WO2024126799A1 - Électrodes négatives à base de silicium et d'additif fluoré - Google Patents

Électrodes négatives à base de silicium et d'additif fluoré Download PDF

Info

Publication number
WO2024126799A1
WO2024126799A1 PCT/EP2023/086087 EP2023086087W WO2024126799A1 WO 2024126799 A1 WO2024126799 A1 WO 2024126799A1 EP 2023086087 W EP2023086087 W EP 2023086087W WO 2024126799 A1 WO2024126799 A1 WO 2024126799A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
particles
composition according
electrode
silicon
Prior art date
Application number
PCT/EP2023/086087
Other languages
English (en)
Inventor
Benoît MORTEMARD DE BOISSE
Élodie GUÉRIN
Original Assignee
Saft
Automotive Cells Company Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saft, Automotive Cells Company Se filed Critical Saft
Publication of WO2024126799A1 publication Critical patent/WO2024126799A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers

Definitions

  • TITLE Negative electrodes based on silicon and fluorine additive
  • the present invention relates to the field of energy storage, and more precisely to lithium accumulators.
  • lithium-ion accumulators The operation of lithium-ion accumulators is based on the reversible exchange of the lithium ion between a positive electrode and a negative electrode, separated by an electrolyte, the lithium being stored at the negative electrode, during charging operation.
  • Rechargeable lithium-ion accumulators offer excellent energy and volume densities compared to other electrochemical energy storage technologies and today occupy a dominant place in the market for portable electronics, electric and hybrid vehicles or even stationary energy storage systems.
  • electrochemically active negative electrode materials may include silicon, which has ten times the capacitance of graphite.
  • the intercalation/deintercalation of lithium within silicon is accompanied by a strong volume expansion, of the order of 300%.
  • This expansion will be the cause of the degradation of the Li-ion cell: i) degradation of the integrity of the electrode which leads to a reduction in the use of the electrode, ii) fracture of the interface electrode-electrolyte (or SEI for “Solid Electrolyte Interphase”) which leads to the continuous formation of degradation product and the consumption of the electrolyte, and iii) application of mechanical stresses on the entire battery and degradation of the others components.
  • EP 3 618 150 relates to a negative electrode based on particles whose core consists of SiO x , coated with a layer comprising carbon or a polymer, and a fluorinated material.
  • the preparation of this type of particle is often complex and leads to a material whose cost makes deployment on a large scale complex.
  • EP 3 471 177 describes a negative electrode comprising composite particles comprising a carbon material, silicon and LiF, the carbon phase of which comprises mixed Si-LiF particles dispersed uniformly or not in said carbon phase.
  • This approach therefore requires careful control of each step: 1) coating (e.g. Si by LiF), 2) dispersion (e.g. Si-LiF particles in the carbon phase) and 3) coating the phase carbon containing Si-LiF particles.
  • electrodes for lithium batteries are generally manufactured from a composition containing at least one electrochemically active material, at least one binder and optionally at least one electronically conductive additive, coated on a current collector.
  • the invention therefore aims in particular to provide an improved electrode composition for a negative electrode for Li-ion batteries.
  • the invention thus aims at a negative electrode composition
  • a negative electrode composition comprising:
  • particles comprising silicon particles comprising silicon
  • At least one binder At least one binder
  • composition further comprises at least one fluorinated additive distributed uniformly between the particles of active material, binder and possible conductive material within said composition.
  • the invention relates to a negative electrode composition
  • a negative electrode composition comprising:
  • composition further comprises at least one fluorinated additive distributed uniformly between the particles of active material, binder and possible conductive material within said composition.
  • negative electrode designates, when the accumulator is discharging, the electrode functioning as an anode, the anode being defined as the electrode where an electrochemical oxidation reaction (emission of electrons) takes place. .
  • the term negative electrode also designates the electrode from which the electrons leave, and from which the cations (Li+) are released in discharge.
  • the distribution of the additive is uniform within the composition.
  • a distribution is devoid of agglomerate, the term “agglomerate” designating the assembly of several primary particles of additive and measuring several times the size of these, typically with a diameter greater than 10 pm.
  • the active material designates the electrochemically active (or electroactive) material that is lithiophilic, that is to say capable of storing lithium, for example by intercalation of lithium and/or formation of lithium alloy.
  • the active material is based on silicon. It therefore comprises particles of material comprising silicon. According to one embodiment, said particles are chosen from silicon-carbon composite particles (Si-C) and silicon oxide particles SiO x where 0 ⁇ x ⁇ 2.
  • the active material may also comprise graphite particles.
  • binder we mean here the agents making it possible to give the composition and/or the electrode the cohesion of the different components and its mechanical strength and its adhesion to the current collector.
  • binders polymers such as polyethylene oxide (PEO), polyvinylidene fluoride (PVdF) and its copolymers such as polyvinylidene fluoride and hexafluoropropylene copolymer (PVDF-HFP), polytetrafluoroethylene (PTFE) and its copolymers, polyacrylonitrile (PAN), poly(methyl)- or (butyl) methacrylate, polyvinyl chloride (PVC), poly(vinyl formai), polyester, block polyetheramides, acrylic acid polymers, methacrylic acid, acrylamide, itaconic acid, sulfonic acid, elastomers such as poly(styrene/butadiene) (SBR) and hydrogenated butadiene-acetonitrile cop
  • SBR poly(
  • the binder can be chosen from carboxymethylcellulose (CMC), styrene-butadiene (SBR), lithiated polyacrylic acid (LiPAA) and unlithiated polyacrylic acid (PAA, PAAH or PAAN).
  • CMC carboxymethylcellulose
  • SBR styrene-butadiene
  • LiPAA lithiated polyacrylic acid
  • PAA PAAH or PAAN
  • conductive material typically refers to an electronic conductor, such as a carbon material, such as graphite, carbon black, acetylene black, soot, graphene, carbon nanotubes (CNT) or a mixture of these.
  • the conductive material is chosen from carbon black and carbon nanotubes.
  • the fluorinated additive can be chosen from LiF or MgF 2 .
  • the electrode composition advantageously comprises Si-C particles, and the MgF 2 additive.
  • the composition comprises SiOx particles. where x is as defined previously, and LiF.
  • the composition comprises from 0.05% to 5% (by weight) of the fluorinated additive, in particular from 0.1 to 3% (by weight), said percentage being related to the total weight of the constituents of the composition.
  • composition may further comprise other constituents such as one or more solvents and/or additives aimed at improving the electrochemical properties of the electrode.
  • the electrode composition according to the invention comprises the aforementioned ingredients, in liquid suspension, typically called “ink”.
  • Said electrode composition is then a mixture of particles of active material, binder, additive, and possible conductor as defined above, in suspension, organic or aqueous.
  • the nature of the organic or aqueous solvent generally depends on the nature of the binder used.
  • the suspension is aqueous, in particular when the binder is chosen from carboxymethylcellulose (CMC), styrene-butadiene (SBR), lithiated polyacrylic acid (LiPAA) and unlithiated polyacrylic acid (PAA, PAAH or PAAN ).
  • CMC carboxymethylcellulose
  • SBR styrene-butadiene
  • LiPAA lithiated polyacrylic acid
  • PAA unlithiated polyacrylic acid
  • PAAN unlithiated polyacrylic acid
  • the formulation is an organic suspension, in N-methyl-2-pyrrolidone when PVdF is used as a binder.
  • said composition can also be devoid of solvent.
  • the present invention also targets a negative electrode comprising a current collector on which is coated on at least one of its faces a coating comprising the composition according to the invention.
  • said coating essentially corresponds to the composition after drying of the ink (ie) after evaporation of the solvent. It therefore includes the same constituents as ink, with the exception of the solvent generally evaporated during drying.
  • composition used here therefore includes the suspension (ie) the ink as well as the coating obtained after drying of the ink.
  • coating thickness depends on 1) the material used and 2) the application.
  • the thickness of the coating per side after evaporation of the solvent is typically between 5 and 200 pm.
  • current collector is meant an element such as pad, plate, sheet or other, of 2D or 3D structure, made of conductive material, connected to the positive or negative electrode, and ensuring the conduction of the flow of electrons between the electrodes and battery terminals.
  • the current collector is preferably a two-dimensional conductive support such as a solid or perforated strip, based on metal, for example copper, nickel, steel, stainless steel or aluminum.
  • Said collector at the negative electrode is generally in the form of a copper strip.
  • the current collector/coating assembly constituting the electrode is typically obtained by applying an electrode composition according to the invention to said current collector.
  • the present invention also aims at a process for preparing the electrode according to the invention, said process comprising
  • the method also comprises the step of prior preparation of an electrode composition according to the invention in aqueous or organic suspension, by mixing its constituents in aqueous or organic suspension, in particular with stirring.
  • This step can typically be carried out over a sufficiently long time (generally one to several hours) with a high shear rate mixer or a planetary mixer, for example until no evolution of the ink is observed, typically the absence of agglomeration to the naked eye.
  • This step generally results in a uniform distribution without agglomeration.
  • the deposition step is typically carried out by coating the electrode composition on all or part of at least one of the faces of the collector. This can be carried out manually or automatically by film application process or by spraying.
  • the drying step aims to eliminate the solvent contained in the electrode composition, and is typically carried out by heating, generally until its complete evaporation at a suitable temperature, typically between 50°C and 200°C , under vacuum or not and in a heated enclosure or using any other relevant technique such as, for example, infrared radiation.
  • a suitable temperature typically between 50°C and 200°C
  • any other relevant technique such as, for example, infrared radiation.
  • the presence of the fluorinated additive according to the invention does not substantially modify the usual process for preparing said electrode composition.
  • the fluorinated additive is dissolved or dispersed in the suspension.
  • the coating is in the form of a film adhering to the current collector.
  • the electrode thus obtained can then be calendered in order to reduce its porosity, that is to say by reducing the space between the different constituents of the electrode.
  • the invention also relates to an electrochemical element comprising the negative electrode according to the invention.
  • electrochemical element we mean an elementary electrochemical cell, making it possible to store the electrical energy provided by a chemical reaction and to release it in the form of current.
  • the electrochemical element according to the invention is typically a Li-ion element.
  • the invention also targets an electrochemical element of the Li-ion type comprising:
  • the positive electrode can be of any known type suitable for Li-ion elements.
  • positive electrode designates the electrode where the electrons enter, and where the cations (Li + ) arrive in discharge.
  • the positive electrode generally consists of a conductive support used as a current collector which is coated on at least one of its faces with the positive electrode formulation, which typically contains at least one positive electrode active material, a material electronic conductor and a possible binder.
  • the active material of the positive electrode is not particularly limited. It can be chosen from the following groups:
  • LiMO 2 of so-called “lamellar” or “lamellar oxide” structure where M is at least one element chosen from Ni, Co and Mn and where 0 ⁇ x ⁇ 1;
  • the active material of the positive electrode comprises, as active material, a lamellar oxide, such as LiNii. yz Mn y Co z O 2 with 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1 and y+z ⁇ 1.
  • a lamellar oxide such as LiNii. yz Mn y Co z O 2 with 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1 and y+z ⁇ 1.
  • the positive electrode electronic conductor material is generally chosen from graphite, carbon black, acetylene black, soot, graphene, carbon nanotubes or a mixture thereof.
  • the electrolyte may be liquid and comprise a lithium salt dissolved in an organic solvent.
  • This lithium salt can be chosen from lithium perchlorate UCIO 4 , lithium hexafluorophosphate LiPF 6 , lithium tetrafluoroborate LiBF 4 , lithium hexafluoroarsenate LiAsF 6 , lithium hexafluoroantimonate LiSbF 6 , lithium trifluoromethanesulfonate ÜCF3SO3, lithium bis(fluorosulfonyl)imide Li(FSO 2 ) 2 N (LiFSI), lithium trifluoromethanesulfonimide LiN(CFsSO 2 ) 2 (LiTFSI), lithium trifluoromethanesulfonemethide LiC(CF 3 SO 2 )3 (LiTFSM) , THE lithium bisperfluoroethylsulfonimide LiN(C2F 5 SO2)2 (LiBETI), lithium 4,5-di
  • the electrolyte solvent may be chosen from saturated cyclic carbonates, unsaturated cyclic carbonates, linear carbonates, alkyl esters, ethers or cyclic esters, such as lactones and mixtures thereof.
  • the electrolyte can also be in the form of a gel obtained by impregnating a polymer with a liquid mixture comprising at least one lithium salt and an organic solvent.
  • the separator is to avoid short circuits, while being permeable to lithium ions. It may in particular consist of a non-woven or a polymer film.
  • the separator may consist of a layer of polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), polyester such as polyethylene terephthalate (PET), poly(butylene ) terephthalate (PBT), cellulose, polyimide, glass fibers or a mixture of layers of different natures.
  • the polymers mentioned can be coated with a ceramic layer and/or polyvinylidene difluoride (PVdF) or poly(vinylidene fluoride-hexafluoropropylene (PVdF-HFP) or acrylates.
  • PVdF polyvinylidene difluoride
  • PVdF-HFP poly(vinylidene fluoride-hexafluoropropylene
  • the lithium-ion cell is manufactured in a conventional manner. At least one cathode, at least one separator and at least one anode are superposed. The assembly can be rolled up to form a cylindrical electrochemical beam. The electrodes can also be stacked to form a planar electrochemical beam. A connection piece is fixed on an edge of the cathode not covered with active material. It is connected to a current output terminal. The anode may be electrically connected to the element container. Conversely, the cathode can be connected to the element container and the anode to a current output terminal. After being inserted into the element container, the electrochemical beam is impregnated with electrolyte. The element is then closed tightly. The element may also be conventionally equipped with a safety valve causing the container of the element to open in the event that the internal pressure of the element exceeds a predetermined value.
  • the present invention also relates to an electrochemical module comprising the stack of at least two elements according to the invention, each element being electrically connected with one or more other element(s).
  • module therefore designates here the assembly of several electrochemical elements, said assemblies being able to be in series and/or parallel.
  • Another object of the invention is yet a battery comprising one or more modules according to the invention.
  • battery or accumulator is meant the assembly of several modules according to the invention.
  • Figure 1 illustrates the normalized evolution of the capacity recorded at C/5 - D/5 (charge in 5h - discharge in 5h), at room temperature, where curve 1 corresponds to an electrode based on SiO x +graphite ( LiPAA binder) with the LiF additive and curve 2 corresponds to an electrode based on SiOx + graphite (LiPAA binder) without additive.
  • the arrow represents a 5-fold increase in the number of cycles before reaching 80% retention of the reference capacity.
  • Figure 2 illustrates the normalized evolution of the capacitance at C/5 - D/5, at room temperature, with a curve 1 corresponding to an electrode based on SiO x +graphite//Li° with the additive LiF, and curve 2 corresponding to an electrode based on SiO x +graphite//Li° without additive.
  • the arrow represents a 15% increase in the number of cycles for the electrode with LiF additive compared to the electrode without additive.
  • Figure 3 illustrates the normalized evolution of the capacitance at C/5 - D/5, ambient temperature, where curve 1 corresponds to an electrode based on Si-C+graphite//Li° with the additive MgF 2 , and curve 2 corresponds to an electrode based on Si-C+g raphite//Li° without additive.
  • the arrow represents a 28% increase in the number of cycles for the electrode with MgF 2 additive compared to the electrode without additive.
  • Figure 4 illustrates the normalized evolution of the capacitance at C/3 - D/3, room temperature, where curve 1 corresponds to an NMC811 cell //Si-C + graphite composite with MgF 2 in the electrode and the curve 2 corresponds to an NMC811 //Si-C + graphite composite cell without MgF 2 in the electrode.
  • Figure 5 illustrates the normalized evolution of the internal resistance, where curve 1 corresponds to an NMC81 1 //composite Si-C + graphite cell with MgF 2 in the electrode and curve 2 corresponds to an NMC811 //composite cell Si-C + graphite without MgF 2 in the electrode.
  • Figure 6 represents the structure of the electrode composition according to one embodiment of the invention, where the composition comprises Si-C particles (1) and graphite particles (4) as active materials, MgF 2 (2) as an additive to the electrode, the binder (3).
  • the composition does not contain any conductive material; it is understood, however, that when a conductive material is present, the particles of conductive material do not affect the uniform distribution of the additive within the structure of said composition.
  • Ink formulations according to the invention were prepared according to the milk steps with the active materials SiOx or Si-C.
  • the percentages indicated represent the percentages by weight of the ingredients added at the step considered, by weight relative to the total weight of the ingredients of the suspension.
  • x is equal to approximately 1.
  • agitation implies “until complete dissolution or homogeneous distribution to the naked eye”.
  • the suspensions of the inks thus prepared in steps 1 a-1 f are then coated on a copper strip, and the whole is subjected to 80°C for a period typically between a few minutes and an hour, until the evaporation of the ink 'water.
  • the evaporation of water can be identified by weighing, when the mass no longer varies over time when the drying time is increased.
  • the calendering of the electrode thus prepared is carried out by passing the electrode between two rollers in order to reduce the porosity of the electrode to the desired value.
  • the electrode after drying can be characterized by scanning electron microscopy (SEM) in order to reveal the distribution of the additive within the electrode so that it is uniform and without agglomerates, the additive being located between the particles of active materials without however completely covering them.
  • SEM scanning electron microscopy
  • the previously prepared electrode is cut to the correct diameter in order to be inserted into the button cell battery holder
  • LiPF 6 lithium salt
  • the button cell battery is sealed, it is connected to a potentiostat type cycling system making it possible to generate a current of a few pA to a few mA which will depend on the capacity (mAh) of the battery tested and the desired current regime (C /X),
  • the start of the cycling begins with a temperature training cycle ( 1st point of the curves), then aging (for the study of the lifespan) is carried out at ambient T°C. “Control cycles”, carried out at slower cycling speeds, can be inserted during aging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente demande concerne l'utilisation d'additif fluoré pour préparer une électrode négative à base de silicium, ainsi que les électrodes correspondantes et les éléments électrochimiques de type Li-ion les comprenant.

Description

DESCRIPTION
TITRE : Électrodes négatives à base de silicium et d'additif fluoré
La présente invention concerne le domaine du stockage de l’énergie, et plus précisément les accumulateurs au lithium.
Le fonctionnement des accumulateurs lithium-ion est basé sur l’échange réversible de l’ion lithium entre une électrode positive et une électrode négative, séparées par un électrolyte, le lithium étant emmagasiné à l’électrode négative, pendant le fonctionnement en charge.
Les accumulateurs rechargeables au lithium -ion offrent d’excellentes densités énergétique et volumique par rapport aux autres technologies de stockage électrochimiques d’énergie et occupent aujourd’hui une place prépondérante sur le marché de l’électronique portable, des véhicules électriques et hybrides ou encore des systèmes stationnaires de stockage de l’énergie.
Il est donc désirable d’optimiser la densité d’énergie des batteries Li-ion, par exemple en augmentant la quantité de lithium pouvant être emmagasinée à l’électrode négative. Parmi les configurations envisagées pour améliorer les densités d’énergie des cellules électrochimiques, les matériaux électrochimiquement actifs d'électrode négative peuvent inclure du silicium, qui a une capacité dix fois supérieure à celle du graphite. Cependant, l’intercalation/désintercalation du lithium au sein du silicium s’accompagne d’une forte expansion volumique, de l’ordre de 300%. Cette expansion va être à l'origine de la dégradation de la cellule Li-ion : i) dégradation de l'intégrité de l'électrode qui conduit à une diminution de l’utilisation de l'électrode, ii) fracture de l'interface électrode -électrolyte (ou SEI pour « Solid Electrolyte Interphase ») qui conduit à la formation continue de produit de dégradation et à la consommation de l’électrolyte, et iii) application de contraintes mécaniques sur l'ensemble de la batterie et dégradations des autres composants.
De fait, la durée de vie en cyclage des batteries Li-ion à électrode négative à base de silicium est insuffisante et il est crucial de l’améliorer.
Pour cela, la stabilité de l’interface de l’électrode négative et de l’électrolyte doit être augmentée.
Il est donc désirable de mettre à disposition une électrode négative dont la structure et la composition permettent d’augmenter la quantité de lithium stocké et la réversibilité de ce stockage tout en maîtrisant les variations d’épaisseur. Parmi les approches les plus souvent citées, l’utilisation de silicium à l’échelle nanométrique, l’utilisation de silicium partiellement oxydé (SiOx, 0<x<1 ) ou l’utilisation de composite silicium - carbone (Si-C) sont reportées prometteuses.
EP 3 618 150 concerne une électrode négative à base de particules dont le cœur est constitué de SiOx, enrobé d’une couche comprenant du carbone ou un polymère, et un matériau fluoré. La préparation de ce type de particules est souvent complexe et conduit à un matériau dont le coût rend le déploiement à grande échelle complexe.
EP 3 471 177 décrit une électrode négative comprenant des particules composites comprenant un matériau carboné, du silicium et LiF, dont la phase carbonée comprend des particules mixtes Si-LiF dispersées de façon uniforme ou non dans ladite phase carbonée. Cette approche nécessite donc un contrôle minutieux de chaque étape : 1) d’enrobage (e.g du Si par LiF), 2) de dispersion (e.g. des particules de Si-LiF dans la phase carbonée) et 3) d’enrobage de la phase carbonée contenant les particules de Si-LiF.
Actuellement, les électrodes pour batteries au lithium sont généralement fabriquées à partir d'une composition contenant au moins un matériau électrochimiquement actif, au moins un liant et éventuellement au moins un additif conducteur électronique, enduite sur un collecteur de courant. L’invention vise donc notamment à fournir une composition d’électrode améliorée pour électrode négative pour batteries Li-ion.
Selon un premier objet, l’invention vise ainsi une composition d’électrode négative comprenant :
A titre de matière active : des particules comprenant du silicium ;
Au moins un liant;
Caractérisée en ce que ladite composition comprend en outre au moins un additif fluoré réparti de façon uniforme entre les particules de matière active, liant et matériau conducteur éventuel au sein de ladite composition.
Plus particulièrement, l’invention vise une composition d’électrode négative comprenant :
A titre de matière active :
- des particules comprenant du silicium et
- éventuellement des particules de graphite;
- éventuellement un matériau conducteur;
- au moins un liant; caractérisée en ce que ladite composition comprend en outre au moins un additif fluoré réparti de façon uniforme entre les particules de matière active, liant et matériau conducteur éventuel au sein de ladite composition. Le terme « électrode négative » désigne, lorsque l'accumulateur est en décharge, l'électrode fonctionnant en tant qu’anode, l’anode étant définie comme l’électrode où a lieu une réaction électrochimique d'oxydation (émission d'électrons). Le terme électrode négative désigne également l’électrode d’où partent les électrons, et d’où sont libérés les cations (Li+) en décharge.
Selon l’invention la répartition de l’additif est uniforme au sein de la composition. On entend ainsi une répartition de l’additif fluoré au sein de la composition telle que l’additif est distribué de façon homogène et non préférentielle entre les particules de matière active, de liant et du conducteur éventuel. Typiquement, une telle répartition est dénuée d’agglomérat, le terme « agglomérat » désignant l’assemblage de plusieurs particules primaires d'additif et mesurant plusieurs fois la taille de celles-ci, typiquement de diamètre supérieur à 10pm.
Un exemple de structure de cette répartition est illustré à la Figure 6.
La matière active désigne la matière électrochimiquement active (ou électroactive) lithiophile, c’est-à-dire capable de stocker le lithium, par exemple par intercalation du lithium et/ou formation d’alliage de lithium.
Selon l’invention, la matière active est à base de silicium. Elle comprend donc des particules de matériau comprenant du silicium. Selon un mode de réalisation, lesdites particules sont choisies parmi les particules de composite silicium-carbone (Si-C) et les particules d’oxyde de silicium SiOx où 0<x<2.
Selon un mode de réalisation, la matière active peut également comprendre des particules de graphite.
On entend ici par « liant », les agents permettant de conférer à la composition et/ou l’électrode la cohésion des différents composants et sa tenue mécanique et son adhésion sur le collecteur de courant. On peut ainsi citer à titre de liants les polymères tels que le polyéthylène oxyde (PEO), le polyfluorure de vinylidène (PVdF) et ses copolymères tels que le copolymère de polyfluorure de vinylidène et hexafluoropropylène (PVDF-HFP), le polytétrafluoroéthylène (PTFE) et ses copolymères, le polyacrylonitrile (PAN), poly(méthyl)- ou (butyl)méthacrylate, polychlorure de vinyle (PVC), poly(vinyl formai), polyester, polyétheramides séquencés, polymères d'acide acrylique, acide méthacrylique, acrylamide, acide itaconique, acide sulfonique, élastomère tels que les poly(styrène/butadiène) (SBR) et les copolymères butadiène-acétonitrile hydrogénés (HNBR), et les composés cellulosiques tel que la carboxym ethyl cellulose (CMC).
De préférence, le liant peut être choisi parmi la carboxyméthylcellulose (CMC), le styrène-butadiène (SBR), l’acide polyacrylique lithié (LiPAA) et l’acide polyacrylique non lithié (PAA, PAAH ou PAAN). Le terme « matériau conducteur » désigne typiquement un conducteur électronique, tel qu’un matériau carboné, comme par exemple le graphite, le noir de carbone, le noir d'acétylène, la suie, le graphène, les nanotubes de carbone (CNT) ou un mélange de ceux- ci. Selon un mode de réalisation, le matériau conducteur est choisi parmi le noir de carbone et les nanotubes de carbone.
Selon un mode de réalisation, l’additif fluoré peut être choisi parmi LiF ou MgF2.
Selon un mode de réalisation, la composition d’électrode comprend avantageusement des particules de Si-C, et l’additif MgF2.
Selon un mode de réalisation alternatif, la composition comprend des particules de SiOx. où x est tel que défini précédemment, et LiF.
Selon un mode de réalisation, la composition comprend de 0.05 % à 5% (en poids) de l’additif fluoré, notamment de 0.1 à 3% (en poids), ledit pourcentage étant rapporté au poids total des constituants de la composition.
La composition peut comprendre en outre d’autres constituants tels qu'un ou plusieurs solvants et/ou additifs visant à améliorer les propriétés électrochimiques de l’électrode.
Selon un mode de réalisation, la composition d’électrode selon l’invention comprend les ingrédients précités, en suspension liquide, typiquement dénommée « encre ».
Ladite composition d’électrode est alors un mélange de particules de matière active, de liant, d’additif, et de conducteur éventuel tels que définis précédemment, en suspension, organique ou aqueuse.
La nature du solvant organique ou aqueux dépend généralement de la nature du liant utilisé. De préférence, la suspension est aqueuse, notamment lorsque le liant est choisi parmi la carboxyméthylcellulose (CMC), le styrène-butadiène (SBR), l’acide polyacrylique lithié (LiPAA) et l’acide polyacrylique non lithié (PAA, PAAH ou PAAN).
Typiquement, la formulation est une suspension organique, dans la N-méthyl-2- pyrrolidone lorsque le PVdF est utilisé à titre de liant.
Selon un autre mode de réalisation, ladite composition peut également être dénuée de solvant.
Selon un autre objet, la présente invention vise également une électrode négative comprenant un collecteur de courant sur lequel est enduit sur au moins une de ses faces un revêtement comprenant la composition selon l’invention.
Typiquement, ledit revêtement correspond essentiellement à la composition après séchage de l’encre (ie) après évaporation du solvant. Il comprend donc les mêmes constituants que l’encre, à l’exception du solvant généralement évaporé lors du séchage. Le terme « composition » utilisé ici englobe donc la suspension (ie) l’encre ainsi que le revêtement obtenu après séchage de l’encre.
Généralement, l’épaisseur du revêtement dépend 1 ) du matériau utilisé et 2) de l’application. L’épaisseur du revêtement par face après évaporation du solvant est typiquement comprise entre 5 et 200 pm.
On entend par « collecteur de courant » un élément tel que plot, plaque, feuille ou autre, de structure 2D ou 3D, en matériau conducteur, relié à l’électrode positive ou négative, et assurant la conduction du flux d’électrons entre les électrodes et les bornes de la batterie. Le collecteur de courant est de préférence un support conducteur bidimensionnel tel qu'un feuillard plein ou perforé, à base de métal, par exemple en cuivre, en nickel, en acier, en acier inoxydable ou en aluminium . Ledit collecteur à l’électrode négative se présente généralement sous forme de feuillard de cuivre.
L’ensemble collecteur de courant/revêtement constituant l’électrode est typiquement obtenu par application d’une composition d’électrode selon l’invention sur ledit collecteur de courant.
Ainsi, selon un autre objet, la présente invention vise encore un procédé de préparation de l’électrode selon l’invention, ledit procédé comprenant
- le dépôt de ladite composition d’électrode selon l’invention sur ledit collecteur de courant, et
- une étape de séchage.
Selon un mode de réalisation, le procédé comprend également l’étape de préparation préalable d’une composition d’électrode selon l’invention en suspension aqueuse ou organique, par mélange de ses constituants en suspension aqueuse ou organique, notamment sous agitation. Cette étape peut être typiquement réalisée sur un temps suffisamment long (généralement de une à plusieurs heures) avec un mélangeur à haut taux de cisaillement ou un mélangeur planétaire, par exemple jusqu’à ce qu’aucune évolution de l’encre ne soit observée, typiquement l’absence à l’œil nu d’agglomérat. Il résulte généralement de cette étape une répartition uniforme et sans agglomérat.
L’étape de dépôt est typiquement réalisée par enduction de la composition d’électrode sur tout ou partie d’au moins une des faces du collecteur. Celle-ci peut être réalisée manuellement ou de façon automatique par procédé d’application de film ou par pulvérisation. L’étape de séchage a pour but d’éliminer le solvant contenu dans la composition d’électrode, et est typiquement réalisée par chauffage, généralement jusqu’à son évaporation complète à une température adéquate, typiquement comprise entre 50°C et 200°C, sous vide ou non et en enceinte chauffée ou en utilisant toute autre technique pertinente telle que, par exemple, des rayonnements infra-rouges. Avantageusement, la présence de l’additif fluoré selon l’invention ne modifie pas substantiellement le procédé habituel de préparation de ladite composition d’électrode.
Typiquement, l’additif fluoré est dissous ou dispersé dans la suspension.
A l’issue de l’étape de séchage, le revêtement se présente sous forme d’un film adhérant au collecteur de courant.
L’électrode ainsi obtenue peut être ensuite calandrée afin de diminuer sa porosité c’est-à-dire en réduisant l’espace entre les différents constituants de l’électrode.
L’invention vise également un élément électrochimique comprenant l’électrode négative selon l’invention.
On entend par « élément électrochimique » une cellule électrochimique élémentaire, permettant d’emmagasiner l’énergie électrique fournie par une réaction chimique et de la restituer sous forme de courant.
L’élément électrochimique selon l’invention est typiquement un élément Li-ion.
Ainsi, l’invention vise également un élément électrochimique de type Li-ion comprenant :
- une électrode négative selon l’invention;
- une électrode positive;
- un séparateur;
- un électrolyte.
Dans le cadre de la présente invention, l’électrode positive peut être de tout type connu adapté aux éléments Li-ion.
Le terme « électrode positive » désigne l’électrode où entrent les électrons, et où arrivent les cations (Li+) en décharge.
L’électrode positive consiste généralement en un support conducteur utilisé comme collecteur de courant qui est revêtu sur au moins l’une de ses faces de la formulation d’électrode positive, qui contient typiquement au moins un matériau actif d’électrode positive, un matériau conducteur électronique et un liant éventuel.
La matière active de l’électrode positive n'est pas particulièrement limitée. Elle peut être choisie dans les groupes suivants :
- un composé (a) de formule LixMi.y.z.wM’yM”zM”’wO2 (LMO2) et de structure dite « en lamelles » ou « oxide lamellaire » où M, M’, M” et M’” sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W et Mo à la condition qu'au moins M ou M’ ou M” ou M’” soit choisi parmi Mn, Co, Ni, ou Fe; M, M’, M” et M’” étant différents les uns des autres; et 0,8<x<1 ,4; 0<y<0,5; 0<z<0,5; 0<w<0,2 et x+y+z+w<2,1 ; - un composé (b) de formule LixMn2-y-zM'yM"zO4 (LMO4) et de structure dite « spinelle », où M' et M" sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo;. M' et M" étant différents l’un de l’autre, et 1 <x<1 ,4; 0<y<0,6; 0<z<0,2 ;
- un composé (c) de formule LixFei.yMyPO4(LFMP) et de structure dite « olivine » où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo; et 0,8<x<1 ,2; 0<y<0,6 ;
- un composé (d) de formule LixMni.y.zM’yM”zPO4 (LMP), où M’ et M” sont différents l’un de l’autre et sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, avec 0,8<x<1 ,2 ; 0<y<0,6; 0,0<z<0,2 ;
- un composé (e) de formule xLi2MnOs; (1 -x)LiMO2 de structure dite « en lamelles » ou « oxide lamellaire » où M est au moins un élément choisi parmi Ni, Co et Mn et où 0<x< 1 ;
- un composé (f) de formule Lii+xMO2-yFy de structure cubique où M représente au moins un élément choisi dans le groupe constitué de Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd et Sm et où 0 < x < 0,5 et 0 < y < 1 ,
- un composé (g) de formule Lii+xVi.yMyPO4Fz où, 0<x<1 ; 0<y<0,5; 0,8<z<1 ,2; et M représente au moins un élément choisi dans le groupe constitué de Ti, Al, Mg, Mn, Fe, Co, Y, Cr, Cu, Ni, or Zr,
- un composé (h) de formule LiNii.y.zMnyCozO2 avec 0<y<1 , 0<z<1 et y+z<1 , aussi désigné Li(Ni,Mn,Co)O2,
- et un mélange de a) à h).
Selon un mode de réalisation, la matière active de l’électrode positive comprend à titre de matière active un oxyde lamellaire, tel que LiNii.y.zMnyCozO2 avec 0<y< 1 , 0<z<1 et y+z<1 .
Le matériau conducteur électronique d’électrode positive est généralement choisi parmi le graphite, le noir de carbone, le noir d'acétylène, la suie, le graphène, les nanotubes de carbones ou un mélange de ceux-ci.
L'électrolyte peut être liquide et comprendre un sel de lithium dissous dans un solvant organique. Ce sel de lithium peut être choisi parmi le perchlorate de lithium UCIO4, l'hexafluorophosphate de lithium LiPF6, le tétrafluoroborate de lithium LiBF4, l'hexafluoroarsénate de lithium LiAsF6, l'hexafluoroantimonate de lithium LiSbF6, le trifluorométhanesulfonate de lithium ÜCF3SO3, le bis(fluorosulfonyl)imide de lithium Li(FSO2)2N (LiFSI), le trifluorométhanesulfonimide de lithium LiN(CFsSO2)2 (LiTFSI), le trifluorométhanesulfoneméthide de lithium LiC(CF3SO2)3 (LiTFSM), le bisperfluoroéthylsulfonimide de lithium LiN(C2F5SO2)2 (LiBETI), le 4,5-dicyano-2- (trifluorométhyl) imidazolide de lithium (LiTDI), le bis(oxalatoborate) de lithium (LiBOB), le difluoro(oxalato)borate de lithium (LIDFOB), le tris(pentafluoroethyl)trifluorophosphate de lithium LiPF3(CF2CF3)3 (LiFAP) et les mélanges de ceux-ci.
Le solvant de l'électrolyte peut être choisi parmi les carbonates cycliques saturés, les carbonates cycliques insaturés, les carbonates linéaires, les esters d’alkyles, les éthers ou les esters cycliques, tels que les lactones et les mélanges de ceux-ci.
L’électrolyte peut aussi être sous la forme d’un gel obtenu en imprégnant un polymère d’un mélange liquide comprenant au moins un sel de lithium et un solvant organique.
Le séparateur a pour but d’éviter les courts-circuits, tout en étant perméable aux ions lithium. Il peut notamment être constitué d’un non-tissé ou d’un film polymère. Le séparateur peut être constitué d'une couche de polypropylène (PP), de poly-éthylène (PE), de polytétrafluoroéthylène (PTFE), de polyacrylonitrile (PAN), de polyester tel que le polyéthylène téréphtalate (PET), le poly(butylène) téréphtalate (PBT), de cellulose, de polyimide, de fibres de verre ou d'un mélange de couches de natures différentes. Les polymères cités peuvent être revêtus d'une couche céramique et/ou de difluorure de polyvinylidène (PVdF) ou de poly(fluorure de vinylidène-hexafluoropropylène (PVdF-HFP) ou d’acrylates.
L'élément lithium-ion est fabriqué de manière conventionnelle. Au moins une cathode, au moins un séparateur et au moins une anode sont superposés. L'ensemble peut être enroulé pour former un faisceau électrochimique cylindrique. Les électrodes peuvent aussi être empilées pour former un faisceau électrochimique plan. Une pièce de connexion est fixée sur un bord de la cathode non recouvert de matériau actif. Elle est reliée à une borne de sortie de courant. L'anode peut être connectée électriquement au conteneur de l'élément. Inversement, lacathode peut être connectée au conteneur de l'élément et l'anode à une borne de sortie de courant. Après avoir été inséré dans le conteneur de l'élément, le faisceau électrochimique est imprégné d'électrolyte. L'élément est ensuite fermé de manière étanche. L'élément peut également être équipé de manière conventionnelle d'une soupape de sécurité provoquant l'ouverture du conteneur de l'élément au cas où la pression interne de l'élément dépasserait une valeur prédéterminée.
Selon un autre objet, la présente invention concerne également un module électrochimique comprenant l’empilement d’au moins deux éléments selon l’invention, chaque élément étant connecté électriquement avec un ou plusieurs autre(s) élément(s).
Le terme « module » désigne donc ici l’assemblage de plusieurs éléments électrochimiques, lesdits assemblages pouvant être en série et/ou parallèle. Un autre objet de l’invention est encore une batterie comprenant un ou plusieurs modules selon l’invention.
On entend par « batterie » ou accumulateur, l’assemblage de plusieurs modules selon l’invention.
L’invention sera décrite plus précisément, de façon illustrative, par référence aux Figures et exemples donnés ci-après.
Figures
La Figure 1 illustre l’évolution normalisée de la capacité enregistrée à C/5 - D/5 (charge en 5h -décharge en 5h), à température ambiante, où la courbe 1 correspond à une électrode à base de SiOx+graphite (liant LiPAA) avec l’additif LiF et la courbe 2 correspond à une électrode à base de SiOx+graphite (liant LiPAA) sans additif. La flèche représente une multiplication par 5 du nombre de cycles avant d’atteindre 80% de rétention de la capacité de référence.
La Figure 2 illustre l’évolution normalisée de la capacité à C/5 - D/5, à température ambiante, avec une courbe 1 correspondant à une électrode à base de SiOx+graphite//Li° avec l’additif LiF, et la courbe 2 correspondant à une électrode à base de SiOx+graphite//Li° sans additif. La flèche représente une augmentation de 15% du nombre de cycles pour l’électrode avec additif LiF par rapport à l’électrode sans additif.
La Figure 3 illustre l’évolution normalisée de la capacité à C/5 - D/5, température ambiante, où la courbe 1 correspond à une électrode à base de Si-C+graphite//Li° avec l’additif MgF2, et la courbe 2 correspond à une électrode à base de Si-C+g raphite//Li° sans additif. La flèche représente une augmentation de 28% du nombre de cycles pour l’électrode avec additif MgF2 par rapport à l’électrode sans additif.
La figure 4 illustre l’évolution normalisée de la capacité à C/3 - D/3, température ambiante, où la courbe 1 correspond à une cellule NMC811 //composite Si-C + graphite avec MgF2 dans l’électrode et la courbe 2 correspond à une cellule NMC811 //composite Si- C + graphite sans MgF2 dans l’électrode.
La figure 5 illustre l’évolution normalisée de la résistance interne, où la courbe 1 correspond à une cellule NMC81 1//composite Si-C + graphite avec MgF2 dans l’électrode et la courbe 2 correspond à une cellule NMC811 //composite Si-C + graphite sans MgF2 dans l’électrode.
La figure 6 représente la structure de la composition d’électrode selon un mode de réalisation de l’invention, où la composition comprend des particules de Si-C (1 ) et des particules de graphite (4) à titre de matières actives, MgF2 (2) à titre d’additif de l’électrode, du liant (3). Selon ce mode de réalisation, la composition ne contient pas de matériau conducteur; il est cependant entendu que lorsqu’un matériau conducteur est présent, les particules de matériau conducteur n’affectent pas la répartition uniforme de l’additif au sein de la structure de ladite composition.
Exemples
1 - Préparation des encres et électrodes
Des formulations d’encres selon l’invention ont été préparées selon les étapes lait avec les matières actives SiOx ou Si-C. Les pourcentages indiqués représentent les pourcentages en poids des ingrédients ajoutés à l’étape considérée, en poids par rapport au poids total des ingrédients de la suspension.
Figure imgf000012_0001
Dans le tableau ci-dessus, 0<x<2, de préférence x est égal à environ 1 .
Le terme « agitation » sous-entend « jusqu’à dissolution totale ou répartition homogène à l’œil nu ». Les suspensions des encres ainsi préparées aux étapes 1 a-1 f sont ensuite enduites sur un feuillard de cuivre, et l’ensemble est soumis à 80°C pendant une durée typiquement comprise entre quelques minutes et une heure, jusqu’à évaporation de l’eau. L’évaporation de l’eau peut être identifiée par pesée, lorsque la masse ne varie plus au cours du temps lorsque l’on augmente le temps de séchage.
Le calandrage de l’électrode ainsi préparée est effectué par passage de l’électrode entre deux rouleaux afin de diminuer la porosité de l’électrode à la valeur voulue.
2- Répartition au sein de l’électrode
L’électrode après séchage peut être caractérisée par microscopie électronique à balayage (MEB) afin de faire apparaître la répartition de l’additif au sein de l’électrode de sorte qu’elle soit uniforme et sans agglomérats, l’additif étant situé entre les particules de matières actives sans toutefois recouvrir intégralement celles-ci.
3- Mise en évidence des propriétés électrochimiques
Des piles boutons ont été préparées pour effectuer les mesures de caractérisations électrochimiques avec une contre électrode de Li métal :
- l’électrode précédemment préparée est découpée au bon diamètre afin d’être insérée dans le support pile bouton,
- un séparateur en polymère, typiquement en polypropylène, et un électrolyte standard comprenant un sel de lithium (LiPF6) dissout dans un mélange de carbonates y sont ajoutés ainsi que le disque de Lithium métal qui joue ici le rôle de contre-électrode.
Une fois la pile bouton scellée, elle est branchée à un système de cyclage de type potentiostat permettant de générer un courant de quelques pA à quelques mA qui va dépendre de la capacité (mAh) de la pile testée et du régime de courant souhaité (C/X),
Par un système d’application de courant + et -, des cycles de charge et de décharge peuvent ainsi être effectués.
Ainsi, une capacité de décharge en fonction d’un nombre de cycles est déterminée.
Le début du cyclage commence par un cycle de formation en température (1 er point des courbes), puis le vieillissement (pour l’étude de la durée de vie) s’effectue à T°C ambiante. Des « cycles de contrôle », effectués à des régimes de cyclage plus lents, peuvent être insérés lors du vieillissement.

Claims

REVENDICATIONS
1. Composition d’électrode négative comprenant : à titre de matière active :
- des particules comprenant du silicium ;
- au moins un liant;
- éventuellement un matériau conducteur, caractérisée en ce que ladite composition comprend en outre au moins un additif fluoré réparti de façon uniforme entre les particules de matière active, liant et matériau conducteur éventuel au sein de ladite composition.
2. Composition selon la revendication 1 telle que les particules comprenant du silicium sont choisies parmi les particules de composite silicium -carbone (Si-C) et les particules d’oxyde de silicium SiOx où 0<x<2.
3. Composition selon la revendication 1 ou 2 telle que l’additif fluoré est choisi parmi LiF ou MgF2.
4. Composition selon l’une quelconque des revendications précédentes telle qu’elle comprend des particules de Si-C et MgF2.
5. Composition selon l’une quelconque des revendications 1 à 3 telle qu’elle comprend des particules de SiOx où 0<x<2 et LiF.
6. Composition selon l’une quelconque des revendications précédentes telle que ladite matière active comprend en outre des particules de graphite.
7. Composition selon l’une quelconque des revendications précédentes telle qu’elle comprend en outre un matériau conducteur.
8. Composition selon l’une quelconque des revendications précédentes telle que comprenant de 0.05 % à 5% (en poids) de l’additif fluoré, notamment de 0.1 à 3% (en poids), ledit pourcentage étant rapporté au poids total des constituants de ladite composition.
9. Composition selon l’une quelconque des revendications précédentes telle que le liant est choisi parmi la carboxyméthylcellulose (CMC), le styrène-butadiène (SBR), l’acide polyacrylique lithié (LiPAA) et l’acide polyacrylique non lithié (PAA, PAAH ou PAAN).
10. Composition selon l’une quelconque des revendications précédentes telle que le matériau conducteur est choisi parmi le noir de carbone et les nanotubes de carbone.
11. Composition selon l’une quelconque des revendications précédentes en suspension aqueuse ou organique.
12. Electrode négative comprenant un collecteur de courant sur lequel est enduit sur au moins un de ses faces un revêtement comprenant la composition selon l’une quelconque des revendications précédentes.
13. Procédé de préparation de l’électrode selon la revendication 12 comprenant une étape de dépôt d’une composition telle que définie selon l’une des revendications 1 à 9 sur ledit collecteur de courant, et une étape de séchage.
14. Procédé selon la revendication 13 comprenant l’étape préalable de mélange des constituants de la composition définie selon l’une des revendications 1 à 11 en suspension aqueuse ou organique.
15. Elément électrochimique de type Li-ion comprenant :
- une électrode négative selon la revendication 12 ;
- une électrode positive;
- un séparateur;
- un électrolyte.
16. Elément électrochimique selon la revendication 15, tel que l’électrode positive comprend à titre de matière active un oxyde lamellaire, tel que UNii.y.zMnyCOzO2 avec 0<y< 1 , 0<z<1 et y+z<1 .
PCT/EP2023/086087 2022-12-16 2023-12-15 Électrodes négatives à base de silicium et d'additif fluoré WO2024126799A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2213660 2022-12-16
FR2213660A FR3143868A1 (fr) 2022-12-16 2022-12-16 Electrodes negatives a base de silicium et d’additif fluore

Publications (1)

Publication Number Publication Date
WO2024126799A1 true WO2024126799A1 (fr) 2024-06-20

Family

ID=86469135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/086087 WO2024126799A1 (fr) 2022-12-16 2023-12-15 Électrodes négatives à base de silicium et d'additif fluoré

Country Status (2)

Country Link
FR (1) FR3143868A1 (fr)
WO (1) WO2024126799A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097629A1 (en) * 2009-10-28 2011-04-28 Samsung Sdi Co., Ltd. Negative Active Material for Rechargeable Lithium Battery and Rechargeable Lithium Battery Including Same
JP2013125662A (ja) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd 非水電解質二次電池用負極及びその製造方法
JP6465630B2 (ja) * 2014-11-28 2019-02-06 積水化学工業株式会社 二次電池および二次電池の製造方法
EP3471177A1 (fr) 2016-12-23 2019-04-17 LG Chem, Ltd. Matériau actif d'électrode négative et électrode négative comprenant ledit matériau destinés à un dispositif électrochimique
EP3618150A1 (fr) 2017-06-02 2020-03-04 LG Chem, Ltd. Matière active d'électrode négative, électrode négative comprenant cette matière active et batterie secondaire comprenant cette électrode négative
WO2022103038A1 (fr) * 2020-11-16 2022-05-19 대주전자재료 주식회사 Composite silicium-carbone poreux, son procédé de fabrication et matériau actif d'électrode négative le comprenant
WO2023158262A1 (fr) * 2022-02-17 2023-08-24 대주전자재료 주식회사 Mélange silicium-carbone, son procédé de préparation et matériau actif d'anode et batterie secondaire au lithium le comprenant
WO2023182826A1 (fr) * 2022-03-23 2023-09-28 대주전자재료 주식회사 Composite silicium-carbone, son procédé de préparation et matériau actif d'anode et batterie secondaire au lithium le comprenant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097629A1 (en) * 2009-10-28 2011-04-28 Samsung Sdi Co., Ltd. Negative Active Material for Rechargeable Lithium Battery and Rechargeable Lithium Battery Including Same
JP2013125662A (ja) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd 非水電解質二次電池用負極及びその製造方法
JP6465630B2 (ja) * 2014-11-28 2019-02-06 積水化学工業株式会社 二次電池および二次電池の製造方法
EP3471177A1 (fr) 2016-12-23 2019-04-17 LG Chem, Ltd. Matériau actif d'électrode négative et électrode négative comprenant ledit matériau destinés à un dispositif électrochimique
EP3618150A1 (fr) 2017-06-02 2020-03-04 LG Chem, Ltd. Matière active d'électrode négative, électrode négative comprenant cette matière active et batterie secondaire comprenant cette électrode négative
WO2022103038A1 (fr) * 2020-11-16 2022-05-19 대주전자재료 주식회사 Composite silicium-carbone poreux, son procédé de fabrication et matériau actif d'électrode négative le comprenant
WO2023158262A1 (fr) * 2022-02-17 2023-08-24 대주전자재료 주식회사 Mélange silicium-carbone, son procédé de préparation et matériau actif d'anode et batterie secondaire au lithium le comprenant
WO2023182826A1 (fr) * 2022-03-23 2023-09-28 대주전자재료 주식회사 Composite silicium-carbone, son procédé de préparation et matériau actif d'anode et batterie secondaire au lithium le comprenant

Also Published As

Publication number Publication date
FR3143868A1 (fr) 2024-06-21

Similar Documents

Publication Publication Date Title
EP3669410A1 (fr) Matériaux d&#39;électrode sous forme d&#39;alliage à base de lithium et leurs procédés de fabrication
EP3365933B1 (fr) Procede de fabrication d&#39;un accumulateur du type lithium-ion
EP3298644B1 (fr) Électrode positive pour générateur électrochimique au lithium
EP1846331B1 (fr) Procede de modification d&#39;un oxyde lithie comprenant au moins un metal de transition utilisant des ions de phosphate
FR3042915A1 (fr) Procede de fabrication d&#39;un accumulateur du type sodium-ion
WO2019008249A1 (fr) Procede de fabrication d&#39;un accumulateur du type lithium-ion
EP4173059A1 (fr) Electrode négative hybride graphite/lithium
WO2024126799A1 (fr) Électrodes négatives à base de silicium et d&#39;additif fluoré
EP3714499B1 (fr) Utilisation du nitrate de lithium en tant que seul sel de lithium dans une batterie au lithium gélifiée
FR3110776A1 (fr) Electrolyte gelifie pour element electrochimique au lithium
FR3108793A1 (fr) Electrode nanoporeuse
FR3087949A1 (fr) Electrode negative specifique a base de lithium et generateur electrochimique au lithium comprenant une telle electrode negative
EP2959530B1 (fr) Cellule électrochimique pour batterie lithium-ion comprenant une électrode négative à base de silicium et un électrolyte spécifique
FR3137217A1 (fr) Membrane pour cellule electrochimique comprenant une couche lithiophile
EP3472882B1 (fr) Procede de fabrication d&#39;une structure faisant office d&#39;electrode positive et de collecteur de courant pour accumulateur electrochimique lithium-soufre
EP4254543A1 (fr) Électrode négative spécifique à base de lithium et générateur électrochimique au lithium comprenant une telle électrode négative
FR3108602A1 (fr) Traitement de particules de carbone et leur utilisation pour la préparation d’électrodes résistantes à l’oxydation de l’électrolyte
FR3129780A3 (fr) Elément électrochimique lithium-ion
WO2023078611A1 (fr) Element electrochimique de type lithium-ion
EP4305686A1 (fr) Electrode pour élément électrochimique lithium soufre tout solide comprenant un électrolyte sulfure conducteur ionique et électronique
FR3105882A1 (fr) Electrode composite comprenant un métal et une membrane polymère, procédé de fabrication et batterie la contenant
FR3091623A1 (fr) Cellule electrochimique pour accumulateur au lithium comprenant une electrode negative specifique en lithium metallique et une electrode positive sur collecteur en aluminium
FR3138568A1 (fr) Elément électrochimique au lithium comprenant une électrode positive à base d’un phosphate lithié de manganèse et de fer
FR3127331A1 (fr) Formulation d’une composition pour cathode comprenant une matière active fonctionnant à haut potentiel
FR3118308A1 (fr) Element electrochimique lithium-soufre tout solide