkyl, C~_6 alkoxy C2_lo alkenyl, CZ_ ~ o alkynyl, CS_ ~ o aryl, C3_, o heterocyclyl, C ~ _6 WO 98/54093 PCT/US98/1059(I

alkoxyNR7R~, N02, OH, -NH2 or CS_,o heteroaryl, said alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;

Rs is H, or C ~ _~ alkyl, OR, halo, NH2 or N02;
Ra is H, C1_lo alkyl, halogen, N02, OR, -NR~ NR7Rg~ R7Rg Cs-to at'Yl, Cs_lo heteroaryl or C3_~o heterocyclyl, R is H, or C, _ f alkyl; and R~&Rg are independently H, C,_~o alkyl, C3-( cycloalkyl, COR, COOR, COO-, Cs_~o aryl, C3_~o heterocyclyl, or Cs_~o heteroaryl or NR~Rg can be taken together to form a heterocyclic 5-10 membered saturated or unsaturated ring containing, in addition to the nitrogen atom, one to two additional heteroatoms selected from the group consisting of N, O and S.
A preferred subset of compounds of the present invention is realized when:
R1 is H, C1_~o alkyl, Cs_lo aryl, C3_,o heterocyclyl, or Cs_lo heteroaryl; said alkyl, aryl, heteroaryi and heterocyclyl being optionally substituted with from one to three members selected from Ra;
R2&R3 are independently H, C,_6 alkyl, C3_6 cycloalkyl, OH, or halogen;
R4 is H, C1_~o alkyl, C3_6 cycloalkyl, Cs_,o aryl, Cs_lo heteroaryl, C3_~o heterocyclyl, C1_6 alkoxyNR7R8, N02, OH, -NH2 or Cs_~o heteroaryl, said alkyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra; and all other variables are as described above.
Examples of the compounds of this invention are:
3-(4-fluorophenyl)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(3-chlorophenyl)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(3,4-methylenedioxypheny)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine, l0 3-(phenyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(4-fluorophenyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(3-chlorophenyl)-fi-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(3-thienyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(3-acetamidophenyl)-6-(4-methylphenyl) pyrazolo(1,5-A)pyrimidine, 3-{3-thienyl)-f-(4-methylphenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(3-acetamidophenyl)-6-(4-methoxyphenyl)pyrazolo( 1,5--A)pyrimidine, 3-(3-thienyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(4-pyridyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-chlorophenyl) pyrazolo(1,5-A)pyrimidine.
3-(4-pyridyl)-6-(4-chlorophenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-methylphenyl) pyrazolo(1,5-A)pyrimidine, 3-(4-pyridyl)-6-(4-methylphenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(2-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(4-pyridyl)-6-(2-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-{4-pyridyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(2-pyrazinyl) pyrazolo( 1,5-A)pyrimidine, 3-(4-pyridyl)-6-(2-pyrazinyl) pyrazolo(1,5-A)pyrimidine, 3-(3-pyridyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(3-pyridyl)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(4 pyridyl)-6-(4-methoxyphenyl) pyrazolo( 1,5-A)pyrimidine, 3-(3-thienyl)-6-(4-methoxyphenyl) pyrazolo{1,5-A)pyrimidine, 3-(3-thienyl)-6-(4-hydroxyphenyl)pyrazolo( 1,5-A)pyrimidine, 3-(3-thienyl)-6-{4-(2-(4-morpholinyl)ethoxy)phenyl) pyrazolo(1,5-A)pyrimidine, 3-(3-thienyl)-6-{cyclohexyl)pyrazolo (1,S-A}pyrimidine, 3-(bromo)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(bromo}-6-(4-pyrimidyl) pyrazolo( 1,5-A)pyrimidine, 3-(phenyl)-6-(2-(3-carboxy}pyridyl) pyrazolo(I,5-A)pyrimidine, and 3-(3-thienyl)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine.
Schemes 1-3 for preparing the novel compounds of this invention are presented below. The examples which follow the schemes illustrate the compounds that can be synthesized by Schemes 1-3, but Schemes 1-3 are not limited by the compounds in the tables nor by any particular substituents employed in the schemes for illustrative purposes. The examples specifically illustrate the application of the following schemes to specific compounds.
Scheme 1 Ari ~ N N
O HN~ N EtOH/HOAc Ar1--~O + H2N~2 80°C Ar2 Generally, a method for the preparation of 3,6-diaryl pyrazolo(1,5-A)pyrimidines comprises mixing a commercially available malondialdehyde compound (1), with commercially available aminopyrazole (2) in an alcohol, such as ethanol, methanol, isopropanol, butanol and the like, said alcohol containing catalytic quantities of an acid, such as acetic acid, to yield (3), wherein Arl and Ar2, respectively, are Rq. and R1 ~ as described above.
Scheme 2 H
Ary--C O + N' N EtOH/HOAc Are ~ N . N

O H2N Br 80°C
Br 1 ~ g Ar~ ., Ar1 ~ N Pd(PPh3)4 1 l~ N
+ Ar2-B(OH~ N
Br Na2COg Ar2 Dioxane/ 90°C
Scheme 2 depicts a means for making 3,6-diaryl pyrazolo(1,5-A)pyrimidines when the desired aminopyrazole is not commercially available. In a like manner to that described in scheme 1 compound (8) is obtained. Treatment of (8) with a boronic acid derivative in the presence of a palladium catalyst provides after workup the desired material (9). Arl and Ar2 are as described above.

Scheme 3 O OMe Phi Ar~~ N~
Ar ~ + Me2N--C
OMe 115°C

CN H
CN ~~ ~JMe PhCH~ NH2NH~:HC1 H2N ' Me2~ ~ Ar Ar2 + OMe 115"C 2 NM2 EtOH reflux Ar2 H Ari O EtOH/HOAc , 'N~
H2N 1~ + Ar~~N~ g~oC~ N ~ .
i Arp Ar2 Scheme 3 ilustrates another method for the preparation of 3,7 diarylpyrazolo(1,5-A)pyrimidines. The comercially available ketone (15) and nitrile (18) are treated seperately with dimethylformamidedimethyLacetal (16) in refluxing toluene to give products (17) and (19) respectively. Compound (19) is then treated with hydrazinehydrochloride in refluxing ethanol to give the aminopyrazole (20). Compounds (17) and (20) and then treated with catalytic amounts of acetic acid in ethanol as described previously giving the desired of 3,7 diarylpyrazolo(1,5-A)pyrimidines (21). ArI and Ar2 are as described above.
The invention described herein includes a pharmaceutical composition which is comprised of a compound of formula I or a pharmaceutically acceptable salt or hydrate thereof in combination with a carrier. As used herein the terms "pharmaceutically acceptable salts" and "hydrates" refer to those salts and hydrated forms of the compound which would be apparent to the pharmaceutical chemist, i.e., those which favorably affect the physical or pharmacokinetic properties of the compound, such as solubility, palatability, absorption, distribution, metabolism and excretion. Other factors, more practical in nature, which are also important imthe selection, are the cost of the raw materials, ease of crystallization, yield, stability, solubility, hygroscopicity and flowability of the resulting bulk drug.
When a compound of formula I is present as a salt or hydrate which is non-pharmaceutically acceptable, this can be converted to a salt or hydrate form which is pharmaceutically acceptable in accordance with the present invention.
When the compound is negatively charged, it is to balanced by a counterion, e.g., an alkali metal cation such as sodium or potassium. Other suitable counterions include calcium, magnesium, zinc, ammonium, or alkylammonium cations such as tetramethylammonium, tetrabutylammonium, choline, triethylhydroammonium, meglumine, triethanolhydroammonium, etc. An appropriate number of counterions is associated with the molecule to maintain overall charge neutrality. Likewise when the compound is positively charged, e.g., protonated, an appropriate number of negatively charged counterions is present to maintain overall charge neutrality.
- 20 Pharmaceutically acceptable salts also include acid addition salts. Thus, the compound can be used in the form of salts derived from inorganic or organic acids or bases. Examples include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-3o naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate and undecanoate. Base salts include ammonium salts, alkali metal salts such as sodium and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases such as dicyclohexylamine salts, N-methyl-D-glucamine, and salts with amino acids such as arginine, lysine, and so forth. Also, the basic nitrogen-containing groups may be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl; and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides and others.
1 o Other pharmaceutically acceptable salts include the sulfate salt ethanolate and sulfate salts.
The compounds of the present invention, may have asymmetric centers and occur as racemates, racemic mixtures and as individual diastereomers, or enantiomers with all isomeric forms being included in the present invention. When any variable (e.g., aryl, heterocyle, Rl, etc)occurs more than one time in any constituent or in Formula I, its definition on each occcurence is independent of its definition at every other occurrence, unless otherwise stated.
2o The compounds of the invention can be formulated in a pharmaceutical composition by combining the compound with a pharmaceutically acceptable carrier. Examples of such compositions and carriers are set forth below.
The compounds may be employed in powder or crystalline form, in solution or in suspension. They may be administered orally, parenterally (intravenously or intramuscularly), topically, transdermally or by inhalation.
Thus, the carrier employed may be, for example, either a solid or liquid. Examples of solid carriers include lactose, 3o terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like. Examples of liquid carriers include syrup, peanut oil, olive oil, water and the like. Similarly, the carrier for oral use may include time delay material well known in WO 98/54093 1'CT/US98/10590 the art, such as glyceryl monostearate or glyeeryl distearate alone or with a wax.
Topical applications may be formulated in carriers such as hydrophobic or hydrophilic bases to form ointments, creams, lotions, in aqueous, oleaginous or alcoholic liquids to form paints or in dry diluents to form powders. Such topical formulations can be used to treat ocular diseases as well as inflammatory diseases such as rheumatoid arthritis, psoriasis, contact dermatitis, delayed hypersensitivity reactions and the like.
Examples of oral solid dosage forms include tablets, capsules, troches, lozenges and the like. The size of the dosage form will vary widely, but preferably will be from about 25 mg to about SOOmg. Examples of oral liquid dosage forms include solutions, suspensions, syrups, emulsions, soft gelatin capsules and the like. Examples of injectable dosage forms include sterile injectable liquids, e.g., solutions, emulsions and suspensions.
Examples of injectable solids would include powders which are reconstituted, dissolved or suspended in a liquid prior to injection.
In injectable compositions, the carrier is typically comprised of sterile water, saline or another injectable liquid, e.g., peanut oil for intramuscular injections. Also, various buffering agents, preservatives and the like can be included.
For the methods of treatment disclosed herein, dosages can be varied depending upon the overall condition of the patient, the nature of the illness being treated and other factors. An example of a suitable oral dosage range is from about 0.1 to about 80 mg/kg per day, in single or divided doses. An example of a suitable parenteral dosage range is from about 0.1 to about 80 mg/kg per day, in single or divided dosages, administered by intravenous or intramuscular injection. An example of a topical dosage range is from about 0.1 mg to about 150 mg, applied externally from about one to four times a day. An example of an inhalation dosage range is from about 0.01 mg/kg to about 1 mg/kg per day.

The compounds may be administered in conventional dosages as a single agent or in combination with other therapeutically active compounds.

Me0 i N~ N
~N
~N
3-(4 pyridyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine A solution of commercially available dialdehyde (4, 12.9 mg, 0.0724 mmol) and aminopyrazole (5, 10.4mg 0.0652mmol) in ethanol was heated at 80°C for 10 hours in a test tube containing catalytic amounts of acetic acid. The reaction was cooled to room temperature and the yellow solid was collected by filtration and the title compound was washed with cold ethanol and dried (11.7 mg, 60%). Mass Spec (M+l, 303).
Me0 i _ ~O ' HN'N ~ i N~N
~ + H2N ~ 80°C ~N
.O / ~ / 1 .N .N

2o E~S:AMPLE 2 N.N
N
~S
.o ~ ~
3-(3-thienyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine Step 1.
A solution of 4 (713 mg, 4.0 mmol) and commercially availaible 7 (648 mg, 4.0 mmol), discussed above in ethanol (20 mL) was heated at 75°C for 4 h. The resulting white suspension was as decribed in example 1 for 4 hours, then cooled to 20°C, filtered, and washed with methanol (3 x 5 mL) to provide 10 as a white powder (1.07 g, 88%, mp = 168-170°C): 1H NMR (CDC13) ~
8.79 (d, 1 H, J = 2.2 Hz), 8.74 (d, 1 H, J = 2.2 Hz), 8.12 (s, 1 H), 7.51 (d, 2 H, J = 8.8 Hz), 7.05 (d, 2 H, J = 8.8 Hz), 3.88 (s, 3 H).
Me0 O + ~L ~~ EtOH/HOAc ~ N . N
~O H2N' Br gp°C ~N

Step 2.
A suspension of (10) {250 mg, 0.82 mmol), thiophene-3-boronic acid (11) (158 mg, 1.24 mmol), and aqueous sodium carbonate (2 _M, 1 mL) in dioxane (5 mL) was de-gassed by evacuating and backflushing with argon (3x).
Tetrakis(triphenyl-phosphine) palladium (20 mg, 0.017 mmol) was added and the reaction mixture was de-gassed again. The argon filled flask was then submerged in an oil bath pre-heated to 90°C
and was heated at that temperature fox 16 h. After cooling to 20°C, the yellow precipitate which formed was collected by filtration and- was washed with methanol (3 x 5 mL) to provide the title compound as a yellow powder (220 mg, 87%, mp = 191-193 °C): ~ H NMR (CDC13) ~ 8.79 (d, 1 H, J = 2.4 Hz), 8.76 (d, 1 H, J
- 2.2 Hz), 8.37 (s, 1 H), 7.90 (dd, 1 H, J = 2.9, 1.3 Hz), 7.70 (dd, 1 H, J = 4.9, 1.2 Hz), 7.54 (d, 2 H, J = 8.8 Hz), 7.43 (d, 1 H, J = 4.9, 2.9 Hz), 7.06 (d, 2 H, J = 8.8 Hz), 3.88 {s, 3H).

~o ' I
I ~ N.N HaB~OH Pd(PPh~)4 ~ i N-N
~N ~~ + ~ v Na2C0~ -N
Br S Dioxane/ 90°C vs HO
i N.N
~N
S

3-(3-thienyl)-6-(4-hydroxyphenyl)pyrazolo( 1,5-A)pyrimidine Ethanethiol (30 mg, 36 uL) was added dropwise over 1 min to a suspension of sodium hydride (23 mg, 0.98 mmol) in 10 dry DMF (2 mL) under argon. After 15 min, the compound of example 2 (50 mg, 0.16 mmol) was added and the reaction mixture was heated at 150°C for 1.5 h. The resulting brown solution was cooled, poured into water (25 mL) and washed with ethyl acetate (2 x 25 mL). The combined organics were dried (Na2S04), concentrated, and purified by flash chromatography (40%
EtOAc/Hexanes) to give the title compound as a yellow solid [ I 1 mg, 23%, Rf = 0.12 (40% EtOAc/Hexanes)]: 1H NMR (CD30D) b 8.96 (d, 1 H, J = 2.4 Hz), 8.85 (d, I H, J = 2.2 Hz), 8.44 (s, 1 H), 7.94 (dd, 1 H, J = 2.9, i .2 Hz), 7.74 (dd, 1 H, J = 4.9, 1.2 Hz), 7.56 (d, 2 H, J = 8.8 Hz), 7.46 (dd, 1 H, J = 4.9, 2.9 Hz), 6.94 (d, 2 H, J = 8.6 Hz).
,o Ho I
w ~ N.N NaH w ~ N.N
~N ~ EtSH ~ 'N
DMF
S

~N~O /
OJ w I i N.N
~N
S
3-(3-thienyl)-6-(4-(2-(4-morpholinyl)ethoxy)phenyl) pyrazolo(1,5-A)pyrimidine A solution of example 3 (11 mg, 0.038 mmol), cesium carbonate (37 mg, 0.11 mmol), N-(2-chloroethyl)morpholine hydrochloride (7 mg, 0.11 mmol), and sodium iodide (0.013 mmol) to in DMF (3 mL) was heated at 60°C under argon for 16 h. The reaction mixture was then poured into water (25 mL) and washed with ethyl acetate (2 x 25 mL). The combined organics were dried (NaZS04), concentrated, and purified by flash chromatography [50% Hexanes/CHC13(NH3)] to give the title compound as a yellow solid [10 mg, 65%, mp = 149-151°C, Rf = 0.39 (100%
CHC13(NH3))]: ~H NMR (CDC13) 8 8.77 (d, 1 H, J = 2.2 Hz), 8.75 (d, 1 H, J - 2.2 Hz), 8.36 (s, 1 H), 7.90 (dd, 1 H, J = 2.9, 1.3 Hz), 7.69 (dd, 1 H, J = 4.9, 1.3 Hz), 7.52 (d, 2 H, J = 8.8 Hz), 7.43 (d, 1 H, J = 4.9, 2.9 Hz), 7.06 (d, 2 H, J = 8.8 Hz), 4.18 (t, 2 H, J = 5.7 Hz), 3.76 (t, 4 H, J = 4.6 Hz), 2.85 (t, 2 H, J = 5.7 Hz), 2.61 (t, 4 H, J= 4.6 Hz); FAB MS (M++1) Anal Calcd. for C22Hz2N402S : C, 65.00; H, 5.46; N, 13.78. Found C, 64.98; H, 5.55; N, 14.02.
HO ~ ~'N~.O i ,N ~N~,CI p J w ~ ~ N.N
N , OJ
~N ~ Cs2C03 'N ..
1 NaI
~ S DMF ' S

~ N
N 'N
\ ~
\~
S
3-(3-thiophenyi)-7-(4-pyridyl) pyrazolo(1,5-A)pyrimidine A 13 x 100 mm reaction tube was charged with aminopyrazole (22) ( 16.5 mg, 0. I 00 mmol) dissolved in 0.500 mL
EtOH and vinylogous amide (23) ( 17.6 mg, 0.100 mmol) dissolved in 0.200 mL EtOH. Glacial acetic acid ( 1 drop) was added and the reaction was heated to 80 °C for 14 h. An additional 0.100 mL of glacial acetic acid was added and heating was continued for an additional 6 h. The sample was concentrated to dryness to provide the desired title compound. Analysis by mass spectrometry showed [M+H~+ 279.2.
~ N
H O
~~~ EtOH/HOAc ~~~
H2N \- Tl + ~ ~ ~ N . 80oC N 1' Tl Nr.~ ' /\
S I\
S

i N. N
~N
S
3-(3-thienyl)-6-(cyclohexyl) pyrazolo(1,5-A)pyrimidine Step 1 Palladium on carbon ( 10%, 2 g) was added to a solution of 24 (5.62 g, 23.4 mmol) in ethanol ( 100 mL) under an argon atmosphere. After evacuating and backflushing the reaction vessel with H2 (3X), the black suspension was stirred vigorously under an H2 filled balloon for 16 h. The reaction mixture was then filtered through celite, washed with ethyl acetate (200 mL) and concentrated to provide 25 as a colorless oil (5.0 g, 88%): 1 H
NMR (CDC13) d 4.18 (q, 4 H, J = 7.1 Hz), 3.13 (d, 1 H, J = 9.2 Hz), 2.08 (m, 1 H), 1.73 - 1.56 (m, 5 H), 1.35 - 1.01 (rn, 5 H), 1.26 (t, 6 H, J = 7.0 Hz).

Et0 OEt 10% PdJC Et0 OEt EtOH
O O O O

Step 2 A solution of 25 (2.0 g, 8.3 mmol) in dry THF (30 mL) at 0°C was treated with lithium aluminum hydride ( 1.0 M in THF, 16.5 mL, 16.5 mmol) over a 5 min period. The reaction mixture was warmed gradually to 15°C over 20 min and then was re-cooled to 0°C and quenched sequentially with water (630 uL), aqueous sodium hydroxide ( 1 N, 630 uL), and then water (3 x 630 uL). The resulting white suspension was stirred for 15 min, dried (Na2S04), and filtered washing with THF (100 mL) and ethyl acetate ( 100 mL). The filtrate was concentrated to provide 26 as a white solid ( 1.35 g, 100%): 1 H NMR (CDC13) d 3.83 (ddd, 4 H), 1.77 - 1.62 (m, 5 H), 1.57 (m, 1 H), 1.42 (m, 1 H), 1.30 - 0.96 (m, 5 H).
Et0 OEt THF
O O OH OH

Step 3 A solution of oxalyl chloride (2.39 g, 1.64 mL, 18.8 mmol) in CH2C12 (50 mL) at -60°C was treated with DMSO (2.94 g, 2.67 mL, 37.6 mmol) in CH2CI2 ( 10 mL) over 2 min. After 5 min, a solution of 26 ( 1.35 g, 8.5 mmol) in CH2C12 (20 mL) was added and the resulting suspension was maintained at -60°C for 15 min.
Triethylamine (8.6 g, 1 l .8 mL, 85 mmol) was then added and the reaction mixture was allowed to warm to 20°C. The quenched reaction was poured into water (200 mL) and washed with CH2C12 (2 x 100 mL). The combined organics were dried (Na2S04}, concentrated, and purified by flash chromatography (40%
Hexane/EtOAc) to provide 27 as a viscous oil [ 135 mg, 10%, R f =
0.34 (40% Hexane/EtOAc)]: 1H NMR (CDCl3) d 8.26 (s, 2 H), 2.09 (tt, 1 H), 1.85 - 1.68 (m, 6 H), 1.39 - 1.13 (m, 5 H).
oxalyl chl~de DMSO
NEt OH OH CHZCh O O

Step 4 A solution of 27 (50 mg, 0.30 mmol) and 22 (47 mg, 0.30 mmol) in ethanol (5 mL) was heated at 75°C for 16 h. After cooling, the reaction mixture was concentrated, and the crude product was purified by flash chromatography (25%
EtOAc/Hexane) to provide 6 as a yellow solid [54 mg, 63%, Rf =
0.33 (25% EtOAc/Hexanes)]: 1H NMR (CDCl3) d 8.48 (d, 1 H, J =
2.2 Hz), 8.44 (d, 1 H, J = 1.5 Hz), 8.30 (s, 1 H), 7.86 {dd, 1 H, J =
2.9, I. l Hz), 7.66 (dd, 1 H, J = 4.9, 1.2 Hz}, 7.41 (dd, 1 H, J =
4.9, 2.9 Hz), 2.64 (m, 1 H), 2.03 - 1.80 (m, 5 H), 1.52 - 1.27 (m, 5 H); FAB MS (M++1) calcd. for 284, found 284; Anal Calcd. for C 16H 17N3S (0.05 H20): C, 67.59; H, 6.06; N, 14.78. Found C, 67.66; H, 6.12; N, 15.14.

WO 98/54093 YCT/US98IlOS90 HN~ N
~ N. N
H z . ---~ y EtOH N
S O O
S

Kinase inhibition is demonstrated in accordance with the following protocol.
VEGF RECEPTOR KINASE ASSAY
VEGF receptor kinase activity is measured by incorporation of radio-labeled phosphate into polyglutamic acid, tyrosine, 4:1 (pEY) substrate. The phosphorylated pEY product is trapped onto a filter membrane and the incoporation of radio-labeled phosphate quantified by scintillation counting.
MATERIALS
VEGF receptor kinase The intracellular tyrosine kinase domains of human KDR (Terman, B .I. et al. Oncogene ( 1991 ) vol. 6, pp. 1677-1683.) and Flt-1 (Shibuya, M. et al: Oncogene (1990} vol. 5, pp. 519-524) were cloned as glutathione S-transferase (GST) gene fusion proteins. This was accomplished by cloning the cytoplasmic domain of the KDR kinase as an in frame fusion at the carboxy terminus of the GST gene. Soluble recombinant GST-kinase domain fusion proteins were expressed in Spodoptera frugiperda (Sf21 ) insect cells (Invitrogen) using a baculovirus expression vector (pAcG2T, Pharmingen).
Lvsis buffer 50 mM Tris pH 7.4, 0.5 M NaCI, 5 mM DTT, 1 mM
EDTA, 0.5% triton X-100, 10 % glycerol, 10 mg/ml of each leupeptin, pepstatin and aprotinin and 1 mM phenylmethylsulfonyl fluoride (all Sigma).

WO 98/54093 PC7. ;;598/10590 Wash buffer 50 mM Tris pH 7.4, 0.5 M NaCI, 5 mM DTT, I mM
EDTA, 0.05% triton X-100, 10 % glycerol, 10 mg/ml of each leupeptin, pepstatin and aprotinin and 1mM phenylmethylsulfonyl fluoride.
Dialysis buffer 50 mM Tris pH 7.4, 0.5 M NaCI, 5 mM DTT, 1 mM
EDTA, 0.05% triton X-100, 50 % glycerol, 10 mg/ml of each leupeptin, pepstatin and aprotinin and 1mM phenylmethylsuflonyl fluoride 10 X reaction buffer 200 mM Tris, pH 7.4, 1.0 M NaCI, 50 mM MnCl2, 10 mM DTT and 5 mg/ml bovine serum albumin (Sigma).
Enzyme dilution buffer 50 mM Tris, pH 7.4, 0.1 M NaCI, 1 mM DTT, 10 %
glycerol, 100 mg/ml BSA.
10 X Substrate 750 pg/ml poly (glutamic acid, tyrosine; 4:1 ) (Sigma).
Stop solution 30% trichloroacetic acid, 0.2 M sodium pyrophosphate (both Fisher).
Wash solution 15% trichloroacetic acid, 0.2 M sodium pyrophosphate.
Filter plates Millipore #MAFC NOB, GF/C glass fiber 96 well plate.

METHOD
A. Protein purification 1. Sf21 cells were infected with recombinant virus at a multiplicity of infection of 5 virus particles/ cell and grown at 27 °C for 48 hours.
2. All steps were performed at 4°C. Infected cells were harvested by centrifugation at 1000 X g and lysed at 4 °C for 30 minutes with 1/10 volume of lysis buffer followed by l0 centrifugation at 100,000Xg for 1 hour. The supernatant was then passed over a glutathione Sepharose column (Pharmacia) equilibrated in lysis buffer and washed with 5 volumes of the same buffer followed by 5 volumes of wash buffer. Recombinant GST-KDR protein was eluted with wash buffer/ 10 mM reduced glutathione (Sigma) and dialyzed against dialysis buffer.
B. VEGF receptor kinase assay 1. Add 5 ~1 of inhibitor or control to the assay in 50%
DMSO.
2. Add 35 ~,l of reaction mix containing 5 ~1 of 10 X
reaction buffer, 5 ~.l 25 mM ATP/10 ~Ci [33P]ATP (Amersham), and 5 ~,l 10 X substrate.
3. Start the reaction by the addition of 10 ~.l of KDR
(25 nM) in enzyme dilution buffer.
4. Mix and incubate at room temperature for 15 minutes.
S. Stop by the addition of 50 ~,1 stop solution.
6. Incubate for 15 minutes at 4°C.
7. Transfer a 90 ~.1 aliquot to filter plate.
8. Aspirate and wash 3 times with wash solution.
9. Add 30 ~.1 of scintillation cocktail, seal plate and count in a Wallac Microbeta scintillation counter.

Human Umbilical Vein Endothelial Cell Mitogenesis Assay Expression of VEGF receptors that mediate mitogenic responses to the growth factor is largely restricted to vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) in culture proliferate in response to VEGF treatment and can be used as an assay system to quantify the effects of KDR kinase inhibitors on VEGF stimulation. In the assay described, quiescent HUVEC monolayers are treated with vehicle or test compound 2 hours prior to addition of VEGF or basic fibroblast growth factor (bFGF). The mitogenic response to VEGF or bFGF is determined by measuring the incorporation of [3H]thymidine into cellular DNA.
Materials HUVECs HUVECs frozen as primary culture isolates are obtained from Clonetics Corp. Cells are maintained in Endothelial Growth Medium (EGM; Clonetics) and are used for mitogenic assays at passages 3-7.
Culture Plates NUNCLON 96-well polystyrene tissue culture plates (NUNC #167008).
Assay Medium Dulbecco's modification of Eagle's medium containing 1 g/ml glucose (low-glucose DMEM; Mediatech} plus 10% (v/v) fetal bovine serum (Clonetics).
Test Compounds Working stocks of test compounds are diluted serially in 100% dimethylsulfoxide (DMSO) to 400-fold greater than their desired final concentrations. Final dilutions to 1X concentration are made directly into Assay Medium immediately prior to addition to cells.
lOX Growth factors Solutions of human VEGF,65 (500 ng/ml; R&D
Systems) and bFGF ( 10 ng/ml; R&D Systems) are prepared in Assay Medium.
lOX [3H~Thymidine [Methyl-3H]Thymidine (20 Ci/mmol; Dupont-NEN) is diluted to 80 uCi/ml in Iow-glucose DMEM.
Cell Wash Medium Hank's balanced salt solution (Mediatech) containing 1 mg/ml bovine serum albumin (Boehringer-Mannheim).
Cell Lysis Solution 1 N NaOH, 2% (w/v) Na2C03.
Method 1. HUVEC monolayers maintained in EGM are harvested by trypsinization and plated at a density of 4000 cells per 100 ul Assay Medium per well in 96-well plates. Cells are growth-arrested for 24 hours at 37°C in a humidified atmosphere containing 5% C02.
2. Growth-arrest medium is replaced by 100 ul Assay Medium containing either vehicle {0.25% [v/v] DMSO) or the desired final concentration of test compound. All determinations are performed in triplicate. Cells are then incubated at 37°C/5%
COZ for 2 hours to allow test compounds to enter cells.
3. After the 2-hour pretreatment period, cells are stimulated by addition of 10 ul/well of either Assay Medium, l OX

VEGF solution or lOX bFGF solution. Cells are then incubated at 37°C/5% C02.
4. After 24 hours in the presence of growth factors, l OX
[3H]Thymidine ( 10 ul/well) is added.
5. Three days after addition of [3H]thymidine, medium is removed by aspiration, and cells are washed twice with Cell Wash Medium (400 ul/well followed by 200 ul/well). The washed, adherent cells are then solubilized by addition of Cell Lysis Solution ( 100 ul/well) and warming to 37°C for 30 minutes. Cell lysates are transferred to 7-ml glass scintillation vials containing 150 ul of water. Scintillation cocktail (5 ml/vial) is added, and cell-associated radioactivity is determined by liquid scintillation spectroscopy.
Based upon the foregoing assays the compounds of formula I are inhibitors of VEGF and thus are useful for the inhibition of neoangiogenesis, such as in the treatment of occular disease, e.g., diabetic retinopathy and in the treatment of cancers, e.g., solid tumors. The instant compounds inhibit VEGF-stimulated mitogenesis of human vascular endothelial cells in culture with ICS°
values between 150-650 nM. These compounds also show selectivity over related tyrosine kinases (e.g. FGFRl and the Src family).

Claims (24)

WHAT IS CLAIMED IS:
1. A compound in accordance with formula I:
or a pharmaceutically acceptable salt, hydrate or prodrug thereof, wherein R1 is H, C1-10 alkyl, C5-10 aryl, C3-10 heterocyclyl, or C5-10 heteroaryl, said alkyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from R a;
R2 & R3 are independently H, C1-6 alkyl, C3-6 cycloalkyl, OH, or halogen;
R4 is H, C1-10 alkyl, C3-6 cycloalkyl, C5-10 aryl, C5-10 heteroaryl, C3-10 heterocyclyl, C1-6 alkoxyNR7R8, NO2, OH, -NH2 or C5-10 heteroaryl, said alkyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from R a;
R5 is H, or C1-6 alkyl, OR, halo, NH2 or NO2;
R a is H, C1-10 alkyl, halogen, NO2, OR, -NR, NR7R8, R7R8, C5-10 aryl, C5-10 heteroaryl or C3-10 heterocyclyl;

R is H, or C1-6 alkyl; and R7 & Rg are independently H, C1-10 alkyl, C3-6 cycloalkyl, COR, COOR, COO-, C5-10 aryl, C3-10 heterocyclyl, or C5-10 heteroaryl or NR7R8 can be taken together to form a heterocyclic 5-10 membered saturated or unsaturated ring containing, in addition to the nitrogen atom, one to two additional heteroatoms selected from the group consisting of N, O and S.
2. A compound in accordance with Claim 1 which is:
3-(4-fluorophenyl)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(3-chlorophenyl)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(3,4-methylenedioxypheny)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(4-fluorophenyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(3-chlorophenyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(3-thienyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(3-acetamidophenyl)-6-(4-methylphenyl) pyrazolo(1,5-A)pyrimidine, 3-(3-thienyl)-6-(4-methylphenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(3-acetamidophenyl)-6-(4-methoxyphenyl)pyrazolo(1,5-A)pyrimidine, 3-(3-thienyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(4-pyridyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-chlorophenyl) pyrazolo(1,5-A)pyrimidine.
3-(4-pyridyl)-6-(4-chlorophenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-methylphenyl) pyrazolo(1,5-A)pyrimidine, 3-(4-pyridyl)-6-(4-methylphenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(2-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(4-pyridyl)-6-(2-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(4-pyridyl)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(2-pyrazinyl) pyrazolo(1,5-A)pyrimidine, 3-(4-pyridyl)-6-(2-pyrazinyl) pyrazolo(1,5-A)pyrimidine, 3-(3-pyridyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(3-pyridyl)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine, 3-(4 pyridyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(3-thienyl)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(3-thienyl)-6-(4-hydroxyphenyl)pyrazolo(1,5-A)pyrimidine, 3-(3-thienyl)-6-(4-(2-(4-morpholinyl)ethoxy)phenyl) pyrazolo(1,5-A)pyrimidine, 3-(3-thienyl)-6-(cyclohexyl)pyrazolo (1,5-A)pyrimidine, 3-(bromo)-6-(4-methoxyphenyl) pyrazolo(1,5-A)pyrimidine, 3-(bromo)-6-(4-pyrimidyl) pyrazolo(1,5-A)pyrimidine, 3-(phenyl)-6-(2-(3-carboxy)pyridyl) pyrazolo(1,5-A)pyrimidine, and 3-(3-thienyl)-6-(4-pyridyl) pyrazolo(1,5-A)pyrimidine.
3. A pharmaceutical composition which is comprised of a compound in accordance with Claim 1 and a pharmaceutically acceptable carrier.
4. A method of treating cancer in a mammalian patient in need of such treatment which is comprised of admininstering to said patient a therapeutically effective amount of a compound of Claim 1.
5. A method of treating cancer in accordance with claim 4 wherein the cancer is selected from cancers of the brain, genitourinary tract, lymphatic system, stomach, larynx and lung.
6. A method in accordance with Claim 4 wherein the cancer is selected from histiocytic lymphoma, lung adenocarcinoma, small cell lung cancers, pancreatic cancer, gioblastomas and breast carcinoma.
7. A method of treating a disease in which neoangiogenesis is implicated, which is comprised of administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound of Claim 1.
8. A method in accordance with Claim 7 wherein the disease is an ocular disease.
9. A method of treating retinal vascularization which is comprised of administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound of Claim 1.
10. A method of treating diabetic retinopathy which is comprised of administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound of Claim 1.
11. A method of age-related macular degeneration which is comprised of administering to a mammalian patient in need of such treatment a a therapeutically effective amount of a compound of Claim 1.
12. A method of treating inflammatory diseases which is comprised of administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound of Claim 1.
13. A method according to Claim 12 treating wherein the inflammatory disease is selected from rheumatoid arthritis, psoriasis, contact dermatitis and delayed hypertensitivity reactions.
14. A method for inhibiting tyrosine kinase which comprises administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound of Claim 1.
15. A method of preventing cancer in a mammalian patient in need of such treatment which is comprised of admininstering to said patient a therapeutically effective amount of a compound of Claim 1.
16. A method of preventing cancer in accordance with claim 15 wherein the cancer is selected from cancers of the brain, genitourinary tract, lymphatic system, stomach, larynx and lung.
17. A method in accordance with Claim 16 wherein the cancer is selected from histiocytic lymphoma, lung adenocarcinoma, small cell lung cancers, pancreatic cancer, gioblastomas and breast carcinoma.
18. A method of preventing a disease in which neoangiogenesis is implicated, which is comprised of administering to a mammalian patient a therapeutically effective amount of a compound of Claim 1.
19. A method in accordance with Claim 18 wherein the disease is an ocular disease.
20. A method of preventing retinal vascularization which is comprised of administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound of Claim 1.
21. A method of preventing diabetic retinopathy which is comprised of administering to a mammalian patient in need of such treatment a compound of Claim 1 or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for treating diabetic retinopathy.
22. A method of age-related macular degeneration which is comprised of administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound of Claim 1.
23. A method of preventing inflammatory diseases which is comprised of administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound of Claim 1.
24. A method according to Claim 23 wherein the inflammatory disease is selected from rheumatoid arthritis, psoriasis, contact dermatitis and delayed hypertensitivity reactions.
CA002291709A 1997-05-30 1998-05-26 Novel angiogenesis inhibitors Abandoned CA2291709A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US4807697P 1997-05-30 1997-05-30
US60/048,076 1997-05-30
GB9800681.0 1998-01-14
GBGB9800681.0A GB9800681D0 (en) 1998-01-14 1998-01-14 Novel angiogenesis inhibitors
PCT/US1998/010590 WO1998054093A1 (en) 1997-05-30 1998-05-26 Novel angiogenesis inhibitors

Publications (1)

Publication Number Publication Date
CA2291709A1 true CA2291709A1 (en) 1998-12-03

Family

ID=26312935

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002291709A Abandoned CA2291709A1 (en) 1997-05-30 1998-05-26 Novel angiogenesis inhibitors

Country Status (5)

Country Link
EP (1) EP0984692A4 (en)
JP (1) JP2002501532A (en)
AU (1) AU734009B2 (en)
CA (1) CA2291709A1 (en)
WO (1) WO1998054093A1 (en)

Families Citing this family (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523498A (en) 1998-08-29 2002-07-30 アストラゼネカ・アクチエボラーグ Pyrimidine compounds
ES2274634T3 (en) 1998-08-29 2007-05-16 Astrazeneca Ab PIRIMIDINE COMPOUNDS.
JP2002523459A (en) * 1998-08-31 2002-07-30 メルク エンド カムパニー インコーポレーテッド New angiogenesis inhibitor
GB9828511D0 (en) 1998-12-24 1999-02-17 Zeneca Ltd Chemical compounds
US6265403B1 (en) * 1999-01-20 2001-07-24 Merck & Co., Inc. Angiogenesis inhibitors
HU230000B1 (en) 1999-02-10 2015-04-28 Astrazeneca Ab Intermediates for the preparation of angiogenesis inhibitory quinazoline derivatives
GB9905075D0 (en) 1999-03-06 1999-04-28 Zeneca Ltd Chemical compounds
US6245759B1 (en) 1999-03-11 2001-06-12 Merck & Co., Inc. Tyrosine kinase inhibitors
KR100733949B1 (en) * 1999-03-26 2007-07-02 마이크로소프트 코포레이션 Lossless adaptive encoding of finite alphabet data
GB9907658D0 (en) 1999-04-06 1999-05-26 Zeneca Ltd Chemical compounds
GB9919778D0 (en) 1999-08-21 1999-10-27 Zeneca Ltd Chemical compounds
UA74803C2 (en) 1999-11-11 2006-02-15 Осі Фармасьютікалз, Інк. A stable polymorph of n-(3-ethynylphenyl)-6,7-bis(2-methoxyetoxy)-4-quinazolinamine hydrochloride, a method for producing thereof (variants) and pharmaceutical use
GB0004887D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0004890D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0004886D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0004888D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0007371D0 (en) 2000-03-28 2000-05-17 Astrazeneca Uk Ltd Chemical compounds
US20020061897A1 (en) 2000-03-30 2002-05-23 Elliott Richard L. Neuropeptide Y antagonists
GB0016877D0 (en) 2000-07-11 2000-08-30 Astrazeneca Ab Chemical compounds
CA2415469A1 (en) 2000-08-09 2002-02-14 Astrazeneca Ab Quinoline derivatives having vegf inhibiting activity
AU2001276521B2 (en) 2000-08-09 2006-05-25 Astrazeneca Ab Cinnoline compounds
GB0021726D0 (en) 2000-09-05 2000-10-18 Astrazeneca Ab Chemical compounds
US7067520B2 (en) 2000-11-17 2006-06-27 Ishihara Sangyo Kaisha, Ltd. Preventive or therapeutic medicines for diabetes containing fused-heterocyclic compounds or their salts
PL214667B1 (en) 2000-12-21 2013-08-30 Glaxo Group Ltd Pyrimidineamines as angiogenesis modulators
ATE464322T1 (en) 2001-01-05 2010-04-15 Pfizer ANTIBODIES AGAINST THE INSULIN-LIKE GROWTH FACTOR RECEPTOR I
GB0103926D0 (en) 2001-02-17 2001-04-04 Astrazeneca Ab Chemical compounds
GB0113041D0 (en) 2001-05-30 2001-07-18 Astrazeneca Ab Chemical compounds
AU2002345792A1 (en) 2001-06-21 2003-01-08 Pfizer Inc. Thienopyridine and thienopyrimidine anticancer agents
AR039067A1 (en) 2001-11-09 2005-02-09 Pfizer Prod Inc ANTIBODIES FOR CD40
EP1463730B1 (en) 2001-12-17 2006-04-19 SmithKline Beecham Corporation Pyrazolopyridazine derivatives
AU2003202094B2 (en) 2002-02-01 2009-10-08 Astrazeneca Ab Quinazoline compounds
EP1483268A2 (en) 2002-03-01 2004-12-08 Pfizer Inc. Indolyl-urea derivatives of thienopyridines useful as anti-angiogenic agents
GB0205688D0 (en) 2002-03-09 2002-04-24 Astrazeneca Ab Chemical compounds
GB0205690D0 (en) 2002-03-09 2002-04-24 Astrazeneca Ab Chemical compounds
GB0205693D0 (en) 2002-03-09 2002-04-24 Astrazeneca Ab Chemical compounds
WO2003076434A1 (en) 2002-03-09 2003-09-18 Astrazeneca Ab 4- imidazolyl substuited pyrimidine derivatives with cdk inhibitiory activity
US7304068B2 (en) 2002-05-10 2007-12-04 Smithkline Beecham Corporation Substituted pyrazolo [1,5-A] pyrimidinyls and pharmaceutical uses therefore
US7449488B2 (en) * 2002-06-04 2008-11-11 Schering Corporation Pyrazolopyrimidines as protein kinase inhibitors
UA77303C2 (en) 2002-06-14 2006-11-15 Pfizer Derivatives of thienopyridines substituted by benzocondensed heteroarylamide useful as therapeutic agents, pharmaceutical compositions and methods for their use
CZ293015B6 (en) * 2002-10-25 2004-01-14 Léčiva, A.S. Process for preparing N-ethyl-N-[3-(3-methyl-pyrazolo[1,5-a]pyrimidin-7-yl)-phenyl]-acetamide (zaleplon)
OA12977A (en) 2002-12-19 2006-10-13 Pfizer 2-(1H-indazol-6-ylamino)-benzamide compounds as protein kinases inhibitors useful for the treatment of ophthamic diseases.
PL216368B1 (en) 2003-02-26 2014-03-31 Sugen Aminoheteroaryl compounds as protein kinase inhibitors
US7557110B2 (en) 2003-02-28 2009-07-07 Teijin Pharma Limited Pyrazolo[1,5-A] pyrimidine derivatives
US20070179161A1 (en) * 2003-03-31 2007-08-02 Vernalis (Cambridge) Limited. Pyrazolopyrimidine compounds and their use in medicine
GB0311274D0 (en) 2003-05-16 2003-06-18 Astrazeneca Ab Chemical compounds
GB0311276D0 (en) 2003-05-16 2003-06-18 Astrazeneca Ab Chemical compounds
GB0314262D0 (en) 2003-06-19 2003-07-23 Univ Nottingham Trent Novel compounds and methods of using the same
WO2005021554A1 (en) 2003-08-29 2005-03-10 Pfizer Inc. Thienopyridine-phenylacet amides and their derivatives useful as new anti-angiogenic agents
AR045563A1 (en) 2003-09-10 2005-11-02 Warner Lambert Co ANTIBODIES DIRECTED TO M-CSF
DE10356579A1 (en) 2003-12-04 2005-07-07 Merck Patent Gmbh amine derivatives
JP2007515474A (en) * 2003-12-22 2007-06-14 エスビー・ファルムコ・プエルト・リコ・インコーポレイテッド CRF receptor antagonists and methods related thereto
NZ547009A (en) 2003-12-23 2009-09-25 Pfizer Novel quinoline derivatives
GB0330002D0 (en) 2003-12-24 2004-01-28 Astrazeneca Ab Quinazoline derivatives
TW200528101A (en) 2004-02-03 2005-09-01 Astrazeneca Ab Chemical compounds
PT1786785E (en) 2004-08-26 2010-05-21 Pfizer Enantiomerically pure aminoheteroaryl compounds as protein kinase inhibitors
WO2006033795A2 (en) * 2004-09-17 2006-03-30 Wyeth Substituted pyrazolo [1, 5-a] pyrimidines for inhibiting abnormal cell growth
NZ555236A (en) * 2004-11-04 2010-10-29 Vertex Pharma Pyrazolo[1,5-a]pyrimidines useful as inhibitors of protein kinases
EP1863848A4 (en) 2005-03-31 2009-09-23 Agensys Inc Antibodies and related molecules that bind to 161p2f10b proteins
UA95775C2 (en) 2005-04-26 2011-09-12 Пфайзер Инк. Antibody that specifically binds to p-cadherin
KR101536506B1 (en) 2005-09-07 2015-07-14 암젠 프레몬트 인코포레이티드 Human monoclonal antibodies to activin receptor-like kinase-1
JP5055284B2 (en) 2005-09-20 2012-10-24 オーエスアイ・フアーマシユーテイカルズ・エル・エル・シー Biological markers for predicting anti-cancer responses to insulin-like growth factor-1 receptor kinase inhibitors
US7745428B2 (en) 2005-09-30 2010-06-29 Astrazeneca Ab Imidazo[1,2-A]pyridine having anti-cell-proliferation activity
US7776865B2 (en) 2005-10-06 2010-08-17 Schering Corporation Substituted pyrazolo[1,5-a]pyrimidines as protein kinase inhibitors
BRPI0711358A2 (en) 2006-05-09 2011-09-27 Pfizer Prod Inc cycloalkylamino acid derivatives and their pharmaceutical compositions
EP1900739A1 (en) * 2006-08-30 2008-03-19 Cellzome Ag Diazolodiazine derivatives as kinase inhibitors
WO2008033408A2 (en) * 2006-09-12 2008-03-20 The General Hospital Corporation Methods for identifying compounds that modulate cell signaling and methods employing such compounds
CA2667487C (en) * 2006-11-06 2017-04-04 Supergen, Inc. Imidazo[1,2-b]pyridazine and pyrazolo[1,5-a]pyrimidine derivatives and their use as protein kinase inhibitors
MX2009006706A (en) * 2006-12-22 2009-07-02 Astex Therapeutics Ltd Bicyclic heterocyclic compounds as fgfr inhibitors.
JP5442449B2 (en) 2006-12-22 2014-03-12 アステックス、セラピューティックス、リミテッド New compounds
US8131527B1 (en) 2006-12-22 2012-03-06 Astex Therapeutics Ltd. FGFR pharmacophore compounds
WO2009014620A1 (en) 2007-07-20 2009-01-29 Merck & Co., Inc. Pyrazolo[1,5-a]pyrimidine derivatives
ES2424745T3 (en) 2007-09-07 2013-10-08 Agensys, Inc. Antibodies and related molecules that bind to 24P4C12 proteins
CN101878217B (en) 2007-09-28 2014-01-15 协和发酵麒麟株式会社 Agent for prevention and/or treatment of skin diseases
GB0720041D0 (en) 2007-10-12 2007-11-21 Astex Therapeutics Ltd New Compounds
GB0720038D0 (en) 2007-10-12 2007-11-21 Astex Therapeutics Ltd New compounds
CN101952283B (en) * 2007-12-14 2013-04-17 霍夫曼-拉罗奇有限公司 Novel imidazo[1,2-a]pyridine and imidazo[1,2-b]pyridazine derivatives
MX2010006748A (en) 2007-12-19 2010-08-18 Vertex Pharma PYRAZOLO [1,5-a] PYRIMIDINES USEFUL AS JAK2 INHIBITORS.
JP5638961B2 (en) 2008-03-13 2014-12-10 ザ ジェネラル ホスピタル コーポレイション Inhibitors of BMP signaling pathway
GB0810902D0 (en) 2008-06-13 2008-07-23 Astex Therapeutics Ltd New compounds
JP5836125B2 (en) 2008-10-16 2015-12-24 ユニバーシティ オブ ピッツバーグ − オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション Fully human antibodies against high molecular weight melanoma-related antigens and uses thereof
WO2010090764A1 (en) 2009-02-09 2010-08-12 Supergen, Inc. Pyrrolopyrimidinyl axl kinase inhibitors
US20120189641A1 (en) 2009-02-25 2012-07-26 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
JP2012519170A (en) 2009-02-26 2012-08-23 オーエスアイ・ファーマシューティカルズ,エルエルシー INSITU method for monitoring EMT status of tumor cells in vivo
WO2010099364A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099363A1 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
TW201035088A (en) 2009-02-27 2010-10-01 Supergen Inc Cyclopentathiophene/cyclohexathiophene DNA methyltransferase inhibitors
WO2010099138A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
GB0906472D0 (en) 2009-04-15 2009-05-20 Astex Therapeutics Ltd New compounds
GB0906470D0 (en) 2009-04-15 2009-05-20 Astex Therapeutics Ltd New compounds
WO2011008696A2 (en) 2009-07-13 2011-01-20 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
WO2011014726A1 (en) 2009-07-31 2011-02-03 Osi Pharmaceuticals, Inc. Mtor inhibitor and angiogenesis inhibitor combination therapy
WO2011027249A2 (en) 2009-09-01 2011-03-10 Pfizer Inc. Benzimidazole derivatives
RU2012114094A (en) 2009-09-11 2013-10-20 Дженентек, Инк. METHOD FOR IDENTIFICATION OF A PATIENT WITH AN INCREASED PROBABILITY OF ANSWER TO ANTI-CANCER AGENT
ES2530732T3 (en) 2009-09-17 2015-03-05 Hoffmann La Roche Diagnostic procedures for lung cancer
WO2011073521A1 (en) 2009-12-15 2011-06-23 Petri Salven Methods for enriching adult-derived endothelial progenitor cells and uses thereof
LT3150610T (en) 2010-02-12 2019-11-11 Pfizer Salts and polymorphs of 8-fluoro-2-{4-[(methylamino}methyl]phenyl}-1,3,4,5-tetrahydro-6h-azepino[5,4,3-cd]indol-6-one
WO2011109584A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
AU2011223643A1 (en) 2010-03-03 2012-06-28 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
ES2585287T3 (en) 2010-03-05 2016-10-04 Kyowa Hakko Kirin Co., Ltd. Pyrazolopyrimidine derivative
WO2011153224A2 (en) 2010-06-02 2011-12-08 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
CN103068851B (en) 2010-06-16 2015-03-11 高等教育联邦***-匹兹堡大学 Antibodies to endoplasmin and their use
KR20130091745A (en) 2010-07-19 2013-08-19 에프. 호프만-라 로슈 아게 Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
CN104569395A (en) 2010-07-19 2015-04-29 霍夫曼-拉罗奇有限公司 Method to identify patient with increased likelihood of responding to anti-cancer therap
WO2012012750A1 (en) 2010-07-23 2012-01-26 Trustees Of Boston University ANTI-DEsupR INHIBITORS AS THERAPEUTICS FOR INHIBITION OF PATHOLOGICAL ANGIOGENESIS AND TUMOR CELL INVASIVENESS AND FOR MOLECULAR IMAGING AND TARGETED DELIVERY
CN103328479A (en) * 2010-09-27 2013-09-25 普罗克斯马根有限公司 7-hydroxy-pyrazolo[1,5-A] pyrimidine compounds and their use as CCR2 receptor antagonists
WO2012042421A1 (en) 2010-09-29 2012-04-05 Pfizer Inc. Method of treating abnormal cell growth
JP5802756B2 (en) 2010-10-20 2015-11-04 ファイザー・インク Pyridine-2-derivatives as smoothened receptor modulators
US20120214830A1 (en) 2011-02-22 2012-08-23 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors in hepatocellular carcinoma
US8748435B2 (en) 2011-04-01 2014-06-10 Novartis Ag Pyrazolo pyrimidine derivatives
WO2012142164A1 (en) 2011-04-12 2012-10-18 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies that bind insulin-like growth factor (igf) i and ii
US20140178368A1 (en) 2011-04-19 2014-06-26 Leslie Lynne SHARP Combinations of anti-4-1bb antibodies and adcc-inducing antibodies for the treatment of cancer
WO2012149014A1 (en) 2011-04-25 2012-11-01 OSI Pharmaceuticals, LLC Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment
WO2012178125A1 (en) 2011-06-22 2012-12-27 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
PL3409278T3 (en) 2011-07-21 2021-02-22 Sumitomo Pharma Oncology, Inc. Heterocyclic protein kinase inhibitors
WO2013031931A1 (en) 2011-09-02 2013-03-07 協和発酵キリン株式会社 Chemokine receptor activity regulator
PE20141228A1 (en) 2011-09-22 2014-10-01 Pfizer DERIVATIVES OF PYRROLOPYRIMIDINE AND PURINE
WO2013050725A1 (en) 2011-10-04 2013-04-11 King's College London Ige anti -hmw-maa antibody
WO2013068902A1 (en) 2011-11-08 2013-05-16 Pfizer Inc. Methods of treating inflammatory disorders using anti-m-csf antibodies
WO2013152252A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
US9394257B2 (en) 2012-10-16 2016-07-19 Tolero Pharmaceuticals, Inc. PKM2 modulators and methods for their use
NZ731337A (en) 2012-12-07 2019-02-22 Vertex Pharma Compounds useful as inhibitors of atr kinase
US9260426B2 (en) 2012-12-14 2016-02-16 Arrien Pharmaceuticals Llc Substituted 1H-pyrrolo [2, 3-b] pyridine and 1H-pyrazolo [3, 4-b] pyridine derivatives as salt inducible kinase 2 (SIK2) inhibitors
EP2970311A4 (en) 2013-03-14 2016-11-23 Brigham & Womens Hospital Bmp inhibitors and methods of use thereof
EP2970205B1 (en) 2013-03-14 2019-05-08 Tolero Pharmaceuticals, Inc. Jak2 and alk2 inhibitors and methods for their use
WO2014143242A1 (en) 2013-03-15 2014-09-18 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
JP2016512239A (en) 2013-03-15 2016-04-25 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
JP2016512815A (en) 2013-03-15 2016-05-09 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Condensed pyrazolopyrimidine derivatives useful as inhibitors of ATR kinase
US9206188B2 (en) 2013-04-18 2015-12-08 Arrien Pharmaceuticals Llc Substituted pyrrolo[2,3-b]pyridines as ITK and JAK inhibitors
JP6946000B2 (en) 2013-10-04 2021-10-06 アプトース バイオサイエンシーズ, インコーポレイテッド Compositions and Methods for the Treatment of Cancer
UA115388C2 (en) 2013-11-21 2017-10-25 Пфайзер Інк. 2,6-substituted purine derivatives and their use in the treatment of proliferative disorders
PL3077397T3 (en) 2013-12-06 2020-04-30 Vertex Pharmaceuticals Inc. 2-amino-6-fluoro-n-[5-fluoro-pyridin-3-yl]pyrazolo[1,5-a]pyrimidin-3-carboxamide compound useful as atr kinase inhibitor, its preparation, different solid forms and radiolabelled derivatives thereof
CN106536753B (en) 2014-04-04 2020-07-21 中美冠科生物技术(太仓)有限公司 Methods for determining responsiveness to MEK/ERK inhibitors
WO2015155624A1 (en) 2014-04-10 2015-10-15 Pfizer Inc. Dihydropyrrolopyrimidine derivatives
CA2947130C (en) 2014-04-30 2018-10-02 Pfizer Inc. Cycloalkyl-linked diheterocycle derivatives
SI3152212T1 (en) 2014-06-05 2020-06-30 Vertex Pharmaceuticals Inc. Radiolabelled derivatives of a 2-amino-6-fluoro-n-(5-fluoro-pyridin-3-yl)- pyrazolo(1,5-a)pyrimidin-3-carboxamide compound useful as atr kinase inhibitor, the preparation of said compound and different solid forms thereof
RS59054B1 (en) 2014-06-17 2019-08-30 Vertex Pharma Method for treating cancer using a combination of chk1 and atr inhibitors
WO2016001789A1 (en) 2014-06-30 2016-01-07 Pfizer Inc. Pyrimidine derivatives as pi3k inhibitors for use in the treatment of cancer
WO2016011019A1 (en) 2014-07-15 2016-01-21 The Brigham And Women's Hospital, Inc. Compositions and methods for inhibiting bmp
CN106999578B (en) 2014-07-31 2022-03-04 美国政府(由卫生和人类服务部的部长所代表) Human monoclonal antibodies against EPHA4 and uses thereof
ES2746839T3 (en) 2014-12-18 2020-03-09 Pfizer Pyrimidine and triazine derivatives and their use as AXL inhibitors
CA2982928A1 (en) 2015-04-20 2016-10-27 Tolero Pharmaceuticals, Inc. Predicting response to alvocidib by mitochondrial profiling
CN107709344B (en) 2015-05-01 2022-07-15 共晶制药股份有限公司 Nucleoside analogues for the treatment of flaviviridae and cancer
EP4086264B1 (en) 2015-05-18 2023-10-25 Sumitomo Pharma Oncology, Inc. Alvocidib prodrugs having increased bioavailability
WO2017009751A1 (en) 2015-07-15 2017-01-19 Pfizer Inc. Pyrimidine derivatives
AU2016301315C1 (en) 2015-08-03 2022-07-07 Sumitomo Pharma Oncology, Inc. Combination therapies for treatment of cancer
AU2016331955B2 (en) 2015-09-30 2022-07-21 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of DNA damaging agents and ATR inhibitors
KR20180100125A (en) 2015-12-03 2018-09-07 아지오스 파마슈티컬스 아이엔씨. MAT2A inhibitor for treating MTAP null cancer
CN106632260B (en) * 2016-09-29 2019-04-26 上海天慈生物谷生物工程有限公司 A kind of preparation method of small molecule kinase inhibitors
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
AU2017379847B2 (en) 2016-12-19 2022-05-26 Sumitomo Pharma Oncology, Inc. Profiling peptides and methods for sensitivity profiling
JP7196160B2 (en) 2017-09-12 2022-12-26 スミトモ ファーマ オンコロジー, インコーポレイテッド Treatment Regimens for Cancers Insensitive to BCL-2 Inhibitors Using the MCL-1 Inhibitor Albocidib
US20200237766A1 (en) 2017-10-13 2020-07-30 Tolero Pharmaceuticals, Inc. Pkm2 activators in combination with reactive oxygen species for treatment of cancer
MX2021000977A (en) 2018-07-26 2021-04-12 Sumitomo Pharma Oncology Inc Methods for treating diseases associated with abnormal acvr1 expression and acvr1 inhibitors for use in the same.
MX2021006544A (en) 2018-12-04 2021-07-07 Sumitomo Pharma Oncology Inc Cdk9 inhibitors and polymorphs thereof for use as agents for treatment of cancer.
JP2022520361A (en) 2019-02-12 2022-03-30 スミトモ ダイニッポン ファーマ オンコロジー, インコーポレイテッド Pharmaceuticals containing heterocyclic protein kinase inhibitors
JP2022525149A (en) 2019-03-20 2022-05-11 スミトモ ダイニッポン ファーマ オンコロジー, インコーポレイテッド Treatment of Acute Myeloid Leukemia (AML) with Venetoclax Failure
JP2022519923A (en) 2019-03-22 2022-03-25 スミトモ ダイニッポン ファーマ オンコロジー, インコーポレイテッド Compositions comprising a PKM2 modulator and methods of treatment using it
AU2020292664B2 (en) * 2019-06-14 2023-04-13 Cgenetech (Suzhou, China) Co., Ltd. Fused ring compound as FGFR and VEGFR dual inhibitor
WO2021155006A1 (en) 2020-01-31 2021-08-05 Les Laboratoires Servier Sas Inhibitors of cyclin-dependent kinases and uses thereof
GR1010096B (en) * 2020-07-02 2021-10-08 Uni-Pharma Κλεων Τσετης Φαρμακευτικα Εργαστηρια Αβεε, Pyrazolo[1,5-a]pyrimidines as autotaxin inhibitors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100260292B1 (en) * 1995-09-28 2000-07-01 오쓰카 요시미쓰 Analgesics
AU713673B2 (en) * 1996-02-07 1999-12-09 Neurocrine Biosciences Inc. Pyrazolopyrimidines as crf receptor antagonists

Also Published As

Publication number Publication date
AU734009B2 (en) 2001-05-31
AU7594498A (en) 1998-12-30
EP0984692A1 (en) 2000-03-15
EP0984692A4 (en) 2001-02-21
WO1998054093A1 (en) 1998-12-03
JP2002501532A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
US6235741B1 (en) Angiogenesis inhibitors
CA2291709A1 (en) Novel angiogenesis inhibitors
AU744939B2 (en) Novel angiogenesis inhibitors
AU760020B2 (en) Novel angiogenesis inhibitors
US6465484B1 (en) Angiogenesis inhibitors
US6162804A (en) Tyrosine kinase inhibitors
AU747427B2 (en) Novel angiogenesis inhibitors
US6265403B1 (en) Angiogenesis inhibitors
US6380203B1 (en) Angiogenesis inhibitors
MX2008012860A (en) Deazapurines useful as inhibitors of janus kinases.
JP2009536617A (en) Thiazoles, imidazoles, and pyrazoles useful as inhibitors of protein kinases
KR20110039278A (en) Protein kinase inhibitors
WO2005000813A1 (en) Heteroarylamino-phenylketone derivatives and their use as kinase inhibitors
JP2010510216A (en) Compounds useful as inhibitors of protein kinases
JP2002544272A (en) Substituted 3-pyridyl-4-arylpyrroles and related treatments and prophylaxis
US6228871B1 (en) Angiogenesis inhibitors
US6720332B2 (en) Oxindole derivatives
AU2002334837B2 (en) Triazepine derivatives as neurotrophic agents
KR20240028959A (en) Compounds as autotaxin inhibitors and pharmaceutical compositions comprising the same
CN114746408A (en) Alkynyl- (heteroaryl) -carboxamide HCN1 inhibitors
AU2008278824A1 (en) Compounds for treating Duchenne muscular dystrophy

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead