WO2024134931A1 - Method for producing plate-type heat exchanger, and plate-type heat exchanger - Google Patents

Method for producing plate-type heat exchanger, and plate-type heat exchanger Download PDF

Info

Publication number
WO2024134931A1
WO2024134931A1 PCT/JP2023/023235 JP2023023235W WO2024134931A1 WO 2024134931 A1 WO2024134931 A1 WO 2024134931A1 JP 2023023235 W JP2023023235 W JP 2023023235W WO 2024134931 A1 WO2024134931 A1 WO 2024134931A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat transfer
hole
transfer plate
base end
Prior art date
Application number
PCT/JP2023/023235
Other languages
French (fr)
Japanese (ja)
Inventor
将吾 岩原
匠 白石
紘史 竹原
智弘 市薗
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2024134931A1 publication Critical patent/WO2024134931A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • This disclosure relates to a method for manufacturing a plate heat exchanger and a plate heat exchanger.
  • Some heat exchangers have pipes connected to them to allow fluid to flow in and out of the flow passage space inside the device from an external device.
  • Patent Document 1 discloses a heat exchanger in which an inlet pipe is connected to a header tank.
  • one end of the inlet pipe is provided with a ring-shaped protrusion that extends circumferentially on the outer wall surface away from the end face of the pipe.
  • the header tank is formed with a through hole into which one end of the inlet pipe can be inserted.
  • the inner wall surface of the header tank is covered with a clad layer formed of wax.
  • one end of the inlet pipe is inserted into the through hole of the header tank until the ring-shaped protrusion contacts the outer wall surface of the header tank, and further, the clad layer on the inner wall surface of the header tank is melted to braze one end of the inlet pipe to the inner wall of the through hole of the header tank.
  • Heat exchangers include plate-type heat exchangers that have multiple heat transfer plates stacked with flow passage spaces between them through which fluid flows. Even in plate-type heat exchangers, a pipe member, for example a pipe joint, may be connected to the outermost heat transfer plate that is located on the outermost side of the multiple heat transfer plates in order to allow fluid to flow in and out from an external device. In this case, it is possible to apply the joining method of the inlet pipe of the heat exchanger and the header tank described in Patent Document 1 to the joining of the outermost heat transfer plate and the pipe joint.
  • the present disclosure has been made to solve the above problems, and aims to provide a plate heat exchanger and a manufacturing method thereof in which tube members are joined to the outermost heat transfer plate with high strength.
  • the method for manufacturing a plate heat exchanger is a method for manufacturing a plate heat exchanger including a plurality of heat transfer plates and a tube member.
  • the plurality of heat transfer plates are stacked with flow passage spaces between them through which a fluid flows, and at least the outermost heat transfer plate located on the outermost side has a through hole for allowing a fluid to flow in and out of the flow passage space, and has a first brazing material around the through hole and on the inner surface side.
  • the tube member has a base end and a large diameter part having an outer diameter larger than the base end, and the base end is passed through the through hole and the large diameter part is adjacent to the outer surface of the outermost heat transfer plate, and the base end is brazed to the inner wall of the through hole, allowing a fluid to flow in and out of the flow passage space.
  • the method for manufacturing a plate-type heat exchanger includes the steps of: arranging a second brazing material on the outer surface side of the outermost heat transfer plate and around the through hole; inserting the base end of the tube member into the through hole from the outer surface side of the outermost heat transfer plate and aligning the large diameter portion adjacent to the outer surface of the outermost heat transfer plate to attach the tube member to the outermost heat transfer plate; and heating the outermost heat transfer plate to which the tube member is attached to melt the first brazing material and the second brazing material, thereby brazing the base end of the tube member to the inner wall of the through hole of the outermost heat transfer plate.
  • the method of manufacturing a plate-type heat exchanger includes a step of melting a brazing material arranged on the outer surface side and around the through hole of the outermost heat transfer plate and a first brazing material arranged around the through hole and on the inner surface side of the outermost heat transfer plate to braze the base end of the tube member to the inner wall of the through hole of the outermost heat transfer plate. Therefore, during the brazing step, the brazing material sufficiently penetrates both the outer surface side and the inner surface side of the outermost heat transfer plate. As a result, the tube member can be joined to the outermost heat transfer plate with high strength.
  • FIG. 1 is a perspective view of a plate heat exchanger according to a first embodiment of the present disclosure
  • FIG. 1 is an exploded perspective view of a plate heat exchanger according to a first embodiment of the present disclosure.
  • FIG. 1 is a perspective view of a pipe joint included in a plate heat exchanger according to a first embodiment of the present disclosure.
  • FIG. 1 is a perspective view of a reinforcing plate and a pipe joint included in a plate heat exchanger according to a first embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view of a pipe joint to which a metal foil is attached in a metal foil attachment step included in a method for manufacturing a plate heat exchanger according to a first embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view of a reinforcing plate when a pipe joint is attached in a pipe joint attachment step included in the manufacturing method of the plate heat exchanger according to the first embodiment of the present disclosure.
  • FIG. 1 is an enlarged cross-sectional view of a portion of a reinforcing plate to which a pipe joint is attached by a pipe joint attachment step included in a method for manufacturing a plate heat exchanger according to a first embodiment of the present disclosure.
  • FIG. 9 is an enlarged cross-sectional view of a region IX shown in FIG.
  • FIG. 1 is a cross-sectional view of a modified example of a pipe joint used in a metal foil attachment step included in the manufacturing method for a plate heat exchanger according to the first embodiment of the present disclosure.
  • FIG. 13 is an enlarged cross-sectional view of a modified example of a reinforcing plate and a metal foil brazed in a brazing step included in the method for manufacturing a plate heat exchanger according to the first embodiment of the present disclosure.
  • FIG. 13 is a perspective view of a reinforcing plate and a pipe joint included in a plate heat exchanger according to a second embodiment of the present disclosure.
  • FIG. 11 is an enlarged cross-sectional view of a portion of a reinforcing plate to which a pipe joint is attached by a pipe joint attachment step included in a method for manufacturing a plate heat exchanger according to a second embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view of a rod-shaped brazing material and a pipe joint used in a modified example of the manufacturing method for a plate heat exchanger according to the first embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view of a paste-like brazing material and a pipe joint used in another modified example of the manufacturing method for the plate heat exchanger according to the first embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view of yet another modified example of a pipe joint included in the plate heat exchanger according to the first embodiment of the present disclosure.
  • the longitudinal direction of the rectangular heat transfer plate of the plate heat exchanger is the vertical direction
  • the lateral direction is the front-rear direction
  • the vertical direction is the Z axis
  • the front-rear direction is the Y axis
  • the direction perpendicular to the Z axis and Y axis is the X axis.
  • the manufacturing method of the plate-type heat exchanger according to the first embodiment is a manufacturing method in which a foil made of wax is arranged on the surface of the reinforcing plate on the side where the pipe joint is inserted, and a clad material made of wax is provided on the surface of the reinforcing plate opposite to the side where the pipe joint is inserted, in order to supply a sufficient amount of wax in a brazing process after assembling by inserting pipe joints into through holes in the reinforcing plate, which is the outermost heat transfer plate.
  • a foil made of wax is arranged on the surface of the reinforcing plate on the side where the pipe joint is inserted
  • a clad material made of wax is provided on the surface of the reinforcing plate opposite to the side where the pipe joint is inserted, in order to supply a sufficient amount of wax in a brazing process after assembling by inserting pipe joints into through holes in the reinforcing plate, which is the outermost heat transfer plate.
  • FIG. 1 is a perspective view of a plate heat exchanger 1A according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the plate heat exchanger 1A.
  • FIG. 3 is a perspective view of the pipe joints 61-64 provided in the plate heat exchanger 1A.
  • FIG. 4 is a perspective view of the reinforcing plate 30A and the pipe joint 62 provided in the plate heat exchanger 1A.
  • FIG. 1 omits the standing wall 11 of the heat transfer plate 10 and the standing wall 21 of the heat transfer plate 20.
  • FIG. 2 also illustrates the clad materials 31 and 41 of the reinforcing plates 30A and 40A as separate members.
  • the plate heat exchanger 1A comprises a plurality of heat transfer plates 10, 20 stacked alternately, and reinforcing plates 30A, 40A that reinforce the stacked heat transfer plates 10, 20.
  • the heat transfer plates 10 and 20 are members for exchanging heat between two types of fluids, the first fluid and the second fluid.
  • the heat transfer plate 10 is made of a metal with high heat conductivity, such as stainless steel.
  • the heat transfer plate 10 is formed in the shape of a rectangular plate with rounded corners.
  • the outer periphery of the heat transfer plate 10 is surrounded by a standing wall 11, so that a flow path space for the first fluid is formed in the heat transfer plate 10.
  • an inner fin 12 is provided to facilitate the transfer of heat of the first fluid.
  • a metal foil 13 is arranged that is made of pure copper or a copper alloy and covers the right side of the heat transfer plate 10 to function as a brazing material during manufacturing, in order to join with the heat transfer plate 20 when stacked together with the heat transfer plate 20.
  • the brazing material refers to a member formed of a brazing material.
  • the heat transfer plate 20 is also made of the same material as the heat transfer plate 10, and is formed in the same rectangular shape as the heat transfer plate 10.
  • the outer periphery of the heat transfer plate 20 is also surrounded by an upright wall 21, forming a flow path space for flowing a second fluid separate from the first fluid.
  • Inner fins 22 are also provided in the flow path space of the heat transfer plate 20 to improve heat transfer efficiency.
  • a metal foil 23 made of pure copper or a copper alloy is also arranged on the right side of the heat transfer plate 20, covering the right side of the heat transfer plate 20 and functioning as a brazing material during manufacturing.
  • the heat transfer plates 10 and 20 are stacked alternately with the plate surfaces of the above-mentioned shape facing left and right, the upright walls 11 or 21 facing left, and the right side covered with metal foil 13 or 23.
  • the four corners of the heat transfer plate 10 are formed with inlet and outlet holes 14, 15 and communication holes 16, 17.
  • the four corners of the heat transfer plate 20 are formed with communication holes 24, 25 and inlet and outlet holes 26, 27, which are provided at positions overlapping the inlet and outlet holes 14, 15 and communication holes 16, 17 in the left and right directions.
  • the inlet and outlet holes 14, 15 of the heat transfer plate 10 are connected to the communication holes 24, 25 of the heat transfer plate 20 adjacent to the right side, which has a peripheral wall portion protruding to the right side, by stacking the heat transfer plates 10 and 20 alternately.
  • the inlet and outlet holes 14, 15 allow the first fluid to flow in and out between the heat transfer plate 20 and the heat transfer plate 10 on the right side.
  • the inlet and outlet holes 26, 27 of the heat transfer plate 20 also have a peripheral wall portion that protrudes to the right and connects to the communication holes 16, 17 of the heat transfer plate 10 adjacent to the right.
  • the inlet and outlet holes 26, 27 allow the second fluid to flow in and out between the heat transfer plate 10 and the heat transfer plate 20 located further to the right.
  • the heat transfer plates 10 and 20 have this configuration and are stacked alternately in the left-right direction, allowing the first and second fluids to flow and transferring the heat of the first and second fluids to the heat transfer plates 10 and 20. As a result, when the first and second fluids are allowed to flow, the heat transfer plates 10 and 20 exchange heat between the first and second fluids. Meanwhile, in this specification, the alternately stacked heat transfer plates 10 and 20 are hereinafter referred to as a stack 50, and the stack 50 is sandwiched between reinforcing plates 30A and 40A to reinforce the heat transfer plates 10 and 20.
  • the reinforcing plates 30A and 40A are formed in the shape of a rectangular plate, which is the same shape as the heat transfer plates 10 and 20.
  • the reinforcing plate 30A is arranged on the left side of the stack 50 with its plate surface facing left and right.
  • the reinforcing plate 40A is arranged on the right side of the stack 50 with its plate surface facing left and right. With this arrangement, the reinforcing plates 30A and 40A sandwich and reinforce the heat transfer plates 10 and 20 described above.
  • the reinforcing plate 30A has through holes 32, 33 formed therein as shown in FIG. 2 in order to supply the first fluid to the stack 50 or to discharge the first fluid from the stack 50.
  • pipe fittings 61, 62 are connected to the through holes 32, 33, respectively.
  • the opening periphery of the through holes 32, 33 is chamfered as shown in FIG. 9 described later. This removes burrs from the opening periphery of the through holes 32, 33.
  • the pipe fittings 61, 62 are brazed to the inner walls of the through holes 32, 33 as described later, and are joined to the reinforcing plate 30A. By removing burrs from the opening periphery of the through holes 32, 33, the molten solder in the brazing process is easily allowed to flow into the inner walls of the through holes 32, 33.
  • a plate-shaped clad material 31 made of wax is provided on the right side of the reinforcing plate 30A to firmly bond it to the laminate 50 during manufacturing.
  • the reinforcing plate 40A is also formed with through holes 42, 43 for supplying the second fluid to the stack 50 or discharging the second fluid from the stack 50, and pipe fittings 63, 64 are connected to the through holes 42, 43, respectively.
  • the opening periphery of the through holes 42, 43 is also chamfered to facilitate the flow of molten solder in the brazing process.
  • the reinforcing plate 40A is also provided with a plate-shaped clad material 41 made of the same solder material as the clad material 31 on the left side to firmly bond to the stack 50.
  • the reinforcing plate 30A and the clad material 31 are shown as separate members. However, the reinforcing plate 30A and the clad material 31 are assembled together, and the reinforcing plate 30A and the clad material 31 in this state are connected to the pipe fittings 61, 62 shown in FIG. 3. Similarly, the reinforcing plate 40A and the clad material 41 are shown as separate members in FIG. 2, but the reinforcing plate 40A and the clad material 41 are assembled together, and the pipe fittings 63, 64 shown in FIG. 3 are connected to the reinforcing plate 40A and the clad material 41 in this state.
  • the pipe fittings 61, 62 are joined to the reinforcing plate 30A by melting the clad material 31 and allowing the wax of the clad material 31 to penetrate between the inner walls of the through holes 32, 33 of the reinforcing plate 30A and the pipe fittings 61, 62.
  • the pipe fittings 63, 64 are joined to the reinforcing plate 40A by melting the clad material 41 and allowing the wax, which is the material of the clad material 41, to penetrate between the inner walls of the through holes 42, 43 of the reinforcing plate 40A and the pipe fittings 63, 64.
  • a ring-shaped metal foil 70 formed from solder is provided around the through hole 33 into which the pipe fitting 62 of the reinforcing plate 30A is inserted, and on the left side of the reinforcing plate 30A, as shown in FIG. 4. Furthermore, a bead portion 65 is provided on the cylindrical surface of the pipe fitting 62 to hold the metal foil 70 between the left side of the reinforcing plate 30A and sandwich it.
  • metal foil 70 is provided around the through hole 32 of the reinforcing plate 30A into which the pipe fitting 61 is inserted, and on the left side of the reinforcing plate 30A, in order to increase the joining strength.
  • a bead portion 65 is also provided on the cylindrical surface of the pipe fitting 61 to hold the metal foil 70.
  • metal foil 70 (not shown) is provided around each of the through holes 42, 43 into which the pipe fittings 63, 64 of the reinforcing plate 40A are inserted, and on the right side of the reinforcing plate 40A, to increase the joining strength by supplying solder from the right side, which is opposite the side on which the clad material 41 of the reinforcing plate 40A is located. Furthermore, bead portions 65 are provided on each of the cylindrical surfaces of the pipe fittings 63 and 64 to sandwich and hold each of the metal foils 70 between the right side of the reinforcing plate 40A.
  • FIG. 5 is a flowchart of a method for manufacturing the plate heat exchanger 1A.
  • the heat transfer plates 10, 20, metal foils 13, 23, reinforcing plates 30A, 40A, clad materials 31, 41, and pipe fittings 61, 62, 63, 64 of the shapes, sizes, and numbers described above are prepared in advance.
  • the clad material 31 is attached to the reinforcing plate 30A
  • the clad material 41 is attached to the reinforcing plate 40A in advance.
  • a metal foil attachment process is performed (step S1).
  • metal foil 70 is attached to each of the pipe fittings 61, 62, 63, and 64.
  • FIG. 6 shows an example of attaching metal foil 70 to pipe fitting 62 of the pipe fittings 61, 62, 63, and 64.
  • FIG. 6 is a cross-sectional view of a pipe fitting 62 to which metal foil 70 has been attached in the metal foil attachment step included in the manufacturing method of the plate heat exchanger 1A.
  • the pipe fitting 62 has a base end 66 that is attached to the through hole 33 of the reinforcing plate 30A, a bead portion 65 that is located closer to the tip end than the base end 66, i.e., on the -X side, and a tip end 68 in which a groove 67 for attaching an O-ring is formed.
  • the pipe fitting 62 is attached to the reinforcing plate 30A by crimping the base end 66 while the base end 66 is inserted into the through hole 33 of the reinforcing plate 30A.
  • the base end 66 is formed in the shape of a circular tube having an outer diameter D1 that allows it to be inserted into the through hole 33 of the reinforcing plate 30A.
  • the length of the base end 66 in the extension direction is longer than the total thickness of the clad material 31, the reinforcing plate 30A, and the metal foil 70, which is the combined thickness of each of them (not shown in FIG. 6), in order to enable it to be crimped while inserted into the through hole 33 of the reinforcing plate 30A.
  • the bead portion 65 has a shape that protrudes outward from the base end 66.
  • the bead portion 65 is formed by crushing a straight pipe in the tube axis direction. As a result, it has a circular flange shape with an outer diameter D2 larger than the outer diameter D1 of the base end 66. As a result, when the base end 66 is passed through the ring of the metal foil 70 described later, the bead portion 65 abuts against the surface of the metal foil 70 to determine its position.
  • the bead portion 65 when the base end 66 is inserted into the through hole 33 of the reinforcing plate 30A, the side of the bead portion 65, i.e., the +X surface and the -X surface, are flat so that the metal foil 70 can be sandwiched between the base end 66 and the reinforcing plate 30A without any gaps.
  • the bead portion 65 has flat surfaces 653 and 654 perpendicular to the +X and -X directions.
  • the tip portion 68 like the base portion 66, has a circular pipe shape.
  • the outer diameter D3 of the tip portion 68 is larger than the outer diameter D1 of the base portion 66, but smaller than the outer diameter D2 of the bead portion 65.
  • the outer diameter D2 of the bead portion 65 is the largest. This prevents the brazing filler metal from reaching the tip portion 68 from the base portion 66, beyond the bead portion 65, during the brazing process described below.
  • the pipe fitting 62 having such a configuration is made of a metal, such as stainless steel, to ensure strength.
  • the metal foil 70 is formed of the same brazing material as the clad materials 31, 41, for example, pure copper or a copper alloy.
  • the metal foil 70 is formed in a ring shape.
  • the metal foil 70 is formed in a flat circular shape having an inner diameter D4 larger than the outer diameter D1 of the base end portion 66 and the diameter of the through hole 33 of the reinforcing plate 30A described below, and an outer diameter D5 larger than the outer diameter D2 of the bead portion 65.
  • the thickness T2 of the metal foil 70 is thinner than the thickness T1 of the bead portion 65.
  • the thickness T2 of the metal foil 70 is about 0.15-0.20 mm when the thickness T1 of the bead portion 65 is 1.5-2.0 mm.
  • the outer diameter D5 of the metal foil 70 is larger than the outer diameter D2 of the bead portion 65 by an amount that can be visually confirmed.
  • the outer diameter D5 of the metal foil 70 is larger than the outer diameter D2 of the bead portion 65 by 3-4 mm.
  • the metal foil 70 having such a configuration is attached to the above-mentioned pipe fitting 62.
  • the base end 66 of the pipe fitting 62 is passed through the annular hole in the metal foil 70, and the flat surface portion 654 of the bead portion 65 of the pipe fitting 62, shown in FIG. 6, is brought adjacent to the metal foil 70.
  • the metal foil 70 is attached to the pipe fitting 62.
  • the metal foil 70 is attached to each of the pipe fittings 61, 63, and 64 by carrying out the same operation as for the pipe fitting 62.
  • step S2 An example of attaching pipe fitting 62 of pipe fittings 61, 62, 63, and 64 to reinforcing plate 30A is shown in FIGS. 7 and 8.
  • Figure 7 is a cross-sectional view of the reinforcing plate 30A when the pipe fitting 62 is attached in the pipe fitting attachment process included in the manufacturing method of the plate heat exchanger 1A.
  • Figure 8 is an enlarged cross-sectional view of a portion of the reinforcing plate 30A to which the pipe fitting 62 has been attached in the pipe fitting attachment process.
  • the base end 66 of the pipe fitting 62 is inserted into the through hole 33 of the reinforcing plate 30A to which the clad material 31 shown in FIG. 7 is attached, from the side opposite to the side of the reinforcing plate 30A on which the clad material 31 is located, i.e., from the -X side.
  • the base end 66 of the pipe fitting 62 is inserted into the through hole 33 of the reinforcing plate 30A until the metal foil 70 attached to the pipe fitting 62 comes into contact with the -X side of the reinforcing plate 30A and the metal foil 70 is sandwiched between the flat portion 654 of the bead portion 65 of the pipe fitting 62 and the reinforcing plate 30A. This exposes the end face of the base end 66 of the pipe fitting 62 to the +X side of the clad material 31, as shown in FIG. 7.
  • a punch 80 having a truncated cone shape with a tip outer diameter smaller than the inner diameter of the base end 66 and a base outer diameter larger than the outer diameter of the base end 66 is pushed into the internal space of the pipe fitting 62 that opens on the end face of the exposed base end 66 to crimp the base end 66.
  • the inner diameter of the base end 66 increases toward the +X side, and the -X end of the base end 66 becomes larger than the diameter of the through hole 33 of the reinforcing plate 30A.
  • the -X end of the base end 66 is enlarged in diameter from the outer diameter D1 shown in FIG. 6.
  • the pipe fitting 62 is fixed to the reinforcing plate 30A.
  • the reinforcing plate 30A is pushed in the -X direction by the punch 80, the reinforcing plate 30A is in close contact with the metal foil 70, and the metal foil 70 is in close contact with the bead portion 65.
  • the size of the gap G between the reinforcing plate 30A and the bead portion 65 is adjusted to the thickness T2 of the metal foil 70. This makes the size of the gap G constant, and makes it easy for the solder to penetrate by capillary action during the brazing process described below.
  • the through hole 33 of the reinforcing plate 30A, into which the base end 66 of the pipe fitting 62 is inserted, is connected to the through hole 37 of the clad material 31 shown in FIG. 8. It is desirable that the through hole 37 is larger than the outer diameter of the base end 66 after it is crimped.
  • the peripheral portion of the through hole of the clad material 31 can be prevented from entering between the inner wall of the through hole 33 of the reinforcing plate 30A and the base end 66, preventing the pipe fitting 62 from tilting relative to the reinforcing plate 30A.
  • pipe fitting 61 For pipe fitting 61, the same procedure as for pipe fitting 62 is carried out to fix pipe fitting 61 to reinforcing plate 30A. Also, for pipe fittings 63 and 64, the same procedure as for pipe fitting 62 is carried out to fix pipe fittings 63 and 64 to reinforcing plate 40A.
  • a lamination process is performed (step S3).
  • the heat transfer plates 10, 20 and the metal foils 13, 23 are stacked in the above-mentioned arrangement to assemble the laminate 50.
  • the laminate 50 is sandwiched between the reinforcing plate 30A to which the clad material 31 and the pipe fittings 61, 62 are attached, and the reinforcing plate 40A to which the clad material 41 and the pipe fittings 63, 64 are attached.
  • step S4 a pressurizing step is carried out (step S4).
  • the laminate 50 in which the reinforcing plates 30A and 40A are assembled, is compressed by applying pressure in the lamination direction. This causes the heat transfer plates 10, 20, the metal foils 13, 23, and the reinforcing plates 30A, 40A that form the laminate 50 to be in close contact with each other.
  • the brazing process is carried out (step S5).
  • the laminate 50 with the reinforcing plates 30A and 40A assembled is placed in a furnace and the laminate 50 is heated to a temperature at which the solder, which is the material of the clad materials 31 and 41, melts.
  • the solder which is the material of the clad materials 31 and 41.
  • the molten solder penetrates into the gaps between the parts.
  • Figure 9 shows the state of brazing the pipe fitting 62 and the reinforcing plate 30A at this time.
  • Figure 9 is an enlarged cross-sectional view of region IX shown in Figure 8 of pipe fitting 62 brazed in the brazing process included in the manufacturing method of plate heat exchanger 1A. Note that a tiny gap is formed between bead portion 65 of pipe fitting 62 and metal foil 70, allowing molten solder to penetrate by capillary action, but in Figure 9, the tiny gap is enlarged and emphasized for ease of understanding. The path along which the solder penetrates is also shown.
  • metal foil 70 is arranged on the side of the reinforcing plate 30A opposite to the side on which the clad material 31 is located, i.e., on the -X side of the reinforcing plate 30A. Therefore, when the metal foil 70 is heated to a temperature at which the solder melts, the metal foil 70 melts and the molten solder (hereinafter simply referred to as solder in the brazing process) is supplied to the -X side of the reinforcing plate 30A.
  • solder in the brazing process the molten solder
  • the outer diameter D2 of the bead portion 65 is the largest among the parts of the pipe joint 62, and further the thickness T2 of the bead portion 65 is sufficiently larger than the thickness T1 of the metal foil 70, so that the solder is prevented from spreading beyond the bead portion 65 to the -X side. As a result, the solder spreads toward the +X side of the bead portion 65 rather than the -X side.
  • the braze spreads into the gap between the bead portion 65 of the pipe fitting 62 and the metal foil 70 or the reinforcing plate 30A, and penetrates into the gap between the base end portion 66 of the pipe fitting 62 and the inner wall of the through hole 33 of the reinforcing plate 30A.
  • the braze penetrates into the gap between the base end portion 66 and the inner wall of the through hole 33 not only from the +X side of the reinforcing plate 30A, but also from the -X side.
  • the solder that has penetrated from the +X side of the reinforcing plate 30A and the solder that has penetrated from the -X side come into contact with each other in the gap between the base end 66 and the inner wall of the through hole 33, as shown by the arrow A3 in FIG. 9, the solder can move through the gap between the base end 66 and the inner wall of the through hole 33 to the +X side of the reinforcing plate 30A or to the opposite -X side.
  • the laminate 50 to which the reinforcing plates 30A and 40A are assembled is cooled. This causes the brazing material to solidify. As a result, the pipe fitting 62 is joined to the reinforcing plate 30A. As described above, the brazing material penetrates not only into the gap between the base end 66 and the inner wall of the through hole 33 of the reinforcing plate 30A, but also into the gap between the base end 66 and the clad material 31 and the gap between the bead portion 65 and the metal foil 70, forming fillets 34, 35. Therefore, the pipe fitting 62 and the reinforcing plate 30A are firmly joined.
  • the brazing material penetrates sufficiently into the gap between the pipe fitting 61 and the reinforcing plate 30A, as in the brazing of the pipe fitting 62 and the reinforcing plate 30A. Therefore, the pipe fitting 61 and the reinforcing plate 30A are firmly joined. Furthermore, when brazing the pipe fittings 63, 64 to the reinforcing plate 40A, the brazing material penetrates sufficiently into the gaps between the pipe fittings 63, 64 and the reinforcing plate 40A, just as it does when brazing the pipe fittings 62 to the reinforcing plate 30A.
  • the reinforcing plates 30A and 40A described above are components that correspond to heat transfer plates as defined in the present disclosure, since they transfer heat.
  • the reinforcing plates 30A and 40A are an example of an outermost heat transfer plate as defined in the present disclosure.
  • the clad materials 31 and 41 are an example of a first brazing material or clad layer as defined in the present disclosure.
  • the pipe fittings 61-64 are an example of a pipe member as defined in the present disclosure.
  • the bead portion 65 is an example of a large diameter portion as defined in the present disclosure.
  • the metal foil 70 is an example of a second brazing material as defined in the present disclosure.
  • the metal foil attachment process and the pipe joint attachment process are processes for placing metal foil 70 on reinforcing plates 30A and 40A.
  • the metal foil attachment process and the pipe joint attachment process are an example of a process for placing a second brazing material as defined in this disclosure.
  • the pipe joint attachment process is an example of a process for attaching a tube member to an outermost heat transfer plate as defined in this disclosure.
  • the manufacturing method of the plate heat exchanger 1A according to the first embodiment includes a brazing process in which the ring-shaped metal foil 70, which is disposed on the -X surface of the reinforcing plate 30A, i.e., the outer surface side and surrounds the through holes 32, 33, and the clad material 31, which is disposed on the +X surface of the reinforcing plate 30A, i.e., the inner surface side and is formed of wax, are melted to braze the base ends 66 of the pipe fittings 61, 62 to the inner walls of the through holes 32, 33 of the reinforcing plate 30A.
  • the solder sufficiently penetrates both the -X surface side and the +X surface side of the reinforcing plate 30A, so that the pipe fittings 61, 62 can be joined to the reinforcing plate 30A with high strength.
  • the metal foil 70 is simply placed on the outer surface of the reinforcing plate 30A, rather than providing a clad material 31 as is done on the inner surface. This makes manufacturing easy and keeps material costs low.
  • the manufacturing method of the plate-type heat exchanger 1A also includes a pipe fitting installation process in which the base ends 66 of the pipe fittings 61, 62 are crimped to sandwich the metal foil 70 between the bead portions 65 of the pipe fittings 61, 62 and the reinforcing plate 30A.
  • the distance between the bead portions 65 and the reinforcing plate 30A is constant.
  • the size of the gap between the bead portions 65 and the reinforcing plate 30A is set to a constant size. Therefore, in the brazing process, the solder penetrates into this gap stably. This prevents the solder from insufficiently penetrating the gap between the bead portions 65 and the reinforcing plate 30A, resulting in a decrease in the joint strength.
  • the outer diameter D5 of the metal foil 70 is larger than the outer diameter D2 of the bead portion 65 of the pipe fittings 61, 62. Therefore, when the metal foil 70 is attached in the metal foil attachment process, the metal foil 70 protrudes from the bead portion 65. As a result, it is easy for the worker to check whether the metal foil 70 has been attached. This makes it possible to prevent forgetting to attach the metal foil 70.
  • the outer diameter D2 of the bead portion 65 of the pipe fittings 61, 62 is the largest diameter within the pipe fittings 61, 62.
  • the thickness T1 of the bead portion 65 is greater than the thickness T2 of the metal foil 70, it is possible to further prevent the solder from flowing around to the tip portion 68.
  • the pipe joint 62 has straight pipe portions 655, 656 disposed on either side of the bead portion 65. It is desirable that these straight pipe portions 655, 656 have lower wettability with respect to molten brazing filler metal than the bead portion 65. This is because, even if the brazing filler metal passes over the bead portion 65 and enters the -X side during the brazing process, it is difficult for the brazing filler metal to further wet and spread to the -X side.
  • the bead portion 65 is formed by ironing using a mold, and as a result of this processing, the surface roughness of the straight pipe portions 655, 656 becomes smaller than the surface roughness of the bead portion 65. As a result, the straight pipe portions 655, 656 become less wettable than the bead portion 65. For this reason, it is desirable that the straight pipe portions 655, 656 become less wettable than the bead portion 65 by forming the bead portion 65 by ironing.
  • the straight pipe section 655 has a lower wettability with respect to the molten solder than the inner wall of the groove 67.
  • the inner wall of the groove 67 is processed to have a small surface roughness in order to improve the sealing performance of the O-ring. This is because the low wettability of the straight pipe section 655 can prevent the solder from wetting and spreading into the groove 67.
  • the straight pipe section 655 is an example of a pipe section that is adjacent to the large diameter section and is located closer to the tip end than the base end, as defined in the present invention.
  • the outer periphery of the end face of the tip 68 of the pipe fitting 62 is rounded, but the shape of the tip 68 of the pipe fitting 62 is not limited to this.
  • Figure 10 is a cross-sectional view of a modified pipe fitting 62 used in the metal foil attachment process.
  • the outer periphery of the end face of the tip portion 68 of the pipe fitting 62 may not be rounded, but may have a right-angled shape in cross section. Such a shape can be formed by plastic processing.
  • the pipe fitting 62 may be produced by plastic processing. It may also be produced by pipe expansion processing.
  • the inner surface of the metal foil 70 is located inside the through hole 37 of the clad material 31, rather than the inner wall of the through hole 37, but the position of the metal foil 70 is not limited to this.
  • Figure 11 is an enlarged cross-sectional view of a portion of a modified example of the reinforcing plate 31 and metal foil 70 that are brazed in the brazing process.
  • the positions of the inner peripheral surface of the metal foil 70 and the inner wall surface of the through hole 37 of the clad material 31 are aligned in the radial direction of the through hole 37. This is because, in the brazing process, brazing material can be evenly supplied from both the metal foil 70 and the clad material 31 to the gap between the inner wall of the through hole 33 of the reinforcing plate 31 and the base end 66 of the pipe fitting 62.
  • the surface facing the outside of the reinforcing plates 30A, 40A included in the plate heat exchanger 1A to be manufactured i.e., the outer surface
  • the reinforcing plates 30A, 40A are not limited to this.
  • the reinforcing plates 30A, 40A only need to have a through hole 33 for allowing a fluid to flow in and out of the flow passage space of the heat transfer plates 10, 20, and a clad material 31, 41 formed by brazing, i.e., a clad layer, provided on the inner surface side.
  • the shape of the outer surface of the reinforcing plates 30A, 40A is arbitrary as long as it satisfies this requirement.
  • the outer surface of the reinforcing plates 30A, 40A may have a recess into which excess brazing fills during the brazing process.
  • a reinforcing plate 30B is used, in which a recess 36 surrounding a through hole 33 is formed on the outer surface.
  • Figure 12 is a perspective view of the reinforcing plate 30B and the pipe fitting 62 included in the plate heat exchanger 1B according to the second embodiment.
  • Figure 13 is an enlarged cross-sectional view of a portion of the reinforcing plate 30B to which the pipe fitting 62 has been attached by the pipe fitting attachment step included in the manufacturing method of the plate heat exchanger 1B.
  • a recess 36 in the shape of a circular groove that surrounds the through hole 33 is formed on the outer surface side of the reinforcing plate 30B, i.e., on the -X surface side.
  • the recess 36 is a groove recessed in the +X direction from the -X surface of the reinforcing plate 30B in a rectangular shape in cross section. As shown in FIG. 12, the recess 36 extends in an annular shape as described above. The annular shape is concentric with the circular opening of the through hole 33. The diameter D6 of the annular shape is larger than the inner diameter D4 of the metal foil 70 and smaller than the outer diameter D5 of the metal foil 70.
  • the recess 36 is covered by the metal foil 70 as shown in FIG. 13. That is, the recess 36 is located on the +X side of the metal foil 70.
  • the solder can penetrate.
  • the recess 36 stores excess solder in the brazing process.
  • the recess 36 prevents the solder from spreading toward the bead portion 65 and reaching the tip portion 68 of the pipe fitting 62 on the -X side beyond the bead portion 65.
  • the recess 36 is located on the +X side of the metal foil 70, and it is preferable that the recess 36 is located on the +X side of the tip of the bead portion 65 of the pipe fitting 62. Alternatively, it is preferable that the recess 36 is located in a position opposite the flat portion 654, which is the +X surface of the bead portion 65. This is because excess brazing material tends to accumulate in these positions during the brazing process.
  • the manufacturing method for the plate heat exchanger 1B is the same as the manufacturing method for the plate heat exchanger 1A according to embodiment 1, except that the recess 36 is formed in the reinforcing plate 30B. Therefore, a detailed description will be omitted.
  • the reinforcing plate 30B has a recess 36 on its outer surface surrounding the through hole 33. Therefore, excess solder is stored in the recess 36 during the brazing process, and the excess solder is prevented from spreading to areas other than the brazing point. For example, the excess solder is prevented from reaching the tip 68 of the pipe fitting 62.
  • An O-ring is attached to the tip 68 of the pipe fitting 62, but the excess solder does not adhere to the tip 68 of the pipe fitting 62. Therefore, according to the manufacturing method of the plate heat exchanger 1B, the adhesion of the O-ring can be improved. As a result, the airtightness and watertightness of the pipe fitting 62 can be improved.
  • the manufacturing method for the plate heat exchangers 1A and 1B and the plate heat exchangers 1A and 1B according to the first and second embodiments of the present disclosure have been described above, but the manufacturing method for the plate heat exchangers 1A and 1B and the plate heat exchangers 1A and 1B are not limited to this.
  • the inner diameter D4 of the metal foil 70 is a small distance larger than the outer diameter D1 of the base end 66 of the pipe fitting 62, and the outer diameter D5 of the metal foil 70 is larger than the outer diameter D2 of the bead portion 65 of the pipe fitting 62.
  • the inner diameter D4 and the outer diameter D5 of the metal foil 70 are not limited to this.
  • the metal foil 70 may be any brazing material that can be placed on the outer surface side of the reinforcing plates 30A, 30B, 40A and around the through holes 32, 33, 42, 43. Therefore, the inner diameter D4 and the outer diameter D5 of the metal foil 70 are arbitrary as long as they satisfy this condition. The same is true of the thickness T2 of the metal foil 70.
  • the inner diameter D4 of the metal foil 70 may be the same as the outer diameter D1 of the base end 66 of the pipe fitting 62.
  • the outer diameter D5 of the metal foil 70 may be the same as the outer diameter D2 of the bead portion 65 of the pipe fitting 62, although this does not prevent the metal foil 70 from being left unattached during manufacturing.
  • the outer diameter D5 may be smaller than the outer diameter D2 of the bead portion 65.
  • the metal foil 70 has a circular and flat shape.
  • the shape of the metal foil 70 is not limited to this.
  • the metal foil 70 may be any brazing material that can be placed on the outer surface side of the reinforcing plates 30A, 30B, 40A and around the through holes 32, 33, 42, 43. Therefore, the metal foil 70 may be replaced with a brazing material that can satisfy this condition.
  • FIG. 14 is a cross-sectional view of a rod-shaped brazing material 71 and a pipe joint 62 used in a modified example of the manufacturing method for the plate heat exchanger 1A according to embodiment 1.
  • FIG. 15 is a cross-sectional view of a paste-like brazing material 72 and a pipe joint 62 used in another modified example of the manufacturing method for the plate heat exchanger 1A according to embodiment 1.
  • the pipe fitting 62 may have a large diameter portion 651 in the shape of a circular tube, which has an inner diameter and an outer diameter larger than the base end 66 and cannot be inserted into the through hole 33 of the reinforcing plate 30A.
  • a recess 652 may be formed in the corner of the large diameter portion 651 on the base end 66 side.
  • a brazing material 71 that can be fitted into the recess 652 may be used instead of the metal foil 70 in the brazing process of the manufacturing method of the plate-type heat exchanger 1A.
  • the brazing material 71 may be a rod-shaped brazing material 71 that is bent into a ring shape and has a circular cross section.
  • brazing material 71 of this shape can be positioned by the recess 652. This is because the brazing material 71 of this shape can be supplied to the gap between the base end 66 of the pipe fitting 62 and the inner wall of the through hole 33 from the side opposite to the side of the reinforcing plate 30A where the clad material 31 is located, that is, from the -X side of the reinforcing plate 30A.
  • the brazing material 71 may also be rectangular, elliptical, or other shapes when viewed in cross section.
  • the pipe fitting 62 may have an enlarged diameter portion 651 that does not have a recess 652 at the corner portion on the base end 66 side.
  • a paste-like brazing material 72 may be placed along the corner portion on the base end 66 side of the enlarged diameter portion 651. This is because, with this type of brazing material 72, brazing material can be supplied to the gap between the base end 66 of the pipe fitting 62 and the inner wall of the through hole 33 from the -X surface side of the reinforcing plate 30A, as in the form shown in FIG. 14.
  • the paste-like brazing material 72 may be replaced with the metal foil 70 described in the first and second embodiments.
  • the volume of the solder materials 71, 72 be 25% or more of the volume of the gap between the base end 66 of the pipe fitting 62 and the inner wall of the through hole 33. It is desirable that the metal foil 70 described in the first and second embodiments also have a similar volume.
  • the manufacturing method of the plate heat exchangers 1A and 1B includes the steps of (1) arranging brazing material on the outer surface side of the outermost heat transfer plate and around the through holes 32, 33, 42, and 43, and (2) inserting the base end of the tube member into the through holes 32, 33, 42, and 43 from the outer surface side of the outermost heat transfer plate and aligning the large diameter portion adjacent to the outer surface of the outermost heat transfer plate to attach the tube member to the outermost heat transfer plate, thereby manufacturing the plate heat exchangers 1A and 1B.
  • the step (2) may be performed after the step (1), or conversely, the step (1) may be performed after the step (2).
  • the outermost heat transfer plate refers to the plate located on the outermost side among the plates generally referred to as heat transfer plates, which include the reinforcing plates 30A, 30B, and 40A and the heat transfer plates 10 and 20.
  • the tubular member refers to a member having a tubular shape, and one example of this is the pipe joints 61-64.
  • the order of the metal foil attachment process and the pipe joint attachment process described in the first and second embodiments is not limited as long as the above conditions are met.
  • the metal foil attachment process i.e., the process of placing the brazing material 72, may be performed after the pipe joint attachment process.
  • the material of the metal foil 70 is pure copper or a copper alloy.
  • the material of the metal foil 70 is not limited as long as it is a wax.
  • the material of the metal foil 70 may be pure aluminum or an aluminum alloy.
  • the pipe fittings 61-64 are joined to the reinforcing plates 30A, 30B, and 40A.
  • the pipe fittings 61-64 may be any pipe member that allows fluid to flow in and out of the flow path space.
  • the pipe fittings 61-64 may be connection pipes, refrigerant pipes, nozzles, etc., used to connect to external equipment.
  • the pipe fittings 61-64 are manufactured by processing the ends of the pipes. As a result, the thickness of the pipe wall portion of the pipe fittings 61-64 is constant.
  • the pipe fittings 61-64 are not limited to this. As described above, the pipe fittings 61-64 only need to be pipe members that allow fluid to flow in and out of the flow path space, so the thickness of the pipe wall portion does not need to be constant.
  • FIG. 16 is a cross-sectional view of yet another modified example of the pipe fitting 62 provided in the plate heat exchanger 1A according to embodiment 1.
  • the pipe wall thickness of the tip portion 68 and the bead portion 65 may be thicker than the pipe wall thickness of the base portion 66, as shown in FIG. 16.
  • the pipe fitting 62 may have a portion of the pipe wall thickness thicker than the other portions of the pipe wall thickness.
  • the pipe fittings 61-64 are temporarily fixed to the reinforcing plates 30A, 30B, and 40A by crimping the base ends 66 of the pipe fittings 61-64.
  • the manufacturing method of the plate-type heat exchangers 1A and 1B is not limited to this.
  • the process of attaching the pipe fittings 61-64 to the reinforcing plates 30A, 30B, and 40A may be performed by inserting the base ends of the pipe members into the through holes 32, 33, 42, and 43 from the outer surface side of the outermost heat transfer plate and aligning the bead portion 65 or the large diameter portion 651 adjacent to the outer surface of the outermost heat transfer plate.
  • the bead portion 65 or the large diameter portion 651 being adjacent to the outer surface of the outermost heat transfer plate may include the bead portion 65 or the large diameter portion 651 being adjacent to the outer surface of the outermost heat transfer plate via a brazing material, i.e., metal foil 70 or brazing materials 71, 72. Or, it may include the bead portion 65 or the large diameter portion 651 being adjacent to the outer surface of the outermost heat transfer plate without the metal foil 70 or brazing materials 71, 72 being interposed.
  • whether or not to crimp the base ends 66 of the pipe fittings 61-64 is an optional step.
  • the pipe fittings 61-64 may be temporarily fixed to the reinforcing plates 30A, 30B, and 40A by pressing the base ends 66 of the pipe fittings 61-64 into the through holes 33 of the reinforcing plates 30A, 30B, and 40A.
  • the pipe fittings 61 and 62 are connected to the reinforcing plate 30A to which the clad material 31 having the same shape as the reinforcing plate 30A is attached. Also, the pipe fittings 63 and 64 are connected to the reinforcing plate 40A to which the clad material 41 having the same shape as the reinforcing plate 40A is attached.
  • the reinforcing plates 30A and 40A are not limited to this.
  • the outermost heat transfer plate has through holes 32, 33, 42, and 43 for allowing fluid to flow in and out of the flow path space, and has brazing material around the through holes 32, 33, 42, and 43 and on the inner surface side. Therefore, the clad materials 31 and 41 do not have to be the same shape as the reinforcing plates 30A and 40A.
  • the clad materials 31 and 41 may be replaced with ring-shaped metal foil formed around the through holes 32, 33, 42, and 43 and on the inner surface side.
  • the clad materials 31, 41 do not have to be attached to the reinforcing plates 30A, 40A in advance and integrated with them, and may be separate parts from the reinforcing plates 30A, 40A.
  • the pipe fittings 61-64 may be attached to the reinforcing plates 30A, 40A on which the clad materials 31, 41 are layered.
  • the manufacturing method of the plate heat exchangers 1A and 1B and the plate heat exchangers 1A and 1B are not limited to the above-described embodiment, and various modifications and substitutions can be made.
  • Various embodiments of the present disclosure are described below as appendices.
  • Appendix 1 a plurality of heat transfer plates stacked with flow passage spaces between them through which a fluid flows, at least an outermost heat transfer plate positioned on the outermost side has a through hole for allowing the fluid to flow in and out of the flow passage space, and has a first brazing material around the through hole and on an inner surface side of the heat transfer plate; a pipe member for allowing the fluid to flow in and out of the flow path space, the pipe member having a base end and a large diameter portion having an outer diameter larger than that of the base end, the base end being passed through the through hole and brazed to an inner wall of the through hole with the large diameter portion adjacent to an outer surface of the outermost heat transfer plate;
  • a method for manufacturing a plate heat exchanger comprising: disposing a second brazing material on an outer surface of the outermost heat transfer plate and around the through hole; a step of attaching the tube member to the outermost heat transfer plate by inserting the base end of the tube member into the through hole from the side of the outer surface of the outermost heat
  • a method for manufacturing the plate heat exchanger according to claim 1. (Appendix 3) In the step of arranging the second brazing material, before the step of attaching the tube member to the outermost heat transfer plate, the base end of the tube member is passed through a hole in the ring of the second brazing material, and then, in the step of attaching the tube member to the outermost heat transfer plate, the base end of the tube member is inserted into the through hole until the second brazing material is sandwiched between the large diameter portion of the tube member and the outermost heat transfer plate, thereby arranging the second brazing material around the through hole. 3.
  • the second brazing material has a foil shape
  • the second brazing filler metal is sandwiched between the large diameter portion of the tube member and the outermost heat transfer plate, thereby determining a position of the large diameter portion with respect to the outermost heat transfer plate.
  • a method for manufacturing a plate heat exchanger according to claim 3. an outer diameter of the second brazing material is larger than an outer diameter of the large diameter portion of the tubular member; an inner diameter of the second brazing material is smaller than an outer diameter of the large diameter portion of the tubular member and is larger than an outer diameter of the base end portion of the tubular member; 5.
  • the first brazing material is a clad layer formed of brazing material on the inner surface side of the outermost heat transfer plate. 5.
  • a method for manufacturing a plate heat exchanger according to any one of claims 1 to 4. (Appendix 7)
  • the large diameter portion of the tubular member has an outer diameter larger than any of the portions from the base end portion to the tip end portion. 7.
  • a method for manufacturing a plate heat exchanger according to any one of claims 1 to 6. (Appendix 8) a thickness of the large diameter portion of the tubular member in an extension direction of the tubular member is greater than a thickness of the second brazing filler metal; 8.
  • the outermost heat transfer plate is provided on an outer surface side and has a recess surrounding the through hole, In the step of disposing the second brazing material, the second brazing material is disposed on the recess.
  • a method for manufacturing a plate heat exchanger according to any one of claims 1 to 8. the tubular member has a tubular portion adjacent to the large diameter portion and located distally of the base end portion, the pipe portion has a lower wettability with respect to a brazing filler metal obtained by melting the first brazing filler metal and the second brazing filler metal than the large diameter portion; 10.
  • (Appendix 11) a plurality of heat transfer plates stacked with flow passage spaces between them through which a fluid flows, the outermost heat transfer plate positioned on the outermost side having a through hole for allowing the fluid to flow in and out of the flow passage space, and a first brazing material provided around the through hole and on an inner surface side; a pipe member for allowing the fluid to flow in and out of the flow path space, the pipe member having a base end and a large diameter portion provided on a tip side of the base end and having an outer diameter larger than that of the base end, the base end being passed through the through hole and brazed to an inner wall of the through hole with the large diameter portion adjacent to an outer surface of the outermost heat transfer plate; a second brazing material on the outer surface side of the outermost heat transfer plate and around the through hole; Equipped with a brazing material is filled between the outermost heat transfer plate and the large diameter portion of the tube member, and between an inner wall of the through hole and the base end portion of the tube member; Plate heat exchanger.
  • 1A, 1B plate type heat exchanger
  • 10 heat transfer plate
  • 11 standing wall
  • 12 inner fin
  • 13 metal foil
  • 14 15: inlet/outlet holes
  • 16 17 communication holes
  • 20 heat transfer plate
  • 21 standing wall
  • 22 inner fin
  • 23 metal foil
  • 26, 27 inlet/outlet holes
  • 30A, 30B reinforcing plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A method for producing a plate-type heat exchanger includes: a step in which a second brazing material is disposed on a portion of the outer surface of an outermost-side heat transfer plate, the portion surrounding a through-hole; a step in which a base end of a pipe member is inserted into the through-hole from the outer surface of the outermost-side heat transfer plate and a larger-diameter portion thereof is made to adjoin the outer surface of the outermost-side heat transfer plate, thereby attaching the pipe member to the outermost-side heat transfer plate; and a step in which the outermost-side heat transfer plate to which the pipe member has been attached is heated to melt the second brazing material and a clad layer, thereby brazing the base end of the pipe member onto the inner wall of the through-hole of the outermost-side heat transfer plate.

Description

プレート式熱交換器の製造方法およびプレート式熱交換器Plate heat exchanger manufacturing method and plate heat exchanger
 本開示はプレート式熱交換器の製造方法およびプレート式熱交換器に関する。 This disclosure relates to a method for manufacturing a plate heat exchanger and a plate heat exchanger.
 熱交換器には、外部機器から装置内の流路空間に流体を流出入させるため、管部材が接続されたものがある。 Some heat exchangers have pipes connected to them to allow fluid to flow in and out of the flow passage space inside the device from an external device.
 例えば、特許文献1には、流入口パイプがヘッダタンクに接続された熱交換器が開示されている。この熱交換器では、流入口パイプの一端部分に、パイプ端面から離れた外壁面部分に周方向に沿って延びるリング状突起が設けられている。一方、ヘッダタンクには、流入口パイプの一端部分が挿入可能な貫通孔が形成されている。さらに、ヘッダタンクの内壁面は、ろうにより形成されたクラッド層により覆われている。特許文献1に記載の熱交換器では、リング状突起がヘッダタンクの外壁面に当たるまで、流入口パイプの一端部分がヘッダタンクの貫通孔に差し込まれ、さらに、ヘッダタンクの内壁面にあるクラッド層を溶融させることにより、流入口パイプの一端部分とヘッダタンクの貫通孔内壁がろう付けされている。 For example, Patent Document 1 discloses a heat exchanger in which an inlet pipe is connected to a header tank. In this heat exchanger, one end of the inlet pipe is provided with a ring-shaped protrusion that extends circumferentially on the outer wall surface away from the end face of the pipe. Meanwhile, the header tank is formed with a through hole into which one end of the inlet pipe can be inserted. Furthermore, the inner wall surface of the header tank is covered with a clad layer formed of wax. In the heat exchanger described in Patent Document 1, one end of the inlet pipe is inserted into the through hole of the header tank until the ring-shaped protrusion contacts the outer wall surface of the header tank, and further, the clad layer on the inner wall surface of the header tank is melted to braze one end of the inlet pipe to the inner wall of the through hole of the header tank.
特開2005-156000号公報JP 2005-156000 A
 熱交換器には、流体が流れる流路空間を互いの間に設けて積み重ねられた複数の伝熱プレートを備えるプレート式熱交換器がある。そのプレート式熱交換器でも、外部機器からの流体を流出入させるため、複数の伝熱プレートのうちの最も外側に位置する最外側伝熱プレートに管部材、例えば、管継手が接続されることがある。この場合、最外側伝熱プレートと管継手との接合に、特許文献1に記載の熱交換器の流入口パイプとヘッダタンクとの接合方法を適用することが考えられる。 Heat exchangers include plate-type heat exchangers that have multiple heat transfer plates stacked with flow passage spaces between them through which fluid flows. Even in plate-type heat exchangers, a pipe member, for example a pipe joint, may be connected to the outermost heat transfer plate that is located on the outermost side of the multiple heat transfer plates in order to allow fluid to flow in and out from an external device. In this case, it is possible to apply the joining method of the inlet pipe of the heat exchanger and the header tank described in Patent Document 1 to the joining of the outermost heat transfer plate and the pipe joint.
 しかしながら、特許文献1に記載の熱交換器の流入口パイプとヘッダタンクとの接合方法を適用して、管継手と最外側伝熱プレートを接合すると、最外側伝熱プレートの内面にクラッド層を設け、そのクラッド層を溶融させることにより、管継手を最外側伝熱プレートにろう付けして管継手と最外側伝熱プレートを接合することになる。その場合、最外側伝熱プレートの内面から外面の側までろうが十分に濡れ広がらないことがある。その結果、管継手と最外側伝熱プレートを十分な強度で接合することができないことがある。 However, when the method of joining the inlet pipe and header tank of a heat exchanger described in Patent Document 1 is applied to join a pipe fitting and the outermost heat transfer plate, a clad layer is provided on the inner surface of the outermost heat transfer plate, and the pipe fitting is brazed to the outermost heat transfer plate by melting the clad layer, thereby joining the pipe fitting and the outermost heat transfer plate. In that case, the braze may not sufficiently wet and spread from the inner surface to the outer surface of the outermost heat transfer plate. As a result, the pipe fitting and the outermost heat transfer plate may not be joined with sufficient strength.
 本開示は上記の課題を解決するためになされたもので、管部材が最外側伝熱プレートに高い強度で接合されたプレート式熱交換器の製造方法およびプレート式熱交換器を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a plate heat exchanger and a manufacturing method thereof in which tube members are joined to the outermost heat transfer plate with high strength.
 上記の目的を達成するため、本開示に係るプレート式熱交換器の製造方法は、複数の伝熱プレートと管部材とを備えるプレート式熱交換器の製造方法である。プレート式熱交換器では、複数の伝熱プレートは、流体が流れる流路空間を互いの間に設けて積み重ねられた複数の伝熱プレートであって、少なくとも最も外側に位置する最外側伝熱プレートが流路空間へ流体を流出入させるための貫通孔を有すると共に、貫通孔の周り、かつ内面の側に第一ろう材を有する。また、管部材は、基端部と、基端部よりも外径が大きい径大部とを有し、基端部が貫通孔に通され、かつ径大部が最外側伝熱プレートの外面に隣り合った状態で、基端部が貫通孔の内壁にろう付けされた、流体を流路空間に流出入させる。そして、プレート式熱交換器の製造方法は、最外側伝熱プレートの外面の側かつ貫通孔の周りに第二ろう材を配置する工程と、最外側伝熱プレートの外面の側から管部材の基端部を貫通孔に挿入し、径大部を最外側伝熱プレートの外面に隣り合わせることにより、管部材を最外側伝熱プレートに取り付ける工程と、管部材が取り付けられた最外側伝熱プレートを加熱することにより、第一ろう材と第二ろう材を溶融させて管部材の基端部を最外側伝熱プレートの貫通孔の内壁にろう付けする工程と、を備える。 In order to achieve the above object, the method for manufacturing a plate heat exchanger according to the present disclosure is a method for manufacturing a plate heat exchanger including a plurality of heat transfer plates and a tube member. In the plate heat exchanger, the plurality of heat transfer plates are stacked with flow passage spaces between them through which a fluid flows, and at least the outermost heat transfer plate located on the outermost side has a through hole for allowing a fluid to flow in and out of the flow passage space, and has a first brazing material around the through hole and on the inner surface side. In addition, the tube member has a base end and a large diameter part having an outer diameter larger than the base end, and the base end is passed through the through hole and the large diameter part is adjacent to the outer surface of the outermost heat transfer plate, and the base end is brazed to the inner wall of the through hole, allowing a fluid to flow in and out of the flow passage space. The method for manufacturing a plate-type heat exchanger includes the steps of: arranging a second brazing material on the outer surface side of the outermost heat transfer plate and around the through hole; inserting the base end of the tube member into the through hole from the outer surface side of the outermost heat transfer plate and aligning the large diameter portion adjacent to the outer surface of the outermost heat transfer plate to attach the tube member to the outermost heat transfer plate; and heating the outermost heat transfer plate to which the tube member is attached to melt the first brazing material and the second brazing material, thereby brazing the base end of the tube member to the inner wall of the through hole of the outermost heat transfer plate.
 本開示の構成によれば、プレート式熱交換器の製造方法は、最外側伝熱プレートの外面の側かつ貫通孔の周りに配置されたろう材と、最外側伝熱プレートの貫通孔の周り、かつ内面の側に設けられた第一ろう材とを溶融させて管部材の基端部を最外側伝熱プレートの貫通孔の内壁にろう付けする工程を備える。このため、ろう付けの工程で、最外側伝熱プレートの外面の側と内面の側の両方にろうが十分に浸透する。その結果、管部材を最外側伝熱プレートに高い強度で接合することができる。 According to the configuration of the present disclosure, the method of manufacturing a plate-type heat exchanger includes a step of melting a brazing material arranged on the outer surface side and around the through hole of the outermost heat transfer plate and a first brazing material arranged around the through hole and on the inner surface side of the outermost heat transfer plate to braze the base end of the tube member to the inner wall of the through hole of the outermost heat transfer plate. Therefore, during the brazing step, the brazing material sufficiently penetrates both the outer surface side and the inner surface side of the outermost heat transfer plate. As a result, the tube member can be joined to the outermost heat transfer plate with high strength.
本開示の実施の形態1に係るプレート式熱交換器の斜視図FIG. 1 is a perspective view of a plate heat exchanger according to a first embodiment of the present disclosure; 本開示の実施の形態1に係るプレート式熱交換器の分解斜視図FIG. 1 is an exploded perspective view of a plate heat exchanger according to a first embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器が備える管継手の斜視図FIG. 1 is a perspective view of a pipe joint included in a plate heat exchanger according to a first embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器が備える補強プレートと管継手の斜視図FIG. 1 is a perspective view of a reinforcing plate and a pipe joint included in a plate heat exchanger according to a first embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器の製造方法のフローチャートFlowchart of a method for manufacturing a plate heat exchanger according to the first embodiment of the present disclosure 本開示の実施の形態1に係るプレート式熱交換器の製造方法が備える金属箔取り付け工程で金属箔が取り付けられた管継手の断面図FIG. 1 is a cross-sectional view of a pipe joint to which a metal foil is attached in a metal foil attachment step included in a method for manufacturing a plate heat exchanger according to a first embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器の製造方法が備える管継手取り付け工程で管継手が取り付けられるときの補強プレートの断面図FIG. 11 is a cross-sectional view of a reinforcing plate when a pipe joint is attached in a pipe joint attachment step included in the manufacturing method of the plate heat exchanger according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器の製造方法が備える管継手取り付け工程によって管継手が取り付けられた補強プレートの一部の拡大断面図FIG. 1 is an enlarged cross-sectional view of a portion of a reinforcing plate to which a pipe joint is attached by a pipe joint attachment step included in a method for manufacturing a plate heat exchanger according to a first embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器の製造方法が備えるろう付け工程でろう付けされる管継手の図8に示すIX領域部分の拡大断面図FIG. 9 is an enlarged cross-sectional view of a region IX shown in FIG. 8 of a pipe joint brazed in a brazing step included in the manufacturing method of the plate heat exchanger according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器の製造方法が備える金属箔取り付け工程で用いられる管継手の変形例の断面図1 is a cross-sectional view of a modified example of a pipe joint used in a metal foil attachment step included in the manufacturing method for a plate heat exchanger according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器の製造方法が備えるろう付け工程でろう付けされる補強プレートと金属箔の変形例の一部分を拡大した断面図FIG. 13 is an enlarged cross-sectional view of a modified example of a reinforcing plate and a metal foil brazed in a brazing step included in the method for manufacturing a plate heat exchanger according to the first embodiment of the present disclosure. 本開示の実施の形態2に係るプレート式熱交換器が備える補強プレートと管継手の斜視図FIG. 13 is a perspective view of a reinforcing plate and a pipe joint included in a plate heat exchanger according to a second embodiment of the present disclosure. 本開示の実施の形態2に係るプレート式熱交換器の製造方法が備える管継手取り付け工程によって管継手が取り付けられた補強プレートの一部の拡大断面図FIG. 11 is an enlarged cross-sectional view of a portion of a reinforcing plate to which a pipe joint is attached by a pipe joint attachment step included in a method for manufacturing a plate heat exchanger according to a second embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器の製造方法の変形例で用いられる棒状のろう材と管継手の断面図FIG. 1 is a cross-sectional view of a rod-shaped brazing material and a pipe joint used in a modified example of the manufacturing method for a plate heat exchanger according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器の製造方法の別の変形例で用いられるペースト状のろう材と管継手の断面図FIG. 11 is a cross-sectional view of a paste-like brazing material and a pipe joint used in another modified example of the manufacturing method for the plate heat exchanger according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレート式熱交換器が備える管継手のさらに別の変形例の断面図FIG. 11 is a cross-sectional view of yet another modified example of a pipe joint included in the plate heat exchanger according to the first embodiment of the present disclosure.
 以下、本開示の実施の形態に係るプレート式熱交換器の製造方法およびプレート式熱交換器について図面を参照して詳細に説明する。なお、図中、同一又は同等の部分には同一の符号を付す。図に示す直交座標系XYZにおいて、プレート式熱交換器が備える矩形状の伝熱プレートの長手方向を上下方向、短手方向を前後方向としたときの上下方向がZ軸、前後方向がY軸、Z軸とY軸とに直交する方向がX軸である。以下、適宜、この座標系を引用して説明する。 Below, a detailed description will be given of a plate heat exchanger and a manufacturing method thereof according to an embodiment of the present disclosure with reference to the drawings. In the drawings, identical or equivalent parts are given the same reference numerals. In the Cartesian coordinate system XYZ shown in the drawings, the longitudinal direction of the rectangular heat transfer plate of the plate heat exchanger is the vertical direction, and the lateral direction is the front-rear direction, where the vertical direction is the Z axis, the front-rear direction is the Y axis, and the direction perpendicular to the Z axis and Y axis is the X axis. Below, this coordinate system will be referred to as appropriate in the description.
(実施の形態1)
 実施の形態1に係るプレート式熱交換器の製造方法は、最外側伝熱プレートである補強プレートの貫通孔に管継手を挿入して組み立てた後のろう付け工程で十分な量のろうを供給してろう付け強度を高めるため、補強プレートの管継手の挿入側の面にろうで形成された箔を配置すると共に、補強プレートの管継手の挿入側と反対側の面にろうで形成されたクラッド材を設ける製造方法である。まず、図1-図4を参照して、製造対象であるプレート式熱交換器の構成について説明する。
(Embodiment 1)
The manufacturing method of the plate-type heat exchanger according to the first embodiment is a manufacturing method in which a foil made of wax is arranged on the surface of the reinforcing plate on the side where the pipe joint is inserted, and a clad material made of wax is provided on the surface of the reinforcing plate opposite to the side where the pipe joint is inserted, in order to supply a sufficient amount of wax in a brazing process after assembling by inserting pipe joints into through holes in the reinforcing plate, which is the outermost heat transfer plate. First, the configuration of the plate-type heat exchanger to be manufactured will be described with reference to Figs. 1 to 4.
 図1は、実施の形態1に係るプレート式熱交換器1Aの斜視図である。図2は、プレート式熱交換器1Aの分解斜視図である。図3は、プレート式熱交換器1Aが備える管継手61-64の斜視図である。図4は、プレート式熱交換器1Aが備える補強プレート30Aと管継手62の斜視図である。なお、理解を容易にするため、図1は、伝熱プレート10の起立壁11、伝熱プレート20の起立壁21を省略している。また、図2は、補強プレート30A、40Aのクラッド材31、41を別部材として図示している。 FIG. 1 is a perspective view of a plate heat exchanger 1A according to the first embodiment. FIG. 2 is an exploded perspective view of the plate heat exchanger 1A. FIG. 3 is a perspective view of the pipe joints 61-64 provided in the plate heat exchanger 1A. FIG. 4 is a perspective view of the reinforcing plate 30A and the pipe joint 62 provided in the plate heat exchanger 1A. For ease of understanding, FIG. 1 omits the standing wall 11 of the heat transfer plate 10 and the standing wall 21 of the heat transfer plate 20. FIG. 2 also illustrates the clad materials 31 and 41 of the reinforcing plates 30A and 40A as separate members.
 図1および図2に示すように、プレート式熱交換器1Aは、交互に積み重ねられた複数の伝熱プレート10、20と、積み重ねられた伝熱プレート10、20を補強する補強プレート30A、40Aと、を備える。 As shown in Figures 1 and 2, the plate heat exchanger 1A comprises a plurality of heat transfer plates 10, 20 stacked alternately, and reinforcing plates 30A, 40A that reinforce the stacked heat transfer plates 10, 20.
 伝熱プレート10と20は、第一流体と第二流体の2種類の流体の間で熱交換をさせるための部材である。詳細には、伝熱プレート10は、伝熱性の高い金属、例えば、ステンレス鋼により形成されている。そして、伝熱プレート10は、図2に示すように、角が丸められた矩形の板の形状に形成されている。また、伝熱プレート10には、伝熱プレート10の外周が起立壁11により囲まれることにより、第一流体を流すための流路空間が形成されている。その伝熱プレート10の流路空間には、第一流体の熱が伝わりやすくするため、インナーフィン12が設けられている。さらに、伝熱プレート10の右面の側には、伝熱プレート20と共に積み重ねられたときに伝熱プレート20との接合するため、純銅または銅合金により形成され、伝熱プレート10の右面を覆って製造時にろう材として機能する金属箔13が配置されている。なお、本明細書では、ろう材とは、ろう材料で形成された部材のことである。 The heat transfer plates 10 and 20 are members for exchanging heat between two types of fluids, the first fluid and the second fluid. In detail, the heat transfer plate 10 is made of a metal with high heat conductivity, such as stainless steel. As shown in FIG. 2, the heat transfer plate 10 is formed in the shape of a rectangular plate with rounded corners. In addition, the outer periphery of the heat transfer plate 10 is surrounded by a standing wall 11, so that a flow path space for the first fluid is formed in the heat transfer plate 10. In the flow path space of the heat transfer plate 10, an inner fin 12 is provided to facilitate the transfer of heat of the first fluid. Furthermore, on the right side of the heat transfer plate 10, a metal foil 13 is arranged that is made of pure copper or a copper alloy and covers the right side of the heat transfer plate 10 to function as a brazing material during manufacturing, in order to join with the heat transfer plate 20 when stacked together with the heat transfer plate 20. In this specification, the brazing material refers to a member formed of a brazing material.
 これに対して、伝熱プレート20も、伝熱プレート10と同じ材料で形成され、さらに、伝熱プレート10と同形の矩形の形状に形成されている。伝熱プレート20にも、伝熱プレート20の外周が起立壁21により囲まれることにより、上記の第一流体とは別の第二流体を流すための流路空間が形成されている。この伝熱プレート20の流路空間にも、伝熱効率を高めるため、インナーフィン22が設けられている。さらに、伝熱プレート20の右面の側にも、純銅または銅合金により形成され、伝熱プレート20の右面を覆って製造時にろう材として機能する金属箔23が配置されている。 In contrast, the heat transfer plate 20 is also made of the same material as the heat transfer plate 10, and is formed in the same rectangular shape as the heat transfer plate 10. The outer periphery of the heat transfer plate 20 is also surrounded by an upright wall 21, forming a flow path space for flowing a second fluid separate from the first fluid. Inner fins 22 are also provided in the flow path space of the heat transfer plate 20 to improve heat transfer efficiency. Furthermore, a metal foil 23 made of pure copper or a copper alloy is also arranged on the right side of the heat transfer plate 20, covering the right side of the heat transfer plate 20 and functioning as a brazing material during manufacturing.
 また、伝熱プレート10と20は、上述した形状の板面を左右方向に向けると共に、起立壁11または21を左方向へ向け、かつ右面が金属箔13または23に覆われた状態で交互に積み重ねられている。さらに、伝熱プレート10の四隅には、流出入孔14、15と連通孔16、17とが形成されている。伝熱プレート20の四隅には、流出入孔14、15と連通孔16、17と左右方向に重なる位置に設けられた連通孔24、25と流出入孔26、27が形成されている。そして、伝熱プレート10の流出入孔14、15は、伝熱プレート10と20が交互に積み重ねられることにより、右側に突出する周壁部を有して右側に隣り合う伝熱プレート20の連通孔24、25につながる。これにより、流出入孔14、15は、その伝熱プレート20の右側にある伝熱プレート10との間で第一流体を流出入させる。また、伝熱プレート20の流出入孔26、27も、右側に突出する周壁部を有して右側に隣り合う伝熱プレート10の連通孔16、17につながる。これにより、流出入孔26、27は、その伝熱プレート10のさらに右側にある伝熱プレート20との間で第二流体を流出入させる。 The heat transfer plates 10 and 20 are stacked alternately with the plate surfaces of the above-mentioned shape facing left and right, the upright walls 11 or 21 facing left, and the right side covered with metal foil 13 or 23. In addition, the four corners of the heat transfer plate 10 are formed with inlet and outlet holes 14, 15 and communication holes 16, 17. The four corners of the heat transfer plate 20 are formed with communication holes 24, 25 and inlet and outlet holes 26, 27, which are provided at positions overlapping the inlet and outlet holes 14, 15 and communication holes 16, 17 in the left and right directions. The inlet and outlet holes 14, 15 of the heat transfer plate 10 are connected to the communication holes 24, 25 of the heat transfer plate 20 adjacent to the right side, which has a peripheral wall portion protruding to the right side, by stacking the heat transfer plates 10 and 20 alternately. As a result, the inlet and outlet holes 14, 15 allow the first fluid to flow in and out between the heat transfer plate 20 and the heat transfer plate 10 on the right side. In addition, the inlet and outlet holes 26, 27 of the heat transfer plate 20 also have a peripheral wall portion that protrudes to the right and connects to the communication holes 16, 17 of the heat transfer plate 10 adjacent to the right. As a result, the inlet and outlet holes 26, 27 allow the second fluid to flow in and out between the heat transfer plate 10 and the heat transfer plate 20 located further to the right.
 伝熱プレート10と20は、このような構成を備えると共に、左右方向に交互に積み重ねられることにより、第一流体と第二流体を流通させ、第一流体と第二流体の熱を伝熱プレート10と20に伝えることが可能である。これにより、伝熱プレート10と20は、第一流体と第二流体が流された場合に、第一流体と第二流体とに熱交換をさせる。一方、本明細書では交互に積み重ねられた伝熱プレート10と20のことを、以下、積層体50というが、その積層体50は、それら伝熱プレート10、20を補強するため、補強プレート30Aと40Aにより挟み込まれている。 The heat transfer plates 10 and 20 have this configuration and are stacked alternately in the left-right direction, allowing the first and second fluids to flow and transferring the heat of the first and second fluids to the heat transfer plates 10 and 20. As a result, when the first and second fluids are allowed to flow, the heat transfer plates 10 and 20 exchange heat between the first and second fluids. Meanwhile, in this specification, the alternately stacked heat transfer plates 10 and 20 are hereinafter referred to as a stack 50, and the stack 50 is sandwiched between reinforcing plates 30A and 40A to reinforce the heat transfer plates 10 and 20.
 補強プレート30Aと40Aは、伝熱プレート10と20と同じ形状である矩形の板の形状に形成されている。そして、補強プレート30Aは、その板面を左右方向に向けた状態で、上記の積層体50の左側に配置されている。これに対して、補強プレート40Aは、板面を左右方向に向けた状態で、上記の積層体50の右側に配置されている。このような配置により、補強プレート30Aと40Aは、上述した伝熱プレート10と20を挟み込んで補強している。 The reinforcing plates 30A and 40A are formed in the shape of a rectangular plate, which is the same shape as the heat transfer plates 10 and 20. The reinforcing plate 30A is arranged on the left side of the stack 50 with its plate surface facing left and right. In contrast, the reinforcing plate 40A is arranged on the right side of the stack 50 with its plate surface facing left and right. With this arrangement, the reinforcing plates 30A and 40A sandwich and reinforce the heat transfer plates 10 and 20 described above.
 また、補強プレート30Aには、第一流体を積層体50に供給するため、または第一流体を積層体50から排出するため、図2に示すように、貫通孔32、33が形成されている。また、貫通孔32、33それぞれには、管継手61、62が接続される。それら管継手61、62と接合しやすくするため、貫通孔32、33の開口周縁部には、後述する図9に示すように、面取りが施されている。これにより、貫通孔32、33の開口周縁部からバリが除去されている。管継手61、62は、後述するように、貫通孔32,33の内壁にろう付けされることにより、補強プレート30Aと接合される。貫通孔32、33は、開口周縁部からバリが除去されることにより、ろう付け工程で溶融したろうが貫通孔32、33の内壁へ流れ込み易くしている。 In addition, the reinforcing plate 30A has through holes 32, 33 formed therein as shown in FIG. 2 in order to supply the first fluid to the stack 50 or to discharge the first fluid from the stack 50. In addition, pipe fittings 61, 62 are connected to the through holes 32, 33, respectively. In order to facilitate joining with the pipe fittings 61, 62, the opening periphery of the through holes 32, 33 is chamfered as shown in FIG. 9 described later. This removes burrs from the opening periphery of the through holes 32, 33. The pipe fittings 61, 62 are brazed to the inner walls of the through holes 32, 33 as described later, and are joined to the reinforcing plate 30A. By removing burrs from the opening periphery of the through holes 32, 33, the molten solder in the brazing process is easily allowed to flow into the inner walls of the through holes 32, 33.
 さらに、補強プレート30Aの右面の側には、製造時に積層体50と強固に接合するため、ろうで形成されたプレート状のクラッド材31が設けられる。 Furthermore, a plate-shaped clad material 31 made of wax is provided on the right side of the reinforcing plate 30A to firmly bond it to the laminate 50 during manufacturing.
 同様に、補強プレート40Aにも、第二流体を積層体50に供給するため、または第二流体を積層体50から排出するため、貫通孔42、43が形成され、それら貫通孔42、43それぞれに管継手63、64が接続される。図示しないが、貫通孔42、43の開口周縁部にも、ろう付け工程で溶融したろうが流れやすくするため、面取りが施されている。また、補強プレート40Aでも、積層体50と強固に接合するため、左面の側に、クラッド材31と同じ材料のろうで形成されたプレート状のクラッド材41が設けられる。 Similarly, the reinforcing plate 40A is also formed with through holes 42, 43 for supplying the second fluid to the stack 50 or discharging the second fluid from the stack 50, and pipe fittings 63, 64 are connected to the through holes 42, 43, respectively. Although not shown, the opening periphery of the through holes 42, 43 is also chamfered to facilitate the flow of molten solder in the brazing process. In addition, the reinforcing plate 40A is also provided with a plate-shaped clad material 41 made of the same solder material as the clad material 31 on the left side to firmly bond to the stack 50.
 図2では、理解を容易にするため、補強プレート30Aとクラッド材31が別部材として示されている。しかし、補強プレート30Aとクラッド材31は一体に組み立てられ、その状態の補強プレート30Aとクラッド材31とに図3に示す管継手61、62が接続される。同様に、図2では、補強プレート40Aとクラッド材41が別部材として示されているが、補強プレート40Aとクラッド材41は一体に組み立てられ、その状態の補強プレート40Aとクラッド材41とに図3に示す管継手63、64が接続される。そして、補強プレート30Aには、クラッド材31を溶融させ、クラッド材31の材料のろうを補強プレート30Aの貫通孔32、33の内壁と管継手61、62との間に浸透させることにより、管継手61、62が接合される。また、補強プレート40Aには、クラッド材41を溶融させ、クラッド材41の材料であるろうを補強プレート40Aの貫通孔42、43の内壁と管継手63、64との間に浸透させることにより、管継手63、64が接合される。 2, for ease of understanding, the reinforcing plate 30A and the clad material 31 are shown as separate members. However, the reinforcing plate 30A and the clad material 31 are assembled together, and the reinforcing plate 30A and the clad material 31 in this state are connected to the pipe fittings 61, 62 shown in FIG. 3. Similarly, the reinforcing plate 40A and the clad material 41 are shown as separate members in FIG. 2, but the reinforcing plate 40A and the clad material 41 are assembled together, and the pipe fittings 63, 64 shown in FIG. 3 are connected to the reinforcing plate 40A and the clad material 41 in this state. The pipe fittings 61, 62 are joined to the reinforcing plate 30A by melting the clad material 31 and allowing the wax of the clad material 31 to penetrate between the inner walls of the through holes 32, 33 of the reinforcing plate 30A and the pipe fittings 61, 62. In addition, the pipe fittings 63, 64 are joined to the reinforcing plate 40A by melting the clad material 41 and allowing the wax, which is the material of the clad material 41, to penetrate between the inner walls of the through holes 42, 43 of the reinforcing plate 40A and the pipe fittings 63, 64.
 しかしながら、クラッド材31から溶融したろうを浸透させるだけでは、補強プレート30Aの貫通孔32、33の内壁と管継手61、62との間の、補強プレート30Aのクラッド材31がある面と反対側である左面の側まで、ろうが十分浸透しないことがある。その結果、管継手61、62の接合強度が低下してしまうことがある。同様に、クラッド材41から溶融したろうを浸透させるだけでは、補強プレート40Aの貫通孔42、43の内壁と管継手63、64との間の、クラッド材41がある面と反対側である右面の側まで、ろうが十分浸透しないことがある。その結果、管継手63、64の接合強度が低下してしまうことがある。 However, simply allowing the molten solder to penetrate from the clad material 31 may not allow the solder to penetrate sufficiently to the left side of the reinforcing plate 30A, which is the opposite side to the side where the clad material 31 is located, between the inner walls of the through holes 32, 33 of the reinforcing plate 30A and the pipe fittings 61, 62. As a result, the joint strength of the pipe fittings 61, 62 may be reduced. Similarly, simply allowing the molten solder to penetrate from the clad material 41 may not allow the solder to penetrate sufficiently to the right side of the reinforcing plate 40A, which is the opposite side to the side where the clad material 41 is located, between the inner walls of the through holes 42, 43 of the reinforcing plate 40A and the pipe fittings 63, 64. As a result, the joint strength of the pipe fittings 63, 64 may be reduced.
 そこで、プレート式熱交換器1Aでは、補強プレート30Aのクラッド材31がある面と反対側である左面の側からろうを供給して接合強度を高めるため、補強プレート30Aの管継手62が挿入される貫通孔33の周り、かつ補強プレート30Aの左面の側に、図4に示すように、ろうにより形成されたリング状の金属箔70が設けられている。さらに、その金属箔70を補強プレート30Aの左面との間に挟み込んで保持するため、管継手62の筒面にビード部65が設けられている。 In the plate heat exchanger 1A, therefore, in order to increase the joining strength by supplying solder from the left side of the reinforcing plate 30A, which is the side opposite to the side on which the clad material 31 is located, a ring-shaped metal foil 70 formed from solder is provided around the through hole 33 into which the pipe fitting 62 of the reinforcing plate 30A is inserted, and on the left side of the reinforcing plate 30A, as shown in FIG. 4. Furthermore, a bead portion 65 is provided on the cylindrical surface of the pipe fitting 62 to hold the metal foil 70 between the left side of the reinforcing plate 30A and sandwich it.
 また、図示しないが、補強プレート30Aの管継手61が挿入される貫通孔32の周り、かつ補強プレート30Aの左面の側にも、接合強度を高めるために、金属箔70が設けられている。また、管継手61の筒面にも、金属箔70を保持するため、ビード部65が設けられている。 Although not shown, metal foil 70 is provided around the through hole 32 of the reinforcing plate 30A into which the pipe fitting 61 is inserted, and on the left side of the reinforcing plate 30A, in order to increase the joining strength. A bead portion 65 is also provided on the cylindrical surface of the pipe fitting 61 to hold the metal foil 70.
 同様に、補強プレート40Aの管継手63、64が挿入される貫通孔42、43それぞれの周り、かつ補強プレート40Aの右面の側にも、補強プレート40Aのクラッド材41がある面と反対側である右面の側からろうを供給して接合強度を高めるため、図示しないが、金属箔70がそれぞれ設けられている。さらに、補強プレート40Aの右面との間に金属箔70それぞれを挟み込んで保持するため、管継手63と64の筒面それぞれにもビード部65が設けられている。 Similarly, metal foil 70 (not shown) is provided around each of the through holes 42, 43 into which the pipe fittings 63, 64 of the reinforcing plate 40A are inserted, and on the right side of the reinforcing plate 40A, to increase the joining strength by supplying solder from the right side, which is opposite the side on which the clad material 41 of the reinforcing plate 40A is located. Furthermore, bead portions 65 are provided on each of the cylindrical surfaces of the pipe fittings 63 and 64 to sandwich and hold each of the metal foils 70 between the right side of the reinforcing plate 40A.
 次に、このような構成のプレート式熱交換器1Aの製造方法について、図5-図9を参照して、詳細に説明する。 Next, the manufacturing method for the plate heat exchanger 1A having such a configuration will be described in detail with reference to Figures 5 to 9.
 図5は、プレート式熱交換器1Aの製造方法のフローチャートである。なお、図5に示すプレート式熱交換器1Aの製造方法では、予め上述した形状、大きさ、数の伝熱プレート10、20、金属箔13、23、補強プレート30A、40A、クラッド材31、41および、管継手61、62、63、64を予め用意するものとする。また、予め補強プレート30Aにクラッド材31が取り付けられ、補強プレート40Aにクラッド材41が取り付けられるものとする。 FIG. 5 is a flowchart of a method for manufacturing the plate heat exchanger 1A. In the method for manufacturing the plate heat exchanger 1A shown in FIG. 5, the heat transfer plates 10, 20, metal foils 13, 23, reinforcing plates 30A, 40A, clad materials 31, 41, and pipe fittings 61, 62, 63, 64 of the shapes, sizes, and numbers described above are prepared in advance. Also, the clad material 31 is attached to the reinforcing plate 30A, and the clad material 41 is attached to the reinforcing plate 40A in advance.
 まず、プレート式熱交換器1Aの製造方法では、図5に示すように、金属箔取り付け工程を行う(ステップS1)。その金属箔取り付け工程では、管継手61、62、63、64それぞれに金属箔70を取り付ける。図6に管継手61、62、63、64のうちの管継手62に金属箔70を取り付ける例を示す。 First, in the manufacturing method of the plate heat exchanger 1A, as shown in FIG. 5, a metal foil attachment process is performed (step S1). In the metal foil attachment process, metal foil 70 is attached to each of the pipe fittings 61, 62, 63, and 64. FIG. 6 shows an example of attaching metal foil 70 to pipe fitting 62 of the pipe fittings 61, 62, 63, and 64.
 図6は、プレート式熱交換器1Aの製造方法が備える金属箔取り付け工程で金属箔70が取り付けられた管継手62の断面図である。 FIG. 6 is a cross-sectional view of a pipe fitting 62 to which metal foil 70 has been attached in the metal foil attachment step included in the manufacturing method of the plate heat exchanger 1A.
 図6に示すように、管継手62は、補強プレート30Aの貫通孔33に取り付けられる基端部66と、基端部66よりも先端側に位置する、すなわち-X側に位置するビード部65と、Oリングを取り付けるための溝67が形成された先端部68とを有する。 As shown in FIG. 6, the pipe fitting 62 has a base end 66 that is attached to the through hole 33 of the reinforcing plate 30A, a bead portion 65 that is located closer to the tip end than the base end 66, i.e., on the -X side, and a tip end 68 in which a groove 67 for attaching an O-ring is formed.
 管継手62は、後述するように、基端部66が補強プレート30Aの貫通孔33に差し込まれた状態で、基端部66がかしめられることにより、補強プレート30Aに取り付けられる。基端部66は、これを可能とするため、補強プレート30Aの貫通孔33に挿入可能な外径D1を有する円管の形状に形成されている。また、基端部66の延在方向の長さは、補強プレート30Aの貫通孔33に差し込まれた状態でかしめることを可能とするため、図6には示さないが、クラッド材31、補強プレート30Aおよび金属箔70のそれぞれの厚みを合わせた全体の厚みよりも長い。 As described below, the pipe fitting 62 is attached to the reinforcing plate 30A by crimping the base end 66 while the base end 66 is inserted into the through hole 33 of the reinforcing plate 30A. To enable this, the base end 66 is formed in the shape of a circular tube having an outer diameter D1 that allows it to be inserted into the through hole 33 of the reinforcing plate 30A. In addition, the length of the base end 66 in the extension direction is longer than the total thickness of the clad material 31, the reinforcing plate 30A, and the metal foil 70, which is the combined thickness of each of them (not shown in FIG. 6), in order to enable it to be crimped while inserted into the through hole 33 of the reinforcing plate 30A.
 ビード部65は、基端部66から外側へ向かって突出する形状を有する。詳細には、ビード部65は、直管が管軸方向へ潰されることにより形成されている。その結果、基端部66の外径D1より大きい外径D2を備える円環形のフランジの形状を有する。これにより、ビード部65は、後述する金属箔70のリングに基端部66が通されたときに、金属箔70の表面に当接して、その位置を決める。また、ビード部65では、基端部66が補強プレート30Aの貫通孔33に差し込まれときに、補強プレート30Aとの間に金属箔70を隙間無く挟み込むことを可能とするため、ビード部65の側面、すなわち、+X面と-X面が平らである。換言すると、ビード部65は、+X方向と-X方向に垂直な平面部653、654を有する。 The bead portion 65 has a shape that protrudes outward from the base end 66. In detail, the bead portion 65 is formed by crushing a straight pipe in the tube axis direction. As a result, it has a circular flange shape with an outer diameter D2 larger than the outer diameter D1 of the base end 66. As a result, when the base end 66 is passed through the ring of the metal foil 70 described later, the bead portion 65 abuts against the surface of the metal foil 70 to determine its position. In addition, in the bead portion 65, when the base end 66 is inserted into the through hole 33 of the reinforcing plate 30A, the side of the bead portion 65, i.e., the +X surface and the -X surface, are flat so that the metal foil 70 can be sandwiched between the base end 66 and the reinforcing plate 30A without any gaps. In other words, the bead portion 65 has flat surfaces 653 and 654 perpendicular to the +X and -X directions.
 これに対して、先端部68は、基端部66と同様に、円管の形状である。そして、先端部68の外径D3は、基端部66の外径D1より大きいが、ビード部65の外径D2よりも小さい。その結果、管継手62では、ビード部65の外径D2が最も大きい。これにより、後述するろう付け工程で、ろうが基端部66からビード部65を超えて先端部68まで達することが抑制されている。 In contrast, the tip portion 68, like the base portion 66, has a circular pipe shape. The outer diameter D3 of the tip portion 68 is larger than the outer diameter D1 of the base portion 66, but smaller than the outer diameter D2 of the bead portion 65. As a result, in the pipe fitting 62, the outer diameter D2 of the bead portion 65 is the largest. This prevents the brazing filler metal from reaching the tip portion 68 from the base portion 66, beyond the bead portion 65, during the brazing process described below.
 なお、このような構成を備える管継手62は、強度を得るため、金属、例えば、ステンレス鋼により形成されている。 In addition, the pipe fitting 62 having such a configuration is made of a metal, such as stainless steel, to ensure strength.
 一方、金属箔70は、クラッド材31、41と同じろう材料、例えば、純銅または銅合金で形成されている。そして、金属箔70はリング状に形成されている。詳細には、金属箔70は、上記の基端部66の外径D1と補強プレート30Aの後述する貫通孔33の直径とよりも大きい内径D4と、ビード部65の外径D2よりも大きい外径D5とを有する円環かつ平らな形状に形成されている。そして、金属箔70の厚みT2は、ビード部65の厚みT1よりも薄い。例えば、金属箔70の厚みT2は、ビード部65の厚みT1が1.5-2.0mmである場合に、0.15-0.20mm程度である。 Meanwhile, the metal foil 70 is formed of the same brazing material as the clad materials 31, 41, for example, pure copper or a copper alloy. The metal foil 70 is formed in a ring shape. In detail, the metal foil 70 is formed in a flat circular shape having an inner diameter D4 larger than the outer diameter D1 of the base end portion 66 and the diameter of the through hole 33 of the reinforcing plate 30A described below, and an outer diameter D5 larger than the outer diameter D2 of the bead portion 65. The thickness T2 of the metal foil 70 is thinner than the thickness T1 of the bead portion 65. For example, the thickness T2 of the metal foil 70 is about 0.15-0.20 mm when the thickness T1 of the bead portion 65 is 1.5-2.0 mm.
 なお、金属箔70の外径D5は、製造時に金属箔70の取り付け忘れを防ぐため、目視確認可能な程度だけ、ビード部65の外径D2よりも大きいことが望ましい。例えば、金属箔70の外径D5は、3-4mmだけ、ビード部65の外径D2よりも大きいことが望ましい。 In addition, in order to prevent the metal foil 70 from being forgotten to be attached during manufacturing, it is desirable that the outer diameter D5 of the metal foil 70 is larger than the outer diameter D2 of the bead portion 65 by an amount that can be visually confirmed. For example, it is desirable that the outer diameter D5 of the metal foil 70 is larger than the outer diameter D2 of the bead portion 65 by 3-4 mm.
 図5に示す金属箔取り付け工程では、このような構成の金属箔70を上述した管継手62に取り付ける。詳細には、管継手62の基端部66を金属箔70の円環の孔に通して、管継手62のビード部65が有する、図6に示す平面部654を金属箔70に隣接させる。これにより、管継手62に金属箔70を取り付ける。図示しないが、管継手61、63、64それぞれについても、管継手62と同様の作業を行って金属箔70を取り付ける。 In the metal foil attachment process shown in FIG. 5, the metal foil 70 having such a configuration is attached to the above-mentioned pipe fitting 62. In detail, the base end 66 of the pipe fitting 62 is passed through the annular hole in the metal foil 70, and the flat surface portion 654 of the bead portion 65 of the pipe fitting 62, shown in FIG. 6, is brought adjacent to the metal foil 70. In this way, the metal foil 70 is attached to the pipe fitting 62. Although not shown, the metal foil 70 is attached to each of the pipe fittings 61, 63, and 64 by carrying out the same operation as for the pipe fitting 62.
 図5に戻って、金属箔取り付け工程に続いて、管継手取り付け工程を行う(ステップS2)。管継手61、62、63、64のうちの管継手62を補強プレート30Aに取り付ける例を図7および図8に示す。 Returning to FIG. 5, following the metal foil attachment process, the pipe fitting attachment process is performed (step S2). An example of attaching pipe fitting 62 of pipe fittings 61, 62, 63, and 64 to reinforcing plate 30A is shown in FIGS. 7 and 8.
 図7は、プレート式熱交換器1Aの製造方法が備える管継手取り付け工程で管継手62が取り付けられるときの補強プレート30Aの断面図である。図8は、管継手取り付け工程によって管継手62が取り付けられた補強プレート30Aの一部の拡大断面図である。 Figure 7 is a cross-sectional view of the reinforcing plate 30A when the pipe fitting 62 is attached in the pipe fitting attachment process included in the manufacturing method of the plate heat exchanger 1A. Figure 8 is an enlarged cross-sectional view of a portion of the reinforcing plate 30A to which the pipe fitting 62 has been attached in the pipe fitting attachment process.
 管継手取り付け工程では、図7に示すクラッド材31が取り付けられた補強プレート30Aの貫通孔33に、補強プレート30Aのクラッド材31がある面の側とは反対の側から、すなわち、-X側から管継手62の基端部66を差し込む。このとき、管継手62に取り付けられた金属箔70が補強プレート30Aの-X面に当たって、金属箔70が管継手62のビード部65が有する平面部654と補強プレート30Aに挟み込まれるまで管継手62の基端部66を補強プレート30Aの貫通孔33に差し込んでいく。これにより、図7に示すように、管継手62の基端部66の端面を、クラッド材31の+X面の側に露出させる。 In the pipe fitting installation process, the base end 66 of the pipe fitting 62 is inserted into the through hole 33 of the reinforcing plate 30A to which the clad material 31 shown in FIG. 7 is attached, from the side opposite to the side of the reinforcing plate 30A on which the clad material 31 is located, i.e., from the -X side. At this time, the base end 66 of the pipe fitting 62 is inserted into the through hole 33 of the reinforcing plate 30A until the metal foil 70 attached to the pipe fitting 62 comes into contact with the -X side of the reinforcing plate 30A and the metal foil 70 is sandwiched between the flat portion 654 of the bead portion 65 of the pipe fitting 62 and the reinforcing plate 30A. This exposes the end face of the base end 66 of the pipe fitting 62 to the +X side of the clad material 31, as shown in FIG. 7.
 続いて、露出した基端部66の端面に開口する管継手62の内部空間へ、先端の外径が基端部66の内径よりも小さく、かつ基端の外径が基端部66の外径よりも大きい錘台形状のポンチ80を押し込んで基端部66をかしめる。これにより、図8に示すように、基端部66の内径が+X側に向かうに従って大きくなり、かつ基端部66の-X端が補強プレート30Aの貫通孔33の直径よりも大きくなる。すなわち、基端部66の-X端が図6に示す外径D1よりも拡径される。その結果、管継手62が補強プレート30Aに固定される。また、ポンチ80によって補強プレート30Aが-X方向へ押し込まれるため、補強プレート30Aが金属箔70に密着すると共に、金属箔70がビード部65に密着する。その結果、補強プレート30Aとビード部65の隙間Gの大きさが金属箔70の厚みT2に調整される。これにより、隙間Gの大きさは、一定となり、後述するろう付け工程でろうが毛細管現象で浸透しやすい大きさとなる。 Next, a punch 80 having a truncated cone shape with a tip outer diameter smaller than the inner diameter of the base end 66 and a base outer diameter larger than the outer diameter of the base end 66 is pushed into the internal space of the pipe fitting 62 that opens on the end face of the exposed base end 66 to crimp the base end 66. As a result, as shown in FIG. 8, the inner diameter of the base end 66 increases toward the +X side, and the -X end of the base end 66 becomes larger than the diameter of the through hole 33 of the reinforcing plate 30A. In other words, the -X end of the base end 66 is enlarged in diameter from the outer diameter D1 shown in FIG. 6. As a result, the pipe fitting 62 is fixed to the reinforcing plate 30A. In addition, since the reinforcing plate 30A is pushed in the -X direction by the punch 80, the reinforcing plate 30A is in close contact with the metal foil 70, and the metal foil 70 is in close contact with the bead portion 65. As a result, the size of the gap G between the reinforcing plate 30A and the bead portion 65 is adjusted to the thickness T2 of the metal foil 70. This makes the size of the gap G constant, and makes it easy for the solder to penetrate by capillary action during the brazing process described below.
 なお、管継手62の基端部66が差し込まれる補強プレート30Aの貫通孔33は、図8に示すクラッド材31の貫通孔37とつながっている。その貫通孔37は、基端部66をかしめた後の外径よりも大きくすることが望ましい。このような貫通孔37をクラッド材31が有することにより、クラッド材31の貫通孔周縁部分が補強プレート30Aの貫通孔33の内壁と基端部66との間に入り込んでしまい、管継手62が補強プレート30Aに対して傾斜してしまうことが抑制できるからである。 The through hole 33 of the reinforcing plate 30A, into which the base end 66 of the pipe fitting 62 is inserted, is connected to the through hole 37 of the clad material 31 shown in FIG. 8. It is desirable that the through hole 37 is larger than the outer diameter of the base end 66 after it is crimped. By having such a through hole 37 in the clad material 31, the peripheral portion of the through hole of the clad material 31 can be prevented from entering between the inner wall of the through hole 33 of the reinforcing plate 30A and the base end 66, preventing the pipe fitting 62 from tilting relative to the reinforcing plate 30A.
 管継手61についても、管継手62の場合と同様の作業を行って管継手61を補強プレート30Aに固定する。また、管継手63、64それぞれについても管継手62の場合と同様の作業を行って管継手63、64それぞれを補強プレート40Aに固定する。 For pipe fitting 61, the same procedure as for pipe fitting 62 is carried out to fix pipe fitting 61 to reinforcing plate 30A. Also, for pipe fittings 63 and 64, the same procedure as for pipe fitting 62 is carried out to fix pipe fittings 63 and 64 to reinforcing plate 40A.
 次に、図5に示すように、積層工程を行う(ステップS3)。詳細には、伝熱プレート10、20と金属箔13、23を上述した配置に積み重ねて積層体50を組み立てる。さらに、その積層体50を、クラッド材31と管継手61、62が取り付けられた補強プレート30Aと、クラッド材41と管継手63、64が取り付けられた補強プレート40Aとで挟み込む。 Next, as shown in FIG. 5, a lamination process is performed (step S3). In detail, the heat transfer plates 10, 20 and the metal foils 13, 23 are stacked in the above-mentioned arrangement to assemble the laminate 50. Furthermore, the laminate 50 is sandwiched between the reinforcing plate 30A to which the clad material 31 and the pipe fittings 61, 62 are attached, and the reinforcing plate 40A to which the clad material 41 and the pipe fittings 63, 64 are attached.
 積層工程に続いて、加圧工程を行う(ステップS4)。この加圧工程では、補強プレート30Aと40Aが組み付けられた積層体50をその積層方向に加圧して圧縮する。これにより、積層体50を形成する伝熱プレート10、20、金属箔13、23、および補強プレート30A、40Aを互いに密着させる。 Following the lamination step, a pressurizing step is carried out (step S4). In this pressurizing step, the laminate 50, in which the reinforcing plates 30A and 40A are assembled, is compressed by applying pressure in the lamination direction. This causes the heat transfer plates 10, 20, the metal foils 13, 23, and the reinforcing plates 30A, 40A that form the laminate 50 to be in close contact with each other.
 積層体50を圧縮した後、ろう付け工程を行う(ステップS5)。詳細には、補強プレート30Aと40Aが組み付けられた積層体50を炉に入れ、その積層体50をクラッド材31、41の材料であるろうが溶融する温度まで加熱する。これにより、積層体50の伝熱プレート10と20の間にある金属箔13、23、管継手62に取り付けられた金属箔70および、クラッド材31、41を溶融させる。その結果、溶融したろうが部品同士の隙間に浸透する。このときの管継手62と補強プレート30Aとのろう付けの様子を図9に示す。 After compressing the laminate 50, the brazing process is carried out (step S5). In detail, the laminate 50 with the reinforcing plates 30A and 40A assembled is placed in a furnace and the laminate 50 is heated to a temperature at which the solder, which is the material of the clad materials 31 and 41, melts. This melts the metal foils 13 and 23 between the heat transfer plates 10 and 20 of the laminate 50, the metal foil 70 attached to the pipe fitting 62, and the clad materials 31 and 41. As a result, the molten solder penetrates into the gaps between the parts. Figure 9 shows the state of brazing the pipe fitting 62 and the reinforcing plate 30A at this time.
 図9は、プレート式熱交換器1Aの製造方法が備えるろう付け工程でろう付けされる管継手62の図8に示すIX領域部分の拡大断面図である。なお、管継手62のビード部65と金属箔70との間に溶融したろうが毛細管現象で浸透する程度に微小な間隙が形成されているが、図9では、理解を容易にするため、その微小な間隙を拡大して強調している。そして、ろうが浸透する経路を示している。 Figure 9 is an enlarged cross-sectional view of region IX shown in Figure 8 of pipe fitting 62 brazed in the brazing process included in the manufacturing method of plate heat exchanger 1A. Note that a tiny gap is formed between bead portion 65 of pipe fitting 62 and metal foil 70, allowing molten solder to penetrate by capillary action, but in Figure 9, the tiny gap is enlarged and emphasized for ease of understanding. The path along which the solder penetrates is also shown.
 ろう付け工程では、ろうが溶融する温度までクラッド材31が加熱されると、クラッド材31が溶融する。これにより、図9の矢印A1に示すように、溶融したろうが管継手62の基端部66とクラッド材31の隙間に濡れ広がり、その結果、基端部66と補強プレート30Aの貫通孔33の内壁との隙間まで浸透する。 In the brazing process, when the clad material 31 is heated to a temperature at which the filler metal melts, the clad material 31 melts. As a result, as shown by arrow A1 in FIG. 9, the molten filler metal spreads into the gap between the base end 66 of the pipe fitting 62 and the clad material 31, and as a result, penetrates into the gap between the base end 66 and the inner wall of the through hole 33 of the reinforcing plate 30A.
 一方、補強プレート30Aのクラッド材31がある面と反対側の面の側には、すなわち、補強プレート30Aの-X面側には金属箔70が配置されている。このため、ろうが溶融する温度まで金属箔70が加熱されると、金属箔70が溶融して、補強プレート30Aの-X面側に溶融したろう、以下、ろう付け工程では単にろうというが、ろうが供給される。このとき、管継手62の各部分の中でビード部65の外径D2が最も径が大きく、さらにビード部65の厚みT2が金属箔70の厚みT1よりも十分に大きいため、ろうは、ビード部65を超えて-X側へ濡れ広がることが抑制される。これにより、ろうは、ビード部65の-X側よりも+Xの側のほうへ濡れ広がる。その結果、図9の矢印A2に示すように、管継手62のビード部65と金属箔70または補強プレート30Aとの隙間にろうが濡れ広がり、管継手62の基端部66と補強プレート30Aの貫通孔33の内壁との隙間までろうが浸入する。その結果、基端部66と貫通孔33の内壁との隙間には、補強プレート30Aの+X面の側からだけでなく、-X面の側からもろうが浸透する。 Meanwhile, metal foil 70 is arranged on the side of the reinforcing plate 30A opposite to the side on which the clad material 31 is located, i.e., on the -X side of the reinforcing plate 30A. Therefore, when the metal foil 70 is heated to a temperature at which the solder melts, the metal foil 70 melts and the molten solder (hereinafter simply referred to as solder in the brazing process) is supplied to the -X side of the reinforcing plate 30A. At this time, the outer diameter D2 of the bead portion 65 is the largest among the parts of the pipe joint 62, and further the thickness T2 of the bead portion 65 is sufficiently larger than the thickness T1 of the metal foil 70, so that the solder is prevented from spreading beyond the bead portion 65 to the -X side. As a result, the solder spreads toward the +X side of the bead portion 65 rather than the -X side. As a result, as shown by arrow A2 in Figure 9, the braze spreads into the gap between the bead portion 65 of the pipe fitting 62 and the metal foil 70 or the reinforcing plate 30A, and penetrates into the gap between the base end portion 66 of the pipe fitting 62 and the inner wall of the through hole 33 of the reinforcing plate 30A. As a result, the braze penetrates into the gap between the base end portion 66 and the inner wall of the through hole 33 not only from the +X side of the reinforcing plate 30A, but also from the -X side.
 基端部66と貫通孔33の内壁との隙間で、補強プレート30Aの+X面の側から浸入したろうと-X面の側から浸入したろうが接触すると、図9の矢印A3に示すように、ろうが基端部66と貫通孔33の内壁との隙間を通って、補強プレート30Aの+X面の側へ移動したり、その反対側の-X面の側へ移動したりすることが可能となる。これにより、基端部66と貫通孔33の内壁との隙間だけでなく、補強プレート30Aの+X面の側にある基端部66とクラッド材31との隙間と、補強プレート30Aの-X面の側にあるビード部65と金属箔70との隙間とにも、ろうが十分充填する。このとき、寸法のばらつき、組み付けのばらつきにより、これらの隙間の大きさがばらついたとしても、ろうが基端部66と貫通孔33の内壁との隙間を通って移動するので、これらの隙間がろうで十分満たされる。その結果、基端部66とクラッド材31との隙間とビード部65と金属箔70との隙間にフィレット34と35が形成される。 When the solder that has penetrated from the +X side of the reinforcing plate 30A and the solder that has penetrated from the -X side come into contact with each other in the gap between the base end 66 and the inner wall of the through hole 33, as shown by the arrow A3 in FIG. 9, the solder can move through the gap between the base end 66 and the inner wall of the through hole 33 to the +X side of the reinforcing plate 30A or to the opposite -X side. This allows the solder to fully fill not only the gap between the base end 66 and the inner wall of the through hole 33, but also the gap between the base end 66 and the clad material 31 on the +X side of the reinforcing plate 30A and the gap between the bead portion 65 and the metal foil 70 on the -X side of the reinforcing plate 30A. At this time, even if the size of these gaps varies due to dimensional variations and assembly variations, the solder moves through the gap between the base end 66 and the inner wall of the through hole 33, so these gaps are fully filled with solder. As a result, fillets 34 and 35 are formed in the gap between the base end 66 and the clad material 31 and in the gap between the bead portion 65 and the metal foil 70.
 ろう付け工程で加熱を一定の時間だけ行った後、補強プレート30Aと40Aが組み付けられた積層体50を冷却する。これにより、ろうが凝固する。その結果、管継手62が補強プレート30Aに接合される。上述したように、基端部66と補強プレート30Aの貫通孔33の内壁との隙間だけでなく、基端部66とクラッド材31との隙間とビード部65と金属箔70との隙間にもろうが十分浸透して、フィレット34、35を形成している。このため、管継手62と補強プレート30Aが強固に接合される。図示しないが、管継手61と補強プレート30Aのろう付けでも、管継手62と補強プレート30Aのろう付けと同様に、管継手61と補強プレート30Aとの隙間にろうが十分浸透する。このため、管継手61と補強プレート30Aが強固に接合される。さらに、管継手63、64と補強プレート40Aのろう付けでも、管継手62と補強プレート30Aのろう付けと同様に、管継手63、64と補強プレート40Aとの隙間にろうが十分浸透する。その結果、管継手63、64と補強プレート40Aも強固に接合される。このように、管継手61-64が補強プレート30A、40Aに強固に接合される結果、強度の高いプレート式熱交換器1Aが製造される。 After heating for a certain period of time in the brazing process, the laminate 50 to which the reinforcing plates 30A and 40A are assembled is cooled. This causes the brazing material to solidify. As a result, the pipe fitting 62 is joined to the reinforcing plate 30A. As described above, the brazing material penetrates not only into the gap between the base end 66 and the inner wall of the through hole 33 of the reinforcing plate 30A, but also into the gap between the base end 66 and the clad material 31 and the gap between the bead portion 65 and the metal foil 70, forming fillets 34, 35. Therefore, the pipe fitting 62 and the reinforcing plate 30A are firmly joined. Although not shown, in the brazing of the pipe fitting 61 and the reinforcing plate 30A, the brazing material penetrates sufficiently into the gap between the pipe fitting 61 and the reinforcing plate 30A, as in the brazing of the pipe fitting 62 and the reinforcing plate 30A. Therefore, the pipe fitting 61 and the reinforcing plate 30A are firmly joined. Furthermore, when brazing the pipe fittings 63, 64 to the reinforcing plate 40A, the brazing material penetrates sufficiently into the gaps between the pipe fittings 63, 64 and the reinforcing plate 40A, just as it does when brazing the pipe fittings 62 to the reinforcing plate 30A. As a result, the pipe fittings 63, 64 and the reinforcing plate 40A are also firmly joined. In this way, the pipe fittings 61-64 are firmly joined to the reinforcing plates 30A, 40A, and as a result, a plate-type heat exchanger 1A with high strength is manufactured.
 なお、上述した補強プレート30A、40Aは、熱を伝えることから、本開示でいうところの伝熱プレートに該当する部材である。そして、補強プレート30A、40Aは、本開示でいうところの最外側伝熱プレートの一例である。また、クラッド材31、41は、本開示でいうところの第一ろう材、またはクラッド層の一例である。さらに、管継手61-64は、本開示でいうところの管部材の一例である。ビード部65は、本開示でいうところの径大部の一例である。金属箔70は、本開示でいうところの第二ろう材の一例である。 The reinforcing plates 30A and 40A described above are components that correspond to heat transfer plates as defined in the present disclosure, since they transfer heat. The reinforcing plates 30A and 40A are an example of an outermost heat transfer plate as defined in the present disclosure. The clad materials 31 and 41 are an example of a first brazing material or clad layer as defined in the present disclosure. The pipe fittings 61-64 are an example of a pipe member as defined in the present disclosure. The bead portion 65 is an example of a large diameter portion as defined in the present disclosure. The metal foil 70 is an example of a second brazing material as defined in the present disclosure.
 金属箔取り付け工程と管継手取り付け工程は、金属箔70を補強プレート30A、40Aに配置する工程である。このことからわかるように、金属箔取り付け工程と管継手取り付け工程は、本開示でいうところの第二ろう材を配置する工程の一例である。また、管継手取り付け工程は、本開示でいうところの管部材を最外側伝熱プレートに取り付ける工程の一例である。 The metal foil attachment process and the pipe joint attachment process are processes for placing metal foil 70 on reinforcing plates 30A and 40A. As can be seen from this, the metal foil attachment process and the pipe joint attachment process are an example of a process for placing a second brazing material as defined in this disclosure. Also, the pipe joint attachment process is an example of a process for attaching a tube member to an outermost heat transfer plate as defined in this disclosure.
 以上のように、実施の形態1に係るプレート式熱交換器1Aの製造方法は、補強プレート30Aの-X面、すなわち、外面の側に配置され、かつ貫通孔32、33を取り囲むリング状の金属箔70と、補強プレート30Aの+X面、すなわち、内面の側に設けられ、ろうによって形成されたクラッド材31とを溶融させて、管継手61、62の基端部66を補強プレート30Aの貫通孔32、33の内壁にろう付けするろう付け工程を備える。ろう付け工程で補強プレート30Aの-X面の側と+X面の側の両方にろうが十分に浸透するので、管継手61、62を補強プレート30Aに高い強度で接合することができる。 As described above, the manufacturing method of the plate heat exchanger 1A according to the first embodiment includes a brazing process in which the ring-shaped metal foil 70, which is disposed on the -X surface of the reinforcing plate 30A, i.e., the outer surface side and surrounds the through holes 32, 33, and the clad material 31, which is disposed on the +X surface of the reinforcing plate 30A, i.e., the inner surface side and is formed of wax, are melted to braze the base ends 66 of the pipe fittings 61, 62 to the inner walls of the through holes 32, 33 of the reinforcing plate 30A. In the brazing process, the solder sufficiently penetrates both the -X surface side and the +X surface side of the reinforcing plate 30A, so that the pipe fittings 61, 62 can be joined to the reinforcing plate 30A with high strength.
 特許文献1に記載の熱交換器の流入口パイプとヘッダタンクとの接合方法の場合、ろう付け工程で、ろうの流動性を高めるため、フラックスを用いることが考えられる。これに対して、プレート式熱交換器1Aの製造方法では、補強プレート30Aの外面の側に配置された金属箔70と、補強プレート30Aの内面の側に配置されたクラッド材31とを溶融させて、補強プレート30Aの両面の側からろうを供給するので、フラックスを用いなくても、ろうの流動性を高めることができる。 In the case of the method of joining the inlet pipe and header tank of a heat exchanger described in Patent Document 1, it is possible to use flux in the brazing process to increase the fluidity of the brazing material. In contrast, in the manufacturing method of the plate-type heat exchanger 1A, the metal foil 70 arranged on the outer surface side of the reinforcing plate 30A and the clad material 31 arranged on the inner surface side of the reinforcing plate 30A are melted, and the brazing material is supplied from both sides of the reinforcing plate 30A, so the fluidity of the brazing material can be increased without using flux.
 また、プレート式熱交換器1Aの製造方法では、ろう付けをするために、補強プレート30Aの外面の側に、内面の側と同様にクラッド材31を設けるのではなく、金属箔70を配置するだけである。このため、製造が容易で、材料コストが小さい。 In addition, in the manufacturing method of the plate heat exchanger 1A, in order to perform brazing, the metal foil 70 is simply placed on the outer surface of the reinforcing plate 30A, rather than providing a clad material 31 as is done on the inner surface. This makes manufacturing easy and keeps material costs low.
 また、プレート式熱交換器1Aの製造方法は、管継手61、62の基端部66をかしめることにより、金属箔70を管継手61、62のビード部65と補強プレート30Aとの間に挟み込む管継手取り付け工程を備える。その結果、ビード部65の補強プレート30Aに対する距離が一定の大きさとなる。換言すると、ビード部65と補強プレート30Aとの隙間の大きさが一定の大きさに決められる。このため、ろう付け工程で、ろうがこの隙間に安定して浸透する。これにより、ビード部65と補強プレート30Aとの隙間にろうが十分浸透しないで接合強度が低下することが抑制される。 The manufacturing method of the plate-type heat exchanger 1A also includes a pipe fitting installation process in which the base ends 66 of the pipe fittings 61, 62 are crimped to sandwich the metal foil 70 between the bead portions 65 of the pipe fittings 61, 62 and the reinforcing plate 30A. As a result, the distance between the bead portions 65 and the reinforcing plate 30A is constant. In other words, the size of the gap between the bead portions 65 and the reinforcing plate 30A is set to a constant size. Therefore, in the brazing process, the solder penetrates into this gap stably. This prevents the solder from insufficiently penetrating the gap between the bead portions 65 and the reinforcing plate 30A, resulting in a decrease in the joint strength.
 金属箔70の外径D5は、管継手61、62のビード部65の外径D2よりも大きい。このため、金属箔取り付け工程で金属箔70を取り付けたときに、金属箔70がビード部65からはみだす。その結果、作業者による金属箔70が取り付けられたか否かの確認が容易である。これにより、金属箔70の取り付け忘れを防止することができる。 The outer diameter D5 of the metal foil 70 is larger than the outer diameter D2 of the bead portion 65 of the pipe fittings 61, 62. Therefore, when the metal foil 70 is attached in the metal foil attachment process, the metal foil 70 protrudes from the bead portion 65. As a result, it is easy for the worker to check whether the metal foil 70 has been attached. This makes it possible to prevent forgetting to attach the metal foil 70.
 また、管継手61、62のビード部65の外径D2は、管継手61、62内で径が最も大きい。その結果、ろう付け工程で、金属箔70からたろうがビード部65を超えて先端部68まで回り込むことを抑制することができる。さらに、ビード部65の厚みT1が金属箔70の厚みT2よりも大きいので、ろうが先端部68まで回り込むことをより抑制することができる。 In addition, the outer diameter D2 of the bead portion 65 of the pipe fittings 61, 62 is the largest diameter within the pipe fittings 61, 62. As a result, during the brazing process, it is possible to prevent the solder from flowing from the metal foil 70 beyond the bead portion 65 and wrapping around to the tip portion 68. Furthermore, since the thickness T1 of the bead portion 65 is greater than the thickness T2 of the metal foil 70, it is possible to further prevent the solder from flowing around to the tip portion 68.
 (変形例)
 なお、管継手62は、図6に示すように、ビード部65を挟んで配置された直管部分655,656を有する。これら直管部分655,656は、ビード部65よりも、溶融したろうに対する濡れ性が低いことが望ましい。これは、ろう付け工程で、ろうがビード部65を超えて-X側へ進入したとしても、さらに-X側へ濡れ広がりにくくなるからである。
(Modification)
6, the pipe joint 62 has straight pipe portions 655, 656 disposed on either side of the bead portion 65. It is desirable that these straight pipe portions 655, 656 have lower wettability with respect to molten brazing filler metal than the bead portion 65. This is because, even if the brazing filler metal passes over the bead portion 65 and enters the -X side during the brazing process, it is difficult for the brazing filler metal to further wet and spread to the -X side.
 ビード部65は、金型を用いて、しごき加工により形成されるが、その加工によって、直管部分655,656の面粗度は、ビード部65の面粗度よりも小さくなる。その結果、直管部分655,656は、ビード部65よりも濡れ性が低くなる。このため、直管部分655,656は、ビード部65がしごき加工により形成されることによって、ビード部65よりも濡れ性が低くなることが望ましい。 The bead portion 65 is formed by ironing using a mold, and as a result of this processing, the surface roughness of the straight pipe portions 655, 656 becomes smaller than the surface roughness of the bead portion 65. As a result, the straight pipe portions 655, 656 become less wettable than the bead portion 65. For this reason, it is desirable that the straight pipe portions 655, 656 become less wettable than the bead portion 65 by forming the bead portion 65 by ironing.
 また、直管部分655では、溝67の内壁よりも溶融したろうに対する濡れ性が低いことが望ましい。溝67の内壁は、Oリングのシール性を高めるため、面粗度が小さく加工されている。直管部分655の濡れ性が低いことにより、このような溝67へのろうの濡れ広がりを抑制できるからである。 Furthermore, it is desirable that the straight pipe section 655 has a lower wettability with respect to the molten solder than the inner wall of the groove 67. The inner wall of the groove 67 is processed to have a small surface roughness in order to improve the sealing performance of the O-ring. This is because the low wettability of the straight pipe section 655 can prevent the solder from wetting and spreading into the groove 67.
 なお、直管部分655は、本発明でいうところの、径大部に隣接すると共に、基端部よりも先端側に位置する管部分の一例である。 The straight pipe section 655 is an example of a pipe section that is adjacent to the large diameter section and is located closer to the tip end than the base end, as defined in the present invention.
 実施の形態1では、図6に示すように、管継手62の先端部68の端面の外周部が丸まられているが、管継手62の先端部68の形状はこれに限定されない。 In embodiment 1, as shown in FIG. 6, the outer periphery of the end face of the tip 68 of the pipe fitting 62 is rounded, but the shape of the tip 68 of the pipe fitting 62 is not limited to this.
 図10は、金属箔取り付け工程で用いられる管継手62の変形例の断面図である。 Figure 10 is a cross-sectional view of a modified pipe fitting 62 used in the metal foil attachment process.
 図10に示すように、管継手62の先端部68の端面の外周部は、丸められず、断面視直角の形状であってもよい。このような形状は、塑性加工により形成できる。なお、管継手62は、塑性加工により作製されてもよい。また、拡管加工により作製されてもよい。 As shown in FIG. 10, the outer periphery of the end face of the tip portion 68 of the pipe fitting 62 may not be rounded, but may have a right-angled shape in cross section. Such a shape can be formed by plastic processing. The pipe fitting 62 may be produced by plastic processing. It may also be produced by pipe expansion processing.
 また、実施の形態1では、図9に示すように、金属箔70の内周面がクラッド材31の貫通孔37の内壁よりも、貫通孔37内側に位置しているが、金属箔70の位置はこれに限定されない。 In addition, in embodiment 1, as shown in FIG. 9, the inner surface of the metal foil 70 is located inside the through hole 37 of the clad material 31, rather than the inner wall of the through hole 37, but the position of the metal foil 70 is not limited to this.
 図11は、ろう付け工程でろう付けされる補強プレート31と金属箔70の変形例の一部分を拡大した断面図である。 Figure 11 is an enlarged cross-sectional view of a portion of a modified example of the reinforcing plate 31 and metal foil 70 that are brazed in the brazing process.
 図11に示すように、金属箔70の内周面とクラッド材31の貫通孔37内壁面との位置が、貫通孔37の径方向に揃っているとよい。このような位置であれば、ろう付け工程で、補強プレート31の貫通孔33の内壁と管継手62の基端部66との隙間に、ろうを金属箔70とクラッド材31の両方から均等に供給することができるからである。 As shown in FIG. 11, it is preferable that the positions of the inner peripheral surface of the metal foil 70 and the inner wall surface of the through hole 37 of the clad material 31 are aligned in the radial direction of the through hole 37. This is because, in the brazing process, brazing material can be evenly supplied from both the metal foil 70 and the clad material 31 to the gap between the inner wall of the through hole 33 of the reinforcing plate 31 and the base end 66 of the pipe fitting 62.
(実施の形態2)
 実施の形態1に係るプレート式熱交換器1Aの製造方法では、製造対象のプレート式熱交換器1Aが備える補強プレート30A、40Aの外側に面する面、すなわち外面が平らである。しかし、補強プレート30A、40Aはこれに限定されない。補強プレート30A、40Aは、伝熱プレート10、20の流路空間へ流体を流出入させるための貫通孔33と、内面の側に設けられ、ろうによって形成されたクラッド材31、41、すなわち、クラッド層とを有していればよい。補強プレート30A、40Aの外面の形状は、これを満たす限りにおいて任意である。例えば、補強プレート30A、40Aの外面には、ろう付け工程で余剰なろうが入り込む凹みが形成されていてもよい。
(Embodiment 2)
In the manufacturing method of the plate heat exchanger 1A according to the first embodiment, the surface facing the outside of the reinforcing plates 30A, 40A included in the plate heat exchanger 1A to be manufactured, i.e., the outer surface, is flat. However, the reinforcing plates 30A, 40A are not limited to this. The reinforcing plates 30A, 40A only need to have a through hole 33 for allowing a fluid to flow in and out of the flow passage space of the heat transfer plates 10, 20, and a clad material 31, 41 formed by brazing, i.e., a clad layer, provided on the inner surface side. The shape of the outer surface of the reinforcing plates 30A, 40A is arbitrary as long as it satisfies this requirement. For example, the outer surface of the reinforcing plates 30A, 40A may have a recess into which excess brazing fills during the brazing process.
 実施の形態2に係るプレート式熱交換器1Bの製造方法では、外面に貫通孔33を囲む凹み36が形成された補強プレート30Bが使用されている。以下、図12および図13を参照して、実施の形態2に係るプレート式熱交換器1Bの製造方法について説明する。実施の形態2では、実施の形態1と異なる構成を中心に説明する。 In the manufacturing method of the plate heat exchanger 1B according to the second embodiment, a reinforcing plate 30B is used, in which a recess 36 surrounding a through hole 33 is formed on the outer surface. Below, the manufacturing method of the plate heat exchanger 1B according to the second embodiment will be described with reference to Figures 12 and 13. In the second embodiment, the configuration different from the first embodiment will be mainly described.
 図12は、実施の形態2に係るプレート式熱交換器1Bが備える補強プレート30Bと管継手62の斜視図である。図13は、プレート式熱交換器1Bの製造方法が備える管継手取り付け工程によって管継手62が取り付けられた補強プレート30Bの一部の拡大断面図である。 Figure 12 is a perspective view of the reinforcing plate 30B and the pipe fitting 62 included in the plate heat exchanger 1B according to the second embodiment. Figure 13 is an enlarged cross-sectional view of a portion of the reinforcing plate 30B to which the pipe fitting 62 has been attached by the pipe fitting attachment step included in the manufacturing method of the plate heat exchanger 1B.
 図12および図13に示すように、製造対象のプレート式熱交換器1Bでは、補強プレート30Bの外面側、すなわち-X面の側に貫通孔33を取り囲む円形状に延びる溝の形状の凹み36が形成されている。 As shown in Figures 12 and 13, in the plate heat exchanger 1B to be manufactured, a recess 36 in the shape of a circular groove that surrounds the through hole 33 is formed on the outer surface side of the reinforcing plate 30B, i.e., on the -X surface side.
 凹み36は、図13に示すように、断面視で矩形状に補強プレート30Bの-X面から+X方向に凹んだ溝の形状である。そして、凹み36は、図12に示すように、上述したように円環状に伸びている。その円環の形状は、貫通孔33が有する円形状の開口と同心である。その円環の直径D6は、金属箔70の内径D4よりも大きく、金属箔70の外径D5よりも小さい。これにより、プレート式熱交換器1Bの製造方法が備える管継手取り付け工程で、金属箔70が管継手62のビード部65と補強プレート30Bに挟み込まれたときに、図13に示すように、凹み36は、金属箔70によって覆われる。すなわち、凹み36は、金属箔70の+X側に位置する。その結果、プレート式熱交換器1Bの製造方法が備えるろう付け工程で金属箔70が溶融したときに、ろうが浸透可能である。これにより、凹み36は、ろう付け工程での余剰なろうを溜める。その結果、凹み36は、ろうがビード部65へ向かって濡れ広がり、ビード部65を超えて-X側にある管継手62の先端部68へ達することを抑制する。 As shown in FIG. 13, the recess 36 is a groove recessed in the +X direction from the -X surface of the reinforcing plate 30B in a rectangular shape in cross section. As shown in FIG. 12, the recess 36 extends in an annular shape as described above. The annular shape is concentric with the circular opening of the through hole 33. The diameter D6 of the annular shape is larger than the inner diameter D4 of the metal foil 70 and smaller than the outer diameter D5 of the metal foil 70. As a result, when the metal foil 70 is sandwiched between the bead portion 65 of the pipe fitting 62 and the reinforcing plate 30B in the pipe fitting attachment process included in the manufacturing method of the plate-type heat exchanger 1B, the recess 36 is covered by the metal foil 70 as shown in FIG. 13. That is, the recess 36 is located on the +X side of the metal foil 70. As a result, when the metal foil 70 melts in the brazing process included in the manufacturing method of the plate-type heat exchanger 1B, the solder can penetrate. As a result, the recess 36 stores excess solder in the brazing process. As a result, the recess 36 prevents the solder from spreading toward the bead portion 65 and reaching the tip portion 68 of the pipe fitting 62 on the -X side beyond the bead portion 65.
 なお、凹み36は、金属箔70の+X側に位置するが、凹み36の位置は、管継手62のビード部65の突端の+X側であることが望ましい。または、凹み36は、ビード部65の+X面である平面部654と対向する位置に設けられることが望ましい。これらの位置であれば、ろう付け工程で余剰なろうが溜まりやすいからである。 The recess 36 is located on the +X side of the metal foil 70, and it is preferable that the recess 36 is located on the +X side of the tip of the bead portion 65 of the pipe fitting 62. Alternatively, it is preferable that the recess 36 is located in a position opposite the flat portion 654, which is the +X surface of the bead portion 65. This is because excess brazing material tends to accumulate in these positions during the brazing process.
 プレート式熱交換器1Bの製造方法は、補強プレート30Bに凹み36が形成されていることを除いて、実施の形態1に係るプレート式熱交換器1Aの製造方法と同じである。このため、詳細な説明を省略する。 The manufacturing method for the plate heat exchanger 1B is the same as the manufacturing method for the plate heat exchanger 1A according to embodiment 1, except that the recess 36 is formed in the reinforcing plate 30B. Therefore, a detailed description will be omitted.
 以上のように、実施の形態2に係るプレート式熱交換器1Bの製造方法では、補強プレート30Bが外面に設けられて貫通孔33を取り囲む凹み36を備える。このため、ろう付け工程で余剰なろうが凹み36に溜められ、余剰なろうがろう付け箇所以外に濡れ広がることが抑制できる。例えば、管継手62の先端部68へ余剰なろうが達することが抑制できる。管継手62の先端部68にはOリングが取り付けられるが、余剰なろうが管継手62の先端部68に付着しない。このため、プレート式熱交換器1Bの製造方法によれば、Oリングの密着性を高めることができる。その結果、管継手62の気密性、水密性を高めることができる。 As described above, in the manufacturing method of the plate heat exchanger 1B according to the second embodiment, the reinforcing plate 30B has a recess 36 on its outer surface surrounding the through hole 33. Therefore, excess solder is stored in the recess 36 during the brazing process, and the excess solder is prevented from spreading to areas other than the brazing point. For example, the excess solder is prevented from reaching the tip 68 of the pipe fitting 62. An O-ring is attached to the tip 68 of the pipe fitting 62, but the excess solder does not adhere to the tip 68 of the pipe fitting 62. Therefore, according to the manufacturing method of the plate heat exchanger 1B, the adhesion of the O-ring can be improved. As a result, the airtightness and watertightness of the pipe fitting 62 can be improved.
 以上、本開示の実施の形態1、2に係るプレート式熱交換器1A、1Bの製造方法およびプレート式熱交換器1A、1Bについて説明したが、プレート式熱交換器1A、1Bの製造方法およびプレート式熱交換器1A、1Bは、これに限定されない。  The manufacturing method for the plate heat exchangers 1A and 1B and the plate heat exchangers 1A and 1B according to the first and second embodiments of the present disclosure have been described above, but the manufacturing method for the plate heat exchangers 1A and 1B and the plate heat exchangers 1A and 1B are not limited to this.
 例えば、実施の形態1、2では、金属箔70の内径D4が、管継手62の基端部66の外径D1よりも微小な距離だけ大きく、金属箔70の外径D5が管継手62のビード部65の外径D2よりも大きい。しかし、金属箔70の内径D4と外径D5はこれに限定されない。金属箔70は、補強プレート30A、30B、40Aの外面の側かつ貫通孔32、33,42,43の周りに配置することができるろう材であればよい。従って、金属箔70の内径D4と外径D5は、この条件を満たすものである限りにおいて任意である。また、金属箔70の厚みT2も同様である。 For example, in the first and second embodiments, the inner diameter D4 of the metal foil 70 is a small distance larger than the outer diameter D1 of the base end 66 of the pipe fitting 62, and the outer diameter D5 of the metal foil 70 is larger than the outer diameter D2 of the bead portion 65 of the pipe fitting 62. However, the inner diameter D4 and the outer diameter D5 of the metal foil 70 are not limited to this. The metal foil 70 may be any brazing material that can be placed on the outer surface side of the reinforcing plates 30A, 30B, 40A and around the through holes 32, 33, 42, 43. Therefore, the inner diameter D4 and the outer diameter D5 of the metal foil 70 are arbitrary as long as they satisfy this condition. The same is true of the thickness T2 of the metal foil 70.
 例えば、金属箔70の内径D4は、管継手62の基端部66の外径D1と同じであってもよい。一方、金属箔70の外径D5は、製造時に金属箔70の取り付け忘れを防ぐことはできないが、管継手62のビード部65の外径D2と同じであってもよい。または、外径D5は、ビード部65の外径D2よりも小さくてもよい。 For example, the inner diameter D4 of the metal foil 70 may be the same as the outer diameter D1 of the base end 66 of the pipe fitting 62. On the other hand, the outer diameter D5 of the metal foil 70 may be the same as the outer diameter D2 of the bead portion 65 of the pipe fitting 62, although this does not prevent the metal foil 70 from being left unattached during manufacturing. Alternatively, the outer diameter D5 may be smaller than the outer diameter D2 of the bead portion 65.
 また、実施の形態1、2では、金属箔70が円環かつ平らな形状である。しかし、金属箔70の形状はこれに限定されない。金属箔70は、上述したように、補強プレート30A、30B、40Aの外面の側かつ貫通孔32、33,42,43の周りに配置することができるろう材であればよい。従って、金属箔70は、この条件を満たすことができるろう材に置き換えられてもよい。 In addition, in the first and second embodiments, the metal foil 70 has a circular and flat shape. However, the shape of the metal foil 70 is not limited to this. As described above, the metal foil 70 may be any brazing material that can be placed on the outer surface side of the reinforcing plates 30A, 30B, 40A and around the through holes 32, 33, 42, 43. Therefore, the metal foil 70 may be replaced with a brazing material that can satisfy this condition.
 図14は、実施の形態1に係るプレート式熱交換器1Aの製造方法の変形例で用いられる棒状のろう材71と管継手62の断面図である。図15は、実施の形態1に係るプレート式熱交換器1Aの製造方法の別の変形例で用いられるペースト状のろう材72と管継手62の断面図である。 FIG. 14 is a cross-sectional view of a rod-shaped brazing material 71 and a pipe joint 62 used in a modified example of the manufacturing method for the plate heat exchanger 1A according to embodiment 1. FIG. 15 is a cross-sectional view of a paste-like brazing material 72 and a pipe joint 62 used in another modified example of the manufacturing method for the plate heat exchanger 1A according to embodiment 1.
 図14に示すように、管継手62は、基端部66よりも内径および外径が大きく、補強プレート30Aの貫通孔33に挿入不能な円管状の径大部651を備えていてもよい。そして、その径大部651の基端部66側のコーナー部に凹部652が形成されていてもよい。この場合、プレート式熱交換器1Aの製造方法のろう付け工程で、金属箔70の替わりに凹部652に嵌め込み可能なろう材71が用いられるとよい。そして、ろう材71には、リングの形状に屈曲した、断面視円形の棒状のろう材71が用いられるとよい。このような形状のろう材71であれば、凹部652によって位置決めをすることができるからである。また、このような形状のろう材71であれば、補強プレート30Aのクラッド材31がある面と反対側の面から、すなわち補強プレート30Aの-X面の側から、管継手62の基端部66と貫通孔33の内壁との隙間にろうを供給できるからである。なお、ろう材71は、断面視円形のほか、断面視矩形、楕円等の形状であってもよい。 14, the pipe fitting 62 may have a large diameter portion 651 in the shape of a circular tube, which has an inner diameter and an outer diameter larger than the base end 66 and cannot be inserted into the through hole 33 of the reinforcing plate 30A. A recess 652 may be formed in the corner of the large diameter portion 651 on the base end 66 side. In this case, a brazing material 71 that can be fitted into the recess 652 may be used instead of the metal foil 70 in the brazing process of the manufacturing method of the plate-type heat exchanger 1A. The brazing material 71 may be a rod-shaped brazing material 71 that is bent into a ring shape and has a circular cross section. This is because the brazing material 71 of this shape can be positioned by the recess 652. This is because the brazing material 71 of this shape can be supplied to the gap between the base end 66 of the pipe fitting 62 and the inner wall of the through hole 33 from the side opposite to the side of the reinforcing plate 30A where the clad material 31 is located, that is, from the -X side of the reinforcing plate 30A. In addition to a circular cross section, the brazing material 71 may also be rectangular, elliptical, or other shapes when viewed in cross section.
 また、図15に示すように、管継手62は、基端部66側のコーナー部に凹部652を有しない径大部651を備えていてもよい。この場合、プレート式熱交換器1Aの製造方法のろう付け工程で、径大部651の基端部66側のコーナー部に沿ってペースト状のろう材72が配置されるとよい。このようなろう材72でも、図14に示す形態と同様に、補強プレート30Aの-X面の側から、管継手62の基端部66と貫通孔33の内壁との隙間にろうを供給できるからである。 Also, as shown in FIG. 15, the pipe fitting 62 may have an enlarged diameter portion 651 that does not have a recess 652 at the corner portion on the base end 66 side. In this case, in the brazing step of the manufacturing method of the plate heat exchanger 1A, a paste-like brazing material 72 may be placed along the corner portion on the base end 66 side of the enlarged diameter portion 651. This is because, with this type of brazing material 72, brazing material can be supplied to the gap between the base end 66 of the pipe fitting 62 and the inner wall of the through hole 33 from the -X surface side of the reinforcing plate 30A, as in the form shown in FIG. 14.
 なお、図15に示す管継手62の場合、ペースト状のろう材72は、実施の形態1、2で説明した金属箔70に置き換えられてもよい。 In the case of the pipe fitting 62 shown in FIG. 15, the paste-like brazing material 72 may be replaced with the metal foil 70 described in the first and second embodiments.
 また、管継手62の基端部66と貫通孔33の内壁との隙間にろうを十分供給するため、ろう材71、72の体積は、管継手62の基端部66と貫通孔33の内壁との隙間の体積の25%以上であることが望ましい。実施の形態1、2で説明した金属箔70も、同様の体積であることが望ましい。 Furthermore, in order to provide a sufficient supply of solder to the gap between the base end 66 of the pipe fitting 62 and the inner wall of the through hole 33, it is desirable that the volume of the solder materials 71, 72 be 25% or more of the volume of the gap between the base end 66 of the pipe fitting 62 and the inner wall of the through hole 33. It is desirable that the metal foil 70 described in the first and second embodiments also have a similar volume.
 実施の形態1、2では、金属箔取り付け工程の後に、管継手取り付け工程を行っている。しかし、プレート式熱交換器1A、1Bの製造方法はこれに限定されない。プレート式熱交換器1A、1Bの製造方法は、(1)最外側伝熱プレートの外面の側かつ貫通孔32、33、42、43の周りにろう材を配置する工程と、(2)最外側伝熱プレートの外面の側から管部材の基端部を貫通孔32、33、42、43に挿入し、径大部を最外側伝熱プレートの外面に隣り合わせることにより、管部材を最外側伝熱プレートに取り付ける工程と、を備えて、プレート式熱交換器1A、1Bを製造すればよい。そして、プレート式熱交換器1A、1Bの製造方法では(1)の工程の後に(2)の工程を行ってもよいし、逆に(2)の工程の後に(1)の工程を行ってもよい。 In the first and second embodiments, the metal foil attachment step is followed by the pipe joint attachment step. However, the manufacturing method of the plate heat exchangers 1A and 1B is not limited to this. The manufacturing method of the plate heat exchangers 1A and 1B includes the steps of (1) arranging brazing material on the outer surface side of the outermost heat transfer plate and around the through holes 32, 33, 42, and 43, and (2) inserting the base end of the tube member into the through holes 32, 33, 42, and 43 from the outer surface side of the outermost heat transfer plate and aligning the large diameter portion adjacent to the outer surface of the outermost heat transfer plate to attach the tube member to the outermost heat transfer plate, thereby manufacturing the plate heat exchangers 1A and 1B. In the manufacturing method of the plate heat exchangers 1A and 1B, the step (2) may be performed after the step (1), or conversely, the step (1) may be performed after the step (2).
 ここで、最外側伝熱プレートとは、補強プレート30A、30B、40Aと伝熱プレート10、20を含む一般に伝熱プレートと称されるプレートのうち、最も外側に位置するプレートのことである。また、管部材とは、管形状の部材のことであり、例えば、管継手61-64がその一例である。 Here, the outermost heat transfer plate refers to the plate located on the outermost side among the plates generally referred to as heat transfer plates, which include the reinforcing plates 30A, 30B, and 40A and the heat transfer plates 10 and 20. Also, the tubular member refers to a member having a tubular shape, and one example of this is the pipe joints 61-64.
 従って、実施の形態1、2で説明した金属箔取り付け工程と管継手取り付け工程は、上記の条件を満たす限りにおいて、それらの順序は限定されない。例えば、図15に示すろう材72を用いる場合、管継手取り付け工程の後に、金属箔取り付け工程、すなわち、ろう材72の配置工程を行ってもよい。 Therefore, the order of the metal foil attachment process and the pipe joint attachment process described in the first and second embodiments is not limited as long as the above conditions are met. For example, when using the brazing material 72 shown in FIG. 15, the metal foil attachment process, i.e., the process of placing the brazing material 72, may be performed after the pipe joint attachment process.
 実施の形態1、2では、金属箔70の材料が純銅または銅合金である。しかし、金属箔70の材料は、ろうである限りにおいて、限定されない。例えば、金属箔70の材料は純アルミニウムまたはアルミニウム合金であってもよい。 In the first and second embodiments, the material of the metal foil 70 is pure copper or a copper alloy. However, the material of the metal foil 70 is not limited as long as it is a wax. For example, the material of the metal foil 70 may be pure aluminum or an aluminum alloy.
 実施の形態1、2では、補強プレート30A、30B、40Aに管継手61-64を接合する。しかし、プレート式熱交換器1Aの製造方法はこれに限定されない。管継手61-64は、流体を流路空間に流出入させる管部材であればよい。例えば、管継手61-64は、外部機器との接続に用いられる接続管、冷媒管またはノズル等であってもよい。 In the first and second embodiments, the pipe fittings 61-64 are joined to the reinforcing plates 30A, 30B, and 40A. However, the manufacturing method of the plate heat exchanger 1A is not limited to this. The pipe fittings 61-64 may be any pipe member that allows fluid to flow in and out of the flow path space. For example, the pipe fittings 61-64 may be connection pipes, refrigerant pipes, nozzles, etc., used to connect to external equipment.
 また、実施の形態1、2では、管継手61-64は、パイプを端末加工することにより製造されている。その結果、管継手61-64では、管壁部の厚みが一定である。しかし、管継手61-64はこれに限定されない。上述したように、管継手61-64は、流体を流路空間に流出入させる管部材であればよいので、管壁部の厚みは一定でなくてもよい。 In addition, in the first and second embodiments, the pipe fittings 61-64 are manufactured by processing the ends of the pipes. As a result, the thickness of the pipe wall portion of the pipe fittings 61-64 is constant. However, the pipe fittings 61-64 are not limited to this. As described above, the pipe fittings 61-64 only need to be pipe members that allow fluid to flow in and out of the flow path space, so the thickness of the pipe wall portion does not need to be constant.
 図16は、実施の形態1に係るプレート式熱交換器1Aが備える管継手62のさらに別の変形例の断面図である。 FIG. 16 is a cross-sectional view of yet another modified example of the pipe fitting 62 provided in the plate heat exchanger 1A according to embodiment 1.
 管継手62では、切削加工により製造された結果、図16に示すように、先端部68およびビード部65の管壁部の厚みが基端部66の管壁部の厚みよりも厚くてもよい。このように、管継手62では、管壁部の一部分の厚みが管壁部の他の部分の厚みよりも厚くてもよい。 As a result of being manufactured by cutting, the pipe wall thickness of the tip portion 68 and the bead portion 65 may be thicker than the pipe wall thickness of the base portion 66, as shown in FIG. 16. In this way, the pipe fitting 62 may have a portion of the pipe wall thickness thicker than the other portions of the pipe wall thickness.
 また、実施の形態1、2では、管継手61-64の基端部66をかしめることにより、補強プレート30A、30B、40Aに管継手61-64が仮固定されている。しかし、プレート式熱交換器1A、1Bの製造方法はこれに限定されない。プレート式熱交換器1A、1Bの製造方法では、管継手61-64を補強プレート30A、30B、40Aに取り付ける工程は、換言すると、管部材を最外側伝熱プレートに取り付ける工程は、最外側伝熱プレートの外面の側から管部材の基端部を貫通孔32、33、42、43に挿入し、ビード部65または径大部651を最外側伝熱プレートの外面に隣り合わせることにより、行われるものであればよい。 In addition, in the first and second embodiments, the pipe fittings 61-64 are temporarily fixed to the reinforcing plates 30A, 30B, and 40A by crimping the base ends 66 of the pipe fittings 61-64. However, the manufacturing method of the plate- type heat exchangers 1A and 1B is not limited to this. In the manufacturing method of the plate- type heat exchangers 1A and 1B, the process of attaching the pipe fittings 61-64 to the reinforcing plates 30A, 30B, and 40A, in other words, the process of attaching the pipe members to the outermost heat transfer plates, may be performed by inserting the base ends of the pipe members into the through holes 32, 33, 42, and 43 from the outer surface side of the outermost heat transfer plate and aligning the bead portion 65 or the large diameter portion 651 adjacent to the outer surface of the outermost heat transfer plate.
 ここで、ビード部65または径大部651が最外側伝熱プレートの外面と隣り合うことには、ビード部65または径大部651と最外側伝熱プレートの外面が、ろう材、すなわち、金属箔70またはろう材71、72を介して隣り合うことが含まれてもよい。または、ビード部65または径大部651と最外側伝熱プレートの外面が金属箔70またはろう材71、72を介さないで、隣り合うことが含まれてもよい。 Here, the bead portion 65 or the large diameter portion 651 being adjacent to the outer surface of the outermost heat transfer plate may include the bead portion 65 or the large diameter portion 651 being adjacent to the outer surface of the outermost heat transfer plate via a brazing material, i.e., metal foil 70 or brazing materials 71, 72. Or, it may include the bead portion 65 or the large diameter portion 651 being adjacent to the outer surface of the outermost heat transfer plate without the metal foil 70 or brazing materials 71, 72 being interposed.
 このため、プレート式熱交換器1A、1Bの製造方法では、管継手61-64の基端部66をかしめるか否かは任意の工程である。例えば、管継手61-64の基端部66を補強プレート30A、30B、40Aの貫通孔33に圧入することにより、補強プレート30A、30B、40Aに管継手61-64が仮固定されてもよい。 For this reason, in the manufacturing method of the plate heat exchangers 1A and 1B, whether or not to crimp the base ends 66 of the pipe fittings 61-64 is an optional step. For example, the pipe fittings 61-64 may be temporarily fixed to the reinforcing plates 30A, 30B, and 40A by pressing the base ends 66 of the pipe fittings 61-64 into the through holes 33 of the reinforcing plates 30A, 30B, and 40A.
 実施の形態1、2では、補強プレート30Aと同形の形状を有するクラッド材31が取り付けられた補強プレート30Aに管継手61、62が接続される。また、補強プレート40Aと同形の形状を有するクラッド材41が取り付けられた補強プレート40Aに管継手63、64が接続される。しかし、補強プレート30A、40Aはこれに限定されない。プレート式熱交換器1A、1Bの製造方法では、最外側伝熱プレートが流路空間へ流体を流出入させるための貫通孔32、33、42、43を有すると共に、貫通孔32、33、42、43の周り、かつ内面の側にろう材を有していればよい。したがって、クラッド材31、41は、補強プレート30A、40Aと同形でなくてもよい。例えば、クラッド材31、41は、貫通孔32、33、42、43の周り、かつ内面の側に形成されたリング状の金属箔に置き換えられてもよい。また、クラッド材31、41は、補強プレート30A、40Aに事前に取り付けられて一体化していなくてもよく、補強プレート30A、40Aと別部品であってもよい。その場合、クラッド材31、41が重ねられた補強プレート30A、40Aに管継手61-64が取り付けられるとよい。 In the first and second embodiments, the pipe fittings 61 and 62 are connected to the reinforcing plate 30A to which the clad material 31 having the same shape as the reinforcing plate 30A is attached. Also, the pipe fittings 63 and 64 are connected to the reinforcing plate 40A to which the clad material 41 having the same shape as the reinforcing plate 40A is attached. However, the reinforcing plates 30A and 40A are not limited to this. In the manufacturing method of the plate- type heat exchanger 1A and 1B, it is sufficient that the outermost heat transfer plate has through holes 32, 33, 42, and 43 for allowing fluid to flow in and out of the flow path space, and has brazing material around the through holes 32, 33, 42, and 43 and on the inner surface side. Therefore, the clad materials 31 and 41 do not have to be the same shape as the reinforcing plates 30A and 40A. For example, the clad materials 31 and 41 may be replaced with ring-shaped metal foil formed around the through holes 32, 33, 42, and 43 and on the inner surface side. Furthermore, the clad materials 31, 41 do not have to be attached to the reinforcing plates 30A, 40A in advance and integrated with them, and may be separate parts from the reinforcing plates 30A, 40A. In that case, the pipe fittings 61-64 may be attached to the reinforcing plates 30A, 40A on which the clad materials 31, 41 are layered.
 以上のように、プレート式熱交換器1A、1Bの製造方法およびプレート式熱交換器1A、1Bは、上記の実施の形態に限定されず、様々な変形および置換を加えることができる。以下に、本開示の様々な形態を付記として記載する。 As described above, the manufacturing method of the plate heat exchangers 1A and 1B and the plate heat exchangers 1A and 1B are not limited to the above-described embodiment, and various modifications and substitutions can be made. Various embodiments of the present disclosure are described below as appendices.
(付記1)
 流体が流れる流路空間を互いの間に設けて積み重ねられた複数の伝熱プレートであって、少なくとも最も外側に位置する最外側伝熱プレートが前記流路空間へ前記流体を流出入させるための貫通孔を有すると共に、前記貫通孔の周り、かつ内面の側に第一ろう材を有する複数の伝熱プレートと、
 基端部と、該基端部よりも外径が大きい径大部とを有し、前記基端部が前記貫通孔に通され、かつ前記径大部が前記最外側伝熱プレートの外面に隣り合った状態で、前記基端部が前記貫通孔の内壁にろう付けされた、前記流体を前記流路空間に流出入させる管部材と、
 を備えるプレート式熱交換器の製造方法であって、
 前記最外側伝熱プレートの外面の側かつ前記貫通孔の周りに第二ろう材を配置する工程と、
 前記最外側伝熱プレートの外面の側から前記管部材の前記基端部を前記貫通孔に挿入し、前記径大部を前記最外側伝熱プレートの外面に隣り合わせることにより、前記管部材を前記最外側伝熱プレートに取り付ける工程と、
 前記管部材が取り付けられた前記最外側伝熱プレートを加熱することにより、前記第一ろう材と前記第二ろう材を溶融させて前記管部材の前記基端部を前記最外側伝熱プレートの前記貫通孔の内壁にろう付けする工程と、
 を備えるプレート式熱交換器の製造方法
(付記2)
 前記第二ろう材は、前記管部材の前記基端部が挿入可能なリングの形状を有する、
 付記1に記載のプレート式熱交換器の製造方法。
(付記3)
 前記第二ろう材を配置する工程では、前記管部材を前記最外側伝熱プレートに取り付ける工程の前に、前記第二ろう材の前記リングの孔に前記管部材の前記基端部を通し、その後、前記管部材を前記最外側伝熱プレートに取り付ける工程で、前記第二ろう材が前記管部材の前記径大部と前記最外側伝熱プレートとの間に挟み込まれるまで前記管部材の前記基端部を前記貫通孔に挿入することにより、前記貫通孔の周りに前記第二ろう材を配置する、
 付記2に記載のプレート式熱交換器の製造方法。
(付記4)
 前記第二ろう材は、箔状の形状を有し、
 前記第二ろう材を配置する工程では、前記第二ろう材を前記管部材の前記径大部と前記最外側伝熱プレートとの間に挟み込むことにより、前記径大部の、前記最外側伝熱プレートに対する位置を決める、
 付記3に記載のプレート式熱交換器の製造方法。
(付記5)
 前記第二ろう材の外径は、前記管部材の前記径大部の外径よりも大きく、
 前記第二ろう材の内径は、前記管部材の前記径大部の外径よりも小さく、かつ前記管部材の前記基端部の外径よりも大きい、
 付記2から4のいずれか1つに記載のプレート式熱交換器の製造方法。
(付記6)
 前記第一ろう材は、前記最外側伝熱プレートの内面の側に設けられ、ろうによって形成されたクラッド層である、
 付記1から4のいずれか1つに記載のプレート式熱交換器の製造方法。
(付記7)
 前記管部材の前記径大部は、前記基端部から先端部までの各部分のいずれよりも外径が大きい、
 付記1から6のいずれか1つに記載のプレート式熱交換器の製造方法。
(付記8)
 前記管部材の前記径大部の、前記管部材の延在方向の厚みは、前記第二ろう材の厚みよりも大きい、
 付記1から7のいずれか1つに記載のプレート式熱交換器の製造方法。
(付記9)
 前記最外側伝熱プレートは、外面の側に設けられ、前記貫通孔を囲む凹みを有し、
 前記第二ろう材を配置する工程では、前記第二ろう材が前記凹みの上に配置される、
 付記1から8のいずれか1つに記載のプレート式熱交換器の製造方法。
(付記10)
 前記管部材は、前記径大部に隣接すると共に、前記基端部よりも先端側に位置する管部分を有し、
 前記管部分では、前記第一ろう材と前記第二ろう材を溶融させて得られるろうに対する濡れ性が前記径大部よりも低い、
 付記1から9のいずれか1つに記載のプレート式熱交換器の製造方法。
(付記11)
 流体が流れる流路空間を互いの間に設けて積み重ねられた複数の伝熱プレートであって、最も外側に位置する最外側伝熱プレートが、前記流路空間へ前記流体を流出入させるための貫通孔と、該貫通孔の周り、かつ内面の側に設けられた第一ろう材とを有する複数の伝熱プレートと、
 基端部と、該基端部の先端側に設けられ、該基端部よりも外径が大きい径大部とを有し、前記基端部が前記貫通孔に通され、かつ前記径大部が前記最外側伝熱プレートの外面に隣り合った状態で、前記基端部が前記貫通孔の内壁にろう付けされた、前記流体を前記流路空間に流出入させる管部材と、
 前記最外側伝熱プレートの外面の側かつ前記貫通孔の周りに第二ろう材と、
 を備え、
 前記最外側伝熱プレートと前記管部材の前記径大部との間と、前記貫通孔の内壁と前記管部材の前記基端部との間には、ろうが充填されている、
 プレート式熱交換器。
(Appendix 1)
a plurality of heat transfer plates stacked with flow passage spaces between them through which a fluid flows, at least an outermost heat transfer plate positioned on the outermost side has a through hole for allowing the fluid to flow in and out of the flow passage space, and has a first brazing material around the through hole and on an inner surface side of the heat transfer plate;
a pipe member for allowing the fluid to flow in and out of the flow path space, the pipe member having a base end and a large diameter portion having an outer diameter larger than that of the base end, the base end being passed through the through hole and brazed to an inner wall of the through hole with the large diameter portion adjacent to an outer surface of the outermost heat transfer plate;
A method for manufacturing a plate heat exchanger comprising:
disposing a second brazing material on an outer surface of the outermost heat transfer plate and around the through hole;
a step of attaching the tube member to the outermost heat transfer plate by inserting the base end of the tube member into the through hole from the side of the outer surface of the outermost heat transfer plate and aligning the large diameter portion adjacent to the outer surface of the outermost heat transfer plate;
a step of heating the outermost heat transfer plate to which the tube member is attached, thereby melting the first brazing material and the second brazing material to braze the base end of the tube member to an inner wall of the through hole of the outermost heat transfer plate;
A method for manufacturing a plate heat exchanger comprising the steps of:
the second brazing material has a ring shape into which the proximal end of the tubular member can be inserted;
2. A method for manufacturing the plate heat exchanger according to claim 1.
(Appendix 3)
In the step of arranging the second brazing material, before the step of attaching the tube member to the outermost heat transfer plate, the base end of the tube member is passed through a hole in the ring of the second brazing material, and then, in the step of attaching the tube member to the outermost heat transfer plate, the base end of the tube member is inserted into the through hole until the second brazing material is sandwiched between the large diameter portion of the tube member and the outermost heat transfer plate, thereby arranging the second brazing material around the through hole.
3. A method for manufacturing the plate heat exchanger according to claim 2.
(Appendix 4)
The second brazing material has a foil shape,
In the step of arranging the second brazing filler metal, the second brazing filler metal is sandwiched between the large diameter portion of the tube member and the outermost heat transfer plate, thereby determining a position of the large diameter portion with respect to the outermost heat transfer plate.
4. A method for manufacturing a plate heat exchanger according to claim 3.
(Appendix 5)
an outer diameter of the second brazing material is larger than an outer diameter of the large diameter portion of the tubular member;
an inner diameter of the second brazing material is smaller than an outer diameter of the large diameter portion of the tubular member and is larger than an outer diameter of the base end portion of the tubular member;
5. A method for manufacturing a plate heat exchanger according to any one of claims 2 to 4.
(Appendix 6)
The first brazing material is a clad layer formed of brazing material on the inner surface side of the outermost heat transfer plate.
5. A method for manufacturing a plate heat exchanger according to any one of claims 1 to 4.
(Appendix 7)
The large diameter portion of the tubular member has an outer diameter larger than any of the portions from the base end portion to the tip end portion.
7. A method for manufacturing a plate heat exchanger according to any one of claims 1 to 6.
(Appendix 8)
a thickness of the large diameter portion of the tubular member in an extension direction of the tubular member is greater than a thickness of the second brazing filler metal;
8. A method for manufacturing a plate heat exchanger according to any one of claims 1 to 7.
(Appendix 9)
The outermost heat transfer plate is provided on an outer surface side and has a recess surrounding the through hole,
In the step of disposing the second brazing material, the second brazing material is disposed on the recess.
9. A method for manufacturing a plate heat exchanger according to any one of claims 1 to 8.
(Appendix 10)
the tubular member has a tubular portion adjacent to the large diameter portion and located distally of the base end portion,
the pipe portion has a lower wettability with respect to a brazing filler metal obtained by melting the first brazing filler metal and the second brazing filler metal than the large diameter portion;
10. A method for manufacturing a plate heat exchanger according to any one of claims 1 to 9.
(Appendix 11)
a plurality of heat transfer plates stacked with flow passage spaces between them through which a fluid flows, the outermost heat transfer plate positioned on the outermost side having a through hole for allowing the fluid to flow in and out of the flow passage space, and a first brazing material provided around the through hole and on an inner surface side;
a pipe member for allowing the fluid to flow in and out of the flow path space, the pipe member having a base end and a large diameter portion provided on a tip side of the base end and having an outer diameter larger than that of the base end, the base end being passed through the through hole and brazed to an inner wall of the through hole with the large diameter portion adjacent to an outer surface of the outermost heat transfer plate;
a second brazing material on the outer surface side of the outermost heat transfer plate and around the through hole;
Equipped with
a brazing material is filled between the outermost heat transfer plate and the large diameter portion of the tube member, and between an inner wall of the through hole and the base end portion of the tube member;
Plate heat exchanger.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施形態および変形が可能とされるものである。また、上述した実施形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内およびそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 This disclosure allows for various embodiments and modifications without departing from the broad spirit and scope of the disclosure. Furthermore, the above-described embodiments are intended to explain the disclosure and do not limit the scope of the disclosure. In other words, the scope of the disclosure is indicated by the claims, not the embodiments. Furthermore, various modifications made within the scope of the claims and within the scope of the disclosure equivalent thereto are deemed to be within the scope of the disclosure.
 本出願は、2022年12月21日に出願された日本国特許出願特願2022-204852号に基づく。本明細書中に日本国特許出願特願2022-204852号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2022-204852, filed on December 21, 2022. The entire specification, claims, and drawings of Japanese Patent Application No. 2022-204852 are incorporated herein by reference.
 1A,1B プレート式熱交換器、10 伝熱プレート、11 起立壁、12 インナーフィン、13 金属箔、14,15 流出入孔、16,17 連通孔、20 伝熱プレート、21 起立壁、22 インナーフィン、23 金属箔、24,25 連通孔、26,27 流出入孔、30A,30B 補強プレート、31 クラッド材、32,33 貫通孔、34,35 フィレット、36 凹み、37 貫通孔、40A 補強プレート、41 クラッド材、42,43 貫通孔、50 積層体、61-64 管継手、65 ビード部、66 基端部、67 溝、68 先端部、70 金属箔、71,72 ろう材、80 ポンチ、651 径大部、652 凹部、653,654 平面部、655,656 直管部分、A1-A3 矢印、D1-D3 外径、D4 内径、D5 外径、D6 直径、G 隙間、T1,T2 厚み。 1A, 1B: plate type heat exchanger, 10: heat transfer plate, 11: standing wall, 12: inner fin, 13: metal foil, 14, 15: inlet/outlet holes, 16, 17: communication holes, 20: heat transfer plate, 21: standing wall, 22: inner fin, 23: metal foil, 24, 25: communication holes, 26, 27: inlet/outlet holes, 30A, 30B: reinforcing plate, 31: clad material, 32, 33: through hole, 34, 35: fillet, 36: recess, 37: through hole, 40A Reinforcement plate, 41 Clad material, 42, 43 Through hole, 50 Laminate, 61-64 Pipe joint, 65 Bead portion, 66 Base end, 67 Groove, 68 Tip portion, 70 Metal foil, 71, 72 Brazing material, 80 Punch, 651 Large diameter portion, 652 Recess, 653, 654 Flat portion, 655, 656 Straight pipe portion, A1-A3 Arrow, D1-D3 Outer diameter, D4 Inner diameter, D5 Outer diameter, D6 Diameter, G Gap, T1, T2 Thickness.

Claims (11)

  1.  流体が流れる流路空間を互いの間に設けて積み重ねられた複数の伝熱プレートであって、少なくとも最も外側に位置する最外側伝熱プレートが前記流路空間へ前記流体を流出入させるための貫通孔を有すると共に、前記貫通孔の周り、かつ内面の側に第一ろう材を有する複数の伝熱プレートと、
     基端部と、該基端部よりも外径が大きい径大部とを有し、前記基端部が前記貫通孔に通され、かつ前記径大部が前記最外側伝熱プレートの外面に隣り合った状態で、前記基端部が前記貫通孔の内壁にろう付けされた、前記流体を前記流路空間に流出入させる管部材と、
     を備えるプレート式熱交換器の製造方法であって、
     前記最外側伝熱プレートの外面の側かつ前記貫通孔の周りに第二ろう材を配置する工程と、
     前記最外側伝熱プレートの外面の側から前記管部材の前記基端部を前記貫通孔に挿入し、前記径大部を前記最外側伝熱プレートの外面に隣り合わせることにより、前記管部材を前記最外側伝熱プレートに取り付ける工程と、
     前記管部材が取り付けられた前記最外側伝熱プレートを加熱することにより、前記第一ろう材と前記第二ろう材を溶融させて前記管部材の前記基端部を前記最外側伝熱プレートの前記貫通孔の内壁にろう付けする工程と、
     を備えるプレート式熱交換器の製造方法。
    a plurality of heat transfer plates stacked with flow passage spaces between them through which a fluid flows, at least an outermost heat transfer plate positioned on the outermost side has a through hole for allowing the fluid to flow in and out of the flow passage space, and has a first brazing material around the through hole and on an inner surface side of the heat transfer plate;
    a pipe member for allowing the fluid to flow in and out of the flow path space, the pipe member having a base end and a large diameter portion having an outer diameter larger than that of the base end, the base end being passed through the through hole and brazed to an inner wall of the through hole with the large diameter portion adjacent to an outer surface of the outermost heat transfer plate;
    A method for manufacturing a plate heat exchanger comprising:
    disposing a second brazing material on an outer surface of the outermost heat transfer plate and around the through hole;
    a step of attaching the tube member to the outermost heat transfer plate by inserting the base end of the tube member into the through hole from the side of the outer surface of the outermost heat transfer plate and aligning the large diameter portion adjacent to the outer surface of the outermost heat transfer plate;
    a step of heating the outermost heat transfer plate to which the tube member is attached, thereby melting the first brazing material and the second brazing material to braze the base end of the tube member to an inner wall of the through hole of the outermost heat transfer plate;
    A method for manufacturing a plate heat exchanger comprising:
  2.  前記第二ろう材は、前記管部材の前記基端部が挿入可能なリングの形状を有する、
     請求項1に記載のプレート式熱交換器の製造方法。
    the second brazing material has a ring shape into which the proximal end of the tubular member can be inserted;
    A method for manufacturing the plate heat exchanger according to claim 1.
  3.  前記第二ろう材を配置する工程では、前記管部材を前記最外側伝熱プレートに取り付ける工程の前に、前記第二ろう材の前記リングの孔に前記管部材の前記基端部を通し、その後、前記管部材を前記最外側伝熱プレートに取り付ける工程で、前記第二ろう材が前記管部材の前記径大部と前記最外側伝熱プレートとの間に挟み込まれるまで前記管部材の前記基端部を前記貫通孔に挿入することにより、前記貫通孔の周りに前記第二ろう材を配置する、
     請求項2に記載のプレート式熱交換器の製造方法。
    In the step of arranging the second brazing material, the base end of the tube member is passed through a hole in the ring of the second brazing material before the step of attaching the tube member to the outermost heat transfer plate, and then, in the step of attaching the tube member to the outermost heat transfer plate, the base end of the tube member is inserted into the through hole until the second brazing material is sandwiched between the large diameter portion of the tube member and the outermost heat transfer plate, thereby arranging the second brazing material around the through hole.
    A method for manufacturing the plate heat exchanger according to claim 2.
  4.  前記第二ろう材は、箔状の形状を有し、
     前記第二ろう材を配置する工程では、前記第二ろう材を前記管部材の前記径大部と前記最外側伝熱プレートとの間に挟み込むことにより、前記径大部の、前記最外側伝熱プレートに対する位置を決める、
     請求項3に記載のプレート式熱交換器の製造方法。
    The second brazing material has a foil shape,
    In the step of arranging the second brazing filler metal, the second brazing filler metal is sandwiched between the large diameter portion of the tube member and the outermost heat transfer plate, thereby determining a position of the large diameter portion with respect to the outermost heat transfer plate.
    A method for manufacturing the plate heat exchanger according to claim 3.
  5.  前記第二ろう材の外径は、前記管部材の前記径大部の外径よりも大きく、
     前記第二ろう材の内径は、前記管部材の前記径大部の外径よりも小さく、かつ前記管部材の前記基端部の外径よりも大きい、
     請求項2から4のいずれか1項に記載のプレート式熱交換器の製造方法。
    an outer diameter of the second brazing material is larger than an outer diameter of the large diameter portion of the tubular member;
    an inner diameter of the second brazing material is smaller than an outer diameter of the large diameter portion of the tubular member and is larger than an outer diameter of the base end portion of the tubular member;
    A method for manufacturing the plate heat exchanger according to any one of claims 2 to 4.
  6.  前記第一ろう材は、前記最外側伝熱プレートの内面の側に設けられ、ろうによって形成されたクラッド層である、
     請求項1から4のいずれか1項に記載のプレート式熱交換器の製造方法。
    The first brazing material is a clad layer formed of brazing material on the inner surface side of the outermost heat transfer plate.
    A method for manufacturing the plate heat exchanger according to any one of claims 1 to 4.
  7.  前記管部材の前記径大部は、前記基端部から先端部までの各部分のいずれよりも外径が大きい、
     請求項1から6のいずれか1項に記載のプレート式熱交換器の製造方法。
    The large diameter portion of the tubular member has an outer diameter larger than any of the portions from the base end portion to the tip end portion.
    A method for manufacturing the plate heat exchanger according to any one of claims 1 to 6.
  8.  前記管部材の前記径大部の、前記管部材の延在方向の厚みは、前記第二ろう材の厚みよりも大きい、
     請求項1から7のいずれか1項に記載のプレート式熱交換器の製造方法。
    a thickness of the large diameter portion of the tube member in an extension direction of the tube member is greater than a thickness of the second brazing filler metal;
    A method for manufacturing the plate heat exchanger according to any one of claims 1 to 7.
  9.  前記最外側伝熱プレートは、外面の側に設けられ、前記貫通孔を囲む凹みを有し、
     前記第二ろう材を配置する工程では、前記第二ろう材が前記凹みの上に配置される、
     請求項1から8のいずれか1項に記載のプレート式熱交換器の製造方法。
    The outermost heat transfer plate is provided on an outer surface side and has a recess surrounding the through hole,
    In the step of disposing the second brazing material, the second brazing material is disposed on the recess.
    A method for manufacturing the plate heat exchanger according to any one of claims 1 to 8.
  10.  前記管部材は、前記径大部に隣接すると共に、前記基端部よりも先端側に位置する管部分を有し、
     前記管部分では、前記第一ろう材と前記第二ろう材を溶融させて得られるろうに対する濡れ性が前記径大部よりも低い、
     請求項1から9のいずれか1項に記載のプレート式熱交換器の製造方法。
    the tubular member has a tubular portion adjacent to the large diameter portion and located distally of the base end portion,
    the pipe portion has a lower wettability with respect to a brazing filler metal obtained by melting the first brazing filler metal and the second brazing filler metal than the large diameter portion;
    A method for manufacturing the plate heat exchanger according to any one of claims 1 to 9.
  11.  流体が流れる流路空間を互いの間に設けて積み重ねられた複数の伝熱プレートであって、最も外側に位置する最外側伝熱プレートが、前記流路空間へ前記流体を流出入させるための貫通孔と、該貫通孔の周り、かつ内面の側に設けられた第一ろう材とを有する複数の伝熱プレートと、
     基端部と、該基端部の先端側に設けられ、該基端部よりも外径が大きい径大部とを有し、前記基端部が前記貫通孔に通され、かつ前記径大部が前記最外側伝熱プレートの外面に隣り合った状態で、前記基端部が前記貫通孔の内壁にろう付けされた、前記流体を前記流路空間に流出入させる管部材と、
     前記最外側伝熱プレートの外面の側かつ前記貫通孔の周りに第二ろう材と、
     を備え、
     前記最外側伝熱プレートと前記管部材の前記径大部との間と、前記貫通孔の内壁と前記管部材の前記基端部との間には、ろうが充填されている、
     プレート式熱交換器。
    a plurality of heat transfer plates stacked with flow passage spaces between them through which a fluid flows, the outermost heat transfer plate positioned on the outermost side having a through hole for allowing the fluid to flow in and out of the flow passage space, and a first brazing material provided around the through hole and on an inner surface side;
    a pipe member for allowing the fluid to flow in and out of the flow path space, the pipe member having a base end and a large diameter portion provided on a tip side of the base end and having an outer diameter larger than that of the base end, the base end being passed through the through hole and brazed to an inner wall of the through hole with the large diameter portion adjacent to an outer surface of the outermost heat transfer plate;
    a second brazing material on the outer surface side of the outermost heat transfer plate and around the through hole;
    Equipped with
    a brazing material is filled between the outermost heat transfer plate and the large diameter portion of the tube member, and between an inner wall of the through hole and the base end portion of the tube member;
    Plate heat exchanger.
PCT/JP2023/023235 2022-12-21 2023-06-22 Method for producing plate-type heat exchanger, and plate-type heat exchanger WO2024134931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022204852 2022-12-21
JP2022-204852 2022-12-21

Publications (1)

Publication Number Publication Date
WO2024134931A1 true WO2024134931A1 (en) 2024-06-27

Family

ID=91587912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023235 WO2024134931A1 (en) 2022-12-21 2023-06-22 Method for producing plate-type heat exchanger, and plate-type heat exchanger

Country Status (1)

Country Link
WO (1) WO2024134931A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012096U (en) * 1983-06-29 1985-01-26 カルソニックカンセイ株式会社 Tube installation structure in heat exchanger
JPH0188187U (en) * 1987-11-30 1989-06-09
JPH03187128A (en) * 1989-12-15 1991-08-15 Hitachi Ltd Cathode structure of magnetron
JPH05318098A (en) * 1992-05-22 1993-12-03 Showa Alum Corp Heat exchanger
WO2000000310A1 (en) * 1998-06-16 2000-01-06 Alfa Laval Ab A method of producing a plate heat exchanger; and a plate heat exchanger
JP2002181486A (en) * 2000-12-15 2002-06-26 Denso Corp Heat exchanger
JP2021017935A (en) * 2019-07-22 2021-02-15 リンナイ株式会社 Connection joint, manufacturing method for heat exchanger, and heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012096U (en) * 1983-06-29 1985-01-26 カルソニックカンセイ株式会社 Tube installation structure in heat exchanger
JPH0188187U (en) * 1987-11-30 1989-06-09
JPH03187128A (en) * 1989-12-15 1991-08-15 Hitachi Ltd Cathode structure of magnetron
JPH05318098A (en) * 1992-05-22 1993-12-03 Showa Alum Corp Heat exchanger
WO2000000310A1 (en) * 1998-06-16 2000-01-06 Alfa Laval Ab A method of producing a plate heat exchanger; and a plate heat exchanger
JP2002181486A (en) * 2000-12-15 2002-06-26 Denso Corp Heat exchanger
JP2021017935A (en) * 2019-07-22 2021-02-15 リンナイ株式会社 Connection joint, manufacturing method for heat exchanger, and heat exchanger

Similar Documents

Publication Publication Date Title
KR101449350B1 (en) Cell block and method for manufacturing same
US20060086491A1 (en) Heat exchanger and method of manufacturing the same
JPH07227631A (en) Guide tube for heat exchanging in laminated layer type heat exchanger and its manufacture
JP2007053307A (en) Stacked heat exchanger and its manufacturing method
KR100677719B1 (en) Brazing method and brazing structure
US10921069B2 (en) Stacking-type header and method of manufacturing stacking-type header
JP2006026721A (en) Passage built-in mount and its production method
JP2016200312A (en) Heat exchanger and manufacturing method of heat exchanger
KR20010101714A (en) Manifold for heat exchanger
WO2024134931A1 (en) Method for producing plate-type heat exchanger, and plate-type heat exchanger
CN110731010B (en) Laminated heat exchanger and method for manufacturing the same
WO2022163345A1 (en) Plate-type refrigerant piping, air conditioner, and method for manufacturing plate-type refrigerant piping
JP2590250Y2 (en) Heat exchanger
JP2019086196A (en) Heat exchanger header and heat exchanger
JP4606230B2 (en) Heat exchanger
US4945983A (en) Fitting for heat exchanger and method of manufacture thereof
JP3919514B2 (en) Piping connection structure and plate heat exchanger
JP7258240B2 (en) Heat exchanger header, heat exchanger, and method for manufacturing heat exchanger header
JP7471392B2 (en) Heat exchanger header, heat exchanger, method for manufacturing a heat exchanger header, and method for manufacturing a heat exchanger
JP4032508B2 (en) Header mounting structure and header mounting method for plate-fin heat exchanger
JP7181271B2 (en) plate heat exchanger
JP7442682B2 (en) Heat exchanger manufacturing method, air conditioner manufacturing method, heat exchanger and air conditioner
US4881312A (en) Method for manufacturing a fitting for a heat exchanger
JP2003202196A (en) Tube
JP2003130583A (en) In-tank heat exchanger