WO2011134329A1 - 一种小数据包传输的方法和*** - Google Patents

一种小数据包传输的方法和*** Download PDF

Info

Publication number
WO2011134329A1
WO2011134329A1 PCT/CN2011/072040 CN2011072040W WO2011134329A1 WO 2011134329 A1 WO2011134329 A1 WO 2011134329A1 CN 2011072040 W CN2011072040 W CN 2011072040W WO 2011134329 A1 WO2011134329 A1 WO 2011134329A1
Authority
WO
WIPO (PCT)
Prior art keywords
mtc
small data
data packet
media gateway
bearer
Prior art date
Application number
PCT/CN2011/072040
Other languages
English (en)
French (fr)
Inventor
谢宝国
李志军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP11774320.3A priority Critical patent/EP2566199B1/en
Publication of WO2011134329A1 publication Critical patent/WO2011134329A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method and system for small data packet transmission. Background technique
  • M2M Machine to Machine
  • M2M service providers use existing wireless networks, such as General Packet Radio Service (GPRS) networks, and Packet Switched Networks (EPS, Evolved Packet System) networks to carry out M2M services.
  • GPRS General Packet Radio Service
  • EPS Packet Switched Networks
  • H2H Human to Human
  • the GPRS network is a second-generation mobile communication network based on packet switching.
  • GPRS evolved into Universal Mobile Telecommunication System Packet Switch (UMTS PS).
  • Figure 1 shows the network architecture of UMTS PS.
  • the network architecture includes the following network elements:
  • the Radio Network System includes a Node B (NodeB) and a Radio Network Controller (RNC), and the NodeB provides an air interface connection for the terminal, and the RNC is mainly used for managing radio resources and controlling the NodeB;
  • the RNC and the NodeB are connected through the Iub interface, and the terminal accesses the packet domain core network (Packet Core) of the UMTS through the RNS;
  • Packet Core packet domain core network
  • the Serving GPRS Support Node used to store the location information of the user's routing area, responsible for security and access control, and the SGSN is connected to the RNS through the Iu port;
  • the Gateway GPRS Support Node is configured to allocate the IP address of the terminal and the gateway function to the external network, and is internally connected to the SGSN through the Gn port;
  • the Home Location Register (HLR) is used to store the user's subscription data and the current SGSN address, and is connected to the SGSN through the Gr port and to the GGSN through the Gc port.
  • PDN Packet Data Network
  • the Machine Type Communication Server is an M2M application server that provides M2M applications for users and connects to the GGSN through the MTCi interface.
  • a machine type communication terminal needs to transmit data information to an MTC Server or other MTC UE through a GPRS network transmission.
  • the GPRS network establishes a tunnel between the RNC ⁇ SGSN ⁇ GGSN for the transmission.
  • the tunnel is based on the GPRS Tunneling Protocol (GTP), and the data information is reliably transmitted through the GTP tunnel.
  • GTP GPRS Tunneling Protocol
  • the 3rd Generation Partnership Project (3GPP) is dedicated to the study of System Architecture Evolution (SAE), with the aim of making an evolved packet network (EPC, Evolved Packet Core) provides higher transmission rates, shorter transmission delays, optimized packetization, and support for E-UTRAN (Evolved Universal Terrestrial Radio Access), global terrestrial wireless access Mobility management between (UTRAN, Universal Terrestrial Radio Access), Wireless Local Area Network (WLAN), and other non-3GPP access networks.
  • SAE System Architecture Evolution
  • EPC Evolved Packet Core
  • E-RAN evolved radio access network
  • eNB evolved Node B
  • Evolved NodeB evolved NodeB
  • PDN Packet Data Network
  • EPC provides lower latency and allows more access to the wireless access system, including the following network elements:
  • the Mobility Management Entity is a control plane function entity and a server that temporarily stores user data. It is responsible for managing and storing the context of user equipment (UE, User Equipment), such as user identity, mobility management status, and user. Security parameters and the like, assigning a temporary identifier to the user, and when the UE is camped on the tracking area or the network, is responsible for authenticating the user;
  • UE User Equipment
  • Security parameters and the like assigning a temporary identifier to the user, and when the UE is camped on the tracking area or the network, is responsible for authenticating the user;
  • the service gateway (S-GW, Serving Gateway) is a user plane entity responsible for user plane data routing processing, terminating downlink data of UEs in idle (ECM_IDLE) state; managing and storing the SAE bearer context of the UE, such as IP bearer service parameters and network internal routing information;
  • S-GW is the anchor point of the internal user plane of the 3GPP system, and a user can only have one S-GW at a time;
  • the packet data network gateway (P-GW, PDN Gateway) is the gateway responsible for the UE accessing the PDN, assigns the user IP address, and is also the mobility anchor of the 3GPP and non-3GPP access systems.
  • the function of the P-GW also includes the policy implementation. And charging support; the user can access multiple P-GWs at the same time; the Policy and Charging Enforcement Function (PCEF) is also located in the P-GW;
  • PCEF Policy and Charging Enforcement Function
  • the Policy and Charging Rules Function (PCRF) is responsible for providing policy control and charging rules to the PCEF.
  • the Home Subscriber Server (HSS) is responsible for permanently storing user subscription data.
  • the content stored in the HSS includes the UE's International Mobile Subscriber Identification (IMSI) and the IP address of the P-GW.
  • IMSI International Mobile Subscriber Identification
  • the S-GW and the P-GW may be unified.
  • the EPC system user plane network element includes the S-GW. And P-GW.
  • the MTC Server is used to provide M2M applications for users. It is connected to the P-GW through the MTCi interface.
  • the MTC Server is mainly responsible for information collection and data storage/processing of the MTC UE, and can perform necessary management on the MTC UE. Similar to the UE, the MTC UE is responsible for collecting information of several collectors and accessing the core network through the RAN node and interacting with the MTC Server.
  • the MTC UE needs to transmit data information to the MTC Server over the EPS network.
  • the EPS network establishes a GTP tunnel between the S-GW P-GWs for this transmission, and the data information is reliably transmitted through the GTP tunnel.
  • FIG. 3 is a flow chart of the MTC UE accessing the EPS network and performing network attachment and IP bearer establishment in the prior art, including the following steps:
  • Step 301 The MTC UE initiates a network attach request to the eNodeB to access the SAE network, where the network access capability of the IMSI, the MTC UE, and the Protocol Configuration Options (PCO, Protocol Configuration Options) parameters (including an indication for requesting IP allocation) are carried. Information such as parameters, attachment types, etc.
  • PCO Protocol Configuration Options
  • Step 302 The eNodeB selects an MME for the MTC UE to serve, and forwards the attach request to the MME, and carries the important information such as the identifier, the attachment type, the access capability, and the PCO parameter of the MTC UE to the MME.
  • the parameters are transmitted transparently at the MME.
  • Step 303 The MME sends an authentication data request message (including an IMSI) to the HSS.
  • the HSS first determines the subscriber data corresponding to the IMSI. If no subscription is found or the IMSI is blacklisted, the HSS returns the authentication data to the MME. Responding to and carrying the cause of the error; if the subscriber data corresponding to the IMSI is found, the HSS returns an authentication data response message (including an authentication vector) to the MME.
  • the MME performs an authentication procedure to verify the validity of the IMSI of the MTC UE and performs a security mode flow to enable a secure connection.
  • Step 304 The MME sends a location update request to the HSS of the home network, where the MME is carried.
  • the identifier of the MTC UE is used to inform the HSS of the area currently accessed by the MTC UE.
  • the subscription user data mainly includes: default access point name (APN, Access Point Name), bandwidth size and other information.
  • the MME receives the subscription user data, and checks whether the MTC UE is allowed to access the network.
  • the HSS returns to receive the user response. If the MME finds that the MTC UE has roaming restrictions or access restrictions, the MME will prohibit the MTC UE from attaching and notify the HSS.
  • Step 306 The HSS sends a confirmation location update response to the MME.
  • Step 307 The MME selects an S-GW for the MTC UE, and sends a default bearer request to it.
  • the MME informs the S-GW of the necessary information: an identifier of the MTC UE, an identifier of the MME, an indication for assigning an IP address to the MTC UE, default bandwidth information, a P-GW address, and the like.
  • Step 308 The S-GW sends a default bearer request to the P-GW.
  • the S-GW informs the P-GW of the necessary information, such as: the address of the S-GW, the default bandwidth information, the PCO parameter (including the indication of the MTC UE assigning the IP address, and the like).
  • Step 309 If necessary, the P-GW requests the PCRF for the policy and charging rules and decision information configured by the MTC UE.
  • Step 310 The P-GW establishes a default bearer according to the policy and charging decision information returned by the PCRF, and returns a 7-load establishment response to the S-GW.
  • Step 311 The S-GW sends a response to the default bearer establishment to the MME.
  • Step 312 The MME sends an attach accept response to the eNodeB, indicating that the request of the MTC UE to attach to the network has been accepted, and the response carries the address of the S-GW and the Tunnel Endpoint Identifier (TEID).
  • TEID Tunnel Endpoint Identifier
  • Step 313 The eNodeB saves the address of the S-GW and the TEID, and sends a radio bearer setup request to the MTC UE, requesting the MTC UE to save the important information of the bearer establishment, and open the corresponding Port.
  • the radio bearer setup request carries the bearer network ID, the address of the P-GW, the IP address assigned to the MTC UE, the bandwidth information, and the like.
  • Step 314 The MTC UE sends a radio bearer setup response to the eNodeB, indicating that the radio bearer setup is complete.
  • Step 315 The eNodeB notifies the MME that the attach process is complete, and carries the TEID of the eNodeB and the address of the eNodeB in the notification message.
  • Step 316 The MME sends an update bearer request to the S-GW, and notifies the TEID and address of the eNodeB served by the MTC UE, and establishes a GTP-based S1 access bearer between the eNodeB and the S-GW.
  • Step 317 The S-GW sends an update bearer response to the MME.
  • Step 318 If the P-GW is not specified by the HSS, the MME sends a location update request to the HSS, and notifies the HSS of the address information of the P-GW served by the MTC UE, and the HSS updates the information.
  • PDP Packet Data Protocol
  • Step 401 The MTC UE first initiates an attach request to the SGSN through the RNS, and carries parameters such as an attachment type and an IMSI. Based on its load, the RNS routes the message to the SGSN with the IMSI of the MTC UE as the request identifier.
  • Step 402 The SGSN requests the HLR to authenticate the IMSI, and the HLR downloads the authentication authentication parameter according to the IMSI, and the SGSN authenticates and authenticates the UE.
  • Step 403 The SGSN sends a location update request to the HLR, where the SGSN carries the SGSN number, the address, the IMSI, and the like.
  • Step 404 The HLR downloads the subscription data corresponding to the IMSI to the SGSN, and the SGSN performs an access control check on the MTC UE to check whether the MTC UE has an area restriction or an access restriction. Then return the insert data response to the HLR.
  • Step 405 The HLR confirms the location update message, and sends a location update response to the SGSN.
  • Step 406 The SGSN allocates a packet-Temporary Mobile Subscriber Identify (P-TMSI) to the MTC UE, and then sends an attach accept message to the MTC UE, and carries information such as P-TMSI allocated to the MTC UE.
  • P-TMSI packet-Temporary Mobile Subscriber Identify
  • Step 407 If the P-TMSI is updated, the MTC UE returns an attach complete message to the SGSN for confirmation, and completes the GPRS attach procedure.
  • Step 408 The MTC UE applies for PDP context activation to create a GTP bearer.
  • the MTC UE sends an activation PDP context request to the SGSN, which carries information such as PDP type, PDP address, APN, PCO parameters (requesting IP address indication, etc.).
  • Step 409 The SGSN finds the address of the GGSN according to the APN, and creates a TEID for the PDP context, and then sends the PDP context request to the GGSN, which carries information such as a PDP type, a PDP address, an APN, a TEID, and a PCO parameter.
  • Step 410 the GGSN allocates a new entry and related resources for the PDP context, and then
  • the SGSN returns a PDP context activation response message, which carries parameter information such as TEID and PCO.
  • Step 411 The SGSN sends a radio access bearer (RAB) assignment message to the RNS, where the RAB ID, the TEID, the SGSN address, and the QoS profile are carried, and the radio is established for the PDP context.
  • RAB radio access bearer
  • the setup process is performed to establish a user plane radio for the service request. Then, the RNS returns a RAB assignment response message to the SGSN, carries the RNC address, the TEID, and the like, and establishes a GTP tunnel on the Iu interface.
  • Step 412 The SGSN sends an update PDP context message to the GGSN, and notifies the GGSN of the TEID and the RNC address, and the GGSN updates the tunnel entry address of the RNC.
  • the user plane data is directly sent by the RNC to the GGSN through the GTP tunnel, and the MTC UE can send the GGSN through the GGSN. Up and down data pack.
  • Step 413 After the PDP context is updated, the SGSN sends a PDP context creation accept message to the MTC UE to notify the MTC UE that the PDP context has been successfully created, and the uplink and downlink data packets of the MTC UE can be transmitted through the bearer created by the PDP context.
  • the M2M service is a networked application and service centered on intelligent interaction of machine terminals. It uses intelligent machine terminals to transmit information over the wireless network, providing customers with information solutions to meet customer information needs for monitoring, command and dispatch, data collection and measurement.
  • the communication object of M2M is machine-to-machine, which can be communication between people and machines, communication between machines and servers, and communication between different intelligent terminals.
  • Different applications of MTC equipment have different characteristics, such as: elevator equipment such as elevators have low mobility, only PS switched (Packet Switched only) attributes; and monitoring and alarm equipments have low mobility, PS only, It also has attributes such as low data transfer and high availability. Therefore, different system optimizations are required for MTC devices of different applications to effectively manage, monitor, and pay for MTC devices.
  • Small Data Transmission is a high-priority requirement in M2M applications. Its characteristics are contracted in HSS.
  • the network needs to reduce mobility management and signaling interaction and improve network resource utilization.
  • the low data volume transmission is divided into online and offline.
  • the online mode means that the M2M terminal needs to exchange data with the MTC server frequently. Therefore, the M2M terminal keeps the network attached, and the data interaction with the MTC server can pass the short message (SMS). , Short Messaging Service ), default bearer, etc.
  • SMS Short Messaging Service
  • offline mode means that the M2M terminal occasionally interacts with the MTC server through the network. For offline transmission, mobility management and signaling interaction are more, so excessive allocation of bearer resources is required, which is not conducive to improving the utilization of network resources. Summary of the invention
  • the main object of the present invention is to provide a method and system for transmitting small data packets, so as to reduce mobility management and signaling interaction in an offline transmission mode, and improve network resource utilization.
  • the present invention provides a method for small packet transmission, the method comprising:
  • the machine type communication terminal (MTC UE) carries the small data packet that needs to be sent to the media gateway in the network during the process of creating the bearer;
  • the media gateway sends the received small data packet to the MTC server.
  • the MTC UE carries the small data packet that needs to be sent to the media gateway in the network, which is specifically:
  • the small data packet to be sent is sent to the media gateway in a protocol configuration option (PCO) parameter of the attach request or the bearer setup request.
  • PCO protocol configuration option
  • the method further includes:
  • the PCO parameter further carries a small data packet transmission identifier; the media gateway identifies, according to the small data packet transmission identifier, whether a small data packet needs to be sent.
  • the method further includes:
  • the PCO parameter carries a full domain name (FQDN) of the MTC server, and the media gateway queries the domain name system (DNS) server for the corresponding MTC server address according to the FQDN, and sends the small data packet to the address corresponding MTC server.
  • FQDN full domain name
  • DNS domain name system
  • the method further includes:
  • the method further includes:
  • the media gateway After transmitting the small data packet, the media gateway returns a response message for rejecting the bearer creation to the MTC UE, and does not allocate the core network media bearer and the radio bearer resource for the MTC UE; the response message of the reject bearer creation carries the PCO parameter, And the PCO parameter carries an indication that the small data packet has been sent.
  • the present invention also provides a system for transmitting small data packets, the system comprising: an MTC UE, a media gateway, and an MTC server, where
  • the MTC UE is configured to carry the small data packet that needs to be sent to the media gateway in the network in the process of performing bearer creation;
  • the media gateway is configured to send the received small data packet to the MTC server, where the MTC server is configured to receive the small data packet from the media gateway.
  • the MTC UE is further configured to: when the attach request or the bearer setup request is initiated, send the small data packet to be sent to the media gateway in the PCO parameter of the attach request or the bearer setup request.
  • the PCO parameter also carries a small data packet transmission identifier
  • the media gateway is further configured to: according to the small data packet sending identifier, identify whether a small data packet needs to be sent.
  • the PCO parameter carries the FQDN of the MTC server
  • the media gateway is further configured to query the DNS server for the corresponding MTC server address according to the FQDN, and send the small data packet to the MTC server corresponding to the address.
  • the media gateway is further configured to: statically configure a correspondence between the MTC UE identifier and the MTC server address, and when receiving the attach request or the bearer setup request from the MTC UE, query the corresponding relationship according to the MTC UE identifier carried in the request. Corresponding to the address of the MTC server, and sending the small data packet to the MTC server corresponding to the address.
  • the media gateway is further configured to: after sending the small data packet, return a response message for rejecting the bearer creation to the MTC UE, and do not allocate the core network media bearer and the radio bearer resource for the MTC UE; Carrying a PCO parameter, and the PCO parameter carries an indication that the small data packet has been sent.
  • the MTC UE in the process of performing bearer creation, carries the small data packet to be sent to the media gateway in the network; the small data packet that the media gateway will receive Send to the MTC server.
  • the MTC UE initiates an access request to the PS network, the MTC UE directly carries the small data packet to the media gateway in the access request message, thereby avoiding the allocation of the core network media bearer and the radio bearer resource, and reducing the application of the PCC policy.
  • FIG. 1 is a schematic diagram of a network architecture of a UMTS PS in the prior art
  • FIG. 2 is a schematic diagram of a network architecture of a SAE in the prior art
  • FIG. 3 is a flowchart of performing network attach and IP bearer establishment by an MTC UE accessing an EPS network in the prior art
  • FIG. 4 is a flow chart of performing MDF UE access to a GPRS network, performing network attachment and creating a PDP context in the prior art
  • FIG. 5 is a flowchart of a method in which an MTC UE is attached to an EPS network and carries a small data packet to communicate with an MTC server according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method in which an MTC UE attaches to a GPRS network and carries a small data packet to implement communication with an MTC server according to an embodiment of the present invention.
  • the present invention needs to solve the problem that the MTC UE sends small data packets in an offline state, and needs to efficiently utilize network resources in the process of transmitting small data packets, thereby reducing signaling interaction and mobility management.
  • the MTC UE of the present invention carries the small data packet that needs to be sent to the media gateway in the network during the bearer creation process; the media gateway sends the received small data packet to the MTC server.
  • the small message packet is directly carried in the request message, and indicates whether a small data packet is sent.
  • the media gateway receives the attach request or the bearer setup request, the small identifier is identified from the PCO parameter. The indication of the packet is sent, and then the small packet is extracted from the PCO parameter and encapsulated into an IP packet suitable for transmission by the MTCi interface.
  • the media gateway needs to discover the MTC server where the MTC UE is located, and can search for the corresponding MTC Server by using the full domain name (FQDN, Fully Qualified Domain Name) to address the Domain Name System (DNS), and then with the MTC Server. Establish a secure IP connection and send the small packets of the MTC UE to the MTC Server.
  • FQDN Fully Qualified Domain Name
  • the media gateway After the small data packet is sent, the media gateway directly rejects the establishment of the media bearer according to the policy, and does not allocate an IP address, a core network bearer resource, and a radio resource to the MTC UE, thereby improving the utilization of the network resource.
  • the policy and charging control (PCC, Policy and Charging Control) policy interaction is saved, and the signaling interaction of the radio bearer is established, and signaling processing is reduced.
  • the MTC UE enters the offline state again after the small packet is sent, until the next small packet is sent.
  • Embodiment 1 of the present invention describes a process in which an MTC UE accesses an EPS network and transmits a small data packet when performing network attachment.
  • the MTC UE terminal initiates an attach request to the EPS network
  • the PCO parameter carries a small data packet and a small data packet to send an identifier;
  • the P-GW identifies a small identifier.
  • the data packet is sent, and the small data packet is extracted from the PCO parameter and encapsulated into an appropriate IP packet, and then sent to the MTC Server through the MTCi interface.
  • the media gateway rejects the bearer establishment, reduces the interaction with the PCRF, and establishes the media bearer.
  • the specific process includes the following steps:
  • Step 501 The MTC UE initiates a network attach request to the eNodeB to access the SAE network, and carries information such as network access capability, PCO parameters, and attachment type of the IMSI and the MTC UE.
  • the PCO parameter is the protocol parameter between the MTC UE and the P-GW, including information such as the request to allocate the IP.
  • the PCO parameter is transparently transmitted in the eNodeB and the MME, and the length can be up to 255 bytes.
  • the small data packet that needs to be sent to the MTC Server is carried in the PCO parameter, and the PCO parameter is Carry a small packet to send the identifier.
  • the FCO parameter of the MTC Server is carried in the PCO parameter.
  • Step 502 The eNodeB selects an MME for the MTC UE to serve, and forwards the attach request to the MME, and carries the important information such as the identifier, the attachment type, the access capability, and the PCO parameter of the MTC UE to the MME.
  • the parameters are transparently transmitted for the MME.
  • Step 503 The MME sends an authentication data request message (including an IMSI) to the HSS.
  • the HSS first determines the subscriber data corresponding to the IMSI. If no subscription is found or the IMSI is blacklisted, the HSS returns the authentication data to the MME. Responding to and carrying the cause of the error; if the subscriber data corresponding to the IMSI is found, the HSS returns an authentication data response message (including an authentication vector) to the MME.
  • the MME performs an authentication process to verify the legitimacy of the terminal IMSI and performs a secure mode flow to enable a secure connection.
  • Step 504 The MME sends a location update request to the HSS of the home network, and the HSS sends the subscription user data to the MME according to the identifier of the MTC UE.
  • the MME receives the subscription user data and checks whether the MTC UE is allowed to access the network, such as If allowed, the receiver receives a response to the HSS. If the MME finds that the MTC UE has roaming restrictions or access restrictions, the MME will prohibit the MTC UE from attaching and notify the HSS. After the MME returns a receiving user response to the HSS, the HSS sends a confirmation location update response to the MME.
  • Step 505 The MME selects an S-GW for the MTC UE, and sends a request for establishing a default bearer.
  • the information that the MME informs the S-GW is: an identifier of the MTC UE, an identifier of the MME, an indication for assigning an IP address to the MTC UE, a default bandwidth information, a P-GW address, a PCO parameter, etc., in the PCO parameter
  • the MTC UE carries a request for sending a small data packet (ie, a small data packet transmission identifier) and a small data packet to be sent.
  • the S-GW sends a request to establish a default bearer to the P-GW.
  • the information required by the S-GW to inform the P-GW includes: an address of the S-GW, a default bandwidth information, an indication for assigning an IP address to the MTC UE, a PCO parameter, etc., and the PCO parameter carries a small data packet transmission identifier. And information such as small packets that need to be sent.
  • Step 506 The P-GW extracts the information in the PCO parameter, and according to the request of the MTC UE to send the small data packet, the small data packet to be sent is taken out and encapsulated into an IP packet format that satisfies the MTCi interface requirement.
  • the P-GW needs to fill in the IP packet with the destination address of the IP packet, that is, the IP address of the MTC Server. If the PCO parameter carries the FQDN of the MTC Server, the P-GW can query the DNS server for the IP address of the MTC Server. If not, the P-GW can pre-statically configure the mapping between the MTC UE identifier and the MTC Server IP address. The GW obtains the address of the MTC Server by looking up the correspondence according to the identifier of the MTC UE.
  • Step 507 The P-GW establishes an IP secure connection with the MTC server through the MTCi interface, and sends the small data packet of the MTC UE to the MTC server, where the IP packet can carry the identifier of the MTC UE.
  • the MTC Server responds to the P-GW that the data packet has been received.
  • Step 508 After the P-GW sends the data, the resource and the IP address are not allocated to the MTC UE, and the default bearer setup reject message is directly sent to the S-GW, and the PCO parameter carries the small data.
  • the indication that the packet has been sent is sent to the MTC UE.
  • the S-GW sends a response message of the default bearer establishment rejection to the MME, and carries the PCO parameter.
  • Step 509 The MME sends an attach reject response to the eNodeB, rejects the attach request of the MTC UE, and carries the PCO parameter to the MTC UE in the attach request, and carries an indication that the small data packet has been sent in the PCO parameter.
  • Step 510 After receiving the attach rejection, the eNodeB directly sends an attach reject message to the MTC UE, rejecting the current access request, and the reject message carries the PCO parameter, and the MTC UE finds an indication that the small data packet has been sent from the PCO parameter. The access is no longer attempted, and the attach request is re-initiated after the offline until the next small packet transmission.
  • the eNodeB rejects the attached request and does not need to allocate radio bearer resources, which improves the utilization of the radio resources.
  • Embodiment 2 of the present invention describes a process in which an MTC UE accesses a GPRS network, performs network attach, and sends a small data packet when creating a PDP context.
  • the MTC UE initiates a bearer setup request to the GPRS network
  • the PCO parameter carries a small data packet and a small data packet to transmit the identifier
  • the GGSN identifies that the small data packet is sent, and the small data packet is extracted from the PCO parameter and encapsulated into a suitable IP packet.
  • it is sent to the MTC Server through the MTCi interface; after the data transmission is completed, the GGSN rejects the bearer establishment, and does not allocate the core network media bearer and the radio bearer.
  • the specific process includes the following steps:
  • Step 601 The MTC UE initiates an attach request to the SGSN through the RNS for the first time, which carries parameters such as an attachment type and an IMSI.
  • the RNS Based on its load, the RNS routes the message to the SGSN with the user's IMSI as the request identifier.
  • Step 602 The SGSN requests the HLR to authenticate the IMSI, and the HLR downloads the authentication authentication parameter according to the IMSI, and the SGSN authenticates and authenticates the MTC UE.
  • Step 603 The SGSN sends a location update request to the HLR, where the SGSN number and the ground are carried. Address, IMSI and other parameters; the HLR downloads the subscription data corresponding to the IMSI to the SGSN, and the SGSN performs an access control check on the MTC UE, checks whether the MTC UE has an area restriction or an access restriction, and then returns an insertion data response to the HLR. The HLR confirms the location update message and sends a concurrent location update response to the SGSN.
  • Step 604 The SGSN allocates a P-TMSI to the user, and then sends an attach accept message to the UE, where the message carries information such as P-TMSI allocated to the UE.
  • Step 605 The MTC UE needs to send a small data packet, and then initiates a PDP context request to the SGSN to apply for PDP context activation to create a GTP bearer.
  • the MTC UE sends a PDP context request to the SGSN, and the request carries information such as a PDP type, a PDP address, an APN, and a PCO parameter.
  • the PCO parameter is a protocol parameter between the UE and the GGSN, including information indicating that the IP is requested to be allocated; the PCO parameter is transparently transmitted in the RNS and the SGSN, and the length can be up to 255 bytes.
  • the small data packet that needs to be sent to the MTC Server is carried in the PCO parameter in the PDP context request, and at the same time in the PCO
  • the small packet is carried in the middle to send an identifier to notify the GGSN.
  • the FCO parameter of the MTC Server is carried in the PCO parameter.
  • Step 606 The SGSN finds the address of the GGSN according to the APN, and creates a TEID for the PDP context, and then sends the PDP context request to the GGSN, where the request carries the PDP type, the PDP address, the APN, the TEID, the PCO parameter, and the like, in the PCO.
  • the parameter carries a small packet to send the identifier.
  • the FCO parameter of the MTC Server is carried in the PCO parameter.
  • Step 607 The GGSN extracts the information in the PCO parameter, and then according to the request of the MTC UE to send the small data packet, extracts the small data packet to be sent, and encapsulates it into an IP packet format that satisfies the MTCi interface requirement.
  • the GGSN needs to fill in the IP packet with the destination address of the IP packet, that is, the IP address of the MTC Server. If the PCO parameter carries the FQDN of the MTC Server, the GGSN can go to the DNS server. The IP address of the MTC server is queried. If not, the GGSN can pre-statically configure the mapping between the MTC UE identifier and the MTC server IP address, and then obtain the address of the MTC server by searching for the corresponding relationship according to the identifier of the MTC UE.
  • Step 608 The GGSN establishes an IP secure connection with the MTC server through the MTCi port, and then sends the small data packet of the MTC UE to the MTC server, where the IP packet can carry the identifier of the MTC UE.
  • the MTC Server responds to the GGSN that the packet has been received.
  • Step 609 After the GGSN sends the small data packet, the GGSN does not allocate a new entry and related resources to the PDP context, and directly returns a PDP context activation rejection message to the SGSN, where the message carries TEID, PCO, and other parameter information, and the PCO parameter carries the small data.
  • the indication that the packet has been sent is sent to the MTC UE.
  • Step 610 The SGSN sends a RAB assignment message to the RNS to apply for the radio bearer resource, but sends a reject PDP context creation message to the MTC UE, where the message carries the PCO parameter.
  • the MTC UE finds that the small data packet has been sent from the PCO parameter the PDP context creation is not attempted until the next small data packet transmission triggers the re-initiation attachment request or the PDP context creation request.
  • Step 611 the terminal that sends the small data packet offline may be offline, and the offline may be initiated by the network, or may be initiated by the MTC UE. If initiated by the network, the SGSN initiates a reject PDP context setup message to the MTC UE, and then initiates a Detach message to the MTC UE to inform the MTC UE that the UE is offline. If initiated by the MTC UE, the MTC UE initiates a Detach procedure to the SGSN after receiving the message rejecting the PDP context establishment.
  • the present invention further provides a system for transmitting small data packets, including: an MTC UE, a media gateway, and an MTC server.
  • the MTC UE is configured to carry the d and the data packet to be sent to the media gateway in the network during the process of creating the bearer.
  • the media gateway is configured to send the received small data packet to the MTC server.
  • the media gateway is in the EPS network.
  • P-GW in the GPRS network, is the GGSN.
  • the MTC UE is further configured to: when the attach request or the bearer setup request is initiated, send the small data packet that needs to be sent in the attach request or the bearer setup request to the media gateway.
  • the small data packet is carried in the PCO parameter of the attach request or bearer setup request.
  • the PCO parameter may carry a small data packet transmission identifier, and the media gateway identifies whether it is necessary to send a small data packet according to the small data packet transmission identifier.
  • the PCO parameter can also carry the FQDN of the MTC server.
  • the media gateway queries the DNS server for the corresponding MTC server address according to the FQDN, and sends the small data packet to the MTC server corresponding to the address.
  • the corresponding relationship between the MTC UE identifier and the MTC server address may be statically configured on the media gateway.
  • the media gateway queries the corresponding relationship according to the MTC UE identifier carried in the request to obtain the corresponding MTC.
  • the address of the server and send the small packet to the MTC server corresponding to the address.
  • the media gateway is further configured to: after sending the small data packet, return a response message for rejecting the bearer creation to the MTC UE, and do not allocate the core network media bearer and the radio bearer resource to the MTC UE; the response message created by the reject bearer carries the PCO parameter And the PCO parameter carries an indication that the small data packet has been sent.
  • the MTC UE when initiating an access request to the PS network, directly carries the small data packet to the media gateway in the access request message, thereby avoiding the allocation of the core network media bearer and the radio bearer resource, and reducing
  • the application of the PCC policy and the processing of the relevant processing and signaling interaction reduce the establishment of the relevant signaling of the media bearer and the radio resource bearer, optimize the network flow, and satisfy the application of the M2M terminal to send the small data packet in the offline mode. demand.
  • the small packet transmission method and system of the present invention can also be applied to an online transmission method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种小数据包传输的方法,机器类型通信终端(MTCUE)在进行承载创建的过程中,将需要发送的小数据包携带给网络中的媒体网关,由媒体网关将接收的小数据包发送给MTC服务器。本发明还公开了一种小数据包传输的***,根据机器到机器间的通信(M2M)应用需求,针对M2M离线状态下发送小数据包进行网络优化,从而节省了无线资源与核心网媒体资源的分配,减少了离线传输方式下移动性管理与信令交互,提高了网络资源利用率。

Description

一种小数据包传输的方法和*** 技术领域
本发明涉及移动通信领域, 尤其涉及一种小数据包传输的方法和***。 背景技术
目前, 机器到机器间的通信(M2M, Machine to Machine )业务逐渐得 到广泛应用, 如: 物流***、 远程抄表、 智能家居等应用。 M2M服务商使 用现有的无线网络, 如通用分组无线业务( GPRS , General Packet Radio service ) 网络、 演进分组***(EPS , Evolved Packet System ) 网络等分组 交换( PS, Packet Switch ) 网络开展 M2M业务。 由于 M2M业务与人与人 之间的通信(H2H, Human to Human ) 业务存在明显的差异性, 因此需要 对现有的网络进行必要的优化, 以获得最佳的网络管理与网络通讯质量。
GPRS网络是一个基于包交换的第二代移动通信网络,到了第三代移动 通信***, GPRS演进为通用移动通信***分组交换( UMTS PS , Universal Mobile Telecommunication System Packet Switch ) i或。 ^口图 1所示,为 UMTS PS的网络架构示意图, 该网络架构中包含如下网元:
无线网络*** (RNS , Radio Network System ), RNS 中包含节点 B ( NodeB )和无线网络控制器 (RNC, Radio Network Controller ), NodeB 为终端提供空口连接, RNC主要用于管理无线资源以及控制 NodeB; RNC 与 NodeB之间通过 Iub口连接,终端通过 RNS接入 UMTS的分组域核心网 ( Packet Core );
服务 GPRS支持节点( SGSN, Serving GPRS Support Node ), 用于保存 用户的路由区位置信息, 负责安全和接入控制, SGSN通过 Iu口与 RNS相 连; 网关 GPRS支持节点 ( GGSN, Gateway GPRS Support Node ), 用于负 责分配终端的 IP地址和到外部网络的网关功能,在内部通过 Gn口与 SGSN 相连;
归属位置寄存器 (HLR, Home Location Register ), 用于保存用户的签 约数据和当前所在的 SGSN地址, 通过 Gr口与 SGSN相连, 通过 Gc口与 GGSN相连;
分组数据网络(PDN, Packet Data Network ), 用于为用户提供基于分 组的业务网 , 通过 Gi口与 GGSN相连;
机器类型通信月良务器 ( MTC Server , Machine-Type Communications Server )为 M2M应用服务器, 用于为用户提供 M2M应用, 通过 MTCi接 口与 GGSN相连。
在图 1中, 机器类型通信终端(MTC UE )需要通过 GPRS网络传输向 MTC Server或其它的 MTC UE传输数据信息。 GPRS网络为此次传输建立 RNC^SGSN^GGSN之间的隧道, 隧道基于 GPRS隧道协议( GTP, GPRS Tunneling Protocol ), 数据信息通过 GTP隧道实现可靠传输。
随着无线宽带技术的发展, 业务层对传输层的带宽、 时延等性能要求 越来越高。 为提高其网络性能, 降低网络建设及运营成本, 第三代合作伙 伴计划 (3GPP, 3rd Generation Partnership Project )致力于***架构演进 ( SAE, System Architecture Evolution ) 的研究, 目的是使得演进的分组网 ( EPC, Evolved Packet Core )可提供更高的传输速率、 更短的传输延时、 优化分组, 并支持演进的全球陆地无线接入(E-UTRAN, Evolved Universal Terrestrial Radio Access )、全球陆地无线接入 ( UTRAN, Universal Terrestrial Radio Access )、 无线局 i或网 ( WLAN, Wireless Local Area Network )及其他 非 3GPP的接入网络之间的移动性管理。
目前 SAE的架构如图 2所示,其中,演进的无线接入网( E-RAN, Evolved Radio Access Network )中包含的网元是演进节点 B( eNB或 eNodeB , Evolved NodeB ), 用于为用户的接入提供无线资源; 分组数据网(PDN, Packet Data Network )是为用户提供业务的网络; EPC提供了更低的延迟, 并允许更多 的无线接入***接入, 其包括如下网元:
移动管理实体 ( MME, Mobility Management Entity ), 是控制面功能实 体,也是临时存储用户数据的服务器, 负责管理和存储用户设备(UE, User Equipment )的上下文, 如用户标识、 移动性管理状态、 用户安全参数等等, 为用户分配临时标识, 当 UE驻扎在该跟踪区域或者该网络时, 负责对该用 户进行鉴权;
服务网关 (S-GW, Serving Gateway ), 是一个用户面实体, 负责用户 面数据路由处理, 终结处于空闲(ECM_IDLE )状态的 UE的下行数据; 管 理和存储 UE的 SAE承载(bearer )上下文, 如 IP承载业务参数和网络内 部路由信息等; S-GW是 3GPP***内部用户面的锚点, 一个用户在一个时 刻只能有一个 S-GW;
分组数据网网关 ( P-GW, PDN Gateway ), 是负责 UE接入 PDN的网 关,分配用户 IP地址,也是 3GPP和非 3GPP接入***的移动性锚点, P-GW 的功能还包括策略实施、 计费支持; 用户在同一时刻能够接入多个 P-GW; 策略与计费实施功能实体( PCEF, Policy and Charging Enforcement Function ) 也位于 P-GW中;
策略与计费规则功能实体( PCRF , Policy and Charging Rules Function ) , 负责向 PCEF提供策略控制与计费规则;
归属用户服务器 (HSS, Home Subscriber Server ), 负责永久存储用户 签约数据, HSS 存储的内容包括 UE 的国际移动用户识别码 (IMSI , International Mobile Subscriber Identification )、 P-GW的 IP地址。
在物理上, S-GW和 P-GW可能合一, EPC***用户面网元包括 S-GW 和 P-GW。
MTC Server用于为用户提供 M2M应用, 通过 MTCi接口与 P-GW相 连, MTC Server主要负责对 MTC UE的信息釆集和数据存储 /处理等工作, 并可对 MTC UE进行必要的管理。 MTC UE与 UE类似, 负责收集若干釆 集器的信息并通过 RAN节点接入核心网, 并与 MTC Server交互数据。
在图 2中, MTC UE需要通过 EPS网络向 MTC Server传输数据信息。 EPS网络为此次传输建立 S-GW P-GW之间的 GTP隧道, 数据信息通过 GTP隧道实现可靠传输。
图 3是现有技术中 MTC UE接入到 EPS网络, 执行网络附着、 IP承载 建立的流程图, 包括以下步骤:
步骤 301 , MTC UE为了接入到 SAE网络, 向 eNodeB发起网络附着 请求, 其中携带了 IMSI、 MTC UE的网络接入能力、 协议配置选项(PCO, Protocol Configuration Options )参数(包括请求分配 IP的指示等参数)、 附 着类型等信息。
步骤 302, eNodeB为 MTC UE选择一个为之服务的 MME, 并将附着 请求转发到该 MME, 同时将 MTC UE的标识、 附着类型、 接入能力、 PCO 参数等重要信息也携带给该 MME, PCO参数在 MME透明传输。
步骤 303 , MME向 HSS发送鉴权数据请求消息(含 IMSI ), HSS首先 判断 IMSI对应的签约用户数据, 如果查找不到任何签约或者 IMSI已被列 入黑名单, 则 HSS向 MME返回鉴权数据响应并携带错误原因; 如果找到 IMSI对应的签约用户数据, 则 HSS向 MME返回鉴权数据响应消息(含鉴 权向量)。
MME执行鉴权流程以验证 MTC UE的 IMSI的合法性, 并执行安全模 式流程以启用安全连接。
步骤 304 , MME向归属网的 HSS发送位置更新请求, 其中携带 MME 的标识、 MTC UE的标识 , 用以将 MTC UE当前所接入的区域告知 HSS。 步骤 305 , HSS根据 MTC UE的标识查找出 MTC UE的签约用户数据, 并将该签约用户数据发送给 MME。 签约用户数据中主要包括: 缺省接入点 名称(APN, Access Point Name )、 带宽大小等信息。
MME接收到签约用户数据,检查 MTC UE是否被允许接入到网络,向
HSS返回接收用户响应; 若 MME发现 MTC UE有漫游限制或接入限制等 问题, MME将禁止 MTC UE附着, 并通知 HSS。
步骤 306 , HSS向 MME发送确认位置更新响应。
步骤 307, MME为 MTC UE选择一个 S-GW, 并向其发送创建默认承 载请求。 在该请求中, MME告知 S-GW必要的信息有: MTC UE的标识、 MME的标识、 为 MTC UE分配 IP地址的指示、 缺省带宽信息、 P-GW地 址等。
步骤 308, S-GW向 P-GW发送创建默认承载请求。在该请求中, S-GW 告知 P-GW必要的信息有: S-GW的地址、 缺省带宽信息、 PCO参数(包 含 MTC UE分配 IP地址的指示等参数 )等。
步骤 309, 如有必要, P-GW向 PCRF请求为该 MTC UE所配置的策略 和计费规则、 决策信息。
步骤 310, P-GW根据 PCRF返回的策略和计费决策信息, 建立缺省承 载, 并向 S-GW返回 7 载建立响应。
步骤 311 , S-GW向 MME发送默认承载建立的响应。
步骤 312, MME向 eNodeB发送附着接受响应, 表明 MTC UE的附着 到网络的请求已被接受, 该响应中携带 S-GW 的地址与隧道端口标识 ( TEID, Tunnel Endpoint Identifier )。
步骤 313 , eNodeB保存 S-GW的地址与 TEID, 并向 MTC UE发送无 线承载建立请求, 要求 MTC UE保存承载建立的重要信息, 并开放相应的 端口。 在无线承载建立请求中, 携带了承载网络 ID、 P-GW的地址、 分配 给 MTC UE的 IP地址、 带宽信息等。
步骤 314, MTC UE向 eNodeB发送无线承载建立响应, 表明无线承载 建立完成。
步骤 315 , eNodeB 通知 MME 附着过程完成, 并在通知消息中携带 eNodeB的 TEID与 eNodeB的地址。
步骤 316, MME向 S-GW发送更新承载请求, 通知为 MTC UE服务的 eNodeB的 TEID和地址, 在 eNodeB与 S-GW之间建立起基于 GTP协议的 S1接入承载。
步骤 317, S-GW向 MME发送更新承载响应。
步骤 318, 如果 P-GW不是 HSS指定的, 则 MME向 HSS发送位置更 新请求, 通知给 HSS为 MTC UE所服务的 P-GW的地址信息, HSS更新该 信息。
图 4是现有技术中 MTC UE接入到 GPRS网络, 执行网络附着与创建 分组数据协议(PDP, Packet Data Protocol )上下文的流程图, 包括以下步 骤:
步骤 401 , MTC UE首次通过 RNS向 SGSN发起附着请求, 携带附着 类型、 IMSI等参数。 RNS根据其负载情况, 以 MTC UE的 IMSI为请求标 识将该消息路由到 SGSN。
步骤 402, SGSN向 HLR请求对 IMSI进行鉴权, HLR根据 IMSI下载 鉴权认证参数, SGSN对 UE进行鉴权与认证。
步骤 403 , SGSN发送位置更新请求给 HLR,其中携带 SGSN号码与地 址、 IMSI等参数。
步骤 404, HLR将与 IMSI相对应的签约数据下载给 SGSN, SGSN对 MTC UE进行接入控制检查, 检查 MTC UE是否有区域限制或接入限制, 然后返回***数据响应给 HLR。
步骤 405 , HLR确认位置更新消息, 并发位置更新响应给 SGSN。
如果位置更新请求被 HLR拒绝, SGSN将拒绝 MTC UE的附着请求。 步骤 406 , SGSN 为该 MTC UE 分配分组临时移动用户识别号码 ( P-TMSI, Packet-Temporary Mobile Subscriber Identify ), 然后将附着接受 消息发给 MTC UE, 携带为 MTC UE分配的 P-TMSI等信息。
步骤 407 , 若 P-TMSI被更新, MTC UE返回附着完成消息给 SGSN进 行确认, 完成 GPRS附着流程。
步骤 408 , MTC UE申请进行 PDP上下文激活, 创建 GTP承载。
MTC UE将激活 PDP上下文请求发给 SGSN,其中携带 PDP类型、 PDP 地址、 APN、 PCO参数(请求 IP地址指示等)等信息。
步骤 409, SGSN根据 APN找到 GGSN的地址, 并为此 PDP上下文创 建 TEID, 然后将此创建 PDP上下文请求发给 GGSN, 其中携带 PDP类型、 PDP地址、 APN、 TEID, PCO参数等信息。
步骤 410, GGSN为此 PDP上下文分配新的入口及相关资源, 然后向
SGSN返回 PDP上下文激活响应消息, 其中携带 TEID、 PCO等参数信息。
步骤 411 , SGSN向 RNS发送无线接入资源( RAB, Radio Access Bearer ) 指派消息, 其中携带 RAB ID、 TEID, SGSN地址、 QoS Profile等信息, 为 PDP上下文建立无线 7 载。
RNS执行无线? 载建立流程, 为本次业务请求建立用户面无线 7 载; 然后 RNS向 SGSN返回 RAB指派响应消息, 携带 RNC地址、 TEID等信 息, 在 Iu口上建立起 GTP隧道。
步骤 412, SGSN向 GGSN发送更新 PDP上下文消息,将 TEID与 RNC 地址等信息通知 GGSN, GGSN更新 RNC的隧道入口地址, 用户面数据由 RNC可直接经 GTP隧道发给 GGSN, MTC UE可以通过 GGSN发送上下行 数据包。
步骤 413 , 更新 PDP上下文完成后, SGSN向 MTC UE发送 PDP上下 文创建接受消息, 通知 MTC UE已成功创建 PDP上下文, MTC UE的上下 行数据包可以通过此 PDP上下文创建的承载进行传输。
M2M业务是以机器终端智能交互为核心的、 网络化的应用与服务。 它 釆用智能机器终端, 通过无线网络传输信息, 为客户提供的信息化解决方 案, 用于满足客户对监控、 指挥调度、 数据釆集和测量等方面的信息化需 求。
M2M的通信对象为机器对机器, 可以是人与机器之间的通信, 机器与 服务器之间的通信, 不同智能终端之间的通信。 不同应用的 MTC设备具有 不同的特性, 如: 电梯等升降机设备具有低移动性、 只有分组交换业务(PS only, Packet Switched only )属性; 而监视、 警报设备除具有低移动性、 PS only外, 还具有低数据传输和高可用性等属性。 因此, 需要针对不同应用 的 MTC设备进行不同的***优化, 以有效的对 MTC设备进行管理、监控、 付费等。
低数据量传输特性( Small Data Transmission )是 M2M应用中优先级较 高的需求, 其特性在 HSS进行签约, 网络需要针对此特性减少移动性管理 与信令交互、 提高网络资源利用率。 低数据量传输分为在线与离线两种方 式, 在线方式是指 M2M终端需要频繁地与 MTC服务器进行数据交互, 因 此 M2M终端保持在网络的附着, 与 MTC服务器的数据交互可以通过短消 息(SMS , Short Messaging Service ), 默认承载等方式进行; 离线方式是指 M2M终端偶发地通过网络与 MTC服务器进行交互。对于离线方式的传输, 由于移动性管理与信令交互较多, 因此需要过多的分配承载资源, 从而不 利于提高网络资源的利用率。 发明内容
有鉴于此, 本发明的主要目的在于提供一种小数据包传输的方法和系 统, 以减少离线传输方式下移动性管理与信令交互, 提高网络资源利用率。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种小数据包传输的方法, 该方法包括:
机器类型通信终端(MTC UE )在进行承载创建的过程中, 将需要发送 的小数据包携带给网络中的媒体网关;
所述媒体网关将接收的小数据包发送给 MTC服务器。
所述 MTC UE在承载创建的过程中, 将需要发送的小数据包携带给网 络中的媒体网关, 具体为:
所述 MTC UE在发起附着请求或承载建立请求时, 将需要发送的小数 据包携带在所述附着请求或承载建立请求的协议配置选项 (PCO ) 参数中 发送给媒体网关。
该方法进一步包括:
所述 PCO参数中还携带小数据包发送标识; 所述媒体网关根据所述小 数据包发送标识来识别是否需要发送小数据包。
该方法进一步包括:
所述 PCO参数中携带 MTC服务器的全域名 (FQDN ), 所述媒体网关 根据所述 FQDN向域名*** ( DNS )服务器查询对应的 MTC服务器地址, 并将所述小数据包发送到所述地址对应的 MTC服务器。
该方法进一步包括:
所述媒体网关上静态配置 MTC UE标识与 MTC服务器地址的对应关 系, 且所述媒体网关根据附着请求或承载建立请求中携带的 MTC UE标识 查询所述对应关系获取对应 MTC服务器的地址,并将所述小数据包发送到 所述地址对应的 MTC服务器。 该方法进一步包括:
所述媒体网关在发送完小数据包后, 向 MTC UE返回拒绝承载创建的 响应消息, 且不为 MTC UE分配核心网媒体承载和无线承载资源; 所述拒 绝承载创建的响应消息中携带 PCO参数,且所述 PCO参数中携带小数据包 已发送完成的指示。
本发明还提供了一种小数据包传输的***, 该***包括: MTC UE、媒 体网关和 MTC服务器, 其中,
所述 MTC UE, 用于在进行承载创建的过程中, 将需要发送的小数据 包携带给网络中的媒体网关;
所述媒体网关, 用于将接收的小数据包发送给 MTC服务器; 所述 MTC服务器, 用于对来自所述媒体网关的小数据包进行接收。 所述 MTC UE进一步用于, 在发起附着请求或承载建立请求时, 将需 要发送的小数据包携带在所述附着请求或承载建立请求的 PCO参数中发送 给媒体网关。
所述 PCO参数中还携带小数据包发送标识,
相应的, 所述媒体网关进一步用于, 根据所述小数据包发送标识来识 别是否需要发送小数据包。
所述 PCO参数中携带 MTC服务器的 FQDN,
相应的, 所述媒体网关进一步用于, 根据所述 FQDN向 DNS服务器查 询对应的 MTC服务器地址,并将所述小数据包发送到所述地址对应的 MTC 服务器。
所述媒体网关进一步用于, 静态配置 MTC UE标识与 MTC服务器地 址的对应关系, 在接收到来自 MTC UE的附着请求或承载建立请求时, 根 据请求中携带的 MTC UE标识查询所述对应关系获取对应 MTC服务器的 地址, 并将所述小数据包发送到所述地址对应的 MTC服务器。 所述媒体网关进一步用于, 在发送完小数据包后, 向 MTC UE返回拒 绝承载创建的响应消息, 且不为 MTC UE分配核心网媒体承载和无线承载 资源; 所述拒绝承载创建的响应消息中携带 PCO参数,且所述 PCO参数中 携带小数据包已发送完成的指示。
本发明所提供的一种小数据包传输的方法和***, 由 MTC UE在进行 承载创建的过程中, 将需要发送的小数据包携带给网络中的媒体网关; 媒 体网关将接收的小数据包发送给 MTC服务器。 通过本发明, MTC UE在向 PS网络发起接入请求时, 将小数据包在接入请求消息中直接携带给媒体网 关, 避免了分配核心网媒体承载与无线承载资源, 减少了 PCC策略的申请 与下发相关处理与信令的交互, 减少了建立媒体承载与无线资源承载的相 关信令,对网络流程进行了优化, 满足了离线方式下 M2M终端发送小数据 包的应用需求。 附图说明
图 1为现有技术中 UMTS PS的网络架构示意图;
图 2为现有技术中 SAE的网络架构示意图;
图 3为现有技术中 MTC UE接入到 EPS网络, 执行网络附着、 IP承载 建立的流程图;
图 4为现有技术中 MTC UE接入到 GPRS网络, 执行网络附着与创建 PDP上下文的流程图;
图 5为本发明实施例中 MTC UE附着到 EPS网络, 携带小数据包与 MTC服务器实现通信的流程图;
图 6为本发明实施例中 MTC UE附着到 GPRS网络, 携带小数据包与 MTC服务器实现通信的流程图。 具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。 本发明需要解决离线状态下 MTC UE发送小数据包的问题, 在小数据 包的发送过程中需要高效利用网络资源, 减少信令交互与移动性管理。 基 于上述需求, 本发明的 MTC UE在进行承载创建的过程中, 将需要发送的 小数据包携带给网络中的媒体网关; 媒体网关将接收的小数据包发送给 MTC服务器。
在 MTC UE发起附着请求或承载建立请求时, 直接在请求消息中携带 小数据包, 并指示是否有小数据包发送; 当媒体网关收到附着请求或承载 建立请求时,从 PCO参数中识别小数据包发送的指示,然后从 PCO参数中 提取出小数据包, 并封装成适合 MTCi接口传输的 IP包。 另外, 媒体网关 需要发现 MTC UE所在的 MTC Server, 可以釆用全域名 (FQDN, Fully Qualified Domain Name )到域名***(DNS, Domain Name System )寻址 的方式查找对应的 MTC Server, 然后与 MTC Server建立安全的 IP连接, 将 MTC UE的小数据包发送给 MTC Server。
媒体网关在小数据包发送完成后, 根据策略直接拒绝媒体承载的建立, 不为 MTC UE分配 IP地址、 核心网承载资源和无线资源 , 从而提高网络资 源的利用率。 此外, 节省了策略与计费控制 (PCC , Policy and Charging Control )策略交互、 建立无线承载的信令交互, 减少了信令处理。 MTC UE 在小数据包发送完成后再次进入离线状态, 直至下个小数据包的发送触发。
下面结合具体实施例对本发明的小数据包传输的方法进一步详细阐 述。
本发明的实施例一如图 5所示, 描述了 MTC UE接入到 EPS网络, 执 行网络附着时发送小数据包的过程。 MTC UE终端向 EPS网络发起附着请 求时, 在 PCO参数中携带小数据包及小数据包发送标识; P-GW识别有小 数据包发送, 并从 PCO参数中提取出小数据包封装成合适的 IP包, 然后通 过 MTCi接口发给 MTC Server; 数据发送完成后媒体网关拒绝承载建立, 减少与 PCRF进行交互及媒体承载的建立。 具体流程包括以下步骤:
步骤 501 , MTC UE为了接入到 SAE网络, 向 eNodeB发起网络附着 请求, 在其中携带了 IMSI、 MTC UE的网络接入能力、 PCO参数、 附着类 型等信息。
PCO参数为 MTC UE与 P-GW之间的协议参数,包括请求分配 IP的指 示等信息, PCO参数在 eNodeB与 MME中透明传递,长度可达 255个字节。
对于 MTC UE发送小数据包, 可根据配置策略, 或根据 "小数据包传 输" 的签约特性, 在附着请求中, 将需要发送给 MTC Server的小数据包携 带在 PCO参数中, 同时在 PCO参数中携带小数据包发送标识。 可选的, 在 PCO参数中携带 MTC Server的 FQDN。
步骤 502, eNodeB为 MTC UE选择一个为之服务的 MME, 并将附着 请求转发到该 MME, 同时将 MTC UE的标识、 附着类型、 接入能力、 PCO 参数等重要信息也携带给该 MME, PCO参数对于 MME是透明传输的。
步骤 503 , MME向 HSS发送鉴权数据请求消息(含 IMSI ), HSS首先 判断 IMSI对应的签约用户数据, 如果查找不到任何签约或者 IMSI已被列 入黑名单, 则 HSS向 MME返回鉴权数据响应并携带错误原因; 如果找到 IMSI对应的签约用户数据, 则 HSS向 MME返回鉴权数据响应消息(含鉴 权向量)。
MME执行鉴权流程以验证终端 IMSI的合法性, 并执行安全模式流程 以启用安全连接。
步骤 504, MME向归属网的 HSS发送位置更新请求, HSS根据 MTC UE 的标识将该签约用户数据发送给 MME。
MME接收到签约用户数据,检查 MTC UE是否被允许接入到网络,如 果允许, 则向 HSS返回接收用户响应; 若 MME发现 MTC UE有漫游限制 或接入限制等问题, MME将禁止 MTC UE附着, 并通知 HSS。 在 MME 向 HSS返回接收用户响应后, HSS向 MME发送确认位置更新响应。
步骤 505 , MME为 MTC UE选择一个 S-GW, 并向其发送建立默认承 载的请求。在该请求中, MME告知 S-GW必要的信息有: MTC UE的标识、 MME的标识、 为 MTC UE分配 IP地址的指示、 缺省带宽信息、 P-GW地 址、 PCO参数等, PCO参数中携带 MTC UE发送小数据包的请求(即小数 据包发送标识)及需要发送的小数据包等信息。
S-GW向 P-GW发送建立默认承载的请求。 在该请求中, S-GW告知 P-GW必要的信息有: S-GW的地址、 缺省带宽信息、 为 MTC UE分配 IP 地址的指示、 PCO参数等, PCO参数中携带小数据包发送标识及需要发送 的小数据包等信息。
步骤 506, P-GW提取 PCO参数中的信息, 并根据 MTC UE发送小数 据包的请求, 取出需要发送的小数据包, 将其封装成满足 MTCi接口要求 的 IP包格式。
P-GW需要在 IP包中填入 IP包的目的地址,即 MTC Server的 IP地址。 如果 PCO参数中携带了 MTC Server的 FQDN, 则 P-GW可以向 DNS服务 器查询 MTC Server的 IP地址;如果没有携带, P-GW可以预静态配置 MTC UE标识与 MTC Server IP地址的对应关系, P-GW根据 MTC UE的标识通 过查找该对应关系得到 MTC Server的地址。
步骤 507, P-GW通过 MTCi口与 MTC Server建立 IP安全连接, 并将 MTC UE的小数据包发送给 MTC Server, IP包可携带 MTC UE的标识。 MTC Server向 P-GW响应数据包已接收。
步骤 508, P-GW发送数据完成后, 不再为 MTC UE分配资源与 IP地 址, 直接向 S-GW发送默认承载建立拒绝消息, 在 PCO参数中携带小数据 包已发送完成的指示通知 MTC UE。 S-GW向 MME发送默认承载建立拒绝 的响应消息, 携带 PCO参数。
步骤 509, MME向 eNodeB发送附着拒绝响应 , 拒绝 MTC UE的附着 请求, 同时在附着请求中携带 PCO参数返回给 MTC UE,在 PCO参数中携 带小数据包已发送完成的指示。
步骤 510, eNodeB收到附着拒绝后, 直接向 MTC UE发送附着拒绝消 息, 拒绝本次的接入请求, 拒绝消息中携带 PCO参数, MTC UE从 PCO 参数中发现小数据包已发送完成的指示, 就不再尝试接入, 离线后直至下 一次小数据包发送的触发再发起附着请求。
eNodeB 拒绝附着的请求, 就不需要分配无线承载资源, 这提高了无线 资源的利用率。
本发明的实施例二如图 6所示, 描述了 MTC UE接入到 GPRS网络, 执行网络附着与创建 PDP上下文时发送小数据包的过程。 MTC UE向 GPRS 网络发起承载建立请求时, 在 PCO参数中携带小数据包及小数据包发送标 识; GGSN识别有小数据包发送, 并从 PCO参数中提取出小数据包封装成 合适的 IP包,然后通过 MTCi接口发给 MTC Server;数据发送完成后 GGSN 拒绝承载建立, 不分配核心网媒体承载与无线承载。 具体流程包括以下步 骤:
步骤 601 , MTC UE首次通过 RNS向 SGSN发起附着请求, 其中携带 附着类型、 IMSI等参数。
RNS 根据其负载情况, 以用户的 IMSI 为请求标识将该消息路由到 SGSN。
步骤 602, SGSN向 HLR请求对 IMSI进行鉴权, HLR根据 IMSI下载 鉴权认证参数, SGSN对 MTC UE进行鉴权与认证。
步骤 603 , SGSN发送位置更新请求给 HLR,其中携带 SGSN号码与地 址、 IMSI等参数; HLR将与 IMSI相对应的签约数据下载给 SGSN, SGSN 对 MTC UE进行接入控制检查,检查 MTC UE是否有区域限制或接入限制, 然后返回***数据响应给 HLR。 HLR确认位置更新消息 , 并发位置更新响 应给 SGSN。
步骤 604, SGSN为该用户分配 P-TMSI,然后将附着接受消息发给 UE, 消息中携带为 UE分配的 P-TMSI等信息。
步骤 605 , MTC UE需要发送小数据包, 则向 SGSN发起创建 PDP上 下文请求, 申请进行 PDP上下文激活, 创建 GTP承载。
MTC UE将创建 PDP上下文请求发给 SGSN, 请求中携带 PDP类型、 PDP地址、 APN、 PCO参数等信息。 PCO参数为 UE与 GGSN之间的协议 参数, 包括请求分配 IP的指示等信息; PCO参数在 RNS与 SGSN透明传 递, 长度可达 255个字节。
对于 MTC UE发送小数据包, 可根据配置策略, 或根据 "小数据包传 输"的签约特性,在创建 PDP上下文请求中将需要发送给 MTC Server的小 数据包携带在 PCO 参数中, 同时在 PCO 中携带小数据包发送标识通知 GGSN。 可选的, 在 PCO参数中携带 MTC Server的 FQDN。
步骤 606, SGSN根据 APN找到 GGSN的地址, 并为此 PDP上下文创 建 TEID, 然后将此创建 PDP上下文请求发给 GGSN, 请求中携带 PDP类 型、 PDP地址、 APN、 TEID, PCO参数等信息, 在 PCO参数中携带小数 据包发送标识。 可选的, 在 PCO参数中携带 MTC Server的 FQDN。
步骤 607, GGSN提取 PCO参数中的信息, 然后根据 MTC UE发送小 数据包的请求, 取出需要发送的小数据包, 将其封装成满足 MTCi接口要 求的 IP包格式。
GGSN需要在 IP包中填入 IP包的目的地址,即 MTC Server的 IP地址。 如果 PCO参数中携带了 MTC Server的 FQDN, GGSN可以向 DNS服务器 查询 MTC Server的 IP地址;如果没有携带, GGSN可以预静态配置 MTC UE 标识与 MTC Server IP地址的对应关系, 然后才艮据 MTC UE的标识通过查 找该对应关系得到 MTC Server的地址。
步骤 608, GGSN通过 MTCi口与 MTC Server建立 IP安全连接, 然后 将 MTC UE的小数据包发送给 MTC Server, IP包可携带 MTC UE的标识。 MTC Server向 GGSN响应数据包已接收。
步骤 609, GGSN发送小数据包完成后, 不再为 PDP上下文分配新的 入口及相关资源, 直接向 SGSN返回 PDP上下文激活拒绝消息, 消息中携 带 TEID、 PCO等参数信息, PCO参数中携带小数据包已发送完成的指示 通知 MTC UE。
步骤 610, SGSN不再向 RNS发送 RAB指派消息来申请无线承载资源, 而是直接向 MTC UE发送拒绝 PDP上下文创建消息, 消息中携带 PCO参 数。 MTC UE从 PCO参数中发现小数据包已发送完成的指示, 则不再尝试 PDP上下文创建, 直至下一次小数据包发送的触发再发起附着请求或 PDP 上下文创建请求。
步骤 611 ,根据相关配置策略,对于离线发送小数据包的终端可以离线, 离线可以由网络发起, 也可以由 MTC UE发起。 如果由网络发起, SGSN 在向 MTC UE发起拒绝 PDP上下文建立消息后,然后向 MTC UE发起去附 着 (Detach ) 消息, 通知 MTC UE离线。 如果由 MTC UE发起, MTC UE 在收到拒绝 PDP上下文建立的消息后, 向 SGSN发起 Detach流程。
对应上述小数据包传输的方法, 本发明还提供了一种小数据包传输的 ***, 包括: MTC UE、 媒体网关和 MTC服务器。 其中, MTC UE, 用于 在进行承载创建的过程中, 将需要发送的 d、数据包携带给网络中的媒体网 关。 媒体网关, 用于将接收的小数据包发送给 MTC服务器。 MTC服务器, 用于对来自媒体网关的小数据包进行接收。 媒体网关在 EPS 网络中为 P-GW, 在 GPRS网络中为 GGSN。
MTC UE进一步用于, 在发起附着请求或承载建立请求时, 将需要发 送的小数据包携带在附着请求或承载建立请求中发送给媒体网关。 小数据 包携带在附着请求或承载建立请求的 PCO参数中。
PCO参数中可以携带小数据包发送标识, 媒体网关根据小数据包发送 标识来识别是否需要发送小数据包。
PCO参数中还可以携带 MTC服务器的 FQDN, 媒体网关根据 FQDN 向 DNS服务器查询对应的 MTC服务器地址, 并将小数据包发送到地址对 应的 MTC服务器。
媒体网关上也可以静态配置 MTC UE标识与 MTC服务器地址的对应 关系, 媒体网关在接收到来自 MTC UE的附着请求或承载建立请求时, 根 据请求中携带的 MTC UE标识查询该对应关系获取对应 MTC服务器的地 址, 并将小数据包发送到该地址对应的 MTC服务器。
媒体网关进一步用于, 在发送完小数据包后, 向 MTC UE返回拒绝承 载创建的响应消息,且不为 MTC UE分配核心网媒体承载和无线承载资源; 该拒绝承载创建的响应消息中携带 PCO参数,且 PCO参数中携带小数据包 已发送完成的指示。
综上所述, 通过本发明, MTC UE在向 PS网络发起接入请求时, 将小 数据包在接入请求消息中直接携带给媒体网关, 避免了分配核心网媒体承 载与无线承载资源,减少了 PCC策略的申请与下发相关处理与信令的交互, 减少了建立媒体承载与无线资源承载的相关信令, 对网络流程进行了优化, 满足了离线方式下 M2M终端发送小数据包的应用需求。 另外, 本发明的小 数据包传输方法和***, 也可应用于在线传输方式。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种小数据包传输的方法, 其特征在于, 该方法包括:
机器类型通信终端(MTC UE )在进行承载创建的过程中, 将需要发送 的小数据包携带给网络中的媒体网关;
所述媒体网关将接收的小数据包发送给 MTC服务器。
2、根据权利要求 1所述小数据包传输的方法, 其特征在于, 所述 MTC UE在承载创建的过程中, 将需要发送的小数据包携带给网络中的媒体网 关, 具体为:
所述 MTC UE在发起附着请求或承载建立请求时, 将需要发送的小数 据包携带在所述附着请求或承载建立请求的协议配置选项 (PCO ) 参数中 发送给媒体网关。
3、 根据权利要求 2所述小数据包传输的方法, 其特征在于, 该方法进 一步包括:
所述 PCO参数中还携带小数据包发送标识; 所述媒体网关根据所述小 数据包发送标识来识别是否需要发送小数据包。
4、 根据权利要求 2或 3所述小数据包传输的方法, 其特征在于, 该方 法进一步包括:
所述 PCO参数中携带 MTC服务器的全域名 (FQDN ), 所述媒体网关 根据所述 FQDN向域名*** ( DNS )服务器查询对应的 MTC服务器地址, 并将所述小数据包发送到所述地址对应的 MTC服务器。
5、 根据权利要求 2或 3所述小数据包传输的方法, 其特征在于, 该方 法进一步包括:
所述媒体网关上静态配置 MTC UE标识与 MTC服务器地址的对应关 系, 且所述媒体网关根据附着请求或承载建立请求中携带的 MTC UE标识 查询所述对应关系获取对应 MTC服务器的地址,并将所述小数据包发送到 所述地址对应的 MTC服务器。
6、 根据权利要求 2或 3所述小数据包传输的方法, 其特征在于, 该方 法进一步包括:
所述媒体网关在发送完小数据包后, 向 MTC UE返回拒绝承载创建的 响应消息, 且不为 MTC UE分配核心网媒体承载和无线承载资源; 所述拒 绝承载创建的响应消息中携带 PCO参数,且所述 PCO参数中携带小数据包 已发送完成的指示。
7、 一种 d、数据包传输的***, 其特征在于, 该***包括: MTC UE、 媒体网关和 MTC服务器, 其中,
所述 MTC UE, 用于在进行承载创建的过程中, 将需要发送的小数据 包携带给网络中的媒体网关;
所述媒体网关, 用于将接收的小数据包发送给 MTC服务器; 所述 MTC服务器, 用于对来自所述媒体网关的小数据包进行接收。
8、根据权利要求 7所述小数据包传输的***, 其特征在于, 所述 MTC UE进一步用于, 在发起附着请求或承载建立请求时, 将需要发送的小数据 包携带在所述附着请求或承载建立请求的 PCO参数中发送给媒体网关。
9、 根据权利要求 8所述小数据包传输的***, 其特征在于, 所述 PCO 参数中还携带 d、数据包发送标识,
相应的, 所述媒体网关进一步用于, 根据所述小数据包发送标识来识 别是否需要发送小数据包。
10、 根据权利要求 8或 9所述小数据包传输的***, 其特征在于, 所 述 PCO参数中携带 MTC服务器的 FQDN,
相应的, 所述媒体网关进一步用于, 根据所述 FQDN向 DNS服务器查 询对应的 MTC服务器地址,并将所述小数据包发送到所述地址对应的 MTC 服务器。
11、 根据权利要求 8或 9所述小数据包传输的***, 其特征在于, 所 述媒体网关进一步用于, 静态配置 MTC UE标识与 MTC服务器地址的对 应关系, 在接收到来自 MTC UE的附着请求或承载建立请求时, 根据请求 中携带的 MTC UE标识查询所述对应关系获取对应 MTC服务器的地址, 并将所述小数据包发送到所述地址对应的 MTC服务器。
12、 根据权利要求 8或 9所述小数据包传输的***, 其特征在于, 所 述媒体网关进一步用于, 在发送完小数据包后, 向 MTC UE返回拒绝承载 创建的响应消息, 且不为 MTC UE分配核心网媒体承载和无线承载资源; 所述拒绝承载创建的响应消息中携带 PCO参数,且所述 PCO参数中携带小 数据包已发送完成的指示。
PCT/CN2011/072040 2010-04-26 2011-03-22 一种小数据包传输的方法和*** WO2011134329A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11774320.3A EP2566199B1 (en) 2010-04-26 2011-03-22 Method and system for transmitting small data packets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010159393.2A CN102238520B (zh) 2010-04-26 2010-04-26 一种小数据包传输的方法和***
CN201010159393.2 2010-04-26

Publications (1)

Publication Number Publication Date
WO2011134329A1 true WO2011134329A1 (zh) 2011-11-03

Family

ID=44860847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072040 WO2011134329A1 (zh) 2010-04-26 2011-03-22 一种小数据包传输的方法和***

Country Status (3)

Country Link
EP (1) EP2566199B1 (zh)
CN (1) CN102238520B (zh)
WO (1) WO2011134329A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693775A1 (en) * 2012-08-02 2014-02-05 Openet Telecom Ltd. System and method for providing detection of signaling-only engagements in a telecommunication network
CN104023327A (zh) * 2013-03-01 2014-09-03 电信科学技术研究院 一种下行数据传输方法及装置
CN104604266A (zh) * 2012-09-12 2015-05-06 日本电气株式会社 移动通信***、数据通信方法、网关设备和基站
US9363702B2 (en) 2012-08-03 2016-06-07 Intel Corporation Method and system for enabling device-to-device communication
US9554296B2 (en) 2012-08-03 2017-01-24 Intel Corporation Device trigger recall/replace feature for 3GPP/M2M systems
US9686817B2 (en) 2012-08-03 2017-06-20 Intel Corporation Apparatus of user equipment (UE) configurable for connectivity with multiple cell groups
WO2018113504A1 (zh) * 2016-12-21 2018-06-28 电信科学技术研究院 一种用户面锚点选择方法及装置
US10425846B2 (en) 2012-08-03 2019-09-24 Intel Corporation Network assistance for device-to-device discovery
WO2021023185A1 (zh) * 2019-08-07 2021-02-11 华为技术有限公司 一种接入限制检测方法和装置
US10992722B2 (en) 2012-08-03 2021-04-27 Apple Inc. High efficiency distributed device-to-device (D2D) channel access
US11490443B2 (en) 2016-03-28 2022-11-01 Datang Mobile Communications Equipment Co., Ltd. Data transmission method and apparatus, and session management device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547658B (zh) * 2011-12-22 2015-04-15 电信科学技术研究院 一种数据传输方法及装置
CN103391532B (zh) * 2012-05-11 2018-08-28 中兴通讯股份有限公司 小量数据上下行传输方法、及相应终端和移动性管理单元
CN103581892A (zh) * 2012-08-06 2014-02-12 电信科学技术研究院 目的mtc服务器确定方法、设备及***
CN103687055B (zh) * 2012-09-25 2019-02-26 中兴通讯股份有限公司 一种承载分配和管理的方法及设备
CN103716753B (zh) * 2012-09-29 2018-12-25 中兴通讯股份有限公司 一种小数据发送方法、***及用户设备
CN103813300A (zh) * 2012-11-14 2014-05-21 华为终端有限公司 数据传输方法、设备及***
WO2014172844A1 (zh) * 2013-04-23 2014-10-30 华为技术有限公司 一种数据包传输的方法和设备
US10153816B2 (en) 2013-05-09 2018-12-11 Intel IP Corporation Small data communications
CN104521255B (zh) * 2013-06-29 2019-04-19 华为技术有限公司 数据传输方法、机器类通信终端及寻址服务器
CN105532070B (zh) * 2013-07-15 2020-02-21 皇家Kpn公司 用于控制用户装备的挂接状态的方法和电信节点
US10404479B2 (en) * 2013-09-12 2019-09-03 Nec Corporation Charging for MTC small data transmission and trigger at MTC-IWF
GB2519574A (en) * 2013-10-25 2015-04-29 Nec Corp Control of small data transmission in a mobile radio communications network
US9848334B2 (en) 2013-10-31 2017-12-19 Nec Corporation Apparatus, system and method for MTC
CN105099999A (zh) * 2014-05-04 2015-11-25 阿尔卡特朗讯 一种用于机器类型通信的nas附着方法、设备与***
CN106658601B (zh) * 2015-10-28 2021-05-11 中兴通讯股份有限公司 数据传输的处理方法及装置
EP3479645A1 (en) 2016-07-04 2019-05-08 Telefonaktiebolaget LM Ericsson (PUBL) Efficient delivery method and apparatuses for infrequent small data
CN106330398A (zh) * 2016-08-29 2017-01-11 中国联合网络通信集团有限公司 一种确定物联网业务的数据传输模式的方法及装置
CN108616956B (zh) * 2017-01-16 2020-10-20 普天信息技术有限公司 一种电力无线专网中业务隔离的方法
US11095554B2 (en) 2017-08-28 2021-08-17 Koninklijke Kpn N.V. Application function in a network and control thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060023658A1 (en) * 2004-07-29 2006-02-02 Sprint Spectrum L.P. Method and system for location-based restriction on application of cellular-PBX integration service
CN101931931A (zh) * 2009-06-25 2010-12-29 华为技术有限公司 信息处理方法、***以及移动性管理网元

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100499467C (zh) * 2004-09-10 2009-06-10 华为技术有限公司 一种多媒体子***信令承载的计费方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060023658A1 (en) * 2004-07-29 2006-02-02 Sprint Spectrum L.P. Method and system for location-based restriction on application of cellular-PBX integration service
CN101931931A (zh) * 2009-06-25 2010-12-29 华为技术有限公司 信息处理方法、***以及移动性管理网元

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Services and System Aspects; System Improvements for Machine-Type Communications; (Release 10)", 3GPP TR 23.888 V0.3.2, March 2010 (2010-03-01), XP002589912 *
See also references of EP2566199A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9641958B2 (en) 2012-08-02 2017-05-02 Openet Telecom Ltd. System and method for controlling advanced triggering operations in a telecommunication network
US9516449B2 (en) 2012-08-02 2016-12-06 Openet Telecom Ltd. System and method for controlling advanced triggering operations in a telecommunication network
EP2693775A1 (en) * 2012-08-02 2014-02-05 Openet Telecom Ltd. System and method for providing detection of signaling-only engagements in a telecommunication network
EP2693776A1 (en) * 2012-08-02 2014-02-05 Openet Telecom Ltd. System and method for controlling advanced triggering operations in a telecommunication network
EP2693777A1 (en) * 2012-08-02 2014-02-05 Openet Telecom Ltd. System and method for controlling advanced triggering operations in a telecommunication network
US9125076B2 (en) 2012-08-02 2015-09-01 Openet Telecom Ltd. System and method for providing detection of signaling-only engagements in a telecommunication network
US9313339B2 (en) 2012-08-02 2016-04-12 Openet Telecom, LTD. System and method for providing detection of signaling-only engagements in a telecommunication network
US9686817B2 (en) 2012-08-03 2017-06-20 Intel Corporation Apparatus of user equipment (UE) configurable for connectivity with multiple cell groups
US9363702B2 (en) 2012-08-03 2016-06-07 Intel Corporation Method and system for enabling device-to-device communication
US9554296B2 (en) 2012-08-03 2017-01-24 Intel Corporation Device trigger recall/replace feature for 3GPP/M2M systems
US10405371B2 (en) 2012-08-03 2019-09-03 Intel Corporation Enhanced node B, user equipment and methods for discontinuous reception in inter-eNB carrier aggregation
US11122647B2 (en) 2012-08-03 2021-09-14 Apple Inc. Enhanced node B, user equipment and methods for discontinuous reception in inter-eNB carrier aggregation
US10992722B2 (en) 2012-08-03 2021-04-27 Apple Inc. High efficiency distributed device-to-device (D2D) channel access
US10425846B2 (en) 2012-08-03 2019-09-24 Intel Corporation Network assistance for device-to-device discovery
CN104604266A (zh) * 2012-09-12 2015-05-06 日本电气株式会社 移动通信***、数据通信方法、网关设备和基站
CN104023327A (zh) * 2013-03-01 2014-09-03 电信科学技术研究院 一种下行数据传输方法及装置
CN104023327B (zh) * 2013-03-01 2018-05-11 电信科学技术研究院 一种下行数据传输方法及装置
US11490443B2 (en) 2016-03-28 2022-11-01 Datang Mobile Communications Equipment Co., Ltd. Data transmission method and apparatus, and session management device
WO2018113504A1 (zh) * 2016-12-21 2018-06-28 电信科学技术研究院 一种用户面锚点选择方法及装置
US10986537B2 (en) 2016-12-21 2021-04-20 China Academy Of Telecommunications Technology Method of selecting user plane gateway and device of selecting user plane gateway
WO2021023185A1 (zh) * 2019-08-07 2021-02-11 华为技术有限公司 一种接入限制检测方法和装置

Also Published As

Publication number Publication date
CN102238520A (zh) 2011-11-09
EP2566199B1 (en) 2015-05-27
EP2566199A1 (en) 2013-03-06
CN102238520B (zh) 2014-12-31
EP2566199A4 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
EP2566199B1 (en) Method and system for transmitting small data packets
JP7416368B2 (ja) 時間依存ネットワーキングのための制御プレーンに基づく設定
EP4029346B1 (en) Control of network slice
EP2903381B1 (en) Radio resource adjusting method and device
WO2011060673A1 (zh) 公用承载建立的方法、数据传输方法和核心网络侧设备
US11910292B2 (en) Support of user plane transactions over a mobile network
WO2012094957A1 (zh) 一种对mtc终端进行移动性管理的方法和***
US9473877B2 (en) Uplink/downlink transmission method for small amount of data, and corresponding terminal and mobility management unit
WO2012051890A1 (zh) 终端接入限制的方法及***
WO2011082636A1 (zh) 机器到机器核心网络的接入实现方法及装置
WO2013064104A1 (zh) 一种数据传输方法、移动性管理实体和移动终端
WO2011057541A1 (zh) 限制mtc设备接入和通信的方法、移动管理单元及网关单元
WO2011095100A1 (zh) 一种对本地ip连接的建立进行控制的方法和***
WO2022001761A1 (zh) 通信方法及装置
WO2011026392A1 (zh) 一种路由策略的获取方法及***
US9860869B2 (en) Method and apparatus for offloading data traffic in a wireless communication system
WO2011054251A1 (zh) 一种防止非法终端接入的方法、终端及***
WO2012062183A1 (zh) 一种实现数据流服务质量和计费策略控制的方法及***
WO2010133107A1 (zh) 家用基站网关转发消息至家用基站的方法及***
WO2012130098A1 (zh) 一种获取机器类型通信设备ip地址的方法及***
WO2018082070A1 (zh) 一种数据报文处理方法及控制面网元、用户面网元
WO2012142889A1 (zh) 一种网关的选择方法、实现设备及***
WO2012025031A1 (zh) 基于本地接入的承载建立方法及***
WO2012100664A1 (zh) 一种激活终端的方法和***
WO2011057527A1 (zh) 一种限制mtc设备组最大比特率的方法和接入网关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011774320

Country of ref document: EP