BRPI0716288A2 - mÉtodo e equipamento para processar retorno em sistema de comuicaÇço sem fio - Google Patents

mÉtodo e equipamento para processar retorno em sistema de comuicaÇço sem fio Download PDF

Info

Publication number
BRPI0716288A2
BRPI0716288A2 BRPI0716288-0A2A BRPI0716288A BRPI0716288A2 BR PI0716288 A2 BRPI0716288 A2 BR PI0716288A2 BR PI0716288 A BRPI0716288 A BR PI0716288A BR PI0716288 A2 BRPI0716288 A2 BR PI0716288A2
Authority
BR
Brazil
Prior art keywords
feedback
matrix
bit
precoding
wtru
Prior art date
Application number
BRPI0716288-0A2A
Other languages
English (en)
Inventor
Kyle Jung-Lin Pan
Allan Y Tsai
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of BRPI0716288A2 publication Critical patent/BRPI0716288A2/pt

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0641Differential feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0246Channel estimation channel estimation algorithms using matrix methods with factorisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

MÉTODO E EQUIPAMENTO PARA PROCESSAR RETORNO EM SISTEMA DE COMUNICAÇçO SEM FIO. Um método e aparelhos para processamento retorno implementado em um celular transmissão/recepção unidade (WTRU) compreende estimar um canal matriz. O canal eficaz é calculado e uma preconding matriz é selecionada. Feedback bits são gerados e transmitidos. O feedback bits referem-se não diferencial ou diferencial comentário ou uma combinação dos mesmos, ou o retorno é um sinal binário bit, isoladamente ou em combinação com a não-diferencail feedback.

Description

Método e equipamento para processar retorno em sistema de comunicação sem
fio.
CAMPO DE INVENÇÃO
A presente invenção está relacionada a sistemas de
comunicação sem fio. HISTORICO
Controlados retorno é usado em um sistema de comunicação para adicionar camadas de controle para o sistema. O feedback sistemas actualmente utilizados em sistemas de comunicação sem fio são geralmente complexos e consomem recursos valiosos. Um tal sistema que emprega feedback é uma rádio terrestre evoluiu acesso universal (E-UTRA) múltiplos em múltiplo-out (MIMO) sistema. Melhorar a eficiência do feedback e classificar e link adaptação ao sistema de ciclo fechado MIMO para E-UTRA pode, portanto, tendem a melhorar a performance e sistema MIMO ligação capacidade, bem como reduzir sinalizando gerais. Assim, seria benéfico para fornecer um método e aparelhos
para processamento comentários que poderiam ser empregadas, por exemplo, em um sistema MIMO E-UTRA tanto para downlink (DL) e uplink (UL) comunicações. SÍNTESE
Um método e aparelhos para processamento retorno implementado em um celular transmissão / recepção unidade (WTRU) é divulgado. O método inclui estimar um canal matriz. O canal eficaz é calculado e uma precoding matriz é selecionada. Feedback bits são gerados e transmitidos. BREVE DESCRIÇÃO DOS DESENHOS
Uma compreensão mais detalhada da invenção pode ser tido a partir da seguinte descrição, dado a título de exemplo e deve ser entendido em conjugação com desenhos em que o acompanha:
A Figura 1 mostra um exemplo sistema de comunicação sem fio, sem fio, incluindo uma pluralidade de transmissão / recepção unidades (WTRUs) e uma estação-base; Figura 2 é um diagrama de um método de processamento repor feedback; Figura 3 é um diagrama de um método de rápida transformação adaptativa feedback; Figura 4 é um diagrama de um método de adaptação lenta transformação feedback; Figura 5 mostra um diagrama de bloco funcional WTRU e uma estação de base da Figura 1;
Figura 6 mostra um diagrama de bloco funcional alternativa WTRU e uma estação de base da Figura 1;
Figura 7 é um diagrama de um método de processamento adicional feedback. DESCRIÇÃO DETALHADA
Quando referidos a seguir, a terminologia "wireless transmitir / receber unidade (WTRU)" inclui, mas não está limitado a um equipamento utilizador (UE), uma estação móvel, um assinante unidade fixa ou móvel, um pager, um telefone celular , um assistente digital pessoal (PDA), um computador, ou qualquer outro tipo de usuário dispositivo capaz de operar em um ambiente sem fios. Quando referido a seguir, a terminologia "estação-base" inclui, mas não está limitado a um Node-B, um controlador do site, um ponto de acesso (AP), ou qualquer outro tipo de interface dispositivo capaz de operar em um ambiente sem fios.
Figure 1 shows an example wireless communication system 100, including a plurality of WTRUs 110 and a base station 120. As shown in Figure 1, the WTRUs 110 are in communication with the base station 120. Although two WTRUs 110, and one base station 120 are shown in Figure 1, it should be noted that any combination of wireless and wired devices may be included in the wireless communication system 100.
Figure 2 is a flow diagram of a method 200 of reset processing feedback. In reset processing, non-differential feedback is utilized. In step 210 of method 200, the channel matrix is estimated. Once the channel matrix is estimated, the effective channel is calculated (step 220). In one example, the effective channel is calculated as a multiplication of the channel estimate and the precoding matrix, such as H_eff = H_est χ Τ, where H_est is the channel estimate and T is the precoding matrix. The effective channel is calculated for ali possible candidate precoding matrices, sub-matrices, or vectors. A metric is computed using the effective channel that may include signal to interference plus noise ratio (SINR), throughput, block or frame error rate, channel capacity, and the like.
A precoding matrix or vector is then selected or calculated (step 230). The best matrix, submatrix or vector should be selected based on channel quality, SINR, throughput, block error ration (BLER), frame error ratio (FER) or other similar measures or combinations. For example the SINR for a linear minimum mean squared error (LMMSE) receiver can be computed and the precoding matrix that has the Iargest SINR may be selected. Other methods based on effective channels and their corresponding CQI measurements can also be used to select the precoding matrix or vector. In the case of calculating the matrix or vector, the channel matrix estimate is used as a base and the precoding matrix is computed by performing, for example, a singular value decomposition (SVD) or eigen-value decomposition (EVD) on the channel matrix estimate, and then quantized using a predetermined codebook.
One way for selecting the precoding matrix is that the channel responses H are estimated and a singular value decomposition (SVD) is performed on the estimated Hs to obtain a precoding matrix V. For N streams of MIMO transmission, where 1 < N < Ν, , A is a sub-matrix of V that represents the N stream precoding of data. Furthermore B1 is the possible combinations of N column vectors of a 10
15
matrix F. All the possible combinations of column vectors of F, (i.e., ali the possible B1 ), may be searched and the one selected which maximizes the sum of norm of the inner product or correlation of A and B1 in the search in accordance with the following equation:
r = max£||< /!{:, j)\B,(:,j) >|| .
8< í"\ . Equation (1)
A discrete Fourier transform (DFT) matrix may be utilized for MIMO precoding, and a set of precoding matrices can be constructed using a DFT matrix multiplied with different phase shifts. The set of DFT matrices can be used as a MIMO precoding codebook based on whether the precoding jnatrix is either selected or quantized.
A DFT matrix can be represented by wm „ = e'1™1* , where m =0,1,2,...,N-I and η = 0,1,2,...,N-I. A two-by-two (2x2) DFT matrix may be expressed as:
Ί ι
F
rM
1
1
Equation(2)
A four-by-four (4x4) DFT matrix may be expressed as: "1111
J -1
1
-1
-J
-1
j
20
Equation (3)
A set of precoding matrices can be generated using different phase shifts in accordance with the following equation: j2nm(n+—)l N wm,n = e L >
Equation (4) where m=l,2,... ,N-I1 n=0,l,2,... ,N-I and 1=0,1,2.....L-I. To generate a set of
eight 4x4 matrices, L=8 and N=4 are used, where N and L are design parameters to generate L DFT matrices of size NxN. Accordingly, a set of 4 χ 4 precoding matrices may be constructed as follows:
4*4,0
ί 1 1 1 l I jT e 1 eJ* 1 eJ* e» 1 e 2 eJ" I jY e 2
■1*4.2
I
Jr &
5
.3
'i
I
'jV
1 1 7 -J-* e 8 J 'Ψ e 8 1 e 4 .1 e 4 i € * 7 j-n e 8
p -
1 ι j—* e 16 1 9 J—* e 16 1 13 -J-JI e 1« 1 7 - J — TC 1 e % .3 J—X e 16 7 'jV e 8 I e 8 -Pn e -jU e s P' eJ\6 1 .3 J—S eIÉ Λ 1 .13 -J-Jr e 16 1 3 Ψ e 8 9 I—S e" ->\r e B ι J-IT e " .3 j-n e * 7 -J—JT S -J-,T e 8 .15 - j—ft e 16 1 t 1 * e 4 1 3 l -jl. e * t . 5 /16* 1 ,13 J—B e 16 1 e 16 1 3 -/—* e F = I 3 Zr I -rz* e 2 .ι jI" e * e 2 .1 -J-X e 1 -A2* e 2 e 4 r JtO ~ .5 tV e " .15 J—π i -J-S e 8 1 j—a e 16 S J-JT e 8 -Απ e S e 8 . 9 1 * e 9 1 7 iV e 8 l S -j-j, e * l l e 8 1 j—B e <6 1 .15 1 -j—a e 16 1 I -J-K e 16 F - 3 e 4 9 /-X I e 4 j )-Π j e 4 I )-« -AJT e 4 j -I-X » ^4^4.7 = 7 jfSjr e 8 11 - 1—a -A e K 7 n* e 8 . 5 I-S ι -J-JT e 8 3 - t-.1 e 8 e* e' e 8 e 16 e 16 e 16 e ' 16
Equation (5)
A set of 2 χ 2 matrices may be generated and constructed in
a similar manner.
In step 240, feedback bits are generated and transmitted. The feedback bits include the corresponding codeword index. In the case of 4 χ 4 MIMO matrix, and for full rank, (i.e., the rank equals four (4)), an index associated with one of the matrices identified in equation (5) may be used as the feedback input. For a rank Iess than four (4), an index associated with one of the column subsets of the matrices in equation (5) may be used as the feedback input. For the case where the rank equals one, an index associated with one of the column vectors of the matrices may be used as the feedback input.
An additional feedback mechanism utilizes adaptive processing. In general, adaptive processing is either "fast adaptive" or "slow adaptive" depending on degree of accuracy of updating with respect to the desired precoding matrix or convergence rate.
Figure 3 is a flow diagram of a method 300 of fast adaptive processing feedback. Fast adaptive processing feedback is a fast tracking method and can be used as a stand-alone feedback or as a feedback which is in conjunction with the full precoding matrix feedback depicted in method 200 of Figure 2. In step 310, the differential precoding matrix or delta matrix is computed. Then the differential precoding matrix or delta matrix is quantized (step 320).
Feedback bits are generated and transmitted (step 330), where the feedback bits correspond to a codeword index of a differential codebook. The more feedback bits that are used, the faster the precoding matrix is updated using the feedback bits, which represent the differential precoding matrix. Accordingly, faster adaptive processing may be achieved.
Figure 4 is a flow diagram of a method 400 of slow adaptive processing feedback. Slow adaptive processing feedback is a slow tracking method and can be used as a stand-alone feedback or as a feedback which is in conjunction with the full precoding matrix feedback (reset) depicted in method 200 of Figure 2. Slow adaptive processing feedback can also be used in conjunction with the differential precoding matrix feedback depicted in method 300 of Figure 3, or a combination of the methods 200 and 300 of Figures 2 and 3, respectively.
In step 410, a single binary sign bit is computed, and the single binary sign bit is then transmitted (step 420), for example from a receiver device to a transmitter device. The single binary sign bit, b[n], may be computed using a measurement of the effective channel in accordance with the following equation:
IU b[n] = sign{q[r)\) . Equation (6)
The measure q[n] is an effective channel measurement for the preferred direction that maximizes the received power. If Ω,[«] and Ωο[«] are denoted to be Ω,[«] = f [n]exp(F[n])Y and Ω0[η] = f [n]exTp(-F[n])Y , respectively, then q[n] may be expressed as:
q[n] =W Hln + l]Q1[H] Wl - W H[n + Ι]Ω0[η] W2F . Equation (7)
If the direction of received power maximization is toward Ω,[η] , then b[n]=l is transmitted (step 420). Otherwise, the direction of received power maximization is toward Ω0[η] , and the feedback b[n]= -1 is transmitted (step 420).
The index to the best precoding matrix or vector is selected and fed back, (i.e., transmitted). The precoding matrix is updated during the period between resets or between full precoding matrix updates for the following feedback interval by the single binary bit for slow adaptive processing, or slow traèking of the best selected precoding matrix which is selected at reset period. 5
For example, Ietting Nt denote the number of transmit antennas and Ns denote the number of transmitted data streams, the precoding matrix that is fed back is T[n] for a feedback instance n. The precoding matrix T[n], then, is updated by the single binary bit b[n] that is fed back from a receiver at feedback instance n+1. The precoding matrix is updated from T[n] to T[n+1] using feedback bit b[n],
Grassmann manifold or Grassmann Iine packing can be used to define the beamforming space. A signal flow along the geodesic or the curve of the shortest Iength in Grassmann manifold GNt <Ns and can be expressed as:
Q(0 = Q(O) exp(tX)Y , Equation(8)
where Q(O) and Q(t) are the points in Grassmann manifold space at time 0 and t respectively. X is a skew-symmetric matrix and is restricted to be of the form:
"O -Zh' 2 0
Equation (9) The matrix Y may be expressed by: Y = 1N.
. Equation(IO)
The precoding matrix and its update may then be defined in accordance with the following equation:
T[n + 1] = f[n]exp(b[n]F[n])Y , Equation (11) where O -Gh [nf G[n] O
F[n} =
Eauation (12)
and has dimension Nt by Nt. f[n] = [T[n] E[n]] is a unitary matrix of dimension Nt by Nt and E[n] is the orthogonal complement of T[n] . Matrix Y has dimension Nt by Ns. Matrix G[n] is a random matrix and has dimension Nt-Ns by Ns. Matrix G[n] is used to approximate matrix Z and is generated with a certain distribution, of which one example is uniform distribution. Another example is independent and identical complex Gaussian distribution with zero mean and variance β2 . That is, each entry of G[n] is independently and identically distributed, (e.g., CN(0, β2) ). However, other proper distributions for G[n] may also be considered and used. The exponential term exp(b[n]F[n])Y represents the signal flow from the current to the next precoding matrix along the curve of the shortest Iength in the beamforming space. The single binary bit b[n] determines one of the two opposite directions of the signal flow determined by F[n] along the curve of the shortest Iength in the beamforming space when the precoding matrix is updated.
In order to obtain the same update for the precoding matrix,
the matrix G[n] should be known to both a transmitter and receiver. This can be done by synchronously generating G[n] by pseudo random number generators at the transmitter and the receiver at the time when communication between the transmitter and receiver starts. However, signaling may also be utilized to communicate the information about matrix G between the transmitter and receiver.
The parameter β2 in matrix G is a step size of the precoding matrix update and can be static, semi-static or dynamic. For optimum performance the parameter β2 should be adaptively adjusted according to Doppler shift, with the value of β2 increasing as Dopplerfrequency increases, and vice versa. The feedback rate, or feedback interval, depends on the
rate of channel variation or vehicle speed. The optimum feedback rate or interval may be determined using simulations. A fixed feedback rate or interval can be used to compromise between different vehicle speeds or channel variation. A feedback rate or interval can also be configured or reconfigured to meet certain performance requirements. Additionally, if information about vehicle speed or Doppler shift are available, that information may be used to configure or reconfigure the feedback rate or interval. The step size of the precoding matrix update can also be determined or optimized according to different rates of channel variation.
T[n+1], given T[n] and G[n], may be computed using
compact singular (CS) decomposition and the like. For example, the matrix G[n] may be decomposed using singular value decomposition (SVD) in accordance with the following equation:
G[n] = V2QV1" . Equation (13) The matrix Θ is a diagonal matrix such that:
Θ = diag(0i,02 ,...,ONs ) . Equation (14) The variables 01 , where i = \,2,..,Ns , are the principal angles between the subspaces T[n] and T[n+1], Ifthe feedback bit b[n] is -1, -G[n] may be decomposed instead.
The values of sin(#,) and cos(0,) for / = 1,2,..,N1 , are
computed and diagonal matrices C and S are constructed such that:
C - diag (cos θχ, cos Θ2,..., cos ΘΝ ), Equation (15) and
S = diag(sm6i,sinG2.....sm0Ns ). Equation (16)
The matrix T[n+1] may be computed in accordance with the
following equation:
K1C KS
T[n +1] = T[h\
T[n + Equation (17) Reset processing or non-differential feedback may be used initially and periodically every N transmission time intervals (TTIs) to reset the error arising from differential and binary feedback. In addition, reset or non- differential feedback may be used aperiodically. The fast adaptive processing or differential feedback may be used for "X" TTIs following the initialization, reset or non-differential feedback. The slow adaptive processing or binary feedback may be used between the time when a fast adaptive feedback period ends and the time when the reset or non-differential feedback begins.
Figure 5 shows a functional block diagram 500 of a WTRU
110 and a base station 120' of Figure 1. TheWTRU 110 and base station 120' of Figure 5 are configured to perform any combination of the methods 200, 300, and 400 described in Figures 2, 3, and 4, and are in wireless communication with one another. The methods 200, 300, and 400 in Figures 2, 3, and 4 can be used in different time or different feedback intervals between the base station 120' and the WTRU 110. In the example shown in Figure 5, the base station 120' may be considered as a transmitter, or transmitting device, while the WTRU 110 is a receiver, or receiving device.
In addition to other components that may be included in a WTRU, (e.g., a transmitter, a receiver, and the like), the WTRU 110 of Figure 5 includes a channel estimator 115 and a feedback bit generator 116 in communication with the channel estimator 115. In addition, the WTRU 110 includes a first antenna 117 and a second antenna 118. As depicted in Figure 5, the first antenna 117 is in communication with the channel estimator 115 and may receive and forward wireless communications from the base station 120 to the channel estimator 115. The second antenna 118 is in communication with the feedback bit generator 116 and may receive a signal from the feedback bit generator 116 and transmit it to the base station 120'. It should be noted however, that any number and configuration of antennas may be included in the WTRU 110. For example, the first antenna 117 may be in communication with the feedback bit generator 116 and the second antenna 118 may be in communication with the channel estimator 115. The channel estimator 115 is configured to perform the channel estimation functions described in methods 200, 300, and 400 of Figures 2, 3, and 4, respectively. The feedback bit generator 116 is configured to generate the feedback to be transmitted back to the base station 120' in accordance with the methods 200, 300, and 400 of Figures 2, 3, and 4, respectively, or any combination of methods 200, 300, and 400.
A generate matrix G functional block 531 is in communication with the feedback bit generator block 116 of the WTRU 110, and a doppler adjustment block 541 is in communication with the generate matrix G functional block 531. The generate matrix G functional block 531 and doppler adjustment block 541 are configured to perform the related functions described in methods 200, 300, and 400, of Figures 2, 3, and 4, respectively. In addition to other components that may be included in a
base station, (e.g., a transmitter, a receiver, and the like), the base station 120' includes a precoding block 121, a precoding matrix update block 122, a rank adapter 123, and a multiplexer (MUX) 124. The precoding block 121 is in communication with the precoding matrix update block 122, the rank adapter 123 and the MUX 124. In addition, a first antenna 125 is in communication with the MUX 124 and may receive a signal from the MUX 124 to facilitate wireless communication to the WTRU 110. A second antenna 126 is in communication with the precoding matrix update block 122, and may facilitate the reception of wireless communications received from the WTRU 110. It should be noted again that either antenna, 125 or 126, may be in communication with any of the components. The precoding block 121 is further configured to receive a data signal, and the MUX 124 is configured to also receive a pilot signal. In addition, the precoding block 121, precoding matrix update block 122, and the rank adapter 123 are configured to perform the related functions described in methods 200, 300, and 400, of Figures 2, 3, and 4, respectively, or any combination of methods 200, 300, and 400.
A generate matrix G functional block 530 is in communication with the precoding matrix update block 122 of the base station 120' and a doppler adjustment block 540 is in communication with the generate matrix G functional block 530. The generate matrix G functional block 530 and doppler adjustment block 540 are configured to perform the related functions described in methods 200, 300, and 400, of Figures 2, 3, and 4, respectively.
Figure 6 shows an alternative functional block diagram 600 of a WTRU 110 and a base station 120" of Figure 1. The WTRU 110 and base station 120" of Figure 6 are configured to perform any combination of the methods 200, 300, and 400 described in Figures 2, 3, and 4, and are in wireless communication with one another. The WTRU 110 shown in Figure 6 is substantially similar to the WTRU 110 described above in Figure 5. In the example shown in Figure 6, the base station 120" may be considered as a transmitter, or transmittíng device, while the WTRU 110 is a receiver, or receiving device.
A generate matrix G functional block 631 is in communication with the feedback bit generator block 116 of the WTRU 110. A doppler adjustment block 641 is in communication with the generate matrix G functional block 631. The generate matrix G functional block 631 and doppler adjustment block 641 are configured to perform the related functions described in methods 200, 300, and 400, of Figures 2, 3, and 4, respectively.
In addition to other components that may be included in a base station, (e.g., a transmitter, a receiver, and the like), the base station 120" includes a precoding block 621, a precoding matrix update block 622, a link adapter 623, and a multiplexer (MUX) 624. The precoding block 621 is in communication with the precoding matrix update block 622, the link adapter 623 and the MUX 624. In addition, a first antenna 625 is in communication with the MUX 624 and may receive a signal from the MUX 624 to facilitate wireless communication to the WTRU 110. A second antenna 626 is in communication with the precoding matrix update block 622, and may facilitate the reception of wireless communications received from the WTRU 110. The precoding block 621 is further configured to receive a data signal, and the MUX 624 is configured to also receive a pilot signal. In addition, the precoding block 621, precoding matrix update block 622, and the link adapter 623 are configured to perform the related functions described in methods 200, 300, and 400, of Figures 2, 3, and 4, respectively. A generate matrix G functional block 630 is in
communication with the precoding matrix update block 622 of the base station 120". A doppler adjustment block 640 is in communication with the generate matrix G functional block 630. The generate matrix G functional block 630 and doppler adjustment block 640 are configured to perform the related functions described in methods 200, 300, and 400, of Figures 2, 3, and 4, respectively.
Figure 7 is a flow diagram of an additional method 700 of processing feedback. In step 710, the channel matrix H is measured. A sign bit is then computed (step 720), based on the direction of the geodesic that maximizes received power. The sign bit is then transmitted (step 730), for example from a receiver to a transmitter, and the precoding matrix is updated (step 740) by the transmitter using the sign bit so that the new precoding matrix approaches the direction of maximizing receiver power for the next precoding operation.
Although features and elements are described above in particular combinations, each feature or element can be used alone without the other features and elements or in various combinations with or without other features and elements. The methods or flow charts provided herein may be implemented in a computer program, software, or firmware tangibly embodied in a computer- readable storage médium for execution by a general purpose computer or a processor. Examples of computer-readable storage mediums include a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internai hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).
Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (AS I Cs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine.
A processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC)1 or any host computer. The WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth® module, a frequency modulated (FM) radio unit, a Iiquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) module. EMBODIMENTS:
1. A method for processing feedback in a wireless communication system.
2. The method of embodiment 1, further comprising estimating a channel matrix. 3. A method as in any preceding embodiment, further comprising calculating an effective channel.
4. A method as in any preceding embodiment, further comprising selecting a precoding matrix.
5. A method as in any preceding embodiment, further comprising generating feedback bits.
6. A method as in any preceding embodiment, further comprising transmitting the feedback bits.
7. A method as in any preceding embodiment wherein selecting a precoding matrix includes selecting the precoding matrix based upon a metric, wherein the metric includes
any of the following: signal to interference noise ratio (SINR), throughput, block error rate (BER), frame error rate, and/or channel capacity.
8. A method as in any preceding embodiment wherein an effective channel is a multiplication of the channel estimate with precoding matrices.
9. A method as in any preceding embodiment wherein selecting a precoding matrix includes calculating the precoding matrix from the channel matrix estimate.
10. A method as in any preceding embodiment wherein selecting a precoding matrix further comprises quantizing the precoding matrix using a predetermined codebook.
11. A method as in any preceding embodiment wherein feedback bits include a codeword index.
12. A method as in any preceding embodiment, further comprising updating the precoding matrix.
13. A method as in any preceding embodiment, further comprising computing a differential precoding matrix or delta matrix.
14. A method as in any preceding embodiment, further comprising quantizing a differential precoding matrix or delta matrix.
15. A method as in any preceding embodiment, further comprising computing a single binary sign bit.
16. A method as in any preceding embodiment, further comprising transmitting a single binary sign bit.
17. A method as in any preceding embodiment, further comprising updating a precoding matrix based upon a single binary sign bit.
18. A method as in any preceding embodiment, further comprising measuring a channel matrix.
19. A method as in any preceding embodiment, further comprising computing a sign bit.
20. A wireless transmit/receive unit (WTRU) configured to perform a method as in any preceding embodiment.
21. The WTRU of embodiment 20, further comprising a channel estimator configured to receive a signal and estimate a channel.
22. A WTRU as in any of embodiments 20-21, further comprising a feedback bit generator in communication with a channel estimator.
23. A WTRU as in any of embodiments 20-22 wherein a feedback bit generator is configured to determine a precoding matrix.
24. A WTRU as in any of embodiments 20-23 wherein a feedback bit generator is configured to generate a feedback bit.
25. A WTRU as in any of embodiments 20-24 wherein a feedback bit generator is configured to transmit a feedback bit.
26. A WTRU as in any of embodiments 20-25 wherein a feedback bit generator is configured to generate a binary feedback bit.
27. A WTRU as in any of embodiments 20-26 wherein a feedback bit generator is configured to generate a non-differential feedback bit.
28. A WTRU as in any of embodiments 20-27 wherein a feedback bit generator is configured to generate a differential feedback bit.
29. A base station configured to perform a method as in any of embodiments 1-19.
30. The base station of embodiment 29, further comprising a precoding block configured to generate and transmit a precoding matrix.
31. A base station as in any of embodiments 29-30, further comprising a link adapter in communication with the precoding block.
32. A base station as in any of embodiments 29-31, further comprising a precoding matrix update block configured to receive a feedback bit and update a precoding matrix.
33. A base station as in any of embodiments 29-32 wherein a feedback bit is a binary feedback bit.
34. A base station as in any of embodiments 29-33 wherein a feedback bit is a non- differential feedback bit.
35. A base station as in any of embodiments 29-34 wherein a feedback differential feedback bit.

Claims (21)

1. Um método para processamento feedback implementado em um celular transmissão / recepção unidade (WTRU), o método compreendendo: (a) estimar um canal matriz; (b) Calculando um canal eficaz; (c) selecionando uma precoding matriz; (d) gerar feedback bits; e (e) transmitir o feedback bits.
2. O método da reivindicação 1 onde passo (c) inclui a seleção precoding matriz baseada em uma métrica, em que a métrica inclui qualquer uma das seguintes características: sinal de interferência ruído (SINR), vazão, bloco taxa de erro (BER), moldura erro taxa, e capacidade de canal.
3. O método da reivindicação 1 onde o canal é uma multiplicação eficaz do canal estimar com precoding matrizes.
4. O método da reivindicação 1 onde passo (c) inclui o cálculo do precoding matriz do canal matriz estimativa.
5. O método de crédito onde passo 4 (c) ainda inclui: (CL) quantizing o precoding matriz usando um codebook predeterminado.
6. O método da reivindicação 1 onde o feedback bits incluem uma senha índice.
7. O método da reivindicação 1, ainda que inclui: (f) a actualização das precoding matriz.
8. Um método para processamento feedback implementado em um celular transmissão / recepção unidade (WTRU), o método compreendendo: (a) computando um diferencial precoding matriz matriz ou delta; (b) quantizing o diferencial precoding delta matriz ou matriz; (c) gerando feedback bits; e (d) transmitir o feedback bits.
9. O método de crédito em que o feedback 8 bits incluem uma senha índice.
10. O método de reivindicação 8, ainda incluem: (e) a actualização das precoding matriz.
11. Um método para processamento feedback implementado em um celular transmissão / recepção unidade (WTRU), o método compreendendo: (a) computando um único sinal binário bit; e (b) a transmissão do sinal binário único bit.
12. O método de reivindicação 11, ainda incluem: (c) a actualização das precoding matriz baseia-se no único sinal binário bit.
13. Um método para processamento feedback implementado em um celular transmissão / recepção unidade (WTRU)1 o método compreendendo: (um) medindo um canal matriz; (b) um sinal de computação bit; (c) a transmissão do sinal bit; e (d) uma actualização precoding matriz.
14. Um celular transmissão / recepção unidade (WTRU), o WTRU compreendendo: um canal estimador configurado para receber um sinal e estimar um canal, e um pouco feedback gerador em comunicação com o canal estimador, o feedback gerador bit configurado para determinar uma matriz precoding, gerar um retorno bit e transmitir o feedback bit.
15. A alegação WTRU de 14 bits onde o feedback gerador é configurado para gerar um binário feedback bit.
16. A alegação WTRU de 14 bits onde o feedback gerador é configurado para gerar um diferencial feedback não-bit.
17. A alegação WTRU de 14 bits onde o feedback gerador é configurado para gerar um diferencial feedback bit.
18. Uma estação base, a estação base compreendendo: um bloco precoding configurado para gerar e transmitir um precoding matriz; um elo de comunicação com o adaptador precoding bloco, e uma atualização precoding matriz bloco configurado para receber um pouco feedback e atualizar o precoding matriz.
19. A estação base da reivindicação 18 onde o retorno é um pouco feedback binário bit.
20. A estação base da reivindicação 18 onde o retorno não- bit é um diferencial feedback bit.
21. A estação base da reivindicação 18 onde o retorno é um pouco diferenciado feedback bit.
BRPI0716288-0A2A 2006-10-30 2007-10-30 mÉtodo e equipamento para processar retorno em sistema de comuicaÇço sem fio BRPI0716288A2 (pt)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US86343206P 2006-10-30 2006-10-30
US60/863,432 2006-10-30
US86372006P 2006-10-31 2006-10-31
US60/863,720 2006-10-31
US87050306P 2006-12-18 2006-12-18
US60/870,503 2006-12-18
PCT/US2007/022905 WO2008054737A2 (en) 2006-10-30 2007-10-30 Method and apparatus for processing feedback in a wireless communication system

Publications (1)

Publication Number Publication Date
BRPI0716288A2 true BRPI0716288A2 (pt) 2013-08-13

Family

ID=39183104

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0716288-0A2A BRPI0716288A2 (pt) 2006-10-30 2007-10-30 mÉtodo e equipamento para processar retorno em sistema de comuicaÇço sem fio

Country Status (15)

Country Link
US (3) US8798212B2 (pt)
EP (1) EP2090012A2 (pt)
JP (4) JP2010508765A (pt)
KR (4) KR20090080571A (pt)
CN (2) CN104270181A (pt)
AR (1) AR063543A1 (pt)
AU (1) AU2007314377A1 (pt)
BR (1) BRPI0716288A2 (pt)
CA (1) CA2668247C (pt)
HK (1) HK1136413A1 (pt)
IL (1) IL198496A0 (pt)
MX (1) MX2009004654A (pt)
MY (1) MY152640A (pt)
TW (2) TWI470957B (pt)
WO (1) WO2008054737A2 (pt)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470957B (zh) 2006-10-30 2015-01-21 Interdigital Tech Corp 無線通信系統中處理反饋方法及裝置
US8204142B2 (en) * 2007-01-29 2012-06-19 Samsung Electronics Co., Ltd Precoder and precoding method in a multi-antenna system
WO2008097629A2 (en) * 2007-02-06 2008-08-14 Interdigital Technology Corporation Method and apparatus for multiple-input multiple-output feedback generation
WO2008115401A1 (en) * 2007-03-15 2008-09-25 Interdigital Technology Corporation Method and apparatus for feedback overhead reduction in wireless communications
KR101207569B1 (ko) * 2008-04-22 2012-12-03 삼성전자주식회사 전처리 행렬 선택 장치 및 방법
WO2010002964A2 (en) * 2008-07-02 2010-01-07 Interdigital Patent Holdings, Inc. Method and apparatus for measuring and reporting a rank and a precoding matrix for multiple-input multiple-output communication
EP2294740B1 (en) * 2008-07-02 2014-04-02 Huawei Technologies Co. Ltd. System and method for quantization of channel state information
US9112562B2 (en) * 2008-09-02 2015-08-18 Intel Corporation Techniques utilizing adaptive codebooks for beamforming in wireless networks
JP5149111B2 (ja) * 2008-09-09 2013-02-20 株式会社エヌ・ティ・ティ・ドコモ 無線中継装置及び無線中継方法
KR101021700B1 (ko) 2008-11-19 2011-03-15 고려대학교 산학협력단 다중 사용자 다중 입출력 시스템의 빔형성 장치 및 방법
US8654740B2 (en) * 2009-03-03 2014-02-18 Intel Corporation Polar cap reset method for differential codebook for wireless communications
EP2482470A4 (en) * 2009-09-25 2015-08-19 Fujitsu Ltd METHOD AND DEVICE FOR GENERATING A BOOK OF PRECODING MATRIX CODES
CN102035626B (zh) * 2009-09-30 2013-06-12 华为技术有限公司 一种获取预编码矩阵指示的方法和装置
KR101652869B1 (ko) 2009-11-02 2016-09-01 삼성전자주식회사 네트워크 다중 입출력 시스템에서 협력 멀티 포인트 송신을 위한 동적 채널 피드백 제어 방법
CN102754358B (zh) * 2009-12-30 2015-08-12 意大利电信股份公司 “多入多出”(“mimo”)***中选择预编码矩阵的方法
KR101512388B1 (ko) 2010-01-08 2015-04-16 인터디지탈 패튼 홀딩스, 인크 다수의 업링크 캐리어와의 시간 정렬 유지
JP2011166536A (ja) * 2010-02-10 2011-08-25 Sharp Corp 無線送信装置、基地局装置、無線送信方法、基地局装置の制御プログラムおよび集積回路
US8494033B2 (en) 2010-06-15 2013-07-23 Telefonaktiebolaget L M Ericsson (Publ) Methods providing precoder feedback using multiple precoder indices and related communications devices and systems
KR20110138742A (ko) * 2010-06-21 2011-12-28 주식회사 팬택 장치의 채널정보 전송방법, 그 장치, 기지국, 그 기지국의 전송방법
WO2012122705A1 (en) * 2011-03-16 2012-09-20 Nec (China) Co., Ltd. Method, transmitter and receiver for beamforming
CN103188806A (zh) * 2011-12-31 2013-07-03 富士通株式会社 确定有效信道、反馈信息的装置和方法
US9281881B2 (en) * 2013-02-12 2016-03-08 Texas Instruments Incorporated 4TX codebook enhancement in LTE
US10567048B2 (en) * 2016-09-23 2020-02-18 Qualcomm Incorporated Techniques for determining uplink precoding matrix for a user equipment
US10044423B2 (en) * 2016-10-20 2018-08-07 Samsung Electronics Co., Ltd System and method for precoder selection in multiple-input multiple-output (MIMO) systems with discrete fourier transform (DFT)-based codebook
WO2018121775A1 (en) 2016-12-30 2018-07-05 SZ DJI Technology Co., Ltd. System and methods for feedback-based data transmission
CN107113441B (zh) * 2016-12-30 2019-07-26 深圳市大疆创新科技有限公司 图像处理方法、装置、无人飞行器和接收端
CN109936746B (zh) 2016-12-30 2021-07-16 深圳市大疆创新科技有限公司 图像处理方法与设备
JP7308152B2 (ja) * 2017-05-21 2023-07-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてフィードバック情報を送信する方法及びそのための端末
US10110287B1 (en) * 2017-06-09 2018-10-23 Nxp Usa, Inc. Transmitter precoding based on quality score
US11005541B2 (en) 2017-11-21 2021-05-11 Lg Electronics Inc. Method for transmitting feedback information and terminal therefor
EP3782297A1 (en) * 2018-04-16 2021-02-24 Sony Corporation Methods and devices for configuring multiple input multiple output wireless transmission
US11968005B2 (en) 2019-09-12 2024-04-23 Telefonaktiebolaget Lm Ericsson (Publ) Provision of precoder selection policy for a multi-antenna transmitter

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742612B1 (fr) 1995-12-15 1998-02-06 Sextant Avionique Procede et circuit de reception de signaux de positionnement par satellites avec elimination des erreurs de multitrajets
JP3536921B2 (ja) * 2001-04-18 2004-06-14 日本電気株式会社 相関行列学習方法、装置及びプログラム
US7197084B2 (en) * 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
US7010055B2 (en) * 2002-06-27 2006-03-07 Motorola, Inc. System implementing closed loop transmit diversity and method thereof
US6985745B2 (en) * 2002-11-25 2006-01-10 Telefonaktiebolaget L M Ericsson (Publ) Method and radio signature position determining entity (RS-PDE) for maintaining location database reliability
EP1570584B1 (en) * 2002-11-26 2009-08-26 Interdigital Technology Corporation Bias error compensated initial transmission power control for data services
JP2005184730A (ja) 2003-12-24 2005-07-07 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2005234681A (ja) 2004-02-17 2005-09-02 Contents Works Inc 画像処理装置
JP4474934B2 (ja) * 2004-02-18 2010-06-09 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US7633994B2 (en) * 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US7599420B2 (en) * 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
JP4451198B2 (ja) 2004-04-23 2010-04-14 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線送信機及び無線受信機
JP4604798B2 (ja) * 2004-05-10 2011-01-05 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4447372B2 (ja) * 2004-05-13 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線通信装置、無線受信装置、無線通信方法及びチャネル推定方法
KR100689454B1 (ko) * 2004-05-14 2007-03-08 삼성전자주식회사 직교 주파수 분할 다중 접속 무선 통신 시스템에서 하향링크 채널 스케쥴링 방법 및 장치와 시스템
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US7676007B1 (en) * 2004-07-21 2010-03-09 Jihoon Choi System and method for interpolation based transmit beamforming for MIMO-OFDM with partial feedback
US7376192B2 (en) * 2004-07-22 2008-05-20 Telefonaktiebolaget L M Ericsson (Publ) Delta modulation for channel feedback in transmit diversity wireless communication systems
US20060039489A1 (en) * 2004-08-17 2006-02-23 Texas Instruments Incorporated Method and apparatus for providing closed-loop transmit precoding
US7813458B2 (en) * 2004-08-20 2010-10-12 Nokia Corporation System and method for precoding in a multiple-input multiple-output (MIMO) system
RU2007108554A (ru) 2004-09-10 2008-09-20 Мацусита Электрик Индастриал Ко., Лтд. (Jp) Устройство беспроводной связи и способ беспроводной связи
US7492829B2 (en) * 2004-09-10 2009-02-17 Intel Corporation Closed loop feedback in MIMO systems
US7139328B2 (en) * 2004-11-04 2006-11-21 Motorola, Inc. Method and apparatus for closed loop data transmission
US7627051B2 (en) * 2004-11-08 2009-12-01 Samsung Electronics Co., Ltd. Method of maximizing MIMO system performance by joint optimization of diversity and spatial multiplexing
WO2006112030A1 (en) 2005-04-14 2006-10-26 Matsushita Electric Industrial Co., Ltd. Wireless reception apparatus and wireless reception method
WO2006117665A1 (en) * 2005-05-04 2006-11-09 Nortel Networks Limited Wireless feedback system and method
US20070098106A1 (en) * 2005-10-31 2007-05-03 Khojastepour Mohammad A Quantized multi-rank beamforming with structured codebook for multiple-antenna systems
KR100996023B1 (ko) * 2005-10-31 2010-11-22 삼성전자주식회사 다중 안테나 통신 시스템에서 데이터 송수신 장치 및 방법
WO2007106366A2 (en) 2006-03-10 2007-09-20 Interdigital Technology Corporation Method and apparatus for scaling soft bits for decoding
US10044532B2 (en) * 2006-03-20 2018-08-07 Texas Instruments Incorporated Pre-coder selection based on resource block grouping
CA2660945C (en) * 2006-08-17 2013-05-28 Interdigital Technology Corporation Method and apparatus for providing efficient precoding feedback in a mimo wireless communication system
TWI470957B (zh) 2006-10-30 2015-01-21 Interdigital Tech Corp 無線通信系統中處理反饋方法及裝置
US7764746B2 (en) * 2008-08-19 2010-07-27 Samsung Electronics Co., Ltd. User terminal and base station using adapted codebook according to polarization

Also Published As

Publication number Publication date
CN101584145B (zh) 2014-10-22
US20160134340A1 (en) 2016-05-12
KR20090076993A (ko) 2009-07-13
KR101205604B1 (ko) 2012-11-27
CN101584145A (zh) 2009-11-18
JP2012182847A (ja) 2012-09-20
JP6019076B2 (ja) 2016-11-02
KR20140069081A (ko) 2014-06-09
KR20120096569A (ko) 2012-08-30
JP2010508765A (ja) 2010-03-18
US20140314169A1 (en) 2014-10-23
AR063543A1 (es) 2009-01-28
HK1136413A1 (en) 2010-06-25
TW200826535A (en) 2008-06-16
AU2007314377A1 (en) 2008-05-08
TWI470957B (zh) 2015-01-21
TWI508478B (zh) 2015-11-11
WO2008054737A2 (en) 2008-05-08
MX2009004654A (es) 2009-06-26
JP5715091B2 (ja) 2015-05-07
CN104270181A (zh) 2015-01-07
KR20090080571A (ko) 2009-07-24
MY152640A (en) 2014-10-31
JP2016197914A (ja) 2016-11-24
CA2668247C (en) 2016-06-21
US20080112500A1 (en) 2008-05-15
US9225400B2 (en) 2015-12-29
WO2008054737A3 (en) 2008-09-18
EP2090012A2 (en) 2009-08-19
KR101506604B1 (ko) 2015-03-27
IL198496A0 (en) 2010-02-17
US8798212B2 (en) 2014-08-05
KR101508105B1 (ko) 2015-04-07
CA2668247A1 (en) 2008-05-08
JP2015046881A (ja) 2015-03-12
TW201328231A (zh) 2013-07-01

Similar Documents

Publication Publication Date Title
BRPI0716288A2 (pt) mÉtodo e equipamento para processar retorno em sistema de comuicaÇço sem fio
JP5296774B2 (ja) 専用基準信号モードに基づいてリソースブロック構造を送信し、復号するmimo無線通信の方法および装置
US20080187062A1 (en) Method and apparatus for multiple-input multiple- output feedback generation
CN112311431B (zh) 一种空频合并系数的指示方法及装置
Noh et al. Zero‐forcing based hybrid beamforming for multi‐user millimeter wave systems
WO2019154326A1 (zh) 确定波束赋型权值的方法、装置及设备
CN116805917A (zh) 信道估计方法及无线感知设备

Legal Events

Date Code Title Description
B25G Requested change of headquarter approved

Owner name: INTERDIGITAL TECHNOLOGY CORPORATION (US)

B08F Application dismissed because of non-payment of annual fees [chapter 8.6 patent gazette]

Free format text: REFERENTE A 9A ANUIDADE.

B08K Patent lapsed as no evidence of payment of the annual fee has been furnished to inpi [chapter 8.11 patent gazette]

Free format text: EM VIRTUDE DO ARQUIVAMENTO PUBLICADO NA RPI 2385 DE 20-09-2016 E CONSIDERANDO AUSENCIA DE MANIFESTACAO DENTRO DOS PRAZOS LEGAIS, INFORMO QUE CABE SER MANTIDO O ARQUIVAMENTO DO PEDIDO DE PATENTE, CONFORME O DISPOSTO NO ARTIGO 12, DA RESOLUCAO 113/2013.