WO2024125516A1 - 信号传输方法、装置、通信设备及存储介质 - Google Patents

信号传输方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2024125516A1
WO2024125516A1 PCT/CN2023/138217 CN2023138217W WO2024125516A1 WO 2024125516 A1 WO2024125516 A1 WO 2024125516A1 CN 2023138217 W CN2023138217 W CN 2023138217W WO 2024125516 A1 WO2024125516 A1 WO 2024125516A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
communication device
inventory
signal
target signal
Prior art date
Application number
PCT/CN2023/138217
Other languages
English (en)
French (fr)
Inventor
简荣灵
吴凯
谭俊杰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024125516A1 publication Critical patent/WO2024125516A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a signal transmission method, device, communication equipment and storage medium.
  • Backscatter Communication refers to the backscatter communication equipment using the radio frequency signals from other devices or the environment to perform signal modulation to transmit its own information.
  • the network side equipment such as the base station (gNB)
  • the backscatter communication equipment such as the tag device (tag).
  • the tag device modulates the bit data to be transmitted onto the carrier signal according to the instructions to generate a backscatter signal and sends it to the terminal.
  • the terminal can simultaneously receive the carrier signal sent by the base station and the backscatter signal modulated by the tag device. Because the energy of the carrier signal is usually greater than the intensity of the backscatter signal, it is easy to cause a high bit error rate when the terminal demodulates the bit data of the tag device.
  • the terminal needs to perform interference estimation of the direct link to suppress or eliminate the interference of the direct link based on the interference estimation result.
  • the channel between the terminal and the base station is time-varying, so that the interference estimation of the terminal on the direct link is only valid for a period of time.
  • the embodiments of the present application provide a signal transmission method, apparatus, communication equipment and storage medium, which can ensure that a receiving device of a target signal can effectively perform interference estimation.
  • a signal transmission method comprising:
  • the first communication device determines the first information and/or the second information according to the target configuration mode
  • the first communication device sends the first information and/or the second information to the second communication device;
  • the first information is used to instruct the second communication device not to transmit the target signal in a first period
  • the second information is used to instruct the second communication device to transmit the target signal in a second period.
  • a signal transmission device comprising:
  • a first determination module configured to determine the first information and/or the second information according to a target configuration mode
  • a first sending module configured to send the first information and/or the second information to a second communication device
  • the first information is used to instruct the second communication device not to transmit the target signal in a first period
  • the second information is used to instruct the second communication device to transmit the target signal in a second period.
  • a signal transmission method comprising:
  • the second communication device receives the first information and/or the second information
  • the second communication device performs at least one of the following actions according to the first information and/or the second information:
  • the target signal is transmitted in the second cycle.
  • a signal transmission device comprising:
  • a second receiving module used for receiving the first information and/or the second information
  • An execution module configured to execute at least one of the following actions according to the first information and/or the second information:
  • the target signal is transmitted in the second cycle.
  • a communication device which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the signal transmission method described in the first aspect are implemented, or the steps of the signal transmission method described in the third aspect are implemented.
  • a communication system comprising: a first communication device and a second communication device, wherein the first communication device can be used to execute the steps of the signal transmission method as described in the first aspect, and the second communication device can be used to execute the steps of the signal transmission method as described in the third aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the signal transmission method described in the first aspect are implemented, or the steps of the signal transmission method described in the third aspect are implemented.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the signal transmission method as described in the first aspect, or to implement the steps of the signal transmission method as described in the third aspect.
  • a first communication device determines first information and/or second information according to a target configuration mode, and then sends the first information and/or second information to a second communication device, wherein the first information is used to instruct the second communication device not to transmit a target signal within a first period, and the second information is used to instruct the second communication device to transmit a target signal within a second period, so that the second communication device can know when to transmit the target signal according to the first information and/or the second information, and thus when the second communication device does not transmit the target signal, the receiving device of the target signal can effectively perform interference estimation, and then perform subsequent operations based on the interference estimation result, such as after receiving the target signal sent by the second communication device, performing interference suppression or elimination operations based on the interference estimation result, thereby ensuring that the interference suppression or elimination operations are performed in order and improving the demodulation success rate of the target signal.
  • FIG1 is a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of a backscatter communication process in the related art
  • FIG3 is a schematic diagram of a backscatter communication principle in the related art
  • FIG4 is a schematic diagram of information transmission between a reader and a tag device in the related art
  • FIG5 is a schematic diagram of a first application scenario of backscatter communication in the related art
  • FIG6 is a schematic diagram of a second application scenario of backscatter communication in the related art.
  • FIG7 is a schematic diagram of a third application scenario of backscatter communication in the related art.
  • FIG8 is a schematic diagram of a fourth application scenario of backscatter communication in the related art.
  • FIG9 is a schematic diagram of a base station multi-antenna full-duplex system operating mode in the related art
  • FIG10 is a schematic diagram of a label device inventory process in the related art
  • FIG11 is a schematic diagram of a BPSK interference signal elimination process in the related art
  • FIG12 is a flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG13 is a schematic diagram of time domain resource configuration in an embodiment of the present application.
  • FIG14 is a schematic structural diagram of a signal transmission device corresponding to FIG12 in an embodiment of the present application.
  • FIG15 is a flowchart of another signal transmission method in an embodiment of the present application.
  • FIG16 is a schematic structural diagram of a signal transmission device corresponding to FIG15 in an embodiment of the present application.
  • FIG17 is a schematic diagram of the structure of a communication device in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VUE), a pedestrian terminal (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), an ATM or a self-service machine and other terminal side devices, and the wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, and the
  • the network side device 12 may include an access network device or a core network device.
  • the access network equipment may also be referred to as wireless access network equipment, wireless access network (Radio Access Network, RAN), wireless access network function or wireless access network unit.
  • the access network equipment may include base stations, WLAN access points or WiFi nodes, etc.
  • the base station may be referred to as node B, evolved node B (eNB), access point, base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, basic service set (Basic Service Set, BSS), extended service set (Extended Service Set, ESS), home B node, home evolved B node, transmitting and receiving point (Transmitting Receiving Point, TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiments of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery ...
  • MME mobility management entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • Policy Control Function Policy Control Function
  • PCRF Policy and Charging Rules Function
  • edge application service discovery function Edge Application Server Discovery ...
  • backscatter communication refers to a backscatter communication device using radio frequency signals from other devices or the environment to perform signal modulation to transmit its own information.
  • a backscatter communication device can be a tag device belonging to a passive Internet of Things (IoT) device (Passive-IoT), or a semi-passive tag device (semi-passive tag), or an active tag device (active tag).
  • IoT passive Internet of Things
  • SC semi-passive tag
  • active tag active tag
  • FIG. 2 it is a schematic diagram of a backscatter communication process.
  • This process includes two links. One is the link from the reader to the tag device (tag).
  • the reader can send control signals (command) and/or carrier signals to the tag device.
  • the carrier signal can be a continuous wave.
  • the other is the link from the tag device to the reader.
  • the tag device can send a backscatter signal to the reader.
  • a simple implementation method is that the tag device reflects the incident carrier signal when it needs to send "1", and does not reflect the incident carrier signal when it needs to send "0".
  • FIG3 is a schematic diagram of a backscatter communication principle in the related art.
  • the transmitter of the reader sends a carrier signal through a power amplifier (PA), and the tag device modulates the signal through an RF harvester, a demodulator (Demod), a logic circuit, a clock circuit, etc., and outputs a backscatter signal.
  • the receiver of the reader receives the backscatter signal through a low noise amplifier (LNA) and performs corresponding demodulation processing.
  • LNA low noise amplifier
  • TX BB represents the baseband processing module of the reader transmitter
  • RX BB represents the baseband processing module of the reader receiver.
  • the tag device can control the reflection coefficient ⁇ of the circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, phase, etc. of the incident carrier signal to achieve signal modulation.
  • the reflection coefficient ⁇ can be expressed as:
  • Z0 is the antenna characteristic impedance and Z1 is the load impedance.
  • S in (t) the incident carrier signal
  • the output backscattered signal is Therefore, corresponding amplitude modulation, frequency modulation or phase modulation can be achieved by properly controlling the reflection coefficient.
  • the reader selects (select) the tag device, sends the query command (Query), and the tag device responds (Relay), that is, generates a 16-bit random number to the reader, and then the reader sends the random number sequence to the tag device through the confirmation response command (ACK), and the tag device sends the relevant data to the reader, such as the protocol control word (Protocol Control, PC)/Extended Protocol Control Word (Extended Protocol Control, XPC), Electronic Product Code (Electronic Product Code, EPC), Data Packet Cyclic Redundancy Check (Cyclic Redundancy Check, CRC) (PacketCRC), etc.
  • protocol control word Protocol Control, PC
  • Extended Protocol Control Word Extended Protocol Control
  • EPC Electronic Product Code
  • EPC Data Packet Cyclic Redundancy Check
  • CRC Cyclic Redundancy Check
  • the reader can send a repeated query command (QueryRep) or other commands, if the EPC is invalid, the reader can send a negative response (NAK). From the reader sending the query command to the reader receiving the relevant data sent by the tag device is a single tag device response process.
  • QueryRep repeated query command
  • NAK negative response
  • Figure 5 shows that a network-side device, such as a base station, acts as a reader, sends a carrier signal and/or control signaling to a backscatter communication device, such as a tag device, and receives the backscatter signal of the tag device.
  • Figure 6 shows that a network-side device, such as a base station, communicates with a terminal, and the terminal, as a reader, sends a carrier signal and/or control signaling to a backscatter communication device, such as a tag device, and receives the backscatter signal of the tag device.
  • Figure 7 shows that a network-side device, such as a base station, sends a carrier signal and/or control signaling to a backscatter communication device, such as a tag device, and the terminal receives the backscatter signal sent by the tag device, and then reports the demodulated relevant data to the network-side device.
  • Figure 8 shows that a network-side device, such as a base station, communicates with a terminal, and the network-side device sends indication information to the terminal, and the terminal sends a carrier signal and/or control signaling to a backscatter communication device, such as a tag device, and the network-side device receives the backscatter signal sent by the tag device.
  • Figures 5 and 6 are a representation of a single-base architecture
  • Figures 7 and 8 are a representation of a dual-base architecture.
  • control type may include at least one of the following: selection, inventory, and access.
  • the reader can realize the RFID frequency division duplex (FDD)/time division duplex (TDD) communication mode by connecting a single antenna to a circulator or directional coupler, or it can realize the frequency division duplex communication mode by using dual antennas.
  • Factors such as the carrier leakage at the transmitting end when a single antenna is used, the coupling effect of the transmitting antenna when dual antennas are used, the coupling between circuits, and the mismatch of the transmitting antenna may all cause the reflection of the transmitting signal and the reflection of the environmental signal to interfere with the backscattered signal.
  • the above interference needs to be eliminated or suppressed by RFID self-interference elimination technology.
  • Several possible methods include:
  • Antenna domain interference elimination/suppression Mainly used in scenarios where multiple antennas implement frequency division duplex. Specific methods include isolating the transmitting and receiving antennas by increasing the distance between them, and physically isolating the transmitting and receiving antennas by using baffles.
  • Analog domain interference elimination/suppression Eliminate/suppress RFID self-interference by adding RF circuits
  • Nonlinear interference elimination/suppression Nonlinear interference caused by nonlinear devices and phase noise can be eliminated/suppressed in the baseband domain by constructing a polarization mismatch matrix/polarization signal by taking advantage of the fact that the polarization state of the signal is insensitive to the nonlinearity and phase noise of the nonlinear devices;
  • each antenna will be affected not only by the self-interference caused by the transmission signal of the antenna, but also by the self-interference caused by the transmission signals of other antennas. Therefore, before data transmission, the device needs to be trained and adjusted to eliminate interference from each antenna separately.
  • each training cycle can be divided into N training time slots.
  • the N antennas act as "primary antennas” to send and receive training sequences
  • the other antennas act as "secondary antennas" to only receive training sequences.
  • the secondary antenna is responsible for eliminating the "inter-antenna interference signal caused by the transmission signal of the primary antenna" in its own antenna.
  • each antenna has one and only one opportunity to serve as the primary antenna in a training time slot, and serves as the secondary antenna in other training time slots. When the primary antenna sends data, the secondary antenna does not send data.
  • each antenna not only eliminates the interference signal from itself as the main antenna, but also eliminates the interference signal from other antennas as the secondary antenna. Therefore, the channel estimation and self-interference cancellation parameters obtained in the training cycle can be used for self-interference cancellation in the data transmission cycle.
  • the self-interference signal can be effectively eliminated when all antennas transmit and receive simultaneously during the data transmission period.
  • the frequency difference between the carrier signal received by the terminal and the backscattered signal can be made.
  • the terminal can eliminate direct link interference through hardware devices such as filters.
  • the network side device sends a selection command (Select)/challenge command (challenge)/sort command (sort) to the tag device; in the inventory phase (Inventory Phase), the network side device sends a carrier signal (CW)/query command (Query)/repeat query command (QueryRep)/adjust query command (Query Adjust) to the tag device. After receiving the command, all tag devices generate a random number from 0 to Q.
  • the tag device When the random number is 0, the tag device sends a 16b it random number (RN16), the terminal sends a confirmation response instruction (ACK) to the tag device, the confirmation response instruction may include control signaling or RN16, or the terminal can send a carrier signal (CW)/control signaling (command) to the tag device, and the tag device sends PC/EPC/CRC/other data to the terminal; in the access phase (Access Phase), the network side device sends a random request (Req_RN) to the tag device, requiring the tag device to regenerate a 16-bit random number (Re-RN16), and the tag device sends a handshake instruction (handle) to the terminal and the network side device.
  • RN16 confirmation response instruction
  • ACK confirmation response instruction
  • the confirmation response instruction may include control signaling or RN16, or the terminal can send a carrier signal (CW)/control signaling (command) to the tag device, and the tag device sends PC/EPC/CRC/other data to the terminal
  • the network side device
  • Frequency deviation indication information may be carried in ACK or other indication information, including but not limited to: maximum frequency deviation indication, maximum modulation frequency, available frequency resources and other information.
  • the frequency deviation indication information can be obtained in the following ways:
  • the terminal obtains frequency deviation indication information from a configured mapping table, such as a mapping table between the number of sampling points and frequency deviation information, according to the sequence correlation peak;
  • the backscattered signal of the tag device has a synchronization symbol/sequence. After the terminal detects the conflict information between different tag devices, it indicates the frequency deviation information of different tag devices.
  • the transmission frequency of the backscatter signal such as the backscatter link frequency (BLF) is calculated based on two or more values in the calibration symbol, RTcal (RTcal), the divide ratio (DR, included in the payload of the query instruction that starts the inventory cycle), and the Class A reference interval (Tari).
  • the transmitter can use BPSK or QPSK modulation for the signal.
  • the receiver first squares the received signal, then down-converts it to separate the in-phase (I) component and the quadrature (Q) component, i.e., I and Q, or squares the I and Q after the received signal is down-converted; then, the receiver eliminates the self-interference component in the signal through DC filtering, multiplies the obtained signal with the baseband signal transmitted by the transmitter and enters the analog-to-digital conversion circuit, or directly converts the signal to analog and digital and then multiplies it with the transmitted baseband digital signal in the digital domain, and then demodulates it.
  • I in-phase
  • Q quadrature
  • the received signal includes the target signal, the self-interference signal and the noise.
  • the power of the self-interference signal is much greater than the power of the target signal, and the target signal can be arbitrarily modulated. If it is BPSK modulation, the received signal is squared and then down-converted to separate the I and Q, or the I and Q after the received signal is down-converted are squared. If QPSK modulation is used, the phases of the I and Q paths separated by down-conversion need to be consistent with the phases of the I and Q paths of the transmitted signal.
  • the BPSK interference signal elimination process is shown in Figure 11, including a square circuit, a DC filter circuit, a multiplier, and an analog-to-digital conversion circuit.
  • the square circuit is used to square the BPSK carrier signal and the backscattered signal;
  • the DC filter circuit is located after the square circuit and is used to filter out the square of the self-interference signal, that is, the DC signal;
  • the multiplier is used to multiply the DC filtered signal with the BPSK carrier signal to restore the useful signal;
  • the analog-to-digital conversion circuit is used to convert the analog signal into a digital signal.
  • the above scheme can also be further extended to the case of QPSK carrier signals.
  • This solution assumes that the channel condition belongs to the slow fading scenario. If the channel condition does not belong to the slow fading scenario, as long as the carrier signal sent by the network side device to the terminal can be guaranteed to be a constant after the channel fades, the backscattered signal can be restored by only estimating the cascade channel. This solution is also applicable to full-duplex self-interference elimination.
  • the technical solution provided in the embodiment of the present application can be applied to backscatter communication scenarios, such as item inventory, logistics inventory, fire warning, etc., and can also be applied to RFID dedicated readers, WiFi transmission scenarios, gNB transmission scenarios, etc.
  • FIG. 12 is a flowchart of an implementation of a signal transmission method provided in an embodiment of the present application, the method may include the following steps:
  • the first communication device determines the first information and/or the second information according to the target configuration mode.
  • the first information is used to instruct the second communication device not to transmit the target signal in the first period
  • the second information is used to instruct the second communication device to transmit the target signal in the second period.
  • the embodiments of the present application can be applied in a single-base architecture and a dual-base architecture.
  • the first communication device is a transceiver device, which can be a network-side device, such as a base station. Types include but are not limited to integrated access backhaul nodes (IAB stations), repeaters, and pole stations, wherein the repeater can be a network controlled repeater.
  • the first communication device can also be a reader, a terminal, or other network access device.
  • the second communication device can be a tag device, such as a passive tag device, a semi-passive tag device, or an active tag device.
  • the first communication device is a transmitting device, which can be a network-side device, such as a base station, or a reader, terminal, or other network-access device.
  • the second communication device can be a tag device, such as a passive tag device, a semi-passive tag device, or an active tag device.
  • the third communication device is a receiving device for the target signal, which can be a network-side device, such as a base station, or a reader, terminal, or other network-access device. The third communication device is different from the first communication device.
  • the target configuration mode may be predetermined by the first communication device and used to characterize a configuration mode.
  • the first communication device may determine the first information and/or the second information according to the target configuration mode.
  • the first information is used to instruct the second communication device not to transmit the target signal within the first period, and the first period may be determined according to the target configuration mode or other information.
  • the second information is used to instruct the second communication device to transmit the target signal within the second period, and the second period may be determined according to the target configuration mode or other information.
  • S1220 The first communication device sends the first information and/or the second information to the second communication device.
  • the first information and/or the second information may be sent to the second communication device, such as by broadcasting.
  • the second communication device may perform at least one of the following actions according to the first information and/or the second information: not transmitting the target signal in the first period, and transmitting the target signal in the second period.
  • the first communication device may send first information to the second communication device, and the second communication device determines not to transmit the target signal within the first period according to the first information, and may transmit the target signal at a time outside the first period;
  • the first communication device may send second information to the second communication device, and the second communication device determines to transmit the target signal within the second period according to the second information, and does not transmit the target signal outside the second period;
  • the first communication device may send the first information and the second information to the second communication device, and the second communication device determines not to transmit the target signal within the first period and determines to transmit the target signal within the second period according to the first information.
  • the target signal refers to a signal generated by the second communication device after modulating the target data to be transmitted.
  • the second communication device can receive the first signal sent by the first communication device, modulate the target data to be transmitted onto the first signal, and generate the target signal.
  • the second communication device can generate a second signal according to the relevant indication information of the first communication device, modulate the target data to be transmitted onto the second signal, and generate the target signal.
  • the first period is related to the interference estimation time of the receiving device of the target signal.
  • the receiving device of the target signal can perform interference estimation. This helps the target signal receiving device to suppress or eliminate interference based on the interference estimation result after receiving the target signal.
  • the first communication device determines the first information and/or the second information according to the target configuration mode, and then sends the first information and/or the second information to the second communication device, the first information is used to instruct the second communication device not to transmit the target signal within the first period, and the second information is used to instruct the second communication device to transmit the target signal within the second period, so that the second communication device can know when to transmit the target signal according to the first information and/or the second information, and also when the second communication device does not transmit the target signal, the receiving device of the target signal can effectively perform interference estimation, and then perform subsequent operations based on the interference estimation result, such as after receiving the target signal sent by the second communication device, interference suppression or elimination operations can be performed based on the interference estimation results, to ensure that the interference suppression or elimination operations are performed in order, and to improve the demodulation success rate of the target signal.
  • not transmitting the target signal may include at least one of the following:
  • a first communication device sends first information to a second communication device, where the first information is used to instruct the second communication device not to transmit a target signal within a first period.
  • the second communication device does not transmit the target signal and may perform at least one of the following actions:
  • the second communication device performs energy storage operation in the first cycle.
  • the second communication device may perform energy storage operation based on the first signal received from the first communication device;
  • demodulating the received signal that is, the second communication device may demodulate the received signal within the first period, such as demodulating the first signal received from the first communication device;
  • the second communication device may perform channel estimation within the first period
  • Synchronize with other communication devices that is, the second communication device can synchronize with other communication devices by decoding the synchronization sequence within the first cycle to ensure smooth subsequent signal transmission.
  • Other communication devices may include the first communication device and/or the third communication device.
  • the second communication device does not transmit the target signal in the first period, and in addition to executing the above-mentioned actions, it can also execute other actions as long as it does not transmit the target signal.
  • transmitting the target signal may include:
  • the first communication device sends second information to the second communication device, and the second information is used to instruct the second communication device to transmit a target signal within a second period.
  • the second communication device transmits the target signal, This can include the following actions:
  • the second communication device may modulate the target data to be transmitted in the second period.
  • the second communication device may modulate the target data to be transmitted onto the first signal received from the first communication device, thereby generating the target signal, or the second communication device may modulate the target data to be transmitted onto the second signal generated autonomously, thereby generating the target signal;
  • the second communication device can send the target signal in the second period.
  • the second communication device can send the target signal to the first communication device, and the first communication device is a receiving device of the target signal.
  • the second communication device can send the target signal to the third communication device, and the third communication device is a receiving device of the target signal.
  • the second communication device transmits the target signal in the second cycle, and in addition to performing the above-mentioned actions, can also perform other actions, such as demodulating the received signal, performing channel estimation, synchronizing with other communication devices, etc.
  • the target data to be transmitted is modulated in the first cycle, the modulated data is temporarily stored in the memory, and is sent in the second cycle.
  • the second communication device transmitting the target signal in the second period may include sending the target signal to the first communication device or the third communication device in the second period. That is, in a single-base architecture, the second communication device may send the target signal to the first communication device, and in a dual-base architecture, the second communication device may send the target signal to the third communication device.
  • the embodiment of the present application clarifies that the second communication device does not transmit the target signal in the first period and/or transmits the target signal in the second period, so as to facilitate the second communication device to perform corresponding actions.
  • the first information sent by the first communication device to the second communication device may only include indication information that the target signal is not transmitted in the first period, and/or the second information may only include indication information that the target signal is transmitted in the second period.
  • the second communication device After the second communication device receives the first information and/or the second information, it determines not to transmit the target signal in the first period, and may perform actions such as maintaining silence, storing energy, demodulating the received signal, performing channel estimation, and synchronizing with other communication devices in accordance with the protocol agreement or other information sent by the first communication device, such as the third information.
  • the second communication device after the second communication device receives the first information and/or the second information, it determines to transmit the target signal in the second period, and may perform actions such as modulating the target data to be transmitted and sending the target signal in accordance with the protocol agreement or other information sent by the first communication device, such as the third information.
  • the first information and/or second information sent by the first communication device to the second communication device may include instruction information of specific behavior.
  • the second communication device may determine whether to transmit the target signal based on the first information and/or second information.
  • the method may further include the following steps:
  • the first communication device sends third information to the second communication device
  • the third information is used to instruct the second communication device to perform at least one of the following actions within the first period:
  • the first information sent by the first communication device to the second communication device is used to instruct the second communication device not to transmit the target signal in the first cycle, and/or the second information sent to the second communication device is used to instruct the second communication device to transmit the target signal in the second cycle.
  • the first communication device may also send third information to the second communication device.
  • the third information can also be sent to the second communication device to instruct the second communication device to perform at least one of the following actions: keeping silent, storing energy, demodulating the received signal, performing channel estimation, and synchronizing with other communication devices, so that the second communication device can clearly know what actions can be performed if the target signal is not transmitted in the first cycle. That is, after the second communication device receives the third information, according to the third information, at least one of the following actions can be performed in the first cycle: keeping silent, storing energy, demodulating the received signal, performing channel estimation, and synchronizing with other communication devices.
  • the third information may be sent to the second communication device to instruct the second communication device to perform actions such as modulating the target data to be transmitted and sending the target signal within the second cycle, so that the second communication device knows what specific actions to perform for the transmission of the target signal within the second cycle. That is, after the second communication device receives the third information, according to the third information, the following actions may be performed within the second cycle: modulating the target data to be transmitted and sending the target signal.
  • actions such as demodulating the received signal, performing channel estimation, and synchronizing with other communication devices may also be performed.
  • the method may further include the following steps:
  • the first communications device determines a target configuration mode.
  • multiple configuration modes may be pre-deployed, and the first communication device may select one of the multiple configuration modes as a target configuration mode, and then determine the first information and/or the second information according to the target configuration mode.
  • the first communication device may semi-statically determine the target configuration mode. If the channel state is relatively stable within a period of time, the target configuration mode may be determined in a semi-static manner so that the target configuration mode is valid within the period of time.
  • the first communication device may dynamically determine the target configuration mode. If the channel state changes rapidly, the target configuration mode may be determined in a dynamic manner so that the target configuration modes determined at different times are applicable to the current channel state.
  • the target configuration mode may include one of the following:
  • the task configures at least one first period and/or at least one second period;
  • At least one first cycle and/or at least one second cycle are configured for a first inventory subtask of the inventory task;
  • an inventory task includes an inventory subtask
  • at least one first cycle and/or at least one second cycle are configured for the inventory subtask
  • the time interval between the receiving time of the fourth information and the sending time of the target signal is configured for the first inventory subtask of the inventory task
  • an inventory task is a task of performing an inventory on a group of second communication devices
  • an inventory subtask is a task of performing an inventory on one second communication device
  • the fourth information is used to indicate whether the second communication device transmits a target signal.
  • the first communication device when there is an inventory task, can determine the first information and/or the second information according to the target configuration mode and send it to the second communication device.
  • An inventory task is a task for performing an inventory on a group of second communication devices.
  • a group of second communication devices may include one or more second communication devices.
  • An inventory subtask is a task for performing an inventory on a second communication device.
  • An inventory task may include one or more inventory subtasks.
  • the target configuration mode can be one of the above configuration modes.
  • an inventory task includes one inventory subtask, and at least one first cycle and/or at least one second cycle can be configured for one inventory subtask.
  • at least one first cycle and/or second cycle can be configured for a first inventory subtask of an inventory task, and the first inventory subtask can be one of the multiple inventory subtasks included in the inventory task, and can be specified by the protocol, or independently selected by the first communication device, or determined by negotiation between the first communication device and the second communication device.
  • at least one first cycle and/or at least one second cycle can be configured for each inventory subtask of an inventory task.
  • the first periods configured for different inventory subtasks of an inventory task may be the same or different, and/or the second periods configured for different inventory subtasks of an inventory task may be the same or different. That is, the same time domain resources may be configured for different inventory subtasks of an inventory task to improve configuration efficiency.
  • the inventory task is also an inventory subtask, and the time interval between the receiving time of the fourth information and the sending time of the target signal can be configured for one inventory subtask.
  • the time interval between the receiving time of the fourth information and the sending time of the target signal can be configured for the first inventory subtask of an inventory task.
  • the inventory subtask may be one of a plurality of inventory subtasks corresponding to the inventory task, may be specified by the protocol, or may be selected autonomously by the first communication device, or may be determined by negotiation between the first communication device and the second communication device. If a group of second communication devices includes a plurality of second communication devices, the time interval between the receiving time of the fourth information and the sending time of the target signal may be configured for each inventory subtask of an inventory task.
  • the fourth information is used to indicate whether the second communication device transmits the target signal. For example, after the second communication device receives the first information and/or the second information, if it receives the fourth information, it can determine whether to transmit the target signal based on the fourth information and the time interval.
  • the target configuration mode includes configuring at least one first cycle and/or at least one second cycle for each inventory subtask of an inventory task, or configuring at least one first cycle and/or at least one second cycle for the first inventory subtask of an inventory task, or configuring at least one first cycle and/or at least one second cycle for an inventory subtask:
  • the first information may include a first period; and/or, the second information may include a second period.
  • the first information includes information of the first period
  • the second information includes information of the second period.
  • the second communication device can obtain information of the first period and/or the second period upon receiving the first information and/or the second information, and further determine the time not to transmit the target signal and/or the time to transmit the target signal.
  • the target configuration mode includes configuring the time interval between the receiving time of the fourth information and the sending time of the target signal for each inventory subtask of an inventory task, or configuring the time interval between the receiving time of the fourth information and the sending time of the target signal for the first inventory subtask of an inventory task, or configuring the time interval between the receiving time of the fourth information and the sending time of the target signal for an inventory subtask:
  • the first information includes a time interval, and the first period corresponds to a time within the time interval after a time when the fourth information is received;
  • the second information includes a time interval, and the second period corresponds to a time after the time interval after the reception time of the fourth information.
  • the first information may include a time interval
  • the first information is used to indicate that the second communication device does not transmit the target signal within the first period
  • the first period corresponds to the time within the time interval after the reception time of the fourth information. That is, after the second communication device receives the fourth information, it does not transmit the target signal within the time interval starting from the reception time of the fourth information. That is, the time interval included in the first information is the time interval from the second communication device receiving the fourth information to the second communication device sending the target signal.
  • the second information may include a time interval, and the second information is used to instruct the second communication device to transmit the target signal within the second period, and the second period corresponds to the time after the time interval after the reception time of the fourth information. That is, after the second communication device receives the fourth information, it starts from the reception time of the fourth information and after the time interval is reached, it transmits the target signal. That is, the time interval included in the second information is the time interval from the second communication device receiving the fourth information to the second communication device sending the target signal.
  • Including the information of the time interval in the first information and/or the second information helps the second communication device to clearly know the time when not to transmit the target signal and/or when to transmit the target signal.
  • the first cycle may be located before the second cycle.
  • a first cycle can be configured before each second cycle, so that the second communication device does not transmit the target signal in the first cycle, and the receiving device of the target signal, such as the first communication device or the third communication device, can perform interference estimation.
  • the second communication device transmits the target signal in the second cycle, and the receiving device of the target signal, such as the first communication device or the third communication device, can suppress or eliminate interference based on the result of the interference estimation in the first cycle to correctly demodulate the target signal and obtain the target data.
  • the duration of the first cycle is zero, or the duration of the time interval is zero.
  • the first communication device when determining the first information, may, based on actual conditions, set the duration of the first cycle to zero, or set the duration of the time interval to zero, such as when determining that the receiving device of the target signal does not need to perform interference estimation.
  • the second communication device receives the first information, and can modulate the target data to be transmitted and send the target signal, thereby improving signal transmission efficiency.
  • the second communication device receives the first information and does not transmit the target signal in the first cycle.
  • the method may further include the following steps:
  • the first communication device sends fifth information to the second communication device, where the fifth information is used to instruct the second communication device to update the first cycle, where the updated first cycle is before the second cycle, or the updated first cycle is within the second cycle.
  • the first communication device can semi-statically or dynamically determine the target configuration mode.
  • the first communication device semi-statically determines the target configuration mode, determines the first information and/or the second information according to the target configuration mode, and sends the first information and/or the second information to the second communication device
  • the second communication device can not transmit the target signal within the first period and/or transmit the target signal within the second period according to the instructions of the first information and/or the second information.
  • the wireless channel information may also change significantly.
  • the use of semi-static configuration may not be able to adapt to the current channel state, and it is necessary to switch to dynamic configuration and re-estimate the interference.
  • the conversion from semi-static configuration to dynamic configuration can be set as the first condition, or the rate of change of the wireless channel information is greater than the first threshold as the first condition.
  • the first communication device sends the fifth information to the second communication device, and the fifth information is used to instruct the second communication device to update the first period.
  • the second communication device can update the first period according to the fifth information.
  • the change rate of the wireless channel information can be determined by the change value of the channel quality indicator (Channel Quality Indicator, CQI) and/or the reference signal receiving power (Reference Signal Receiving Power, RSRP) and/or the reference signal receiving quality (Reference Signal Receiving Quality, RSRQ) per unit time.
  • CQI Channel Quality Indicator
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the second communication device If the second communication device has not entered the second cycle when the first communication device sends the fifth information, the updated first cycle is before the second cycle, and the second communication device must not transmit the target signal in the updated first cycle and transmit the target signal in the second cycle.
  • the updated first cycle is located in the second cycle, and the updated first cycle is inserted into the second cycle.
  • the second communication device needs not to transmit the target signal in the updated first cycle, and transmit the target signal at other times in the second cycle except for the updated first cycle.
  • the fifth information can also instruct the second communication device to update the second cycle, and compensate the time occupied by the updated first cycle in the second cycle to the second cycle, so that the second communication device can have enough time to transmit the target signal.
  • the first communication device instructs the second communication device to update the first period and re-estimate the interference, so that the interference estimation result of the current channel is more accurate.
  • the first communication device determines the target configuration mode, which may include the following steps:
  • Step 1 The first communication device determines wireless channel information
  • Step 2 The first communication device determines the target configuration mode according to the wireless channel information.
  • the first communication device may determine the wireless channel information in at least one of the following ways:
  • the first communication device determines the wireless channel information according to the channel quality indication information received from the third communication device;
  • the first communication device determines the wireless channel information according to the reference signal reception information received from the third communication device.
  • the reference signal reception information includes the reference signal reception power and/or the reference signal reception quality;
  • the first communication device periodically or aperiodically determines the wireless channel information
  • the first communication device determines the wireless channel information by using the self-transmitted and self-received signals within the first period.
  • the first communication device determines the wireless channel information by at least one of the above methods, so as to obtain the channel status.
  • the target configuration mode can be semi-statically determined; when the wireless channel changes rapidly, the target configuration mode can be dynamically determined.
  • the first communication device can determine the target configuration mode more accurately according to the wireless channel information, and further can determine the first information and/or the second information according to the target configuration mode to clearly instruct the transmission of the target signal of the second communication device.
  • the first communication device determines the first information and/or the second information according to the target configuration mode, which may include the following steps:
  • the first communication device determines the first information and/or the second information according to the first capability information of the second communication device and/or the second capability information of the third communication device, and the target configuration mode.
  • the first communication device may obtain the first capability information of the second communication device and/or the second capability information of the third communication device in advance.
  • the first capability information and/or the second capability information may be reported to the first communication device in advance or may be pre-configured in the first communication device.
  • the third communication device refers to a receiving device of the target signal in the dual-base architecture.
  • the first communication device may receive the first capability information from the second communication device.
  • the first communication device may receive the second capability information from the third communication device. That is, the second communication device may send the first capability information to the first communication device, and/or, the third communication device may send the second capability information to the first communication device.
  • the first capability information may include whether the second communication device has the capability to generate a carrier signal. In the case where the first capability information includes that the second communication device has the capability to generate a carrier signal, the duration of the first cycle is zero.
  • the second communication device can autonomously generate a second signal, modulate the target data to be transmitted onto the second signal, generate a target signal, and send it to the first communication device or the third communication device.
  • the first communication device does not need to send the first signal to the second communication device, so that the first signal will not interfere with the target signal at the receiving device of the target signal, and there is no need to limit the time when the second communication device does not transmit the target signal.
  • the receiving device of the target signal can also not perform interference estimation, and demodulate after receiving the target signal to obtain the target data.
  • the second capability information may include at least one of the following:
  • the first communication device determines the first information and/or the second information according to the second capability information of the third communication device and the target configuration mode, which may include the following steps:
  • the first step the first communication device determines the interference suppression or elimination capability level information of the third communication device according to the second capability information;
  • the second step the first communication device determines the first information and/or the second information based on the mapping relationship between the interference suppression or elimination capability level information of the third communication device and the interference estimation time of the third communication device, and the target configuration mode.
  • a correspondence between capability information and capability level information may be preset, and the correspondence may be predefined, or configured by a network-side device, or may be a calculation rule. If the second capability information includes interference suppression or elimination capability information of a third communication device, the first communication device may determine the interference suppression or elimination capability level information of the third communication device based on the interference suppression or elimination capability information of the third communication device and the corresponding correspondence. If the second capability information includes the interference suppression or elimination capability level information of the third communication device, the first communication device may directly determine the interference suppression or elimination capability level information of the third communication device based on the second capability information.
  • the interference suppression or elimination capability level information may be mapped to the interference estimation time, and the first communication device may determine the first information and/or the second information based on the mapping relationship between the interference suppression or elimination capability level information of the third communication device and the interference estimation time of the third communication device, and the target configuration mode.
  • the first period and/or the second period, and the time interval are related to the interference estimation time.
  • the third communication device In the case where the third communication device is a receiving device of the target signal, the third communication device actively reports or The interference estimation time may be sent to the first communication device according to the reporting method of the indication information.
  • the first communication device may determine the first information and/or the second information based on the interference estimation time of the third communication device and the target configuration mode.
  • the first communication device may determine the first information and/or the second information according to its own situation and the target configuration mode.
  • the embodiments of the present application mainly perform time domain resource configuration of the backscatter communication system.
  • the time domain resource configuration scheme is divided into semi-static resource configuration type and dynamic resource configuration type, and the interference estimation time of the receiving device of the target signal and the wireless channel information indicate the time for the tag device to remain silent and not transmit the target signal or use it for operations such as energy storage.
  • the time domain resource configuration is shown in Figure 13, and may include a first cycle and a second cycle, wherein the first cycle may also be referred to as a training cycle, and the second cycle may be referred to as a backscatter cycle.
  • the first cycle may include training time unit 1, training time unit 2, ..., training time unit N', N' is the total number of training time units included in the first cycle, and the specific units of the training time unit may include: frame, subframe, time slot, symbol, etc.
  • the interference channel in the dual-base architecture mainly includes network-side equipment, such as the channel from the base station to the terminal;
  • the interference channel in the single-base architecture mainly includes the channel between the transmission signal of the transmitting link (antenna) leaking (coupling) to the receiving signal of the receiving link (antenna), and also includes the wireless channel between the signal of the transmitting signal reflected by the air interface and the signal of the recovery end, such as the signal reflection caused by the mismatch of the antenna or the RF link, the reflection of the signal encountering the wall, etc.
  • One of the purposes of the first cycle i.e., the training cycle, is to perform interference estimation on the receiving device of the target signal, i.e., during this period, the tag device remains silent or performs operations such as energy storage, etc.
  • the first cycle may include different training time units, and this configuration is not unique.
  • the second period i.e., the backscatter period
  • the second period is used by the tag device to transmit the target signal, including the data modulation time and the target signal sending time of the tag device; optionally, at the starting position of the second period, there may also be a preamble and a synchronization detection sequence for the tag device to use for channel estimation and synchronization.
  • the technical solution provided by the embodiment of the present application is described below through specific examples.
  • the first communication device is a reader
  • the second communication device is a tag device
  • the third communication device is a terminal
  • the first cycle is a training cycle
  • the second cycle is a backscattering cycle.
  • the following examples are mainly related configuration information and inventory processes given from the perspective of the reader as the originating end, and there are also corresponding descriptions from the tag device side or the terminal side.
  • Example 1 Semi-static resource configuration in a dual-base architecture
  • This example provides semi-static configuration information of time domain resources in a dual-base architecture and related inventory processes.
  • the reader may determine a target configuration mode, such as a first pattern, according to the interference suppression/elimination capability information of the terminal and the wireless channel information, and send the first information and/or the second information to the tag device;
  • a target configuration mode such as a first pattern
  • the first pattern may include one of the following:
  • For one inventory subtask configure at least one training cycle and at least one backscattering cycle
  • At least one training cycle and at least one backscattering cycle are configured for a certain inventory subtask of an inventory task.
  • One of the inventory subtasks is activated to perform interference estimation through the first information and/or the second information, or other control commands.
  • the first information is used to indicate the time when the tag device does not transmit the target signal, that is, the interference estimation time for the terminal, that is, the first period, including at least one of the following situations:
  • the first information includes a zero training period, the duration of which is zero, that is, the tag device modulates the target data to be transmitted and transmits the target signal upon receiving the first information;
  • the first information includes a predefined training period, that is, after the tag device receives the first information, it does not transmit the target signal within the training period.
  • the first information is used to instruct the tag device not to transmit the target signal, and the terminal performs interference estimation.
  • the state of the tag device may include at least one of the following:
  • the second information is used to instruct the tag device to transmit the target signal.
  • the tag device can perform the following actions:
  • the tag device may also perform at least one of the following actions:
  • the reader may receive capability information reported by the tag device and the terminal, wherein the capability information reported by the terminal may include: whether the terminal has interference suppression/elimination capability and interference suppression/elimination capability information.
  • the reader determines the interference suppression/elimination capability level information according to the interference suppression/elimination capability information reported by the terminal, and the capability level information corresponds to different interference suppression/elimination capabilities.
  • the first information can be determined to indicate the time when the tag device does not transmit the target signal.
  • the tag device has a carrier generation capability
  • the first information indicated by the reader includes a zero training period, and the terminal does not need to perform interference suppression/elimination operations.
  • the reader may obtain the wireless channel information in at least one of the following ways:
  • the reader receives the CQI fed back by the terminal
  • the reader receives information such as RSRP/RSRQ reported periodically/aperiodically by the terminal.
  • Example 2 provides the dynamic configuration information and related inventory process of time domain resources under the dual-base architecture.
  • the main difference between Example 2 and Example 1 is that the reader needs to dynamically configure the time domain resources of the tag device according to the speed of channel changes.
  • Example 1 assumes that the channel conditions do not change for a period of time or belong to a slow fading scenario, while Example 2 does not have such an assumption.
  • the reader determines the target configuration mode, such as the second pattern, according to the wireless channel information, and sends the first information and/or the second information to the tag device.
  • the reader can obtain the interference suppression/elimination capability and interference estimation time of the terminal in advance, and only consider the impact of channel changes.
  • the second pattern can include one of the following:
  • For one inventory subtask configure at least one training cycle and at least one backscattering cycle
  • the control command reception time is the time when the tag device receives the control command
  • the target signal transmission time is the time when the tag device sends the target signal
  • the specific values of the training cycle and time interval are related to the interference estimation time of the terminal and the channel condition.
  • the first information is used to indicate the time when the tag device does not transmit the target signal, that is, the interference estimation time for the terminal, that is, the first period, including at least one of the following situations:
  • the first information includes a zero training cycle or time interval, the duration of which is zero, that is, the tag device modulates the target data to be transmitted and transmits the target signal upon receiving the first information;
  • the first information is a predefined training cycle or time interval, that is, after the tag device receives the first information, it does not transmit the target signal within the training cycle.
  • the function of the control command may be equivalent to the indication function of the first information, which is used to indicate the time interval; or, the function of the control command is inconsistent with the indication function of the first information.
  • the first information is used to instruct the tag device not to transmit the target signal.
  • the state of the tag device may include at least one of the following:
  • the second information is used to instruct the tag device to transmit the target signal.
  • the tag device can perform the following actions:
  • the tag device may also perform at least one of the following actions:
  • the tag device has the capability of carrier generation, the first information indicated by the reader includes a zero training cycle or time interval, and the terminal does not need to perform interference suppression/elimination.
  • the reader may obtain the wireless channel information in at least one of the following ways:
  • the reader receives the CQI fed back by the terminal
  • the reader receives information such as RSRP/RSRQ reported periodically/aperiodically by the terminal;
  • the reader periodically/aperiodically determines the channel state information.
  • the first two methods are based on terminal measurement
  • the third method is that the reader instructs the terminal to periodically/non-periodically send an uplink reference signal for measurement according to actual needs to reduce delay.
  • Example 3 Resource allocation under a single-base architecture
  • This example gives the configuration information and inventory process of time domain resources under a single-base architecture. Since the reader is a transmitter and receiver, it is necessary to consider the estimation of two interference channels, including the self-interference channel and the reflection interference channel. Generally speaking, the self-interference channel is a slow fading channel, and it can be considered that the channel does not change over a period of time, but the reflection interference channel is a time-varying channel. Therefore, it is necessary to design relevant configuration information and inventory processes based on the characteristics of the self-interference channel and the reflection interference channel.
  • Example 1 Assuming that the change time of the self-interference channel is M times the change time of the reflected interference channel (M is a number greater than or equal to 1), the semi-static resource configuration process is similar to Example 1, and the dynamic resource configuration process is similar to Example 2. The difference from the above Example 1 and Example 2 is:
  • the single-base architecture does not require the target signal receiving device to report capability information.
  • the tag device can report capability information.
  • the reader can still define different capability level information based on self-interference/reflection interference suppression/elimination capabilities;
  • the channel state information estimation of the reflection channel and the self-interference channel is completed by the reader itself sending and receiving within a training cycle or time interval.
  • the interference of the backscatter communication system includes leakage interference, reflection interference and nonlinear interference.
  • Leakage interference is the interference caused by the leakage of the transmitting end signal to the receiving end due to the poor isolation of the circulator or the transmitting and receiving antennas.
  • Reflection interference refers to the interference caused by the transmitted signal through the air interface reflection recovery end to the received signal, including signal reflection caused by mismatch of the antenna or RF link, and reflection of the signal encountering the wall.
  • Nonlinear interference is the interference introduced by the nonlinearity of the hardware itself and quantization noise, phase noise, etc. Generally speaking, self-interference mostly refers to leakage interference.
  • phase noise can have an impact of tens of dB on self-interference elimination, which is one of the bottleneck problems restricting self-interference elimination.
  • an embodiment of the present application configures time domain resources according to the interference estimation time and channel change of the target signal receiving device, as a prerequisite step for the target signal receiving device to perform interference suppression/elimination.
  • the time domain resource configuration scheme is divided into semi-static resource configuration type and dynamic resource configuration type.
  • the tag device is instructed to remain silent and not transmit the target signal or use it for energy storage and other operations.
  • the target signal receiving device performs interference estimation to further suppress/eliminate interference and improve the demodulation success rate of the target signal.
  • the signal transmission method provided in the embodiment of the present application can be executed by a signal transmission device.
  • the signal transmission device provided in the embodiment of the present application is described by taking the signal transmission method executed by the signal transmission device as an example.
  • the signal transmission device 1400 may include the following modules:
  • a first determination module 1410 configured to determine first information and/or second information according to a target configuration mode
  • a first sending module 1420 configured to send first information and/or second information to a second communication device
  • the first information is used to instruct the second communication device not to transmit the target signal in the first period
  • the second information is used to instruct the second communication device to transmit the target signal in the second period.
  • the first information and/or the second information is determined according to the target configuration mode, and then the first information and/or the second information is sent to the second communication device, the first information is used to instruct the second communication device not to transmit the target signal within the first period, and the second information is used to instruct the second communication device to transmit the target signal within the second period, so that the second communication device can know when to transmit the target signal according to the first information and/or the second information, and it is also possible that when the second communication device does not transmit the target signal, the receiving device of the target signal can effectively perform interference estimation, and then subsequent operations can be performed based on the interference estimation result. For example, after receiving the target signal sent by the second communication device, interference suppression or elimination operations can be performed based on the interference estimation results, ensuring that the interference suppression or elimination operations are performed in order, thereby improving the demodulation success rate of the target signal.
  • not transmitting the target signal includes at least one of the following:
  • transmitting the target signal includes:
  • the first sending module 1420 is further configured to:
  • the third information is used to instruct the second communication device to perform at least one of the following actions within the first period:
  • the first determining module 1410 is further configured to:
  • the target configuration mode is determined.
  • the first determining module 1410 is used for one of the following:
  • the target configuration mode is determined semi-statically; the target configuration mode is determined dynamically.
  • the target configuration mode includes one of the following:
  • At least one first cycle and/or at least one second cycle are configured for each inventory subtask of the inventory task;
  • an inventory task includes a plurality of inventory subtasks, configuring at least one first cycle and/or at least one second cycle for a first inventory subtask of the inventory task;
  • an inventory task includes an inventory subtask, configuring at least one first cycle and/or at least one second cycle for the inventory subtask;
  • an inventory task includes a plurality of inventory subtasks, configuring the time interval between the receiving time of the fourth information and the sending time of the target signal for each inventory subtask of the inventory task;
  • an inventory task includes a plurality of inventory subtasks, configuring the time interval between the receiving time of the fourth information and the sending time of the target signal for the first inventory subtask of the inventory task;
  • an inventory task includes an inventory subtask, configuring a time interval between a receiving time of the fourth information and a sending time of the target signal for the inventory subtask;
  • an inventory task is a task of performing an inventory on a group of second communication devices
  • an inventory subtask is a task of performing an inventory on one second communication device
  • the fourth information is used to indicate whether the second communication device transmits a target signal.
  • the target configuration mode includes configuring at least one first cycle and/or at least one second cycle for each inventory subtask of an inventory task, or configuring at least one first cycle and/or at least one second cycle for the first inventory subtask of an inventory task, or configuring at least one first cycle and/or at least one second cycle for an inventory subtask:
  • the first information includes a first period
  • the second information includes a second period.
  • the target configuration mode includes configuring the time interval between the receiving time of the fourth information and the sending time of the target signal for each inventory subtask of an inventory task, or configuring the time interval between the receiving time of the fourth information and the sending time of the target signal for the first inventory subtask of an inventory task, Or when configuring the time interval between the receiving time of the fourth information and the sending time of the target signal for an inventory subtask:
  • the first information includes a time interval, and the first period corresponds to a time within the time interval after a time when the fourth information is received;
  • the second information includes a time interval, and the second period corresponds to a time after the time interval after the reception time of the fourth information.
  • the first cycle is located before the second cycle.
  • the first sending module 1420 is further configured to:
  • fifth information is sent to the second communication device, where the fifth information is used to instruct the second communication device to update the first cycle, where the updated first cycle is before the second cycle, or the updated first cycle is within the second cycle.
  • the duration of the first cycle is zero, or the duration of the time interval is zero.
  • the first periods configured for different inventory subtasks of an inventory task are the same or different;
  • the second periods configured for different inventory counting subtasks of an inventory counting task are the same or different.
  • the first determining module 1410 is used to:
  • the first communication device determines wireless channel information
  • the first communication device determines a target configuration mode according to the wireless channel information.
  • the first determining module 1410 is configured to determine the wireless channel information in at least one of the following ways:
  • the third communication device is a receiving device of the target signal, determining the wireless channel information according to the channel quality indication information received from the third communication device;
  • the third communication device is a receiving device of the target signal, determining the wireless channel information according to the reference signal reception information received from the third communication device;
  • the channel state information is determined by using the self-transmitted and self-received signals in the first period.
  • the reference signal reception information includes reference signal reception power and/or reference signal reception quality.
  • the first determining module 1410 is used to:
  • the first information and/or the second information is determined according to the first capability information of the second communication device and/or the second capability information of the third communication device, and the target configuration mode.
  • the signal transmission device 1400 further includes a first receiving module, which is used to:
  • At least one of the following is performed:
  • Second capability information is received from a third communication device.
  • the first capability information includes whether the second communication device has the capability to generate a carrier signal
  • the second capability information includes at least one of the following:
  • the duration of the first cycle is zero.
  • the first determining module 1410 is configured to:
  • the first information and/or the second information is determined based on a mapping relationship between the interference suppression or elimination capability level information of the third communication device and the interference estimation time of the third communication device, and a target configuration mode.
  • the signal transmission device 1400 provided in the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 12 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a signal transmission method, as shown in FIG15 , the method may include the following steps:
  • the second communication device receives the first information and/or the second information
  • the second communication device performs at least one of the following actions according to the first information and/or the second information:
  • the target signal is transmitted in the second cycle.
  • the second communication device After the second communication device receives the first information and/or the second information, it can know when to transmit the target signal based on the first information and/or the second information, so that when the second communication device does not transmit the target signal, the receiving device of the target signal can effectively perform interference estimation, and then perform subsequent operations based on the interference estimation result. For example, after receiving the target signal sent by the second communication device, interference suppression or elimination operations can be performed based on the interference estimation results, thereby ensuring that the interference suppression or elimination operations are performed in order and improving the demodulation success rate of the target signal.
  • not transmitting the target signal includes at least one of the following:
  • transmitting the target signal includes:
  • the second communication device receives the third information
  • the second communication device performs at least one of the following actions within the first period according to the third information:
  • the second communication device transmits the target signal in the second period, including:
  • the second communication device transmits the target signal to the first communication device or the third communication device in the second period.
  • the first information includes a first period; and/or the second information includes a second period.
  • the first information includes a time interval, the first period corresponds to a time within the time interval after a time of receiving the fourth information, and/or, the second information includes a time interval, the second period corresponds to a time after a time of receiving the fourth information;
  • the fourth information is used to indicate whether the second communication device transmits the target signal.
  • the duration of the first cycle is zero.
  • the first cycle is located before the second cycle.
  • the second communication device receives the fifth information
  • the second communication device updates the first cycle according to the fifth information, and the updated first cycle is located before the second cycle, or the updated first cycle is located in the second cycle.
  • the method before the second communication device receives the first information and/or the second information, the method further includes:
  • the second communication device sends first capability information to the first communication device
  • the first capability information includes whether the second communication device has the capability to generate a carrier signal.
  • the specific implementation process of the method embodiment shown in Figure 15 can refer to the description of the specific implementation process of the method embodiment shown in Figure 12. It can implement each process implemented by the method embodiment shown in Figure 12 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the signal transmission method provided in the embodiment of the present application can be executed by a signal transmission device.
  • the signal transmission device provided in the embodiment of the present application is described by taking the signal transmission method executed by the signal transmission device as an example.
  • the signal transmission device 1600 may include the following modules:
  • the second receiving module 1610 is used to receive the first information and/or the second information
  • the execution module 1620 is configured to execute at least one of the following actions according to the first information and/or the second information:
  • the target signal is transmitted in the second cycle.
  • the receiving device of the target signal can effectively perform interference estimation, and then perform subsequent operations based on the interference estimation result, such as after receiving the target signal, interference suppression or elimination operations can be performed based on the interference estimation result, so as to ensure that the interference
  • interference suppression or elimination operations are performed in order to improve the demodulation success rate of the target signal.
  • not transmitting the target signal includes at least one of the following:
  • transmitting the target signal includes:
  • the second receiving module 1610 is further configured to:
  • the execution module 1620 is further configured to execute at least one of the following actions within the first cycle according to the third information:
  • the execution module 1620 is used to:
  • the target signal is sent to the first communication device or the third communication device in the second period.
  • the first information includes a first period; and/or the second information includes a second period.
  • the first information includes a time interval, the first period corresponds to a time within the time interval after a time of receiving the fourth information, and/or, the second information includes a time interval, the second period corresponds to a time after a time of receiving the fourth information;
  • the fourth information is used to indicate whether the second communication device transmits the target signal.
  • the duration of the first cycle is zero.
  • the first cycle is located before the second cycle.
  • the second receiving module 1610 is further configured to:
  • the execution module 1620 is further configured to:
  • the first cycle is updated, and the updated first cycle is located before the second cycle, or the updated first cycle is located in the second cycle.
  • the signal transmission device 1600 further includes a second sending module, which is used to:
  • the first capability information includes whether the second communication device has the capability to generate a carrier signal.
  • the signal transmission device 1600 provided in the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 15 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a communication device 1700, including a processor 1701 and a memory 1702, wherein the memory 1702 stores a program or instruction that can be run on the processor 1701.
  • the communication device 1700 is a first communication device
  • the program or instruction is executed by the processor 1701 to implement the various steps of the method embodiment shown in FIG12 above, and can achieve the same technical effect.
  • the communication device 1700 is a second communication device
  • the program or instruction is executed by the processor 1701 to implement the various steps of the method embodiment shown in FIG15 above, and can achieve The same technical effect is achieved, and to avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the method embodiment shown in Figure 12 or Figure 15 are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the method embodiments shown in Figures 12 or 15 above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a communication system, including: a first communication device and a second communication device, wherein the first communication device can be used to execute the steps of the method embodiment shown in Figure 12 as described above, and the second communication device can be used to execute the steps of the method embodiment shown in Figure 15 as described above.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk), and includes a number of instructions for a terminal (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, magnetic disk, optical disk
  • a terminal which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法、装置、通信设备及存储介质,属于通信技术领域,本申请实施例的一种信号传输方法包括:第一通信设备根据目标配置模式,确定第一信息和/或第二信息;第一通信设备向第二通信设备发送第一信息和/或第二信息;其中,第一信息用于指示第二通信设备在第一周期内不进行目标信号的传输,第二信息用于指示第二通信设备在第二周期内进行目标信号的传输。

Description

信号传输方法、装置、通信设备及存储介质
相关申请的交叉引用
本申请要求在2022年12月13日提交中国专利局、申请号为202211601125.0、名称为“信号传输方法、装置、通信设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种信号传输方法、装置、通信设备及存储介质。
背景技术
反向散射通信(Backscatter Communication,BSC),是指反向散射通信设备利用其他设备或者环境中的射频信号进行信号调制来传输自己的信息。
在反向散射通信***双基地架构中,网络侧设备,如基站(gNB)向反向散射通信设备,如标签设备(tag)发送控制信令或载波信号,标签设备按照指示将待传的比特数据调制到载波信号上生成反向散射信号,发送给终端。终端能同时接收到基站发送的载波信号以及经过标签设备调制后的反向散射信号,因为通常载波信号的能量大于反向散射信号的强度,所以容易导致终端解调标签设备的比特数据时出现较高的误码率,因此需要终端进行直接链路的干扰估计,以基于干扰估计结果进行直接链路的干扰抑制或消除。而受到终端的移动等因素的影响,终端与基站之间的信道具有时变性,使得终端对直接链路的干扰估计仅在一段时间内有效。
所以,需要考虑反向散射通信***中各通信设备之间如何进行信号传输,才能使目标信号的接收设备有效地进行干扰估计,进而保证干扰抑制或消除的顺利进行。
发明内容
本申请实施例提供一种信号传输方法、装置、通信设备及存储介质,能够保证目标信号的接收设备有效地进行干扰估计。
第一方面,提供了一种信号传输方法,包括:
第一通信设备根据目标配置模式,确定第一信息和/或第二信息;
所述第一通信设备向第二通信设备发送所述第一信息和/或所述第二信息;
其中,所述第一信息用于指示所述第二通信设备在第一周期内不进行目标信号的传输,所述第二信息用于指示所述第二通信设备在第二周期内进行所述目标信号的传输。
第二方面,提供了一种信号传输装置,包括:
第一确定模块,用于根据目标配置模式,确定第一信息和/或第二信息;
第一发送模块,用于向第二通信设备发送第一信息和/或所述第二信息;
其中,所述第一信息用于指示所述第二通信设备在第一周期内不进行目标信号的传输,所述第二信息用于指示所述第二通信设备在第二周期内进行所述目标信号的传输。
第三方面,提供了一种信号传输方法,包括:
第二通信设备接收第一信息和/或第二信息;
所述第二通信设备根据所述第一信息和/或所述第二信息,执行以下至少一项行为:
在第一周期内不进行目标信号的传输;
在第二周期内进行所述目标信号的传输。
第四方面,提供了一种信号传输装置,包括:
第二接收模块,用于接收第一信息和/或第二信息;
执行模块,用于根据所述第一信息和/或所述第二信息,执行以下至少一项行为:
在第一周期内不进行目标信号的传输;
在第二周期内进行所述目标信号的传输。
第五方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的信号传输方法的步骤,或者实现如第三方面所述的信号传输方法的步骤。
第六方面,提供了一种通信***,包括:第一通信设备及第二通信设备,所述第一通信设备可用于执行如第一方面所述的信号传输方法的步骤,所述第二通信设备可用于执行如第三方面所述的信号传输方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的信号传输方法的步骤,或者实现如第三方面所述的信号传输方法的步骤。
第八方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的信号传输方法的步骤,或者实现如第三方面所述的信号传输方法的步骤。
在本申请实施例中,第一通信设备根据目标配置模式,确定第一信息和/或第二信息,然后将第一信息和/或第二信息发送给第二通信设备,第一信息用于指示第二通信设备在第一周期内不进行目标信号的传输,第二信息用于指示第二通信设备在第二周期内进行目标信号的传输,从而第二通信设备根据第一信息和/或第二信息可知何时进行目标信号的传输,也就可以使得在第二通信设备不进行目标信号的传输时,目标信号的接收设备能够有效地进行干扰估计,进而基于干扰估计结果可以进行后续操作,如在接收到第二通信设备发送的目标信号后,可以基于干扰估计结果进行干扰抑制或消除操作,保证干扰抑制或消除操作的顺序进行,提高目标信号的解调成功率。
附图说明
图1为本申请实施例可应用的一种无线通信***的框图;
图2为相关技术中一种反向散射通信过程示意图;
图3为相关技术中一种反向散射通信原理示意图;
图4为相关技术中读取器和标签设备进行信息传输的示意图;
图5为相关技术中反向散射通信的第一种应用场景示意图;
图6为相关技术中反向散射通信的第二种应用场景示意图;
图7为相关技术中反向散射通信的第三种应用场景示意图;
图8为相关技术中反向散射通信的第四种应用场景示意图;
图9为相关技术中基站多天线全双工***工作模式示意图;
图10为相关技术中标签设备盘点过程示意图;
图11为相关技术中BPSK干扰信号消除过程示意图;
图12为本申请实施例中一种信号传输方法的实施流程图;
图13为本申请实施例中时域资源配置示意图;
图14为本申请实施例中与图12对应的信号传输装置的结构示意图;
图15为本申请实施例中另一种信号传输方法的实施流程图;
图16为本申请实施例中与图15对应的信号传输装置的结构示意图;
图17为本申请实施例中一种通信设备的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。
其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,本申请实施例并不限定终端11的具体类型。
网络侧设备12可以包括接入网设备或核心网设备。
其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR***中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为方便理解,先对本申请实施例涉及到的相关技术及概念进行介绍。
一、关于反向散射通信
如前所描述的,反向散射通信是指反向散射通信设备利用其他设备或者环境中的射频信号进行信号调制来传输自己的信息。
在传统无线射频识别(Radio Frequency Identification,RFID)技术中,反向散射通信设备可以是属于无源物联网(Internet of Things,IoT)设备(Passive-IoT)的标签设备,或者是半无源标签设备(semi-passive tag),或者是有源标签设备(active tag)。
如图2所示,为一种反向散射通信过程示意图,这个过程包括两条链路,一条是读取器(reader)到标签设备(tag)的链路,读取器可以向标签设备发送控制信令(command)和/或载波信号,该载波信号可以是连续波(continuous wave),另一条是标签设备到读取器的链路,标签设备可以向读取器发送反向散射信号。
一种简单的实现方式为,标签设备在需要发送“1”时,对入射的载波信号进行反射,在需要发送“0”时,对入射的载波信号不进行反射。
图3所示为相关技术中一种反向散射通信原理示意图,读取器的发送端通过功率放大器(Power Amplifier,PA)发送载波信号,标签设备通过射频收集器(RF harvester)、解调器(Demod)、逻辑(Logic)电路、时钟(Clock)电路等进行信号调制,输出反向散射信号,读取器的接收端通过低噪声放大器(Low Noise Amplifier,LNA)接收反向散射信号进行相应解调处理。其中,TX BB表示读取器发送端基带处理模块,RX BB表示读取器接收端基带处理模块。
标签设备可以通过调节其内部阻抗来控制电路的反射系数Γ,从而改变入射的载波信号的幅度、频率、相位等,实现信号的调制。反射系数Γ可表征为:
其中,Z0为天线特性阻抗,Z1为负载阻抗。假设入射的载波信号为Sin(t),则输出的反向散射信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制。
二、关于RFID技术中读取器和标签设备之间的信息传输
如图4所示,目前,在超高频(Ultra High Frequency,UHF)RFID的协议中,在盘点模式下,读取器选取(select)标签设备,发送查询指令(Query)后,标签设备回应(Relay),即产生一个16bit的随机数给读取器,然后读取器通过确认响应指令(ACK)将该随机数序列发给标签设备,标签设备将相关的数据发送给读取器,如协议控制字(Protocol Control,PC)/扩展协议控制字(Extended Protocol Control,XPC)、电子产品编码(Electronic Product Code,EPC)、数据包循环冗余校验(Cyclic Redundancy Check,CRC)(PacketCRC)等,如果EPC是有效的,则读取器可以发送重复查询指令(QueryRep)或其他命令,如果EPC是无效的,则读取器可以发送否定应答(NAK)。从读取器发送查询指令到读取器接收到标签设备发送的相关的数据为单个标签设备回应过程。
三、反向散射通信的应用场景
反向散射通信的应用场景如图5至图8所示。图5所示为:网络侧设备,如基站作为读取器,向反向散射通信设备,如标签设备发送载波信号和/或控制信令,并接收标签设备的反向散射信号。图6所示为:网络侧设备,如基站与终端通信,终端作为读取器,向反向散射通信设备,如标签设备发送载波信号和/或控制信令,并接收标签设备的反向散射信号。图7所示为:网络侧设备,如基站向反向散射通信设备,如标签设备发送载波信号和/或控制信令,终端接收标签设备发送的反向散射信号,然后再将解调得到的相关数据上报给网络侧设备。图8所示为:网络侧设备,如基站与终端通信,网络侧设备向终端发送指示信息,终端向反向散射通信设备,如标签设备发送载波信号和/或控制信令,网络侧设备接收标签设备发送的反向散射信号。图5、图6为单基地架构的一种表现,图7、图8为双基地架构的一种表现。
其中,控制信令的类型,即control类型可以包括如下至少一项:选取(select)、盘点(inventory)、接入(access)。
四、全双工反向散射通信***中干扰抑制/消除方式
读取器通过单天线连接环形器或定向耦合器可实现RFID的频分双工(Frequency Division Duplexing,FDD)/时分双工(Time Division Duplexing,TDD)通信模式,也可以通过双天线实现频分双工通信模式。单天线使用时发端载波泄漏、双天线使用时发端天线耦合效应、电路之间的耦合、发射天线不匹配等因素都可能导致发射信号反射、环境信号反射等对反向散射信号造成干扰,需要通过RFID自干扰消除技术对上述干扰进行消除或者抑制,几种可能的方式包括:
天线域干扰消除/抑制:主要应用于多天线实现频分双工的场景。具体方式包括收发天线通过距离拉远达到隔离、收发天线之间通过挡板进行物理隔离等措施;
模拟域干扰消除/抑制:通过附加射频电路对RFID的自干扰进行消除/抑制;
数字域干扰消除/抑制:与模拟域类似,通过附加基带电路对RFID的自干扰进行消除/抑制;
非线性干扰消除/抑制:由于非线性器件及相位噪声导致的非线性干扰,可利用信号的极化状态对非线性器件的非线性及相位噪声不敏感的特性,构建极化失配矩阵/极化信号,在基带域消除/抑制非线性干扰;
其他:如使用滤波器滤除带外噪声、空间调制、功率控制等方式。
此外,通过资源动态配置的方式,也能在天线域有效消除自干扰。在基站多天线全双工通信场景下,每根天线不仅会受到本天线的发射信号带来的自干扰影响,还会受到其他天线的发射信号带来的自干扰影响。因此,在数据传输之前,需要对设备进行训练调整,为每根天线分别消除来自各个天线的干扰。
如图9所示,在基站多天线全双工通信***中,分为训练周期和数据传输周期。假设天线数为N,则可以将每个训练周期分为N个训练时隙(slot)。在每个训练时隙中,N根天线分别作为“主天线”收发训练序列,其它天线作为“次天线”仅接收训练序列。 例如,当第n根天线作为主天线时,主天线进行自身自干扰信道估计及初步的干扰消除,与此同时,次天线负责消除自身天线中存在的“由于主天线的发射信号引起的天线间干扰信号”。在每个训练周期中,每根天线有且仅有一次机会在一个训练时隙中作为主天线,其他训练时隙均作为次天线。在主天线发送数据时,次天线不进行数据发送。
在整个训练周期完成后,每根天线既作为主天线消除了来自自身的干扰信号,又作为次天线消除了来自其他天线的干扰信号。因此,在训练周期中所得到的信道估计和自干扰消除参数可以用于数据传输周期的自干扰消除。
由于可以认为在短时间内信道状况基本不变,所以在数据传输周期所有天线同时收发时,自干扰信号可以被有效消除。
五、反向散射通信***中直接链路干扰抑制/消除方式
1、频率偏移
在双基地架构中,通过指示标签设备的频偏,可以使得终端接收的载波信号与反向散射信号之间的频率呈现差异,终端通过滤波器等硬件器件可以实现直接链路干扰消除。
1.1、显式指示
如图10所示,在选取阶段(Select Phase),网络侧设备向标签设备发送选取指令(Select)/质询指令(challenge)/排序指令(sort);在盘点阶段(Inventory Phase),网络侧设备向标签设备发送载波信号(CW)/查询指令(Query)/重复查询指令(QueryRep)/调节查询指令(Query Adjust),所有标签设备收到指令后各自从0到Q中产生一个随机数,标签设备在随机数为0时,向终端发送16bit随机数(RN16),终端向标签设备发送确认响应指令(ACK),该确认响应指令中可以包括控制信令或RN16,或者终端可以向标签设备发送载波信号(CW)/控制信令(command),标签设备向终端发送PC/EPC/CRC/其他数据;在接入阶段(Access Phase),网络侧设备向标签设备发送随机请求(Req_RN),要求标签设备重新生成一个16bit随机数(Re-RN16),标签设备向终端和网络侧设备发送握手指令(handle)。
可以在ACK或其他指示信息中携带频偏指示信息,包括但不限于:最大频偏指示、最大调制频率、可用的频率资源等信息。
频偏指示信息的获取方式可以有:
基于标签设备上报的硬件能力获取;
终端根据序列相关峰,由已配置的映射表,如采样点数与频偏信息的映射表,获取频偏指示信息;
标签设备的反向散射信号具有同步符号/序列,终端检测到不同标签设备之间的冲突信息后,指示不同标签设备的频偏信息。
1.2、隐式指示
标签设备根据网络侧设备发送的前导(preamble),获得标签设备到读取器的校准符号(T=>R calibration symbol,TRcal)(time)、读取器到标签设备的校准符号(R=>T  calibration symbol,RTcal)、分频比(divide ratio,DR,包含在启动盘点周期的查询指令的有效负载中)、A类参考区间(Tari)中的两个或多个值,计算反向散射信号的传输频率,如反向散射链路频率(Backscatter Link Frequency,BLF)。
2、适用于二进制相移键控(Binary Phase Shift Keying,BPSK)/正交相移键控(Quadrature Phase Shift Keying,QPSK)干扰信号的消除技术
在全双工反向散射通信***中,发射机对信号可采用BPSK或QPSK调制。接收机首先对接收信号进行平方,再下变频分出同向(in-phase,I)分量和正交(quadrature,Q)分量,即I路和Q路,或是对接收信号下变频后的I路和Q路分别进行平方;然后,接收机将平方运算后的信号通过直流滤波将信号中的自干扰成分进行消除,再将所得信号与发射机发射的基带信号相乘再进入模数转换电路,或者直接将信号进行模数转换再在数字域与发射的基带数字信号相乘,之后再进行解调。接收到的信号包括目标信号、自干扰信号以及噪声。其中,自干扰信号功率要远大于目标信号功率,目标信号可为任意调制。如果是BPSK调制,则对接收到的信号进行平方再下变频分出I路和Q路,或是对接收信号下变频的I路和Q路分别平方。如果是QPSK调制,则还需要使下变频分出的I路和Q路分别与发射信号的I路和Q路的相位一致。
BPSK干扰信号消除过程如图11所示,包括平方电路、直流滤波电路、乘法器和模数转换电路。平方电路用于平方BPSK载波信号和反向散射信号;直流滤波电路位于平方电路之后,用于滤除自干扰信号的平方,即直流信号;乘法器用于将直流滤波后的信号与BPSK载波信号相乘,从而恢复出有用信号;模数转换电路用于将模拟信号转换为数字信号。上述方案也可以进一步扩展到QPSK载波信号的情形。
该方案假设信道条件属于慢衰落的场景,若在不属于慢衰落的信道场景中,只要保证网络侧设备发送给终端的载波信号在经历信道衰落后能保证一个常数,则只需要估计级联信道便可恢复反向散射信号。该方案也适用于全双工自干扰消除。
上面对本申请实施例涉及到的相关技术和概念进行了介绍,下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号传输方法进行详细地说明。
本申请实施例所提供的技术方案可以应用于反向散射通信场景。如可以应用于物品清点、物流盘点、火灾预警等场景。再如可以应用于RFID专用读取器、WiFi传输场景、gNB传输场景等。
参见图12所示,为本申请实施例所提供的一种信号传输方法的实施流程图,该方法可以包括以下步骤:
S1210:第一通信设备根据目标配置模式,确定第一信息和/或第二信息。
其中,第一信息用于指示第二通信设备在第一周期内不进行目标信号的传输,第二信息用于指示第二通信设备在第二周期内进行目标信号的传输。
本申请实施例可以应用在单基地架构和双基地架构中。
在单基地架构中,第一通信设备为收发设备,可以为网络侧设备,如基站。基站的 类型包括但不限于集成接入回传节点(Integrated Access Backhaul node,IAB站)、中继器(repeater)、杆站(pole station),其中,中继器可以为网络控制中继器(network controlled repeater)。第一通信设备还可以为读取器、终端或其他入网设备。第二通信设备可以为标签设备,如无源标签设备、半无源标签设备或有源标签设备。
在双基地架构中,第一通信设备为发端设备,可以为网络侧设备,如基站,还可以为读取器、终端或其他入网设备。第二通信设备可以为标签设备,如无源标签设备、半无源标签设备或有源标签设备。第三通信设备为目标信号的接收设备,可以为网络侧设备,如基站,还可以为读取器、终端或其他入网设备。第三通信设备与第一通信设备不同。
目标配置模式可以是第一通信设备预先确定的,用于表征一种配置方式。第一通信设备根据目标配置模式,可以确定第一信息和/或第二信息。第一信息用于指示第二通信设备在第一周期内不进行目标信号的传输,第一周期可以根据目标配置模式或者其他信息进行确定。第二信息用于指示第二通信设备在第二周期内进行目标信号的传输,第二周期可以根据目标配置模式或者其他信息进行确定。
S1220:第一通信设备向第二通信设备发送第一信息和/或第二信息。
第一通信设备确定出第一信息和/或第二信息后,可以将第一信息和/或第二信息发送给第二通信设备,如可以通过广播发送第一信息和/或第二信息。这样第二通信设备接收到第一信息和/或第二信息后,可以根据第一信息和/或第二信息,执行以下至少一项行为:在第一周期内不进行目标信号的传输,在第二周期内进行目标信号的传输。
可选的,第一通信设备可以向第二通信设备发送第一信息,第二通信设备根据第一信息确定在第一周期内不进行目标信号的传输,在第一周期外的时间可以进行目标信号的传输;
可选的,第一通信设备可以向第二通信设备发送第二信息,第二通信设备根据第二信息确定在第二周期内进行目标信号的传输,在第二周期外的时间不进行目标信号的传输;
可选的,第一通信设备可以向第二通信设备发送第一信息和第二信息,第二通信设备根据第一信息确定在第一周期内不进行目标信号的传输,确定在第二周期内进行目标信号的传输。
目标信号是指第二通信设备对待传输的目标数据进行调制后生成的信号。可选的,第二通信设备可以接收第一通信设备发送的第一信号,将待传输的目标数据调制到第一信号上,生成目标信号。可选的,如果第二通信设备具备载波信号生成能力,则第二通信设备可以根据第一通信设备的相关指示信息生成第二信号,将待传输的目标数据调制到第二信号上,生成目标信号。
本申请实施例中,第一周期与目标信号的接收设备的干扰估计时间相关,在第二通信设备不进行目标信号的传输的第一周期内,目标信号的接收设备可以进行干扰估计。 这样有助于目标信号的接收设备在接收到目标信号后可以基于干扰估计结果进行干扰抑制或消除。
应用本申请实施例所提供的方法,第一通信设备根据目标配置模式,确定第一信息和/或第二信息,然后将第一信息和/或第二信息发送给第二通信设备,第一信息用于指示第二通信设备在第一周期内不进行目标信号的传输,第二信息用于指示第二通信设备在第二周期内进行目标信号的传输,从而第二通信设备根据第一信息和/或第二信息可知何时进行目标信号的传输,也就可以使得在第二通信设备不进行目标信号的传输时,目标信号的接收设备能够有效地进行干扰估计,进而基于干扰估计结果可以进行后续操作,如在接收到第二通信设备发送的目标信号后,可以基于干扰估计结果进行干扰抑制或消除操作,保证干扰抑制或消除操作的顺序进行,提高目标信号的解调成功率。
在本申请的一些实施例中,不进行目标信号的传输可以包括以下至少一项:
保持静默;
进行储能;
对接收到的信号进行解调;
进行信道估计;
与其他通信设备进行同步。
在本申请实施例中,第一通信设备向第二通信设备发送第一信息,第一信息用于指示第二通信设备在第一周期内不进行目标信号的传输。第二通信设备不进行目标信号的传输,可以执行以下至少一项行为:
1)保持静默,即第二通信设备在第一周期内一直保持静默状态,不做其他操作;
2)进行储能,即第二通信设备在第一周期内进行储能操作。可选的,第二通信设备可以基于从第一通信设备接收到的第一信号进行储能操作;
3)对接收到的信号进行解调,即第二通信设备在第一周期内可以对接收到的信号进行解调,如对从第一通信设备接收到的第一信号进行解调;
4)进行信道估计,即第二通信设备在第一周期内可以进行信道估计;
5)与其他通信设备进行同步,即第二通信设备在第一周期内可以通过解码同步序列与其他通信设备进行同步,以保证后续信号传输的顺利进行。其他通信设备可以包括第一通信设备和/或第三通信设备。
当然,第二通信设备在第一周期内不进行目标信号的传输,除了可以执行上述行为外,还可以执行其他行为,只要不进行目标信号的传输即可。
在本申请的一些实施例中,进行目标信号的传输可以包括:
对待传输的目标数据进行调制;
进行目标信号的发送。
在本申请实施例中,第一通信设备向第二通信设备发送第二信息,第二信息用于指示第二通信设备在第二周期内进行目标信号的传输。第二通信设备进行目标信号的传输, 可以包括以下行为:
1)对待传输的目标数据进行调制,即第二通信设备在第二周期内可以对待传输的目标数据进行调制。可选的,第二通信设备可以将待传输的目标数据调制到从第一通信设备接收到的第一信号上,从而生成目标信号,或者,第二通信设备可以将待传输的目标数据调制到自主生成的第二信号上,从而生成目标信号;
2)进行目标信号的发送,即第二通信设备在第二周期内可以发送目标信号。在单基地架构中,第二通信设备可以将目标信号发送给第一通信设备,第一通信设备为目标信号的接收设备。在双基地架构中,第二通信设备可以将目标信号发送给第三通信设备,第三通信设备为目标信号的接收设备。
当然,第二通信设备在第二周期内进行目标信号的传输,除了可以执行上述行为外,还可以执行其他行为,如对接收到的信号进行解调、进行信道估计、与其他通信设备进行同步等。或者,一种可能的方式为,对待传输的目标数据进行调制是在第一周期,调制完成的数据暂存在存储器中,于第二周期发送。
第二通信设备在第二周期内进行目标信号的传输可以包括在第二周期内将目标信号发送给第一通信设备或第三通信设备。即在单基地架构中,第二通信设备可以将目标信号发送给第一通信设备,在双基地架构中,第二通信设备可以将目标信号发送给第三通信设备。
本申请实施例对于第二通信设备在第一周期内不进行目标信号的传输和/或在第二周期内进行目标信号的传输,进行了明确,方便第二通信设备执行相应行为。
需要说明的是,第一通信设备向第二通信设备发送的第一信息可以仅包括在第一周期内不进行目标信号的传输的指示信息,和/或第二信息可仅包括在第二周期进行目标信号的传输的指示信息。第二通信设备接收到第一信息和/或第二信息后,确定在第一周期内不进行目标信号的传输,可以按照协议约定或者第一通信设备发送的其他信息,如第三信息执行保持静默、进行储能、对接收到的信号进行解调、进行信道估计、与其他通信设备进行同步等行为。或者,第二通信设备接收到第一信息和/或第二信息后,确定在第二周期内进行目标信号的传输,可以按照协议约定或者第一通信设备发送的其他信息,如第三信息执行对待传输的目标数据进行调制、进行目标信号的发送等行为。
第一通信设备向第二通信设备发送的第一信息和/或第二信息可以包括具体行为的指示信息,第二通信设备接收到第一信息和/或第二信息后,可以根据第一信息和/或第二信息确定是否进行目标信号的传输。
在本申请的一些实施例中,该方法还可以包括以下步骤:
第一通信设备向第二通信设备发送第三信息;
其中,第三信息用于指示第二通信设备在第一周期内执行以下至少一项行为:
保持静默;
进行储能;
对接收到的信号进行解调;
进行信道估计;
与其他通信设备进行同步。
在本申请实施例中,第一通信设备向第二通信设备发送的第一信息用于指示第二通信设备在第一周期内不进行目标信号的传输,和/或向第二通信设备发送的第二信息用于指示第二通信设备在第二周期内进行目标信号的传输。第一通信设备还可以向第二通信设备发送第三信息。
即第一通信设备向第二通信设备发送第一信息,指示第二通信设备在第一周期内不进行目标信号的传输后,还可以向第二通信设备发送第三信息,指示第二通信设备执行保持静默、进行储能、对接收到的信号进行解调、进行信道估计、与其他通信设备进行同步中的至少一项行为,以使第二通信设备明确在第一周期内不进行目标信号的传输,可以进行怎样的行为。即第二通信设备接收到第三信息后,根据第三信息,在第一周期内可以执行以下至少一项行为:保持静默、进行储能、对接收到的信号进行解调、进行信道估计、与其他通信设备进行同步。
和/或,第一通信设备向第二通信设备发送第二信息,指示第二通信设备在第二周期内进行目标信号的传输后,还可以向第二通信设备发送第三信息,指示第二通信设备在第二周期内执行对待传输的目标数据进行调制、进行目标信号的发送等行为,以使第二通信设备明确在第二周期内进行目标信号的传输具体执行怎样的行为。即第二通信设备接收到第三信息后,根据第三信息,在第二周期内可以执行以下行为:对待传输的目标数据进行调制、进行目标信号的发送。当然还可以执行对接收到的信号进行解调、进行信道估计、与其他通信设备进行同步等行为。
在本申请的一些实施例中,在第一通信设备根据目标配置模式,确定第一信息和/或第二信息之前,该方法还可以包括以下步骤:
第一通信设备确定目标配置模式。
在本申请实施例中,可以预先部署多种配置模式,第一通信设备可以在多种配置模式中选择一种作为目标配置模式,然后再根据目标配置模式,确定第一信息和/或第二信息。
可选的,第一通信设备可以半静态确定目标配置模式。如果在一段时间内信道状态比较稳定,则可以使用半静态方式确定目标配置模式,使得目标配置模式在该段时间内均有效。
可选的,第一通信设备可以动态确定目标配置模式。如果信道状态变化较快,则可以使用动态方式确定目标配置模式,使得不同时间确定的目标配置模式适用于当前信道状态情况。
在本申请的一些实施例中,目标配置模式可以包括以下一项:
1)在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的每个盘点子 任务配置至少一个第一周期和/或至少一个第二周期;
2)在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的第一盘点子任务配置至少一个第一周期和/或至少一个第二周期;
3)在一个盘点任务包括一个盘点子任务的情况下,针对一个盘点子任务配置至少一个第一周期和/或至少一个第二周期;
4)在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的每个盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔;
5)在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的第一盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔;
6)在一个盘点任务包括一个盘点子任务的情况下,针对一个盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔;
其中,一个盘点任务为针对一组第二通信设备进行盘点的任务,一个盘点子任务为针对一个第二通信设备进行盘点的任务,第四信息用于指示第二通信设备是否进行目标信号的传输。
在本申请实施例中,在有盘点任务时,第一通信设备可以根据目标配置模式,确定第一信息和/或第二信息,并发送给第二通信设备。一个盘点任务为针对一组第二通信设备进行盘点的任务。一组第二通信设备可以包括一个或多个第二通信设备。一个盘点子任务为针对一个第二通信设备进行盘点的任务。一个盘点任务可以包括一个或多个盘点子任务。
目标配置模式可以为上述配置模式中的一项。
如果一组第二通信设备包括一个第二通信设备,则一个盘点任务包括一个盘点子任务,针对一个盘点子任务可以配置至少一个第一周期和/或至少一个第二周期。如果一组第二通信设备包括多个第二通信设备,则可以针对一个盘点任务的第一盘点子任务配置至少一个第一周期和/或第二周期,该第一盘点子任务可以是该盘点任务包括的多个盘点子任务中的一个,可以是协议规定的,或者是第一通信设备自主选定的,或者是第一通信设备与第二通信设备协商确定的。如果一组第二通信设备包括多个第二通信设备,则可以针对一个盘点任务的每个盘点子任务配置至少一个第一周期和/或至少一个第二周期。
针对一个盘点任务的不同盘点子任务配置的第一周期可以相同或不相同,和/或,针对一个盘点任务的不同盘点子任务配置的第二周期可以相同或不相同。即针对一个盘点任务的不同盘点子任务可以配置相同的时域资源,提高配置效率。
如果一组第二通信设备包括一个第二通信设备,则该盘点任务也即为一个盘点子任务,针对一个盘点子任务可以配置第四信息的接收时间与目标信号的发送时间之间的时间间隔。如果一组第二通信设备包括多个第二通信设备,则可以针对一个盘点任务的第一盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔,该第一 盘点子任务可以是该盘点任务对应的多个盘点子任务中的一个,可以是协议规定的,或者是第一通信设备自主选定的,或者是第一通信设备与第二通信设备协商确定的。如果一组第二通信设备包括多个第二通信设备,则可以针对一个盘点任务的每个盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔。
第四信息用于指示第二通信设备是否进行目标信号的传输,比如,第二通信设备接收到第一信息和/或第二信息后,如果再接收到第四信息,则可以根据第四信息以及时间间隔确定是否进行目标信号的传输。
在本申请的一些实施例中,在目标配置模式包括针对一个盘点任务的每个盘点子任务配置至少一个第一周期和/或至少一个第二周期,或者针对一个盘点任务的第一盘点子任务配置至少一个第一周期和/或至少一个第二周期,或者针对一个盘点子任务配置至少一个第一周期和/或至少一个第二周期的情况下:
第一信息可以包括第一周期;和/或,第二信息可以包括第二周期。
即在第一信息中包括第一周期的信息,在第二信息中包括第二周期的信息,这样第二通信设备接收到第一信息和/或第二信息即可获知第一周期和/或第二周期的信息,进而可以确定不进行目标信号的传输和/或进行目标信号的传输的时间。
在本申请的一些实施例中,在目标配置模式包括针对一个盘点任务的每个盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔,或者针对一个盘点任务的第一盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔,或者针对一个盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔的情况下:
第一信息包括时间间隔,第一周期对应第四信息的接收时间后时间间隔之内的时间;
和/或,第二信息包括时间间隔,第二周期对应第四信息的接收时间后时间间隔之后的时间。
在本申请实施例中,第一信息可以包括时间间隔,第一信息用于指示第二通信设备在第一周期内不进行目标信号的传输,第一周期对应第四信息的接收时间后时间间隔之内的时间。即第二通信设备在接收到第四信息后,从第四信息的接收时间开始,在该时间间隔内,不进行目标信号的传输。即第一信息包括的时间间隔为从第二通信设备接收第四信息到第二通信设备发送目标信号之间的时间间隔。
第二信息可以包括时间间隔,第二信息用于指示第二通信设备在第二周期内进行目标信号的传输,第二周期对应第四信息的接收时间后时间间隔之后的时间。即第二通信设备在接收到第四信息后,从第四信息的接收时间开始,在达到该时间间隔后,进行目标信号的传输。即第二信息包括的时间间隔为从第二通信设备接收第四信息到第二通信设备发送目标信号之间的时间间隔。
通过在第一信息和/或第二信息中包括时间间隔的信息,有助于第二通信设备明确不进行目标信号的传输和/或进行目标信号的传输的时间。
在本申请的一些实施例中,第一周期可以位于第二周期之前。
即可以在每个第二周期之前均配置一个第一周期,这样第二通信设备在第一周期内不进行目标信号的传输,目标信号的接收设备,如第一通信设备或第三通信设备可以进行干扰估计,第二通信设备在第二周期内进行目标信号的传输,目标信号的接收设备,如第一通信设备或第三通信设备可以基于在第一周期内进行干扰估计的结果进行干扰抑制或消除,以正确解调目标信号,得到目标数据。
在本申请的一些实施例中,第一周期的时长为零,或者时间间隔的时长为零。
在本申请实施例中,第一通信设备在确定第一信息时,可以基于实际情况,如在确定目标信号的接收设备不需要进行干扰估计的情况下,可以将第一周期的时长设定为零,或者将时间间隔的时长设定为零。在第一周期的时长为零或者时间间隔的时长为零时,第二通信设备接收到第一信息,即可对待传输的目标数据进行调制以及进行目标信号的发送,提高信号传输效率。
在第一周期的时长不为零或者时间间隔的时长不为零时,第二通信设备接收到第一信息,在第一周期内不进行目标信号的传输。
在本申请的一些实施例中,该方法还可以包括以下步骤:
第一通信设备在满足第一条件的情况下,向第二通信设备发送第五信息,第五信息用于指示第二通信设备更新第一周期,更新后的第一周期位于第二周期之前,或者更新后的第一周期位于第二周期中。
在本申请实施例中,第一通信设备可以半静态或动态确定目标配置模式,当第一通信设备半静态确定目标配置模式,并根据目标配置模式,确定第一信息和/或第二信息,并将第一信息和/或第二信息发送给第二通信设备后,第二通信设备即可根据第一信息和/或第二信息的指示在第一周期内不进行目标信号的传输和/或在第二周期内进行目标信号的传输。
但是随着时间的变化,和/或第二通信设备的位置变化,无线信道信息也可能会发生较大变化,再使用半静态配置可能无法适应当前信道状态,需要转为动态配置,需要重新进行干扰估计。本申请实施例可以将半静态配置到动态配置的转换设定为第一条件,或者将无线信道信息的变化率大于第一阈值设定为第一条件,第一通信设备在满足第一条件的情况下,向第二通信设备发送第五信息,第五信息用于指示第二通信设备更新第一周期。第二通信设备接收到第五信息后,即可根据第五信息更新第一周期。
其中,无线信道信息的变化率可以通过信道质量指示(Channel Quality Indicator,CQI)和/或参考信号接收功率(Reference Signal Receiving Power,RSRP)和/或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)在单位时间的变化值来确定。
如果第一通信设备发送第五信息时,第二通信设备还未进入到第二周期,则更新后的第一周期位于第二周期之前,第二通信设备需在更新后的第一周期内不进行目标信号的传输,在第二周期内进行目标信号的传输。
如果第一通信设备发送第五信息时,第二通信设备已进入到第二周期,则更新后的第一周期位于第二周期中,在第二周期中***更新后的第一周期,第二通信设备需在更新后的第一周期内不进行目标信号的传输,在第二周期内除更新后的第一周期外的其他时间进行目标信号的传输。在这种情况下,第五信息还可以指示第二通信设备更新第二周期,将更新后的第一周期占用第二周期的时间补偿给第二周期,以使得第二通信设备可以有足够的时间进行目标信号的传输。
第一通信设备在满足第一条件的情况下,指示第二通信设备更新第一周期,重新进行干扰估计,使得得到的当前信道的干扰估计结果更准确。
在本申请的一些实施例中,第一通信设备确定目标配置模式,可以包括以下步骤:
步骤一:第一通信设备确定无线信道信息;
步骤二:第一通信设备根据无线信道信息,确定目标配置模式。
在本申请实施例中,第一通信设备可以通过以下至少一种方式确定无线信道信息:
在第三通信设备为目标信号的接收设备的情况下,第一通信设备根据从第三通信设备接收的信道质量指示信息确定无线信道信息;
在第三通信设备为目标信号的接收设备的情况下,第一通信设备根据从第三通信设备接收的参考信号接收信息确定无线信道信息。其中,参考信号接收信息包括参考信号接收功率和/或参考信号接收质量;
第一通信设备周期性或非周期性确定无线信道信息;
在第一通信设备为目标信号的接收设备的情况下,第一通信设备在第一周期内通过自发自收信号确定无线信道信息。
第一通信设备通过上述至少之一方式确定无线信道信息,从而可以获知信道状态情况,在信道状态较为稳定时,可以半静态确定目标配置模式,在无线信道变化较快时,可以动态确定目标配置模式。
第一通信设备根据无线信道信息,可以较为准确地确定目标配置模式,进而可以根据目标配置模式确定第一信息和/或第二信息,以为第二通信设备的目标信号的传输进行明确指示。
在本申请的一些实施例中,第一通信设备根据目标配置模式,确定第一信息和/或第二信息,可以包括以下步骤:
在第三通信设备为目标信号的接收设备的情况下,第一通信设备根据第二通信设备的第一能力信息和/或第三通信设备的第二能力信息,以及目标配置模式,确定第一信息和/或第二信息。
在本申请实施例中,第一通信设备可以预先获得第二通信设备的第一能力信息和/或第三通信设备的第二能力信息,第一能力信息和/或第二能力信息可以是预先上报给第一通信设备的,还可以是预先配置在第一通信设备中的。第三通信设备是指双基地架构中目标信号的接收设备。可选的,第一通信设备可以从第二通信设备接收第一能力信息, 和/或,第一通信设备可以从第三通信设备接收第二能力信息。即第二通信设备可以向第一通信设备发送第一能力信息,和/或,第三通信设备可以向第一通信设备发送第二能力信息。
第一能力信息可以包括第二通信设备是否具备生成载波信号的能力。在第一能力信息包括第二通信设备具备生成载波信号的能力的情况下,第一周期的时长为零。
可以理解的是,如果第二通信设备具备生成载波信号的能力,则第二通信设备可以自主生成第二信号,将待传输的目标数据调制到第二信号上,生成目标信号,发送给第一通信设备或第三通信设备。这种情况下,不需要第一通信设备向第二通信设备发送第一信号,这样第一信号也就不会在目标信号的接收设备对目标信号造成干扰,不需要限定第二通信设备不进行目标信号的传输的时间,目标信号的接收设备也可以不进行干扰估计,在接收到目标信号后进行解调,即可得到目标数据。
第二能力信息可以包括以下至少一项:
第三通信设备是否具有干扰抑制或消除的能力;
第三通信设备的干扰抑制或消除能力信息;
第三通信设备的干扰抑制或消除能力等级信息。
在第二能力信息包括第三通信设备的干扰抑制或消除能力信息和/或第三通信设备的干扰抑制或消除能力等级信息的情况下,第一通信设备根据第三通信设备的第二能力信息以及目标配置模式,确定第一信息和/或第二信息,可以包括以下步骤:
第一个步骤:第一通信设备根据第二能力信息,确定第三通信设备的干扰抑制或消除能力等级信息;
第二个步骤:第一通信设备基于第三通信设备的干扰抑制或消除能力等级信息与第三通信设备的干扰估计时间的映射关系,以及目标配置模式,确定第一信息和/或第二信息。
在本申请实施例中,可以预先设定能力信息与能力等级信息的对应关系,该对应关系可以是预定义的,或网络侧设备配置的,也可以是一种计算规则。如果第二能力信息包括第三通信设备的干扰抑制或消除能力信息,则第一通信设备根据第三通信设备的干扰抑制或消除能力信息和相应的对应关系,可以确定出第三通信设备的干扰抑制或消除能力等级信息。如果第二能力信息包括第三通信设备的干扰抑制或消除能力等级信息,则第一通信设备根据第二能力信息可以直接确定出第三通信设备的干扰抑制或消除能力等级信息。
干扰抑制或消除能力等级信息可以映射到干扰估计时间,第一通信设备基于第三通信设备的干扰抑制或消除能力等级信息与第三通信设备的干扰估计时间的映射关系,以及目标配置模式,可以确定第一信息和/或第二信息。第一周期和/或第二周期、时间间隔与干扰估计时间相关。
在第三通信设备为目标信号的接收设备的情况下,第三通信设备通过主动上报或者 根据指示信息上报的方式可以将干扰估计时间发送给第一通信设备,第一通信设备基于第三通信设备的干扰估计时间,以及目标配置模式,可以确定第一信息和/或第二信息。
在第一通信设备为目标信号的接收设备的情况下,第一通信设备可以根据自身情况,以及目标配置模式,确定第一信息和/或第二信息。
总体而言,本申请实施例主要进行了反向散射通信***的时域资源配置。基于不同的无线通信场景需求及无源、半无源、有源标签设备的不同特征,将时域资源配置方案分为半静态资源配置类型和动态资源配置类型,根据目标信号的接收设备的干扰估计时间及无线信道信息指示标签设备保持静默不进行目标信号的传输或用于储能等操作的时间。时域资源配置如图13所示,可以包括第一周期和第二周期,其中第一周期也可称为训练周期,第二周期可称为反向散射周期,第一周期可以包括训练时间单元1、训练时间单元2、……、训练时间单元N’,N’为第一周期包括的训练时间单元总数,训练时间单元的具体单位可以包括:帧、子帧、时隙、符号等。
本申请实施例的技术方案既可以适用于双基地架构中直接链路干扰抑制/消除场景,也可以适用于单基地架构中自干扰抑制/消除场景。其中,双基地架构中干扰信道主要包括网络侧设备,如基站到终端的信道;单基地架构中的干扰信道主要包括发端链路(天线)的发射信号泄露(耦合)到收端链路(天线)的接收信号之间的信道,还包括发射信号经过空口反射回收端的信号之间的无线信道,如包括天线或射频链路不匹配造成的信号反射、信号遇到墙体的反射等。
第一周期即训练周期的用途之一是目标信号的接收设备进行干扰估计,即这段时间内标签设备保持静默或进行储能等操作。其中,第一周期可以包括不同的训练时间单元,该配置不是唯一的。
第二周期即反向散射周期用于标签设备进行目标信号的传输,包括标签设备的数据调制时间及目标信号发送时间;可选的,在第二周期的起始位置处,还可以存在前导(preamble)及同步检测序列,供标签设备做信道估计及同步使用。
针对具有载波生成能力的有源标签设备,不存在直接链路干扰,不需要配置第一周期。
为了便于理解,下面通过具体示例对本申请实施例所提供的技术方案进行说明。假设第一通信设备为读取器,第二通信设备为标签设备,第三通信设备为终端,第一周期为训练周期,第二周期为反向散射周期。以下示例主要是从读取器为发端的角度给出的相关配置信息和盘点流程,从标签设备侧或终端侧也有相应的描述。
示例一:双基地架构下半静态资源配置
本示例给出双基地架构下时域资源的半静态配置信息及相关盘点流程。
读取器可以根据终端的干扰抑制/消除能力信息及无线信道信息确定目标配置模式,如第一pattern,并向标签设备发送第一信息和/或第二信息;
其中,第一pattern可以包括以下一项:
针对一个盘点子任务配置至少一个训练周期和至少一个反向散射周期;
针对一个盘点任务的某个盘点子任务配置至少一个训练周期和至少一个反向散射周期。通过第一信息和/或第二信息,或其他控制命令激活其中一个盘点子任务进行干扰估计。
一个盘点流程(triggered by query),或者一个盘点任务(triggered by select)中,配置相同的时域资源。
第一信息用于指示标签设备不进行目标信号的传输的时间,即用于终端的干扰估计时间,也即为第一周期,包括以下至少一种情况:
第一信息包括zero训练周期,时长为零,即标签设备接收到第一信息即进行待传输的目标数据的调制及目标信号的传输;
第一信息包括预定义的训练周期,即标签设备接收到第一信息后,在训练周期内不进行目标信号的传输。
第一信息用于指示标签设备不进行目标信号的传输,终端进行干扰估计,标签设备的状态可以包括以下至少一项:
保持静默状态,不做任何操作;
进行储能状态;
信号解调状态;
信道估计状态;
同步状态;
第二信息用于指示标签设备进行目标信号的传输,标签设备可以执行以下行为:
待传输的目标数据调制;
目标信号的发送;
标签设备还可以执行以下至少一项行为:
接收信号解调;
信道估计;
同步。
可选的,读取器可以接收标签设备和终端上报的能力信息,其中终端上报的能力信息可以包括:是否具有干扰抑制/消除能力、干扰抑制/消除能力信息。
读取器根据终端上报的干扰抑制/消除能力信息,确定干扰抑制/消除能力等级信息,该能力等级信息对应不同的干扰抑制/消除能力。通过该能力等级信息与终端的干扰估计时间的映射关系,可以确定第一信息,用于指示标签设备不进行目标信号的传输的时间。
可选的,若标签设备具有载波生成能力,则读取器指示的第一信息包括zero训练周期,终端不需要进行干扰抑制/消除操作。
读取器获取无线信道信息的方式可以包括以下至少一种:
读取器接收终端反馈的CQI;
读取器接收终端周期性/非周期性上报的RSRP/RSRQ等信息。
示例二:双基地架构下动态资源配置
本示例给出双基地架构下时域资源的动态配置信息及相关盘点流程。示例二与示例一的主要区别在于读取器需要根据信道变化的快慢动态配置标签设备的时域资源。示例一假设一段时间内信道条件不发生变化或属于慢衰落场景,示例二没有这种假设。
读取器根据无线信道信息确定目标配置模式,如第二pattern,并向标签设备发送第一信息和/或第二信息。这里读取器可以预先获得终端的干扰抑制/消除能力及干扰估计时间,仅考虑信道变化的影响。
第二pattern可以包括以下一项:
针对一个盘点子任务配置至少一个训练周期和至少一个反向散射周期;
针对一个盘点子任务配置控制命令的接收时间与目标信号的发送时间之间的时间间隔,控制命令的接收时间为标签设备接收到控制命令的时间,目标信号的发送时间为标签设备发送目标信号的时间。
训练周期和时间间隔的具体数值与终端的干扰估计时间相关,还与信道条件相关。
第一信息用于指示标签设备不进行目标信号的传输的时间,即用于终端的干扰估计时间,也即为第一周期,包括以下至少一种情况:
第一信息包括zero训练周期或时间间隔,时长为零,即标签设备接收到第一信息即进行待传输的目标数据的调制以及目标信号的传输;
第一信息为预定义的训练周期或时间间隔,即标签设备接收到第一信息后,在训练周期内不进行目标信号的传输。
若第一信息包括控制命令的接收时间与目标信号的发送时间之间的时间间隔,则该控制命令的功能可以等价于第一信息的指示功能,用于指示时间间隔;或者,控制命令的功能与第一信息的指示功能不一致。
第一信息用于指示标签设备不进行目标信号的传输,标签设备的状态可以包括以下至少一项:
保持静默状态,不做任何操作;
进行储能状态;
信号解调状态;
信道估计状态;
同步状态;
第二信息用于指示标签设备进行目标信号的传输,标签设备可以执行以下行为:
待传输的目标数据调制;
反向散射传输;
标签设备还可以执行以下至少一项行为:
接收信号解调;
信道估计;
同步。
若标签设备具备载波生成能力,则读取器指示的第一信息包括zero训练周期或时间间隔,终端不需要进行干扰抑制/消除。
读取器获取无线信道信息的方式可以包括以下至少一种:
读取器接收终端反馈的CQI;
读取器接收终端周期性/非周期性上报的RSRP/RSRQ等信息;
读取器周期性/非周期性地确定信道状态信息。
其中,前两种方式基于终端的测量,第三种方式为读取器根据实际需要指示终端周期性/非周期性发送上行参考信号进行测量,以降低时延。
示例三:单基地架构下资源配置
本示例给出单基地架构下时域资源的相关配置信息及相关盘点流程。由于读取器是收发一体,因此需要考虑两个干扰信道的估计,两个干扰信道包括自干扰信道及反射干扰信道。一般来说,自干扰信道是慢衰落信道,一段时间内可以认为信道不发生变化,但是反射干扰信道属于时变信道。因此,需要根据自干扰信道及反射干扰信道的特点,设计相关配置信息及相关盘点流程。
假设自干扰信道的变化时间是反射干扰信道变化时间的M倍(M是大于等于1的数),则半静态资源配置流程类似于示例一,动态资源配置流程类似于示例二。与上述示例一、示例二的区别在于:
单基地架构无需目标信号的接收设备上报能力信息。可选的,标签设备可以上报能力信息。但读取器依然可以根据自干扰/反射干扰抑制/消除能力定义不同的能力等级信息;
反射信道及自干扰信道的信道状态信息估计由读取器自发自收于训练周期或时间间隔内完成。
以上通过具体示例方式对本申请实施例所提供的技术方案再次进行了说明,不同示例间可相互参考。
相关技术中,单基地架构下,反向散射通信***的干扰包括泄露干扰、反射干扰及非线性干扰。泄露干扰是由于环形器或收发天线隔离不理想导致发端信号泄漏到收端产生的干扰,反射干扰是指发射信号经过空口反射回收端对接收信号造成的干扰,包括天线或射频链路不匹配造成的信号反射、信号遇到墙体的反射等。非线性干扰是硬件本身的非线性及量化噪声、相位噪声等引入的干扰。一般而言,自干扰多是指泄露干扰。
目前读取器消除/抑制由于泄露干扰引入的自干扰时,需要额外增加隔离板或天线间距,或配置额外的射频干扰消除/抑制电路或基带电路,额外增加干扰消除/抑制电路会降低射频前端的功率效率,同时会增加硬件设计成本。另外,由于反向散射信号能量较弱,而泄露/耦合的载波信号能量较强,反向散射信号的频点与载波信号频点基本一致,很难通过增加射频/基带电路的方法消除/抑制自干扰。而双基地架构消除直接链路干扰时,可 通过发射端波形设计的方式消除直接链路干扰,但往往需要发端和标签设备保持高精度同步性能。
再有,读取器还需考虑非线性干扰,比如:非线性器件(如功放)引入的干扰、相位噪声及模数转换(Analog to Digital Converter,ADC)量化噪声引入的干扰。其中,相位噪声会对自干扰消除产生数十dB的影响,是制约自干扰消除的瓶颈问题之一。
上述关于单基地架构自干扰/反射干扰、双基地架构中直接链路干扰的解决方案存在的问题主要有:1)往往需要硬件电路进行干扰抑制/消除,而硬件电路需要额外的硬件成本及功耗;2)若消除效果不理想,会造成器件饱和问题,不能正确解调标签设备的数据;3)往往需要精确的信道估计。
鉴于此,本申请实施例根据目标信号的接收设备的干扰估计时间及信道变化情况配置时域资源,作为目标信号的接收设备进行干扰抑制/消除的前提步骤。
基于不同的无线通信场景需求及无源、半无源、有源标签设备的不同特征,将时域资源配置方案分为半静态资源配置类型和动态资源配置类型,根据目标信号的接收设备的干扰估计时间及信道状态信息指示标签设备保持静默不进行目标信号的传输或用于储能等操作的时间,在这段时间内目标信号的接收设备进行干扰估计,以进一步进行干扰抑制/消除,提高目标信号的解调成功率。
本申请实施例提供的信号传输方法,执行主体可以为信号传输装置。本申请实施例中以信号传输装置执行信号传输方法为例,说明本申请实施例提供的信号传输装置。
参见图14所示,信号传输装置1400可以包括以下模块:
第一确定模块1410,用于根据目标配置模式,确定第一信息和/或第二信息;
第一发送模块1420,用于向第二通信设备发送第一信息和/或第二信息;
其中,第一信息用于指示第二通信设备在第一周期内不进行目标信号的传输,第二信息用于指示第二通信设备在第二周期内进行目标信号的传输。
应用本申请实施例所提供的装置,根据目标配置模式,确定第一信息和/或第二信息,然后将第一信息和/或第二信息发送给第二通信设备,第一信息用于指示第二通信设备在第一周期内不进行目标信号的传输,第二信息用于指示第二通信设备在第二周期内进行目标信号的传输,从而第二通信设备根据第一信息和/或第二信息可知何时进行目标信号的传输,也就可以使得在第二通信设备不进行目标信号的传输时,目标信号的接收设备能够有效地进行干扰估计,进而基于干扰估计结果可以进行后续操作,如在接收到第二通信设备发送的目标信号后,可以基于干扰估计结果进行干扰抑制或消除操作,保证干扰抑制或消除操作的顺序进行,提高目标信号的解调成功率。
在本申请的一些实施例中,不进行目标信号的传输包括以下至少一项:
保持静默;进行储能;对接收到的信号进行解调;进行信道估计;与其他通信设备进行同步;
和/或,进行目标信号的传输包括:
对待传输的目标数据进行调制;进行目标信号的发送。
在本申请的一些实施例中,第一发送模块1420还用于:
向第二通信设备发送第三信息;
其中,第三信息用于指示第二通信设备在第一周期内执行以下至少一项行为:
保持静默;进行储能;对接收到的信号进行解调;进行信道估计;与其他通信设备进行同步。
在本申请的一些实施例中,第一确定模块1410,还用于:
在根据目标配置模式,确定第一信息和/或第二信息之前,确定目标配置模式。
在本申请的一些实施例中,第一确定模块1410,用于以下一项:
半静态确定目标配置模式;动态确定目标配置模式。
在本申请的一些实施例中,目标配置模式包括以下一项:
在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的每个盘点子任务配置至少一个第一周期和/或至少一个第二周期;
在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的第一盘点子任务配置至少一个第一周期和/或至少一个第二周期;
在一个盘点任务包括一个盘点子任务的情况下,针对一个盘点子任务配置至少一个第一周期和/或至少一个第二周期;
在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的每个盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔;
在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的第一盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔;
在一个盘点任务包括一个盘点子任务的情况下,针对一个盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔;
其中,一个盘点任务为针对一组第二通信设备进行盘点的任务,一个盘点子任务为针对一个第二通信设备进行盘点的任务,第四信息用于指示第二通信设备是否进行目标信号的传输。
在本申请的一些实施例中,在目标配置模式包括针对一个盘点任务的每个盘点子任务配置至少一个第一周期和/或至少一个第二周期,或者针对一个盘点任务的第一盘点子任务配置至少一个第一周期和/或至少一个第二周期,或者针对一个盘点子任务配置至少一个第一周期和/或至少一个第二周期的情况下:
第一信息包括第一周期;
和/或,第二信息包括第二周期。
在本申请的一些实施例中,在目标配置模式包括针对一个盘点任务的每个盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔,或者针对一个盘点任务的第一盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔, 或者针对一个盘点子任务配置第四信息的接收时间与目标信号的发送时间之间的时间间隔的情况下:
第一信息包括时间间隔,第一周期对应第四信息的接收时间后时间间隔之内的时间;
和/或,第二信息包括时间间隔,第二周期对应第四信息的接收时间后时间间隔之后的时间。
在本申请的一些实施例中,第一周期位于第二周期之前。
在本申请的一些实施例中,第一发送模块1420还用于:
在满足第一条件的情况下,向第二通信设备发送第五信息,第五信息用于指示第二通信设备更新第一周期,更新后的第一周期位于第二周期之前,或者更新后的第一周期位于第二周期中。
在本申请的一些实施例中,第一周期的时长为零,或者时间间隔的时长为零。
在本申请的一些实施例中,针对一个盘点任务的不同盘点子任务配置的第一周期相同或不相同;
和/或,针对一个盘点任务的不同盘点子任务配置的第二周期相同或不相同。
在本申请的一些实施例中,第一确定模块1410,用于:
第一通信设备确定无线信道信息;
第一通信设备根据无线信道信息,确定目标配置模式。
在本申请的一些实施例中,第一确定模块1410,用于通过以下至少一种方式确定无线信道信息:
在第三通信设备为目标信号的接收设备的情况下,根据从第三通信设备接收的信道质量指示信息确定无线信道信息;
在第三通信设备为目标信号的接收设备的情况下,根据从第三通信设备接收的参考信号接收信息确定无线信道信息;
周期性或非周期性确定无线信道信息;
在第一通信设备为目标信号的接收设备的情况下,在第一周期内通过自发自收信号确定信道状态信息。
在本申请的一些实施例中,参考信号接收信息包括参考信号接收功率和/或参考信号接收质量。
在本申请的一些实施例中,第一确定模块1410,用于:
在第三通信设备为目标信号的接收设备的情况下,根据第二通信设备的第一能力信息和/或第三通信设备的第二能力信息,以及目标配置模式,确定第一信息和/或第二信息。
在本申请的一些实施例中,信号传输装置1400还包括第一接收模块,用于:
在根据第二通信设备的第一能力信息和/或第三通信设备的第二能力信息,以及目标配置模式,确定第一信息和/或第二信息之前,执行以下至少一项:
从第二通信设备接收第一能力信息;
从第三通信设备接收第二能力信息。
在本申请的一些实施例中,第一能力信息包括第二通信设备是否具备生成载波信号的能力;
和/或,第二能力信息包括以下至少一项:
第三通信设备是否具有干扰抑制或消除的能力;
第三通信设备的干扰抑制或消除能力信息;
第三通信设备的干扰抑制或消除能力等级信息。
在本申请的一些实施例中,在第一能力信息包括第二通信设备具备生成载波信号的能力的情况下,第一周期的时长为零。
在本申请的一些实施例中,在第二能力信息包括第三通信设备的干扰抑制或消除能力信息和/或第三通信设备的干扰抑制或消除能力等级信息的情况下,第一确定模块1410,用于:
根据第二能力信息,确定第三通信设备的干扰抑制或消除能力等级信息;
基于第三通信设备的干扰抑制或消除能力等级信息与第三通信设备的干扰估计时间的映射关系,以及目标配置模式,确定第一信息和/或第二信息。
本申请实施例提供的信号传输装置1400能够实现图12所示方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
相应于上面的方法实施例,本申请实施例还提供了一种信号传输方法,如图15所示,该方法可以包括以下步骤:
S1510:第二通信设备接收第一信息和/或第二信息;
S1520:第二通信设备根据第一信息和/或第二信息,执行以下至少一项行为:
在第一周期内不进行目标信号的传输;
在第二周期内进行目标信号的传输。
应用本申请实施例所提供的方法,第二通信设备接收到第一信息和/或第二信息后,根据第一信息和/或第二信息可知何时进行目标信号的传输,也就可以使得在第二通信设备不进行目标信号的传输时,目标信号的接收设备能够有效地进行干扰估计,进而基于干扰估计结果可以进行后续操作,如在接收到第二通信设备发送的目标信号后,可以基于干扰估计结果进行干扰抑制或消除操作,保证干扰抑制或消除操作的顺序进行,提高目标信号的解调成功率。
在本申请的一些实施例中,不进行目标信号的传输包括以下至少一项:
保持静默;进行储能;对接收到的信号进行解调;进行信道估计;与其他通信设备进行同步;
和/或,进行目标信号的传输包括:
对待传输的目标数据进行调制;进行目标信号的发送。
在本申请的一些实施例中,还包括:
第二通信设备接收第三信息;
第二通信设备根据第三信息,在第一周期内执行以下至少一项行为:
保持静默;进行储能;对接收到的信号进行解调;进行信道估计;与其他通信设备进行同步。
在本申请的一些实施例中,第二通信设备在第二周期内进行目标信号的传输,包括:
第二通信设备在第二周期内将目标信号发送给第一通信设备或第三通信设备。
在本申请的一些实施例中,第一信息包括第一周期;和/或,第二信息包括第二周期。
在本申请的一些实施例中,第一信息包括时间间隔,第一周期对应第四信息的接收时间后时间间隔之内的时间,和/或,第二信息包括时间间隔,第二周期对应第四信息的接收时间后时间间隔之后的时间;
其中,第四信息用于指示第二通信设备是否进行目标信号的传输。
在本申请的一些实施例中,第一周期的时长为零。
在本申请的一些实施例中,第一周期位于第二周期之前。
在本申请的一些实施例中,还包括:
第二通信设备接收第五信息;
第二通信设备根据第五信息,更新第一周期,更新后的第一周期位于第二周期之前,或者更新后的第一周期位于第二周期中。
在本申请的一些实施例中,在第二通信设备接收第一信息和/或第二信息之前,还包括:
第二通信设备向第一通信设备发送第一能力信息;
其中,第一能力信息包括第二通信设备是否具备生成载波信号的能力。
图15所示的方法实施例的具体实现过程可以参见对图12所示的方法实施例的具体实现过程的描述,能够实现图12所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例提供的信号传输方法,执行主体可以为信号传输装置。本申请实施例中以信号传输装置执行信号传输方法为例,说明本申请实施例提供的信号传输装置。
如图16所示,信号传输装置1600可以包括以下模块:
第二接收模块1610,用于接收第一信息和/或第二信息;
执行模块1620,用于根据第一信息和/或第二信息,执行以下至少一项行为:
在第一周期内不进行目标信号的传输;
在第二周期内进行目标信号的传输。
应用本申请实施例所提供的装置,接收到第一信息和/或第二信息后,根据第一信息和/或第二信息可知何时进行目标信号的传输,也就可以使得在不进行目标信号的传输时,目标信号的接收设备能够有效地进行干扰估计,进而基于干扰估计结果可以进行后续操作,如在接收到目标信号后,可以基于干扰估计结果进行干扰抑制或消除操作,保证干 扰抑制或消除操作的顺序进行,提高目标信号的解调成功率。
在本申请的一些实施例中,不进行目标信号的传输包括以下至少一项:
保持静默;进行储能;对接收到的信号进行解调;进行信道估计;与其他通信设备进行同步;
和/或,进行目标信号的传输包括:
对待传输的目标数据进行调制;进行目标信号的发送。
在本申请的一些实施例中,第二接收模块1610还用于:
接收第三信息;
执行模块1620还用于根据第三信息,在第一周期内执行以下至少一项行为:
保持静默;进行储能;对接收到的信号进行解调;进行信道估计;与其他通信设备进行同步。
在本申请的一些实施例中,执行模块1620,用于:
在第二周期内将目标信号发送给第一通信设备或第三通信设备。
在本申请的一些实施例中,第一信息包括第一周期;和/或,第二信息包括第二周期。
在本申请的一些实施例中,第一信息包括时间间隔,第一周期对应第四信息的接收时间后时间间隔之内的时间,和/或,第二信息包括时间间隔,第二周期对应第四信息的接收时间后时间间隔之后的时间;
其中,第四信息用于指示第二通信设备是否进行目标信号的传输。
在本申请的一些实施例中,第一周期的时长为零。
在本申请的一些实施例中,第一周期位于第二周期之前。
在本申请的一些实施例中,第二接收模块1610还用于:
接收第五信息;
执行模块1620还用于:
根据第五信息,更新第一周期,更新后的第一周期位于第二周期之前,或者更新后的第一周期位于第二周期中。
在本申请的一些实施例中,信号传输装置1600还包括第二发送模块,用于:
在接收第一信息和/或第二信息之前,向第一通信设备发送第一能力信息;
其中,第一能力信息包括第二通信设备是否具备生成载波信号的能力。
本申请实施例提供的信号传输装置1600能够实现图15所示方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图17所示,本申请实施例还提供一种通信设备1700,包括处理器1701和存储器1702,存储器1702上存储有可在所述处理器1701上运行的程序或指令,例如,该通信设备1700为第一通信设备时,该程序或指令被处理器1701执行时实现上述图12所示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1700为第二通信设备时,该程序或指令被处理器1701执行时实现上述图15所示方法实施例的各个步骤,且能达 到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图12或图15所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述图12或图15所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信***,包括:第一通信设备及第二通信设备,所述第一通信设备可用于执行如上所述的图12所示方法实施例的步骤,所述第二通信设备可用于执行如上所述的图15所示方法实施例的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种信号传输方法,其中,包括:
    第一通信设备根据目标配置模式,确定第一信息和/或第二信息;
    所述第一通信设备向第二通信设备发送所述第一信息和/或所述第二信息;
    其中,所述第一信息用于指示所述第二通信设备在第一周期内不进行目标信号的传输,所述第二信息用于指示所述第二通信设备在第二周期内进行所述目标信号的传输。
  2. 根据权利要求1所述的方法,其中,所述不进行目标信号的传输包括以下至少一项:
    保持静默;
    进行储能;
    对接收到的信号进行解调;
    进行信道估计;
    与其他通信设备进行同步;
    和/或,所述进行所述目标信号的传输包括:
    对待传输的目标数据进行调制;
    进行所述目标信号的发送。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第一通信设备向所述第二通信设备发送第三信息;
    其中,所述第三信息用于指示所述第二通信设备在所述第一周期内执行以下至少一项行为:
    保持静默;
    进行储能;
    对接收到的信号进行解调;
    进行信道估计;
    与其他通信设备进行同步。
  4. 根据权利要求1所述的方法,其中,在所述第一通信设备根据目标配置模式,确定第一信息和/或第二信息之前,所述方法还包括:
    所述第一通信设备确定目标配置模式。
  5. 根据权利要求4所述的方法,其中,所述第一通信设备确定目标配置模式,包括以下一项:
    所述第一通信设备半静态确定目标配置模式;
    所述第一通信设备动态确定目标配置模式。
  6. 根据权利要求1至5之中任一项所述的方法,其中,所述目标配置模式包括以下一项:
    在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的每个盘点子任 务配置至少一个所述第一周期和/或至少一个所述第二周期;
    在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的第一盘点子任务配置至少一个所述第一周期和/或至少一个所述第二周期;
    在一个盘点任务包括一个盘点子任务的情况下,针对一个盘点子任务配置至少一个所述第一周期和/或至少一个所述第二周期;
    在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的每个盘点子任务配置第四信息的接收时间与所述目标信号的发送时间之间的时间间隔;
    在一个盘点任务包括多个盘点子任务的情况下,针对一个盘点任务的第一盘点子任务配置所述第四信息的接收时间与所述目标信号的发送时间之间的时间间隔;
    在一个盘点任务包括一个盘点子任务的情况下,针对一个盘点子任务配置所述第四信息的接收时间与所述目标信号的发送时间之间的时间间隔;
    其中,一个盘点任务为针对一组第二通信设备进行盘点的任务,一个盘点子任务为针对一个第二通信设备进行盘点的任务,所述第四信息用于指示所述第二通信设备是否进行所述目标信号的传输。
  7. 根据权利要求6所述的方法,其中,在所述目标配置模式包括针对一个盘点任务的每个盘点子任务配置至少一个所述第一周期和/或至少一个所述第二周期,或者针对一个盘点任务的第一盘点子任务配置至少一个所述第一周期和/或至少一个所述第二周期,或者针对一个盘点子任务配置至少一个所述第一周期和/或至少一个所述第二周期的情况下:
    所述第一信息包括所述第一周期;
    和/或,所述第二信息包括所述第二周期。
  8. 根据权利要求6所述的方法,其中,在所述目标配置模式包括针对一个盘点任务的每个盘点子任务配置第四信息的接收时间与所述目标信号的发送时间之间的时间间隔,或者针对一个盘点任务的第一盘点子任务配置所述第四信息的接收时间与所述目标信号的发送时间之间的时间间隔,或者针对一个盘点子任务配置所述第四信息的接收时间与所述目标信号的发送时间之间的时间间隔的情况下:
    所述第一信息包括所述时间间隔,所述第一周期对应所述第四信息的接收时间后所述时间间隔之内的时间;
    和/或,所述第二信息包括所述时间间隔,所述第二周期对应所述第四信息的接收时间后所述时间间隔之后的时间。
  9. 根据权利要求6所述的方法,其中,所述方法还包括:
    所述第一通信设备在满足第一条件的情况下,向所述第二通信设备发送第五信息,所述第五信息用于指示所述第二通信设备更新所述第一周期,更新后的第一周期位于所述第二周期之前,或者更新后的第一周期位于所述第二周期中。
  10. 根据权利要求6所述的方法,其中,所述第一周期的时长为零,或者所述时间 间隔的时长为零。
  11. 根据权利要求6所述的方法,其中,针对一个盘点任务的不同盘点子任务配置的所述第一周期相同或不相同;
    和/或,针对一个盘点任务的不同盘点子任务配置的所述第二周期相同或不相同。
  12. 根据权利要求4所述的方法,其中,所述第一通信设备确定目标配置模式,包括:
    所述第一通信设备确定无线信道信息;
    所述第一通信设备根据所述无线信道信息,确定目标配置模式。
  13. 根据权利要求12所述的方法,其中,所述第一通信设备通过以下至少一种方式确定所述无线信道信息:
    在第三通信设备为所述目标信号的接收设备的情况下,所述第一通信设备根据从所述第三通信设备接收的信道质量指示信息确定所述无线信道信息;
    在第三通信设备为所述目标信号的接收设备的情况下,所述第一通信设备根据从所述第三通信设备接收的参考信号接收信息确定所述无线信道信息;
    所述第一通信设备周期性或非周期性确定所述无线信道信息;
    在所述第一通信设备为所述目标信号的接收设备的情况下,所述第一通信设备在所述第一周期内通过自发自收信号确定所述信道状态信息。
  14. 根据权利要求13所述的方法,其中,所述参考信号接收信息包括参考信号接收功率和/或参考信号接收质量。
  15. 根据权利要求1所述的方法,其中,所述第一通信设备根据所述目标配置模式,确定第一信息和/或第二信息,包括:
    在第三通信设备为所述目标信号的接收设备的情况下,所述第一通信设备根据所述第二通信设备的第一能力信息和/或所述第三通信设备的第二能力信息,以及所述目标配置模式,确定第一信息和/或第二信息。
  16. 根据权利要求15所述的方法,其中,在所述第一通信设备根据所述第二通信设备的第一能力信息和/或所述第三通信设备的第二能力信息,以及所述目标配置模式,确定第一信息和/或第二信息之前,还包括以下至少一项:
    所述第一通信设备从所述第二通信设备接收所述第一能力信息;
    所述第一通信设备从所述第三通信设备接收所述第二能力信息。
  17. 根据权利要求15或16所述的方法,其中,所述第一能力信息包括所述第二通信设备是否具备生成载波信号的能力;
    和/或,所述第二能力信息包括以下至少一项:
    所述第三通信设备是否具有干扰抑制或消除的能力;
    所述第三通信设备的干扰抑制或消除能力信息;
    所述第三通信设备的干扰抑制或消除能力等级信息。
  18. 根据权利要求17所述的方法,其中,在所述第一能力信息包括所述第二通信设备具备生成载波信号的能力的情况下,所述第一周期的时长为零。
  19. 根据权利要求17所述的方法,其中,在所述第二能力信息包括所述第三通信设备的干扰抑制或消除能力信息和/或所述第三通信设备的干扰抑制或消除能力等级信息的情况下,所述第一通信设备根据所述第三通信设备的第二能力信息以及所述目标配置模式,确定第一信息和/或第二信息,包括:
    所述第一通信设备根据所述第二能力信息,确定所述第三通信设备的干扰抑制或消除能力等级信息;
    所述第一通信设备基于所述第三通信设备的干扰抑制或消除能力等级信息与所述第三通信设备的干扰估计时间的映射关系,以及所述目标配置模式,确定第一信息和/或第二信息。
  20. 一种信号传输装置,其中,包括:
    第一确定模块,用于根据目标配置模式,确定第一信息和/或第二信息;
    第一发送模块,用于向第二通信设备发送第一信息和/或所述第二信息;
    其中,所述第一信息用于指示所述第二通信设备在第一周期内不进行目标信号的传输,所述第二信息用于指示所述第二通信设备在第二周期内进行所述目标信号的传输。
  21. 一种信号传输方法,其中,包括:
    第二通信设备接收第一信息和/或第二信息;
    所述第二通信设备根据所述第一信息和/或所述第二信息,执行以下至少一项行为:
    在第一周期内不进行目标信号的传输;
    在第二周期内进行所述目标信号的传输。
  22. 根据权利要求21所述的方法,其中,所述不进行目标信号的传输包括以下至少一项:
    保持静默;
    进行储能;
    对接收到的信号进行解调;
    进行信道估计;
    与其他通信设备进行同步;
    和/或,所述进行所述目标信号的传输包括:
    对待传输的目标数据进行调制;
    进行所述目标信号的发送。
  23. 根据权利要求21所述的方法,其中,还包括:
    所述第二通信设备接收第三信息;
    所述第二通信设备根据所述第三信息,在所述第一周期内执行以下至少一项行为:
    保持静默;
    进行储能;
    对接收到的信号进行解调;
    进行信道估计;
    与其他通信设备进行同步。
  24. 根据权利要求21所述的方法,其中,所述第二通信设备在第二周期内进行目标信号的传输,包括:
    所述第二通信设备在第二周期内将目标信号发送给所述第一通信设备或第三通信设备。
  25. 根据权利要求21所述的方法,其中,所述第一信息包括所述第一周期;和/或,所述第二信息包括所述第二周期。
  26. 根据权利要求21所述的方法,其中,所述第一信息包括时间间隔,所述第一周期对应第四信息的接收时间后所述时间间隔之内的时间,和/或,所述第二信息包括所述时间间隔,所述第二周期对应所述第四信息的接收时间后所述时间间隔之后的时间;
    其中,所述第四信息用于指示所述第二通信设备是否进行所述目标信号的传输。
  27. 根据权利要求21所述的方法,其中,所述第一周期的时长为零。
  28. 根据权利要求21所述的方法,其中,所述方法还包括:
    所述第二通信设备接收第五信息;
    所述第二通信设备根据所述第五信息,更新所述第一周期,更新后的第一周期位于所述第二周期之前,或者更新后的第一周期位于所述第二周期中。
  29. 根据权利要求21至28之中任一项所述的方法,其中,在所述第二通信设备接收第一信息和/或第二信息之前,还包括:
    所述第二通信设备向所述第一通信设备发送第一能力信息;
    其中,所述第一能力信息包括所述第二通信设备是否具备生成载波信号的能力。
  30. 一种信号传输装置,其中,包括:
    第二接收模块,用于接收第一信息和/或第二信息;
    执行模块,用于根据所述第一信息和/或所述第二信息,执行以下至少一项行为:
    在第一周期内不进行目标信号的传输;
    在第二周期内进行所述目标信号的传输。
  31. 一种通信设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19之中任一项所述的信号传输方法的步骤,或者实现如权利要求21至29之中任一项所述的信号传输方法的步骤。
  32. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至19之中任一项所述的信号传输方法的步骤,或者实现如权利要求21至29之中任一项所述的信号传输方法的步骤。
PCT/CN2023/138217 2022-12-13 2023-12-12 信号传输方法、装置、通信设备及存储介质 WO2024125516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211601125.0 2022-12-13
CN202211601125.0A CN118200867A (zh) 2022-12-13 2022-12-13 信号传输方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024125516A1 true WO2024125516A1 (zh) 2024-06-20

Family

ID=91397181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138217 WO2024125516A1 (zh) 2022-12-13 2023-12-12 信号传输方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN118200867A (zh)
WO (1) WO2024125516A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711762B1 (ko) * 2015-11-27 2017-03-02 성균관대학교산학협력단 분산 채널 접근 기반 백스캐터 통신 기법 및 분산 채널 접근 기반 백스캐터 통신 장치
CN109561449A (zh) * 2017-09-27 2019-04-02 华为技术有限公司 一种无线通信方法及相关设备
WO2021253165A1 (en) * 2020-06-15 2021-12-23 Nokia Shanghai Bell Co., Ltd. Time sensitive communication
CN114698071A (zh) * 2020-12-31 2022-07-01 维沃移动通信有限公司 能量提供方法、装置及通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711762B1 (ko) * 2015-11-27 2017-03-02 성균관대학교산학협력단 분산 채널 접근 기반 백스캐터 통신 기법 및 분산 채널 접근 기반 백스캐터 통신 장치
CN109561449A (zh) * 2017-09-27 2019-04-02 华为技术有限公司 一种无线通信方法及相关设备
WO2021253165A1 (en) * 2020-06-15 2021-12-23 Nokia Shanghai Bell Co., Ltd. Time sensitive communication
CN114698071A (zh) * 2020-12-31 2022-07-01 维沃移动通信有限公司 能量提供方法、装置及通信设备

Also Published As

Publication number Publication date
CN118200867A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
CN112640543B (zh) 新无线电中的定时提前
US11637667B2 (en) Method and apparatus for transmitting and receiving uplink signal, storage medium, and electronic device
CN108990153B (zh) 一种针对终端自干扰的传输方法、相关设备和***
CN113206731B (zh) 传输参考信号的方法和通信设备
US20220167384A1 (en) Transmission instruction method, device, terminal, base station and storage medium
CN113573409A (zh) 一种通信方法及装置
EP4009551A1 (en) Electronic device performing interference cancellation and operating method thereof
JP2017153089A (ja) マルチユーザ伝送のためのメディアアクセス手法
US20210226832A1 (en) Non-coherent backscatter communications over ambient-based wireless source
US20170250764A1 (en) Transmission control method and apparatus
CN111246589B (zh) 一种随机接入信号发送方法及装置
US11399351B2 (en) Power allocation method for non-orthogonal multiple access system and base station using the same
CN112235080B (zh) 一种有效测量子帧的接收方法、装置及相关设备
CN105813125B (zh) 用于用户设备的语音业务的方法、用户设备和装置
CN113285741B (zh) 信号传输方法及相关设备
WO2024125516A1 (zh) 信号传输方法、装置、通信设备及存储介质
CN108112081B (zh) 通信方法及***
CN116367312A (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
WO2023198111A1 (zh) 中继器的资源复用方法、中继器及网络侧设备
WO2024125438A1 (zh) 信号传输方法、装置及设备
WO2024022272A1 (zh) 回传链路的传输配置确定方法、装置、中继设备及网络侧设备
CN118041390A (zh) 信号处理方法、装置、通信设备及存储介质
WO2024027652A1 (zh) 传输参数确定方法、装置、网络侧设备及介质
WO2024083042A1 (zh) 终端射频前端结构及终端
WO2024120252A1 (zh) 参数配置方法、装置、设备及可读存储介质