WO2024131150A1 - 一种玻璃对边输送装置及方法 - Google Patents

一种玻璃对边输送装置及方法 Download PDF

Info

Publication number
WO2024131150A1
WO2024131150A1 PCT/CN2023/117761 CN2023117761W WO2024131150A1 WO 2024131150 A1 WO2024131150 A1 WO 2024131150A1 CN 2023117761 W CN2023117761 W CN 2023117761W WO 2024131150 A1 WO2024131150 A1 WO 2024131150A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
conveying
edge
along
axis direction
Prior art date
Application number
PCT/CN2023/117761
Other languages
English (en)
French (fr)
Inventor
彭寿
刘锐
许海艇
马妍
程明
章寅
尉少坤
申刚
孙博
张国金
葛治亮
Original Assignee
中国建材国际工程集团有限公司
中国建材集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建材国际工程集团有限公司, 中国建材集团有限公司 filed Critical 中国建材国际工程集团有限公司
Publication of WO2024131150A1 publication Critical patent/WO2024131150A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present application relates to the technical field of glass conveying devices, and in particular to a glass edge-to-edge conveying device and method.
  • the vertical stacking method has the characteristics of reliable operation, short cycle, glass is not easy to be scratched, low investment cost, and is suitable for large, medium and small specifications of glass and occasions with high quality requirements. Therefore, it has been widely used.
  • flat glass after being transported over a long distance, flat glass often has different degrees of inclination and lateral position deviation when it reaches the vertical stacking position.
  • reduce manual correction and improve stacking efficiency There is an urgent need for a conveying device and a conveying method that can accurately align the edges of flat glass. Before entering the vertical stacking, the horizontal and vertical edges of the flat glass are aligned to meet the requirements of vertical stacking and improve the quality of glass products.
  • the purpose of the embodiments of the present application is to provide a glass edge-aligning conveying device and method, which has a side guard device, an edge measuring device and a lifting and conveying device to achieve automatic edge alignment, reduce manual correction, and improve the stacking accuracy and stacking efficiency of glass stacked on a pallet.
  • a glass edge conveying device comprising:
  • a conveying roller conveyor for conveying the glass along the X-axis direction, wherein the conveying roller conveyor comprises an independently operated horizontal edge alignment area and a vertical edge alignment area;
  • a first detection device is arranged at the entrance of the horizontal edge alignment area and is used to detect whether the glass enters the horizontal edge alignment area;
  • a side guard device is arranged at the exit of the horizontal edge alignment zone, and the side guard device can move up and down on the conveying surface of the conveying roller.
  • the side guard device moves to the conveying surface of the conveying roller to block the movement of the glass along the X-axis direction, so as to achieve horizontal edge alignment of the glass;
  • the edge measuring device is arranged close to the edge retaining device and can move along the Y-axis direction. Measure the distance L between the longitudinal edge of the glass and the preset positioning line;
  • a second detection device is arranged at the entrance of the longitudinal edge alignment area and is used to detect whether the glass enters the longitudinal edge alignment area;
  • the lifting and conveying device is arranged in the longitudinal edge alignment area.
  • the lifting and conveying device can be lifted up and down on the conveying surface of the conveying roller.
  • the lifting and conveying device rises to the conveying surface to drive the glass to move a distance L along the Y-axis direction toward a preset positioning line to achieve longitudinal edge alignment of the glass.
  • the edge blocking device includes a first lifting mechanism, a block assembly and a driving element, the driving element is connected to drive the first lifting mechanism, the block assembly is installed on the first lifting mechanism, and is driven by the first lifting mechanism to move up and down on the conveying surface of the conveying roller; the block assembly is arranged between two conveying rollers, and the block assembly includes a plurality of blocks evenly arranged along the Y-axis direction, each of the blocks is bent at a preset angle along the glass conveying direction for aligning the horizontal edge of the glass.
  • each of the blocks includes a connecting portion and a blocking portion
  • the connecting portion is tilted and fixed on the first lifting mechanism
  • the blocking portion is vertically connected to the connecting portion at a preset angle
  • the blocking surface on the blocking portion is perpendicular to the conveying surface
  • the edge measuring device includes a servo motor, a linear module and a detection photoelectric.
  • the linear module is arranged above the conveying roller, and a slider in the linear module slides along the Y-axis direction.
  • the servo motor is used to drive the linear module to operate.
  • the detection photoelectric is installed on the slider and moves therewith, and is used to collect the position information of the longitudinal edge of the glass to determine the distance L of the longitudinal edge of the glass relative to a preset positioning line.
  • the lifting and conveying device includes a motor reducer, a second lifting mechanism and a conveying assembly, wherein the motor reducer is used to drive the lifting mechanism to operate, and the conveying assembly is arranged on the second lifting mechanism; the second lifting mechanism is used to drive the conveying assembly to move up and down along the Z-axis direction relative to the conveying surface, and the conveying assembly is evenly arranged between the conveying rollers in the longitudinal edge alignment area, and the conveying assembly operates independently along the Y-axis direction to adjust the distance of the glass relative to the preset positioning line.
  • the conveying assembly includes two conveying members, which are symmetrically distributed in the longitudinal edge alignment area along the Y-axis direction relative to the center line of the conveying surface, and each of the conveying members can operate independently.
  • a controller is further included, wherein the controller is used to control the movement of the conveying roller.
  • the device comprises the following steps: controlling the lifting and lowering of the side guard device, moving the side measuring device, and lifting and running the lifting and conveying device, and collecting the position information of the first detection device and the second detection device.
  • a glass edge-to-edge conveying method is further provided, characterized in that the glass edge-to-edge conveying device as described in any embodiment of the first aspect is adopted, comprising:
  • the glass is transported along the conveying roller, and a positioning line is preset on the conveying roller;
  • the side guard device When the first detection device detects that the glass enters the horizontal edge alignment zone, the side guard device is raised to the conveying surface of the conveying roller, so that when the glass is conveyed to the side guard device, the horizontal edge of the glass contacts the side guard device and stays there, so as to achieve horizontal edge alignment of the glass;
  • the side guard device is lowered below the conveying surface of the conveying roller, so that the glass continues to move forward along the conveying roller;
  • the lifting and conveying device When the second detection device detects that the glass enters the longitudinal edge alignment area, the lifting and conveying device is raised to the conveying surface and the glass is driven to move along the Y-axis direction, so that the glass moves a distance L toward the preset positioning line to achieve longitudinal edge alignment of the glass;
  • the lifting and conveying device is lowered below the conveying surface to transport the glass to the stacking area along the conveying roller.
  • the positioning line is the center line of the conveying roller along the X-axis direction.
  • the step of causing the lateral edge of the glass to contact the side guard device and stay there for a preset time when the glass is conveyed to the side guard device comprises:
  • the second time point when the glass is conveyed to the position of the side guard device is calculated
  • the conveying roller is decelerated before the second time point, so that the glass hits the sidewall device at a low speed and stops after staying for a preset time.
  • the present invention provides a precise edge-aligning conveying device and method for flat glass, which can meet the requirements of single grip and double grip for vertical stacking and is applicable to glass of different specifications.
  • the horizontal and vertical edges of the glass are aligned to ensure the accuracy of the glass stacking into the pallet.
  • the precise glass edge alignment is achieved, and the system is stable and reliable.
  • FIG1 is a schematic structural diagram of a glass edge-to-edge conveying device according to an embodiment of the present application.
  • FIG2 is a schematic structural diagram of a sidewall device according to an embodiment of the present application.
  • FIG3 is a schematic structural diagram of a side measurement device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a lifting and conveying device according to an embodiment of the present application.
  • 100 conveying roller; 110, horizontal edge alignment area; 120, vertical edge alignment area; 200, side guard device; 210, first lifting mechanism; 220, block assembly; 221, block; 2211, connecting part; 2212, blocking part; 230, driving element; 300, edge measuring device; 310, servo motor; 320, linear module; 330, detection photoelectric; 400, lifting and conveying device; 410, motor reducer; 420, second lifting mechanism; 430, conveying assembly; 431, conveying member; 510, first detection device; 520, second detection device; 600, glass.
  • FIG1 is a schematic structural diagram of a glass edge conveying device according to an embodiment of the present application.
  • the device includes a conveying roller 100, a side guard device 200, a side measuring device 300, a lifting conveying device 400, a first detection device 510, and a second detection device 520.
  • the conveyor roller 100 conveys the glass 600 along the X-axis direction.
  • the conveyor roller 100 includes a plurality of conveyor rollers arranged in parallel and spaced apart along the glass advancing direction X, for conveying the glass.
  • the device aligns the horizontal edge of the glass in the horizontal edge alignment area 110 and the vertical edge alignment area 120.
  • the device aligns the horizontal edge of the glass in the horizontal edge alignment area 110 and the vertical edge of the glass in the vertical edge alignment area 120. The alignment of the glass in both the horizontal and vertical directions is achieved.
  • the first detection device 510 is arranged at the entrance of the horizontal edge alignment area 110 to detect whether the glass enters the horizontal edge alignment area 110.
  • the first detection device 510 can be arranged below the conveying surface of the conveying roller 100, and a photoelectric sensor can be used to sense whether the glass enters the horizontal edge alignment area 110.
  • the side guard device 200 is arranged at the exit of the horizontal edge alignment zone 110, and the side guard device 200 can move up and down on the conveying surface of the conveying roller 100.
  • the side guard device 200 moves to the conveying surface of the conveying roller 100 to block the movement of the glass along the X-axis direction to achieve the horizontal edge alignment of the glass. That is, the side guard device 200 blocks the glass from moving along the X-axis to achieve the correction of the horizontal edge position of the glass.
  • the edge measuring device 300 is arranged close to the side guard device 200, and can move along the Y axis direction to measure the distance L between the longitudinal edge of the glass and the preset positioning line.
  • the preset positioning line can be the center line of the conveying surface of the conveying surface, that is, the edge measuring device 300 feeds back the Y-direction outward position information of the glass relative to the center line of the conveying surface. That is, by measuring the distance between the longitudinal edge of the glass and the set line, the distance of the longitudinal edge of the glass from the center line of the stacking area can be determined.
  • the second detection device 520 is arranged at the entrance of the longitudinal edge alignment area 120, and is used to detect whether the glass enters the longitudinal edge alignment area 120.
  • the second detection device 520 can adopt the same configuration as the first detection device 510.
  • the lifting and conveying device 400 is arranged in the longitudinal edge alignment area 120.
  • the lifting and conveying device 400 can be lifted up and down on the conveying surface of the conveying roller 100.
  • the lifting and conveying device 400 rises to the conveying surface to drive the glass to move a distance L along the Y-axis direction toward the preset positioning line to achieve the longitudinal edge alignment of the glass. That is, the lifting and conveying device 400 drives the glass to compensate for the distance along the Y direction to achieve the longitudinal edge alignment of the glass.
  • the lifting and conveying device 400 can be a belt lifting and conveying device.
  • the glass side conveying device of the present application adopts fully automatic alignment, with less labor consumption, high stacking accuracy and stacking efficiency.
  • FIG2 is a schematic structural diagram of a side guard device according to an embodiment of the present application.
  • the side guard device 200 includes a first lifting mechanism 210, a stopper assembly 220 and a driving element 230.
  • the driving element 230 The first lifting mechanism 210 is connected to drive the block assembly 220, which is installed on the first lifting mechanism 210 and driven by the first lifting mechanism 210 to move up and down on the conveying surface of the conveying roller 100.
  • the block assembly 220 is arranged between the two conveying rollers, and the block assembly 220 includes a plurality of blocks 221 evenly arranged along the Y-axis direction, and each block 221 is bent at a preset angle along the glass conveying direction to align the horizontal edge of the glass.
  • the driving element 230 is a cylinder, and the piston rod end of the cylinder is connected to the first lifting mechanism 210, and the block assembly 220 is driven by the first lifting mechanism 210 to rise and fall on the conveying surface, thereby blocking the glass travel path, and relying on the friction between the glass and the conveying surface, the horizontal angle of the glass is corrected.
  • each stopper 221 in order to meet the rotation and lifting of the first lifting mechanism 210, each stopper 221 includes a connecting portion 2211 and a blocking portion 2212.
  • the connecting portion 2211 is tilted and fixed on the first lifting mechanism 210.
  • the tilting setting is to ensure that the stopper 221 does not collide with the conveying roller during the rotation of the first lifting mechanism 210.
  • the blocking portion 2212 is vertically connected to the connecting portion 2211 at a preset angle to ensure that when the first lifting mechanism 210 rotates and rises to a preset position, the blocking surface on the blocking portion 2212 is perpendicular to the conveying surface.
  • FIG3 is a schematic diagram of the structure of a side measurement device according to an embodiment of the present application.
  • the side measurement device 300 includes a servo motor 310, a linear module 320 and a detection photoelectric 330.
  • the linear module 320 is arranged above the conveying surface of the conveying roller 100, and the slider in the linear module 320 slides along the Y-axis direction.
  • the servo motor 310 is used to drive the linear module 320 to operate.
  • the detection photoelectric 330 is installed on the slider of the linear module 320 and moves along the Y-axis accordingly, and is used to collect the position information of the longitudinal edge of the glass to determine the distance L of the longitudinal edge of the glass relative to the preset positioning line.
  • the side measurement device is distributed along both sides of the Y-axis relative to the center line of the conveying surface, and is used to feedback the position information of the two longitudinal edges of the glass. Specifically, by collecting the photoelectric information of the detection photoelectric 330 and using the position information fed back by the encoder in the servo motor 310, the position of the longitudinal edge of the glass relative to the center line of the conveying surface is determined.
  • FIG4 is a schematic diagram of the structure of a lifting and conveying device according to an embodiment of the present application.
  • the lifting and conveying device 400 includes a motor reducer 410, a second lifting mechanism 420 and a conveying assembly 430.
  • the motor reducer 410 is used to drive the second lifting mechanism 420 to operate, and the conveying assembly 430 is arranged on the second lifting mechanism 420; the second lifting mechanism 420 is used to drive the conveying assembly 430 to move up and down along the Z-axis direction relative to the conveying surface, and the conveying assembly 430 is evenly arranged between the conveying rollers in the longitudinal alignment area 120.
  • the conveying assembly 430 operates independently along the Y-axis direction to adjust the distance of the glass relative to the preset positioning line.
  • the second lifting mechanism 420 adopts a four-link lifting mechanism, that is, the motor reducer 410 drives the four-link lifting mechanism to operate, driving the conveying assembly 430 installed on the four-link lifting mechanism to convey along the Z-axis relative to the conveying roller 100. The face moves up and down.
  • the conveying assembly 430 is divided into two left and right pieces on both sides of the center line Y of the production line.
  • the conveying assembly 430 includes two conveying members 431, which are symmetrically distributed in the longitudinal alignment area 120 along the Y-axis direction relative to the center line of the conveying surface, and each conveying member 431 can operate independently.
  • the conveying assembly 430 is arranged between the conveying rollers at intervals, and can simultaneously lift and lower along the Z direction to separate the glass from the conveying surface, and independently operate along the Y direction to adjust the distance of the glass relative to the center line of the conveying surface.
  • a controller is also included, which is used to control the operation of the conveying roller 100, the lifting and lowering of the side guard device 200, the movement of the side measuring device 300, the lifting and operation of the lifting conveying device 400, and collect the position information of the first detection device 510 and the second detection device 520.
  • the present application further provides a glass edge-to-edge conveying method, using the glass edge-to-edge conveying device as described in any embodiment of the first aspect, and the specific steps of the method include:
  • the glass is transported along the conveying roller 100, and a positioning line is preset on the conveying roller 100;
  • the side guard device 200 When the first detection device 510 detects that the glass has entered the transverse edge alignment area 110, the side guard device 200 is raised to the conveying surface of the conveying roller 100, so that when the glass is conveyed to the side guard device 200, the transverse edge of the glass contacts the side guard device 200 and stays, so as to achieve the transverse edge alignment of the glass; that is, when the front edge of the glass enters the entrance of the transverse edge alignment area 110, the first detection device 510 feeds back the glass position information, the stopper assembly 220 is raised to the upper top surface higher than the conveying surface, and the position information of the glass running along the X direction is calculated.
  • the transverse edge alignment area 110 of the conveying roller 100 drives the glass to decelerate and stop after contacting the stopper assembly 220 for a certain period of time ⁇ t, and the transverse edge alignment of the glass is completed by relying on the friction force of the conveying surface during the ⁇ t time, and the baffle falls below the roller surface.
  • the edge measuring device 300 moves along the Y-axis direction to measure the distance L between the longitudinal edge of the glass and the preset positioning line. If the double-grasping function is realized, the two sets of detection photoelectric 330 move along the Y-axis at the same time, and feedback is calculated to calculate the distance L1 and L2 of the glass relative to the center line of the conveying surface. If only the single-grasping function is realized, only one set of detection photoelectric 330 needs to move along the Y-axis to feedback and calculate the distance L1 relative to the center line of the relative production line.
  • the side guard device 200 is lowered below the conveying surface of the conveying roller 100 to allow the glass to continue to move along the conveying roller. That is, the horizontal edge alignment area 110 is restarted to drive the glass to move into the vertical edge alignment area 120.
  • the second detection device 520 detects that the glass enters the longitudinal alignment area 120, that is, the second detection device 520 feeds back the glass position information, by calculating the position information of the glass running along the Y direction, when the glass runs to the ascending Just above the descending conveying device 400, the longitudinal edge alignment area 120 decelerates and stops.
  • the lifting conveying device 400 is raised to the conveying surface and drives the glass to move along the Y-axis direction, so that the glass moves a distance L toward the preset positioning line to achieve the alignment of the longitudinal edges of the glass. That is, the two sets of conveying components 430 are raised to lift the glass away from the conveying surface. If the double-grabbing function is realized, the two conveying members 431 are started and move L1 and L2 along the Y direction relative to the center line of the conveying surface respectively. If the single-grabbing function is realized, the two conveying members 431 move L1 in the same direction along the Y direction relative to the center line of the production line to achieve the alignment of the longitudinal edges of the glass.
  • the lifting conveying device 400 is lowered below the conveying surface, so that the glass is conveyed to the stacking area along the conveying roller 100. That is, the conveying assembly 430 falls below the conveying surface, the longitudinal edge alignment area 120 is restarted, and the glass is driven into the stacking area, waiting for the next group of glass to arrive, and then repeating the above steps.
  • the positioning line is the center line of the conveying roller along the X-axis direction, that is, the conveying center line of the conveying surface.
  • the lateral edge of the glass abuts against the side guard device 200 and stays there for a preset time, including:
  • the second time point when the glass is conveyed to the position of the side guard device 200 is calculated;
  • the conveying roller 100 is decelerated before the second time point, so that the glass hits the sidewall device 200 at a low speed, and due to the friction of the conveying surface, the glass stops after a preset time.

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Control Of Conveyors (AREA)

Abstract

一种玻璃(600)对边输送装置及方法,包括独立运行的横边正位区(110)和纵边对齐区(120);挡边装置(200),挡边装置(200)可在输送辊道(100)的输送面上下移动,当第一检测装置(510)检测到玻璃(600)进入横边正位区(110),挡边装置(200)移动至输送辊道(100)的输送面上用于阻挡玻璃(600)沿X轴方向的移动,实现玻璃(600)横边对齐;测边装置(300),测边装置(300)可沿Y轴方向移动,用于测量玻璃(600)纵边与预设定位线的距离L;升降输送装置(400),升降输送装置(400)可在输送辊道(100)的输送面上下升降,在第二检测装置(520)检测到玻璃(600)进入纵边对齐区(120),升降输送装置(400)上升至输送面上用于驱动玻璃(600)沿Y轴方向朝着预设定位线移动距离L,实现玻璃(600)纵边对齐。该玻璃(600)对边输送装置及方法实现了自动化对边,具***垛精度和效率高的特点。

Description

一种玻璃对边输送装置及方法 技术领域
本申请涉及玻璃输送装置技术领域,具体而言,涉及一种玻璃对边输送装置及方法。
背景技术
目前平板玻璃生产线的几种堆垛方式中,其中垂直堆垛的方式具有运行可靠、周期短、玻璃不易划伤、投资成本低,并且适用于大中小规格的玻璃和对质量要求较高的场合的特点,因而得到了广泛应用。但是平板玻璃经过长距离输送以后在到达垂直堆垛位时往往存在不同程度的倾斜和横向位置偏移的现象。为了保证玻璃堆入集装架上的堆垛精度,减少人工修正,提高堆垛效率。亟需一种能够使平板玻璃精准对边的输送装置及输送方法,在进入垂直堆垛前,对平板玻璃进行横边和纵边对齐的位置矫正,使其满足垂直堆垛的要求,提高玻璃产品的质量。
发明内容
本申请实施例的目的在于提供一种玻璃对边输送装置及方法,其在具有挡边装置、测边装置和升降输送装置,实现自动化对边,减少人工修正,提高了玻璃堆入集装架上的堆垛精度和堆垛效率。
第一方面,提供了一种玻璃对边输送装置,包括:
输送辊道,沿X轴方向输送玻璃,所述输送辊道包括独立运行的横边正位区和纵边对齐区;
第一检测装置,布置在所述横边正位区的入口处,用于检测玻璃是否进入横边正位区;
挡边装置,布置在横边正位区的出口处,所述挡边装置可在所述输送辊道的输送面上下移动,当所述第一检测装置检测到玻璃进入横边正位区,所述挡边装置移动至所述输送辊道的输送面上用于阻挡玻璃沿X轴方向的移动,实现玻璃横边对齐;
测边装置,靠近所述挡边装置布置,所述测边装置可沿Y轴方向移动,用于 测量玻璃纵边与预设定位线的距离L;
第二检测装置,布置在所述纵边对齐区的入口处,用于检测玻璃是否进入纵边对齐区;
升降输送装置,布置在纵边对齐区,所述升降输送装置可在所述输送辊道的输送面上下升降,在所述第二检测装置检测到玻璃进入纵边对齐区,所述升降输送装置上升至所述输送面上用于驱动玻璃沿Y轴方向朝着预设定位线移动距离L,实现玻璃纵边对齐。
在一种实施方案中,所述挡边装置包括第一升降机构、挡块组件和驱动元件,所述驱动元件连接驱动所述第一升降机构,所述挡块组件安装在所述第一升降机构上,并受所述第一升降机构驱动在所述输送辊道的输送面上下移动;所述挡块组件布设在两个输送辊之间,所述挡块组件包括多个沿Y轴方向均匀排列的挡块,每个所述挡块沿玻璃输送方向弯折预设角度用于对齐玻璃横边。
在一种实施方案中,每个所述挡块包括连接部和阻挡部,所述连接部倾斜固定在所述第一升降机构上,所述阻挡部与连接部呈预设夹角竖直连接,所述第一升降机构旋转上升至预设位置时,所述阻挡部上的阻挡面与所述输送面垂直。
在一种实施方案中,所述测边装置包括伺服电机、直线模组和检测光电,所述直线模组布置在所述输送辊道的上方,且所述直线模组内的滑块沿Y轴方向滑动,所述伺服电机用于驱动所述直线模组运转,所述检测光电安装在所述滑块上并随之移动,用于采集玻璃纵边的位置信息,以确定玻璃纵边相对于预设定位线的距离L。
在一种实施方案中,所述升降输送装置包括电机减速机、第二升降机构和输送组件,所述电机减速机用于驱动所述升降机构运转,所述输送组件布设在所述第二升降机构上;所述第二升降机构用于带动所述输送组件沿着Z轴方向相对于所述输送面上下运动,所述输送组件均匀布置于所述纵边对齐区内的输送辊之间,所述输送组件沿Y轴方向独立运行用于调整玻璃相对预设定位线的距离。
在一种实施方案中,所述输送组件包括两个输送件,所述两个输送件沿Y轴方向相对输送面中心线对称分布在所述纵边对齐区,每个所述输送件可单独运转。
在一种实施方案中,还包括控制器,所述控制器用于控制所述输送辊道的运 行、所述挡边装置的升降、所述测边装置移动和所述升降输送装置的升降和运行,及收集所述第一检测装置和第二检测装置的位置信息。
根据本申请的第二方面,还提供一种玻璃对边输送方法,其特征在于,采用如第一方面中任一种实施方案所述的玻璃对边输送装置,包括:
沿输送辊道输送玻璃,在输送辊道上预设一定位线;
当第一检测装置检测到玻璃进入横边正位区,将挡边装置升高至所述输送辊道的输送面上,使玻璃输送至挡边装置时玻璃的横边抵触在挡边装置上并停留,以实现玻璃横边对齐;
将测边装置沿Y轴方向移动,测量玻璃纵边与预设定位线的距离L;
测量完毕后,将挡边装置下降至所述输送辊道的输送面下,使玻璃沿输送辊道继续前进;
当第二检测装置检测到玻璃进入纵边对齐区,将升降输送装置上升至所述输送面上并驱动玻璃沿Y轴方向移动,使玻璃朝着预设定位线移动距离L,实现玻璃纵边对齐;
将升降输送装置下降至所述输送面下,使玻璃沿输送辊道输送至堆垛区。
在一种实施方案中,所述定位线为所述输送辊道沿X轴方向的中心线。
在一种实施方案中,所述使玻璃输送至挡边装置时玻璃的横边抵触在挡边装置上并停留预设时间包括:
根据第一检测装置检测到玻璃进入横边正位区的第一时间点,并结合输送辊道的运行速度,计算出玻璃输送至挡边装置位置时的第二时间点;
在第二时间点前减速运行输送辊道,使玻璃以低速抵触在挡边装置上并停留预设时间后停止。
本申请中的玻璃对边输送装置及方法具有的有益效果:
本发明提供的一种平板玻璃精准对边输送装置及方法,能够满足垂直堆垛单抓和双抓的要求,适用于不同规格玻璃。在进入垂直堆垛前进行对玻璃的横边和纵边对齐的位置矫正,保证了玻璃堆入集装架的精度。实现精准玻璃边对齐,***稳定可靠。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为根据本申请实施例示出的一种玻璃对边输送装置的结构示意图;
图2为根据本申请实施例示出的一种挡边装置的结构示意图;
图3为根据本申请实施例示出的一种测边装置的结构示意图;
图4为根据本申请实施例示出的一种升降输送装置的结构示意图。
100、输送辊道;110、横边正位区;120、纵边对齐区;200、挡边装置;210、第一升降机构;220、挡块组件;221、挡块;2211、连接部;2212、阻挡部;230、驱动元件;300、测边装置;310、伺服电机;320、直线模组;330、检测光电;400、升降输送装置;410、电机减速机;420、第二升降机构;430、输送组件;431、输送件;510、第一检测装置;520、第二检测装置;600、玻璃。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
第一方面,本申请提供一种玻璃对边输送装置。图1为根据本申请实施例示出的一种玻璃对边输送装置的结构示意图。参见图1,该装置包括有输送辊道100、挡边装置200、测边装置300、升降输送装置400、第一检测装置510和第二检测装置520。
其中,输送辊道100沿X轴方向输送玻璃600,输送辊道100沿着玻璃前进方向X向包括若干平行间隔布置的输送辊,用于输送玻璃。输送辊道100包括独 立运行的横边正位区110和纵边对齐区120。在横边正位区110内该装置对玻璃横边对齐,在纵边对齐区120内该装置对玻璃纵边对齐。实现对玻璃横边和纵边两个方向的对齐。
第一检测装置510布置在横边正位区110的入口处,用于检测玻璃是否进入横边正位区110。第一检测装置510可以布置在输送辊道100的输送面的下方,可采用光电传感器感应玻璃是否进入横边正位区110。
挡边装置200布置在横边正位区110的出口处,挡边装置200可在输送辊道100的输送面上下移动,当第一检测装置510检测到玻璃进入横边正位区110,挡边装置200移动至输送辊道100的输送面上用于阻挡玻璃沿X轴方向的移动,实现玻璃横边对齐。即,挡边装置200阻挡玻璃沿着X向移动实现玻璃横边位置的矫正。
测边装置300靠近挡边装置200布置,测边装置300可沿Y轴方向移动,用于测量玻璃纵边与预设定位线的距离L。其中预设定位线可以为输送面的输送面的中心线,即,测边装置300反馈相对于输送面中心线玻璃Y向外侧位置信息。即通过测量玻璃纵边与设定线的距离来判断玻璃纵边偏离码垛区中心线的距离。
第二检测装置520布置在纵边对齐区120的入口处,用于检测玻璃是否进入纵边对齐区120。第二检测装置520可采用与第一检测装置510相同设置。
升降输送装置400布置在纵边对齐区120,升降输送装置400可在输送辊道100的输送面上下升降,在第二检测装置520检测到玻璃进入纵边对齐区120,升降输送装置400上升至输送面上用于驱动玻璃沿Y轴方向朝着预设定位线移动距离L,实现玻璃纵边对齐。即升降输送装置400驱动玻璃沿Y向距离补偿实现玻璃的纵边对齐。升降输送装置400可采用皮带升降输送装置。
在上述实施过程中,通过划分输送辊道,并对应设置挡边装置、测边装置和升降输送装置,实现在玻璃输送过程中,玻璃的横边对齐,及通过测量玻璃纵边与设定线的距离,在输送过程中,对玻璃Y向距离补偿实现玻璃的纵边对齐。相比于传统的人工修正,本申请的玻璃对边输送装置采用全自动化对齐,人工耗费少,堆垛精度和码垛效率高。
图2为根据本申请实施例示出的一种挡边装置的结构示意图,参见图2,挡边装置200包括第一升降机构210、挡块组件220和驱动元件230,驱动元件230 连接驱动第一升降机构210,挡块组件220安装在第一升降机构210上,并受第一升降机构210驱动在输送辊道100的输送面上下移动。挡块组件220布设在两个输送辊之间,挡块组件220包括多个沿Y轴方向均匀排列的挡块221,每个挡块221沿玻璃输送方向弯折预设角度用于对齐玻璃横边。其中,驱动元件230为气缸,气缸活塞杆端连接第一升降机构210,并通过第一升降机构210驱动挡块组件220在输送面上下起落,从而阻挡玻璃行进路线,依靠玻璃与输送面之间摩擦力,完成玻璃横边角度矫正。
在一种实施方案中,为了满足第一升降机构210旋转升降,每个挡块221包括连接部2211和阻挡部2212,连接部2211倾斜固定在第一升降机构210上,倾斜设置是为了保证在第一升降机构210旋转过程中,挡块221不碰撞输送辊。阻挡部2212与连接部2211呈预设夹角竖直连接,以确保第一升降机构210旋转上升至预设位置时,阻挡部2212上的阻挡面与输送面垂直。
图3为根据本申请实施例示出的一种测边装置的结构示意图,参见图3,测边装置300包括伺服电机310、直线模组320和检测光电330,直线模组320布置在输送辊道100的输送面的上方,且直线模组320内的滑块沿Y轴方向滑动,伺服电机310用于驱动直线模组320运转,检测光电330安装在直线模组320的滑块上并随之沿Y向移动,用于采集玻璃纵边的位置信息,以确定玻璃纵边相对于预设定位线的距离L。其中,测边装置沿相对输送面的中心线沿Y向两侧分布,用于反馈玻璃两个纵边的位置信息。具体为,通过采集检测光电330的光电信息,利用伺服电机310内的编码器反馈的位置信息,确定玻璃纵边相对于输送面的中心线的位置。
图4为根据本申请实施例示出的一种升降输送装置的结构示意图,参见图4,升降输送装置400包括电机减速机410、第二升降机构420和输送组件430,电机减速机410用于驱动第二升降机构420运转,输送组件430布设在第二升降机构420上;第二升降机构420用于带动输送组件430沿着Z轴方向相对于输送面上下运动,输送组件430均匀布置于纵边对齐区120内的输送辊之间,输送组件430沿Y轴方向独立运行用于调整玻璃相对预设定位线的距离。其中,第二升降机构420采用四连杆升降机构,即电机减速机410驱动四连杆升降机构运转,带动安装在四连杆升降机构上的输送组件430沿着Z向相对于输送辊道100的输送 面上下运动。
在一种实施方案中,为实现玻璃单抓和双抓功能,输送组件430相对生产线中心线Y向两侧分为左右两片。输送组件430包括两个输送件431,两个输送件431沿Y轴方向相对输送面的中心线对称分布在纵边对齐区120,每个输送件431可单独运转。输送组件430间隔布置于输送辊之间,可实现同时沿Z向升降将玻璃脱离输送面,沿Y向独立运行,调整玻璃相对输送面中心线的距离。
在一种实施方案中,还包括控制器,控制器用于控制所述输送辊道100的运行、挡边装置200的升降、测边装置300移动和升降输送装置400的升降和运行,及收集所述第一检测装置510和第二检测装置520的位置信息。
第二方面,本申请还提供一种玻璃对边输送方法,采用如第一方面中任一种实施方案所述的玻璃对边输送装置,该方法具体步骤包括:
沿输送辊道100输送玻璃,在输送辊道100上预设一定位线;
当第一检测装置510检测到玻璃进入横边正位区110,将挡边装置200升高至输送辊道100的输送面上,使玻璃输送至挡边装置200时玻璃的横边抵触在挡边装置200上并停留,以实现玻璃横边对齐;即当玻璃前沿进入横边正位区110入口,第一检测装置510反馈玻璃位置信息,挡块组件220升起至上顶面高于输送面,通过计算玻璃沿X向运行的位置信息,当玻璃板前沿接近挡块组件220,输送辊道100的横边正位区110带动玻璃减速与挡块组件220接触一定时间△t后停止,依靠△t时间内输送面的摩擦力作用完成玻璃横边对齐,挡板下落至辊面以下。
将测边装置300沿Y轴方向移动,测量玻璃纵边与预设定位线的距离L。其中,若实现双抓功能,两组检测光电330沿Y向同时移动,反馈计算到玻璃相对于输送面中心线距离L1和L2,若只实现单抓功能,只需其中一组检测光电330沿Y向移动,反馈计算相对于相对生产线中心线距离L1。
测量完毕后,将挡边装置200下降至输送辊道100的输送面下,使玻璃沿输送辊道继续前进。即横边正位区110重新启动,驱动玻璃运行进入纵边对齐区120。
当第二检测装置520检测到玻璃进入纵边对齐区120内,即第二检测装置520反馈玻璃位置信息,通过计算玻璃沿Y向运行的位置信息,当玻璃运行至升 降输送装置400正上方,纵边对齐区120减速停止。
将升降输送装置400上升至所述输送面上并驱动玻璃沿Y轴方向移动,使玻璃朝着预设定位线移动距离L,实现玻璃纵边对齐。即两组输送组件430升起,将玻璃抬起至脱离输送面,若实现双抓功能,两片输送件431启动,相对输送面中心线分别沿Y向移动L1和L2。若实现单抓功能,两片输送件431相对生产线中心线同向沿Y向移动L1,实现玻璃纵边对齐。
将升降输送装置400下降至输送面下,使玻璃沿输送辊道100输送至堆垛区。即输送组件430下落至输送面以下,纵边对齐区120重新启动,驱动玻璃进入堆垛区,等待下一组玻璃到来,再重复上述步骤。
在一种实施方案中,定位线为所述输送辊道沿X轴方向的中心线,即输送面的输送中心线。
在一种实施方案中,使玻璃输送至挡边装置200时玻璃的横边抵触在挡边装置200上并停留预设时间包括:
根据第一检测装置510检测到玻璃进入横边正位区110的第一时间点,并结合输送辊道100的运行速度,计算出玻璃输送至挡边装置200位置时的第二时间点;
在第二时间点前减速运行输送辊道100,使玻璃以低速抵触在挡边装置200上,受输送面的摩擦力,玻璃在预设时间后停止。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种玻璃对边输送装置,其特征在于,包括:
    输送辊道,沿X轴方向输送玻璃,所述输送辊道包括独立运行的横边正位区和纵边对齐区;
    第一检测装置,布置在所述横边正位区的入口处,用于检测玻璃是否进入横边正位区;
    挡边装置,布置在横边正位区的出口处,所述挡边装置可在所述输送辊道的输送面上下移动,当所述第一检测装置检测到玻璃进入横边正位区,所述挡边装置移动至所述输送辊道的输送面上用于阻挡玻璃沿X轴方向的移动,实现玻璃横边对齐;
    测边装置,靠近所述挡边装置布置,所述测边装置可沿Y轴方向移动,用于测量玻璃纵边与预设定位线的距离L;
    第二检测装置,布置在所述纵边对齐区的入口处,用于检测玻璃是否进入纵边对齐区;
    升降输送装置,布置在纵边对齐区,所述升降输送装置可在所述输送辊道的输送面上下升降,在所述第二检测装置检测到玻璃进入纵边对齐区,所述升降输送装置上升至所述输送面上用于驱动玻璃沿Y轴方向朝着预设定位线移动距离L,实现玻璃纵边对齐。
  2. 根据权利要求1所述的玻璃对边输送装置,其特征在于,所述挡边装置包括第一升降机构、挡块组件和驱动元件,所述驱动元件连接驱动所述第一升降机构,所述挡块组件安装在所述第一升降机构上,并受所述第一升降机构驱动在所述输送辊道的输送面上下移动;所述挡块组件布设在两个输送辊之间,所述挡块组件包括多个沿Y轴方向均匀排列的挡块,每个所述挡块沿玻璃输送方向弯折预设角度用于对齐玻璃横边。
  3. 根据权利要求1所述的玻璃对边输送装置,其特征在于,每个所述挡块包括连接部和阻挡部,所述连接部倾斜固定在所述第一升降机构上,所述阻挡部与连接部呈预设夹角竖直连接,所述第一升降机构旋转上升至预设位置时,所述阻挡部上的阻挡面与所述输送面垂直。
  4. 根据权利要求1所述的玻璃对边输送装置,其特征在于,所述测边装置 包括伺服电机、直线模组和检测光电,所述直线模组布置在所述输送辊道的上方,且所述直线模组内的滑块沿Y轴方向滑动,所述伺服电机用于驱动所述直线模组运转,所述检测光电安装在所述滑块上并随之移动,用于采集玻璃纵边的位置信息,以确定玻璃纵边相对于预设定位线的距离L。
  5. 根据权利要求1所述的玻璃对边输送装置,其特征在于,所述升降输送装置包括电机减速机、第二升降机构和输送组件,所述电机减速机用于驱动所述第二升降机构运转,所述输送组件布设在所述第二升降机构上;所述第二升降机构用于带动所述输送组件沿着Z轴方向相对于所述输送面上下运动,所述输送组件均匀布置于所述纵边对齐区内的输送辊之间,所述输送组件沿Y轴方向独立运行用于调整玻璃相对预设定位线的距离。
  6. 根据权利要求5所述的玻璃对边输送装置,其特征在于,所述输送组件包括两个输送件,所述两个输送件沿Y轴方向相对输送面中心线对称分布在所述纵边对齐区,每个所述输送件可单独运转。
  7. 根据权利要求1所述的玻璃对边输送装置,其特征在于,还包括控制器,所述控制器用于控制所述输送辊道的运行、所述挡边装置的升降、所述测边装置移动和所述升降输送装置的升降和运行,及收集所述第一检测装置和第二检测装置的位置信息。
  8. 一种玻璃对边输送方法,其特征在于,采用如权利要求1-7中任一项所述的玻璃对边输送装置,包括:
    沿输送辊道输送玻璃,在输送辊道上预设一定位线;
    当第一检测装置检测到玻璃进入横边正位区,将挡边装置升高至所述输送辊道的输送面上,使玻璃输送至挡边装置时玻璃的横边抵触在挡边装置上并停留,以实现玻璃横边对齐;
    将测边装置沿Y轴方向移动,测量玻璃纵边与预设定位线的距离L;
    测量完毕后,将挡边装置下降至所述输送辊道的输送面下,使玻璃沿输送辊道继续前进;
    当第二检测装置检测到玻璃进入纵边对齐区,将升降输送装置上升至所述输送面上并驱动玻璃沿Y轴方向移动,使玻璃朝着预设定位线移动距离L,实现玻璃纵边对齐;
    将升降输送装置下降至所述输送面下,使玻璃沿输送辊道输送至堆垛区。
  9. 根据权利要求8所述的玻璃对边输送方法,其特征在于,所述定位线为所述输送辊道沿X轴方向的中心线。
  10. 根据权利要求8所述的玻璃对边输送方法,其特征在于,所述使玻璃输送至挡边装置时玻璃的横边抵触在挡边装置上并停留预设时间包括:
    根据第一检测装置检测到玻璃进入横边正位区的第一时间点,并结合输送辊道的运行速度,计算出玻璃输送至挡边装置位置时的第二时间点;
    在第二时间点前减速运行输送辊道,使玻璃以低速抵触在挡边装置上并停留预设时间后停止。
PCT/CN2023/117761 2022-12-23 2023-09-08 一种玻璃对边输送装置及方法 WO2024131150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211665776.6 2022-12-23
CN202211665776.6A CN115893005A (zh) 2022-12-23 2022-12-23 一种玻璃对边输送装置及方法

Publications (1)

Publication Number Publication Date
WO2024131150A1 true WO2024131150A1 (zh) 2024-06-27

Family

ID=86493727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117761 WO2024131150A1 (zh) 2022-12-23 2023-09-08 一种玻璃对边输送装置及方法

Country Status (2)

Country Link
CN (1) CN115893005A (zh)
WO (1) WO2024131150A1 (zh)

Also Published As

Publication number Publication date
CN115893005A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
KR20190087998A (ko) 기판치수를 전자동으로 검출하는 장치, 기판검출라인 및 이의 검출방법
CN102229153B (zh) 一种用于木工靠边齐板的辅助送料装置
CN105712065A (zh) 全自动码垛***及工艺
CN106927244B (zh) 光伏板材高速搬运机器人***
WO2024131150A1 (zh) 一种玻璃对边输送装置及方法
CN213165840U (zh) 木材锯切校正装置及优选锯
CN105397240A (zh) 一种消防柜的制作***
CN217263208U (zh) 一种pcb板双工位快速投放板装置
CN214555396U (zh) 金属件自动运送和检测装置
CN213497657U (zh) 一种角钢切割装置
CN114993238A (zh) 一种光伏组件平面度检测装置及其检测方法
CN210593780U (zh) 一种移载机构
CN208683906U (zh) 一种具有重量检测功能的硅片自动堆叠式上料机
CN105269320A (zh) 一种板材加工***
CN112827852A (zh) 金属件自动运送和检测装置及其作业方法
CN205381736U (zh) 全自动码垛***
CN218366421U (zh) 多轨道卸胚装置
CN201300455Y (zh) 板材找中设备
CN219677235U (zh) 一种变截距装置
CN215827830U (zh) 一种建筑玻璃高速下片机
CN221069668U (zh) 一种半干面加工过程中的链条移行输送***
CN219155889U (zh) 一种模具堆码装置及自动堆码***
CN217673497U (zh) 一种自动码垛机
CN114014017B (zh) 一种光伏压延玻璃原片下片方法
CN218908871U (zh) 传输定位装置和玻璃传输定位***