WO2024125232A1 - 一种业务流调度方法及装置 - Google Patents

一种业务流调度方法及装置 Download PDF

Info

Publication number
WO2024125232A1
WO2024125232A1 PCT/CN2023/132949 CN2023132949W WO2024125232A1 WO 2024125232 A1 WO2024125232 A1 WO 2024125232A1 CN 2023132949 W CN2023132949 W CN 2023132949W WO 2024125232 A1 WO2024125232 A1 WO 2024125232A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
service
flow
service flow
flows
Prior art date
Application number
PCT/CN2023/132949
Other languages
English (en)
French (fr)
Inventor
胡翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024125232A1 publication Critical patent/WO2024125232A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the embodiments of the present application relate to the field of wireless communications, and in particular, to a method and device for scheduling service flows.
  • QoS Flow Quality of service flow
  • 5G 5th generation mobile communication technology
  • the parameters describing the message forwarding processing of QoS flows between terminal devices and user-plane network elements may include the following parameters: resource type, priority level, packet delay budget (including core network packet delay budget), packet error rate, average window, maximum data burst volume, etc.
  • the priority in the above parameters is only used for priority scheduling between different QoS flows. Since each QoS flow can carry multiple services, the service flows corresponding to different services may also have different priority requirements. However, the service flows corresponding to different services within the QoS flow cannot currently achieve differentiated scheduling.
  • the present application provides a service flow scheduling method and device to solve the problem that differentiated scheduling of multiple service flows cannot be achieved when multiple service flows share a fixed bandwidth.
  • the present application provides a service flow scheduling method, the method comprising:
  • the user plane network element obtains the scheduling priority of the first service flow, where the scheduling priority of the first service flow is the scheduling priority of the first service flow among multiple service flows; the first service flow is one of the multiple service flows; the user plane network element receives a message, and when the message belongs to the first service flow, the user plane network element schedules the first service flow according to the scheduling priority of the first service flow.
  • the user plane network element can obtain the scheduling priority of the service flow, and then schedule the service flows with different scheduling priorities, thereby realizing differentiated scheduling of multiple service flows.
  • the user plane network element when a user plane network element obtains a scheduling priority of a first service flow, the user plane network element receives a first rule from a session management network element, where the first rule is used to indicate the scheduling priority of the first service flow.
  • the first rule includes the name of a first predefined rule
  • the first predefined rule includes the scheduling priority of the first service flow
  • the first predefined rule is one of multiple predefined rules stored in the user plane network element.
  • the user plane network element can obtain multiple predefined rules in advance, and activate the first predefined rule when obtaining the name of the first predefined rule.
  • the user-plane network element also obtains bandwidth parameters of the first service flow, and the bandwidth parameters of the first service flow include the guaranteed bandwidth of the first service flow, and/or the maximum bandwidth of the first service flow; or, the bandwidth parameters of the first service flow include the guaranteed bandwidth ratio of the first service flow, and/or the maximum bandwidth ratio of the first service flow; wherein, the guaranteed bandwidth ratio of the first service flow is the ratio of the guaranteed bandwidth of the first service flow to the total bandwidth, the maximum bandwidth ratio of the first service flow is the ratio of the maximum bandwidth that the first service flow can occupy to the total bandwidth, and the total bandwidth is the shared bandwidth allocated to the multiple service flows.
  • the user plane network element can guarantee the guaranteed bandwidth of the service flow when scheduling the service flow, and guarantee the maximum bandwidth of the service flow based on the scheduling priority of the service flow.
  • the first predefined rule also includes a bandwidth parameter of the first service.
  • the first rule when the multiple service flows belong to the same QoS flow, the first rule includes an identifier of a QoS execution rule, and the QoS execution rule includes a scheduling priority of the first service flow.
  • the scheduling priority of the first service flow can be added to the QoS execution rule by extending the QoS execution rule.
  • the QoS execution rules also include bandwidth parameters of the first service flow.
  • the first rule is a packet detection rule.
  • the bandwidth allocated to the second service flow is equal to the required bandwidth of the second service flow; according to the scheduling priorities corresponding to the multiple service flows and the required bandwidths corresponding to the multiple service flows, the service flows other than the second service flow in the multiple service flows are allocated differential bandwidth in a descending order of scheduling priority, and the differential bandwidth is the difference between the guaranteed bandwidth of the second service flow and the required bandwidth of the second service flow.
  • the above design can ensure the required bandwidth of a business flow when the guaranteed bandwidth is greater than the required bandwidth. Based on the scheduling priority and required bandwidth of other business flows, the difference bandwidth is allocated to these business flows, thereby improving the utilization efficiency of the total bandwidth.
  • the user-plane network element schedules the first service flow according to the scheduling priority of the first service flow
  • the sum of the required bandwidths corresponding to the multiple service flows is greater than the total bandwidth
  • the guaranteed bandwidth ratios corresponding to the multiple service flows are satisfied, and the sum of the guaranteed bandwidth ratios corresponding to the multiple service flows is less than or equal to 1; if the total bandwidth is surplus, according to the scheduling priorities corresponding to the multiple service flows, the remaining bandwidth is allocated to part or all of the multiple service flows in order of scheduling priority from high to low.
  • the guaranteed bandwidth of each service flow is guaranteed first, and the remaining bandwidth is allocated to each service flow based on the scheduling priority and required bandwidth of each service flow. Therefore, it is possible to ensure the guaranteed bandwidth of each service flow and give priority to meeting the required bandwidth of the service flow with high scheduling priority.
  • the maximum bandwidth ratio of some or all of the multiple service flows is met in the order.
  • the remaining bandwidth can be allocated to each service flow based on the scheduling priority, required bandwidth and maximum bandwidth ratio of each service flow, thereby achieving the maximum bandwidth ratio of service flows with high scheduling priority.
  • the sum of actual bandwidths corresponding to the multiple service flows is equal to the total bandwidth.
  • the message is a downlink message; the user plane network element adds the scheduling priority of the first service flow in the downlink message to obtain a first downlink message to be sent; and the user plane network element sends the first downlink message to be sent to the access network device.
  • the above design can realize the transmission of the scheduling priority of the service flow to the access network equipment through the downlink message.
  • the first downlink message to be sent includes a general wireless packet service tunneling protocol message header, and the general wireless packet service tunneling protocol message header includes the scheduling priority of the first service flow.
  • the message is a downlink message; the user plane network element adds a reflective QoS indication and a QoS flow identifier of the QoS flow to the downlink message to obtain a second downlink message to be sent.
  • the user plane network element sends the second downlink message to be sent to the access network device.
  • the above design can realize the transmission of the reflected QoS indication and the QoS flow identifier of the QoS flow to the access network device through the downlink message, so that the access network device transmits the reflected QoS indication and the QoS flow identifier of the QoS flow to the terminal device.
  • the second downlink message to be sent includes a general wireless packet service tunneling protocol message header, and the general wireless packet service tunneling protocol message header includes the reflected QoS indication and the QoS flow identifier of the QoS flow.
  • the multiple service flows are service flows corresponding to multiple terminal devices respectively, and the multiple terminal devices belong to the same terminal device group.
  • the multiple terminal devices are of different levels, and the scheduling priority of the first service flow is determined according to the level of the first terminal device.
  • the first service flow is a service flow corresponding to the service subscribed by the first terminal device, and the first terminal device is one of the multiple terminal devices.
  • the multiple service flows belong to the same QoS flow.
  • the present application provides a service flow scheduling method, the method comprising: a session management network element obtains a scheduling priority of a first service flow, the scheduling priority of the first service flow being the scheduling priority of the first service flow among multiple service flows; is one of the multiple service flows; the session management network element sends a first rule to the user plane network element, where the first rule is used to indicate the scheduling priority of the first service flow.
  • the session management network element can obtain the scheduling priority of the service flow, and indicate the scheduling priority of the service flow to the user plane network element through the first rule, so that the user plane network element can schedule service flows with different scheduling priorities according to the scheduling priority of the service flow, thereby realizing differentiated scheduling of multiple service flows.
  • the session management network element when the session management network element obtains the scheduling priority of the first service flow, the session management network element receives policy and billing control rules from the policy control network element, and the policy and billing control rules are used to indicate the scheduling priority of the first service flow; the session management network element determines the first rule based on the policy and billing control rules.
  • the session management network element can receive the policy and charging control rules from the policy control network element, and then determine the first rule according to the policy and charging control rules.
  • the policy and charging control rules include the name of a first predefined rule, and the first rule includes the name of the first predefined rule; the first predefined rule includes the scheduling priority of the first service flow, and the first predefined rule is one of multiple predefined rules stored in the session management network element and the user plane network element.
  • the session management network element can obtain multiple predefined rules in advance, and when obtaining the name of the first predefined rule, activate the first predefined rule, and carry the name of the first predefined rule through the first rule.
  • the policy and charging control rules include a scheduling priority of the first service flow; the first rule includes an identifier of a QoS execution rule, and the QoS execution rule includes the scheduling priority of the first service flow.
  • the scheduling priority of the first service flow can be added to the QoS execution rule by extending the QoS execution rule.
  • the session management network element determines QoS rules based on the policy and charging control rules, and the QoS rules include the scheduling priority of the first service flow; the session management network element sends the QoS rules to the terminal device.
  • the first predefined rule also includes a reflective QoS indication.
  • the policy and charging control rule also includes a reflected QoS indication; and the first rule also includes the reflected QoS indication.
  • the session management network element also obtains bandwidth parameters of the first service flow, where the bandwidth parameters of the first service flow include the guaranteed bandwidth of the first service flow and/or the maximum bandwidth of the first service flow; or, the bandwidth parameters of the first service flow include the guaranteed bandwidth ratio of the first service flow and/or the maximum bandwidth ratio of the first service flow; wherein the guaranteed bandwidth ratio of the first service flow is the ratio of the guaranteed bandwidth of the first service flow to the total bandwidth, the maximum bandwidth ratio of the first service flow is the ratio of the maximum bandwidth that can be occupied by the first service flow to the total bandwidth, and the total bandwidth is the shared bandwidth allocated to the multiple service flows.
  • the QoS rule also includes a bandwidth parameter of the first service flow.
  • the multiple service flows are service flows corresponding to multiple terminal devices respectively, and the multiple terminal devices belong to the same terminal device group.
  • the multiple terminal devices are of different levels, and the scheduling priority of the first service flow is determined according to the level of the first terminal device.
  • the first service flow is a service flow corresponding to the service subscribed by the first terminal device, and the first terminal device is one of the multiple terminal devices.
  • the multiple service flows belong to the same quality of service QoS flow.
  • the present application provides a service flow scheduling method, the method comprising:
  • An access network device receives a message in a first service flow, wherein the message includes a scheduling priority of the first service flow, the scheduling priority of the first service flow being a scheduling priority of the first service flow among multiple service flows; the first service flow is one of the multiple service flows; and the access network device schedules the first service flow according to the scheduling priority of the first service flow.
  • the access network equipment can schedule the service flow according to the scheduling priority of the service flow in the received message, and then can schedule service flows with different scheduling priorities, thereby realizing differentiated scheduling of multiple service flows.
  • the message further includes a bandwidth parameter of the first service flow, where the bandwidth parameter of the first service flow includes a guaranteed bandwidth ratio of the first service flow and/or a maximum bandwidth ratio of the first service flow;
  • the guaranteed bandwidth ratio of the first business flow is the ratio of the guaranteed bandwidth of the first business flow to the total bandwidth
  • the maximum bandwidth ratio of the first business flow is the ratio of the maximum bandwidth that the first business flow can occupy to the total bandwidth
  • the total bandwidth is the shared bandwidth allocated to the multiple business flows.
  • the access network device schedules the first service flow according to the scheduling priority of the first service flow.
  • scheduling when the sum of the required bandwidths corresponding to the multiple business flows is greater than the total bandwidth, if there is a second business flow among the multiple business flows, and the guaranteed bandwidth of the second business flow is greater than the required bandwidth of the second business flow, then the bandwidth allocated to the second business flow is equal to the required bandwidth of the second business flow; according to the scheduling priorities corresponding to the multiple business flows and the required bandwidths corresponding to the multiple business flows, the business flows other than the second business flow in the multiple business flows are allocated differential bandwidth in a descending order of scheduling priority, and the differential bandwidth is the difference between the guaranteed bandwidth of the second business flow and the required bandwidth of the second business flow.
  • the above design can ensure the required bandwidth of a business flow when the guaranteed bandwidth is greater than the required bandwidth. Based on the scheduling priority and required bandwidth of other business flows, the difference bandwidth is allocated to these business flows, thereby improving the utilization efficiency of the total bandwidth.
  • the access network device schedules the first service flow according to the scheduling priority of the first service flow
  • the sum of the required bandwidths corresponding to the multiple service flows is greater than the total bandwidth
  • the guaranteed bandwidth ratios corresponding to the multiple service flows are satisfied, and the sum of the guaranteed bandwidth ratios corresponding to the multiple service flows is less than or equal to 1; if the total bandwidth is surplus, the remaining bandwidth is allocated to part or all of the multiple service flows in order of scheduling priority from high to low according to the scheduling priorities corresponding to the multiple service flows.
  • the guaranteed bandwidth of each service flow is guaranteed first, and the remaining bandwidth is allocated to each service flow based on the scheduling priority and required bandwidth of each service flow. Therefore, it is possible to ensure the guaranteed bandwidth of each service flow and give priority to meeting the required bandwidth of the service flow with high scheduling priority.
  • the maximum bandwidth ratio of some or all of the multiple service flows is met in the order.
  • the remaining bandwidth can be allocated to each service flow based on the scheduling priority, required bandwidth and maximum bandwidth ratio of each service flow, thereby achieving the maximum bandwidth ratio of service flows with high scheduling priority.
  • the sum of actual bandwidths corresponding to the multiple service flows is equal to the total bandwidth.
  • the message includes a general wireless packet service tunneling protocol message header, and the general wireless packet service tunneling protocol message header includes the scheduling priority of the first service flow.
  • the multiple service flows are service flows corresponding to multiple terminal devices respectively, and the multiple terminal devices belong to the same terminal device group.
  • the multiple terminal devices are of different levels, and the scheduling priority of the first service flow is determined according to the level of the first terminal device.
  • the first service flow is a service flow corresponding to the service subscribed by the first terminal device, and the first terminal device is one of the multiple terminal devices.
  • the multiple service flows belong to the same QoS flow.
  • the present application provides a service flow scheduling method, the method comprising:
  • the terminal device obtains a QoS rule, wherein the QoS rule includes a scheduling priority of a first service flow, wherein the first service flow is a service subscribed by the terminal device, and the scheduling priority of the first service flow is the scheduling priority of the first service flow in the QoS flow; the terminal device generates an uplink message; when the uplink message belongs to the first service flow, the terminal device schedules the first service flow according to the scheduling priority of the first service flow.
  • the terminal device can schedule the uplink messages in the service flow according to the scheduling priority of the service flow in the QoS rule.
  • the terminal device when a terminal device obtains a QoS rule, the terminal device receives the QoS rule from a session management network element.
  • the terminal device when the terminal device obtains the QoS rules, the terminal device receives a downlink message, and the downlink message includes the scheduling priority of the first service flow, the reflected QoS indication and the QoS flow identifier of the QoS flow; the terminal device generates the QoS rules according to the quintuple of the first service flow, the scheduling priority of the first service flow, the QoS flow identifier of the QoS flow and the reflected QoS indication.
  • the terminal device can generate QoS rules based on the scheduling priority of a service flow in the downlink message, reflected QoS indication and other information.
  • the QoS flow rule also includes a bandwidth parameter of the first business flow, and the bandwidth parameter of the first business flow includes the guaranteed bandwidth of the first business flow and/or the maximum bandwidth of the first business flow; or, the bandwidth parameter of the first business flow includes the guaranteed bandwidth ratio of the first business flow and/or the maximum bandwidth ratio of the first business flow; wherein the guaranteed bandwidth ratio of the first business flow is the ratio of the minimum bandwidth occupied by the first business flow to the total bandwidth corresponding to the QoS flow,
  • the maximum bandwidth ratio of the first business flow is the ratio of the maximum bandwidth occupied by the first business flow to the total bandwidth corresponding to the QoS flow.
  • the terminal device schedules the first service flow according to the scheduling priority of the first service flow
  • the bandwidth allocated to the second service flow is equal to the required bandwidth of the second service flow
  • differential bandwidth is allocated to the service flows other than the second service flow in the multiple service flows in order of scheduling priority from high to low, and the differential bandwidth is the difference between the guaranteed bandwidth of the second service flow and the required bandwidth of the second service flow.
  • the above design can ensure the required bandwidth of a business flow when the guaranteed bandwidth is greater than the required bandwidth. Based on the scheduling priority and required bandwidth of other business flows, the difference bandwidth is allocated to these business flows, thereby improving the utilization efficiency of the total bandwidth.
  • the terminal device schedules the first service flow according to the scheduling priority of the first service flow
  • the bandwidth parameters of the first service flow include the guaranteed bandwidth ratio of the first service flow
  • the guaranteed bandwidth ratio of each service is satisfied in descending order of scheduling priority
  • the at least one service includes the first service flow
  • the sum of the guaranteed bandwidth ratios corresponding to the at least one service is less than or equal to 1.
  • the guaranteed bandwidth of each service flow is guaranteed first, and the remaining bandwidth is allocated to each service flow based on the scheduling priority and required bandwidth of each service flow. Therefore, it is possible to ensure the guaranteed bandwidth of each service flow and give priority to meeting the required bandwidth of the service flow with high scheduling priority.
  • the maximum bandwidth ratio of some or all of the multiple service flows is met in the order.
  • the remaining bandwidth can be allocated to each service flow based on the scheduling priority, required bandwidth and maximum bandwidth ratio of each service flow, thereby achieving the maximum bandwidth ratio of service flows with high scheduling priority.
  • the sum of actual bandwidths corresponding to the multiple service flows is equal to the total bandwidth.
  • the terminal device adds the scheduling priority of the first service flow to the uplink message to obtain an uplink message to be sent; and the terminal device sends the uplink message to be sent to the access network device.
  • the terminal device can add the scheduling priority of the service flow in the uplink message.
  • the uplink message to be sent includes a general wireless packet service tunneling protocol message header, and the general wireless packet service tunneling protocol message header includes the scheduling priority of the first service flow.
  • an embodiment of the present application provides a communication device, comprising a unit for executing each step in any of the above aspects.
  • an embodiment of the present application provides a communication device, comprising at least one processing element and at least one storage element, wherein the at least one storage element is used to store programs and data, and the at least one processing element is used to read and execute the programs and data stored in the storage element, so that the method provided in any one of the above aspects of the present application is implemented.
  • an embodiment of the present application further provides a computer program, which, when executed on a computer, enables the computer to execute the method provided in any of the above aspects.
  • an embodiment of the present application further provides a computer-readable storage medium, in which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer executes the method provided in any one of the above aspects.
  • an embodiment of the present application further provides a chip, which is used to read a computer program stored in a memory and execute a method provided in any of the above aspects.
  • an embodiment of the present application further provides a chip system, which includes a processor for supporting a computer device to implement the method provided in any of the above aspects.
  • the chip system also includes a memory, which is used to store the necessary programs and data of the computer device.
  • the chip system can be composed of a chip, or it can include a chip and other discrete devices.
  • a communication system comprising the communication device described in the third aspect and the communication device described in the fourth aspect.
  • FIG1 is a schematic diagram of the architecture of a mobile communication system used in the present application.
  • FIG2 is a flow chart showing an overview of a method for scheduling a service flow according to an embodiment of the present application
  • FIG3 is a flowchart of a service flow scheduling in a 5G communication system provided by an embodiment of the present application.
  • FIG4 is another flowchart of service flow scheduling in a 5G communication system provided in an embodiment of the present application.
  • FIG5 is another flowchart of service flow scheduling in a 5G communication system provided in an embodiment of the present application.
  • FIG6 is a flowchart of another service flow scheduling in a 5G communication system provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • At least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the technical solution provided in the embodiment of the present application can be applied to various communication systems. For example, it can be applied to 4G system or 5G system, and it can also be applied to other new systems facing the future.
  • the embodiment of the present application does not specifically limit this.
  • the term "system” can be interchangeable with "network”.
  • this is the architecture diagram of the 5G communication system formulated by the 3rd Generation Partnership Project (3GPP) standard.
  • the communication system includes terminal equipment (e.g., user equipment (UE)), radio access network (RAN), and core network (CN).
  • UE user equipment
  • RAN radio access network
  • CN core network
  • the network elements of the core network (DN) can be divided into two parts: the user plane and the control plane.
  • the control plane is responsible for the management of the mobile network
  • the user plane is responsible for the transmission of service data.
  • the terminal device is the entrance for mobile users to interact with the network. It can provide basic computing power, storage capacity, display service windows to users, and receive user operation input.
  • the next generation of terminal equipment (NextGen UE) can use new air interface technology to establish signal connection and data connection with RAN, thereby transmitting control signals and service data to the mobile network.
  • Terminal equipment can include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of terminals, mobile stations (MS), terminals, soft terminals, etc., such as water meters, electricity meters, sensors, etc.
  • RAN Deployed near the terminal device, it provides network access for authorized users in a specific area and can determine transmission tunnels of different qualities to transmit user data according to the user level and business requirements. RAN can manage its own resources, use them reasonably, provide access services to terminal devices on demand, and is responsible for forwarding control signals and user data between terminal devices and the core network.
  • Core network responsible for maintaining the subscription data of the mobile network, managing the network elements of the mobile network, and providing functions such as session management, mobility management, policy management, and security authentication for terminal devices.
  • the terminal device When the terminal device is attached, it provides network access authentication for the terminal device; when the terminal device has a service request, it allocates network resources for the terminal device; when the terminal device moves, it updates network resources for the terminal device; when the terminal device is idle, it provides a fast recovery mechanism for the terminal device; when the terminal device detaches, it releases network resources for the terminal device; when the terminal device has service data, it provides data routing functions for the terminal device, such as forwarding uplink data to the data network; or receiving downlink data of the terminal device from the data network and forwarding it to the RAN, which is then sent to the terminal device by the RAN.
  • Data network A data network that provides business services to users.
  • the client is located in the terminal device and the server is located in the data network.
  • the data network can be a private network, such as a local area network, or an external network that is not controlled by the operator, such as the Internet. It can also be a proprietary network jointly deployed by operators, such as the IP multimedia network subsystem. core network subsystem, IMS) service network.
  • IMS IP multimedia network subsystem
  • the 5G network architecture has readjusted the network architecture of the next-generation core network equipment.
  • the control plane will use a service-oriented interface to provide relevant functions to the outside world.
  • the control plane and the user plane exchange messages through the N4 interface to implement the user policy delivery from the control plane to the user plane and the event reporting processing from the user plane to the control plane.
  • the policy control network element is responsible for the definition, delivery and update of the user policy signed by the user.
  • the session management network element needs to be responsible for managing the selection of user plane network elements, policy delivery, event reporting, heartbeat check of user plane network elements, load reporting of user plane network elements and other non-session-level management functions.
  • the user plane network element is responsible for service perception, rule and policy matching, and execution of billing and control policies for user data packets based on the session context and its policies established by the session management network element for the terminal device.
  • the core network user plane includes user plane function (UPF); the core network control plane includes access and mobility management function (AMF), session management function (SMF), network exposure function (NEF), network function repository function (NRF), unified data management (UDM), policy control function (PCF), application function (AF), authentication server function (AUSF), and network slice selection function (NSSF).
  • UPF user plane function
  • AMF access and mobility management function
  • SMF session management function
  • NEF network exposure function
  • NRF network function repository function
  • UDM unified data management
  • PCF policy control function
  • AF application function
  • AUSF authentication server function
  • NSSF network slice selection function
  • the core network control plane adopts a service-oriented architecture, and the interaction between control plane network elements adopts the service call method to replace the point-to-point communication method in the traditional architecture.
  • the control plane network elements will open services to other control plane network elements for other control plane network elements to call; in point-to-point communication, the communication interface between control plane network elements will store a set of specific messages, which can only be used by the control plane network elements at both ends of the interface when communicating.
  • Session management network element mainly used for session management, IP address allocation and management of terminal devices, selection of endpoints for manageable user equipment plane functions, policy control, or charging function interfaces, and downlink data notification.
  • the session management network element can be an SMF network element.
  • the session management function network element can still be an SMF network element, or have other names, which is not limited in this application.
  • Nsmf is a service-based interface provided by SMF, and SMF can communicate with other network functions through Nsmf.
  • Access management network element mainly used for mobility management and access management, etc.
  • it can be the mobility management entity (MME) function in the 4G communication network or the AMF network element in the 5G network.
  • MME mobility management entity
  • the access management network element can still be the AMF network element, or have other names, which is not limited in this application.
  • Namf is a service-based interface provided by AMF, and AMF can communicate with other network functions through Namf.
  • Network open network element used to securely open the services and capabilities provided by 3GPP network functions to the outside.
  • the network open network element can be a NEF network element.
  • the network open function network element can still be a NEF network element, or have other names, which are not limited in this application.
  • Nnef is a service-based interface provided by NEF, and NEF can communicate with other network functions through Nnef.
  • Network storage network element used to provide service registration, discovery and authorization, and maintain available network function (NF) instance information, which can realize on-demand configuration of network functions and services and interconnection between NFs.
  • the network storage network element can be an NRF network element.
  • the network storage function network element can still be an NRF network element, or have other names, which is not limited in this application.
  • Nnrf is a service-based interface provided by NRF, and NRF can communicate with other network functions through Nnrf.
  • Policy control network element a unified policy framework for guiding network behavior, providing policy rule information for control plane functional network elements (such as AMF, SMF, etc.).
  • the policy control network element can be a PCF network element.
  • future communications such as 6G communication, the policy control network element can still be a PCF network element, or have other names, which are not limited in this application.
  • Npcf is a service-based interface provided by PCF, and PCF can communicate with other network functions through Npcf.
  • Data management network element used to process user identification, contract signing, access authentication, registration, or mobility management.
  • the data management network element can be a UDM network element.
  • future communications such as 6G communication, the data management network element can still be a UDM network element, or have other names, which are not limited in this application.
  • Nudm is a service-based interface provided by UDM, and UDM can communicate with other network functions through Nudm.
  • Application network element used for data routing affected by applications, access to network open functions, or interacting with the policy framework for policy control, etc.
  • application network elements can be AF network elements.
  • application network elements can still be AF network elements, or have other names, which are not limited in this application.
  • Naf is a service-based interface provided by AF, and AF can communicate with other network functions through Naf.
  • User plane network element used for packet routing and forwarding, or quality of service (QoS) processing of user plane data.
  • the user plane network element may be a user plane function (UPF) network element.
  • UPF user plane function
  • future communications such as 6G communication
  • the user plane network element may still be a UPF network element, or have other names, which is not limited in this application.
  • Authentication service network element mainly used for user authentication, etc.
  • the authentication service network element can be an AUSF network element.
  • future communications such as 6G communication, the authentication service network element can still be an AUSF network element, or have other names, which are not limited in this application.
  • Nausf is a service-based interface provided by AUSF, and AUSF can communicate with other network functions through Nausf.
  • Network slice selection function network element used to select network slices for terminal devices.
  • the network slice selection function network element may be an NSSF network element.
  • future communications such as 6G communications, the network slice selection function network element may still be an NSSF network element, or may have other names, which is not limited in this application.
  • the core network may also include other network elements, which is not limited in this application.
  • QoS flow ID QoS flow ID
  • QFI quality of service flow identifier
  • 5G QoS is divided into two types: guaranteed rate bit flow (GBR QoS flow) and non-guaranteed rate bit flow (Non-GBR QoS flow).
  • the specific parameters may include but are not limited to the following parameters: 5G QoS indentifier (5G QoS indentifier, 5QI)) (corresponding to QoS level), allocation and retention priority (allocation and retention priority, ARP).
  • 5G QoS indentifier 5G QoS indentifier, 5QI)
  • ARP allocation and retention priority
  • the proprietary parameters of the guaranteed rate bitstream may include but are not limited to the following parameters: guaranteed bitstream rate, maximum bitstream rate, notification control, maximum tolerable packet loss rate (uplink and downlink voice media) (maximum packet loss rate-UL/DL (voice media)), etc.
  • the proprietary parameters of the non-guaranteed rate bitstream may include but are not limited to the single PDU session total maximum bit rate (session-AMBR), UE total maximum bit rate (UE-AMBR), reflective QoS attribute (reflective QoS attribute, RQA), etc.
  • the UPF maps the data packet to the QoS flow according to the service data flow (SDF) template and marks the QFI in the N3 tunnel header.
  • the access network (AN) maps the data packet to the data radio bearer (DBR) according to the QFI and transmits it to the UE.
  • the non-access stratum (NAS) layer of the UE maps the data packet to the QoS flow according to the QoS rules, and the access stratum (AS) layer is responsible for mapping the QoS flow to the DRB.
  • the QoS rules include the QFI corresponding to the QoS flow, a packet filter set, and a priority value.
  • AN marks the QFI in the N3 tunnel header according to the QFI of the data packet received on the DRB.
  • the UPF receives the data packet sent by the AN and performs verification.
  • the signaling control QoS mechanism and the reflective QoS mechanism are supported (only for QoS flows of non-guaranteed rate bit stream type).
  • the method provided in the embodiment of the present application can be applied to a scenario where multiple service flows share a fixed bandwidth, and is used to implement differentiated scheduling of the multiple service flows.
  • the multiple service flows are service flows corresponding to multiple terminal devices respectively, and the multiple terminal devices belong to the same terminal device group.
  • the terminal equipment group includes UE1, UE2 and UE3, wherein UE1 is subscribed to service A, UE2 is subscribed to service B, and UE3 is subscribed to service C.
  • the multiple service flows include the service flow of service A, the service flow of service B, and the service flow of service C.
  • the terminal devices in the terminal device group may also sign up for the same service, which is not limited in this application.
  • the terminal device group includes UE1, UE2, and UE3, where UE1 signs up for service A, UE2 signs up for service A, and UE3 signs up for service C.
  • the multiple service flows include a service flow of service A corresponding to UE1, a service flow of service A corresponding to UE2, and a service flow of service C.
  • the terminal equipment group includes UE1, UE2 and UE3, wherein UE1 is subscribed to service A, UE2 is subscribed to service B, UE3 is subscribed to services C and D, and the multiple service flows include the service flow of service A, the service flow of service B, the service flow of service C and the service flow of service D.
  • multiple service flows belong to the same QoS flow
  • the multiple service flows are service flows corresponding to multiple services subscribed by a terminal device.
  • UE1 subscribes to services A and B, and the service flow of service A and the service flow of service B belong to the same QoS flow.
  • the multiple service flows involved in the present application all refer to multiple service flows that share a fixed bandwidth.
  • the scheduling priority of the business flow is the scheduling priority of the business flow among the multiple business flows, that is, the scheduling priority of the business flow is used to determine the scheduling order of the business flow among the multiple business flows.
  • the scheduling priority of the first service flow is the scheduling priority of the first service flow among multiple service flows, and the first service flow is one of the multiple service flows.
  • the levels of multiple terminal devices may be the same or different.
  • the scheduling priority of the first service flow may be determined according to the level of the first terminal device, wherein the first service flow is a service flow corresponding to the service subscribed by the first terminal device, and the first terminal device is one of the multiple terminal devices.
  • the second terminal device is one of the plurality of terminal devices, and the second service flow is a service flow corresponding to the service subscribed by the second terminal device.
  • the terminal equipment group includes UE1, UE2 and UE3, wherein UE1 is subscribed to service A, UE2 is subscribed to service B, and UE3 is subscribed to service C. If the level of UE1 is level 1, the level of UE2 is level 1, and the level of UE3 is level 2, wherein level 1 is higher than level 2, then the scheduling priority of the service flow of service A is the same as the scheduling priority of the service flow of service B, and the scheduling priority of the service flow of service A is higher than the scheduling priority of the service flow of service C.
  • the terminal device group includes UE1, UE2 and UE3, wherein UE1 is subscribed to service A, UE2 is subscribed to service B, and UE3 is subscribed to services C and D.
  • UE1 is a gold user
  • UE2 is a silver user
  • UE3 is a bronze user
  • the level of the gold user is higher than that of the silver user
  • the level of the silver user is higher than that of the bronze user
  • the scheduling priority of the service flow of service A is higher than the scheduling priority of the service flow of service B
  • the scheduling priority of the service flow of service B is higher than the scheduling priority of the service flow of service C
  • the scheduling priority of the service flow of service C may be the same as the scheduling priority of the service flow of service D.
  • the scheduling priority of each service flow can be determined according to the contract information of the terminal device.
  • scheduling priority of the service flow may also be determined in other ways, which is not limited in this application.
  • the bandwidth parameters of the first business flow include the guaranteed bandwidth of the first business flow, and/or the maximum bandwidth of the first business flow, or the bandwidth parameters of the first business flow may include the guaranteed bandwidth ratio of the first business flow, and/or the maximum bandwidth ratio of the first business flow.
  • the guaranteed bandwidth ratio of the first service flow is the ratio of the guaranteed bandwidth of the first service flow to the total bandwidth, where the guaranteed bandwidth can also be called the reserved bandwidth.
  • the first service flow will not be controlled, but it does not mean that the actual bandwidth of the first service flow must be higher than the guaranteed bandwidth.
  • the maximum bandwidth ratio of the first service flow is the ratio of the maximum bandwidth that the first service flow can occupy to the total bandwidth.
  • the maximum bandwidth ratio of the first service flow can also be called the maximum burst bandwidth ratio of the first service flow.
  • the maximum bandwidth also refers to the maximum bandwidth ratio occupied by the service in the QoS policy.
  • the total bandwidth here refers to the shared bandwidth allocated to multiple service flows, that is, a fixed bandwidth.
  • the total bandwidth can also be called the pipe bandwidth.
  • the guaranteed bandwidth of the first service flow can be obtained by multiplying the total bandwidth and the guaranteed bandwidth ratio of the first service flow, and the maximum bandwidth of the first service flow can be obtained by multiplying the total bandwidth and the maximum bandwidth ratio of the first service flow.
  • the present application provides a service flow scheduling method, as shown in FIG2, the method includes:
  • Step 200 The user plane network element obtains a scheduling priority of a first service flow, where the scheduling priority of the first service flow is a scheduling priority of the first service flow among multiple service flows, and the first service flow is one of the multiple service flows.
  • the relevant description of the scheduling priorities of multiple business flows and the first business flow can be referred to the relevant content in the previous text, and will not be repeated here.
  • the user plane network element may configure the scheduling priorities of multiple service flows in advance, or the user plane network element may obtain the scheduling priorities of multiple service flows from other network elements (e.g., session management network element, etc.). The following is only described by taking the user plane network element obtaining the scheduling priority of the first service flow as an example.
  • the user plane network element can also obtain the bandwidth parameter of the first service flow, wherein the user plane network element obtains the bandwidth parameter of the first service flow
  • the specific method of obtaining the scheduling priority of the first service flow by the user plane network element is similar to the specific method of obtaining the scheduling priority of the first service flow by the user plane network element.
  • the specific content of the bandwidth parameter of the first service flow can refer to the relevant content in the previous text, which will not be repeated here.
  • the user plane network element may receive a first rule from the session management network element, where the first rule is used to indicate a scheduling priority of the first service flow.
  • the first rule is also used to indicate a bandwidth parameter of the first service flow.
  • the first rule can be a packet detection rule (packet detection rule, PDR).
  • PDR packet detection rule
  • the session management network element receives a policy and charging control (PCC) rule from the policy control network element, where the PCC rule is used to indicate a scheduling priority of the first service flow.
  • the session management network element may determine a first rule according to the PCC rule and send the first rule to the user plane network element.
  • PCC policy and charging control
  • the policy and charging control rule includes the name of the first predefined rule.
  • the session management network element may determine the first rule according to the policy and charging control rule, and the first rule includes the name of the first predefined rule.
  • the first predefined rule includes a scheduling priority of the first service flow, and the first predefined rule is one of a plurality of predefined rules stored by the session management network element and the user plane network element.
  • the first predefined rule also includes a bandwidth parameter of the first service flow.
  • first part of the content a part of the first predefined rule saved by the session management network element (hereinafter referred to as the first part of the content) and another part of the first predefined rule saved by the user plane network element (hereinafter referred to as the second part of the content) together constitute the first predefined rule.
  • the first part of the content and the second part of the content may contain overlapping content, but also non-overlapping content.
  • the first predefined rule may further include a reflective QoS indication (RQI). If the first predefined rule does not include a reflective QoS indication, the session management network element may further determine a QoS rule according to a policy and charging control rule, and the QoS rule includes a scheduling priority of the first service flow. The session management network element sends the QoS rule to the terminal device.
  • the QoS rule also includes the bandwidth parameter of the first service flow.
  • the session management network element may determine the first rule according to the policy and charging control rule, the first rule includes an identifier of a QoS enforcement rule (QoS enforcement rule, QER), and the QoS enforcement rule includes a scheduling priority of the first service flow, that is, the session management network element may extend the scheduling priority of the first service flow to the QoS enforcement rule referenced by the first rule.
  • QoS enforcement rule may also include a bandwidth parameter of the first service flow.
  • the policy and charging control rule may further include a reflective QoS indication
  • the first rule may further include a reflective QoS indication.
  • the session management network element may further determine a QoS rule according to the policy and charging control rule, and the QoS rule includes a scheduling priority of the first service flow.
  • the session management network element sends the QoS rule to the terminal device.
  • the QoS rule may further include a bandwidth parameter of the first service flow.
  • Step 210 The user plane network element receives the message.
  • the message here may be an uplink message or a downlink message, which is not limited in this application.
  • the user plane network element can add the scheduling priority of the first service flow in the downlink message, obtain the first downlink message to be sent, and the user plane network element sends the first downlink message to be sent to the access network device.
  • the first downlink message to be sent includes a general radio packet service tunneling protocol (GPRS tunneling protocol, GTP) message header, and the general radio packet service tunneling protocol message header includes the scheduling priority of the first service flow.
  • GTP general radio packet service tunneling protocol
  • the user plane network element in addition to adding the scheduling priority of the first service flow in the downlink message, can also add a reflective QoS indication and a QoS flow identifier of the QoS flow in the downlink message, obtain a second downlink message to be sent, and the user plane network element sends the second downlink message to be sent to the access network device.
  • the reflective QoS indication and the QoS flow identifier of the QoS flow can also be carried by the general wireless packet service tunneling protocol message header.
  • Step 220 When the message belongs to the first service flow, the user plane network element schedules the first service flow according to the scheduling priority of the first service flow.
  • the user plane network element can determine that the detected message belongs to the first service flow based on the packet detection information (PDI) in the message detection rule.
  • PDI packet detection information
  • the following rules may be adopted but not limited to:
  • the user plane network element can determine whether the sum of the required bandwidths corresponding to multiple service flows is greater than the total bandwidth. If the sum of the required bandwidths corresponding to multiple service flows is less than or equal to the total bandwidth, the user plane network element can guarantee the required bandwidths corresponding to multiple service flows.
  • the user plane network element can adopt the following rules: Then multiple business flows are scheduled:
  • the user-plane network element schedules multiple service flows according to the scheduling priorities of the multiple service flows in descending order, so that the sum of the actual bandwidths corresponding to the multiple service flows is equal to the total bandwidth, that is, the sum of the actual bandwidths corresponding to the multiple service flows tries to use the total bandwidth, which can also be described as the sum of the actual bandwidths corresponding to the multiple service flows is close to the total bandwidth.
  • the bandwidth allocated to the second business flow is equal to the required bandwidth of the second business flow. Furthermore, according to the scheduling priorities corresponding to the multiple business flows and the required bandwidths corresponding to the multiple business flows, differential bandwidths are allocated to the business flows except the second business flow in the multiple business flows in order of scheduling priorities from high to low, and the differential bandwidth is the difference between the guaranteed bandwidth of the second business flow and the required bandwidth of the second business flow.
  • the required bandwidth of the business flow can be guaranteed, and the difference bandwidth can be allocated to these business flows based on the scheduling priority and required bandwidth of other business flows, thereby improving the utilization efficiency of the total bandwidth.
  • the user plane network element preferentially satisfies the guaranteed bandwidth ratios corresponding to the multiple service flows, wherein the sum of the guaranteed bandwidth ratios corresponding to the multiple service flows is less than or equal to 1.
  • the remaining bandwidth is allocated to part or all of the multiple service flows in the order of scheduling priority from high to low according to the scheduling priorities corresponding to the multiple service flows and the required bandwidths corresponding to the multiple service flows, so as to achieve a ratio of the actual bandwidth of each service flow to the total bandwidth greater than or equal to the guaranteed bandwidth ratio of the service flow.
  • the required bandwidth of some or all of the multiple service flows is met in this order, so that the required bandwidth of the service flows with higher scheduling priority is met first.
  • the maximum bandwidth ratios of some or all of the multiple service flows are met in this order, so that the maximum bandwidth ratios of service flows with higher scheduling priorities are met first.
  • the required bandwidth of some or all of the multiple service flows is met in this order.
  • the remaining bandwidth is greater than the difference between the required bandwidth of the service flow with the highest scheduling priority and the guaranteed bandwidth of the service flow with the highest scheduling priority, and the remaining bandwidth is less than or equal to the difference between the maximum bandwidth of the service flow with the highest scheduling priority and the guaranteed bandwidth of the service flow with the highest scheduling priority, then all the remaining bandwidth will be allocated to the service flow with the highest scheduling priority.
  • the maximum bandwidth ratio of some or all of the multiple service flows is met in this order.
  • the bandwidth parameters of service flow A include a guaranteed bandwidth ratio of 30% for service flow A and a maximum bandwidth ratio of 50% for service flow A
  • the bandwidth parameters of service flow B include a guaranteed bandwidth ratio of 40% for service flow B and a maximum bandwidth ratio of 60% for service flow B. If the required bandwidth of service flow A is 5G and the required bandwidth of service flow B is 6G, then the sum of the required bandwidth of service flow A and the required bandwidth of service flow B is 13G, which is greater than 10G.
  • the guaranteed bandwidth ratio of service flow A and the guaranteed bandwidth ratio of service flow B are preferentially satisfied, then the bandwidth allocated to service flow A is 3G and the bandwidth allocated to service flow B is 4G. At this time, the remaining 3G of the total bandwidth is not allocated and can be preferentially allocated to service flow B. Since the required bandwidth of service flow B is 6G, finally, the actual bandwidth of service flow A is 4G and the actual bandwidth of service flow B is 6G. At this time, the required bandwidth of service flow B can be preferentially satisfied.
  • multiple service flows include service flow A, service flow B, and service flow C, which are service flow B, service flow C, and service flow A in descending order of scheduling priority.
  • the bandwidth parameters of service flow A include a guaranteed bandwidth ratio of 30% for service flow A and a maximum bandwidth ratio of 50% for service flow A.
  • the bandwidth parameters of service flow B include a guaranteed bandwidth ratio of 40% for service flow B and a maximum bandwidth ratio of 60% for service flow B.
  • the bandwidth parameters of service flow C include a guaranteed bandwidth ratio of 10% for service flow C and a maximum bandwidth ratio of 30% for service flow C.
  • the required bandwidth of service flow A is 5G
  • the required bandwidth of service flow B is 7G
  • the required bandwidth of service flow C is 3G
  • the sum of the required bandwidth of service flow A, the required bandwidth of service flow B, and the required bandwidth of service flow C is 14G.
  • the guaranteed bandwidth ratio of service flow A, the guaranteed bandwidth ratio of service flow B and the guaranteed bandwidth ratio of service flow C are prioritized.
  • service flow A is allocated 3G bandwidth
  • service flow B is allocated 4G bandwidth
  • service flow C is allocated 1G bandwidth.
  • there is 2G of unallocated total bandwidth which can be allocated to service flow B first.
  • the actual bandwidth of service flow A is 3G
  • the actual bandwidth of service flow B is 6G
  • the actual bandwidth of service flow C is 1G.
  • the embodiment shown in Figure 2 above can also be applied to the 4th generation mobile communication technology (4G) communication system.
  • the user plane network element can be replaced by a data gateway control plane (PGW user plane, PGW-U)
  • the QoS flow can be replaced by a dedicated bearer
  • the session management network element can be replaced by a data gateway control plane (PGW control plane, PGW-C)
  • the policy control network element can be replaced by a policy and charging rules function unit (policy and charging rules function, PCRF).
  • PCRF policy and charging rules function
  • FIG. 2 The embodiment shown in FIG. 2 is described below in conjunction with specific embodiments:
  • the policy control network element is PCF
  • the session management network element is SMF
  • the user plane network element is UPF
  • the terminal device is UE
  • the first rule is PDR.
  • the process may include the following steps:
  • S301 UE sends a PDU session establishment request (PDU Session Establishment Request) message to AMF.
  • PDU Session Establishment Request PDU Session Establishment Request
  • the UE is activated in the 5G network and initiates a PDU session establishment process.
  • the PDU session establishment request message includes the UE identifier, for example, the UE identifier may be an international mobile subscriber identification number (IMSI), a mobile station international ISDN number (MSISDN), etc. This application does not limit this.
  • IMSI international mobile subscriber identification number
  • MSISDN mobile station international ISDN number
  • S302 AMF sends a PDU session creation session management context request (Nsmf_PDUSession_Creat-SMContext Request) message to SMF.
  • Nsmf_PDUSession_Creat-SMContext Request PDU session creation session management context request
  • the PDU session creation session management context request message includes the UE identifier.
  • S303 The SMF sends a request message to the PCF, where the request message is used to request PCC rules.
  • the SMF sends a session management policy control creation request (Npcf_SMPolicy-Control_Create Request) message to the PCF through the N7 interface, wherein the session management policy control creation request message includes the identifier of the UE.
  • Npcf_SMPolicy-Control_Create Request a session management policy control creation request
  • the PCF queries the subscription rules of the UE according to the UE identifier, and the subscription rules of the UE include the scheduling priority of the first service flow.
  • the subscription rules of the UE may also include bandwidth parameters of the first service flow, and the bandwidth parameters of the first service flow include the guaranteed bandwidth ratio of the first service flow and/or the maximum bandwidth ratio of the first service flow.
  • the UE's contract rules can also be called the UE's contract information. It can be understood that the UE's contract rules include scheduling priorities of multiple service flows.
  • the multiple service flows include the first service flow, and only the first service flow is used as an example for explanation here.
  • the PCF can send different PCC rules to the SMF.
  • the PCF sends a session management policy control create response (Npcf_SMPolicy-Control_Create Response) message to the SMF through the N7 interface, where the message includes a PCC rule.
  • the PCC rule includes a scheduling priority of the first service flow.
  • the PCC rule also includes a bandwidth parameter of the first service flow.
  • S305 The SMF maps the PCC rule to a PDR.
  • the PDR includes a QER ID
  • the QER includes a scheduling priority of the first service flow
  • the QER also includes a bandwidth parameter of the first service flow.
  • the bandwidth parameter of the first service flow in the QER can also be replaced by the guaranteed bandwidth of the first service flow, and/or the maximum bandwidth of the first service flow. That is, when the bandwidth parameter of the first service flow includes the guaranteed bandwidth ratio of the first service flow, the guaranteed bandwidth of the first service flow is calculated according to the total bandwidth corresponding to the QoS flow and the guaranteed bandwidth ratio of the first service flow. When the bandwidth parameter of the first service flow includes the maximum bandwidth ratio of the first service flow, the maximum bandwidth of the first service flow is calculated according to the total bandwidth corresponding to the QoS flow and the maximum bandwidth ratio of the first service flow.
  • S306 SMF sends an N4 session establishment request (N4Session Establishment/Modification Request) message to UPF, which includes the PDR determined in the above S305.
  • N4 session establishment request N4Session Establishment/Modification Request
  • UPF sends an N4 Session Establishment/Modification Response message to SMF.
  • the UPF may install the received PDR for message matching and determine the QFI of the first service flow and the scheduling priority of the first service flow.
  • the PDR also includes a PDI
  • the PDI includes an application identifier of the first service flow.
  • the UPF can record the application identifier of the first service flow in the context of the PDR as a condition for service perception, and start identifying the first service flow.
  • N4 session establishment request message in S306 can also be replaced by an N4 session modification request (N4Session Modification Request) message
  • N4 session modification request N4Session Modification Request
  • N4 session modification response N4Session Establishment/Modification Response
  • SMF sends a N1N2 message transfer message (Namf_Communication_N1N2MessageTransfer) to AMF, which includes an N1 session management container (SM container), and the N1 session management container includes a PDU session establishment accept (PDU Session Establishment Accept) message.
  • the PDU session establishment accept message includes QoS rules.
  • the SMF generates a QoS rule according to the PCC rule and the five-tuple information of the first service flow, where the QoS rule includes a scheduling priority of the first service flow.
  • the QoS rule also includes a bandwidth parameter of the first service flow.
  • the five-tuple information includes a source address, a destination address, a source port, a destination port, and a protocol number.
  • AMF sends a PDU session establishment accept message to the UE through the RAN.
  • the UE may install the received QoS rules for message matching and determine the QFI of the first service flow and the scheduling priority of the first service flow.
  • the above process can also be replaced by a session update or modification process.
  • the UPF and the UE can obtain the scheduling priority of the service flow of the new service through the session update process or the session modification process.
  • the PDR also includes PDI, which may include L3 layer information and L4 layer information such as IP address and port, or L7 layer information such as application ID or uniform resource locator (URL).
  • PDI may include L3 layer information and L4 layer information such as IP address and port, or L7 layer information such as application ID or uniform resource locator (URL).
  • UPF can determine whether the received message belongs to the first service flow based on PDI.
  • the application identifier can be mapped to multiple application filtering conditions predefined on the UPF, such as application name, IP address, port and other information for subsequent matching processes.
  • UPF can determine whether the application identifier in the downlink message matches the application identifier of the first business flow based on PDR. If they match, it is determined that a downlink message belonging to the first business flow has been detected.
  • S311 UPF schedules the downlink message according to the scheduling priority of the first service flow.
  • the UPF executes the QoS policy defined by the QER according to the identifier of the QER included in the PDR.
  • the UPF schedules the downlink message based on the scheduling priority of at least one service flow included in the QoS flow where the first service flow is located and the first service flow included in the QER.
  • the QER also includes the bandwidth parameters of the first service flow
  • the UPF also schedules the downlink message based on the bandwidth parameters of the first service flow included in the QER.
  • the UPF adds the scheduling priority of the first service flow in the downlink message, and sends the downlink message including the scheduling priority of the first service flow to the RAN.
  • the UPF adds the scheduling priority of the first service flow in the GTP header of the downlink message.
  • the GTP header may also include a QFI.
  • the UPF may also add a bandwidth parameter of the first service flow in the downlink message.
  • S313 The RAN schedules the received downlink message according to the scheduling priority of the first service flow.
  • the RAN may determine at least one service flow included in the QoS flow indicated by the QFI according to the QFI in the GTP header and the scheduling priority of the first service flow, and then schedule the downlink message according to the at least one service flow included in the QoS flow indicated by the QFI and the scheduling priority of the first service flow.
  • the RAN schedules the downlink message according to the bandwidth parameter of the first service flow.
  • S314 RAN sends a downlink message to the UE.
  • the RAN may also carry the scheduling priority of the first service flow to the UE via air interface extension.
  • the RAN decapsulates the message received from the core network (i.e., UPF), obtains the original message content and the QFI and scheduling priority of the first service flow carried by the GTP message header, and then re-encapsulates the original message content and the scheduling priority of the first service flow through the encapsulation format of the air interface, and sends the re-encapsulated message to the UE.
  • the core network i.e., UPF
  • S315 The UE generates an uplink message belonging to the first service flow, and schedules the uplink message according to the scheduling priority of the first service flow.
  • the UE generates an uplink message, determines that the uplink message belongs to the first service flow and the QoS flow where the first service flow is located, and then matches the corresponding QoS rule, determines the scheduling priority of the first service flow according to the QoS rule, and schedules the uplink message according to the scheduling priority of at least one service flow included in the QoS flow and the first service flow.
  • the QoS rule also includes the bandwidth parameter of the first service flow
  • the UE also schedules the downlink message according to the bandwidth parameter of the first service flow.
  • S316 The UE sends an uplink message to the RAN.
  • the UE may add the scheduling priority of the first service flow in the uplink message, and send the uplink message including the scheduling priority of the first service flow to the RAN.
  • the UE may encapsulate the message content and the scheduling priority of the first service flow through the encapsulation format of the air interface, and send the encapsulated message to the RAN.
  • the UE may also add the QFI in the uplink message, and optionally, the UE may also add the bandwidth parameter of the first service flow in the uplink message.
  • S317 The RAN schedules the received uplink message according to the scheduling priority of the first service flow.
  • the RAN may determine the QoS flow indicated by the QFI and at least one service flow included in the QoS flow according to the QFI in the received uplink message and the scheduling priority of the first service flow, and then schedule the received uplink message according to the at least one service flow included in the QoS flow and the scheduling priority of the first service flow.
  • the RAN also schedules the uplink message according to the bandwidth parameter of the first service flow.
  • S318 RAN sends an uplink message to UPF.
  • the RAN may add the scheduling priority of the first service flow in the uplink message, and send the uplink message including the scheduling priority of the first service flow to the UPF.
  • the uplink message including the scheduling priority of the first service flow includes a GTP header
  • the GTP header includes the scheduling priority of the first service flow.
  • the GTP header may also include a QFI, and optionally, the RAN may add the bandwidth parameter of the first service flow in the uplink message.
  • the UPF determines that the QFI in the received message matches the previously received PDR. Further, the UPF executes the QoS policy defined by the QER according to the identifier of the QER included in the PDR. The UPF schedules the uplink message based on the scheduling priority of at least one service flow included in the QoS flow where the first service flow is located and the first service flow included in the QER. Optionally, if the QER also includes the bandwidth parameters of the first service flow, the UPF also schedules the uplink message based on the bandwidth parameters of the first service flow.
  • the policy control network element is PCF
  • the session management network element is SMF
  • the user plane network element is UPF
  • the terminal device is UE
  • the first rule is PDR.
  • the process may include the following steps:
  • S401 UE sends a PDU session establishment request message to AMF.
  • S402 AMF sends a PDU session creation session management context request message to SMF.
  • S403 The SMF sends a request message to the PCF, where the request message is used to request PCC rules.
  • S401 to S403 can refer to the description of S301 to S303 in the embodiment shown in FIG. 3 above, and will not be repeated here.
  • the PCF sends the PCC rule to the SMF, where the PCC rule includes the name of the first predefined rule.
  • S405 The SMF generates a PDR according to the name of the first predefined rule.
  • the PDR includes the name of the first predefined rule.
  • S406 SMF sends an N4 session establishment request message to UPF, which includes PDR.
  • the UPF determines the first predefined rule according to the name of the first predefined rule.
  • the first predefined rule includes a scheduling priority of the first service flow.
  • the first predefined rule also includes a bandwidth parameter of the first service flow.
  • the UPF may install a first predefined rule for message matching and determining the QFI of the first service flow and the scheduling priority of the first service flow.
  • the PDR also includes a PDI, which includes an application identifier of the first service flow.
  • the UPF can be based on the application identifier of the first service flow. As a condition for service awareness, it is recorded in the context of the PDR and the identification of the first service flow is initiated.
  • UPF sends an N4 session establishment response message to SMF.
  • N4 session establishment request message in S406 may also be replaced by an N4 session modification request message
  • the N4 session establishment response message in S408 may also be replaced by an N4 session modification response message.
  • SMF sends an N1N2 message transmission message to AMF, the message includes an N1 session management container, the N1 session management container includes a PDU session establishment acceptance message, and the PDU session establishment acceptance message includes QoS rules.
  • the SMF generates a QoS rule according to the first predefined rule and the five-tuple information of the first service flow, and the QoS rule includes the scheduling priority of the first service flow.
  • the QoS rule also includes a bandwidth parameter of the first service flow.
  • S410 AMF sends a PDU session establishment accept message to the UE through the RAN.
  • the UE may install the received QoS rules for message matching and determine the QFI of the first service flow and the scheduling priority of the first service flow.
  • S412 UPF schedules the downlink message according to the scheduling priority of the first service flow.
  • the UPF schedules the downlink message based on at least one service flow included in the QoS flow where the first service flow is located and the scheduling priority of the first service flow included in the first predefined rule.
  • the first predefined rule also includes a bandwidth parameter of the first service flow
  • the UPF also schedules the downlink message based on the bandwidth parameter of the first service flow.
  • S414 The RAN schedules the received downlink message according to the scheduling priority of the first service flow.
  • S415 RAN sends a downlink message to the UE.
  • S416 The UE generates an uplink message belonging to the first service flow, and schedules the uplink message according to the scheduling priority of the first service flow.
  • S417 The UE sends an uplink message to the RAN.
  • S418 The RAN schedules the received uplink message according to the scheduling priority of the first service flow.
  • S419 RAN sends an uplink message to UPF.
  • S413 to S419 can refer to the description of S312 to S318 in the embodiment shown in FIG. 3 above, and will not be repeated here.
  • S420 UPF schedules the uplink message according to the scheduling priority of the first service flow.
  • the UPF determines that the QFI in the received message matches the PDR received previously, and further, the UPF schedules the uplink message based on at least one service flow included in the QoS flow where the first service flow is located and the scheduling priority of the first service flow included in the first predefined rule.
  • the UPF also schedules the uplink message based on the bandwidth parameter of the first service flow.
  • the specific process of service flow scheduling in the 5G communication system is the third one.
  • the embodiment shown in Figure 5 is applied to the second possible application scenario.
  • the policy control network element is PCF
  • the session management network element is SMF
  • the user plane network element is UPF
  • the terminal device is UE
  • the first rule is PDR.
  • the PCC rule including the RQI as an example.
  • the PCC rule may further include the name of a predefined rule, and the predefined rule includes the RQI.
  • the process may include the following steps:
  • S501 UE sends a PDU session establishment request message to AMF.
  • S502 AMF sends a PDU session creation session management context request message to SMF.
  • S503 The SMF sends a request message to the PCF, where the request message is used to request PCC rules.
  • S501 to S503 can refer to the description of S301 to S303 in the embodiment shown in FIG. 3 above, and will not be repeated here.
  • the PCF sends the PCC rules to the SMF.
  • PCF sends a session management policy control creation response to SMF via the N7 interface.
  • (Npcf_SMPolicy-Control_Create Response) message the message including PCC rules.
  • the PCC rules include the scheduling priority and RQI of the first service flow.
  • the PCC rules also include bandwidth parameters of the first service flow.
  • S505 The SMF maps the PCC rule to a PDR.
  • the PDR includes a QER ID
  • the QER includes a scheduling priority and an RQI of the first service flow
  • the QER also includes a bandwidth parameter of the first service flow.
  • S506 SMF sends an N4 session establishment request message to UPF, which includes the PDR determined in the above S505.
  • UPF sends an N4 session establishment response message to SMF.
  • the UPF may install the received PDR for message matching and determine the QFI of the first service flow and the scheduling priority of the first service flow.
  • the PDR also includes a PDI
  • the PDI includes an application identifier of the first service flow.
  • the UPF can record the application identifier of the first service flow in the context of the PDR as a condition for service perception, and start identifying the first service flow.
  • N4 session establishment request message in S506 may also be replaced by an N4 session modification request message
  • the N4 session establishment response message in S507 may also be replaced by an N4 session modification response message.
  • UPF determines that a downlink message belonging to the first service flow is detected.
  • UPF schedules the downlink message according to the scheduling priority of the first service flow.
  • the UPF adds the scheduling priority and RQI of the first service flow in the downlink message, and sends the downlink message including the scheduling priority and RQI of the first service flow to the RAN.
  • the UPF adds the scheduling priority and RQI of the first service flow in the GTP header of the downlink message.
  • the GTP header may also include a QFI.
  • the UPF may also add the bandwidth parameters of the first service flow in the downlink message.
  • S511 The RAN schedules the received downlink message according to the scheduling priority of the first service flow.
  • the RAN may determine at least one service flow included in the QoS flow indicated by the QFI according to the QFI in the GTP header and the scheduling priority of the first service flow, and then schedule the downlink message according to the at least one service flow included in the QoS flow and the scheduling priority of the first service flow.
  • the RAN also schedules the downlink message according to the bandwidth parameter of the first service flow.
  • S512 RAN sends a downlink message to the UE.
  • the RAN may also carry the scheduling priority of the first service flow to the UE via air interface extension.
  • S513 The UE generates a QoS rule based on the RQI and other information carried in the downlink message.
  • the UE generates QoS rules for the uplink direction based on the QFI carried in the downlink message, the scheduling priority of the first service flow, the RQI, and the first service flow quintuple (including source IP+port, target IP+port, L4 protocol).
  • the QoS rule generated by the UE also includes the bandwidth parameter of the first service flow.
  • S514 The UE generates an uplink message belonging to the first service flow, and schedules the uplink message according to the scheduling priority of the first service flow.
  • S515 The UE sends an uplink message to the RAN.
  • S516 The RAN schedules the received uplink message according to the scheduling priority of the first service flow.
  • S517 RAN sends an uplink message to UPF.
  • UPF schedules the uplink message according to the scheduling priority of the first service flow.
  • S514 to S518 can refer to the description of S315 to S319 in the embodiment shown in Figure 3 above, and will not be repeated here.
  • the policy control network element is PCF
  • the session management network element is SMF
  • the user plane network element is UPF
  • the terminal device is UE
  • the first rule is PDR.
  • the process may include the following steps:
  • S601 UE sends a PDU session establishment request message to AMF.
  • S602 AMF sends a PDU session creation session management context request message to SMF.
  • S603 The SMF sends a request message to the PCF, where the request message is used to request PCC rules.
  • S601 to S603 can refer to the description of S301 to S303 in the embodiment shown in FIG. 3 above, and will not be repeated here.
  • the PCF sends the PCC rule to the SMF, where the PCC rule includes the name of the first predefined rule.
  • S605 The SMF generates a PDR according to the name of the first predefined rule.
  • the PDR includes the name of the first predefined rule.
  • S606 SMF sends an N4 session establishment request message to UPF, which includes PDR.
  • the UPF determines the first predefined rule according to the name of the first predefined rule.
  • the first predefined rule includes a scheduling priority of the first service flow.
  • the first predefined rule also includes a bandwidth parameter of the first service flow.
  • the UPF can install the first predefined rule.
  • the first predefined rule can also be called a group-level bandwidth control strategy.
  • the group-level bandwidth control strategy is a bandwidth control strategy for the entire service of a terminal device group based on a certain condition, and multiple service flows consisting of at least one service flow corresponding to each terminal device in the terminal device group share a fixed bandwidth, that is, multiple service flows corresponding to the terminal device group share a fixed bandwidth.
  • the terminal device group can be determined based on contract information, access point name (APN), access network type, roaming attributes, location information, etc.
  • terminal devices accessed through APN: xxx constitute a terminal device group.
  • the bandwidth allowed to be accessed by multiple service flows constituted by the service flow of service A corresponding to each terminal device in the terminal device group is 5Gpbs, that is, the bandwidth shared by multiple service flows is 5Gpbs.
  • UPF sends an N4 session establishment response message to SMF.
  • N4 session establishment request message in S606 may also be replaced by an N4 session modification request message
  • the N4 session establishment response message in S608 may also be replaced by an N4 session modification response message.
  • S610 UPF schedules the downlink message according to the scheduling priority of the first service flow.
  • the UPF schedules the downlink message based on the multiple service flows corresponding to the terminal device group and the scheduling priority of the first service flow included in the first predefined rule.
  • the first predefined rule also includes the bandwidth parameter of the first service flow
  • the UPF also schedules the downlink message based on the bandwidth parameter of the first service flow.
  • UPF sends a downlink message to RAN.
  • the UPF adds the scheduling priority of the first service flow in the downlink message, and sends the downlink message including the scheduling priority of the first service flow to the RAN.
  • the UPF adds the scheduling priority of the first service flow in the GTP header of the downlink message.
  • the UPF may also add the bandwidth parameter of the first service flow in the downlink message.
  • S612 The RAN schedules the received downlink message according to the scheduling priority of the first service flow.
  • the RAN may schedule the downlink message according to the multiple service flows corresponding to the terminal device group and the scheduling priority of the first service flow.
  • the RAN also schedules the downlink message according to the bandwidth parameter of the first service flow.
  • S613 RAN sends a downlink message to the UE.
  • the RAN may also carry the scheduling priority of the first service flow to the UE via air interface extension.
  • the RAN decapsulates the message received from the core network (i.e., UPF), obtains the original message content and the scheduling priority of the first service flow carried by the GTP message header, and then re-encapsulates the original message content and the scheduling priority of the first service flow through the encapsulation format of the air interface, and sends the re-encapsulated message to the UE.
  • the core network i.e., UPF
  • FIG7 shows a possible exemplary block diagram of a communication device involved in an embodiment of the present application.
  • the device 700 includes: a transceiver module 720 and a processing module 710.
  • the transceiver module 720 may include a receiving unit and a sending unit.
  • the processing module 710 is used to
  • the transceiver module 720 is used to support the communication between the apparatus 700 and other network entities.
  • the apparatus 700 may further include a storage unit, which is used to store program codes and data of the apparatus 700.
  • each module in the device 700 may be implemented by software.
  • the processing module 710 may be a processor or a controller, for example, a general-purpose central processing unit (CPU), a general-purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of the embodiments of the present application.
  • the processor may also be a combination that implements a computing function, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the transceiver module 720 may be a communication interface, a transceiver or a transceiver circuit, etc., wherein the communication interface is a general term.
  • the communication interface may include multiple interfaces, and the storage unit may be a memory.
  • the processing module 710 in the device 700 can support the device 700 to execute the actions of the user plane network element in the above method examples.
  • the transceiver module 720 may support the apparatus 700 to communicate with a session management network element.
  • the transceiver module 720 is configured to obtain a scheduling priority of a first service flow, where the scheduling priority of the first service flow is a scheduling priority of the first service flow among multiple service flows; the first service flow is one of the multiple service flows; and receive a message;
  • the processing module 710 is used to schedule the first service flow according to the scheduling priority of the first service flow when the message belongs to the first service flow.
  • the transceiver module 720 is used to receive a first rule from a session management network element when obtaining the scheduling priority of the first service flow, where the first rule is used to indicate the scheduling priority of the first service flow.
  • the first rule includes the name of a first predefined rule
  • the first predefined rule includes the scheduling priority of the first service flow
  • the first predefined rule is one of multiple predefined rules stored in the user plane network element.
  • the first rule when the multiple service flows belong to the same QoS flow, the first rule includes an identifier of a QoS execution rule, and the QoS execution rule includes a scheduling priority of the first service flow.
  • the transceiver module 720 is used to further obtain the bandwidth parameters of the first business flow, where the bandwidth parameters of the first business flow include the guaranteed bandwidth of the first business flow and/or the maximum bandwidth of the first business flow; or, the bandwidth parameters of the first business flow include the guaranteed bandwidth ratio of the first business flow and/or the maximum bandwidth ratio of the first business flow; wherein the guaranteed bandwidth ratio of the first business flow is the ratio of the guaranteed bandwidth of the first business flow to the total bandwidth, the maximum bandwidth ratio of the first business flow is the ratio of the maximum bandwidth that can be occupied by the first business flow to the total bandwidth, and the total bandwidth is the shared bandwidth allocated to the multiple business flows.
  • the processing module 710 is used to, when scheduling the first business flow according to the scheduling priority of the first business flow, when the sum of the required bandwidths corresponding to the multiple business flows respectively is greater than the total bandwidth, if there is a second business flow among the multiple business flows, and the guaranteed bandwidth of the second business flow is greater than the required bandwidth of the second business flow, then the bandwidth allocated to the second business flow is equal to the required bandwidth of the second business flow; according to the scheduling priorities corresponding to the multiple business flows and the required bandwidths corresponding to the multiple business flows, respectively, the business flows other than the second business flow in the multiple business flows are allocated differential bandwidth in a descending order of scheduling priority, and the differential bandwidth is the difference between the guaranteed bandwidth of the second business flow and the required bandwidth of the second business flow.
  • the processing module 710 is used to, when scheduling the first business flow according to the scheduling priority of the first business flow, when the sum of the demand bandwidths corresponding to the multiple business flows respectively is greater than the total bandwidth, if the demand bandwidths corresponding to the multiple business flows respectively are greater than the corresponding guaranteed bandwidths, then the guaranteed bandwidth ratios corresponding to the multiple business flows respectively are satisfied, and the sum of the guaranteed bandwidth ratios corresponding to the multiple business flows respectively is less than or equal to 1; after satisfying the guaranteed bandwidth ratios corresponding to the multiple business flows respectively, according to the scheduling priorities corresponding to the multiple business flows respectively, the remaining bandwidth is allocated to part or all of the multiple business flows in a descending order of scheduling priority.
  • the processing module 710 is used to allocate remaining bandwidth to some or all of the multiple service flows in an order of scheduling priority from high to low, and to satisfy the maximum bandwidth ratio of some or all of the multiple service flows in the order.
  • the sum of actual bandwidths corresponding to the multiple service flows is equal to the total bandwidth.
  • the message is a downlink message; the processing module 710 is used to add the scheduling priority of the first service flow to the downlink message to obtain a first downlink message to be sent;
  • the transceiver module 720 is used to send the first downlink message to be sent to the access network device.
  • the first downlink message to be sent includes a general wireless packet service tunneling protocol message header, and the general wireless packet service tunneling protocol message header includes the scheduling priority of the first service flow.
  • the multiple service flows are service flows corresponding to multiple terminal devices respectively, and the multiple terminal devices belong to the same terminal device group.
  • the multiple terminal devices are of different levels, and the scheduling priority of the first service flow is determined according to the level of the first terminal device.
  • the first service flow is a service flow corresponding to the service subscribed by the first terminal device, and the first terminal device is one of the multiple terminal devices.
  • the multiple service flows belong to the same QoS flow.
  • the device 700 may correspond to the user plane network element in the aforementioned method embodiment, and the operations and/or functions of each module in the device 700 are respectively for implementing the corresponding steps of the method of the user plane network element in the aforementioned method embodiment, and therefore the beneficial effects in the aforementioned method embodiment can also be achieved.
  • the beneficial effects in the aforementioned method embodiment can also be achieved.
  • they are not elaborated here.
  • the processing module 710 in the device 700 can support the device 700 to execute the actions of the session management network element in the above method examples.
  • the transceiver module 720 can support the device 700 to communicate with user plane network elements.
  • the processing module 710 calls the transceiver module 720 to execute: obtaining the scheduling priority of the first business flow, the scheduling priority of the first business flow is the scheduling priority of the first business flow among multiple business flows; the first business flow is one of the multiple business flows; sending a first rule to the user plane network element, the first rule is used to indicate the scheduling priority of the first business flow.
  • the transceiver module 720 is used to receive policy and billing control rules from a policy control network element when obtaining the scheduling priority of the first service flow, and the policy and billing control rules are used to indicate the scheduling priority of the first service flow; the processing module 710 is used to determine the first rule based on the policy and billing control rules.
  • the policy and charging control rule includes a name of a first predefined rule, and the first rule includes a name of the first predefined rule;
  • the first predefined rule includes a scheduling priority of the first service flow, and the first predefined rule is one of a plurality of predefined rules stored in the session management network element and the user plane network element.
  • the first rule when the multiple service flows belong to the same QoS flow, the first rule includes an identifier of a QoS execution rule, and the QoS execution rule includes a scheduling priority of the first service flow.
  • the processing module 710 is used to determine a QoS rule according to the policy and charging control rule when the multiple service flows belong to the same QoS flow, and the QoS rule includes a scheduling priority of the first service flow;
  • the transceiver module 720 is used to send the QoS rules to the terminal device.
  • the transceiver module 720 is used to also obtain the bandwidth parameters of the first business flow, the bandwidth parameters of the first business flow include the guaranteed bandwidth of the first business flow, and/or the maximum bandwidth of the first business flow; the bandwidth parameters of the first business flow include the guaranteed bandwidth ratio of the first business flow, and/or the maximum bandwidth ratio of the first business flow; wherein, the guaranteed bandwidth ratio of the first business flow is the ratio of the guaranteed bandwidth of the first business flow to the total bandwidth, the maximum bandwidth ratio of the first business flow is the ratio of the maximum bandwidth that the first business flow can occupy to the total bandwidth, and the total bandwidth is the shared bandwidth allocated to the multiple business flows.
  • the multiple service flows are service flows corresponding to multiple terminal devices respectively, and the multiple terminal devices belong to the same terminal device group.
  • the multiple terminal devices are of different levels, and the scheduling priority of the first service flow is determined according to the level of the first terminal device.
  • the first service flow is a service flow corresponding to the service subscribed by the first terminal device, and the first terminal device is one of the multiple terminal devices.
  • the multiple service flows belong to the same QoS flow.
  • the device 700 may correspond to the session management network element in the aforementioned method embodiment, and the operations and/or functions of the various modules in the device 700 are respectively for implementing the corresponding steps of the method for session management network element in the aforementioned method embodiment, and therefore the beneficial effects in the aforementioned method embodiment can also be achieved.
  • the beneficial effects in the aforementioned method embodiment can also be achieved.
  • they are not elaborated here.
  • the processing module 710 in the apparatus 700 may support the apparatus 700 to execute the actions of the access network device in the above method examples.
  • the transceiver module 720 can support the device 700 to communicate with user plane network elements.
  • the transceiver module 720 is configured to receive a message in a first service flow, wherein the message includes a scheduling priority of the first service flow, and the first The scheduling priority of the service flow is the scheduling priority of the first service flow among multiple service flows; the first service flow is one of the multiple service flows;
  • the processing module 710 is used to schedule the first service flow according to the scheduling priority of the first service flow.
  • the message also includes bandwidth parameters of the first business flow, and the bandwidth parameters of the first business flow include the guaranteed bandwidth of the first business flow, and/or the maximum bandwidth of the first business flow; or, the bandwidth parameters of the first business flow include the guaranteed bandwidth ratio of the first business flow, and/or the maximum bandwidth ratio of the first business flow; wherein, the guaranteed bandwidth ratio of the first business flow is the ratio of the guaranteed bandwidth of the first business flow to the total bandwidth, the maximum bandwidth ratio of the first business flow is the ratio of the maximum bandwidth that the first business flow can occupy to the total bandwidth, and the total bandwidth is the shared bandwidth allocated to the multiple business flows.
  • the processing module 710 is used to, when scheduling the first business flow according to the scheduling priority of the first business flow, when the sum of the required bandwidths corresponding to the multiple business flows respectively is greater than the total bandwidth, if there is a second business flow among the multiple business flows, and the guaranteed bandwidth of the second business flow is greater than the required bandwidth of the second business flow, then the bandwidth allocated to the second business flow is equal to the required bandwidth of the second business flow; according to the scheduling priorities corresponding to the multiple business flows and the required bandwidths corresponding to the multiple business flows, respectively, the business flows other than the second business flow in the multiple business flows are allocated differential bandwidth in a descending order of scheduling priority, and the differential bandwidth is the difference between the guaranteed bandwidth of the second business flow and the required bandwidth of the second business flow.
  • the processing module 710 is used to, when scheduling the first business flow according to the scheduling priority of the first business flow, when the sum of the demand bandwidths corresponding to the multiple business flows respectively is greater than the total bandwidth, if the demand bandwidths corresponding to the multiple business flows respectively are greater than the corresponding guaranteed bandwidths, then the guaranteed bandwidth ratios corresponding to the multiple business flows respectively are satisfied, and the sum of the guaranteed bandwidth ratios corresponding to the multiple business flows respectively is less than or equal to 1; after satisfying the guaranteed bandwidth ratios corresponding to the multiple business flows respectively, according to the scheduling priorities corresponding to the multiple business flows respectively, the remaining bandwidth is allocated to part or all of the multiple business flows in a descending order of scheduling priority.
  • the processing module 710 is used to allocate remaining bandwidth to some or all of the multiple service flows in an order of scheduling priority from high to low, and to satisfy the maximum bandwidth ratio of some or all of the multiple service flows in the order.
  • the sum of actual bandwidths corresponding to the multiple service flows is equal to the total bandwidth.
  • the message includes a general wireless packet service tunneling protocol message header, and the general wireless packet service tunneling protocol message header includes the scheduling priority of the first service flow.
  • the multiple service flows are service flows corresponding to multiple terminal devices respectively, and the multiple terminal devices belong to the same terminal device group.
  • the multiple terminal devices are of different levels, and the scheduling priority of the first service flow is determined according to the level of the first terminal device.
  • the first service flow is a service flow corresponding to the service subscribed by the first terminal device, and the first terminal device is one of the multiple terminal devices.
  • the multiple service flows belong to the same QoS flow.
  • the device 700 may correspond to the access network device in the aforementioned method embodiment, and the operations and/or functions of each module in the device 700 are respectively for implementing the corresponding steps of the method of the access network device in the aforementioned method embodiment, and therefore the beneficial effects in the aforementioned method embodiment can also be achieved.
  • the beneficial effects in the aforementioned method embodiment can also be achieved.
  • they are not elaborated here.
  • Fig. 8 shows a schematic structural diagram of a communication device 800 according to an embodiment of the present application.
  • the device 800 includes: a processor 801 .
  • the device 800 is a user plane network element or a chip in a user plane network element
  • the processor 801 is used to call an interface to perform the following actions:
  • the scheduling priority of the first business flow is a scheduling priority of the first business flow among multiple business flows; the first business flow is one of the multiple business flows; receive a message; when the message belongs to the first business flow, schedule the first business flow according to the scheduling priority of the first business flow.
  • the device 800 can also be used to execute other steps and/or operations on the user plane network element side in the above embodiments, which are not described here for the sake of brevity.
  • the device 800 is a session management network element or a chip in a session management network element
  • the processor 801 is used to call an interface to perform the following actions:
  • the scheduling priority of the first service flow is a scheduling priority of the first service flow among multiple service flows; the first service flow is one of the multiple service flows; send a first rule to a user plane network element, where the first rule Used to indicate the scheduling priority of the first service flow.
  • the device 800 can also be used to execute other steps and/or operations on the session management network element side in the above embodiments, which are not described here for brevity.
  • the processor 801 when the device 800 is an access network device or a chip in an access network device, in a possible implementation, when the processor 801 is used to call an interface to perform the following actions: receiving a message in a first business flow, the message includes a scheduling priority of the first business flow, the scheduling priority of the first business flow is the scheduling priority of the first business flow among multiple business flows; the first business flow is one of the multiple business flows; and the first business flow is scheduled according to the scheduling priority of the first business flow.
  • apparatus 800 may also be used to execute other steps and/or operations on the access network device side in the foregoing embodiments, which are not described herein for the sake of brevity.
  • the processor 801 can call an interface to perform the above-mentioned transceiver action, wherein the called interface can be a logical interface or a physical interface, which is not limited.
  • the physical interface can be implemented by a transceiver.
  • the device 800 also includes a transceiver 803.
  • the device 800 further includes a memory 802 , and the memory 802 may store program codes in the above method embodiment, so as to facilitate calling by the processor 801 .
  • the device 800 includes a processor 801, a memory 802, and a transceiver 803, the processor 801, the memory 802, and the transceiver 803 communicate with each other through an internal connection path to transmit control and/or data signals.
  • the processor 801, the memory 802, and the transceiver 803 can be implemented by a chip, and the processor 801, the memory 802, and the transceiver 803 can be implemented in the same chip, or they can be implemented in different chips, or any two of the functions can be combined and implemented in one chip.
  • the memory 802 can store program code, and the processor 801 calls the program code stored in the memory 802 to implement the corresponding functions of the device 800.
  • the method disclosed in the above embodiment of the present application can be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by an integrated logic circuit of hardware in the processor or an instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and can also be a system chip (system on chip, SoC), a central processing unit (central processor unit, CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), a microcontroller (micro controller unit, MCU), a programmable logic device (programmable logic device, PLD) or other integrated chips.
  • SoC system on chip
  • SoC system on chip
  • CPU central processing unit
  • CPU central processor unit, CPU
  • network processor network processor
  • NP digital signal processing circuit
  • microcontroller micro controller unit, MCU
  • programmable logic device programmable logic device, PLD
  • the general processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application may be directly embodied as being executed by a hardware decoding processor, or may be executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchlink DRAM
  • DR RAM direct rambus RAM
  • the order of execution of the above-mentioned processes does not necessarily mean the order of execution.
  • the execution order of the process should be determined by its function and internal logic.
  • the various digital numbers or serial numbers involved in the above-mentioned processes are only distinguished for the convenience of description and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • the above is an example of three elements, A, B and C, to illustrate the optional items of the project.
  • the project includes at least one of the following: A, B, ..., and X"
  • the items that can be applied to the project can also be obtained according to the above rules.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: various media that can store program codes, such as USB flash drives, mobile hard disks, read-only memories ROM, random access memories RAM, magnetic disks or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种业务流调度方法及装置,该方法包括:用户面网元获取第一业务流的调度优先级,第一业务流的调度优先级为第一业务流在多个业务流中的调度优先级;第一业务流为多个业务流中的一个,用户面网元接收报文。在报文属于第一业务流时,用户面网元根据第一业务流的调度优先级对第一业务流进行调度。采用上述设计,可以实现对多个业务流中的不同业务流的调度优先级进行区分并根据不同业务流的调度优先级进行调度。

Description

一种业务流调度方法及装置
相关申请的交叉引用
本申请要求在2022年12月13日提交中华人民共和国知识产权局、申请号为202211604610.3、发明名称为“一种业务流调度方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及一种业务流调度方法及装置。
背景技术
在第5代移动通信技术(the 5th generation mobile communication technology,5G)***中,服务质量流(QoS Flow)可以承载很多内容,其中,每个QoS流可以承载多种业务。
当前,描述QoS流在终端设备和用户面网元之间的报文转发处理的参数可以包括以下参数:资源类型、优先级(priority level)、分组时延预算(包括核心网分组时延预算)、包错误率、平均窗口、最大数据突发卷等。
其中,上述参数中的优先级仅用于不同QoS流之间的优先级调度,而由于每个QoS流可以承载多种业务,不同业务对应的业务流也可能具有不同的优先级需求,但当前在QoS流内部的不同业务对应的业务流无法实现差异化调度。
此外,对于多个业务流共用一个固定带宽的其他可能场景也存在相同的问题。
发明内容
本申请提供一种业务流调度方法及装置,用以解决在多个业务流共用一个固定带宽时无法实现对多个业务流进行差异化调度的问题。
第一方面,本申请提供一种业务流调度方法,该方法包括:
用户面网元获取第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;所述用户面网元接收报文,在所述报文属于所述第一业务流时,所述用户面网元根据所述第一业务流的调度优先级对所述第一业务流进行调度。
采用上述设计,用户面网元可以获得业务流的调度优先级,进而能够对不同的调度优先级的业务流进行调度,实现对多个业务流进行差异化调度。
在一种可能的设计中,在用户面网元获取第一业务流的调度优先级时,所述用户面网元从会话管理网元接收第一规则,所述第一规则用于指示所述第一业务流的调度优先级。
在一种可能的设计中,所述第一规则包括第一预定义规则的名称,所述第一预定义规则包括所述第一业务流的调度优先级,所述第一预定义规则为所述用户面网元存储的多个预定义规则中的一个。
采用上述设计,用户面网元可以提前获得多个预定义规则,并在获得第一预定义规则的名称时,激活第一预定义规则。
在一种可能的设计中,所述用户面网元还获取所述第一业务流的带宽参数,所述第一业务流的带宽参数包括所述第一业务流的保障带宽,和/或所述第一业务流的最大带宽;或者,所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率,和/或所述第一业务流的最大带宽比率;其中,所述第一业务流的保障带宽比率为所述第一业务流的保障带宽与总带宽的比率,所述第一业务流的最大带宽比率为所述第一业务流所能占用的最大带宽与总带宽的比率,所述总带宽是为所述多个业务流分配的共用带宽。
采用上述设计,可以实现用户面网元在调度业务流时保证业务流的保障带宽,并基于业务流的调度优先级保证业务流的最大带宽。
在一种可能的设计中,所述第一预定义规则还包括所述第一业务的带宽参数。
在一种可能的设计中,在所述多个业务流属于同一个QoS流时,所述第一规则包括QoS执行规则的标识,所述QoS执行规则包括所述第一业务流的调度优先级。
采用上述设计,可以通过扩展QoS执行规则将第一业务流的调度优先级加入QoS执行规则。
在一种可能的设计中,所述QoS执行规则还包括所述第一业务流的带宽参数。
在一种可能的设计中,在所述多个业务流属于同一个QoS流时,所述第一规则为包检测规则。
在一种可能的设计中,在所述用户面网元根据所述第一业务流的调度优先级对所述第一业务流进行调度时,在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若在所述多个业务流中存在第二业务流,所述第二业务流的保障带宽大于所述第二业务流的需求带宽,则为所述第二业务流分配的带宽等于所述第二业务流的需求带宽;根据所述多个业务流分别对应的调度优先级和所述多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为所述多个业务流中除所述第二业务流之外的业务流分配差值带宽,所述差值带宽为所述第二业务流的保障带宽与所述第二业务流的需求带宽的差值。
采用上述设计,可以实现对于保障带宽大于需求带宽的业务流时,保证该业务流的需求带宽,基于其他业务流的调度优先级和需求带宽,为这些业务流分配差值带宽,进而提升总带宽的利用效率。
在一种可能的设计中,在所述用户面网元根据所述第一业务流的调度优先级对所述第一业务流进行调度时,在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,满足所述多个业务流分别对应的保障带宽比率,所述多个业务流分别对应的保障带宽比率之和小于或等于1;若所述总带宽有剩余,根据所述多个业务流分别对应的调度优先级,按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽。
采用上述设计,在各个业务流的需求带宽均大于相应的保障带宽时,优先保证各个业务流的保障带宽,基于各个业务流的调度优先级和需求带宽,为各个业务流分配剩余带宽。因此,可以实现保证各个业务流的保障带宽,且优先满足高调度优先级的业务流的需求带宽。
在一种可能的设计中,在按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽时,按照所述顺序满足所述多个业务流中部分或全部业务流的最大带宽比率。
采用上述设计,可以基于各个业务流的调度优先级、需求带宽和最大带宽比率,为各个业务流分配剩余带宽,进而可以实现优先满足高调度优先级的业务流的最大带宽比率。
在一种可能的设计中,所述多个业务流分别对应的实际带宽之和等于所述总带宽。
采用上述设计,可以提升总带宽的利用效率。
在一种可能的设计中,所述报文为下行报文;所述用户面网元在所述下行报文中添加所述第一业务流的调度优先级,获得第一待发送下行报文;所述用户面网元向接入网设备发送所述第一待发送下行报文。
采用上述设计可以实现将业务流的调度优先级通过下行报文传输至接入网设备。
在一种可能的设计中,所述第一待发送下行报文包括通用无线分组业务隧道协议报文头,所述通用无线分组业务隧道协议报文头包括所述第一业务流的调度优先级。
在一种可能的设计中,所述报文为下行报文;所述用户面网元在所述下行报文中添加反射QoS指示和所述QoS流的QoS流标识,获得第二待发送下行报文。所述用户面网元向接入网设备发送所述第二待发送下行报文。
采用上述设计可以实现将反射QoS指示和所述QoS流的QoS流标识通过下行报文传输至接入网设备,以使接入网设备将反射QoS指示和所述QoS流的QoS流标识传输至终端设备。
在一种可能的设计中,所述第二待发送下行报文包括通用无线分组业务隧道协议报文头,所述通用无线分组业务隧道协议报文头包括所述反射QoS指示和所述QoS流的QoS流标识。
在一种可能的设计中,所述多个业务流为多个终端设备分别对应的业务流,所述多个终端设备属于同一个终端设备组。
在一种可能的设计中,所述多个终端设备的等级不同,所述第一业务流的调度优先级是根据第一终端设备的等级确定的,所述第一业务流为所述第一终端设备签约的业务对应的业务流,所述第一终端设备为所述多个终端设备中的一个。
在一种可能的设计中,所述多个业务流属于同一个QoS流。
第二方面,本申请提供一种业务流调度方法,该方法包括:会话管理网元获取第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流 为所述多个业务流中的一个;所述会话管理网元向用户面网元发送第一规则,所述第一规则用于指示所述第一业务流的调度优先级。
采用上述设计,会话管理网元可以获得业务流的调度优先级,并通过第一规则向用户面网元指示业务流的调度优先级,以使用户面网元可以根据业务流的调度优先级,进而对不同的调度优先级的业务流进行调度,实现对多个业务流进行差异化调度。
在一种可能的设计中,在会话管理网元获取第一业务流的调度优先级时,所述会话管理网元从策略控制网元接收策略与计费控制规则,所述策略与计费控制规则用于指示所述第一业务流的调度优先级;所述会话管理网元根据所述策略与计费控制规则确定所述第一规则。
采用上述设计,会话管理网元可以从策略控制网元接收策略与计费控制规则,进而根据策略与计费控制规则确定第一规则。
在一种可能的设计中,所述策略与计费控制规则包括第一预定义规则的名称,所述第一规则包括所述第一预定义规则的名称;所述第一预定义规则包括所述第一业务流的调度优先级,所述第一预定义规则为所述会话管理网元和所述用户面网元存储的多个预定义规则中的一个。
采用上述设计,会话管理网元可以提前获得多个预定义规则,并在获得第一预定义规则的名称时,激活第一预定义规则,以及通过第一规则携带第一预定义规则的名称。
在一种可能的设计中,所述策略与计费控制规则包括所述第一业务流的调度优先级;所述第一规则包括QoS执行规则的标识,所述QoS执行规则包括所述第一业务流的调度优先级。
采用上述设计,可以通过扩展QoS执行规则将第一业务流的调度优先级加入QoS执行规则。
在一种可能的设计中,所述会话管理网元根据所述策略与计费控制规则确定QoS规则,所述QoS规则包括所述第一业务流的调度优先级;所述会话管理网元向所述终端设备发送所述QoS规则。
在一种可能的设计中,所述第一预定义规则还包括反射QoS指示。
在一种可能的设计中,所述策略与计费控制规则还包括反射QoS指示;所述第一规则还包括所述反射QoS指示。
在一种可能的设计中,所述会话管理网元还获取所述第一业务流的带宽参数,所述第一业务流的带宽参数包括所述第一业务流的保障带宽,和/或所述第一业务流的最大带宽;或者,所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率,和/或所述第一业务流的最大带宽比率;其中,所述第一业务流的保障带宽比率为所述第一业务流的保障带宽与总带宽的比率,所述第一业务流的最大带宽比率为所述第一业务流所能占用的最大带宽与总带宽的比率,所述总带宽是为所述多个业务流分配的共用带宽。
在一种可能的设计中,所述QoS规则还包括所述第一业务流的带宽参数。
在一种可能的设计中,所述多个业务流为多个终端设备分别对应的业务流,所述多个终端设备属于同一个终端设备组。
在一种可能的设计中,所述多个终端设备的等级不同,所述第一业务流的调度优先级是根据第一终端设备的等级确定的,所述第一业务流为所述第一终端设备签约的业务对应的业务流,所述第一终端设备为所述多个终端设备中的一个。
在一种可能的设计中,所述多个业务流属于同一个服务质量QoS流。
第三方面,本申请提供一种业务流调度方法,该方法包括:
接入网设备接收第一业务流中的报文,所述报文包括第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;所述接入网设备根据所述第一业务流的调度优先级对所述第一业务流进行调度。
采用上述设计,接入网设备可以根据接收到的报文中的业务流的调度优先级,对该业务流进行调度,进而能够对不同的调度优先级的业务流进行调度,实现对多个业务流进行差异化调度。
在一种可能的设计中,所述报文还包括所述第一业务流的带宽参数,所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率,和/或所述第一业务流的最大带宽比率;
其中,所述第一业务流的保障带宽比率为所述第一业务流的保障带宽与总带宽的比率,所述第一业务流的最大带宽比率为所述第一业务流所能占用的最大带宽与总带宽的比率,所述总带宽是为所述多个业务流分配的共用带宽。
在一种可能的设计中,在所述接入网设备根据所述第一业务流的调度优先级对所述第一业务流进行 调度时,在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若在所述多个业务流中存在第二业务流,所述第二业务流的保障带宽大于所述第二业务流的需求带宽,则为所述第二业务流分配的带宽等于所述第二业务流的需求带宽;根据所述多个业务流分别对应的调度优先级和所述多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为所述多个业务流中除所述第二业务流之外的业务流分配差值带宽,所述差值带宽为所述第二业务流的保障带宽与所述第二业务流的需求带宽的差值。
采用上述设计,可以实现对于保障带宽大于需求带宽的业务流时,保证该业务流的需求带宽,基于其他业务流的调度优先级和需求带宽,为这些业务流分配差值带宽,进而提升总带宽的利用效率。
在一种可能的设计中,在所述接入网设备根据所述第一业务流的调度优先级对所述第一业务流进行调度时,在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,满足所述多个业务流分别对应的保障带宽比率,所述多个业务流分别对应的保障带宽比率之和小于或等于1;若所述总带宽有剩余,根据所述多个业务流分别对应的调度优先级,按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽。
采用上述设计,在各个业务流的需求带宽均大于相应的保障带宽时,优先保证各个业务流的保障带宽,基于各个业务流的调度优先级和需求带宽,为各个业务流分配剩余带宽。因此,可以实现保证各个业务流的保障带宽,且优先满足高调度优先级的业务流的需求带宽。
在一种可能的设计中,在按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽时,按照所述顺序满足所述多个业务流中部分或全部业务流的最大带宽比率。
采用上述设计,可以基于各个业务流的调度优先级、需求带宽和最大带宽比率,为各个业务流分配剩余带宽,进而可以实现优先满足高调度优先级的业务流的最大带宽比率。
在一种可能的设计中,所述多个业务流分别对应的实际带宽之和等于所述总带宽。
采用上述设计,可以提升总带宽的利用效率。
在一种可能的设计中,所报文包括通用无线分组业务隧道协议报文头,所述通用无线分组业务隧道协议报文头包括所述第一业务流的调度优先级。
在一种可能的设计中,所述多个业务流为多个终端设备分别对应的业务流,所述多个终端设备属于同一个终端设备组。
在一种可能的设计中,所述多个终端设备的等级不同,所述第一业务流的调度优先级是根据第一终端设备的等级确定的,所述第一业务流为所述第一终端设备签约的业务对应的业务流,所述第一终端设备为所述多个终端设备中的一个。
在一种可能的设计中,所述多个业务流属于同一个QoS流。
第四方面,本申请提供一种业务流调度方法,该方法包括:
终端设备获取QoS规则,所述QoS规则包括第一业务流的调度优先级,所述第一业务流为所述终端设备签约的业务,所述第一业务流的调度优先级为所述第一业务流在QoS流中的调度优先级;所述终端设备生成上行报文;在上行报文为属于所述第一业务流时,所述终端设备根据所述第一业务流的调度优先级对所述第一业务流进行调度。
采用上述设计,终端设备可以根据QoS规则中的业务流的调度优先级,对该业务流中的上行报文进行调度。
在一种可能的设计中,在终端设备获取QoS规则时,所述终端设备从会话管理网元接收所述QoS规则。
在一种可能的设计中,在终端设备获取QoS规则时,所述终端设备接收下行报文,所述下行报文包括所述第一业务流的调度优先级、反射QoS指示和所述QoS流的QoS流标识;所述终端设备根据所述第一业务流的五元组、所述第一业务流的调度优先级、所述QoS流的QoS流标识和所述反射QoS指示生成所述QoS规则。
采用上述设计,终端设备可以根据下行报文中的一业务流的调度优先级、反射QoS指示等信息生成QoS规则。
在一种可能的设计中,所述QoS流规则还包括所述第一业务流的带宽参数,所述第一业务流的带宽参数包括所述第一业务流的保障带宽,和/或所述第一业务流的最大带宽;或者,所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率,和/或所述第一业务流的最大带宽比率;其中,所述第一业务流的保障带宽比率为所述第一业务流所占用的最低带宽与所述QoS流对应的总带宽的比率,所 述第一业务流的最大带宽比率为所述第一业务流所占用的最大带宽与所述QoS流对应的总带宽的比率。
在一种可能的设计中,在所述终端设备根据所述第一业务流的调度优先级对所述第一业务流进行调度时,在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若在所述多个业务流中存在第二业务流,所述第二业务流的保障带宽大于所述第二业务流的需求带宽,则为所述第二业务流分配的带宽等于所述第二业务流的需求带宽;根据所述多个业务流分别对应的调度优先级和所述多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为所述多个业务流中除所述第二业务流之外的业务流分配差值带宽,所述差值带宽为所述第二业务流的保障带宽与所述第二业务流的需求带宽的差值。
采用上述设计,可以实现对于保障带宽大于需求带宽的业务流时,保证该业务流的需求带宽,基于其他业务流的调度优先级和需求带宽,为这些业务流分配差值带宽,进而提升总带宽的利用效率。
在一种可能的设计中,在所述终端设备根据所述第一业务流的调度优先级对所述第一业务流进行调度时,在所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率时,若所述QoS流承载的至少一个业务分别对应的需求带宽之和大于所述QoS流对应的总带宽时,根据所述QoS流承载的至少一个业务中每个业务的调度优先级,按照调度优先级由高到低的顺序依次满足每个业务的保障带宽比率,所述至少一个业务包括所述第一业务流,所述至少一个业务分别对应的保障带宽比率之和小于或等于1。
采用上述设计,在各个业务流的需求带宽均大于相应的保障带宽时,优先保证各个业务流的保障带宽,基于各个业务流的调度优先级和需求带宽,为各个业务流分配剩余带宽。因此,可以实现保证各个业务流的保障带宽,且优先满足高调度优先级的业务流的需求带宽。
在一种可能的设计中,在按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽时,按照所述顺序满足所述多个业务流中部分或全部业务流的最大带宽比率。
采用上述设计,可以基于各个业务流的调度优先级、需求带宽和最大带宽比率,为各个业务流分配剩余带宽,进而可以实现优先满足高调度优先级的业务流的最大带宽比率。
在一种可能的设计中,所述多个业务流分别对应的实际带宽之和等于所述总带宽。
采用上述设计,可以提升总带宽的利用效率。
在一种可能的设计中,所述终端设备在所述上行报文中添加所述第一业务流的调度优先级,获得待发送上行报文;所述终端设备向接入网设备发送所述待发送上行报文。
采用上述设计,终端设备可以在上行报文中添加业务流的调度优先级。
在一种可能的设计中,所述待发送上行报文包括通用无线分组业务隧道协议报文头,所述通用无线分组业务隧道协议报文头包括所述第一业务流的调度优先级。
第五方面,本申请实施例提供了一种通信装置,包括用于执行以上任一方面中各个步骤的单元。
第六方面,本申请实施例提供了一种通信设备,包括至少一个处理元件和至少一个存储元件,其中该至少一个存储元件用于存储程序和数据,该至少一个处理元件用于读取并执行存储元件存储的程序和数据,以使得本申请以上任一方面提供的方法被实现。
第七方面,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述任一方面提供的方法。
第八方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被计算机执行时,使得所述计算机执行上述任一方面提供的方法。
第九方面,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,执行上述任一方面提供的方法。
第十方面,本申请实施例还提供了一种芯片***,该芯片***包括处理器,用于支持计算机装置实现上述任一方面提供的方法。在一种可能的设计中,所述芯片***还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,提供一种通信***,包括第三方面所述的通信装置和第四方面所述的通信装置。
本申请在上述各方面提供的实现的基础上,还可以进行进一步组合以提供更多实现。
附图说明
图1为本申请应用的移动通信***的架构示意图;
图2为本申请实施例提供的一种业务流调度方法的概述流程图;
图3为本申请实施例提供的一种在5G通信***中业务流调度的流程图;
图4为本申请实施例提供的另一种在5G通信***中业务流调度的流程图;
图5为本申请实施例提供的又一种在5G通信***中业务流调度的流程图;
图6为本申请实施例提供的再一种在5G通信***中业务流调度的流程图;
图7为本申请实施例提供的一种通信装置的结构示意图;
图8为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”以及相应术语标号等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、***、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“至少一项”是指一项或者多项,“多项”是指两项或两项以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
为了便于理解本申请的实施例的技术方案,下面首先简要介绍相关的现有技术。
本申请实施例提供的技术方案可以应用于各种通信***。例如:可以适用于4G***或5G***,也可以适用于其它面向未来的新***等。本申请实施例对此不作具体限定。此外,术语“***”可以和“网络”相互替换。
1.5G***
如图1所示为第三代合作伙伴计划(3rd generation partnership project,3GPP)标准制定的5G的通信***的架构图。该通信***包括终端设备(例如,用户设备(user equipment,UE)),无线接入网(radio access network,RAN),核心网(Core network,CN)。数据网络(data network,DN)在逻辑上,核心网的网元它们可以分为用户面和控制面两部分,控制面负责移动网络的管理,用户面负责业务数据的传输。
其中,终端设备是移动用户与网络交互的入口,能够提供基本的计算能力,存储能力,向用户显示业务窗口,接收用户操作输入。下一代终端设备(NextGen UE)可以采用新空口技术,与RAN建立信号连接,数据连接,从而传输控制信号和业务数据到移动网络。终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端,移动台(mobile station,MS),终端(terminal),软终端等等,例如水表、电表、传感器等。
RAN:部署在靠近终端设备的位置,为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等确定不同质量的传输隧道来传输用户数据。RAN能够管理自身的资源,合理利用,按需为终端设备提供接入服务,并负责把控制信号和用户数据在终端设备和核心网之间转发。
核心网:负责维护移动网络的签约数据,管理移动网络的网元,为终端设备提供会话管理,移动性管理,策略管理,安全认证等功能。在终端设备附着的时候,为终端设备提供入网认证;在终端设备有业务请求时,为终端设备分配网络资源;在终端设备移动的时候,为终端设备更新网络资源;在终端设备空闲的时候,为终端设备提供快恢复机制;在终端设备去附着的时候,为终端设备释放网络资源;在终端设备有业务数据时,为终端设备提供数据路由功能,如转发上行数据到数据网络;或者从数据网络接收终端设备的下行数据,转发到RAN,从而由RAN发送给终端设备。
数据网络(data network,DN):为用户提供业务服务的数据网络,一般客户端位于终端设备,服务端位于数据网络。数据网络可以是私有网络,如局域网,也可以是不受运营商管控的外部网络,例如互联网(Internet),还可以是运营商共同部署的专有网络,例如提供IP多媒体网络子***(IP multimedia  core network subsystem,IMS)服务的网络。
5G网络架构对下一代核心网设备的网络架构进行了重新调整,通常控制面会采用服务化接口对外提供相关功能。控制面与用户面之间通过N4接口进行消息交互,实现控制面到用户面的用户策略下发和用户面到控制面的事件上报处理。按照目前的网络架构,策略控制网元负责用户签约的用户策略定义、下发和更新功能,会话管理网元需要负责管理用户面网元的选择,策略下发,事件上报、用户面网元的心跳检查、用户面网元的负荷上报等非会话级的管理功能。用户面网元负责基于会话管理网元为终端设备建立的会话上下文及其策略,对用户的数据报文进行业务感知、规则和策略匹配、执行计费与控制策略等。
其中,核心网用户面包括用户面功能(user plane function,UPF);核心网控制面包括接入和移动性管理功能(access and mobility management function,AMF),会话管理功能(session management function,SMF),网络开放功能(network exposure function,NEF),网络功能仓储功能(NF repository function,NRF),统一数据管理(unified data management,UDM),策略控制功能(policy control function,PCF),应用功能(application function,AF),证服务器功能(authentication server function,AUSF),网络切片选择功能(network slice selection function,NSSF)。
核心网控制面采用服务化架构,控制面网元之间的交互采用服务调用的方式,来替换传统架构中的点对点通信方式。在服务化架构中,控制面网元会向其他控制面网元开放服务,供其他控制面网元调用;在点对点通信中,控制面网元之间通信接口会存储一套特定的消息,只能由接口两端的控制面网元在通信时使用。
以下对核心网中的部分功能实体的功能进行简单介绍:
1、会话管理网元:主要用于会话管理、终端设备的IP地址分配和管理、选择可管理用户设备平面功能、策略控制、或收费功能接口的终结点以及下行数据通知等。在5G通信中,会话管理网元可以是SMF网元,在未来通信如6G通信中,会话管理功能网元仍可以是SMF网元,或者有其它名称,本申请对此不作限定。Nsmf是SMF提供的基于服务的接口,SMF可以通过Nsmf与其他的网络功能通信。
2、接入管理网元:主要用于移动性管理和接入管理等,例如可以是4G通信网络中的移动性管理实体(mobility management entity,MME)功能或者5G网络中的AMF网元。在未来通信如6G通信中,接入管理网元仍可以是AMF网元,或者有其它名称,本申请对此不作限定。Namf是AMF提供的基于服务的接口,AMF可以通过Namf与其他的网络功能通信。
3、网络开放网元:用于安全地向外部开放由3GPP网络功能提供的业务和能力等。在5G通信中,网络开放网元可以是NEF网元,在未来通信如6G通信中,网络开放功能网元仍可以是NEF网元,或者有其它名称,本申请对此不作限定。其中Nnef是NEF提供的基于服务的接口,NEF可以通过Nnef与其他的网络功能通信。
4、网络存储网元:用于提供服务注册、发现和授权,并维护可用的网络功能(network function,NF)实例信息,可以实现网络功能和服务的按需配置以及NF之间的互连。在5G通信中,网络存储网元可以是NRF网元,在未来通信如6G通信中,网络存储功能网元仍可以是NRF网元,或者有其它名称,本申请对此不作限定。Nnrf是NRF提供的基于服务的接口,NRF可以通过Nnrf与其他的网络功能通信。
5、策略控制网元:用于指导网络行为的统一策略框架,为控制平面功能网元(例如AMF,SMF等)提供策略规则信息等。在5G通信中,策略控制网元可以是PCF网元,在未来通信如6G通信中,策略控制网元仍可以是PCF网元,或者有其它名称,本申请对此不作限定。其中Npcf是PCF提供的基于服务的接口,PCF可以通过Npcf与其他的网络功能通信。
6、数据管理网元:用于处理用户标识、签约、接入鉴权、注册、或移动性管理等。在5G通信中,数据管理网元可以是UDM网元,在未来通信如6G通信中,数据管理网元仍可以是UDM网元,或者有其它名称,本申请对此不作限定。其中Nudm是UDM提供的基于服务的接口,UDM可以通过Nudm与其他的网络功能通信。
7、应用网元:用于进行应用影响的数据路由,接入网络开放功能,或与策略框架交互进行策略控制等。在5G通信中,应用网元可以是AF网元,在未来通信如6G通信中,应用网元仍可以是AF网元,或者有其它名称,本申请对此不作限定。Naf是AF提供的基于服务的接口,AF可以通过Naf与其他的网络功能通信。
8、用户面网元:用于分组路由和转发、或用户面数据的服务质量(quality of service,QoS)处理等。在5G通信中,用户面网元可以是用户面功能(user plane function,UPF)网元,在未来通信如6G通信中,用户面网元仍可以是UPF网元,或者有其它名称,本申请对此不作限定。
9、认证服务网元:主要用于用户鉴权等。在5G通信中,认证服务网元可以是AUSF网元,在未来通信如6G通信中,认证服务网元仍可以是AUSF网元,或者有其它名称,本申请对此不作限定。Nausf是AUSF提供的基于服务的接口,AUSF可以通过Nausf与其他的网络功能通信。
10、网络切片选择功能网元:用于为终端设备选择网络切片,在5G通信中,网络切片选择功能网元可以是NSSF网元,在未来通信如6G通信中,网络切片选择功能网元仍可以是NSSF网元,或者有其它名称,本申请对此不作限定。
可以理解的是,核心网还可以包括其他网元,本申请对此不作限定。
2.QoS
每一个QoS流由服务质量流标识(QoS flow ID,QFI)唯一识别,QFI在每个PDU会话中是唯一的。
5G QoS分为保证速率比特流(GBR Qos flow)和非保证速率比特流(Non-GBR Qos flow)两种类型,具体可以包括但不限于以下参数:5G QoS标识(5G QoS indentifier,5QI))(对应QoS级别),分配保留优先级(allocation and retention priority,ARP)。
其中,保证速率比特流的专有参数可以包括但不限于以下参数:保证比特流速率、最大比特流速率、通知控制(notification control)、最大可容忍丢包率(上下行语音媒体)(maximum packet loss rate-UL/DL(voice media))等。非保证速率比特流的专有参数可以包括但不限于单个PDU会话总最大比特速率(session-AMBR)、UE总最大比特率(UE-AMBR)、反射型QoS属性(reflective QoS attribute,RQA)等。
在5G QoS流映射方式下,在下行数据传输过程中,UPF根据服务数据流(service data flows,SDF)模板将数据包映射到QoS流,并在N3隧道头标记QFI,接入网设备(access network,AN)根据QFI将数据包映射到数据无线承载(data radio bearer,DBR)上,并传输至UE。在上行数据传输过程中,UE的非接入层(non-access stratum,NAS)层根据QoS规则将数据包映射到QoS流,接入层(access stratum,AS)层负责QoS流到DRB的映射。其中,QoS规则包含QoS流对应的QFI,一个包过滤集合以及一个优先级值。AN根据DRB上接收到的数据包的QFI,在N3隧道头标记QFI。UPF接收AN发送的数据包,并执行验证。
在QoS流建立机制中,支持信令控制QoS机制和反射QoS机制(仅用于非保证速率比特流类型的QoS流)。
本申请实施例提供的方法可以应用于多个业务流共用一个固定带宽的场景,用于实现对多个业务流进行差异化调度。
在第一种可能的应用场景中,多个业务流为多个终端设备分别对应的业务流,多个终端设备属于同一个终端设备组。
示例性地,终端设备组包括UE1、UE2和UE3,其中,UE1签约业务A,UE2签约业务B,UE3签约业务C,则多个业务流包括业务A的业务流,业务B的业务流,业务C的业务流。
此外,终端设备组中的终端设备也可以签约相同的业务,本申请对此不作限定。例如,终端设备组包括UE1、UE2和UE3,其中,UE1签约业务A,UE2签约业务A,UE3签约业务C,则多个业务流包括与UE1对应的业务A的业务流,与UE2对应的业务A的业务流,业务C的业务流。
示例性地,终端设备组包括UE1、UE2和UE3,其中,UE1签约业务A,UE2签约业务B,UE3签约业务C和业务D,则多个业务流包括业务A的业务流,业务B的业务流,业务C的业务流和业务D的业务流。
在第二种可能的应用场景中,多个业务流属于同一个QoS流,此时多个业务流为一个终端设备签约的多个业务分别对应的业务流。例如,UE1签约业务A和业务B,业务A的业务流与业务B的业务流属于同一个QoS流。
可以理解的是,上述两种可能的应用场景仅为举例,不作为本申请的限定。本申请中所涉及的多个业务流均是指共用一个固定带宽的多个业务流。
以下对本申请涉及的几个技术概念进行说明:
1、业务的调度优先级
针对多个业务流中的任意一个业务流,该业务流的调度优先级为该业务流在多个业务流中的调度优先级,即该业务流的调度优先级用于确定该业务流在多个业务流中的调度先后顺序。
示例性地,第一业务流的调度优先级为第一业务流在多个业务流中的调度优先级,第一业务流为多个业务流中的一个。
作为一种可能的设计,在第一种可能的应用场景中,多个终端设备的等级可以相同或不同。当多个终端设备的等级不同时,第一业务流的调度优先级可以根据第一终端设备的等级确定的,其中,第一业务流为第一终端设备签约的业务对应的业务流,第一终端设备为多个终端设备中的一个。
当第一终端设备的等级高于第二终端设备的等级时,第一业务流的调度优先级高于第二业务流的调度优先级。其中,第二终端设备为多个终端设备中的一个,第二业务流为第二终端设备签约的业务对应的业务流。
示例性地,终端设备组包括UE1、UE2和UE3,其中,UE1签约业务A,UE2签约业务B,UE3签约业务C。若UE1的等级为等级1、UE2的等级为等级1,UE3的等级为等级2,其中,等级1高于等级2,则业务A的业务流的调度优先级与业务B的业务流的调度优先级相同,业务A的业务流的调度优先级高于业务C的业务流的调度优先级。
示例性地,终端设备组包括UE1、UE2和UE3,其中,UE1签约业务A,UE2签约业务B,UE3签约业务C和业务D。若UE1为金牌用户、UE2为银牌用户,UE3为铜牌用户,其中,金牌用户的等级高于银牌用户的等级,银牌用户的等级高于铜牌用户的等级,则业务A的业务流的调度优先级高于业务B的业务流的调度优先级,业务B的业务流的调度优先级高于业务C的业务流的调度优先级,业务C的业务流的调度优先级可以与业务D的业务流的调度优先级相同。
作为一种可能的设计,在第二种可能的应用场景中,每个业务流的调度优先级可以根据终端设备的签约信息确定。
可以理解的是,业务流的调度优先级还可以采用其他方式确定,本申请对此不作限定。
2、业务流的带宽参数
以第一业务流的带宽参数为例,第一业务流的带宽参数包括第一业务流的保障带宽,和/或所述第一业务流的最大带宽,或者第一业务流的带宽参数可以包括第一业务流的保障带宽比率,和/或第一业务流的最大带宽比率。
其中,第一业务流的保障带宽比率为第一业务流的保障带宽与总带宽的比率,其中,保障带宽又可称为预留带宽。在第一业务流的实际带宽低于保障带宽时,第一业务流将不受到管控处理,但不代表第一业务流的实际带宽一定要高于保障带宽。
第一业务流的最大带宽比率为第一业务流所能占用的最大带宽与总带宽的比率。其中,第一业务流的最大带宽比率又可称为第一业务流的最大突发带宽比率,最大带宽也是指该业务在QoS策略中运行占用的最大带宽比例,在第一业务流的实际带宽超过最大带宽时,第一业务流超过最大带宽限制的流量将会被管控的。
需要说明的是,这里的总带宽是指为多个业务流分配的共用带宽,即一个固定带宽。总带宽又可称为管道带宽。第一业务流的保障带宽可以由总带宽和第一业务流的保障带宽比率相乘获得,第一业务流的最大带宽可以由总带宽和第一业务流的最大带宽比率相乘获得。
基于此,本申请提供一种业务流调度方法,如图2所述,该方法包括:
步骤200:用户面网元获取第一业务流的调度优先级,第一业务流的调度优先级为第一业务流在多个业务流中的调度优先级,第一业务流为多个业务流中的一个。
其中,多个业务流以及第一业务流的调度优先级的相关描述可以参考前文中的相关内容,此处不再赘述。
在一种可能的实现方式中,用户面网元可以提前配置多个业务流的调度优先级,或者用户面网元可以通过从其他网元(例如,会话管理网元等)获取多个业务流的调度优先级。下述仅以用户面网元获取第一业务流的调度优先级为例进行说明。
此外,用户面网元还可以获取第一业务流的带宽参数,其中,用户面网元获取第一业务流的带宽参 数的具体方式与用户面网元获取第一业务流的调度优先级的具体方式类似。其中,第一业务流的带宽参数包括的具体内容可以参考前文中的相关内容,此处不再赘述。
示例性地,用户面网元可以从会话管理网元接收第一规则,第一规则用于指示第一业务流的调度优先级。可选地,第一规则还用于指示第一业务流的带宽参数。
其中,第一规则可以为报文检测规则(packet detection rule,PDR)。
示例性地,会话管理网元从策略控制网元接收策略与计费控制(policy and charging control,PCC)规则,策略与计费控制规则用于指示第一业务流的调度优先级。会话管理网元可以根据策略与计费控制规则确定第一规则,并向用户面网元发送第一规则。
在一示例中,策略与计费控制规则包括第一预定义规则的名称。会话管理网元可以根据策略与计费控制规则确定第一规则,第一规则包括第一预定义规则的名称。
其中,第一预定义规则包括第一业务流的调度优先级,第一预定义规则为会话管理网元和用户面网元存储的多个预定义规则中的一个。可选地,第一预定义规则还包括第一业务流的带宽参数。具体可以参考下述如图4和图5所示的实施例。
需要说明的是,会话管理网元保存的第一预定义规则的一部分内容(以下简称第一部分内容),用户面网元保存的第一预定义规则的另一部分内容(以下简称第二部分内容),两部分内容共同构成第一预定义规则,第一部分内容和第二部分内容可以存在重叠的内容,同时也存在不重叠的内容。
此外,在第二种可能的应用场景中,第一预定义规则还可以包括反射QoS指示(reflective QoS indication,RQI)。若第一预定义规则不包括反射QoS指示,会话管理网元还可以根据策略与计费控制规则确定QoS规则,QoS规则包括第一业务流的调度优先级。会话管理网元向终端设备发送QoS规则。可选地,若第一预定义规则还包括第一业务流的带宽参数,则QoS规则还包括第一业务流的带宽参数。
在另一示例中,在第二种可能的应用场景中,会话管理网元可以根据策略与计费控制规则确定第一规则,第一规则包括QoS执行规则(QoS enforcement rule,QER)的标识,QoS执行规则包括第一业务流的调度优先级,也即会话管理网元可以将第一业务流的调度优先级扩展到第一规则引用的QoS执行规则中。可选地,若策略与计费控制规则还包括第一业务流的带宽参数,则QoS执行规则还可以包括第一业务流的带宽参数。具体可以参考下述如图3所示的实施例。
此外,策略与计费控制规则还可以包括反射QoS指示,则第一规则还可以包括反射QoS指示。若策略与计费控制规则不包括反射QoS指示,会话管理网元还可以根据策略与计费控制规则确定QoS规则,QoS规则包括第一业务流的调度优先级。会话管理网元向终端设备发送QoS规则。可选地,若策略与计费控制规则还包括第一业务流的带宽参数,则QoS规则还可以包括第一业务流的带宽参数。
步骤210:用户面网元接收报文。
示例性地,这里的报文可以为上行报文或下行报文,本申请对此不作限定。
示例性地,若报文为下行报文,用户面网元可以在下行报文中添加第一业务流的调度优先级,获得第一待发送下行报文,用户面网元向接入网设备发送第一待发送下行报文。
其中,第一待发送下行报文包括通用无线分组业务隧道协议(GPRS tunneling protocol,GTP)报文头,通用无线分组业务隧道协议报文头包括第一业务流的调度优先级。
在一种可能的设计中,在第二种可能的应用场景中,用户面网元除了可以在下行报文中添加第一业务流的调度优先级,用户面网元还可以在下行报文中添加反射QoS指示和QoS流的QoS流标识,获得第二待发送下行报文,用户面网元向接入网设备发送第二待发送下行报文。其中,反射QoS指示和QoS流的QoS流标识也可以由通用无线分组业务隧道协议报文头携带。
步骤220:在报文属于第一业务流时,用户面网元根据第一业务流的调度优先级对第一业务流进行调度。
示例性地,用户面网元可以根据报文检测规则中的报文检测信息(packet detection information,PDI)确定检测到的报文属于第一业务流。
示例性地,用户面网元在根据第一业务流的调度优先级对第一业务流进行调度时,可以采用但不限于如下规则:
首先,用户面网元可以判断多个业务流分别对应的需求带宽之和是否大于总带宽,若多个业务流分别对应的需求带宽之和小于或等于总带宽,则用户面网元可以保证多个业务流分别对应的需求带宽。
若多个业务流分别对应的需求带宽之和大于总带宽,即总带宽不够用,用户面网元可以采用如下规 则对多个业务流进行调度:
规则(1):
用户面网元根据多个业务流的调度优先级由高至低的顺序,对多个业务流进行调度,使得多个业务流分别对应的实际带宽之和等于总带宽,也即,多个业务流分别对应的实际带宽之和尽量用满总带宽,又可描述为多个业务流分别对应的实际带宽之和接近总带宽。
规则(2):
若在多个业务流中存在第二业务流,第二业务流的保障带宽大于第二业务流的需求带宽,则为第二业务流分配的带宽等于第二业务流的需求带宽,进一步地,根据多个业务流分别对应的调度优先级和多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为多个业务流中除第二业务流之外的业务流分配差值带宽,差值带宽为第二业务流的保障带宽与第二业务流的需求带宽的差值。
采用上述规则,可以实现对于保障带宽大于需求带宽的业务流时,保证该业务流的需求带宽,基于其他业务流的调度优先级和需求带宽,为这些业务流分配差值带宽,进而提升总带宽的利用效率。
规则(3):
用户面网元优先满足多个业务流分别对应的保障带宽比率,其中,多个业务流分别对应的保障带宽比率之和小于或等于1。在满足多个业务流分别对应的保障带宽比率之后,根据多个业务流分别对应的调度优先级和多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为多个业务流中的部分或全部业务流分配剩余带宽,以实现每个业务流的实际带宽与总带宽的比值大于或等于该业务流的保障带宽比率。
在一种可能的实现方式中,在按照调度优先级由高到低的顺序为多个业务流中的部分或全部业务流分配剩余带宽时,按照该顺序满足多个业务流中部分或全部业务流的需求带宽,以实现调度优先级较高的业务流的需求带宽被优先满足。
在一种可能的实现方式中,在按照调度优先级由高到低的顺序为多个业务流中的部分或全部业务流分配剩余带宽时,按照该顺序满足多个业务流中部分或全部业务流的最大带宽比率,以实现调度优先级较高的业务流的最大带宽比率被优先满足。
示例性地,在按照调度优先级由高到低的顺序为多个业务流中的部分或全部业务流分配剩余带宽时,若剩余带宽小于调度优先级最高的业务流的需求带宽与调度优先级最高的业务流的保障带宽之差,则将剩余带宽全部分配给调度优先级最高的业务流。
若剩余带宽大于调度优先级最高的业务流的需求带宽与调度优先级最高的业务流的保障带宽之差,按照该顺序满足多个业务流中部分或全部业务流的需求带宽。
若剩余带宽大于调度优先级最高的业务流的需求带宽与调度优先级最高的业务流的保障带宽之差,且剩余带宽小于或等于调度优先级最高的业务流的最大带宽与调度优先级最高的业务流的保障带宽之差,则将剩余带宽全部分配给调度优先级最高的业务流。
若剩余带宽大于调度优先级最高的业务流的最大带宽与调度优先级最高的业务流的保障带宽之差,则按照该顺序满足多个业务流中部分或全部业务流的最大带宽比率。
例如,假设总带宽为10G,多个业务流包括业务流A和业务流B,业务流A的调度优先级低于业务流B的调度优先级。业务流A的带宽参数包括业务流A的保障带宽比率为30%,业务流A的最大带宽比率为50%,业务流B的带宽参数包括业务流B的保障带宽比率为40%,业务流B的最大带宽比率为60%。若业务流A的需求带宽为5G,业务流B的需求带宽为6G,则业务流A的需求带宽与业务流B的需求带宽之和为13G,大于10G,优先满足业务流A的保障带宽比率和业务流B的保障带宽比率,则业务流A分得带宽为3G,业务流B分得带宽为4G,此时总带宽剩余3G未分配,可以优先分配给业务流B,由于业务流B的需求带宽为6G,最终,业务流A的实际带宽为4G,业务流B的实际带宽为6G。此时,可以实现优先满足业务流B的需求带宽。
又例如,假设总带宽为10G,多个业务流包括业务流A、业务流B和业务流C,按照调度优先级由高到低的顺序依次为业务流B,业务流C和业务流A。业务流A的带宽参数包括业务流A的保障带宽比率为30%,业务流A的最大带宽比率为50%,业务流B的带宽参数包括业务流B的保障带宽比率为40%,业务流B的最大带宽比率为60%。业务流C的带宽参数包括业务流C的保障带宽比率为10%,业务流C的最大带宽比率为30%。若业务流A的需求带宽为5G,业务流B的需求带宽7G,业务流C的需求带宽3G,则业务流A的需求带宽、业务流B的需求带宽以及业务流C的需求带宽之和为14G, 大于10G,优先满足业务流A的保障带宽比率、业务流B的保障带宽比率和业务流C的保障带宽比率,则业务流A分得带宽为3G,业务流B分得带宽为4G,业务流C分得带宽为1G,此时总带宽剩余2G未分配,可以优先分配给业务流B,最终,业务流A的实际带宽为3G,业务流B的实际带宽为6G,业务流C的实际带宽为1G。
需要说明的是,基于各个业务流的需求带宽,保障带宽和最大带宽以及总带宽,可以设计多种规则,上述规则和举例不作为本申请实施例的限定。
可以理解的是,上述图2所示的实施例还可以应用于第4代移动通信技术(the 4th generation mobile communication technology,4G)通信***,具体的,用户面网元可以替换为数据网关控制面(PGW user plane,PGW-U),QoS流可以替换为专用承载,会话管理网元可以替换为数据网关控制面(PGW control plane,PGW-C),策略控制网元可以替换为策略与计费规则功能单元(policy and charging rules function,PCRF)。
以下结合具体实施例对图2所示实施例进行说明:
如图3所示为在5G通信***中业务流调度的具体流程之一。图3所示实施例应用于第二种可能的应用场景。其中,策略控制网元为PCF,会话管理网元为SMF,用户面网元为UPF,终端设备为UE,第一规则为PDR。该流程可以包括以下步骤:
S301:UE向AMF发送PDU会话建立请求(PDU Session Establishment Request)消息。
示例性地,UE在5G网络中激活,发起PDU会话建立流程。其中,PDU会话建立请求消息包括UE的标识,例如,UE的标识可以为国际移动用户识别码(international mobile subscriber identification number,IMSI),移动台国际用户识别码(mobile subscriber international ISDN number,MSISDN)等。本申请对此不作限定。
S302:AMF向SMF发送PDU会话创建会话管理上下文请求(Nsmf_PDUSession_Creat-SMContext Request)消息。
其中,PDU会话创建会话管理上下文请求消息包括UE的标识。
S303:SMF向PCF发送请求消息,该请求消息用于请求PCC规则。
示例性地,SMF通过N7接口向PCF发送会话管理策略控制创建请求(Npcf_SMPolicy-Control_Create Request)消息。其中,会话管理策略控制创建请求消息包括UE的标识。
S304:PCF向SMF发送PCC规则。
示例性地,PCF根据UE的标识查询UE的签约规则,UE的签约规则包括第一业务流的调度优先级。可选的,UE的签约规则还可以包括第一业务流的带宽参数,第一业务流的带宽参数包括第一业务流的保障带宽比率,和/或第一业务流的最大带宽比率。
其中,UE的签约规则又可称为UE的签约信息。可以理解的是,UE的签约规则包括多个业务流的调度优先级。多个业务流包括第一业务流,这里仅以第一业务流为例进行说明。对于不同的业务流,PCF可以向SMF发送的不同的PCC规则。
示例性地,PCF通过N7接口向SMF发送会话管理策略控制创建响应(Npcf_SMPolicy-Control_Create Response)消息,该消息包括PCC规则。其中,PCC规则包括第一业务流的调度优先级。可选的,PCC规则还包括第一业务流的带宽参数。
S305:SMF将该PCC规则映射为PDR。
示例性地,PDR包括QER ID,QER包括第一业务流的调度优先级,可选的,QER还包括第一业务流的带宽参数。
此外,在一种可能的实现方式中,QER中的第一业务流的带宽参数,还可以替换为第一业务流的保障带宽,和/或第一业务流的最大带宽。也即在第一业务流的带宽参数包括第一业务流的保障带宽比率时,根据QoS流对应的总带宽和第一业务流的保障带宽比率计算得到第一业务流的保障带宽。在第一业务流的带宽参数包括第一业务流的最大带宽比率时,根据QoS流对应的总带宽和第一业务流的最大带宽比率计算得到第一业务流的最大带宽。
S306:SMF向UPF发送N4会话建立请求(N4Session Establishment/Modification Request)消息,该消息包括上述S305中确定的PDR。
S307:UPF向SMF发送N4会话建立响应(N4Session Establishment/Modification Response)消息。
UPF可以安装接收到的PDR,用于报文的匹配,以及确定第一业务流的QFI和第一业务流调度优先级。
此外,PDR中还包括PDI,PDI包括第一业务流的应用标识。UPF可以根据第一业务流的应用标识作为业务感知的条件,记录在该PDR的上下文中,启动对第一业务流的识别。
可以理解的是,S306中的N4会话建立请求消息,还可以替换为N4会话修改请求(N4Session Modification Request)消息,相应的,S307中的N4会话建立响应消息,还可以替换为N4会话修改响应(N4Session Establishment/Modification Response)消息。
S308:SMF向AMF发送N1N2消息传输消息(Namf_Communication_N1N2MessageTransfer),该消息包括N1会话管理容器(SM container),N1会话管理容器包括PDU会话建立接受(PDU Session Establishment Accept)消息。PDU会话建立接受消息包括QoS规则。
示例性地,SMF根据PCC规则和第一业务流的五元组信息生成QoS规则,QoS规则包括第一业务流的调度优先级。可选的,QoS规则还包括第一业务流的带宽参数。五元组信息包括源地址、目标地址、源端口、目标端口、协议号。
S309:AMF通过RAN向UE发送PDU会话建立接受消息。
UE可以安装接收到的QoS规则,用于报文的匹配,确定第一业务流的QFI和第一业务流调度优先级。
可以理解的是,以上流程中还可以替换为对于会话更新或修改流程。例如,当UE签约新业务时,可以通过会话更新流程或会话修改流程使得UPF和UE获得新业务的业务流的调度优先级。
S310:UPF确定检测到属于第一业务流的下行报文。
示例性地,PDR中还包括PDI,PDI可以包括IP地址、端口(Port)等L3层信息和L4层信息,也可以是应用标识(application ID)或统一资源定位***(uniform resource locator;URL)等L7层信息。UPF可以根据PDI判断接收到的报文是否属于第一业务流。
其中,应用标识可以映射到UPF上预定义的多个应用过滤条件,比如应用名称、IP地址、端口等信息用于后续匹配流程。
例如,当PDI包括第一业务流的应用标识时,UPF可以根据PDR判断下行报文中的应用标识是否与第一业务流的应用标识匹配,若匹配,则确定检测到属于第一业务流的下行报文。
S311:UPF根据第一业务流的调度优先级调度对下行报文进行调度。
示例性地,UPF根据PDR中包括的QER的标识,执行该QER所定义的QoS策略。UPF基于第一业务流所在的QoS流包括的至少一个业务流和QER包括的第一业务流的调度优先级对下行报文进行调度。可选地,若QER还包括第一业务流的带宽参数,则UPF还基于QER包括的第一业务流的带宽参数对下行报文进行调度。
具体调度方式可以参考上述步骤220中的相关描述。
S312:UPF向RAN发送下行报文。
示例性地,UPF在下行报文中添加第一业务流的调度优先级,将包括第一业务流的调度优先级的下行报文发送至RAN。例如,UPF在下行报文的GTP头中添加第一业务流的调度优先级。此外,GTP头还可以包括QFI。此外,可选地,UPF还可以在下行报文中添加第一业务流的带宽参数。
S313:RAN根据第一业务流的调度优先级对接收到的下行报文进行调度。
示例性地,RAN可以根据GTP头中的QFI和第一业务流的调度优先级,确定QFI所指示的QoS流包括的至少一个业务流,进而根据QFI所指示的QoS流包括的至少一个业务流和第一业务流的调度优先级对下行报文进行调度。此外,可选地,若下行报文中还包括第一业务流的带宽参数,则RAN根据第一业务流的带宽参数对下行报文进行调度。
具体调度方式可以参考上述步骤220中的相关描述。
S314:RAN向UE发送下行报文。
示例性地,RAN也可将第一业务流的调度优先级通过空口扩展携带到UE。
示例性地,RAN将接收到的来自于核心网(即UPF)的报文进行解封装,获取原始报文内容和GTP报文头携带的QFI和第一业务流的调度优先级,然后再通过空口的封装格式将原始报文内容和第一业务流的调度优先级重新封装,并将重新封装后的报文发送至UE。
S315:UE生成属于第一业务流的上行报文,根据第一业务流的调度优先级对该上行报文进行调度。
示例性地,UE生成上行报文,确定该上行报文属于第一业务流,以及第一业务流所在的QoS流,进而匹配到相应的QoS规则,根据QoS规则确定第一业务流的调度优先级,根据该QoS流包括的至少一个业务流和第一业务流的调度优先级对该上行报文进行调度。此外,可选地,若QoS规则还包括第一业务流的带宽参数,则UE还根据第一业务流的带宽参数对下行报文进行调度。
具体调度方式可以参考上述步骤220中的相关描述。
S316:UE向RAN发送上行报文。
示例性地,UE可以在上行报文中添加第一业务流的调度优先级,将包括第一业务流的调度优先级的上行报文发送至RAN。示例性地,UE可以将报文内容和第一业务流的调度优先级通过空口的封装格式进行封装,并将封装后的报文发送至RAN。此外,UE还可以在上行报文中添加QFI,可选地,UE还可以在上行报文中添加第一业务流的带宽参数。
S317:RAN根据第一业务流的调度优先级对接收到的上行报文进行调度。
示例性地,RAN可以根据接收到的上行报文中的QFI和第一业务流的调度优先级,确定QFI所指示的QoS流,以及该QoS流包括的至少一个业务流,进而根据该QoS流包括的至少一个业务流和第一业务流的调度优先级对接收到的上行报文进行调度。此外,可选地,若上行报文中还包括第一业务流的带宽参数,则RAN还根据第一业务流的带宽参数对上行报文进行调度。
具体调度方式可以参考上述步骤220中的相关描述。
S318:RAN向UPF发送上行报文。
示例性地,RAN可以在上行报文中添加第一业务流的调度优先级,将包括第一业务流的调度优先级的上行报文发送至UPF。例如,包括第一业务流的调度优先级的上行报文包括GTP头,GTP头包括第一业务流的调度优先级。此外,GTP头还可以包括QFI,可选地,RAN可以在上行报文中添加第一业务流的带宽参数。
S319:UPF根据第一业务流的调度优先级对上行报文进行调度。
示例性地,UPF确定接收到的报文中的QFI匹配之前接收到的PDR,进一步地,UPF根据PDR中包括的QER的标识,执行该QER所定义的QoS策略。UPF基于第一业务流所在的QoS流包括的至少一个业务流和QER包括的第一业务流的调度优先级对上行报文进行调度。可选地,若QER还包括第一业务流的带宽参数,则UPF还基于第一业务流的带宽参数对上行报文进行调度。
具体调度方式可以参考上述步骤220中的相关描述。
采用上述设计,可以实现对一个QoS流中的不同业务流的调度优先级进行区分并根据不同业务流的调度优先级进行调度,同时还可以保障调度优先级低的业务流的保障带宽以及调度优先级高的业务流的最大带宽。
如图4所示为在5G通信***中业务流调度的具体流程之二。其中,图4所示实施例应用于第二种可能的应用场景。策略控制网元为PCF,会话管理网元为SMF,用户面网元为UPF,终端设备为UE,第一规则为PDR。该流程可以包括以下步骤:
S401:UE向AMF发送PDU会话建立请求消息。
S402:AMF向SMF发送PDU会话创建会话管理上下文请求消息。
S403:SMF向PCF发送请求消息,该请求消息用于请求PCC规则。
其中,S401至S403可以参考上述图3所示实施例中的S301至S303的描述,不再赘述。
S404:PCF向SMF发送PCC规则,PCC规则包括第一预定义规则的名称。
S405:SMF根据第一预定义规则的名称生成PDR。
其中,PDR包括第一预定义规则的名称。
S406:SMF向UPF发送N4会话建立请求消息,该消息包括PDR。
S407:UPF根据第一预定义规则的名称确定第一预定义规则。
第一预定义规则包括第一业务流的调度优先级,可选的,第一预定义规则还包括第一业务流的带宽参数。
UPF可以安装第一预定义规则,用于报文的匹配,以及确定第一业务流的QFI和第一业务流调度优先级。
此外,PDR中还包括PDI,PDI包括第一业务流的应用标识。UPF可以根据第一业务流的应用标识 作为业务感知的条件,记录在该PDR的上下文中,启动对第一业务流的识别。
S408:UPF向SMF发送N4会话建立响应消息。
此外,S406中的N4会话建立请求消息,还可以替换为N4会话修改请求消息,相应的,S408中的N4会话建立响应消息,还可以替换为N4会话修改响应消息。
S409:SMF向AMF发送N1N2消息传输消息,该消息包括N1会话管理容器,N1会话管理容器包括PDU会话建立接受消息。PDU会话建立接受消息包括QoS规则。
示例性地,SMF根据第一预定义规则和第一业务流的五元组信息生成QoS规则,QoS规则包括第一业务流的调度优先级。可选的,QoS规则还包括第一业务流的带宽参数。
S410:AMF通过RAN向UE发送PDU会话建立接受消息。
UE可以安装接收到的QoS规则,用于报文的匹配,确定第一业务流的QFI和第一业务流调度优先级。
可以理解的是,以上流程中还可以替换为对于会话更新或修改流程。
S411:UPF确定检测到属于第一业务流的下行报文。
S412:UPF根据第一业务流的调度优先级调度对下行报文进行调度。
示例性地,UPF基于第一业务流所在的QoS流包括的至少一个业务流和第一预定义规则包括的第一业务流的调度优先级对下行报文进行调度。可选地,若第一预定义规则还包括第一业务流的带宽参数,则UPF还基于第一业务流的带宽参数对下行报文进行调度。
具体调度方式可以参考上述步骤220中的相关描述。
S413:UPF向RAN发送下行报文。
S414:RAN根据第一业务流的调度优先级对接收到的下行报文进行调度。
S415:RAN向UE发送下行报文。
S416:UE生成属于第一业务流的上行报文,根据第一业务流的调度优先级对该上行报文进行调度。
S417:UE向RAN发送上行报文。
S418:RAN根据第一业务流的调度优先级对接收到的上行报文进行调度。
S419:RAN向UPF发送上行报文。
其中,S413至S419可以参考上述图3所示实施例中的S312至S318的描述,不再赘述。
S420:UPF根据第一业务流的调度优先级对上行报文进行调度。
示例性地,UPF确定接收到的报文中的QFI匹配之前接收到的PDR,进一步地,UPF基于第一业务流所在的QoS流包括的至少一个业务流和第一预定义规则包括的第一业务流的调度优先级对上行报文进行调度。可选地,若第一预定义规则还包括第一业务流的带宽参数,则UPF还基于第一业务流的带宽参数对上行报文进行调度。
具体调度方式可以参考上述步骤220中的相关描述。
采用上述设计,可以实现对一个QoS流中的不同业务流的调度优先级进行区分并根据不同业务流的调度优先级进行调度,同时还可以保障调度优先级低的业务流的保障带宽以及调度优先级高的业务流的最大突发带宽。
如图5所示为在5G通信***中业务流调度的具体流程之三。其中,图5所示实施例应用于第二种可能的应用场景。策略控制网元为PCF,会话管理网元为SMF,用户面网元为UPF,终端设备为UE,第一规则为PDR。
下述流程仅以PCC规则包括RQI为例进行说明,此外,在一种可能的实现方式中,PCC规则还可包括预定义规则的名称,该预定义规则包括RQI。
该流程可以包括以下步骤:
S501:UE向AMF发送PDU会话建立请求消息。
S502:AMF向SMF发送PDU会话创建会话管理上下文请求消息。
S503:SMF向PCF发送请求消息,该请求消息用于请求PCC规则。
其中,S501至S503可以参考上述图3所示实施例中的S301至S303的描述,不再赘述。
S504:PCF向SMF发送PCC规则。
示例性地,PCF通过N7接口向SMF发送会话管理策略控制创建响应 (Npcf_SMPolicy-Control_Create Response)消息,该消息包括PCC规则。其中,PCC规则包括第一业务流的调度优先级和RQI。可选的,PCC规则还包括第一业务流的带宽参数。
S505:SMF将该PCC规则映射为PDR。
示例性地,PDR包括QER ID,QER包括第一业务流的调度优先级和RQI,可选的,QER还包括第一业务流的带宽参数。
S506:SMF向UPF发送N4会话建立请求消息,该消息包括上述S505中确定的PDR。
S507:UPF向SMF发送N4会话建立响应消息。
UPF可以安装接收到的PDR,用于报文的匹配,以及确定第一业务流的QFI和第一业务流调度优先级。
此外,PDR中还包括PDI,PDI包括第一业务流的应用标识。UPF可以根据第一业务流的应用标识作为业务感知的条件,记录在该PDR的上下文中,启动对第一业务流的识别。
此外,S506中的N4会话建立请求消息,还可以替换为N4会话修改请求消息,相应的,S507中的N4会话建立响应消息,还可以替换为N4会话修改响应消息。
S508:UPF确定检测到属于第一业务流的下行报文。
S509:UPF根据第一业务流的调度优先级调度对下行报文进行调度。
S510:UPF向RAN发送下行报文。
示例性地,UPF在下行报文中添加第一业务流的调度优先级和RQI,将包括第一业务流的调度优先级和RQI的下行报文发送至RAN。例如,UPF在下行报文的GTP头中添加第一业务流的调度优先级和RQI。此外,GTP头还可以包括QFI。此外,可选地,UPF还可以在下行报文中添加第一业务流的带宽参数。
S511:RAN根据第一业务流的调度优先级对接收到的下行报文进行调度。
示例性地,RAN可以根据GTP头中的QFI和第一业务流的调度优先级,确定QFI所指示的QoS流包括的至少一个业务流,进而根据该QoS流包括的至少一个业务流和第一业务流的调度优先级对下行报文进行调度。此外,可选地,若下行报文中还包括第一业务流的带宽参数,则RAN还根据第一业务流的带宽参数对下行报文进行调度。
具体调度方式可以参考上述步骤220中的相关描述。
S512:RAN向UE发送下行报文。
示例性地,RAN也可将第一业务流的调度优先级通过空口扩展携带到UE。
S513:UE基于下行报文携带的RQI和其他信息生成QoS规则。
示例性地,UE基于下行报文中携带的QFI、第一业务流的调度优先级、RQI以及第一业务流五元组(包括源IP+端口、目标IP+端口、L4协议(Protocol))生成上行方向的QoS规则。
此外,可选地,若下行报文还包括第一业务流的带宽参数,则UE生成的QoS规则还包括第一业务流的带宽参数。
S514:UE生成属于第一业务流的上行报文,根据第一业务流的调度优先级对该上行报文进行调度。
S515:UE向RAN发送上行报文。
S516:RAN根据第一业务流的调度优先级对接收到的上行报文进行调度。
S517:RAN向UPF发送上行报文。
S518:UPF根据第一业务流的调度优先级对上行报文进行调度。
其中,S514至S518可以参考上述图3所示实施例中的S315至S319的描述,不再赘述。
采用上述设计,可以实现对一个QoS流中的不同业务流的调度优先级进行区分并根据不同业务流的调度优先级进行调度,同时还可以保障调度优先级低的业务流的保障带宽以及调度优先级高的业务流的最大带宽。此外,采用上述设计,还可以实现减少从SMF到UE之间传输QoS规则所需的信令消耗,快速实现QoS规则的生成。
如图6所示为在5G通信***中业务流调度的具体流程之四。其中,图6所示实施例应用于第一种可能的应用场景。策略控制网元为PCF,会话管理网元为SMF,用户面网元为UPF,终端设备为UE,第一规则为PDR。该流程可以包括以下步骤:
S601:UE向AMF发送PDU会话建立请求消息。
S602:AMF向SMF发送PDU会话创建会话管理上下文请求消息。
S603:SMF向PCF发送请求消息,该请求消息用于请求PCC规则。
其中,S601至S603可以参考上述图3所示实施例中的S301至S303的描述,不再赘述。
S604:PCF向SMF发送PCC规则,PCC规则包括第一预定义规则的名称。
S605:SMF根据第一预定义规则的名称生成PDR。
其中,PDR包括第一预定义规则的名称。
S606:SMF向UPF发送N4会话建立请求消息,该消息包括PDR。
S607:UPF根据第一预定义规则的名称确定第一预定义规则。
第一预定义规则包括第一业务流的调度优先级,可选的,第一预定义规则还包括第一业务流的带宽参数。
UPF可以安装第一预定义规则。示例性地,第一预定义规则也可称为组级带宽管控策略。其中,该组级带宽管控策略为基于某个条件构成的终端设备组的业务整体的带宽控制策略,该终端设备组中每个终端设备对应的至少一个业务流所构成的多个业务流共用一个固定带宽,也即终端设备组对应的多个业务流共用一个固定带宽。
示例性地,终端设备组可以基于签约信息,接入点(access point name,APN)、接入网类型、漫游属性、位置信息等确定。
例如,通过APN:xxx接入的终端设备构成一个终端设备组,在该终端设备组中的终端设备均访问业务A时,该终端设备组中每个终端设备对应的业务A的业务流所构成的多个业务流允许访问的带宽为5Gpbs,即多个业务流共用带宽的带宽为5Gpbs。
S608:UPF向SMF发送N4会话建立响应消息。
此外,S606中的N4会话建立请求消息,还可以替换为N4会话修改请求消息,相应的,S608中的N4会话建立响应消息,还可以替换为N4会话修改响应消息。
S609:UPF确定检测到属于第一业务流的下行报文。
S610:UPF根据第一业务流的调度优先级调度对下行报文进行调度。
示例性地,UPF基于终端设备组对应的多个业务流和第一预定义规则包括的第一业务流的调度优先级对下行报文进行调度。可选地,若第一预定义规则还包括第一业务流的带宽参数,则UPF还基于第一业务流的带宽参数对下行报文进行调度。
具体调度方式可以参考上述步骤220中的相关描述。
S611:UPF向RAN发送下行报文。
示例性地,UPF在下行报文中添加第一业务流的调度优先级,将包括第一业务流的调度优先级的下行报文发送至RAN。例如,UPF在下行报文的GTP头中添加第一业务流的调度优先级。此外,可选地,UPF还可以在下行报文中添加第一业务流的带宽参数。
S612:RAN根据第一业务流的调度优先级对接收到的下行报文进行调度。
示例性地,RAN可以根据终端设备组对应的多个业务流和第一业务流的调度优先级对下行报文进行调度。此外,可选地,若下行报文中还包括第一业务流的带宽参数,则RAN还根据第一业务流的带宽参数对下行报文进行调度。
具体调度方式可以参考上述步骤220中的相关描述。
S613:RAN向UE发送下行报文。
示例性地,RAN也可将第一业务流的调度优先级通过空口扩展携带到UE。
示例性地,RAN将接收到的来自于核心网(即UPF)的报文进行解封装,获取原始报文内容和GTP报文头携带的第一业务流的调度优先级,然后再通过空口的封装格式将原始报文内容和第一业务流的调度优先级重新封装,并将重新封装后的报文发送至UE。
采用上述设计,可以实现对一个终端设备组对应的多个业务流中的不同业务流的调度优先级进行区分并根据不同业务流的调度优先级进行调度,同时还可以保障调度优先级低的业务流的保障带宽以及调度优先级高的业务流的最大带宽。
图7示出了本申请实施例中所涉及的一种通信装置的可能的示例性框图,该装置700包括:收发模块720和处理模块710,收发模块720可以包括接收单元和发送单元。处理模块710用于对装置700的 动作进行控制管理。收发模块720用于支持装置700与其他网络实体的通信。可选地,装置700还可以包括存储单元,所述存储单元用于存储装置700的程序代码和数据。
可选地,所述装置700中各个模块可以是通过软件来实现。
可选地,处理模块710可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。收发模块720可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,存储单元可以是存储器。
当装置700为用户面网元或用户面网元中的芯片时,装置700中的处理模块710可以支持装置700执行上文中各方法示例中用户面网元的动作。
收发模块720可以支持装置700与会话管理网元进行通信。
收发模块720,用于获取第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;接收报文;
处理模块710,用于在所述报文属于所述第一业务流时,根据所述第一业务流的调度优先级对所述第一业务流进行调度。
在一种可能的设计中,收发模块720,用于在获取第一业务流的调度优先级时,从会话管理网元接收第一规则,所述第一规则用于指示所述第一业务流的调度优先级。
在一种可能的设计中,所述第一规则包括第一预定义规则的名称,所述第一预定义规则包括所述第一业务流的调度优先级,所述第一预定义规则为所述用户面网元存储的多个预定义规则中的一个。
在一种可能的设计中,在所述多个业务流属于同一个QoS流时,所述第一规则包括QoS执行规则的标识,所述QoS执行规则包括所述第一业务流的调度优先级。
在一种可能的设计中,收发模块720,用于还获取所述第一业务流的带宽参数,所述第一业务流的带宽参数包括所述第一业务流的保障带宽,和/或所述第一业务流的最大带宽;或者,所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率,和/或所述第一业务流的最大带宽比率;其中,所述第一业务流的保障带宽比率为所述第一业务流的保障带宽与总带宽的比率,所述第一业务流的最大带宽比率为所述第一业务流所能占用的最大带宽与总带宽的比率,所述总带宽是为所述多个业务流分配的共用带宽。
在一种可能的设计中,处理模块710,用于在根据所述第一业务流的调度优先级对所述第一业务流进行调度时,在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若在所述多个业务流中存在第二业务流,所述第二业务流的保障带宽大于所述第二业务流的需求带宽,则为所述第二业务流分配的带宽等于所述第二业务流的需求带宽;根据所述多个业务流分别对应的调度优先级和所述多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为所述多个业务流中除所述第二业务流之外的业务流分配差值带宽,所述差值带宽为所述第二业务流的保障带宽与所述第二业务流的需求带宽的差值。
在一种可能的设计中,处理模块710,用于在根据所述第一业务流的调度优先级对所述第一业务流进行调度时,在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若所述多个业务流分别对应的需求带宽均大于相应的保障带宽,则满足所述多个业务流分别对应的保障带宽比率,所述多个业务流分别对应的保障带宽比率之和小于或等于1;在满足所述多个业务流分别对应的保障带宽比率之后,根据所述多个业务流分别对应的调度优先级,按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽。
在一种可能的设计中,处理模块710,用于在按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽时,按照所述顺序满足所述多个业务流中部分或全部业务流的最大带宽比率。
在一种可能的设计中,所述多个业务流分别对应的实际带宽之和等于所述总带宽。
在一种可能的设计中,所述报文为下行报文;处理模块710,用于在所述下行报文中添加所述第一业务流的调度优先级,获得第一待发送下行报文;
收发模块720,用于向接入网设备发送所述第一待发送下行报文。
在一种可能的设计中,所述第一待发送下行报文包括通用无线分组业务隧道协议报文头,所述通用无线分组业务隧道协议报文头包括所述第一业务流的调度优先级。
在一种可能的设计中,所述多个业务流为多个终端设备分别对应的业务流,所述多个终端设备属于同一个终端设备组。
在一种可能的设计中,所述多个终端设备的等级不同,所述第一业务流的调度优先级是根据第一终端设备的等级确定的,所述第一业务流为所述第一终端设备签约的业务对应的业务流,所述第一终端设备为所述多个终端设备中的一个。
在一种可能的设计中,所述多个业务流属于同一个QoS流。
应理解,根据本申请实施例的装置700可对应于前述方法实施例中用户面网元,并且装置700中的各个模块的操作和/或功能分别为了实现前述方法实施例中用户面网元的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
当装置700为会话管理网元或会话管理网元中的芯片时,装置700中的处理模块710可以支持装置700执行上文中各方法示例中会话管理网元的动作。
收发模块720可以支持装置700与用户面网元进行通信。
处理模块710调用收发模块720,执行:获取第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;向用户面网元发送第一规则,所述第一规则用于指示所述第一业务流的调度优先级。
在一种可能的设计中,收发模块720,用于在获取第一业务流的调度优先级时,从策略控制网元接收策略与计费控制规则,所述策略与计费控制规则用于指示所述第一业务流的调度优先级;处理模块710,用于根据所述策略与计费控制规则确定所述第一规则。
在一种可能的设计中,所述策略与计费控制规则包括第一预定义规则的名称,所述第一规则包括所述第一预定义规则的名称;
所述第一预定义规则包括所述第一业务流的调度优先级,所述第一预定义规则为所述会话管理网元和所述用户面网元存储的多个预定义规则中的一个。
在一种可能的设计中,在所述多个业务流属于同一个QoS流时,所述第一规则包括QoS执行规则的标识,所述QoS执行规则包括所述第一业务流的调度优先级。
在一种可能的设计中,处理模块710,用于在所述多个业务流属于同一个QoS流时,根据所述策略与计费控制规则确定QoS规则,所述QoS规则包括所述第一业务流的调度优先级;
收发模块720,用于向所述终端设备发送所述QoS规则。
在一种可能的设计中,收发模块720,用于还获取所述第一业务流的带宽参数,所述第一业务流的带宽参数包括所述第一业务流的保障带宽,和/或所述第一业务流的最大带宽;所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率,和/或所述第一业务流的最大带宽比率;其中,所述第一业务流的保障带宽比率为所述第一业务流的保障带宽与总带宽的比率,所述第一业务流的最大带宽比率为所述第一业务流所能占用的最大带宽与总带宽的比率,所述总带宽是为所述多个业务流分配的共用带宽。
在一种可能的设计中,所述多个业务流为多个终端设备分别对应的业务流,所述多个终端设备属于同一个终端设备组。
在一种可能的设计中,所述多个终端设备的等级不同,所述第一业务流的调度优先级是根据第一终端设备的等级确定的,所述第一业务流为所述第一终端设备签约的业务对应的业务流,所述第一终端设备为所述多个终端设备中的一个。
在一种可能的设计中,所述多个业务流属于同一个QoS流。
应理解,根据本申请实施例的装置700可对应于前述方法实施例中会话管理网元,并且装置700中的各个模块的操作和/或功能分别为了实现前述方法实施例中会话管理网元的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
当装置700为接入网设备或接入网设备中的芯片时,装置700中的处理模块710可以支持装置700执行上文中各方法示例中接入网设备的动作。
收发模块720可以支持装置700与用户面网元进行通信。
收发模块720,用于接收第一业务流中的报文,所述报文包括第一业务流的调度优先级,所述第一 业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;
处理模块710,用于根据所述第一业务流的调度优先级对所述第一业务流进行调度。
在一种可能的设计中,所述报文还包括所述第一业务流的带宽参数,所述第一业务流的带宽参数包括所述第一业务流的保障带宽,和/或所述第一业务流的最大带宽;或者,所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率,和/或所述第一业务流的最大带宽比率;其中,所述第一业务流的保障带宽比率为所述第一业务流的保障带宽与总带宽的比率,所述第一业务流的最大带宽比率为所述第一业务流所能占用的最大带宽与总带宽的比率,所述总带宽是为所述多个业务流分配的共用带宽。
在一种可能的设计中,处理模块710,用于在根据所述第一业务流的调度优先级对所述第一业务流进行调度时,在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若在所述多个业务流中存在第二业务流,所述第二业务流的保障带宽大于所述第二业务流的需求带宽,则为所述第二业务流分配的带宽等于所述第二业务流的需求带宽;根据所述多个业务流分别对应的调度优先级和所述多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为所述多个业务流中除所述第二业务流之外的业务流分配差值带宽,所述差值带宽为所述第二业务流的保障带宽与所述第二业务流的需求带宽的差值。
在一种可能的设计中,处理模块710,用于在根据所述第一业务流的调度优先级对所述第一业务流进行调度时,在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若所述多个业务流分别对应的需求带宽均大于相应的保障带宽,则满足所述多个业务流分别对应的保障带宽比率,所述多个业务流分别对应的保障带宽比率之和小于或等于1;在满足所述多个业务流分别对应的保障带宽比率之后,根据所述多个业务流分别对应的调度优先级,按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽。
在一种可能的设计中,处理模块710,用于在按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽时,按照所述顺序满足所述多个业务流中部分或全部业务流的最大带宽比率。
在一种可能的设计中,所述多个业务流分别对应的实际带宽之和等于所述总带宽。
在一种可能的设计中,所报文包括通用无线分组业务隧道协议报文头,所述通用无线分组业务隧道协议报文头包括所述第一业务流的调度优先级。
在一种可能的设计中,所述多个业务流为多个终端设备分别对应的业务流,所述多个终端设备属于同一个终端设备组。
在一种可能的设计中,所述多个终端设备的等级不同,所述第一业务流的调度优先级是根据第一终端设备的等级确定的,所述第一业务流为所述第一终端设备签约的业务对应的业务流,所述第一终端设备为所述多个终端设备中的一个。
在一种可能的设计中,所述多个业务流属于同一个QoS流。
应理解,根据本申请实施例的装置700可对应于前述方法实施例中接入网设备,并且装置700中的各个模块的操作和/或功能分别为了实现前述方法实施例中接入网设备的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
图8示出了根据本申请实施例的通信装置800的示意性结构图。如图8所示,所述装置800包括:处理器801。
当装置800为用户面网元或用户面网元中的芯片时,一种可能的实现方式中,当所述处理器801用于调用接口执行以下动作:
获取第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;接收报文;在所述报文属于所述第一业务流时,根据所述第一业务流的调度优先级对所述第一业务流进行调度。
应理解,所述装置800还可用于执行前文实施例中用户面网元侧的其他步骤和/或操作,为了简洁,这里不作赘述。
当装置800为会话管理网元或会话管理网元中的芯片时,一种可能的实现方式中,当所述处理器801用于调用接口执行以下动作:
获取第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;向用户面网元发送第一规则,所述第一规则 用于指示所述第一业务流的调度优先级。
应理解,所述装置800还可用于执行前文实施例中会话管理网元侧的其他步骤和/或操作,为了简洁,这里不作赘述。
当装置800为接入网设备或接入网设备中的芯片时,一种可能的实现方式中,当所述处理器801用于调用接口执行以下动作:接收第一业务流中的报文,所述报文包括第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;根据所述第一业务流的调度优先级对所述第一业务流进行调度。
应理解,所述装置800还可用于执行前文实施例中接入网设备侧的其他步骤和/或操作,为了简洁,这里不作赘述。
应理解,所述处理器801可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置800还包括收发器803。
可选地,所述装置800还包括存储器802,存储器802中可以存储上述方法实施例中的程序代码,以便于处理器801调用。
具体地,若所述装置800包括处理器801、存储器802和收发器803,则处理器801、存储器802和收发器803之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器801、存储器802和收发器803可以通过芯片实现,处理器801、存储器802和收发器803可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器802可以存储程序代码,处理器801调用存储器802存储的程序代码,以实现装置800的相应功能。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是***芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的参数信息或者消息,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过 程的执行顺序应以其功能和内在逻辑确定。上述各个过程涉及的各种数字编号或序号仅为描述方便进行的区分,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (31)

  1. 一种业务流调度方法,其特征在于,该方法包括:
    用户面网元获取第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;
    所述用户面网元接收报文;
    在所述报文属于所述第一业务流时,所述用户面网元根据所述第一业务流的调度优先级对所述第一业务流进行调度。
  2. 如权利要求1所述的方法,其特征在于,用户面网元获取第一业务流的调度优先级,包括:
    所述用户面网元从会话管理网元接收第一规则,所述第一规则用于指示所述第一业务流的调度优先级。
  3. 如权利要求2所述的方法,其特征在于,所述第一规则包括第一预定义规则的名称,所述第一预定义规则包括所述第一业务流的调度优先级,所述第一预定义规则为所述用户面网元存储的多个预定义规则中的一个。
  4. 如权利要求3所述的方法,其特征在于,在所述多个业务流属于同一个QoS流时,所述第一规则包括QoS执行规则的标识,所述QoS执行规则包括所述第一业务流的调度优先级。
  5. 如权利要求1-4任一项所述的方法,其特征在于,还包括:
    所述用户面网元还获取所述第一业务流的带宽参数;
    所述第一业务流的带宽参数包括所述第一业务流的保障带宽,和/或所述第一业务流的最大带宽;或者,所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率,和/或所述第一业务流的最大带宽比率;其中,所述第一业务流的保障带宽比率为所述第一业务流的保障带宽与总带宽的比率,所述第一业务流的最大带宽比率为所述第一业务流所能占用的最大带宽与总带宽的比率,所述总带宽是为所述多个业务流分配的共用带宽。
  6. 如权利要求5所述的方法,其特征在于,所述用户面网元根据所述第一业务流的调度优先级对所述第一业务流进行调度,包括:
    在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若在所述多个业务流中存在第二业务流,所述第二业务流的保障带宽大于所述第二业务流的需求带宽,则为所述第二业务流分配的带宽等于所述第二业务流的需求带宽;
    根据所述多个业务流分别对应的调度优先级和所述多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为所述多个业务流中除所述第二业务流之外的业务流分配差值带宽,所述差值带宽为所述第二业务流的保障带宽与所述第二业务流的需求带宽的差值。
  7. 如权利要求5所述的方法,其特征在于,所述用户面网元根据所述第一业务流的调度优先级对所述第一业务流进行调度,包括:
    在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若所述多个业务流分别对应的需求带宽均大于相应的保障带宽,则满足所述多个业务流分别对应的保障带宽比率,所述多个业务流分别对应的保障带宽比率之和小于或等于1;
    在满足所述多个业务流分别对应的保障带宽比率之后,根据所述多个业务流分别对应的调度优先级和所述多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽。
  8. 如权利要求7所述的方法,其特征在于,按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽,包括:
    按照所述顺序满足所述多个业务流中部分或全部业务流的最大带宽比率。
  9. 如权利要求6-8任一项所述的方法,其特征在于,所述多个业务流分别对应的实际带宽之和等于所述总带宽。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述报文为下行报文;
    所述方法还包括:
    所述用户面网元在所述下行报文中添加所述第一业务流的调度优先级,获得第一待发送下行报文;
    所述用户面网元向接入网设备发送所述第一待发送下行报文。
  11. 如权利要求10所述的方法,其特征在于,所述第一待发送下行报文包括通用无线分组业务隧道协议报文头,所述通用无线分组业务隧道协议报文头包括所述第一业务流的调度优先级。
  12. 如权利要求1-3、5-11任一项所述的方法,其特征在于,所述多个业务流为多个终端设备分别对应的业务流,所述多个终端设备属于同一个终端设备组。
  13. 如权利要求12所述的方法,其特征在于,所述多个终端设备的等级不同,所述第一业务流的调度优先级是根据第一终端设备的等级确定的,所述第一业务流为所述第一终端设备签约的业务对应的业务流,所述第一终端设备为所述多个终端设备中的一个。
  14. 如权利要求1-11任一项所述的方法,其特征在于,所述多个业务流属于同一个服务质量QoS流。
  15. 一种业务流调度方法,其特征在于,该方法包括:
    会话管理网元获取第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;
    所述会话管理网元向用户面网元发送第一规则,所述第一规则用于指示所述第一业务流的调度优先级。
  16. 如权利要求15所述的方法,其特征在于,会话管理网元获取第一业务流的调度优先级,包括:
    所述会话管理网元从策略控制网元接收策略与计费控制规则,所述策略与计费控制规则用于指示所述第一业务流的调度优先级;
    所述会话管理网元根据所述策略与计费控制规则确定所述第一规则。
  17. 如权利要求16所述的方法,其特征在于,所述策略与计费控制规则包括第一预定义规则的名称,所述第一规则包括所述第一预定义规则的名称;
    所述第一预定义规则包括所述第一业务流的调度优先级,所述第一预定义规则为所述会话管理网元和所述用户面网元存储的多个预定义规则中的一个。
  18. 如权利要求16所述的方法,其特征在于,在所述多个业务流属于同一个QoS流时,所述第一规则包括QoS执行规则的标识,所述QoS执行规则包括所述第一业务流的调度优先级。
  19. 如权利要求16-18任一项所述的方法,其特征在于,还包括:
    在所述多个业务流属于同一个QoS流时,所述会话管理网元根据所述策略与计费控制规则确定QoS规则,所述QoS规则包括所述第一业务流的调度优先级;
    所述会话管理网元向所述终端设备发送所述QoS规则。
  20. 如权利要求15-19任一项所述的方法,其特征在于,还包括:
    所述会话管理网元还获取所述第一业务流的带宽参数;
    所述第一业务流的带宽参数包括所述第一业务流的保障带宽,和/或所述第一业务流的最大带宽;或者,所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率,和/或所述第一业务流的最大带宽比率;其中,所述第一业务流的保障带宽比率为所述第一业务流的保障带宽与总带宽的比率,所述第一业务流的最大带宽比率为所述第一业务流所能占用的最大带宽与总带宽的比率,所述总带宽是为所述多个业务流分配的共用带宽。
  21. 一种业务流调度方法,其特征在于,该方法包括:
    接入网设备接收第一业务流中的报文,所述报文包括第一业务流的调度优先级,所述第一业务流的调度优先级为所述第一业务流在多个业务流中的调度优先级;所述第一业务流为所述多个业务流中的一个;
    所述接入网设备根据所述第一业务流的调度优先级对所述第一业务流进行调度。
  22. 如权利要求21所述的方法,其特征在于,所述报文还包括所述第一业务流的带宽参数;
    所述第一业务流的带宽参数包括所述第一业务流的保障带宽,和/或所述第一业务流的最大带宽;或者,所述第一业务流的带宽参数包括所述第一业务流的保障带宽比率,和/或所述第一业务流的最大带宽比率;其中,所述第一业务流的保障带宽比率为所述第一业务流的保障带宽与总带宽的比率,所述第一业务流的最大带宽比率为所述第一业务流所能占用的最大带宽与总带宽的比率,所述总带宽是为所述多个业务流分配的共用带宽。
  23. 如权利要求22所述的方法,其特征在于,所述接入网设备根据所述第一业务流的调度优先级对所述第一业务流进行调度,包括:
    在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若在所述多个业务流中存在第二业 务流,所述第二业务流的保障带宽大于所述第二业务流的需求带宽,则为所述第二业务流分配的带宽等于所述第二业务流的需求带宽;
    根据所述多个业务流分别对应的调度优先级和所述多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为所述多个业务流中除所述第二业务流之外的业务流分配差值带宽,所述差值带宽为所述第二业务流的保障带宽与所述第二业务流的需求带宽的差值。
  24. 如权利要求22所述的方法,其特征在于,所述接入网设备根据所述第一业务流的调度优先级对所述第一业务流进行调度,包括:
    在所述多个业务流分别对应的需求带宽之和大于所述总带宽时,若所述多个业务流分别对应的需求带宽均大于相应的保障带宽,则满足所述多个业务流分别对应的保障带宽比率,所述多个业务流分别对应的保障带宽比率之和小于或等于1;
    在满足所述多个业务流分别对应的保障带宽比率之后,根据所述多个业务流分别对应的调度优先级和所述多个业务流分别对应的需求带宽,按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽。
  25. 如权利要求24所述的方法,其特征在于,按照调度优先级由高到低的顺序为所述多个业务流中的部分或全部业务流分配剩余带宽,包括:
    按照所述顺序满足所述多个业务流中部分或全部业务流的最大带宽比率。
  26. 如权利要求23-25任一项所述的方法,其特征在于,所述多个业务流分别对应的实际带宽之和等于所述总带宽。
  27. 如权利要求21-26任一项所述的方法,其特征在于,所报文包括通用无线分组业务隧道协议报文头,所述通用无线分组业务隧道协议报文头包括所述第一业务流的调度优先级。
  28. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1-14任一项所述的方法,或权利要求15-20任一项所述的方法,或权利要求21-27任一项所述的方法。
  29. 一种芯片,其特征在于,所述芯片与存储器耦合,所述芯片读取所述存储器中存储的计算机程序,执行权利要求1-14任一项所述的方法,或权利要求15-20任一项所述的方法,或权利要求21-27任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-14任一项所述的方法,或权利要求15-20任一项所述的方法,或权利要求21-27任一项所述的方法。
  31. 一种包含指令的计算机程序产品,其特征在于,当所述指令在计算机上运行时,使得计算机执行如权利要求1-14中任一项所述的方法,或权利要求15-20中任一项所述的方法,或权利要求21-27中任一项所述的方法。
PCT/CN2023/132949 2022-12-13 2023-11-21 一种业务流调度方法及装置 WO2024125232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211604610.3 2022-12-13
CN202211604610.3A CN118201114A (zh) 2022-12-13 2022-12-13 一种业务流调度方法及装置

Publications (1)

Publication Number Publication Date
WO2024125232A1 true WO2024125232A1 (zh) 2024-06-20

Family

ID=91395512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132949 WO2024125232A1 (zh) 2022-12-13 2023-11-21 一种业务流调度方法及装置

Country Status (2)

Country Link
CN (1) CN118201114A (zh)
WO (1) WO2024125232A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778431A (zh) * 2010-02-02 2010-07-14 中兴通讯股份有限公司 一种基站***中用户接入的接纳控制方法和装置
WO2020192438A1 (zh) * 2019-03-28 2020-10-01 华为技术有限公司 通信方法、装置及***
US20220174544A1 (en) * 2020-11-30 2022-06-02 Verizon Patent And Licensing Inc. Systems and methods for exposing custom per flow descriptor attributes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778431A (zh) * 2010-02-02 2010-07-14 中兴通讯股份有限公司 一种基站***中用户接入的接纳控制方法和装置
WO2020192438A1 (zh) * 2019-03-28 2020-10-01 华为技术有限公司 通信方法、装置及***
US20220174544A1 (en) * 2020-11-30 2022-06-02 Verizon Patent And Licensing Inc. Systems and methods for exposing custom per flow descriptor attributes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, QUALCOMM INCORPORATED, VENCORE LABS, AT&T, OEC, SPRINT: "Clarifications for 5QI priority level", 3GPP TSG-SA2 MEETING #129 S2-1811305, 18 October 2018 (2018-10-18), XP051540146 *

Also Published As

Publication number Publication date
CN118201114A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
CN109565703B (zh) 用于管理无线通信网络中的数据通信的方法和设备
EP2846600B1 (en) M2M communication method and system thereof
WO2011082636A1 (zh) 机器到机器核心网络的接入实现方法及装置
WO2022152238A1 (zh) 一种通信方法及通信装置
CN101959252B (zh) 服务质量控制、策略配置方法和装置
WO2021032131A1 (zh) 一种用户面信息上报方法及装置
CN102045691B (zh) 获取物联网设备组别标识的方法及装置
CN115988579A (zh) 实现业务连续性的方法、装置及***
KR20210103557A (ko) 시간 민감 통신 서비스 품질을 지원하는 방법 및 통신 기기
WO2011134329A1 (zh) 一种小数据包传输的方法和***
WO2011060673A1 (zh) 公用承载建立的方法、数据传输方法和核心网络侧设备
CN110679175A (zh) 管理上行链路服务质量的方法和执行所述方法的基站
EP4161130A1 (en) Data transmission method and apparatus
EP3499922B1 (en) Method, device and computer-readable storage medium for applying qos based on user plane data mapping
US20210176660A1 (en) Data transmission method and apparatus thereof
EP4088434A1 (en) Tsc-5g qos mapping with consideration of assistance traffic information and pcc rules for tsc traffic mapping and 5g qos flows binding
CN109417729A (zh) 一种业务数据传输方法及设备
JP2022541487A (ja) 情報指示、決定方法及び装置、通信機器及び記憶媒体
CN102316529B (zh) 一种控制业务接纳的方法及***
WO2024125232A1 (zh) 一种业务流调度方法及装置
CN114270934A (zh) 控制数据传输速率的方法、装置、通信设备及存储介质
WO2023185362A1 (zh) 一种媒体单元传输方法及装置
WO2023185402A1 (zh) 通信方法及装置
WO2024060778A1 (zh) 一种建立QoS规则的方法及装置
WO2024051313A1 (zh) 通信资源管理方法、装置、***及存储介质