WO2024122468A1 - 車両用灯具 - Google Patents

車両用灯具 Download PDF

Info

Publication number
WO2024122468A1
WO2024122468A1 PCT/JP2023/043160 JP2023043160W WO2024122468A1 WO 2024122468 A1 WO2024122468 A1 WO 2024122468A1 JP 2023043160 W JP2023043160 W JP 2023043160W WO 2024122468 A1 WO2024122468 A1 WO 2024122468A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting element
semiconductor light
light emitting
converter
driving module
Prior art date
Application number
PCT/JP2023/043160
Other languages
English (en)
French (fr)
Inventor
和也 百瀬
西村 泰成
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2024122468A1 publication Critical patent/WO2024122468A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/14Controlling the light source in response to determined parameters by determining electrical parameters of the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection

Definitions

  • This disclosure relates to vehicle lighting devices used in automobiles and the like.
  • semiconductor light sources such as LEDs (light-emitting diodes) and LDs (laser diodes) have been increasingly adopted as light sources for vehicle lighting such as high beams, low beams, and rear combination lamps.
  • Semiconductor light sources have advantages over conventional light sources such as HID (High Intensity Discharge) lamps and halogen lamps in terms of energy efficiency, ease of maintenance, and design diversity.
  • Vehicle lighting fixtures for commercial vehicles such as trucks require low costs, and to meet this demand, there is a lineup of vehicle lighting fixtures that combine light emitting elements for high beam and low beam into a single unit.
  • high beam mode When the high beam mode is on, both the high beam light source and the low beam light source are turned on simultaneously to meet the light distribution requirements, which generates a lot of heat. Therefore, heat countermeasures are important for integrated high beam and low beam vehicle lighting fixtures.
  • Vehicle lighting fixtures for commercial vehicles in particular require long-term reliability, and in some cases they are required to be fanless, making heat countermeasures even more difficult.
  • This disclosure has been made in light of the above-mentioned circumstances, and one exemplary purpose of one embodiment of the disclosure is to provide a vehicle lamp that satisfies light distribution requirements while also implementing measures against heat.
  • the vehicle lamp includes a light emitting unit including a first semiconductor light emitting element for low beam and a second semiconductor light emitting element for high beam, a first driving module for lighting the first semiconductor light emitting element, and a second driving module for lighting the second semiconductor light emitting element.
  • the first driving module includes a first DC/DC converter that supplies a first driving current to the first semiconductor light emitting element, and a first converter controller that feedback controls the first DC/DC converter so that the first driving current generated by the first DC/DC converter approaches a first target amount.
  • the second driving module transmits a dimming instruction signal to the first driving module in response to an instruction to turn on the high beam.
  • the first driving module reduces the first driving current to a second target amount that is smaller than the first target amount in response to the dimming instruction signal.
  • a vehicle lamp includes a first semiconductor light-emitting element for low beam, a second semiconductor light-emitting element for low beam, a first lighting circuit that turns on the first semiconductor light-emitting element and asserts a first fault signal when an abnormality is detected, a second lighting circuit that turns on the second semiconductor light-emitting element and asserts a second fault signal when an abnormality is detected, and a latch circuit that asserts a stop signal when at least one of the first fault signal and the second fault signal is asserted.
  • the first lighting circuit and the second lighting circuit turn off the first semiconductor light-emitting element and the second semiconductor light-emitting element in response to the assertion of the stop signal.
  • FIG. 1 is a block diagram of a vehicle lamp according to a first embodiment
  • 2 is a waveform diagram illustrating the operation of the vehicle lamp of FIG. 1.
  • FIG. 3A is a diagram for explaining the light distribution when the low beam is turned on
  • FIG. 3B is a diagram for explaining the light distribution when the high beam is turned on.
  • FIG. 2 is a block diagram showing an embodiment of the vehicle lamp of FIG. 1 .
  • FIG. 2 is a circuit diagram showing a configuration example of a derating circuit.
  • FIG. 11 is a block diagram of a second driving module according to the second embodiment.
  • FIG. 11 is a block diagram of a second driving module according to a third embodiment.
  • FIG. 11 is a block diagram of a vehicle lamp according to a fourth embodiment.
  • FIG. 9 is a diagram showing an example of a low beam light distribution of the vehicle lamp of FIG. 8 .
  • a vehicle lamp includes a light emitting unit including a first semiconductor light emitting element for low beam and a second semiconductor light emitting element for high beam, a first driving module for lighting the first semiconductor light emitting element, and a second driving module for lighting the second semiconductor light emitting element.
  • the first driving module includes a first DC/DC converter for supplying a first driving current to the first semiconductor light emitting element, and a first converter controller for feedback controlling the first DC/DC converter so that the first driving current generated by the first DC/DC converter approaches a first target amount.
  • the second driving module transmits a dimming instruction signal to the first driving module in response to an instruction to turn on the high beam.
  • the first driving module reduces the first driving current to a second target amount that is smaller than the first target amount in response to the dimming instruction signal.
  • the second drive module sends a dimming command to the first drive module, which allows the first drive module to know that the high beams are on.
  • the first drive module then reduces the first drive current in response to the dimming command, thereby reducing the amount of light emitted by the first semiconductor light-emitting element, and suppressing an increase in the total amount of heat generated by the light-emitting unit when the high beams are on.
  • the first converter controller may have an analog dimming terminal and the first target amount may be based on a dimming voltage generated at the analog dimming terminal.
  • the first drive module may further include a dimming circuit that reduces the dimming voltage in response to a dimming command signal.
  • the second drive module includes a first linear regulator that is enabled in response to a high beam illumination command, and the output voltage of the first linear regulator may be supplied to the first drive module as a dimming command signal.
  • the system may further include an interface circuit that receives a high beam turn-on command, and a microcontroller that enables the first linear regulator in response to the high beam turn-on command received by the interface circuit.
  • the instruction to turn on the high beams is given as a supply of power supply voltage to the second drive module
  • the vehicle lamp may further include a second linear regulator that operates when the power supply voltage is supplied, and a microcontroller that starts up when the output voltage of the second linear regulator is supplied, and enables the first linear regulator.
  • the vehicle lamp may be fanless.
  • fanless design may be required. The above configuration can meet this requirement.
  • a vehicle lamp includes a first semiconductor light-emitting element for low beam, a second semiconductor light-emitting element for low beam, a first lighting circuit that turns on the first semiconductor light-emitting element and asserts a first fault signal when an abnormality is detected, a second lighting circuit that turns on the second semiconductor light-emitting element and asserts a second fault signal when an abnormality is detected, and a latch circuit that asserts a stop signal when at least one of the first fault signal and the second fault signal is asserted.
  • the first lighting circuit and the second lighting circuit turn off the first semiconductor light-emitting element and the second semiconductor light-emitting element in response to the assertion of the stop signal.
  • the first lighting circuit may determine that an abnormality has occurred when the voltage across the first semiconductor light-emitting element deviates from the normal range
  • the second lighting circuit may determine that an abnormality has occurred when the voltage across the second semiconductor light-emitting element deviates from the normal range
  • the first lighting circuit and the second lighting circuit may each include a DC/DC converter and a controller circuit that feedback controls the DC/DC converter so that the output current of the DC/DC converter approaches a target current.
  • a state in which component A is connected to component B includes not only cases in which component A and component B are directly physically connected, but also cases in which component A and component B are indirectly connected via other components that do not substantially affect their electrical connection state or impair the function or effect achieved by their combination.
  • a state in which component C is connected (provided) between components A and B includes not only cases in which components A and C, or components B and C, are directly connected, but also cases in which they are indirectly connected via other components that do not substantially affect their electrical connection state or impair the function or effect achieved by their combination.
  • the symbols attached to electrical signals such as voltage signals and current signals, or circuit elements such as resistors, capacitors, and inductors, represent the respective voltage values, current values, or circuit constants (resistance values, capacitance values, inductances) as necessary.
  • (Embodiment 1) 1 is a block diagram of a vehicle lamp 100 according to embodiment 1.
  • the vehicle lamp 100 includes a light emitting unit 110, a first driving module 120, and a second driving module 140.
  • the light emitting unit 110 includes a first semiconductor light emitting element 112 for low beam and a second semiconductor light emitting element 114 for high beam, and is integrated.
  • the first semiconductor light emitting element 112 and the second semiconductor light emitting element 114 are mounted on a common printed circuit board.
  • the emitted light of the first semiconductor light emitting element 112 and the second semiconductor light emitting element 114 may pass through a common optical system.
  • the first semiconductor light emitting element 112 and the second semiconductor light emitting element 114 may each include one or more LEDs (light emitting diodes).
  • a plurality of LEDs constituting the first semiconductor light emitting element 112 are arranged in a horizontal line, and adjacent to them, a plurality of LEDs constituting the second semiconductor light emitting element 114 are arranged in a horizontal line.
  • a common heat sink may be attached to the first semiconductor light emitting element 112 and the second semiconductor light emitting element 114.
  • the first driving module 120 lights up the first semiconductor light emitting element 112.
  • the first driving module 120 is supplied with the voltage V BAT from the battery 2 as the input voltage V L via the low beam switch SW1.
  • the low beam lighting instruction is issued when the low beam switch SW1 is turned on and the battery voltage V BAT (V L ) is supplied to the first driving module 120.
  • the first drive module 120 includes a first DC/DC converter 122, a first converter controller 124, and a first interface circuit 126.
  • the first DC/DC converter 122 performs switching in response to a pulse modulation signal S P1 supplied from the first converter controller 124, and supplies a first drive current I DRVL to the first semiconductor light emitting element 112.
  • the pulse modulation signal S P1 may be a pulse width modulation signal or a pulse frequency modulation signal.
  • the first converter controller 124 generates a pulse modulation signal S P1 so that the first drive current I DRVL generated by the first DC/DC converter approaches a first target amount I REFL1 , and performs feedback control (constant current control) on the first DC/DC converter 122. Specifically, the first converter controller 124 receives a feedback signal (current detection signal) V FB1 corresponding to the first drive current I DRVL at a current sense pin CS, and feedback controls the duty cycle of the pulse modulation signal S P1 so that the feedback signal V FB approaches a first reference voltage V REF1 .
  • the first interface circuit 126 receives a dimming instruction signal DIM from the second driving module 140. In response to the assertion (e.g., high) of the dimming instruction signal DIM, the first interface circuit 126 acts on the first converter controller 124 to reduce the first driving current I DRVL to a second target amount I REFL2 that is smaller than the first target amount I REFL1 .
  • the second driving module 140 turns on the second semiconductor light emitting element 114.
  • the second driving module 140 is supplied with the voltage V BAT from the battery 2 as the input voltage V H via the high beam switch SW2.
  • the second drive module 140 includes a second lighting circuit 150 and a second interface circuit 146.
  • the second lighting circuit 150 controls the second drive current I DRVH flowing through the second semiconductor light emitting element 114 so as to form a high beam light distribution.
  • the second lighting circuit 150 is configured similarly to the first drive module 120, and includes a second DC/DC converter 152 and a second converter controller 154.
  • the second DC/DC converter 152 performs switching in response to a pulse modulation signal S P2 supplied from the second converter controller 154, and supplies a second drive current I DRVH to the second semiconductor light emitting element 114.
  • the pulse modulation signal S P2 may be a pulse width modulation signal or a pulse frequency modulation signal.
  • the second converter controller 154 may perform feedback control (constant current control) of the pulse modulation signal S P2 so that the second drive current I DRVH generated by the second DC/DC converter 152 approaches the second target amount I REFH .
  • the second lighting circuit 150 may include a constant current source (not shown) connected in series with the second semiconductor light emitting element 114.
  • the second converter controller 154 may be a constant voltage output converter that supplies the drive voltage V DRV2 to the series connection circuit of the second semiconductor light emitting element 114 and the constant current source.
  • the second converter controller 154 may feedback control the pulse modulation signal S P2 so that the drive voltage V DRV2 approaches the target voltage V REF2 .
  • the second driving module 140 also transmits a dimming instruction signal DIM to the first driving module 120 in response to an instruction to turn on the high beams.
  • an instruction to turn on the high beam is issued when the high beam switch SW2 is turned on and the battery voltage V BAT (V H ) is supplied to the second driving module 140.
  • V H battery voltage
  • the second interface circuit 146 asserts the dimming instruction signal DIM.
  • FIG. 2 is a waveform diagram illustrating the operation of the vehicle lamp 100 of FIG. 1.
  • the vehicle lamp 100 Before time t0 , the vehicle lamp 100 is in an off state.
  • the low beam switch SW1 At time t0 , the low beam switch SW1 is turned on, and a low beam lighting instruction is generated.
  • the first driving module 120 supplies the first driving current I DRVL stabilized to the first target amount I REFL1 to the first semiconductor light emitting element 112.
  • the first semiconductor light emitting element 112 emits light at a relatively bright first luminance, and a low beam light distribution is formed.
  • the high beam switch SW2 is turned on and a high beam lighting command is issued.
  • the second driving module 140 supplies a second driving current I DRVH to the second semiconductor light emitting element 114.
  • the second semiconductor light emitting element 114 emits light, forming a high beam light distribution.
  • a dimming command signal DIM is asserted.
  • the first driving module 120 reduces the first driving current I DRVL supplied to the first semiconductor light emitting element 112 to a second target amount I REFL2 . This causes the first semiconductor light emitting element 112 to emit light at a second luminance that is relatively lower than the state in which only low beam is illuminated.
  • the second driving current I DRVH becomes 0 A, and the second semiconductor light emitting element 114 is turned off.
  • the second driving module 140 negates the dimming instruction signal DIM.
  • the first driving module 120 returns the target current of the first driving current I DRVL to the first target amount I REFL1 . This causes the first semiconductor light emitting element 112 to emit light at a relatively bright first luminance.
  • FIG. 3(a) illustrates the light distribution when the low beam is on
  • FIG. 3(b) illustrates the light distribution when the high beam is on.
  • the first semiconductor light-emitting element 112 emits light at a first luminance, so that the low beam range 300 is brightly illuminated.
  • the spacing between the hatches indicates the brightness, with narrower spacing representing brighter light.
  • the high beam range 302 is brightly illuminated by the second semiconductor light-emitting element 114.
  • the first semiconductor light-emitting element 112 emits light at a second luminance that is darker than the first luminance, so the low beam range 300 is darker than when the low beam is on in FIG. 3(a).
  • the second drive module 140 transmits a dimming instruction signal DIM to the first drive module 120, so that the first drive module 120 knows that the high beams are on.
  • the first drive module 120 reduces the first drive current I DRVL in response to the dimming instruction, so that the amount of light emitted by the first semiconductor light emitting element 102 can be reduced, and an increase in the total amount of heat generated by the light emitting unit 110 can be suppressed while the high beams are on.
  • the vehicle lamp 100 is suitable for use in a lineup of commercial vehicles such as trucks. For long-term reliability, such vehicle lamps may require a fanless design. According to this embodiment, the amount of heat generated by the light-emitting unit 110 can be reduced, so reliability can be guaranteed even without a fan.
  • FIG. 4 is a block diagram showing an embodiment 100A of the vehicle lamp 100 of FIG. 1.
  • the first converter controller 124 includes an analog dimming terminal ADIM.
  • the target current I REFL of the first driving current I DRV1 is adjustable according to the voltage V ADIM of the analog dimming terminal ADIM.
  • the first driving module 120A includes a derating circuit 130, which functions as the first interface circuit 126 in FIG. 1.
  • the derating circuit 130 monitors the temperature, and when the temperature is lower than a certain threshold, keeps the voltage V ADIM at the analog dimming terminal ADIM at a constant level, and when the temperature exceeds the threshold, reduces the voltage V ADIM at the analog dimming terminal ADIM as the temperature increases (temperature derating).
  • the dimming instruction signal DIM is input to the derating circuit 130.
  • the dimming instruction signal DIM is asserted (for example, high)
  • the derating circuit 130 reduces the voltage V ADIM of the analog dimming terminal ADIM.
  • the second driving module 140A includes a linear regulator 160.
  • the linear regulator 160 functions as the second interface circuit 146 in FIG. 1.
  • An input terminal IN of the linear regulator 160 is connected to the high beam switch SW2, and an output terminal OUT is connected to the derating circuit 130.
  • the linear regulator 160 is activated when an input voltage VH is supplied to the input terminal IN, and generates a voltage VLDO stabilized to a predetermined voltage (for example, 5V). This voltage VLDO is supplied to the derating circuit 130 as a dimming instruction signal DIM.
  • FIG. 5 is a circuit diagram showing an example of the configuration of the derating circuit 130.
  • the derating circuit 130 includes resistors R1 and R2, a temperature derating circuit 132, and a dimming circuit 134.
  • the resistors R1 and R2 are a resistor voltage divider circuit connected in series between the power supply line V DD and the ground line, and the connection node of the resistors R1 and R2 is connected to the analog dimming terminal ADIM of the first converter controller 124 A.
  • the voltage V ADIM at the analog dimming terminal ADIM is V DD ⁇ R2/(R1+R2).
  • the temperature derating circuit 132 includes a temperature sensor such as a thermistor, and changes its output according to temperature. When the temperature is lower than the threshold, the output of the temperature derating circuit 132 has high impedance and does not affect the analog dimming terminal ADIM. In a range where the temperature is higher than the threshold, the output impedance of the temperature derating circuit 132 becomes lower as the temperature increases, and the circuit sinks more current. As a result, the higher the temperature, the lower the voltage V ADIM at the analog dimming terminal ADIM.
  • the dimming circuit 134 receives the dimming instruction signal DIM, and in response to the assertion of the dimming instruction signal DIM, reduces the voltage V ADIM of the analog dimming terminal ADIM.
  • the dimming circuit 134 includes a resistor R3, a transistor Q1, and a low-pass filter 136.
  • the dimming instruction signal DIM is input to the base of the transistor Q1 via the low-pass filter 136. When the dimming instruction signal DIM is asserted, the transistor Q1 is conductive.
  • the voltage V ADIM of the analog dimming terminal ADIM is V DD ⁇ (R2//R3)/ ⁇ (R1+(R2//R3) ⁇ , which is lower than V DD ⁇ R2/(R1+R2).
  • R2//R3 represents the combined resistance of R2 and R3 in parallel.
  • (Embodiment 2) 6 is a block diagram of a second driving module 140B according to embodiment 2.
  • the second semiconductor light emitting element 114B of the light emitting unit 110B is an LED array including LEDs 116 arranged in a matrix.
  • the second lighting circuit 170B includes DC/DC converters 172, 174, an LED controller 176, and a microcontroller 178.
  • the DC/DC converter 172 is a step-up converter that steps up the input voltage V H.
  • the DC/DC converter 174 is a step-down converter that steps down the output voltage VM of the preceding DC/DC converter 172 to generate a drive voltage V DRVH .
  • the LED controller 176 receives a drive voltage VDRVH and individually turns the LEDs 116 on and off as controlled by the microcontroller 178 .
  • the linear regulator 180 starts up when the input voltage VL is supplied, and generates a power supply voltage V DD of 5 V. This power supply voltage V DD is supplied to the microcontroller 178 and the like.
  • the microcontroller 178 is started when the power supply voltage V DD is supplied to it. When the microcontroller 178 is started, it supplies an enable signal to the enable terminal EN of the linear regulator 160 to operate the linear regulator 160. This causes the dimming instruction signal DIM to be asserted.
  • the microcontroller 178 When activated, the microcontroller 178 also controls the LED controller 176 to form a predetermined high beam light distribution.
  • (Embodiment 3) 7 is a block diagram of the second driving module 140C according to the third embodiment.
  • the basic configuration of the second driving module 140C is the same as that of the second driving module 140B in FIG. 6.
  • the difference is that the high beam light distribution is fixed in the second driving module 140B, whereas the second driving module 140C supports an ADB (Adaptive Driving Beam) function, and when the high beam is turned on, the high beam light distribution can be adaptively controlled according to the situation in front of the vehicle. For example, when an oncoming vehicle or a preceding vehicle is detected, the control is performed to dim or block the light in that area.
  • ADB Adaptive Driving Beam
  • the second drive module 140C includes a transceiver 190.
  • the transceiver 190 is an interface such as a LIN (Local Interconnect Network) or a CAN (Controller Area Network), and receives information required for ADB control from the vehicle side.
  • LIN Local Interconnect Network
  • CAN Controller Area Network
  • the microcontroller 178 controls the LED controller 176 based on the information received by the transceiver 190, individually controls the on/off of the multiple LEDs 116, and controls the light distribution of the high beam.
  • the fourth embodiment relates to a telltale function.
  • Vehicles are equipped with a feature called a telltale that lights up to notify the user of any abnormalities that have occurred inside the vehicle.
  • Typical telltales are the various warning lights built into the instrument panel.
  • LEDs have become the mainstream light source for headlamps.
  • LEDs have the advantage that, because they offer a high degree of freedom in layout, more appropriate light distribution can be achieved by combining multiple LEDs.
  • telltales are required for vehicle lighting that includes LEDs (UN Regulation R48, Article 6.2.8, Uniform Provisions for the Approval of Vehicles in Relation to the Regulations Concerning the Mounting Device of Lamps, Reflectors and Indicators).
  • (Embodiment 4) 8 is a block diagram of a vehicle lamp 100 according to embodiment 4.
  • the vehicle lamp 100 is a low beam lamp, and includes a light emitting unit 110 and an LED driving module (LDM) 200.
  • LDM LED driving module
  • the light emitting unit 110 includes a first semiconductor light emitting element 112 for low beam and a second semiconductor light emitting element 114 for low beam.
  • the light emitted from the first semiconductor light emitting element 112 and the second semiconductor light emitting element 114 passes through an optical system (not shown) and forms a low beam light distribution in front of the vehicle.
  • the light emitted from the first semiconductor light emitting element 112 is directed toward an upper portion of the low beam illumination area
  • the light emitted from the second semiconductor light emitting element 114 is directed toward a lower portion of the low beam illumination area.
  • An input terminal IN of the drive module 200 is connected to the battery 2 via a low beam switch SW1.
  • the low beam switch SW1 When the low beam is turned on, the low beam switch SW1 is turned on and a battery voltage V BAT is supplied to the input terminal IN.
  • the drive module 200 operates using the battery voltage V BAT supplied to the input terminal IN as a power supply voltage. In other words, the supply of the battery voltage V BAT to the input voltage IN is an instruction to the vehicle lamp 100 to turn on the low beam.
  • the first lighting circuit 210 starts operating in response to a low beam lighting instruction, and lights up the first semiconductor light emitting element 112.
  • the first lighting circuit 210 has an abnormality detection function, and asserts a first fault signal FLT1 when it detects an abnormality.
  • the second lighting circuit 220 starts operating in response to a low beam lighting instruction, and lights up the second semiconductor light emitting element 114.
  • the second lighting circuit 220 has an abnormality detection function, and asserts a second fault signal FLT2 when it detects an abnormality.
  • the first fault signal FLT1 and the second fault signal FLT2 are input to the latch circuit 230.
  • the latch circuit 230 asserts the stop signal STOP.
  • the latch circuit 230 is preferably a timer latch circuit, and when the assertion of at least one of the first fault signal FLT1 and the second fault signal FLT2 continues for a predetermined determination time, it asserts the stop signal STOP and fixes the stop signal STOP in the asserted state.
  • the stop signal STOP is supplied to the first lighting circuit 210 and the second lighting circuit 220.
  • the first lighting circuit 210 stops generating the first drive current I DRV1 and turns off the first semiconductor light emitting element 112.
  • the second lighting circuit 220 stops generating the second drive current I DRV2 and turns off the second semiconductor light emitting element 114.
  • the first lighting circuit 210 includes a first DC/DC converter 212 and a first converter controller 214.
  • the first DC/DC converter 212 performs switching in response to a pulse modulation signal S P1 supplied from the first converter controller 214, and supplies a first drive current I DRV1 to the first semiconductor light emitting element 112.
  • the pulse modulation signal S P1 may be a pulse width modulation signal or a pulse frequency modulation signal.
  • the first DC/DC converter 212 may be a step-down converter, a step-up/step-down converter, or a step-up converter.
  • the type of the first DC/DC converter 212 can be selected according to the number of LEDs connected in series that constitute the first semiconductor light emitting element 112.
  • the first converter controller 214 generates a pulse modulation signal S P1 so that the first drive current I DRV1 generated by the first DC/DC converter approaches its target amount I REF1 , and performs feedback control (constant current control) on the first DC/DC converter 212 .
  • the first converter controller 214 is also configured to be able to detect an abnormality in the first semiconductor light emitting element 112.
  • the type of abnormality and the detection method are not particularly limited, but for example, the first converter controller 214 may monitor the voltage between both ends of the first semiconductor light emitting element 112 and determine that an abnormality has occurred when the voltage deviates from a predetermined range. Alternatively, the first converter controller 214 may monitor the first drive current I DRV1 and determine that an abnormality has occurred when the first drive current I DRV1 does not converge to the target amount I REF1 . The first converter controller 214 may detect a ground fault or a power fault as an abnormality.
  • the first converter controller 214 can be composed of a commercially available DC/DC converter controller IC (Integrated Circuit) and its peripheral circuits.
  • the controller IC may have an abnormality detection function and a fault pin for notifying the outside world of the abnormality detection.
  • an abnormality detection circuit can be configured using discrete components outside the controller IC.
  • the controller IC used may have a PWM terminal for PWM dimming.
  • the peripheral circuitry may be configured to fix the PWM terminal low in response to assertion of the stop signal STOP.
  • a controller IC may be used that has an enable terminal, and the peripheral circuitry may be configured to fix the enable terminal low in response to assertion of the stop signal STOP.
  • the second lighting circuit 220 includes a second DC/DC converter 222 and a second converter controller 224, and is configured similarly to the first lighting circuit 210.
  • the above is the configuration of the vehicle lamp 100.
  • FIG. 9 is a diagram showing an example of a low beam light distribution 800 of the vehicle lamp 100A of FIG. 8.
  • the low beam light distribution 800 includes a main low beam portion 802 and an additional low beam portion 804.
  • the main low beam portion 802 is formed by the light emitted from the first semiconductor light emitting element 112
  • the additional low beam portion 804 is an auxiliary light distribution that widely illuminates the lower and lateral sides of the main low beam portion 802, and is formed by the light emitted from the second semiconductor light emitting element 114.
  • This disclosure relates to vehicle lighting devices used in automobiles and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

発光ユニット110は、ロービーム用の第1半導体発光素子112およびハイビーム用の第2半導体発光素子114を含む。第1駆動モジュール120は、第1半導体発光素子112を点灯する。第2駆動モジュール140は、第2半導体発光素子114を点灯する。第1コンバータコントローラ124は、第1DC/DCコンバータ122が生成する第1駆動電流IDRVLが、第1目標量IREFL1に近づくように、第1DC/DCコンバータ122をフィードバック制御する。第2駆動モジュール140は、ハイビームの点灯指示に応答して、第1駆動モジュール120に減光指示信号DIMを送信する。第1駆動モジュール120は、減光指示信号DIMに応答して、第1駆動電流IDRVLを、第1目標量IREFL1より小さい第2目標量IREFL2に低下させる。

Description

車両用灯具
 本開示は、自動車などに用いられる車両用灯具に関する。
 近年、ハイビームやロービーム、リアコンビネーションランプなどの車両用灯具の光源として、LED(発光ダイオード)やLD(レーザダイオード)をはじめとする半導体光源の採用が進められている。半導体光源は、そのエネルギー効率、メンテナンスの容易性、デザインの多様性などの観点から、従来のHID(High Intensity Discharge)ランプやハロゲンランプ等の光源に対して利点を有する。
特開2010-241347号公報 特開2011-098611号公報
 トラックなどの商用車両向けの車両用灯具は、低コスト化が求められ、そうした需要を満たすために、ハイビーム用の発光素子とロービーム用の発光素子をユニット化した車両用灯具がラインアップされる。ハイビームモードの点灯中は、配光要件を満たすために、ハイビームの光源とロービームの光源の両方が同時点灯するため、発熱が多くなる。したがってハイビーム、ロービーム一体型の車両用灯具では、熱対策が重要となる。特に商用車両向けの車両用灯具では、長期的な信頼性が要求されるため、ファンレス化が要求される場合もあり、熱対策がより難しい。
 本開示は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、配光要件を満たしつつ、熱対策を施した車両用灯具の提供にある。
 本開示のある態様は、車両用灯具に関する。車両用灯具は、ロービーム用の第1半導体発光素子およびハイビーム用の第2半導体発光素子を含む発光ユニットと、第1半導体発光素子を点灯する第1駆動モジュールと、第2半導体発光素子を点灯する第2駆動モジュールと、を備える。第1駆動モジュールは、第1半導体発光素子に第1駆動電流を供給する第1DC/DCコンバータと、第1DC/DCコンバータが生成する第1駆動電流が、第1目標量に近づくように、第1DC/DCコンバータをフィードバック制御する第1コンバータコントローラと、を含む。第2駆動モジュールは、ハイビームの点灯指示に応答して、第1駆動モジュールに減光指示信号を送信する。第1駆動モジュールは、減光指示信号に応答して、第1駆動電流を、第1目標量より小さい第2目標量に低下させる。
 本開示のある態様の車両用灯具は、ロービーム用の第1半導体発光素子と、ロービーム用の第2半導体発光素子と、第1半導体発光素子を点灯するとともに、異常を検出すると、第1フォルト信号をアサートする第1点灯回路と、第2半導体発光素子を点灯するとともに、異常を検出すると、第2フォルト信号をアサートする第2点灯回路と、第1フォルト信号と第2フォルト信号の少なくとも一方がアサートされると、停止信号をアサートするラッチ回路と、を備える。第1点灯回路および第2点灯回路は、停止信号のアサートに応答して、第1半導体発光素子および第2半導体発光素子を消灯する。
 なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。
 本開示のある態様によれば、配光要件を満たしつつ、熱対策が可能となる。
実施形態1に係る車両用灯具のブロック図である。 図1の車両用灯具の動作を説明する波形図である。 図3(a)は、ロービーム点灯時の配光を、図3(b)は、ハイビーム点灯時の配光を説明する図である。 図1の車両用灯具の一実施例を示すブロック図である。 ディレーティング回路の構成例を示す回路図である。 実施形態2に係る第2駆動モジュールのブロック図である。 実施形態3に係る第2駆動モジュールのブロック図である。 実施形態4に係る車両用灯具のブロック図である。 図8の車両用灯具のロービーム配光の一例を示す図である。
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
 一実施形態に係る車両用灯具は、ロービーム用の第1半導体発光素子およびハイビーム用の第2半導体発光素子を含む発光ユニットと、第1半導体発光素子を点灯する第1駆動モジュールと、第2半導体発光素子を点灯する第2駆動モジュールと、を備える。第1駆動モジュールは、第1半導体発光素子に第1駆動電流を供給する第1DC/DCコンバータと、第1DC/DCコンバータが生成する第1駆動電流が、第1目標量に近づくように、第1DC/DCコンバータをフィードバック制御する第1コンバータコントローラと、を含む。第2駆動モジュールは、ハイビームの点灯指示に応答して、第1駆動モジュールに減光指示信号を送信する。第1駆動モジュールは、減光指示信号に応答して、第1駆動電流を、第1目標量より小さい第2目標量に低下させる。
 この構成によると、第2駆動モジュールから第1駆動モジュールに対して、減光指示を送信することで、第1駆動モジュールは、ハイビーム点灯中であることを知ることができる。そして第1駆動モジュールが、減光指示に応答して第1駆動電流を減少させることで、第1半導体発光素子の発光量を減らすことができ、ハイビーム点灯時に、発光ユニットのトータルの発熱量の増加を抑制できる。
 一実施形態において、第1コンバータコントローラは、アナログ調光端子を有し、第1目標量は、アナログ調光端子に生ずる調光電圧にもとづいていてもよい。第1駆動モジュールは、減光指示信号に応答して、調光電圧を低下させる減光回路をさらに含んでもよい。多くの市販の駆動IC(Integrated Circuit)が有している調光ピンを利用することで、新たなピンを追加せずに、第1駆動電流を減らすことができる。
 一実施形態において、第2駆動モジュールは、ハイビームの点灯指示に応答してイネーブル状態となる第1リニアレギュレータを含み、第1リニアレギュレータの出力電圧が、減光指示信号として第1駆動モジュールに供給されてもよい。
 一実施形態において、ハイビームの点灯指示を受信するインタフェース回路と、インタフェース回路が受信した点灯指示に応答して、第1リニアレギュレータをイネーブル化するマイクロコントローラと、をさらに備えてもよい。
 一実施形態において、ハイビームの点灯指示は、第2駆動モジュールに対する電源電圧の供給として与えられ、車両用灯具は、電源電圧が供給されると動作する第2リニアレギュレータと、第2リニアレギュレータの出力電圧が供給されると起動し、第1リニアレギュレータをイネーブル化するマイクロコントローラと、をさらに備えてもよい。
 一実施形態において、車両用灯具は、ファンレスであってもよい。長期的な信頼性が求められる商用車両では、ファンレス化が要求される場合がある。上記構成によれば、要求に対応できる。
 一実施形態に係る車両用灯具は、ロービーム用の第1半導体発光素子と、ロービーム用の第2半導体発光素子と、第1半導体発光素子を点灯するとともに、異常を検出すると、第1フォルト信号をアサートする第1点灯回路と、第2半導体発光素子を点灯するとともに、異常を検出すると、第2フォルト信号をアサートする第2点灯回路と、第1フォルト信号と第2フォルト信号の少なくとも一方がアサートされると、停止信号をアサートするラッチ回路と、を備える。第1点灯回路および第2点灯回路は、停止信号のアサートに応答して、第1半導体発光素子および第2半導体発光素子を消灯する。
 この構成によると、複数のLED(半導体発光素子)のうち、いずれか1個のLEDの故障が検出されると、すべてのLEDが消灯する。そのため、視覚テルテールが義務づけられる要件から外れるため、テルテールが不要となる。
 一実施形態において、第1点灯回路は、第1半導体発光素子の両端間電圧が正常範囲から逸脱すると、異常と判定し、第2点灯回路は、第2半導体発光素子の両端間電圧が正常範囲から逸脱すると、異常と判定してもよい。
 一実施形態において、第1点灯回路および第2点灯回路はそれぞれ、DC/DCコンバータと、DC/DCコンバータの出力電流が、目標電流に近づくように、DC/DCコンバータをフィードバック制御するコントローラ回路と、を含んでもよい。
(実施形態)
 以下、好適な実施形態について、図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施形態は、開示および発明を限定するものではなく例示であって、実施形態に記述されるすべての特徴やその組み合わせは、必ずしも開示および発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に接続された(設けられた)状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
 また本明細書において、電圧信号、電流信号などの電気信号、あるいは抵抗、キャパシタ、インダクタなどの回路素子に付された符号は、必要に応じてそれぞれの電圧値、電流値、あるいは回路定数(抵抗値、容量値、インダクタンス)を表すものとする。
(実施形態1)
 図1は、実施形態1に係る車両用灯具100のブロック図である。車両用灯具100は、発光ユニット110、第1駆動モジュール120、第2駆動モジュール140を備える。
 発光ユニット110は、ロービーム用の第1半導体発光素子112およびハイビーム用の第2半導体発光素子114を含み、一体化されている。たとえば第1半導体発光素子112と第2半導体発光素子114は、共通のプリント基板上に実装される。さらに、第1半導体発光素子112と第2半導体発光素子114の出射光は、共通の光学系を透過してもよい。第1半導体発光素子112および第2半導体発光素子114は、それぞれ、ひとつ、または複数のLED(発光ダイオード)を含むことができる。たとえば、プリント基板上には、第1半導体発光素子112を構成する複数のLEDが一列に水平方向に並んで配置され、それと隣接して、第2半導体発光素子114を構成する複数のLEDが一列に水平方向に並んで配置される。第1半導体発光素子112と第2半導体発光素子114には共通のヒートシンクが取り付けられてもよい。
 第1駆動モジュール120は、ロービームの点灯指示に応答して、第1半導体発光素子112を点灯する。第1駆動モジュール120には、ロービームスイッチSW1を介して、バッテリ2からの電圧VBATが、入力電圧Vとして供給される。本実施形態では、ロービームスイッチSW1がオンし、バッテリ電圧VBAT(V)が第1駆動モジュール120に供給されることが、ロービームの点灯指示となる。
 第1駆動モジュール120は、第1DC/DCコンバータ122、第1コンバータコントローラ124、第1インタフェース回路126を含む。
 第1DC/DCコンバータ122は、第1コンバータコントローラ124から供給されるパルス変調信号SP1に応じてスイッチングし、第1半導体発光素子112に第1駆動電流IDRVLを供給する。たとえばパルス変調信号SP1は、パルス幅変調信号であってもよいし、パルス周波数変調信号であってもよい。
 第1コンバータコントローラ124は、第1DC/DCコンバータが生成する第1駆動電流IDRVLが、第1目標量IREFL1に近づくようにパルス変調信号SP1を生成し、第1DC/DCコンバータ122をフィードバック制御(定電流制御)する。具体的には、第1コンバータコントローラ124は、第1駆動電流IDRVLに応じたフィードバック信号(電流検出信号)VFB1をカレントセンスピンCSに受け、フィードバック信号VFBが第1基準電圧VREF1に近づくように、パルス変調信号SP1のデューティサイクルをフィードバック制御する。
 第1インタフェース回路126は、第2駆動モジュール140から減光指示信号DIMを受ける。第1インタフェース回路126は、減光指示信号DIMのアサート(たとえばハイ)に応答して、第1駆動電流IDRVLが、第1目標量IREFL1より小さい第2目標量IREFL2に減少するように、第1コンバータコントローラ124に作用する。
 第2駆動モジュール140は、ハイビームの点灯指示に応答して、第2半導体発光素子114を点灯する。第2駆動モジュール140には、ハイビームスイッチSW2を介して、バッテリ2からの電圧VBATが入力電圧Vとして供給される。
 本実施形態では、第2駆動モジュール140は、第2点灯回路150および第2インタフェース回路146を含む。
 第2点灯回路150は、ハイビームの配光が形成されるように、第2半導体発光素子114に流れる第2駆動電流IDRVHを制御する。本実施形態では、第2点灯回路150は、第1駆動モジュール120と同様に構成され、第2DC/DCコンバータ152および第2コンバータコントローラ154を含む。
 第2DC/DCコンバータ152は、第2コンバータコントローラ154から供給されるパルス変調信号SP2に応じてスイッチングし、第2半導体発光素子114に第2駆動電流IDRVHを供給する。たとえばパルス変調信号SP2は、パルス幅変調信号であってもよいし、パルス周波数変調信号であってもよい。
 たとえば、第2コンバータコントローラ154は、第2DC/DCコンバータ152が生成する第2駆動電流IDRVHが第2目標量IREFHに近づくように、パルス変調信号SP2をフィードバック制御(定電流制御)してもよい。
 あるいは第2点灯回路150は、第2半導体発光素子114と直列に接続された定電流源(不図示)を含んでもよい。この場合、第2コンバータコントローラ154は、第2半導体発光素子114と定電流源の直列接続回路に、駆動電圧VDRV2を供給する定電圧出力のコンバータであってもよい。第2コンバータコントローラ154は、駆動電圧VDRV2が、目標電圧VREF2に近づくように、パルス変調信号SP2をフィードバック制御してもよい。
 また第2駆動モジュール140は、ハイビームの点灯指示に応答して、第1駆動モジュール120に減光指示信号DIMを送信する。
 本実施形態では、ハイビームスイッチSW2がオンし、バッテリ電圧VBAT(V)が第2駆動モジュール140に供給されることが、ハイビームの点灯指示となる。第2インタフェース回路146は、入力電圧Vが供給されると、減光指示信号DIMをアサートする。
 以上が車両用灯具100の構成である。続いてその動作を説明する。
 図2は、図1の車両用灯具100の動作を説明する波形図である。時刻tより前は、車両用灯具100は消灯状態である。時刻tに、ロービームスイッチSW1がオンとなり、ロービーム点灯指示が発生する。このロービーム点灯指示に応答して、第1駆動モジュール120は、第1半導体発光素子112に、第1目標量IREFL1に安定化された第1駆動電流IDRVLを供給する。その結果、第1半導体発光素子112が、相対的に明るい第1輝度で発光し、ロービームの配光が形成される。
 時刻tに、ハイビームスイッチSW2がオンとなり、ハイビーム点灯指示が発生する。ハイビーム点灯指示に応答して、第2駆動モジュール140は、第2半導体発光素子114に、第2駆動電流IDRVHを供給する。その結果、第2半導体発光素子114が発光し、ハイビームの配光が形成される。
 時刻tに、ハイビーム点灯指示が発生すると,減光指示信号DIMがアサートされる。減光指示信号DIMに応答して、第1駆動モジュール120は、第1半導体発光素子112に供給する第1駆動電流IDRVLを、第2目標量IREFL2まで低下させる。これにより、第1半導体発光素子112のが、ロービームのみの点灯状態に比べて相対的に低い第2輝度で発光する。
 時刻tに、ハイビームスイッチSW2がオフすると、第2駆動電流IDRVHが0Aとなり、第2半導体発光素子114が消灯する。第2駆動モジュール140は、減光指示信号DIMがネゲートする。減光指示信号DIMがネゲートされると、第1駆動モジュール120は、第1駆動電流IDRVLの目標電流を、第1目標量IREFL1に戻す。これにより、第1半導体発光素子112は、相対的に明るい第1輝度で発光する。
 図3(a)は、ロービーム点灯時の配光を、図3(b)は、ハイビーム点灯時の配光を説明する図である。図3(a)に示す様に、ロービーム点灯時は、第1半導体発光素子112が第1輝度で発光するため、ロービームの範囲300が、明るく照射される。ハッチの間隔は明るさを示しており、ハッチの間隔が狭い方が明るいことを表している。
 図3(b)に示す様に、ハイビーム点灯時は、第2半導体発光素子114によって、ハイビームの範囲302が明るく照射される。このとき、第1半導体発光素子112は、第1輝度より暗い第2輝度で発光するため、ロービームの範囲300は、図3(a)のロービーム点灯時に比べて、暗くなる。
 以上が車両用灯具100の動作である。
 この車両用灯具100によれば、ハイビーム点灯時に、第2駆動モジュール140から第1駆動モジュール120に対して、減光指示信号DIMを送信することで、第1駆動モジュール120は、ハイビーム点灯中であることを知ることができる。そして第1駆動モジュール120が、減光指示に応答して第1駆動電流IDRVLを減少させることで、第1半導体発光素子102の発光量を減らすことができ、ハイビーム点灯中に、発光ユニット110のトータルの発熱量の増加を抑制できる。
 車両用灯具100は、トラックなどの商用車両向けのラインナップに好適である。このような車両用灯具では、長期的な信頼性のために、ファンレス化が要求される場合がある。本実施形態によれば、発光ユニット110の発熱量を抑えることができるため、ファンレスであっても、信頼性を保証できる。
 図4は、図1の車両用灯具100の一実施例100Aを示すブロック図である。
 第1コンバータコントローラ124は、アナログ調光端子ADIMを備える。第1駆動電流IDRV1の目標電流IREFLは、アナログ調光端子ADIMの電圧VADIMに応じて調節可能となっている。第1駆動モジュール120Aは、ディレーティング回路130を備え、このディレーティング回路130が、図1の第1インタフェース回路126として機能する。
 ディレーティング回路130は、温度を監視し、温度があるしきい値より低い状態では、アナログ調光端子ADIMの電圧VADIMを一定レベルに保ち、温度がしきい値を超えると、温度が高くなるにしたがって、アナログ調光端子ADIMの電圧VADIMを低下させる(温度ディレーティング)。
 減光指示信号DIMは、ディレーティング回路130に入力される。ディレーティング回路130は、減光指示信号DIMがアサート(たとえばハイ)されると、アナログ調光端子ADIMの電圧VADIMを低下させる。
 第2駆動モジュール140Aは、リニアレギュレータ160を含む。リニアレギュレータ160は、図1の第2インタフェース回路146として機能する。リニアレギュレータ160の入力端子INは、ハイビームスイッチSW2と接続されており、出力端子OUTは、ディレーティング回路130と接続される。リニアレギュレータ160は、入力端子INに入力電圧Vが供給されると起動し、所定電圧(たとえば5V)に安定化された電圧VLDOを生成する。この電圧VLDOが減光指示信号DIMとしてディレーティング回路130に供給される。
 図5は、ディレーティング回路130の構成例を示す回路図である。ディレーティング回路130は、抵抗R1,R2、温度ディレーティング回路132、減光回路134を含む。
 抵抗R1,R2は、電源ラインVDDと接地ラインの間に直列に接続された抵抗分圧回路であり、抵抗R1とR2の接続ノードは、第1コンバータコントローラ124Aのアナログ調光端子ADIMと接続される。温度ディレーティング回路132と減光回路134の出力がハイインピーダンスであるとき、アナログ調光端子ADIMの電圧VADIMは、VDD×R2/(R1+R2)となる。
 温度ディレーティング回路132は、サーミスタなどの温感素子を含み、温度に応じて出力を変化させる。温度ディレーティング回路132の出力は、温度がしきい値より低い状態ではハイインピーダンスであり、アナログ調光端子ADIMに影響しない。温度ディレーティング回路132の出力インピーダンスは、温度がしきい値より高い範囲において、温度が高くなるほど低くなり、より多くの電流をシンクする。これにより、温度が高いほど、アナログ調光端子ADIMの電圧VADIMを低下させる。
 減光回路134は、減光指示信号DIMを受け、減光指示信号DIMのアサートに応答して、アナログ調光端子ADIMの電圧VADIMを低下させる。たとえば減光回路134は、抵抗R3、トランジスタQ1およびローパスフィルタ136を含む。トランジスタQ1のベースには、ローパスフィルタ136を介して、減光指示信号DIMが入力される。減光指示信号DIMがアサートされると、トランジスタQ1が導通する。この状態では、抵抗R2とR3が並列に接続されるため、アナログ調光端子ADIMの電圧VADIMは、VDD×(R2//R3)/{(R1+(R2//R3)}となり、VDD×R2/(R1+R2)に比べて低くなる。R2//R3は、R2とR3の並列な合成抵抗を表す。
(実施形態2)
 図6は、実施形態2に係る第2駆動モジュール140Bのブロック図である。発光ユニット110Bの第2半導体発光素子114Bは、マトリクス状に配置されたLED116を含むLEDアレイである。
 第2点灯回路170Bは、DC/DCコンバータ172,174、LEDコントローラ176、マイクロコントローラ178を含む。
 DC/DCコンバータ172は、昇圧コンバータであり、入力電圧Vを昇圧する。DC/DCコンバータ174は、降圧コンバータであり、前段のDC/DCコンバータ172の出力電圧Vを降圧し、駆動電圧VDRVHを生成する。
 LEDコントローラ176は、駆動電圧VDRVHを受け、マイクロコントローラ178による制御に応じて、複数のLED116を個別にオン、オフする。
 リニアレギュレータ180は、入力電圧Vが供給されると起動し、5Vの電源電圧VDDを生成する。この電源電圧VDDは、マイクロコントローラ178などに供給される。
 マイクロコントローラ178は、電源電圧VDDが供給されると起動する。マイクロコントローラ178は起動すると、リニアレギュレータ160のイネーブルの端子ENにイネーブル信号を供給し、リニアレギュレータ160を動作させる。これにより、減光指示信号DIMがアサートされる。
 またマイクロコントローラ178は、起動すると、所定のハイビームの配光が形成されるように、LEDコントローラ176を制御する。
(実施形態3)
 図7は、実施形態3に係る第2駆動モジュール140Cのブロック図である。第2駆動モジュール140Cの基本構成は、図6の第2駆動モジュール140Bと同様である。相違点は、第2駆動モジュール140Bではハイビームの配光が固定されていたのに対して、第2駆動モジュール140Cでは、ADB(Adaptive Driving Beam)機能に対応しており、ハイビーム点灯時に、車両前方の状況に応じて、ハイビームの配光を適応的に制御可能となっている。たとえば対向車や先行車を検出すると、その部分を減光あるいは遮光する制御が行われる。
 第2駆動モジュール140Cは、トランシーバ190を備える。トランシーバ190は、LIN(Local Interconnect Network)やCAN(Controller Area Network)などのインタフェースであり、車両側から、ADB制御に必要な情報を受信する。
 マイクロコントローラ178は、トランシーバ190が受信した情報にもとづいて、LEDコントローラ176を制御し、複数のLED116のオン、オフを個別に制御し、ハイビームの配光を制御する。
(実施形態4)
 実施形態4は、テルテール機能に関する。
 車両には、点灯することにより車両内で発生した異常をユーザに通知するためにテルテールという機能が組み込まれる。テルテールとしては、インストルメントパネルに組み込まれる各種警告灯が代表的である。
 従来のバルブを用いたヘッドランプでは、バルブが切れると、ランプが点灯しなくなるため、ユーザは、明らかに異常を知ることができる。そのため、従来のヘッドランプでは、テルテールは必要とされていなかった。
 近年、ヘッドランプの光源は、LEDが主流となっている。LEDは、レイアウトの自由が高いことから、それらを複数組み合わせることにより、より適切な配光を形成できるという利点がある。ところが、LEDの一部が点灯不能となると適切な配光が形成できていないにもかかわらず、ランプ自体は点灯し続けることができるため、ユーザは異常に気づくことができない。そのため、LEDを備える車両用灯具では、テルテールが必要となる(協定規則第48号 灯火器及び反射器並びに指示装置の取付装置に係る協定規則に係る車両の認可に関する統一規定 UN規則R48 6.2.8項)。
 ヘッドランプの異常を知らせる警告灯をインストルメントパネルに組み込むと、車体のコストが高くなる。
 実施形態4では、テルテールを必要としない車両用灯具の提供について説明する。
(実施形態4)
 図8は、実施形態4に係る車両用灯具100のブロック図である。車両用灯具100は、ロービームランプであり、発光ユニット110およびLED駆動モジュール(LDM)200を備える。
 発光ユニット110は、ロービーム用の第1半導体発光素子112と、ロービーム用の第2半導体発光素子114と、を含む。第1半導体発光素子112と第2半導体発光素子114の出射光は、図示しない光学系を通過し、車両前方にロービームの配光を形成する。たとえば第1半導体発光素子112の出射光は、ロービーム照射領域のうちの、上側部分に向けられ、第2半導体発光素子114の出射光はロービーム照射領域のうちの、下側部分に向けられる。
 駆動モジュール200の入力端子INは、ロービームスイッチSW1を介してバッテリ2と接続される。ロービームの点灯時には、ロービームスイッチSW1がオンとなり、入力端子INにバッテリ電圧VBATが供給される。駆動モジュール200は、入力端子INに供給されるバッテリ電圧VBATを電源電圧として動作する。つまり、入力電圧INに対するバッテリ電圧VBATの供給が、車両用灯具100に対するロービームの点灯指示である。
 第1点灯回路210は、ロービームの点灯指示に応答して動作を開始し、第1半導体発光素子112を点灯する。第1点灯回路210は、異常検出機能を備え、異常を検出すると、第1フォルト信号FLT1をアサートする。
 第2点灯回路220は、ロービームの点灯指示に応答して動作を開始し、第2半導体発光素子114を点灯する。第2点灯回路220は、異常検出機能を備え、異常を検出すると、第2フォルト信号FLT2をアサートする。
 第1フォルト信号FLT1および第2フォルト信号FLT2は、ラッチ回路230に入力される。ラッチ回路230は、第1フォルト信号FLT1と第2フォルト信号FLT2の少なくとも一方がアサートされると、停止信号STOPをアサートする。
 好ましくはラッチ回路230はタイマーラッチ回路であり、第1フォルト信号FLT1および第2フォルト信号FLT2の少なくとも一方のアサートが、所定の判定時間にわたり持続すると、停止信号STOPをアサートし、停止信号STOPをアサート状態に固定する。
 停止信号STOPは、第1点灯回路210および第2点灯回路220に供給される。第1点灯回路210は、停止信号STOPのアサートに応答して、第1駆動電流IDRV1の生成を停止し、第1半導体発光素子112を消灯する。第2点灯回路220は、停止信号STOPのアサートに応答して、第2駆動電流IDRV2の生成を停止し、第2半導体発光素子114を消灯する。
 第1点灯回路210は、第1DC/DCコンバータ212および第1コンバータコントローラ214を含む。第1DC/DCコンバータ212は、第1コンバータコントローラ214から供給されるパルス変調信号SP1に応じてスイッチングし、第1半導体発光素子112に第1駆動電流IDRV1を供給する。たとえばパルス変調信号SP1は、パルス幅変調信号であってもよいし、パルス周波数変調信号であってもよい。
 第1DC/DCコンバータ212は、降圧コンバータであってもよいし、昇降圧コンバータであってもよいし、昇圧コンバータであってもよい。第1DC/DCコンバータ212の形式は、第1半導体発光素子112を構成するLEDの直列接続の個数に応じて選択することができる。
 第1コンバータコントローラ214は、第1DC/DCコンバータが生成する第1駆動電流IDRV1が、その目標量IREF1に近づくようにパルス変調信号SP1を生成し、第1DC/DCコンバータ212をフィードバック制御(定電流制御)する。
 また第1コンバータコントローラ214は、第1半導体発光素子112の異常を検出可能に構成される。異常の種類や検出方法は特に限定されないが、たとえば第1コンバータコントローラ214は、第1半導体発光素子112の両端間電圧を監視し、所定の範囲から逸脱すると、異常と判定してもよい。あるいは第1コンバータコントローラ214は、第1駆動電流IDRV1を監視し、目標量IREF1に収束しない場合に、異常と判定してもよい。第1コンバータコントローラ214は、地絡や天絡を異常として検出してもよい。
 第1コンバータコントローラ214は、市販のDC/DCコンバータのコントローラIC(Integrated Circuit)と、その周辺回路で構成することができる。
 たとえばコントローラICが、異常検出機能と、異常検出を外部に通知するためのフォルトピンを有していてもよい。
 たとえばコントローラICが、異常検出機能を有していない場合、コントローラICの外部に、ディスクリート部品で、異常検出回路を構成すればよい。
 コントローラICは、PWM調光用のPWM端子を有しているものを使用してもよい。その場合、停止信号STOPのアサートに応答して、PWM端子をローに固定するように周辺回路を構成すればよい。あるいはイネーブル端子を有しているコントローラICを使用し、停止信号STOPのアサートに応答して、イネーブル端子をローに固定するように周辺回路を構成してもよい。
 第2点灯回路220は、第2DC/DCコンバータ222および第2コンバータコントローラ224を含み、第1点灯回路210と同様に構成される。
 以上が車両用灯具100の構成である。
 この構成によると、第1点灯回路210、第2点灯回路220のいずれかにおいて故障が検出されると、すべてのLEDが消灯する。そのため、視覚テルテールが義務づけられる要件から外れるため、テルテールが不要となる。
 図9は、図8の車両用灯具100Aのロービーム配光800の一例を示す図である。ロービーム配光800は、メインロービーム部分802と、付加ロービーム部分804を含む。メインロービーム部分802は、第1半導体発光素子112の出射光によって形成され、付加ロービーム部分804は、メインロービーム部分802の下側および側方を広く照射する補助的な配光であり、第2半導体発光素子114の出射光によって形成される。
 本開示に係る実施形態について、具体的な用語を用いて説明したが、この説明は、理解を助けるための例示に過ぎず、本開示あるいは請求の範囲を限定するものではない。本発明の範囲は、請求の範囲によって規定されるものであり、したがって、ここでは説明しない実施形態、実施例、変形例も、本発明の範囲に含まれる。
 本開示は、自動車などに用いられる車両用灯具に関する。
2…バッテリ,SW1…ロービームスイッチ,SW2…ハイビームスイッチ,100…車両用灯具,110…発光ユニット,112…第1半導体発光素子,114…第2半導体発光素子,120…第1駆動モジュール,122…第1DC/DCコンバータ,124…第1コンバータコントローラ,126…第1インタフェース回路,140…第2駆動モジュール,150…第2点灯回路,152…第2DC/DCコンバータ,154…第2コンバータコントローラ,146…第2インタフェース回路,130…ディレーティング回路,160…リニアレギュレータ,132…温度ディレーティング回路,134…減光回路,170B,170C…点灯回路,172,174…DC/DCコンバータ,176…LEDコントローラ,178…マイクロコントローラ,180…リニアレギュレータ,190…トランシーバ,200…駆動モジュール,210…第1点灯回路,212…第1DC/DCコンバータ,214…第1コンバータコントローラ,220…第2点灯回路,222…第2DC/DCコンバータ,224…第2コンバータコントローラ,230…ラッチ回路,FLT1…第1フォルト信号,FLT2…第2フォルト信号,STOP…停止信号

Claims (9)

  1.  ロービーム用の第1半導体発光素子およびハイビーム用の第2半導体発光素子を含む発光ユニットと、
     前記第1半導体発光素子を点灯する第1駆動モジュールと、
     前記第2半導体発光素子を点灯する第2駆動モジュールと、
     を備え、
     前記第1駆動モジュールは、
     前記第1半導体発光素子に第1駆動電流を供給する第1DC/DCコンバータと、
     前記第1DC/DCコンバータが生成する前記第1駆動電流が、第1目標量に近づくように、前記第1DC/DCコンバータをフィードバック制御する第1コンバータコントローラと、
     を含み、
     前記第2駆動モジュールは、前記ハイビームの点灯指示に応答して、前記第1駆動モジュールに減光指示信号を送信し、
     前記第1駆動モジュールは、前記減光指示信号に応答して、前記第1駆動電流を、前記第1目標量より小さい第2目標量に低下させることを特徴とする車両用灯具。
  2.  前記第1コンバータコントローラは、アナログ調光端子を有し、前記第1目標量は、前記アナログ調光端子に生ずる調光電圧にもとづいており、
     前記第1駆動モジュールは、前記減光指示信号に応答して、前記調光電圧を低下させる減光回路をさらに含むことを特徴とする請求項1に記載の車両用灯具。
  3.  前記第2駆動モジュールは、
     前記ハイビームの点灯指示に応答してイネーブル状態となる第1リニアレギュレータを含み、前記第1リニアレギュレータの出力電圧が、前記減光指示信号として前記第1駆動モジュールに供給されることを特徴とする請求項1または2に記載の車両用灯具。
  4.  前記ハイビームの点灯指示を受信するインタフェース回路と、
     前記インタフェース回路が受信した前記点灯指示に応答して、前記第1リニアレギュレータをイネーブル化するマイクロコントローラと、
     をさらに備えることを特徴とする請求項3に記載の車両用灯具。
  5.  前記ハイビームの点灯指示は、前記第2駆動モジュールに対する電源電圧の供給として与えられ、
     前記車両用灯具は、
     前記電源電圧が供給されると動作する第2リニアレギュレータと、
     前記第2リニアレギュレータの出力電圧が供給されると起動し、前記第1リニアレギュレータをイネーブル化するマイクロコントローラと、
     をさらに備えることを特徴とする請求項3に記載の車両用灯具。
  6.  ファンレスであることを特徴とする請求項1または2に記載の車両用灯具。
  7.  ロービーム用の第1半導体発光素子と、
     ロービーム用の第2半導体発光素子と、
     前記第1半導体発光素子を点灯するとともに、異常を検出すると、第1フォルト信号をアサートする第1点灯回路と、
     前記第2半導体発光素子を点灯するとともに、異常を検出すると、第2フォルト信号をアサートする第2点灯回路と、
     前記第1フォルト信号と前記第2フォルト信号の少なくとも一方がアサートされると、停止信号をアサートするラッチ回路と、
     を備え、
     前記第1点灯回路および前記第2点灯回路は、前記停止信号のアサートに応答して、前記第1半導体発光素子および前記第2半導体発光素子を消灯することを特徴とする車両用灯具。
  8.  前記第1点灯回路は、前記第1半導体発光素子の両端間電圧が正常範囲から逸脱すると、異常と判定し、
     前記第2点灯回路は、前記第2半導体発光素子の両端間電圧が正常範囲から逸脱すると、異常と判定することを特徴とする請求項7に記載の車両用灯具。
  9.  前記第1点灯回路および前記第2点灯回路はそれぞれ、
     DC/DCコンバータと、
     前記DC/DCコンバータの出力電流が目標電流に近づくように、前記DC/DCコンバータをフィードバック制御するコントローラ回路と、
     を含むことを特徴とする請求項7または8に記載の車両用灯具。
PCT/JP2023/043160 2022-12-06 2023-12-01 車両用灯具 WO2024122468A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022195056 2022-12-06
JP2022-195056 2022-12-06
JP2022200152 2022-12-15
JP2022-200152 2022-12-15

Publications (1)

Publication Number Publication Date
WO2024122468A1 true WO2024122468A1 (ja) 2024-06-13

Family

ID=91379210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043160 WO2024122468A1 (ja) 2022-12-06 2023-12-01 車両用灯具

Country Status (1)

Country Link
WO (1) WO2024122468A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038723A (ja) * 2005-08-01 2007-02-15 Koito Mfg Co Ltd 車両用灯具の点灯制御装置
JP2010033878A (ja) * 2008-07-29 2010-02-12 Sakae Riken Kogyo Co Ltd 自動車用灯火器
JP2011130543A (ja) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp 電源回路及び照明装置
JP2013109939A (ja) * 2011-11-21 2013-06-06 Koito Mfg Co Ltd 半導体光源点灯回路
JP2016054069A (ja) * 2014-09-03 2016-04-14 市光工業株式会社 車両用灯具の点灯回路、車両用灯具の光源ユニット、車両用灯具
WO2016104282A1 (ja) * 2014-12-24 2016-06-30 株式会社小糸製作所 光源点灯回路、ターンシグナルランプ
JP2017143001A (ja) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 電源回路、照明光通信装置および通信モジュール
JP2018156913A (ja) * 2017-03-21 2018-10-04 株式会社小糸製作所 点灯回路および車両用灯具
JP2022049514A (ja) * 2020-09-16 2022-03-29 株式会社小糸製作所 車両用灯具およびランプコントロールモジュール

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038723A (ja) * 2005-08-01 2007-02-15 Koito Mfg Co Ltd 車両用灯具の点灯制御装置
JP2010033878A (ja) * 2008-07-29 2010-02-12 Sakae Riken Kogyo Co Ltd 自動車用灯火器
JP2011130543A (ja) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp 電源回路及び照明装置
JP2013109939A (ja) * 2011-11-21 2013-06-06 Koito Mfg Co Ltd 半導体光源点灯回路
JP2016054069A (ja) * 2014-09-03 2016-04-14 市光工業株式会社 車両用灯具の点灯回路、車両用灯具の光源ユニット、車両用灯具
WO2016104282A1 (ja) * 2014-12-24 2016-06-30 株式会社小糸製作所 光源点灯回路、ターンシグナルランプ
JP2017143001A (ja) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 電源回路、照明光通信装置および通信モジュール
JP2018156913A (ja) * 2017-03-21 2018-10-04 株式会社小糸製作所 点灯回路および車両用灯具
JP2022049514A (ja) * 2020-09-16 2022-03-29 株式会社小糸製作所 車両用灯具およびランプコントロールモジュール

Similar Documents

Publication Publication Date Title
US7710050B2 (en) Series connected power supply for semiconductor-based vehicle lighting systems
JP4370794B2 (ja) Led調光点灯装置及び照明器具
US20190274209A1 (en) Vehicular lighting device
CN106576410B (zh) 用于led行车灯控制及状态的设备及方法
WO2019198604A1 (ja) 車両用灯具およびその点灯回路、ドライバ回路、ドライバ一体化光源
JP6916668B2 (ja) 車両用灯具および光源の点灯回路
JP6545945B2 (ja) 車両用灯具およびその点灯回路
JP2019057468A (ja) 点灯回路および車両用灯具
JP6302706B2 (ja) 車両用灯具およびその駆動装置
JP2009302296A (ja) 発光ダイオード駆動装置並びにそれを用いた照明器具、車室内用照明装置、車両用照明装置
US11906123B2 (en) Light source module
US10173580B2 (en) Lighting circuit and vehicle lamp
WO2021206145A1 (ja) 車両用灯具および点灯回路
WO2024122468A1 (ja) 車両用灯具
JP2008152938A (ja) 発光ダイオード駆動回路
US10728985B2 (en) Vehicle lamp and lighting circuit
JP2006086063A (ja) 車両用灯具の点灯制御回路
JP7183012B2 (ja) 車両用灯具およびその点灯回路
WO2021010325A1 (ja) 点灯回路および車両用灯具
JP7507047B2 (ja) ランプコントロールモジュール、車両用灯具、信号処理装置
JP6889612B2 (ja) 車両用灯具および光源の点灯回路
US20230093633A1 (en) Automotive lamp system
WO2023106199A1 (ja) 点灯回路、及び車両用灯具
KR20180074255A (ko) 차량용 엘이디 구동 장치
JP2015147445A (ja) 車両用灯具およびその駆動装置