WO2024027652A1 - 传输参数确定方法、装置、网络侧设备及介质 - Google Patents

传输参数确定方法、装置、网络侧设备及介质 Download PDF

Info

Publication number
WO2024027652A1
WO2024027652A1 PCT/CN2023/110255 CN2023110255W WO2024027652A1 WO 2024027652 A1 WO2024027652 A1 WO 2024027652A1 CN 2023110255 W CN2023110255 W CN 2023110255W WO 2024027652 A1 WO2024027652 A1 WO 2024027652A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmission channel
information
channel
control information
Prior art date
Application number
PCT/CN2023/110255
Other languages
English (en)
French (fr)
Inventor
刘进华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024027652A1 publication Critical patent/WO2024027652A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a transmission parameter determination method, device, network side equipment and medium.
  • the information between the access network device and the terminal can be forwarded through the forwarding node, so that the access network device can communicate with the terminal, thereby expanding the capabilities of the access network device. Coverage.
  • the forwarding node forwards information between the access network device and the terminal, it needs to conduct beam training on the downlink beam and the uplink beam between the forwarding node and the terminal respectively to determine the downlink channel and the uplink beam between the forwarding node and the terminal.
  • the transmission parameters of the uplink channel so that the forwarding node can forward the information between the access network device and the terminal according to the transmission parameters of the downlink channel and the uplink channel.
  • the forwarding node since the forwarding node needs to perform beam training on the downlink beam and the uplink beam between the forwarding node and the terminal, it may cause a high consumption of resources and time of the forwarding node, resulting in a reduction in resources for information transmission. And the transmission delay increases. In this way, the forwarding performance of the forwarding node is reduced.
  • Embodiments of the present application provide a transmission parameter determination method, device, network side equipment and medium, which can solve the problem of poor forwarding performance of forwarding nodes.
  • a transmission parameter determination method is provided, applied to a forwarding node.
  • the method includes: the forwarding node receives auxiliary information from a first network side device, the auxiliary information is used to indicate information related to the first transmission channel, and the third A transmission channel is: an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal; the forwarding node determines the second transmission channel associated with the first transmission channel according to the auxiliary information; the forwarding node determines the second transmission channel according to the transmission parameters of the second transmission channel , determine the transmission parameters of the first transmission channel.
  • the transmission direction of the second transmission channel is different from the transmission direction of the first transmission channel.
  • a transmission parameter determination device includes: a receiving module and a determining module.
  • the receiving module is configured to receive auxiliary information from the first network side device.
  • the auxiliary information is used to indicate information related to the first transmission channel.
  • the first transmission channel is: the wireless signal is forwarded between the transmission parameter determination device and the terminal. uplink channel or downlink channel.
  • the determining module is configured to determine the second transmission channel associated with the first transmission channel according to the auxiliary information received by the receiving module; and determine the transmission parameters of the first transmission channel according to the transmission parameters of the second transmission channel. Wherein, the transmission direction of the second transmission channel is different from the transmission direction of the first transmission channel.
  • a transmission parameter determination method applied to the first network side device, the method includes: A network-side device sends auxiliary information to the forwarding node.
  • the auxiliary information is used to indicate information related to a first transmission channel.
  • the first transmission channel is an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal.
  • the above-mentioned auxiliary information is used by the forwarding node to determine the second transmission channel associated with the first transmission channel, so as to determine the transmission parameters of the first transmission channel according to the transmission parameters of the second transmission channel; the transmission direction of the second transmission channel The transmission direction is different from that of the first transmission channel.
  • a transmission parameter determination device includes: a sending module.
  • the sending module is used to send auxiliary information to the forwarding node.
  • the auxiliary information is used to indicate information related to the first transmission channel.
  • the first transmission channel is: an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal.
  • the above-mentioned auxiliary information is used by the forwarding node to determine the second transmission channel associated with the first transmission channel, so as to determine the transmission parameters of the first transmission channel according to the transmission parameters of the second transmission channel; the transmission direction of the second transmission channel The transmission direction is different from that of the first transmission channel.
  • a network side device in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to receive auxiliary information from the first network side device, and the auxiliary information is used to indicate information related to the first transmission channel
  • the first transmission channel is: an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal; the processor is configured to determine a second transmission channel associated with the first transmission channel according to the auxiliary information; and according to the second transmission channel The transmission parameters of the first transmission channel are determined; wherein the transmission direction of the second transmission channel is different from the transmission direction of the first transmission channel.
  • the communication interface is used to send auxiliary information to the forwarding node.
  • the auxiliary information is used to indicate information related to the first transmission channel.
  • the first transmission channel is: an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal.
  • the above-mentioned auxiliary information is used by the forwarding node to determine the second transmission channel associated with the first transmission channel, so as to determine the transmission parameters of the first transmission channel according to the transmission parameters of the second transmission channel; the transmission direction of the second transmission channel The transmission direction is different from that of the first transmission channel.
  • a seventh aspect provides a transmission parameter determination system, including: a forwarding node and a first network side device.
  • the forwarding node can be used to perform the steps of the method described in the first aspect.
  • the first network side device can To perform the steps of the method described in the third aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the third aspect.
  • a chip in a ninth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. steps, or steps to implement the method described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method as described in the first aspect methodological steps, or steps for implementing the method as described in the third aspect.
  • the forwarding node may first receive auxiliary information indicating information related to the first transmission channel from the first network side device, and then determine the second transmission associated with the first transmission channel based on the auxiliary information. channel, so that the forwarding node can determine the transmission parameters of the first transmission channel according to the transmission parameters of the second transmission channel; wherein the first transmission channel is: an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal, The transmission direction of the second transmission channel is different from the transmission direction of the first transmission channel.
  • the forwarding node can determine the second transmission channel associated with the first transmission channel based on the auxiliary information sent by the first network side device, the forwarding node can directly determine the first transmission channel based on the transmission parameters of the second transmission channel. Transmission parameters, without the need to perform beam training on the downlink beam and the uplink beam between the forwarding node and the terminal to determine the transmission parameters of the first transmission channel. Therefore, the consumption of resources and time of the forwarding node can be reduced, thereby improving user efficiency. It uses resources for information transmission and reduces the transmission delay. In this way, the forwarding performance of the forwarding node can be improved.
  • Figure 1 is a schematic diagram of the logical structure of a RIS node in related technologies
  • Figure 2 is a schematic diagram of the logical structure of an NCR node in related technologies
  • Figure 3 is a schematic diagram of the reciprocity of the uplink channel and the downlink channel of the access link in the related art
  • Figure 4 is a block diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 5 is one of the flow diagrams of the transmission parameter determination method provided by the embodiment of the present application.
  • Figure 6 is a second schematic flowchart of a method for determining transmission parameters provided by an embodiment of the present application.
  • Figure 7 is a third schematic flowchart of the transmission parameter determination method provided by the embodiment of the present application.
  • Figure 8 is a schematic diagram of the signaling flow between the forwarding node and the first network side device in the transmission parameter determination method provided by the embodiment of the present application;
  • Figure 9 is one of the structural schematic diagrams of the transmission parameter determination device provided by the embodiment of the present application.
  • Figure 10 is the second structural schematic diagram of the transmission parameter determination device provided by the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the hardware structure of a network-side device provided by an embodiment of the present application.
  • the L1 forwarding node can include a reconfigurable intelligent surface (RIS) node and a base station control amplifier (Network Controlled Repeater, NCR) node.
  • RIS reconfigurable intelligent surface
  • NCR Network Controlled Repeater
  • the RIS node and NCR node can be expanded under the control of the access network device. Community coverage.
  • the RIS node can include a RIS-Terminal (Mobile Termination, MT) functional unit and a RIS-Reflection Surface Unit (RSU).
  • the RIS-MT functional unit is used to interface with the RIS node.
  • Wireless connections are established between network devices, RIS nodes send RIS node measurement reports to access network devices, and access network devices reflect control signaling to RIS nodes.
  • RIS-RSU is used between access network devices and terminals. Reflective transmission of signals in between, including Synchronization Signal Block (SSB), system messages, uplink and downlink proprietary signaling, uplink and downlink control channels, and uplink and downlink data channels, etc.
  • SSB Synchronization Signal Block
  • the RIS-MT functional unit may use an independent antenna or share the antenna (or wireless signal receiving medium) on the RIS-RSU.
  • RIS-RSU control unit such as an antenna panel control unit (panel controller) between the RIS-MT functional unit and RIS-RSU, so that the RIS-MT functional unit can receive signals from the access network equipment for controlling the RIS-RSU.
  • the signaling of the RSU control unit is sent to the RIS-RSU control unit, so that the RIS-RSU control unit can adjust the phase amplitude matrix of the reflection array of the RIS-RSU unit to adjust the transmission parameters of the RIS-RSU ( For example, reflected beam parameters, etc.
  • the base station control amplifier (Network Controlled Repeater, NCR) node also known as the smart repeater, can receive and amplify the downlink signal from the access network equipment to increase the strength of the downlink signal reaching the terminal; or, it can amplify the downlink signal from the access network equipment.
  • the uplink signal of the terminal increases the strength of the uplink signal reaching the access network equipment.
  • the NCR node can include an NCR-MT functional unit and an NCR-radio module (Radio Unit, RU).
  • the NCR-MT can establish a connection with the access network device, so that the access network device
  • the NCR-MT can interact with the signal amplifier of the NCR node through control signaling to instruct the NCR-MT (or NCR-RU) of the signal amplifier to send or receive relevant parameters, etc., to improve the working efficiency of the NCR node and reduce interference.
  • NCR-RU is used to forward wireless signals between access network equipment and terminals to increase the strength of the wireless signals.
  • the channel correlation of Access Link can be called the reciprocity (Reciprocity) between the uplink and downlink channels of Access Link, and can also be called the correlation (Correspondence) between the uplink and downlink channels of Access Link. Its essence is The characteristics of the uplink channels of the same Access Link are similar, that is, the transceiver beam direction, transceiver beam width, transceiver beam gain, channel rank, multipath characteristics, beamforming parameters, etc. of the uplink and downlink channels are similar. Therefore, The transmission parameters of the channel in another transmission direction (such as downlink or uplink) of the same Access Link can be determined based on the transmission parameters of the channel in one transmission direction (such as uplink or downlink) of the same Access Link.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects. It is not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 4 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computers, PC), teller machines or self-service Terminal devices
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment 12 may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home B-Node, Home Evolved B-Node, Transmitting Receiving Point (TRP) or all
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Home B-Node Home Evolved B-Node
  • TRP Transmitting Receiving Point
  • a forwarding node forwards information between an access network device and a terminal, it needs to first perform beam training on the beam between the forwarding node and the terminal.
  • the forwarding node needs to conduct beam training on the downlink beam and the uplink beam between the forwarding node and the terminal respectively to determine the transmission parameters of the downlink channel and the uplink channel between the forwarding node and the terminal, so that the forwarding node can According to the transmission parameters of the downlink channel and the uplink channel, the information between the access network device and the terminal is forwarded.
  • the forwarding node since the forwarding node needs to perform beam training on the downlink beam and the uplink beam between the forwarding node and the terminal, it may cause a high consumption of resources and time of the forwarding node, resulting in a reduction in resources for information transmission. And the transmission delay increases.
  • the forwarding node can perform beam training on only one uplink beam (or one downlink beam) between the forwarding node and the terminal, and calculate according to the transmission parameters of the one uplink beam (or one downlink beam).
  • the transmission parameters of the downlink beam (or the uplink beam) may cause the forwarding node to be unable to calculate the downlink based on the transmission parameters of the uplink beam (or downlink beam).
  • the transmission parameters of the beam that is, the forwarding node still needs to perform beam training on the downlink beam and the uplink beam between the forwarding node and the terminal to determine the downlink channel and uplink channel between the forwarding node and the terminal.
  • transmission parameters therefore, it may lead to higher consumption of resources and time of the forwarding node, resulting in reduced resources for information transmission and increased transmission delay.
  • the forwarding node may determine an uplink channel (or a downlink channel) associated with a downlink channel (or an uplink channel) between the forwarding node and the terminal based on the auxiliary information sent by the access network device. , in this way, the forwarding node can directly determine the transmission parameters of the one downlink channel (or one uplink channel) based on the transmission parameters of the one uplink channel (or one downlink channel), without having to modify the downlink beam and sum between the forwarding node and the terminal.
  • the uplink beams are trained separately, thus reducing the resource and time consumption of the forwarding node, thereby increasing the resources used for information transmission and reducing the transmission delay.
  • Figure 5 shows a flow chart of a transmission parameter determination method provided by an embodiment of the present application.
  • the transmission parameter determination method provided by the embodiment of the present application may include the following steps 101 to 104.
  • Step 101 The first network side device sends auxiliary information to the forwarding node.
  • the first network-side device may be any of the following: an access network device or other forwarding nodes.
  • the access network device may be a base station, and the other forwarding nodes may be L1 forwarding nodes.
  • the other forwarding node may first receive the auxiliary information from the access network device, and then send the auxiliary information to the forwarding node.
  • the above forwarding node may specifically be an L1 forwarding node.
  • the above-mentioned auxiliary information is used to indicate information related to the first transmission channel.
  • the first transmission channel is: an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal.
  • the auxiliary information is used by the forwarding node to determine the second transmission channel associated with the first transmission channel, so as to determine the first transmission channel based on the transmission parameters of the second transmission channel. Transmission parameters of the transmission channel; the transmission direction of the second transmission channel is different from the transmission direction of the first transmission channel.
  • the auxiliary information may be used to explicitly or implicitly indicate at least one of the following:
  • Reciprocity exists between the first transmission channel and the second transmission channel
  • the first transmission channel and the second transmission channel correspond to the same access link
  • the first transmission channel and the second transmission channel correspond to the same terminal.
  • first transmission channel and the second transmission channel correspond to the same access link
  • first transmission channel and the second transmission channel belong to the same access link.
  • first transmission channel and the second transmission channel correspond to the same terminal can be understood as: the first transmission channel and the second transmission channel are both transmission channels between the forwarding node and the same terminal.
  • the first transmission channel may specifically be: a downlink channel that forwards the information to the terminal after the forwarding node receives the information from the first network side device; or, receives from the terminal the information sent by the terminal to the third An uplink channel for network-side device information.
  • the above-mentioned second transmission channel is: an uplink channel for receiving information sent from the terminal to the first network side device from the terminal; or, after the forwarding node receives the information from the first network side device, The downlink channel that forwards this information to the terminal.
  • the second transmission channel is a reverse channel of the first transmission channel.
  • the second transmission channel and the first transmission channel are transmission channels in the same access link.
  • the transmission parameters of the first transmission channel can be determined according to the transmission parameters of the second transmission channel.
  • the second transmission channel is used to forward the wireless signal between the forwarding node and the terminal for the i-th time
  • the first transmission channel is used to forward the wireless signal between the forwarding node and the terminal for the i+mth time.
  • Signal, i and m are positive integers.
  • the second transmission channel is an uplink channel and the first transmission channel is a downlink channel
  • the second transmission channel is used to forward the wireless signal between the forwarding node and the terminal for the first time
  • the first transmission channel is used to forward the wireless signal for the first time.
  • the second time the wireless signal is forwarded between the node and the terminal, that is, the transmission parameters for the next downlink forwarding can be determined based on the transmission parameters for the previous uplink forwarding.
  • the second transmission channel is a downlink channel and the first transmission channel is an uplink channel
  • the second transmission channel is used to forward the wireless signal between the forwarding node and the terminal for the second time
  • the first transmission channel is used to forward the wireless signal between the forwarding node and the terminal for the second time.
  • the transmission parameters for the next uplink forwarding can be determined based on the transmission parameters for the previous downlink forwarding.
  • the transmission parameters of the target transmission channel may include at least one of the following: direction of incoming waves, beam width of incoming waves, intensity information of incoming waves, Preferably receive weight matrix (Weight Matrix) information.
  • Weight Matrix weight matrix
  • the transmission parameters of the target transmission channel may include at least one of the following: transmission beam direction information, beam width information, gain information, and precoding matrix (Precoding Matrix) information.
  • the target transmission channel is any one of the first transmission channel and the second transmission channel.
  • the first network side device may send the auxiliary information to the forwarding node; or, the first network side device may send the auxiliary information to the forwarding node while sending the control information to the forwarding node.
  • the control information such as the first control information in the following embodiments
  • Step 102 The forwarding node receives auxiliary information from the first network side device.
  • the above-mentioned auxiliary information is used to indicate information related to the first transmission channel.
  • the first transmission channel is: an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal.
  • the forwarding node may receive the auxiliary information from the first network side device; or, the forwarding node may receive the auxiliary information from the first network side device while receiving the control information from the first network side device.
  • Step 103 The forwarding node determines the second transmission channel associated with the first transmission channel according to the auxiliary information.
  • the transmission direction of the second transmission channel is different from the transmission direction of the first transmission channel.
  • the forwarding node can directly determine the second transmission channel based on the auxiliary information; or the forwarding node can determine the control information corresponding to the auxiliary information (such as the third transmission channel in the following embodiments) based on the auxiliary information. second control information), and determine the transmission channel corresponding to the control information as the second transmission channel.
  • control information corresponding to the auxiliary information can be understood as: the information included in the control information matches (for example, the same) as the auxiliary information; or the information used by the first network side device when sending the control information , matching (for example, the same) information used when sending the auxiliary information; or, control information indicated by the auxiliary information.
  • transmission channel corresponding to the control information can be understood as: the transmission channel through which the control information controls the forwarding node to transmit information.
  • Step 104 The forwarding node determines the transmission parameters of the first transmission channel based on the transmission parameters of the second transmission channel.
  • the forwarding node may use a preset algorithm to calculate the transmission parameters of the first transmission channel based on the transmission parameters of the second transmission channel.
  • the forwarding node may transmit information with the terminal on the first transmission channel according to the transmission parameters of the first transmission channel.
  • the forwarding node may first receive auxiliary information indicating information related to the first transmission channel from the first network side device, and then determine the association with the first transmission channel based on the auxiliary information.
  • the second transmission channel so that the forwarding node can determine the transmission parameters of the first transmission channel according to the transmission parameters of the second transmission channel; wherein, the first transmission channel is: an uplink channel for forwarding wireless signals between the forwarding node and the terminal Or the downlink channel, the transmission direction of the second transmission channel is different from the transmission direction of the first transmission channel.
  • the forwarding node can determine the second transmission channel associated with the first transmission channel based on the auxiliary information sent by the first network side device, the forwarding node can directly determine the first transmission channel based on the transmission parameters of the second transmission channel. transfer parameters without It is necessary to perform beam training on the downlink beam and the uplink beam between the forwarding node and the terminal to determine the transmission parameters of the first transmission channel. Therefore, the resource and time consumption of the forwarding node can be reduced, thereby improving the efficiency of information transmission. resources and reduce the transmission delay. In this way, the forwarding performance of the forwarding node can be improved.
  • the following will take the example of sending the auxiliary information to the forwarding node while the first network side device sends the control information for controlling the transmission of information on the first transmission channel to the forwarding node.
  • the above step 101 can be implemented through the following step 101a, and the above step 102 can be implemented through the following step 102a.
  • Step 101a The first network side device sends the first control information to the forwarding node.
  • the first control information includes auxiliary information.
  • the first control information may specifically be: Side Control Information (SCI).
  • SCI Side Control Information
  • the first control information is used to control information transmission on the first transmission channel.
  • the first control information is used to control the forwarding node to perform uplink forwarding or downlink forwarding for the terminal.
  • Step 102a The forwarding node receives the first control information from the first network side device.
  • the first control information includes auxiliary information.
  • the first control information is used to control information transmission on the first transmission channel.
  • step 103 can be specifically implemented through the following steps 103a and 103b.
  • Step 103a The forwarding node determines the second control information corresponding to the first control information based on the auxiliary information.
  • the above-mentioned second control information is used to control information transmission on the second transmission channel.
  • the second control information may specifically be side control information.
  • At least one historical control information is stored in the forwarding node, and each historical control information includes a target information, so that the forwarding node can determine from the at least one target information that it matches the auxiliary information. (for example, the same) target information, and the historical control information corresponding to the target information is determined as the second control information.
  • a piece of target information included in one piece of historical control information is used to indicate information related to the transmission channel corresponding to the piece of historical control information.
  • the auxiliary information includes the first device identification of the terminal; the device identification included in the second control information matches the first device identification.
  • the first device identification may specifically be: User Equipment Identification Number (User Equipment Identification, UE_ID).
  • the forwarding node may determine, based on the first device identifier, a device that is the same as the first device identifier from at least one target information (ie, at least one device identifier) included in at least one piece of historical control information stored in the forwarding node. identification, and determine a piece of historical control information corresponding to the device identification as the second control information.
  • target information ie, at least one device identifier
  • the above-mentioned auxiliary information includes a first Radio Network Temporary Identity (RNTI), which is an RNTI used by the first network side device when sending the first control information to the forwarding node;
  • RNTI Radio Network Temporary Identity
  • the RNTI used by a network side device when sending the second control information to the forwarding node matches the first RNTI.
  • the forwarding node may determine, based on the first RNTI, an RNTI that is the same as the first RNTI from at least one target information (ie, at least one RNTI) included in at least one piece of historical control information stored in the forwarding node, and add the one RNTI to the first RNTI.
  • the corresponding piece of historical control information is determined as the second control information.
  • the auxiliary information includes a first link identifier; the link identifier included in the second control information matches the first link identifier.
  • the first link identifier may specifically be: link ID.
  • the forwarding node may determine, based on the first link identifier, a link that is the same as the first link identifier from at least one target information (ie, at least one link identifier) included in at least one piece of historical control information stored in the forwarding node. link identification, and determine a piece of historical control information corresponding to the link identification as the second control information.
  • the auxiliary information includes a first channel association indication; the value of the channel association indication included in the second control information matches the value of the first channel association indication.
  • the forwarding node may determine the value of the first channel association indication from at least one target information (ie, at least one channel association indication) included in at least one historical control information stored in the forwarding node according to the value of the first channel association indication.
  • the same channel association indication, and a piece of historical control information corresponding to the channel association indication is determined as the second control information.
  • the first network side device can also instruct the forwarding node which determination method to use, and determine the corresponding control information based on the auxiliary information.
  • the above-mentioned first control information also includes first indication information, and the first indication information is used to indicate a determination method for determining the second control information.
  • the above step 103a can be implemented through the following step 103a1.
  • Step 103a1 The forwarding node uses a determination method to determine the second control information corresponding to the first control information based on the auxiliary information.
  • the method for determining the second control information indicated by the above-mentioned first indication information may include any of the following:
  • Determination method based on channel association indication.
  • the auxiliary information includes the first device identification
  • the at least one historical control information includes at least one device identification
  • the auxiliary information includes the first RNTI
  • the at least one historical control information includes at least one RNTI
  • the auxiliary information includes the first link identifier, and at least one piece of historical control information includes at least one link identifier. , so that the forwarding node can determine the second control information corresponding to the first control information according to the first link identifier.
  • the first indication information indicates that the determination method of determining the second control information is a determination method based on a channel association indication
  • the auxiliary information includes the first channel association indication
  • at least one historical control information includes at least one channel association indication
  • the forwarding node can determine the second control information corresponding to the first control information based on the auxiliary information using the determination method instructed by the first network side device, without the forwarding node itself having to decide to determine the second control information.
  • the information is determined in a manner that can improve the accuracy of determining the second control information, thereby improving the accuracy of determining the transmission parameters of the first transmission channel.
  • Step 103b The forwarding node determines the transmission channel corresponding to the second control information as the second transmission channel.
  • the forwarding node may determine the transmission channel through which the second control information controls the forwarding node to transmit information as the second transmission channel.
  • the forwarding node can accurately determine the second control information corresponding to the first control information based on the auxiliary information, the accuracy of determining the second transmission channel can be improved, thereby improving the accuracy of determining the transmission parameters of the first transmission channel. accuracy.
  • FIG. 8 shows a schematic diagram of the signaling flow between the forwarding node and the first network side device.
  • the forwarding node is an L1 relay device
  • the first network side device is a base station (gNB).
  • the signaling process between the L1 forwarding node and the base station may include the following steps:
  • the base station determines that the L1 relay device provides forwarding services to the terminal;
  • the base station provides the L1 relay device with the configuration (such as the first indication information in the above embodiment) for the L1 relay device to determine the correlation of the transceiver parameters between uplink forwarding and downlink forwarding;
  • the L1 relay device executes the received configuration
  • the L1 relay device sends configuration completion information to the base station
  • the base station sends the first side control information (such as the second control information in the above embodiment) to the L1 relay device.
  • the first side control information includes target information and forwarding parameters;
  • the L1 relay device can forward the uplink channel (or downlink channel) based on the received forwarding parameters
  • the base station sends the second side control information to the L1 relay device, and the second side control information includes auxiliary information;
  • the L1 relay device determines the corresponding uplink channel (or downlink channel) based on the auxiliary information, that is, the uplink channel (or downlink channel) corresponding to the first side control information, and determines the uplink channel (or downlink channel) corresponding to the first side control information. channel(or down transmission parameters of the uplink channel (or downlink channel), and determine the transmission parameters of the uplink channel (or downlink channel) corresponding to the second side control information;
  • the L1 relay device performs uplink channel (or downlink channel) forwarding based on the determined transmission parameters of the uplink channel (or downlink channel) corresponding to the second side control information.
  • the execution subject may be a transmission parameter determination device.
  • the transmission parameter determination method performed by the transmission parameter determination apparatus is used as an example to illustrate the transmission parameter determination apparatus provided by the embodiment of the present application.
  • Figure 9 shows a possible structural schematic diagram of the transmission parameter determination device involved in the embodiment of the present application.
  • the transmission parameter determination device 50 may include: a receiving module 51 and a determining module 52 .
  • the receiving module 51 is used to receive auxiliary information from the first network side device.
  • the auxiliary information is used to indicate information related to the first transmission channel.
  • the first transmission channel is: the wireless forwarding between the transmission parameter determination device 50 and the terminal.
  • the determining module 52 is configured to determine the second transmission channel associated with the first transmission channel according to the auxiliary information received by the receiving module 51; and determine the transmission parameters of the first transmission channel according to the transmission parameters of the second transmission channel. Wherein, the transmission direction of the second transmission channel is different from the transmission direction of the first transmission channel.
  • the above-mentioned receiving module 51 is specifically configured to receive first control information from the first network side device.
  • the first control information includes auxiliary information, and the first control information is used to control the operation of the first network side device. Transmission of information on a transmission channel.
  • the above-mentioned determination module 52 is specifically configured to determine the second control information corresponding to the first control information according to the auxiliary information; and determine the transmission channel corresponding to the second control information as the second transmission channel. .
  • the auxiliary information includes a first device identification of the terminal; the device identification included in the second control information matches the first device identification.
  • the above-mentioned auxiliary information includes a first RNTI, which is an RNTI used by the first network side device when sending the first control information to the transmission parameter determination device 50;
  • the RNTI used by the parameter determination device 50 when sending the second control information matches the first RNTI.
  • the above-mentioned auxiliary information includes a first link identifier; the link identifier included in the above-mentioned second control information matches the first link identifier.
  • the above-mentioned auxiliary information includes a first channel association indication; and the value of the channel association indication included in the above-mentioned second control information matches the value of the first channel association indication.
  • the above-mentioned first control information also includes first indication information, where the first indication information is used to indicate a determination method for determining the second control information.
  • the above-mentioned determination module 52 is specifically configured to determine the second control information corresponding to the first control information according to the auxiliary information in a determination manner.
  • the transmission reference of the target transmission channel when the target transmission channel is an uplink channel, includes at least one of the following: direction of incoming wave, beam width of incoming wave, intensity information of incoming wave, preferably Receive weight matrix information; when the target transmission channel is a downlink channel, the transmission parameters of the target transmission channel include at least one of the following: transmit beam direction information, beam width information, gain information, and precoding matrix information.
  • the target transmission channel is any one of the first transmission channel and the second transmission channel.
  • the transmission parameter determination device provided by the embodiment of the present application can determine the second transmission channel associated with the first transmission channel according to the auxiliary information sent by the first network side device. In this way, the transmission parameter determination device can directly determine the second transmission channel based on the auxiliary information sent by the first network side device.
  • the transmission parameters of the second transmission channel determine the transmission parameters of the first transmission channel without separately performing beam training on the downlink beam and the uplink beam between the transmission parameter determination device and the terminal to determine the transmission parameters of the first transmission channel, Therefore, the resource and time consumption of the transmission parameter determination device can be reduced, thereby increasing the resources used for information transmission and reducing the transmission delay. In this way, the forwarding performance of the transmission parameter determination device can be improved.
  • the transmission parameter determination device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the transmission parameter determination device provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 5 to 7 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Figure 10 shows a possible structural diagram of the transmission parameter determination device involved in the embodiment of the present application.
  • the transmission parameter determination device 60 may include: a sending module 61 .
  • the sending module 61 is used to send auxiliary information to the forwarding node.
  • the auxiliary information is used to indicate information related to the first transmission channel.
  • the first transmission channel is: an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal. channel.
  • the above-mentioned auxiliary information is used by the forwarding node to determine the second transmission channel associated with the first transmission channel, so as to determine the transmission parameters of the first transmission channel according to the transmission parameters of the second transmission channel; the transmission direction of the second transmission channel The transmission direction is different from that of the first transmission channel.
  • the above-mentioned sending module 61 is specifically used to send first control information to the forwarding node.
  • the first control information includes auxiliary information, and the first control information is used to control the transmission on the first transmission channel. information transmission.
  • the above-mentioned first control information also includes first indication information, where the first indication information is used to instruct the forwarding node to determine a manner of determining the second control information.
  • the transmission parameter determination device provided by the embodiment of the present application can determine the second transmission channel associated with the first transmission channel based on the auxiliary information sent by the transmission parameter determination device. In this way, the forwarding node can directly determine the second transmission channel based on the second transmission channel.
  • the transmission parameters of the first transmission channel are determined without the need for beam training between the forwarding node and the terminal to determine the transmission parameters of the first transmission channel. Therefore, the communication between the forwarding node and the terminal for determining the forwarding transmission parameters can be reduced. Therefore, the forwarding performance of the forwarding node can be improved.
  • the transmission parameter determination device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the transmission parameter determination device provided by the embodiment of the present application can realize each of the methods implemented by the method embodiments of Figures 5 to 7. process and achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • this embodiment of the present application also provides a communication device 70, which includes a processor 71 and a memory 72.
  • the memory 72 stores information that can run on the processor 71.
  • a program or instruction For example, when the communication device 70 is a network-side device, when the program or instruction is executed by the processor 71, the steps of the above-mentioned transmission parameter determination method embodiment are implemented, and the same technical effect can be achieved. In order to avoid duplication , we won’t go into details here.
  • Embodiments of the present application also provide a network side device, including a processor and a communication interface.
  • the communication interface is used to receive auxiliary information from the first network side device.
  • the auxiliary information is used to indicate information related to the first transmission channel.
  • the first transmission channel is: an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal; the processor is used to determine a second transmission channel associated with the first transmission channel according to the auxiliary information; and according to the transmission parameters of the second transmission channel , determine the transmission parameters of the first transmission channel; wherein the transmission direction of the second transmission channel is different from the transmission direction of the first transmission channel.
  • the communication interface is used to send auxiliary information to the forwarding node, where the auxiliary information is used to indicate information related to a first transmission channel, where the first transmission channel is: an uplink channel or a downlink channel for forwarding wireless signals between the forwarding node and the terminal.
  • the above-mentioned auxiliary information is used by the forwarding node to determine the second transmission channel associated with the first transmission channel, so as to determine the transmission parameters of the first transmission channel according to the transmission parameters of the second transmission channel; the transmission direction of the second transmission channel The transmission direction is different from that of the first transmission channel.
  • This network-side device embodiment corresponds to the above-mentioned forwarding node method embodiment, or corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 100 includes: an antenna 101, a radio frequency device 102, a baseband device 103, a processor 104 and a memory 105.
  • the antenna 101 is connected to the radio frequency device 102 .
  • the radio frequency device 102 receives information through the antenna 101 and sends the received information to the baseband device 103 for processing.
  • the baseband device 103 processes the information to be sent and sends it to the radio frequency device 102.
  • the radio frequency device 102 processes the received information and then sends it out through the antenna 101.
  • the method performed by the forwarding node or the network side device in the above embodiment can be implemented in the baseband device 103, which includes a baseband processor.
  • the baseband device 103 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 106, which is, for example, a common public radio interface (CPRI).
  • a network interface 106 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 100 in the embodiment of the present application also includes: instructions or programs stored in the memory 105 and executable on the processor 104.
  • the processor 104 calls the instructions or programs in the memory 105 to execute each of the steps shown in Figure 12. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above-mentioned transmission parameter determination method embodiment is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above embodiment of the transmission parameter determination method. Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above transmission parameter determination method.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • Embodiments of the present application also provide a transmission parameter determination system, including: a forwarding node and a first network side device.
  • the forwarding node can be used to perform the steps of the method corresponding to the forwarding node as described above.
  • the first network side The device may be configured to perform the steps of the method corresponding to the first network side device as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输参数确定方法、装置、网络侧设备及介质,属于通信技术领域,本申请实施例的传输参数确定方法包括:转发节点从第一网络侧设备接收辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道;转发节点根据辅助信息,确定与第一传输信道关联的第二传输信道;转发节点根据第二传输信道的传输参数,确定第一传输信道的传输参数。其中,上述第二传输信道的传输方向和第一传输信道的传输方向不同。

Description

传输参数确定方法、装置、网络侧设备及介质
本申请要求于2022年8月5日提交国家知识产权局、申请号为202210939931.2、申请名称为“传输参数确定方法、装置、网络侧设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种传输参数确定方法、装置、网络侧设备及介质。
背景技术
目前,在新空口(New Radio,NR)***中,可以通过转发节点转发接入网设备和终端之间的信息,以使得接入网设备可以和终端进行通信,从而可以扩展接入网设备的覆盖范围。通常,转发节点在转发接入网设备和终端之间的信息时,需要对转发节点和终端之间的下行波束和上行波束分别进行波束训练,以确定在转发节点和终端之间的下行信道和上行信道的传输参数,从而转发节点可以按照下行信道和上行信道的传输参数,转发接入网设备和终端之间的信息。
但是,由于转发节点要对转发节点和终端之间的下行波束和上行波束分别进行波束训练,因此,可能会导致转发节点的资源和时间的消耗较高,从而导致用于信息传输的资源减少、且传输的时延增加。如此,导致转发节点的转发性能的降低。
发明内容
本申请实施例提供一种传输参数确定方法、装置、网络侧设备及介质,能够解决转发节点的转发性能较差的问题。
第一方面,提供了一种传输参数确定方法,应用于转发节点,该方法包括:转发节点从第一网络侧设备接收辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道;转发节点根据辅助信息,确定与第一传输信道关联的第二传输信道;转发节点根据第二传输信道的传输参数,确定第一传输信道的传输参数。其中,上述第二传输信道的传输方向和第一传输信道的传输方向不同。
第二方面,提供了一种传输参数确定装置,该传输参数确定装置包括:接收模块和确定模块。其中,接收模块,用于从第一网络侧设备接收辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:传输参数确定装置与终端之间转发无线信号的上行信道或下行信道。确定模块,用于根据接收模块接收的辅助信息,确定与第一传输信道关联的第二传输信道;并根据第二传输信道的传输参数,确定第一传输信道的传输参数。其中,上述第二传输信道的传输方向和第一传输信道的传输方向不同。
第三方面,提供了一种传输参数确定方法,应用于第一网络侧设备,该方法包括:第 一网络侧设备向转发节点发送辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道。其中,上述辅助信息,用于转发节点确定与第一传输信道关联的第二传输信道,以根据第二传输信道的传输参数,确定第一传输信道的传输参数;该第二传输信道的传输方向和第一传输信道的传输方向不同。
第四方面,提供了一种传输参数确定装置,该传输参数确定装置包括:发送模块。其中,发送模块,用于向转发节点发送辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道。其中,上述辅助信息,用于转发节点确定与第一传输信道关联的第二传输信道,以根据第二传输信道的传输参数,确定第一传输信道的传输参数;该第二传输信道的传输方向和第一传输信道的传输方向不同。
第五方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤。
第六方面,提供了一种网络侧设备,包括处理器及通信接口,其中,该通信接口用于从第一网络侧设备接收辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道;该处理器用于根据辅助信息,确定与第一传输信道关联的第二传输信道;并根据第二传输信道的传输参数,确定第一传输信道的传输参数;其中,上述第二传输信道的传输方向和第一传输信道的传输方向不同。或者,该通信接口用于向转发节点发送辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道。其中,上述辅助信息,用于转发节点确定与第一传输信道关联的第二传输信道,以根据第二传输信道的传输参数,确定第一传输信道的传输参数;该第二传输信道的传输方向和第一传输信道的传输方向不同。
第七方面,提供了一种传输参数确定***,包括:转发节点及第一网络侧设备,所述转发节点可用于执行如第一方面所述的方法的步骤,所述第一网络侧设备可用于执行如第三方面所述的方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤。
第十方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的 步骤,或实现如第三方面所述的方法的步骤。
在本申请实施例中,转发节点可以先从第一网络侧设备接收用于指示第一传输信道相关的信息的辅助信息,再根据该辅助信息,确定与该第一传输信道关联的第二传输信道,从而转发节点可以根据该第二传输信道的传输参数,确定第一传输信道的传输参数;其中,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道,第二传输信道的传输方向和第一传输信道的传输方向不同。由于转发节点可以根据第一网络侧设备发送的辅助信息,确定与第一传输信道关联的第二传输信道,这样,转发节点可以直接根据该第二传输信道的传输参数,确定第一传输信道的传输参数,而无需对转发节点和终端之间的下行波束和上行波束分别进行波束训练,以确定第一传输信道的传输参数,因此,可以减少转发节点的资源和时间的消耗,从而可以提高用于信息传输的资源、且减少传输的时延,如此,可以提高转发节点的转发性能。
附图说明
图1是相关技术中的RIS节点的逻辑结构示意图;
图2是相关技术中的NCR节点的逻辑结构示意图;
图3是相关技术中的接入链路的上行信道和下行信道的互易性示意图;
图4是本申请实施例提供的一种无线通信***的框图;
图5是本申请实施例提供的传输参数确定方法的流程示意图之一;
图6是本申请实施例提供的传输参数确定方法的流程示意图之二;
图7是本申请实施例提供的传输参数确定方法的流程示意图之三;
图8是本申请实施例提供的传输参数确定方法的转发节点和第一网络侧设备之间的信令流程示意图;
图9为本申请实施例提供的传输参数确定装置的结构示意图之一;
图10为本申请实施例提供的传输参数确定装置的结构示意图之二;
图11是本申请实施例提供的通信设备的结构示意图;
图12是本申请实施例提供的网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
以下将对本申请实施例涉及的术语进行说明。
1、层(Layer,L)1转发节点
通常,L1转发节点可以包括可重构智能表面(Reconfigurable Intelligent Surface,RIS)节点和基站控制放大器(Network Controlled Repeater,NCR)节点,该RIS节点和NCR节点可以在接入网设备的控制下,扩展小区的覆盖。
(1)RIS节点
RIS节点可以包括一个RIS-终端(Mobile Termination,MT)功能单元和一个RIS-反射面单元(Reflection Surface Unit,RSU),其中,如图1所示,RIS-MT功能单元用于RIS节点与接入网设备之间建立无线连接、RIS节点向接入网设备发送RIS节点的测量汇报以及接入网设备对RIS节点的反射控制信令等,RIS-RSU用于在接入网设备和终端之间进行信号的反射传递,包括同步信号块(Synchronization Signal Block,SSB)、***消息、上下行专有信令、上下行控制信道以及上下行数据信道等。
其中,RIS-MT功能单元可能使用独立的天线,也可以共用RIS-RSU上的天线(或无线信号接收介质)。
其中,在RIS-MT功能单元和RIS-RSU之间有RIS-RSU控制单元(例如天线面板控制单元(panel controller)),从而RIS-MT功能单元可以从接入网设备接收用于控制RIS-RSU控制单元的信令,并将该信令发送给RIS-RSU控制单元,以使得RIS-RSU控制单元可以调整RIS-RSU单元的反射阵列的相位幅度矩阵,以调整RIS-RSU的发射参数(例如反射波束参数等。
(2)NCR节点
基站控制放大器(Network Controlled Repeater,NCR)节点,又称作智能放大器(Smart Repeater),可以接收和放大来自接入网设备的下行信号,以使得到达终端的下行信号强度增加;或者,可以放大来自终端的上行信号,以使得达到接入网设备的上行信号强度增加。如图2所示,NCR节点可以包括一个NCR-MT功能单元、一个NCR-射频模块(Radio Unit,RU),其中,NCR-MT可以与接入网设备之间建立连接,从而接入网设备可以通过NCR-MT与NCR节点的信号放大器交互控制信令,以指示该信号放大器的NCR-MT(或NCR-RU)的发送或接收相关参数等,以提高NCR节点的工作效率和降低干扰,NCR-RU用于转发接入网设备和终端之间的无线信号,以增加所述无线信号的强度。
2、L1转发节点的接入链路(Access Link)的信道关联性(互易性)
Access Link的信道关联性,可以被称作Access Link的上下行信道之间的互易性(Reciprocity),又可以被称作Access Link的上下行信道之间的关联性(Correspondence),其本质是同一Access Link的上行信道的特性之间是相似的,即上下行信道的收发波束方向、收发波束宽度、收发波束增益、信道的秩、多径特性、波束赋形参数等是相似的,因此,可以根据同一Access Link的一个传输方向(例如上行或下行)的信道的传输参数,确定同一Access Link的另一个传输方向(例如下行或上行)的信道的传输参数。
如图3所示,NCR节点和终端之间的Access Link的上行信道(上行转发)Uplink和下行信道(下行转发)Downlink之间是存在互易性的,因此,可以根据Uplink的传输参数,确定Downlink的传输参数,或者,可以根据Downlink的传输参数,确定Uplink的传输参数。
3、其他术语
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象, 而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
图4示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输参数确定方 法、装置、网络侧设备及介质进行详细地说明。
在相关技术中,转发节点在转发接入网设备和终端之间的信息时,需要先对转发节点和终端之间的波束进行波束训练。
在一种场景下,转发节点需要对转发节点和终端之间的下行波束和上行波束分别进行波束训练,以确定在转发节点和终端之间的下行信道和上行信道的传输参数,从而转发节点可以按照下行信道和上行信道的传输参数,转发接入网设备和终端之间的信息。但是,由于转发节点要对转发节点和终端之间的下行波束和上行波束分别进行波束训练,因此,可能会导致转发节点的资源和时间的消耗较高,从而导致用于信息传输的资源减少、且传输的时延增加。
在另一种场景下,转发节点可以仅对转发节点和终端之间的一个上行波束(或一个下行波束)进行波束训练,并根据该一个上行波束(或一个下行波束)的传输参数,计算得到该一个下行波束(或该一个上行波束)的传输参数。但是,由于该转发节点可能没有足够的信息用于确定上下行链路之间的对应关系,这样可能导致转发节点无法根据该一个上行波束(或一个下行波束)的传输参数,计算得到该一个下行波束(或该一个上行波束)的传输参数,即转发节点还是需要对转发节点和终端之间的下行波束和上行波束分别进行波束训练,以确定在转发节点和终端之间的下行信道和上行信道的传输参数,因此,可能会导致转发节点的资源和时间的消耗较高,从而导致用于信息传输的资源减少、且传输的时延增加。
然而,本申请实施例中,转发节点可以根据接入网设备发送的辅助信息,确定与转发节点和终端之间的一个下行信道(或一个上行信道)关联的一个上行信道(或一个下行信道),这样,转发节点可以直接根据该一个上行信道(或一个下行信道)的传输参数,确定该一个下行信道(或一个上行信道)的传输参数,而无需对转发节点和终端之间的下行波束和上行波束分别进行波束训练,因此,可以减少转发节点的资源和时间的消耗,从而可以提高用于信息传输的资源、且减少传输的时延。
图5示出了本申请实施例提供的一种传输参数确定方法的流程图。如图5所示,本申请实施例提供的传输参数确定方法可以包括下述的步骤101至步骤104。
步骤101、第一网络侧设备向转发节点发送辅助信息。
可选地,本申请实施例中,第一网络侧设备可以为以下任一项:接入网设备、其他转发节点。其中,该接入网设备具体可以为基站,其他转发节点可以为L1转发节点。
在网络侧设备为其他转发节点的情况下,该其他转发节点可以先从接入网设备接收辅助信息,然后再向转发节点发送辅助信息。
可选地,本申请实施例中,上述转发节点具体可以为L1转发节点。
本申请实施例中,上述辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道。该辅助信息,用于转发节点确定与第一传输信道关联的第二传输信道,以根据第二传输信道的传输参数,确定第一 传输信道的传输参数;该第二传输信道的传输方向和第一传输信道的传输方向不同。
可选地,本申请实施例中,辅助信息具体可以用于显式或隐式指示以下至少一项:
第一传输信道和第二传输信道之间存在互易性;
第一传输信道和第二传输信道对应于同一个接入链路;
第一传输信道和第二传输信道对应于同一个终端。
需要说明的是,“上述第一传输信道和第二传输信道对应于同一个接入链路”可以理解为:第一传输信道和第二传输信道属于同一个接入链路。上述“第一传输信道和第二传输信道对应于同一个终端”可以理解为:第一传输信道和第二传输信道均为转发节点和同一个终端之间的传输信道。
可选地,本申请实施例中,第一传输信道具体可以为:在转发节点接收到第一网络侧设备的信息后,向终端转发该信息的下行信道;或者,从终端接收终端发送给第一网络侧设备的信息的上行信道。
可选地,本申请实施例中,上述第二传输信道为:从终端接收终端发送给第一网络侧设备的信息的上行信道;或者,在转发节点接收到第一网络侧设备的信息后,向终端转发该信息的下行信道。可以理解,该第二传输信道是第一传输信道的反向信道。
可选地,本申请实施例中,第二传输信道与第一传输信道为同一个接入链路中的传输信道。
可以理解,第二传输信道与第一传输信道之间存在互易性,即可以根据第二传输信道的传输参数,确定第一传输信道的传输参数。
可选地,本申请实施例中,第二传输信道用于在转发节点与终端之间第i次转发无线信号,第一传输信道用于在转发节点与终端之间第i+m次转发无线信号,i和m为正整数。
示例性地,假设第二传输信道为上行信道,第一传输信道为下行信道,则第二传输信道用于在转发节点与终端之间第1次转发无线信号,第一传输信道用于在转发节点与终端之间第2次转发无线信号,即可以根据前一次上行转发的传输参数,确定下一次下行转发的传输参数。
又示例性地,假设第二传输信道为下行信道,第一传输信道为上行信道,则第二传输信道用于在转发节点与终端之间第2次转发无线信号,第一传输信道用于在转发节点与终端之间第3次转发无线信号,即可以根据前一次下行转发的传输参数,确定下一次上行转发的传输参数。
可选地,本申请实施例中,在目标传输信道为上行信道的情况下,该目标传输信道的传输参数可以包括以下至少一项:来波方向、来波波束宽度、来波的强度信息、优选的接收权重矩阵(Weight Matrix)信息。在目标传输信道为下行信道的情况下,该目标传输信道的传输参数可以包括以下至少一项:发送波束方向信息、波束宽度信息、增益信息、预编码矩阵(Precoding Matrix)信息。
其中,目标传输信道为第一传输信道和第二传输信道中的任一个。
可选地,本申请实施例中,在第一网络侧设备向转发节点发送用于控制在第一传输信道上的信息传输的控制信息(例如下述实施例中的第一控制信息)之后,第一网络侧设备可以向转发节点发送辅助信息;或者,第一网络侧设备可以在向转发节点发送该控制信息的同时,向转发节点发送该辅助信息。
步骤102、转发节点从第一网络侧设备接收辅助信息。
本申请实施例中,上述辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道。
可选地,本申请实施例中,在第一网络侧设备向转发节点发送用于控制在第一传输信道上的信息传输的控制信息(例如下述实施例中的第一控制信息)之后,转发节点可以从第一网络侧设备接收辅助信息;或者,转发节点可以在从第一网络侧设备接收该控制信息的同时,从第一网络侧设备接收该辅助信息。
步骤103、转发节点根据辅助信息,确定与第一传输信道关联的第二传输信道。
本申请实施例中,上述第二传输信道的传输方向和第一传输信道的传输方向不同。
可选地,本申请实施例中,转发节点可以根据辅助信息,直接确定第二传输信道;或者,转发节点可以根据辅助信息,确定该辅助信息对应的控制信息(例如下述实施例中的第二控制信息),并将该控制信息对应的传输信道,确定为第二传输信道。
需要说明的是,上述“辅助信息对应的控制信息”可以理解为:该控制信息中包括的信息与辅助信息相匹配(例如相同);或者,第一网络侧设备发送该控制信息时使用的信息,与发送辅助信息时使用的信息相匹配(例如相同);或者,辅助信息指示的控制信息。上述“控制信息对应的传输信道”可以理解为:该控制信息控制转发节点进行信息传输的传输信道。
步骤104、转发节点根据第二传输信道的传输参数,确定第一传输信道的传输参数。
可选地,本申请实施例中,转发节点可以根据第二传输信道的传输参数,采用预设算法,计算得到第一传输信道的传输参数。
需要说明的是,针对上述预设算法的说明,可以参考相关技术中的具体描述,本申请实施例在此不再赘述。
可选地,本申请实施例中,在转发节点确定第一传输信道的传输参数之后,转发节点可以按照该第一传输信道的传输参数,与终端在第一传输信道上进行信息传输。
本申请实施例提供的传输参数确定方法,转发节点可以先从第一网络侧设备接收用于指示第一传输信道相关的信息的辅助信息,再根据该辅助信息,确定与该第一传输信道关联的第二传输信道,从而转发节点可以根据该第二传输信道的传输参数,确定第一传输信道的传输参数;其中,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道,第二传输信道的传输方向和第一传输信道的传输方向不同。由于转发节点可以根据第一网络侧设备发送的辅助信息,确定与第一传输信道关联的第二传输信道,这样,转发节点可以直接根据该第二传输信道的传输参数,确定第一传输信道的传输参数,而无 需对转发节点和终端之间的下行波束和上行波束分别进行波束训练,以确定第一传输信道的传输参数,因此,可以减少转发节点的资源和时间的消耗,从而可以提高用于信息传输的资源、且减少传输的时延,如此,可以提高转发节点的转发性能。
下面将以第一网络侧设备向转发节点发送用于控制在第一传输信道上的信息传输的控制信息的同时,向转发节点发送该辅助信息为例,进行举例说明。
可选地,本申请实施例中,结合图5,如图6所示,上述步骤101具体可以通过下述的步骤101a实现,且上述的步骤102具体可以通过下述的步骤102a实现。
步骤101a、第一网络侧设备向转发节点发送第一控制信息。
本申请实施例中,上述第一控制信息中包括辅助信息。
可选地,本申请实施例中,第一控制信息具体可以为:侧边控制信息(Side Control Information,SCI)。
本申请实施例中,第一控制信息用于控制在第一传输信道上的信息传输。
可以理解,第一控制信息用于控制转发节点为终端进行上行转发或下行转发。
步骤102a、转发节点从第一网络侧设备接收第一控制信息。
本申请实施例中,上述第一控制信息中包括辅助信息。
本申请实施例中,第一控制信息用于控制在第一传输信道上的信息传输。
下面将以不同的示例为例,举例说明转发节点是如何确定第二传输信道的。
可选地,本申请实施例中,结合图6,如图7所示,上述步骤103具体可以通过下述的步骤103a和步骤103b实现。
步骤103a、转发节点根据辅助信息,确定第一控制信息对应的第二控制信息。
本申请实施例中,上述第二控制信息用于控制在第二传输信道上的信息传输。
可选地,本申请实施例中,第二控制信息具体可以为侧边控制信息。
可选地,本申请实施例中,在转发节点中存储有至少一个历史控制信息,每个历史控制信息中包括一个目标信息,从而转发节点可以从至少一个目标信息中,确定与辅助信息相匹配(例如相同)的一个目标信息,并将该一个目标信息对应的历史控制信息,确定为第二控制信息。
其中,针对至少一个历史控制信息中的每个历史控制信息,一个历史控制信息中包括的一个目标信息用于指示该一个历史控制信息对应的传输信道相关的信息。
以下将以四种不同的示例为例,进行举例说明。
在一种示例中,上述辅助信息包括终端的第一设备标识;上述第二控制信息中包括的设备标识,与第一设备标识相匹配。
其中,第一设备标识具体可以为:用户设备身份标识号(User Equipment Identification,UE_ID)。
转发节点可以根据第一设备标识,从转发节点中存储的至少一个历史控制信息中包括的至少一个目标信息(即至少一个设备标识)中,确定出与第一设备标识相同的一个设备 标识,并将该一个设备标识对应的一个历史控制信息,确定为第二控制信息。
在另一种示例中,上述辅助信息包括第一无线网络临时标识(Radio Network Temporary Identity,RNTI),该第一RNTI为第一网络侧设备向转发节点发送第一控制信息时使用的RNTI;第一网络侧设备向转发节点发送第二控制信息时使用的RNTI,与第一RNTI相匹配。
转发节点可以根据第一RNTI,从转发节点中存储的至少一个历史控制信息中包括的至少一个目标信息(即至少一个RNTI)中,确定出与第一RNTI相同的一个RNTI,并将该一个RNTI对应的一个历史控制信息,确定为第二控制信息。
在又一种示例中,上述辅助信息包括第一链路标识;上述第二控制信息中包括的链路标识,与第一链路标识相匹配。
其中,第一链路标识具体可以为:链路ID。
转发节点可以根据第一链路标识,从转发节点中存储的至少一个历史控制信息中包括的至少一个目标信息(即至少一个链路标识)中,确定出与第一链路标识相同的一个链路标识,并将该一个链路标识对应的一个历史控制信息,确定为第二控制信息。
在又一种示例中,上述辅助信息包括第一信道关联指示;上述第二控制信息中包括的信道关联指示的值,与第一信道关联指示的值相匹配。
转发节点可以根据第一信道关联指示的值,从转发节点中存储的至少一个历史控制信息中包括的至少一个目标信息(即至少一个信道关联指示)中,确定出与第一信道关联指示的值相同的一个信道关联指示,并将该一个信道关联指示对应的一个历史控制信息,确定为第二控制信息。
当然,第一网络侧设备还可以指示转发节点采用何种确定方式,根据辅助信息,确定对应的控制信息。
可选地,本申请实施例中,上述第一控制信息中还包括第一指示信息,该第一指示信息用于指示确定第二控制信息的确定方式。具体地,上述步骤103a具体可以通过下述的步骤103a1实现。
步骤103a1、转发节点采用确定方式,根据辅助信息,确定第一控制信息对应的第二控制信息。
可选地,上述第一指示信息指示确定第二控制信息的确定方式可以包括以下任一项:
基于设备标识的确定方式;
基于RNTI的确定方式;
基于链路标识的确定方式;
基于信道关联指示的确定方式。
其中,在第一指示信息指示确定第二控制信息的确定方式为基于设备标识的确定方式的情况下,辅助信息包括第一设备标识,且至少一个历史控制信息中包括至少一个设备标识,从而转发节点可以根据第一设备标识,确定第一控制信息对应的第二控制信息。
其中,在第一指示信息指示确定第二控制信息的确定方式为基于RNTI的确定方式的情 况下,辅助信息包括第一RNTI,且至少一个历史控制信息中包括至少一个RNTI,从而转发节点可以根据第一RNTI,确定第一控制信息对应的第二控制信息。
其中,在第一指示信息指示确定第二控制信息的确定方式为基于链路标识的确定方式的情况下,辅助信息包括第一链路标识,且至少一个历史控制信息中包括至少一个链路标识,从而转发节点可以根据第一链路标识,确定第一控制信息对应的第二控制信息。
其中,在第一指示信息指示确定第二控制信息的确定方式为基于信道关联指示的确定方式,辅助信息包括第一信道关联指示,且至少一个历史控制信息中包括至少一个信道关联指示,从而转发节点可以根据第一信道关联指示,确定第一控制信息对应的第二控制信息。
如此可知,由于转发节点可以采用第一网络侧设备指示的确定第二控制信息的确定方式,根据辅助信息,确定第一控制信息对应的第二控制信息,而无需转发节点自身决定确定第二控制信息的确定方式,因此,可以提高确定的第二控制信息的准确性,从而可以提高确定第一传输信道的传输参数的准确性。
步骤103b、转发节点将第二控制信息对应的传输信道,确定为第二传输信道。
本申请实施例中,转发节点可以将第二控制信息控制转发节点进行信息传输的传输信道,确定为第二传输信道。
如此可知,由于转发节点可以根据辅助信息,准确地确定第一控制信息对应的第二控制信息,因此,可以提高确定第二传输信道的准确性,从而可以提高确定第一传输信道的传输参数的准确性。
下面将以具体的示例为例,举例说明本申请实施例的转发节点和第一网络侧设备之间的信令流程。
图8示出了转发节点和第一网络侧设备之间的信令流程示意图。如图8所示,转发节点为L1中继设备(L1 relay device),第一网络侧设备为基站(gNB),L1转发节点和基站之间的信令流程可以包括以下步骤:
1.基站确定由L1中继设备为终端提供转发服务;
2.基站向L1中继设备提供用于L1中继设备确定上行转发和下行转发之间的收发参数关联性的配置(例如上述实施例中的第一指示信息);
3.L1中继设备执行收到的配置;
4.L1中继设备向基站发送配置完成信息;
5.基站向L1中继设备发送第一侧边控制信息(例如上述实施例中的第二控制信息),该第一侧边控制信息中包括目标信息和转发参数;
6.L1中继设备可以基于收到的转发参数进行上行信道(或下行信道)转发;
7.基站向L1中继设备发送第二侧边控制信息,该第二侧边控制信息中包括辅助信息;
8.L1中继设备根据辅助信息,确定对应的上行信道(或下行信道),即第一侧边控制信息对应的上行信道(或下行信道),并根据该第一侧边控制信息对应的上行信道(或下 行信道)的传输参数,确定第二侧边控制信息对应的上行信道(或下行信道)的传输参数;
9.L1中继设备基于确定的第二侧边控制信息对应的上行信道(或下行信道)的传输参数进行上行信道(或下行信道)转发。
本申请实施例提供的传输参数确定方法,执行主体可以为传输参数确定装置。本申请实施例中以传输参数确定装置执行传输参数确定方法为例,说明本申请实施例提供的传输参数确定装置的。
图9示出了本申请实施例中涉及的传输参数确定装置的一种可能的结构示意图。如图9所示,该传输参数确定装置50可以包括:接收模块51和确定模块52。
其中,接收模块51,用于从第一网络侧设备接收辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:传输参数确定装置50与终端之间转发无线信号的上行信道或下行信道。确定模块52,用于根据接收模块51接收的辅助信息,确定与第一传输信道关联的第二传输信道;并根据第二传输信道的传输参数,确定第一传输信道的传输参数。其中,上述第二传输信道的传输方向和第一传输信道的传输方向不同。
在一种可能的实现方式中,上述接收模块51,具体用于从第一网络侧设备接收第一控制信息,该第一控制信息中包括辅助信息,该第一控制信息用于控制在第一传输信道上的信息传输。
在一种可能的实现方式中,上述确定模块52,具体用于根据辅助信息,确定第一控制信息对应的第二控制信息;并将第二控制信息对应的传输信道,确定为第二传输信道。
在一种可能的实现方式中,上述辅助信息包括终端的第一设备标识;上述第二控制信息中包括的设备标识,与第一设备标识相匹配。
在一种可能的实现方式中,上述辅助信息包括第一RNTI,该第一RNTI为第一网络侧设备向传输参数确定装置50发送第一控制信息时使用的RNTI;第一网络侧设备向传输参数确定装置50发送第二控制信息时使用的RNTI,与第一RNTI相匹配。
在一种可能的实现方式中,上述辅助信息包括第一链路标识;上述第二控制信息中包括的链路标识,与第一链路标识相匹配。
在一种可能的实现方式中,上述辅助信息包括第一信道关联指示;上述第二控制信息中包括的信道关联指示的值,与第一信道关联指示的值相匹配。
在一种可能的实现方式中,上述第一控制信息中还包括第一指示信息,该第一指示信息用于指示确定第二控制信息的确定方式。上述确定模块52,具体用于采用确定方式,根据辅助信息,确定第一控制信息对应的第二控制信息。
在一种可能的实现方式中,在目标传输信道为上行信道的情况下,该目标传输信道的传输参考包括以下至少一项:来波方向、来波波束宽度、来波的强度信息、优选的接收权重矩阵信息;在目标传输信道为下行信道的情况下,该目标传输信道的传输参数包括以下至少一项:发送波束方向信息、波束宽度信息、增益信息、预编码矩阵信息。其中,目标传输信道为第一传输信道和第二传输信道中的任一个。
本申请实施例提供的传输参数确定装置,由于传输参数确定装置可以根据第一网络侧设备发送的辅助信息,确定与第一传输信道关联的第二传输信道,这样,传输参数确定装置可以直接根据该第二传输信道的传输参数,确定第一传输信道的传输参数,而无需对传输参数确定装置和终端之间的下行波束和上行波束分别进行波束训练,以确定第一传输信道的传输参数,因此,可以减少传输参数确定装置的资源和时间的消耗,从而可以提高用于信息传输的资源、且减少传输的时延,如此,可以提高传输参数确定装置的转发性能。
本申请实施例中的传输参数确定装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性地,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的传输参数确定装置能够实现图5至图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图10示出了本申请实施例中涉及的传输参数确定装置的一种可能的结构示意图。如图10所示,该传输参数确定装置60可以包括:发送模块61。
其中,发送模块61,用于向转发节点发送辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道。其中,上述辅助信息,用于转发节点确定与第一传输信道关联的第二传输信道,以根据第二传输信道的传输参数,确定第一传输信道的传输参数;该第二传输信道的传输方向和第一传输信道的传输方向不同。
在一种可能的实现方式中,上述发送模块61,具体用于向转发节点发送第一控制信息,该第一控制信息中包括辅助信息,该第一控制信息用于控制在第一传输信道上的信息传输。
在一种可能的实现方式中,上述第一控制信息中还包括第一指示信息,该第一指示信息用于指示转发节点确定第二控制信息的确定方式。
本申请实施例提供的传输参数确定装置,由于转发节点可以根据传输参数确定装置发送的辅助信息,确定与第一传输信道关联的第二传输信道,这样,转发节点可以直接根据该第二传输信道的传输参数,确定第一传输信道的传输参数,而无需在转发节点和终端之间进行波束训练,以确定第一传输信道的传输参数,因此,可以降低转发节点转发传输参数确定装置和终端之间的信息的时延,如此,可以提高转发节点的转发性能。
本申请实施例中的传输参数确定装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的传输参数确定装置能够实现图5至图7的方法实施例实现的各个 过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,本申请实施例中,如图11所示,本申请实施例还提供一种通信设备70,包括处理器71和存储器72,存储器72上存储有可在所述处理器71上运行的程序或指令,例如,该通信设备70为网络侧设备时,该程序或指令被处理器71执行时实现上述传输参数确定方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于从第一网络侧设备接收辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道;该处理器用于根据辅助信息,确定与第一传输信道关联的第二传输信道;并根据第二传输信道的传输参数,确定第一传输信道的传输参数;其中,上述第二传输信道的传输方向和第一传输信道的传输方向不同。或者,通信接口用于向转发节点发送辅助信息,该辅助信息用于指示第一传输信道相关的信息,该第一传输信道为:转发节点与终端之间转发无线信号的上行信道或下行信道。其中,上述辅助信息,用于转发节点确定与第一传输信道关联的第二传输信道,以根据第二传输信道的传输参数,确定第一传输信道的传输参数;该第二传输信道的传输方向和第一传输信道的传输方向不同。该网络侧设备实施例与上述转发节点方法实施例对应,或者与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络侧设备100包括:天线101、射频装置102、基带装置103、处理器104和存储器105。天线101与射频装置102连接。在上行方向上,射频装置102通过天线101接收信息,将接收的信息发送给基带装置103进行处理。在下行方向上,基带装置103对要发送的信息进行处理,并发送给射频装置102,射频装置102对收到的信息进行处理后经过天线101发送出去。
以上实施例中转发节点或网络侧设备执行的方法可以在基带装置103中实现,该基带装置103包括基带处理器。
基带装置103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为基带处理器,通过总线接口与存储器105连接,以调用存储器105中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口106,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备100还包括:存储在存储器105上并可在处理器104上运行的指令或程序,处理器104调用存储器105中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述传输参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述传输参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述传输参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种传输参数确定***,包括:转发节点及第一网络侧设备,所述转发节点可用于执行如上所述的转发节点对应的方法的步骤,所述第一网络侧设备可用于执行如上所述的第一网络侧设备对应的方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (26)

  1. 一种传输参数确定方法,其中,包括:
    转发节点从第一网络侧设备接收辅助信息,所述辅助信息用于指示第一传输信道相关的信息,所述第一传输信道为:所述转发节点与终端之间转发无线信号的上行信道或下行信道;
    所述转发节点根据所述辅助信息,确定与所述第一传输信道关联的第二传输信道;
    所述转发节点根据所述第二传输信道的传输参数,确定所述第一传输信道的传输参数;
    其中,所述第二传输信道的传输方向和所述第一传输信道的传输方向不同。
  2. 根据权利要求1所述的方法,其中,所述转发节点从第一网络侧设备接收辅助信息,包括:
    所述转发节点从所述第一网络侧设备接收第一控制信息,所述第一控制信息中包括所述辅助信息,所述第一控制信息用于控制在所述第一传输信道上的信息传输。
  3. 根据权利要求2所述的方法,其中,所述转发节点根据所述辅助信息,确定与所述第一传输信道关联的第二传输信道,包括:
    所述转发节点根据所述辅助信息,确定所述第一控制信息对应的第二控制信息;
    所述转发节点将所述第二控制信息对应的传输信道,确定为所述第二传输信道。
  4. 根据权利要求3所述的方法,其中,所述辅助信息包括所述终端的第一设备标识;
    所述第二控制信息中包括的设备标识,与所述第一设备标识相匹配。
  5. 根据权利要求3所述的方法,其中,所述辅助信息包括第一无线网络临时标识RNTI,所述第一RNTI为所述第一网络侧设备向所述转发节点发送所述第一控制信息时使用的RNTI;
    所述第一网络侧设备向所述转发节点发送所述第二控制信息时使用的RNTI,与所述第一RNTI相匹配。
  6. 根据权利要求3所述的方法,其中,所述辅助信息包括第一链路标识;
    所述第二控制信息中包括的链路标识,与所述第一链路标识相匹配。
  7. 根据权利要求3所述的方法,其中,所述辅助信息包括第一信道关联指示;
    所述第二控制信息中包括的信道关联指示的值,与所述第一信道关联指示的值相匹配。
  8. 根据权利要求3所述的方法,其中,所述第一控制信息中还包括第一指示信息,所述第一指示信息用于指示确定所述第二控制信息的确定方式;
    所述转发节点根据所述辅助信息,确定所述第一控制信息对应的第二控制信息,包括:
    所述转发节点采用所述确定方式,根据所述辅助信息,确定所述第一控制信息对应的所述第二控制信息。
  9. 根据权利要求1所述的方法,其中,在目标传输信道为上行信道的情况下,所述目标传输信道的传输参考包括以下至少一项:来波方向、来波波束宽度、来波的强度信息、优选的接收权重矩阵信息;
    在目标传输信道为下行信道的情况下,所述目标传输信道的传输参数包括以下至少一项:发送波束方向信息、波束宽度信息、增益信息、预编码矩阵信息;
    其中,目标传输信道为所述第一传输信道和所述第二传输信道中的任一个。
  10. 一种传输参数确定方法,其中,包括:
    第一网络侧设备向转发节点发送辅助信息,所述辅助信息用于指示第一传输信道相关的信息,所述第一传输信道为:所述转发节点与终端之间转发无线信号的上行信道或下行信道;
    其中,所述辅助信息,用于所述转发节点确定与所述第一传输信道关联的第二传输信道,以根据所述第二传输信道的传输参数,确定所述第一传输信道的传输参数;所述第二传输信道的传输方向和所述第一传输信道的传输方向不同。
  11. 根据权利要求10所述的方法,其中,所述第一网络侧设备向转发节点发送辅助信息,包括:
    所述第一网络侧设备向所述转发节点发送第一控制信息,所述第一控制信息中包括所述辅助信息,所述第一控制信息用于控制在所述第一传输信道上的信息传输。
  12. 根据权利要求11所述的方法,其中,所述第一控制信息中还包括第一指示信息,所述第一指示信息用于指示所述转发节点确定所述第二控制信息的确定方式。
  13. 一种传输参数确定装置,其中,所述传输参数确定装置包括:接收模块和确定模块;
    所述接收模块,用于从第一网络侧设备接收辅助信息,所述辅助信息用于指示第一传输信道相关的信息,所述第一传输信道为:所述传输参数确定装置与终端之间转发无线信号的上行信道或下行信道;
    所述确定模块,用于根据所述接收模块接收的所述辅助信息,确定与所述第一传输信道关联的第二传输信道;并根据所述第二传输信道的传输参数,确定所述第一传输信道的传输参数;
    其中,所述第二传输信道的传输方向和所述第一传输信道的传输方向不同。
  14. 根据权利要求13所述的传输参数确定装置,其中,所述接收模块,具体用于从所述第一网络侧设备接收第一控制信息,所述第一控制信息中包括所述辅助信息,所述第一控制信息用于控制在所述第一传输信道上的信息传输。
  15. 根据权利要求14所述的传输参数确定装置,其中,所述确定模块,具体用于根据所述辅助信息,确定所述第一控制信息对应的第二控制信息;并将所述第二控制信息对应的传输信道,确定为所述第二传输信道。
  16. 根据权利要求15所述的传输参数确定装置,其中,所述辅助信息包括所述终端的第一设备标识;
    所述第二控制信息中包括的设备标识,与所述第一设备标识相匹配。
  17. 根据权利要求15所述的传输参数确定装置,其中,所述辅助信息包括第一RNTI,所述第一RNTI为所述第一网络侧设备向所述传输参数确定装置发送所述第一控制信息时 使用的RNTI;
    所述第一网络侧设备向所述传输参数确定装置发送所述第二控制信息时使用的RNTI,与所述第一RNTI相匹配。
  18. 根据权利要求15所述的传输参数确定装置,其中,所述辅助信息包括第一链路标识;
    所述第二控制信息中包括的链路标识,与所述第一链路标识相匹配。
  19. 根据权利要求15所述的传输参数确定装置,其中,所述辅助信息包括第一信道关联指示;
    所述第二控制信息中包括的信道关联指示的值,与所述第一信道关联指示的值相匹配。
  20. 根据权利要求15所述的传输参数确定装置,其中,所述第一控制信息中还包括第一指示信息,所述第一指示信息用于指示确定所述第二控制信息的确定方式;
    所述确定模块,具体用于采用所述确定方式,根据所述辅助信息,确定所述第一控制信息对应的所述第二控制信息。
  21. 根据权利要求13所述的传输参数确定装置,其中,在目标传输信道为上行信道的情况下,所述目标传输信道的传输参考包括以下至少一项:来波方向、来波波束宽度、来波的强度信息、优选的接收权重矩阵信息;
    在目标传输信道为下行信道的情况下,所述目标传输信道的传输参数包括以下至少一项:发送波束方向信息、波束宽度信息、增益信息、预编码矩阵信息;
    其中,目标传输信道为所述第一传输信道和所述第二传输信道中的任一个。
  22. 一种传输参数确定装置,其中,所述传输参数确定装置包括:发送模块;
    所述发送模块,用于向转发节点发送辅助信息,所述辅助信息用于指示第一传输信道相关的信息,所述第一传输信道为:所述转发节点与终端之间转发无线信号的上行信道或下行信道;
    其中,所述辅助信息,用于所述转发节点确定与所述第一传输信道关联的第二传输信道,以根据所述第二传输信道的传输参数,确定所述第一传输信道的传输参数;所述第二传输信道的传输方向和所述第一传输信道的传输方向不同。
  23. 根据权利要求22所述的传输参数确定装置,其中,所述发送模块,具体用于向所述转发节点发送第一控制信息,所述第一控制信息中包括所述辅助信息,所述第一控制信息用于控制在所述第一传输信道上的信息传输。
  24. 根据权利要求23所述的传输参数确定装置,其中,所述第一控制信息中还包括第一指示信息,所述第一指示信息用于指示所述转发节点确定所述第二控制信息的确定方式。
  25. 一种网络侧设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12中任一项所述的方法的步骤。
  26. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令 被处理器执行时实现如权利要求1至12中任一项所述的方法的步骤。
PCT/CN2023/110255 2022-08-05 2023-07-31 传输参数确定方法、装置、网络侧设备及介质 WO2024027652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210939931.2 2022-08-05
CN202210939931.2A CN117580157A (zh) 2022-08-05 2022-08-05 传输参数确定方法、装置、网络侧设备及介质

Publications (1)

Publication Number Publication Date
WO2024027652A1 true WO2024027652A1 (zh) 2024-02-08

Family

ID=89848531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110255 WO2024027652A1 (zh) 2022-08-05 2023-07-31 传输参数确定方法、装置、网络侧设备及介质

Country Status (2)

Country Link
CN (1) CN117580157A (zh)
WO (1) WO2024027652A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114051284A (zh) * 2021-11-11 2022-02-15 中国信息通信研究院 一种波束识别随机接入方法和设备
CN114245391A (zh) * 2021-11-26 2022-03-25 中国信息通信研究院 一种无线通信信息传送方法和设备
CN114257475A (zh) * 2020-09-21 2022-03-29 索尼公司 电子设备、无线通信方法以及计算机可读存储介质
WO2022133952A1 (en) * 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Systems and methods for mimo communication with controllable environments
WO2022151016A1 (en) * 2021-01-13 2022-07-21 Qualcomm Incorporated Initial access for reconfigurable intelligent surface assisted communication in the absence of reciprocity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114257475A (zh) * 2020-09-21 2022-03-29 索尼公司 电子设备、无线通信方法以及计算机可读存储介质
WO2022133952A1 (en) * 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Systems and methods for mimo communication with controllable environments
WO2022151016A1 (en) * 2021-01-13 2022-07-21 Qualcomm Incorporated Initial access for reconfigurable intelligent surface assisted communication in the absence of reciprocity
CN114051284A (zh) * 2021-11-11 2022-02-15 中国信息通信研究院 一种波束识别随机接入方法和设备
CN114245391A (zh) * 2021-11-26 2022-03-25 中国信息通信研究院 一种无线通信信息传送方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, SANECHIPS: "Support of Reconfigurable Intelligent Surface for 5G Advanced", 3GPP DRAFT; RP-212385, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210913 - 20210917, 6 September 2021 (2021-09-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052050361 *

Also Published As

Publication number Publication date
CN117580157A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2010101003A1 (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
CN114172773B (zh) 调制方法及装置、通信设备和可读存储介质
US20230136962A1 (en) Terminal Information Obtaining Method, Terminal, and Network Side Device
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
CN114007216B (zh) 波束管理方法、装置及中继节点
WO2021227985A1 (zh) 同步信号块的处理方法及装置、通信设备和可读存储介质
CN116156354A (zh) 感知信号传输处理方法、装置及相关设备
WO2024027652A1 (zh) 传输参数确定方法、装置、网络侧设备及介质
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
EP3837773B1 (en) Method and system for managing interference in multi trp systems
WO2024012493A1 (zh) 波束调整方法、信息交互方法、装置及设备
CN113225111A (zh) 一种波束形成的方法及相关设备
WO2024022272A1 (zh) 回传链路的传输配置确定方法、装置、中继设备及网络侧设备
WO2023208195A1 (zh) 定时调整方法、配置方法、装置、放大器及基站
WO2023193799A1 (zh) 一种传输处理方法、装置、终端及网络设备
WO2023217173A1 (zh) 无线辅助设备的波束控制方法、装置及网络侧设备
WO2023165406A1 (zh) 无线链路失败的处理方法、装置、通信设备及存储介质
WO2023160571A1 (zh) 干扰或自激处理方法及装置、中继节点及宿主基站
WO2023198111A1 (zh) 中继器的资源复用方法、中继器及网络侧设备
WO2023088376A1 (zh) 上行传输方法、装置、终端及bsc接收设备
WO2023241539A1 (zh) 波束指示方法、装置及终端
WO2023088114A1 (zh) 波束恢复方法、波束失败检测方法以及相关装置
WO2023103912A1 (zh) 分集传输方法、终端及网络侧设备
WO2023246882A1 (zh) 波束控制方法、装置、中继设备及网络侧设备
WO2023151650A1 (zh) 信息激活方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849359

Country of ref document: EP

Kind code of ref document: A1