WO2024120420A1 - 激光器、投影光源及投影设备 - Google Patents

激光器、投影光源及投影设备 Download PDF

Info

Publication number
WO2024120420A1
WO2024120420A1 PCT/CN2023/136667 CN2023136667W WO2024120420A1 WO 2024120420 A1 WO2024120420 A1 WO 2024120420A1 CN 2023136667 W CN2023136667 W CN 2023136667W WO 2024120420 A1 WO2024120420 A1 WO 2024120420A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
component
emitting chip
emitting
Prior art date
Application number
PCT/CN2023/136667
Other languages
English (en)
French (fr)
Inventor
郭梦晓
周子楠
张昕
田有良
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211588657.5A external-priority patent/CN115939926A/zh
Priority claimed from CN202310112842.5A external-priority patent/CN116300283A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2024120420A1 publication Critical patent/WO2024120420A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements

Definitions

  • the present application relates to the field of optoelectronic technology, and in particular to a laser, a projection light source and a projection device.
  • lasers are increasingly used, such as being used as light sources in projection equipment.
  • the demand for miniaturization of projection equipment is getting higher and higher, and accordingly, the size of lasers is also required to be smaller.
  • the present application provides a laser, wherein the laser comprises: a base plate, a first light-emitting chip and a reflective component;
  • the first light-emitting chips are located on the bottom plate, and each of the first light-emitting chips has a corresponding reflective component;
  • the first light emitting chip is configured to emit laser light toward the reflective component, and the reflective component is configured to reflect the received laser light along a target direction and perform shaping processing on the laser light during the reflection process.
  • the first light-emitting chip is located on the bottom plate, and a reflection component is used to reflect the laser emitted by the first light-emitting chip toward the target direction, and a shaping process is performed during the laser reflection process to optimize the emission angle and spot width of the laser output by the laser on the fast and slow axes, thereby improving the beam quality of the laser emitted by the laser;
  • the laser has a simple structure and a small size, which is conducive to the miniaturization development of the laser.
  • the present application provides a projection light source, wherein the projection light source includes the laser described in the present application.
  • the present application provides a projection device, wherein the projection device comprises the projection light source described in the present application, as well as a light valve and a lens;
  • the light valve is configured to modulate the laser light emitted by the projection light source and then emit it to the lens, and the lens is configured to project the received laser light to form a projection picture.
  • FIG1 is a schematic diagram of the structure of a laser provided in Example 1 of the present application.
  • FIG2 is a schematic diagram of the structure of a laser provided in Example 2 of the present application.
  • FIG3 is a schematic diagram of the structure of a laser provided in Example 3 of the present application.
  • FIG4 is a schematic diagram of a light spot formed by a laser in front of a first reflective component provided in an embodiment of the present application
  • FIG5 is a schematic diagram of a light spot formed by a laser behind a second reflective component provided in an embodiment of the present application
  • FIG6 is a schematic diagram of the arrangement positions of the first reflecting component and the second reflecting component provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a right-angled trapezoidal side bottom surface of a reflecting prism provided in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of a stepped reflector provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a laser provided in Example 4 of the present application.
  • FIG10 is a schematic diagram of the structure of a laser provided in Example 5 of the present application.
  • FIG11 is a schematic diagram of the structure of a laser provided in Example 6 of the present application.
  • FIG12 is a schematic diagram of the structure of a laser provided in Example 7 of the present application.
  • FIG14 is a schematic diagram of the structure of a laser provided in Example 9 of the present application.
  • FIG15 is a schematic diagram of the structure of a laser provided in Example 10 of the present application.
  • FIG16 is a schematic diagram of the structure of a laser provided in Example 11 of the present application.
  • FIG17 is a schematic diagram of the structure of a laser provided in Example 12 of the present application.
  • FIG18 is a schematic diagram of the structure of a laser provided in Example 13 of the present application.
  • FIG19 is a schematic diagram of the structure of a laser provided in Example 14 of the present application.
  • FIG20 is a schematic diagram of the structure of a projection light source provided in Example 15 of the present application.
  • FIG. 21 is a schematic diagram of the structure of a projection light source provided in Example 16 of the present application.
  • lasers are being used more and more widely.
  • lasers can be used in laser projection as the light source in projection equipment.
  • the lasers emitted by lasers can form projection images with good display effects.
  • various electronic products including projection equipment
  • the laser may include multiple light-emitting chips. Due to the structural characteristics of the active layer of the light-emitting chip itself, the beam quality of the fast and slow axes of the outgoing light beam is quite different and cannot be used directly.
  • the beam quality can be characterized by the beam parameter product (BPP).
  • BPP beam parameter product
  • the beam parameter product in a certain direction is the product of the spot width and the divergence angle of the light beam in that direction. For example, a row of light-emitting chips in the laser includes three light-emitting chips.
  • the spot length of the laser emitted by the row of light-emitting chips on the fast axis is 0.002 mm, the divergence angle is 23.25 degrees, and the light parameter product on the fast axis is 0.8 mm ⁇ mrad; the overall spot length of the laser emitted by the row of light-emitting chips on the slow axis is 2.75 mm, the divergence angle is 5 degrees, and the light parameter product on the slow axis is 240 mm ⁇ mrad. It can be seen that the light parameter product on the slow axis is 300 times that on the fast axis, the beam energy is seriously unbalanced, and the beam quality is poor.
  • the laser emitted by the light-emitting chip in the laser can also pass through a collimator to collimate the laser on the fast axis. After the laser emitted by the laser passes through the collimator, the optical parameter product on the fast axis is still smaller than the optical parameter product on the slow axis.
  • the light beam is also shaped and homogenized.
  • the light emitted by the laser first passes through a light-combining mirror group composed of multiple reflectors for light combination. Since the laser emitted by the laser is not collimated on the slow axis, the spot will gradually increase with the increase of the optical path distance, and may exceed the size range of the optical element.
  • the laser is shaped using components such as a compound eye lens or a diffuser.
  • the following embodiments of the present application provide a laser, a projection light source and a projection device.
  • the laser beam emitted by the laser has good quality and a small volume, and the volume of the projection light source can also be small, which is conducive to the miniaturization of the projection device and the improvement of the display effect of the projection picture.
  • FIG1 is a schematic diagram of the structure of a laser provided in Example 1 of the present application
  • FIG12 is a schematic diagram of the structure of a laser provided in Example 7 of the present application.
  • the laser 10 includes: a base plate 101, a first light-emitting chip 103a and a reflective component 104; the first light-emitting chip 103a is located on the base plate 101, and each first light-emitting chip 103a has a corresponding reflective component 104; the first light-emitting chip 103a is configured to emit a laser to the reflective component 104, and the reflective component 104 is configured to reflect the received laser in the target direction and perform shaping processing on the laser during the reflection process.
  • the first light-emitting chip 103a is located on the base plate 101, and the reflection component 104 is used to reflect the laser emitted by the first light-emitting chip 103a toward the target direction, and a shaping process is performed during the laser reflection process to optimize the emission angle and spot width of the laser output by the laser on the fast and slow axes, thereby improving the beam quality of the laser emitted by the laser;
  • the laser has a simple structure and a small size, which is conducive to the miniaturization development of the laser.
  • the reflective component 104 includes but is not limited to a transmitting prism, a plane reflector, a curved reflector (such as a convex reflector, a concave reflector), etc.
  • the reflective component 104 includes at least one reflector, which may be a spherical reflector or an aspherical reflector.
  • the shaping process of the laser beam by the reflective component 104 includes but is not limited to shaping the divergence angle of the laser beam in the fast axis, the spot width in the fast axis, the divergence angle of the laser beam in the slow axis, the spot width in the slow axis, and other optical parameters or optical characteristics. For example, reducing or increasing the divergence angle of the laser beam in the fast axis, reducing or increasing the spot width of the laser beam in the fast axis, reducing or increasing the divergence angle of the laser beam in the slow axis, reducing or increasing the spot width of the laser beam in the slow axis, and so on.
  • the reflective component 104 includes a first reflective component 1041 and a second reflective component 1042; the first reflective component 1041 is located on the base plate 101, and the second reflective component 1042 is located on the side of the first reflective component 1041 away from the base plate 101, and the first reflective component 1041 and the second reflective component 1042 both correspond to the first light-emitting chip 103a; the first reflective component 1041 is configured to emit the received laser in a direction away from the base plate 101 toward the second reflective component 1042, and the second reflective component 1042 is configured to reflect the received laser in a target direction, the target direction is parallel to the board surface of the base plate 101, and the target direction is perpendicular to the light emitting direction of the first light-emitting chip 103a.
  • the laser beam can be emitted twice by using the first reflecting component 1041 and the second reflecting component 1042, which can not only change the light-emitting direction of the laser beam to make it emit along the target direction, but also adjust the reflecting surfaces in the first reflecting component 1041 and the second reflecting component 1042 to achieve the shaping of the laser beam.
  • the laser 10 also includes a first collimating lens 105; the first collimating lens 105 is located on the base plate 101, the first collimating lens 105 corresponds to the first light-emitting chip 103a, and the first collimating lens 105 is located between the first light-emitting chip 103a and the first reflective component 1041; the first light-emitting chip 103a is configured to emit laser light to the first collimating lens 105, and the first collimating lens 105 is configured to reduce the divergence angle of the received laser light on the fast axis and then emit it toward the first reflective component 1041; the divergence angle of the laser light emitted to the first reflective component 1041 on the fast axis is smaller than the divergence angle on the slow axis.
  • the fast-axis divergence angle of the laser beam emitted by the first emitting chip can be reduced, so that the spot of the laser beam is reduced, so that subsequent optical elements (such as the first reflecting component 1041 and the second reflecting component 1042) only need a smaller size to receive and adjust the laser, which is conducive to the miniaturization of the laser 10.
  • the multiple first light emitting chips 103 a there are multiple first light emitting chips 103 a, the multiple first light emitting chips 103 a have the same light emitting direction, and the multiple first light emitting chips 103 a are arranged along an arrangement direction, and the arrangement direction is perpendicular to the light emitting direction of the first light emitting chips 103 a.
  • the y direction in FIG. 1 represents the arrangement direction.
  • the laser 10 includes: a base plate 101, a first light emitting chip 103a, a first collimating lens 105 and a first reflecting component 1041 located on the base plate, and a second reflecting component 1042 located on a side of the first reflecting component 1041 away from the base plate 101.
  • the base plate 101 is generally in a plate-like structure, and the plate-like structure has two opposite and larger plate surfaces, and a plurality of smaller side surfaces connecting the two plate surfaces, and the two plate surfaces can be parallel.
  • the first light emitting chip 103a, the first collimating lens 105 and the first reflecting component 1041 are all located on one plate surface of the base plate 101.
  • the number of the first light emitting chips 103a can be one or more.
  • FIG1 takes the laser including three first light emitting chips 103a arranged in a row along the y direction as an example for illustration, and the row direction of the first light emitting chips 103a is parallel to the y direction.
  • the adjacent direction of the three first light emitting chips 103a is the aforementioned arrangement direction.
  • Each first light-emitting chip 103a has a corresponding first collimating lens 105, a first reflecting component 1041, and a second reflecting component 1042.
  • the number of the first collimating lenses 105, the first reflecting component 1041, and the second reflecting component 1042 can be the same as the number of the first light-emitting chips 103a, and each first light-emitting chip 103a corresponds to a first collimating lens 105, a first reflecting component 1041, and a second reflecting component 1042.
  • Each first light-emitting chip 103a and any two of its corresponding first collimating lens 105, first reflecting component 1041, and second reflecting component 1042 correspond to each other, such as the first collimating lens 105 also corresponds to the first reflecting component 1041, and the first reflecting component 1041 also corresponds to the second reflecting component 1042.
  • Each first light-emitting chip 103a may also correspond to multiple first reflective components 1041 and multiple second reflective components 1042, and the number of first reflective components 1041 is the same as the number of second reflective components 1042; or multiple first light-emitting chips 103a may correspond to one first reflective component 1041 and one second reflective component 1042, which is not limited in the embodiment of the present application.
  • Each first light-emitting chip 103a and its corresponding first collimating lens 105 and first reflecting component 1041 can be arranged in sequence along a direction (such as the x direction in FIG. 1), the x direction is the light emitting direction of the first light-emitting chip 103a, and the x direction is perpendicular to the y direction.
  • the first reflecting component 1041 and the second reflecting component 1042 both have a reflective surface, and the reflective surface is used to reflect the laser, and the reflective surface of the first reflecting component 1041 is opposite to the reflective surface of the corresponding second reflecting component 1042.
  • the orthographic projection of the reflective surface of each second reflecting component 1042 is at least partially overlapped with the orthographic projection of the reflective surface of the corresponding first reflecting component 1041, so as to ensure that the laser can be transmitted between the areas corresponding to the overlapped orthographic projections in the first reflecting component 1041 and the second reflecting component 1042, and to ensure that the light reflected by the reflective surface of the first reflecting component 1041 can be directed to the reflective surface of the second reflecting component 1042.
  • 1 to 3 all take the example that the orthographic projection of the reflective surface of the second reflective component 1042 partially overlaps with the orthographic projection of the reflective surface of the corresponding first reflective component 1041 on the bottom plate 101.
  • the orthographic projection of the reflective surface of the second reflective component 1042 may also completely overlap with the orthographic projection of the reflective surface of the corresponding first reflective component 1041, which is not limited in the embodiment of the present application.
  • Each first light-emitting chip 103a is configured to emit a laser to the corresponding first collimating lens 105.
  • the divergence angle of the laser emitted by the first light-emitting chip 103a in the direction perpendicular to the chip surface (such as parallel to the z direction) is large, and this direction can be called the fast axis of the laser; the divergence angle in the direction parallel to the chip surface (such as parallel to the y direction) is small, and this direction can be called the slow axis of the laser.
  • the first collimating lens 105 is configured to collimate the received laser on the fast axis and then emit it to the corresponding first reflecting component 1041.
  • Collimating the laser on the fast axis is to reduce the divergence angle of the laser on the fast axis.
  • the divergence angle of the laser passing through the first collimating lens 105 on the fast axis can be smaller than the divergence angle on the slow axis.
  • the cooperation of the first reflecting component 1041 and the second reflecting component 1042 can be used to balance the optical parameter product of the laser on the fast axis and the slow axis.
  • the laser emitted by the first light emitting chip 103a first passes through the first collimating lens 105 to reduce the divergence angle on the fast axis, so that the light spot formed by the laser emitted from the first collimating lens 105 can be smaller.
  • the subsequent optical elements (such as the first reflecting component 1041 and the second reflecting component 1042) only need a smaller size to receive and adjust the laser, which is conducive to the miniaturization of the laser 10.
  • the laser emitted from the first collimating lens 105 can be directed to the reflective surface of the corresponding first reflective component 1041.
  • Each first reflective component 1041 can use its reflective surface to direct the received laser toward the reflective surface of the corresponding second reflective component 1042 in a direction away from the base plate 101.
  • the second reflective component 1042 uses its reflective surface to reflect the received laser in a target direction, which is parallel to the surface of the base plate 101 and perpendicular to the light emitting direction of the first light-emitting chip 103a.
  • the first reflective component 1041 directs the laser in the z direction to the corresponding second reflective component 1042, and the second reflective component 1042 turns the transmission direction of the received laser by 90 degrees, so that the laser is reflected in the y direction.
  • the fast axis of the laser changes from being parallel to the z direction to being parallel to the x direction
  • the slow axis of the laser changes from being parallel to the y direction to being parallel to the z direction
  • the divergence angles of the laser on the fast axis and the slow axis are interchanged, while the spot size does not change significantly.
  • the divergence angle of the laser on the fast axis becomes larger, while the spot size is still small, which is equivalent to increasing the optical parameter product on the fast axis
  • the divergence angle of the laser on the slow axis becomes smaller, while the spot size is still large, which is equivalent to reducing the optical parameter product on the slow axis. Therefore, the optical parameter products of the laser on the fast axis and the slow axis can be relatively close, ensuring that the beam quality of the laser on the fast and slow axes is relatively balanced.
  • FIG4 is a schematic diagram of a light spot formed by a laser in front of a first reflective component provided in an embodiment of the present application.
  • the laser emitted by a row of first light-emitting chips 103a forms a rectangular light spot as a whole, and the width of the rectangular light spot on the fast axis is smaller than the width on the slow axis, and the divergence angle of the laser on the fast axis is also smaller than the divergence angle on the slow axis.
  • the width of the rectangular light spot formed by the laser in the z direction is about 0.3 mm
  • the divergence angle of the laser is about 0.5 degrees
  • the optical parameter product of the laser in the z direction is 26 mm ⁇ mrad.
  • the width of the rectangular light spot in the y direction is about 2.75 mm
  • the divergence angle of the laser is about 5 degrees
  • the optical parameter product of the laser in the y direction is 240 mm ⁇ mrad.
  • FIG5 is a schematic diagram of a light spot formed by a laser after a second reflective component provided in an embodiment of the present application.
  • the laser beam will become a rectangular spot formed by the laser in the x direction (fast axis) with a width of about 3 mm and a divergence angle of about 0.5 degrees, and a rectangular spot with a width of about 0.3 mm and a divergence angle of about 5 degrees in the z direction (slow axis).
  • the inclination of the reflective surface of the first reflective component 1041 and the reflective surface of the second reflective component 1042 can both be 45 degrees, and the inclination refers to the angle formed with the board surface.
  • the laser directed to the first reflective component 1041 is in the x direction, and the first reflective component 1041 turns the laser 90 degrees and then shoots it to the second reflective component 1042 in the z direction, and then the second reflective component 1042 turns the laser 90 degrees again and then emits it in the target direction.
  • the inclination of the reflective surface of the first reflective component 1041 and the reflective surface of the second reflective component 1042 can also be other angles, and accordingly, the transmission direction of the laser between the first reflective component 1041 and the second reflective component 1042 will also deviate to a certain extent, which is not limited in the embodiment of the present application.
  • the first collimating lens 105 is disposed on the base plate 101 , so that there is no need to dispose a layer of collimating lenses in the z direction, which can reduce the thickness of the laser 10 and is conducive to the miniaturization of the laser 10 .
  • a collimating lens is arranged on the bottom plate 101, and the collimating lens is used to reduce the divergence angle of the laser emitted by the light-emitting chip on the fast axis, so that the divergence angle and the spot width of the laser on the fast axis are smaller than the divergence angle and the spot width on the slow axis, and then it is emitted to the first reflecting component 1041; the first reflecting component 1041 can emit the laser to the second reflecting component 1042 in a direction away from the bottom plate 101, so that the second reflecting component 1042 can emit the laser in a target direction parallel to the bottom plate 101 and perpendicular to the light emitting direction of the light-emitting chip.
  • the divergence angle of the laser on the fast and slow axes after passing through the first reflecting component 1041 and the second reflecting component 1042 can be replaced, so that the laser emitted from the second reflecting component 1042 has a larger divergence angle on the fast axis and a smaller spot width, and a smaller divergence angle on the slow axis and a larger spot width. Therefore, the difference between the optical parameter products of the laser on the fast axis and the slow axis is small, and the quality of the laser emitted by the laser 10 can be better.
  • the first collimating lens 105 is located on the bottom plate 101, and the laser emitted by the first light-emitting chip 103a is collimated by the first collimating lens 105 and then sequentially emitted to the first reflecting component 1041 and the second reflecting component 1042.
  • the first collimating lens 105 can also be located on the side of the second reflecting component 1042 away from the bottom plate 101, and the laser emitted by the first light-emitting chip 103a can first pass through the first reflecting component 1041 and the second reflecting component 1042 to balance the fast and slow axis beam quality, and then be emitted to the first collimating lens 105 to limit the divergence angle.
  • the spot of the laser emitted from the first light-emitting chip 103a will be greatly expanded during the process of being transmitted from the first reflecting component 1041 to the second reflecting component 1042, and the size of the second reflecting component 1042 needs to be larger to ensure complete reception of the laser.
  • the spot formed by the laser emitted from the second reflecting component 1042 is also larger, which will have a certain impact on the subsequent transmission and utilization of the laser.
  • a dichroic mirror can be set after the second reflective component 1042 to combine the laser light emitted by each second reflective component 1042 to reduce the light spot size.
  • the second reflective component 1042 can be set as a dichroic mirror so that some of the second reflective components 1042 reflect the laser light to other second reflective components 1042, and the laser light is transmitted from the other second reflective components 1042 to reduce the light spot size.
  • the laser light since the laser light needs to undergo additional reflection or transmission, it may have a certain impact on the brightness and quality of the laser light after combining.
  • the laser 10 may include a plurality of first light-emitting chips 103a having the same light-emitting direction and arranged in a row, and the row direction (i.e., the arrangement direction) of the plurality of first light-emitting chips 103a is perpendicular to the light-emitting direction, such as the light outlets of the plurality of first light-emitting chips 103a may be in the same straight line.
  • Figures 1 to 3 take the example that the laser 10 only includes three first light-emitting chips 103a arranged in a row along the y direction, and the light-emitting directions of the three first light-emitting chips 103a are all in the x direction.
  • the laser 10 may also include a plurality of rows of first light-emitting chips 103a, and the number of first light-emitting chips 103a in each row may be 2, 3, 4 or other numbers; each row of first light-emitting chips 103a and its corresponding first collimating lens 105, first reflecting component 1041 and second reflecting component 1042 may all refer to the relevant introduction about the first light-emitting chip 103a in the row in Figures 1 to 3.
  • the first light-emitting chips 103a in the laser 10 may not be arranged in rows, but may be arranged in a staggered or scattered manner.
  • each first light-emitting chip 103a corresponds to a first collimating lens 105, a first reflecting component 1041 and a second reflecting component 1042.
  • the laser emitted by the first light-emitting chip 103a can be changed in transmission direction through the first reflecting component 1041 and the second reflecting component 1042 to adjust the divergence angle on the fast and slow axes of the laser.
  • each first light emitting chip 103a in a row of first light emitting chips 103a corresponds to a first reflecting component 1041 and a second reflecting component 1042, and different first light emitting chips 103a correspond to different first reflecting components 1041 and second reflecting components 1042.
  • the reflecting surfaces of the first reflecting components 1041 corresponding to the first light emitting chips 103a in the row may be parallel to each other, and the reflecting surfaces of the second reflecting components 1042 may also be parallel to each other.
  • the first reflecting components 1041 corresponding to the first light emitting chips 103a in the row are staggered in the row direction (such as the y direction) of the first light emitting chips 103a, and correspondingly the second reflecting components 1042 may be staggered in the x direction.
  • the spacings between different first light-emitting chips 103a in the same row and the reflective surfaces of the corresponding first reflective components 1041 are different; that is, for two first light-emitting chips 103a in the same row, the spacing between one first light-emitting chip 103a and the reflective surface of the corresponding first reflective component 1041 is different from the spacing between the other first light-emitting chip 103a and the reflective surface of the corresponding first reflective component 1041.
  • the spacing between two components refers to the distance between the ends of the two components that are close to each other.
  • the orthographic projections of the second reflective components 1042 at least partially do not overlap, so as to prevent the laser reflected by the second reflective component 1042 from being blocked by other second reflective components 1042.
  • the spacing between the first light-emitting chips 103a and the corresponding reflective surface of the first reflective component 1041 increases sequentially. As shown in FIGS.
  • the spacing between the second first light-emitting chip 103a and the reflective surface of the corresponding first reflective component 1041 is greater than the spacing between the first first light-emitting chip 103a and the reflective surface of the corresponding first reflective component 1041; the spacing between the third first light-emitting chip 103a and the reflective surface of the corresponding first reflective component 1041 is greater than the spacing between the second first light-emitting chip 103a and the reflective surface of the corresponding first reflective component 1041.
  • the spacing between the first light-emitting chip 103a and the reflective surface of the corresponding first reflective component 1041 may also increase sequentially along the opposite direction of the y direction.
  • the arrangement of the light spot formed by the laser emitted by each second reflective component 1042 is the same as the arrangement of the light spot formed by the laser emitted by each first light-emitting chip 103a to the first reflective component 1041, thereby ensuring the consistency of the arrangement of the laser light spot at each position.
  • the spacing between each first light-emitting chip 103a and the corresponding reflective surface of the first reflective component 1041 may also increase or decrease irregularly along the y direction, such as along the y direction, the spacing between the second first light-emitting chip 103a and the corresponding reflective surface of the first reflective component 1041 may be the largest, which is not limited in the embodiment of the present application.
  • the distance between the two first reflecting components 1041 that are farthest apart in the x direction may be equal to the distance between the two first reflecting components 1041 that are farthest apart in the y direction, so as to ensure that after the second reflecting components 1042 are set accordingly, the width of the laser emitted by each second reflecting component 1042 can be close to the width of the laser emitted by each first reflecting component 1041.
  • the distance between two components may refer to the distance between the center points of the two components, or the distance between the ends of the two components located on the same side.
  • FIG. 6 is a schematic diagram of the setting position of a first reflecting component and a second reflecting component provided in an embodiment of the present application.
  • the distance L1 between the two first reflecting components 1041 that are closest to each other in the x-direction can be 0.35 mm, or 0.4 mm or other distances, which is not limited in the embodiment of the present application.
  • the distance between any two first reflecting components 1041 that are closest to each other in the y-direction can also be equal.
  • the distance L2 can be 1.3 mm, or 1.4 mm or other distances, which is not limited in the embodiment of the present application.
  • L1 can also be equal to L2.
  • each second reflective component 1042 and the bottom plate 101 corresponding to a row of first light-emitting chips 103a in the laser 10 can be the same. In this way, it can be ensured that the laser emitted by each second reflective component 1042 forms a light spot of a desired shape as a whole, such as a rectangular light spot, and ensures that the emitted laser meets the light collection requirements, avoiding the laser forming a plurality of small light spots at different positions.
  • the distance between each first reflecting component 1041 and the distance between each second reflecting component 1042 in the x direction can be adjusted to adjust the aspect ratio of the light spot formed by the laser, realize the shaping of the laser, and make the shape of the light spot meet the requirements of the rear end light collection.
  • the farther the distance between each first reflecting component 1041 in the x direction the longer the length of the laser emitted by the second reflecting component 1042 in the x direction after the corresponding second reflecting component 1042 is set.
  • the distance between the second reflecting component 1042 and the bottom plate 101 can also be adjusted, which can also be called adjusting the height of the second reflecting component 1042 to adjust the aspect ratio of the light spot formed by the laser.
  • the farther the second reflecting component 1042 is from the bottom plate 101, the wider the width of the laser emitted by the second reflecting component 1042 in the z direction will be due to the diffusion of the laser from the first reflecting component 1041 to the second reflecting component 1042.
  • a high-precision patch device can be used to mount each first reflective component 1041 and each second reflective component 1042 to ensure that the positional relationship between each first reflective component 1041 meets the requirements, the positional relationship between each second reflective component 1042 meets the requirements, and the positional relationship between each first reflective component 1041 and the corresponding second reflective component 1042 also meets the requirements. After mounting, the position of each reflective component can also be measured, and the reflective component that does not meet the requirements can be re-mounted.
  • each first reflecting component 1041 may be independent of each other.
  • the first reflecting component 1041 may be a plane reflector.
  • a plane reflector refers to a reflector that is flat as a whole and has one plate surface as a reflective surface.
  • the first reflecting component 1041 may be a reflecting prism, and the surface of the reflecting prism close to the corresponding first light-emitting chip 103a is a reflective surface.
  • the reflecting prism is roughly a quadrangular prism with a right-angled trapezoidal bottom surface, and the oblique waist of the right-angled trapezoid is the edge of the reflective surface. Since the reflective surface of the reflecting prism faces the corresponding first light-emitting chip 103a, the right-angled trapezoidal surface is a side surface of the reflecting prism.
  • the shape, size and dimensions of each first reflecting component 1041 may be exactly the same.
  • FIG. 7 is a schematic diagram of a bottom surface of a reflective prism in a right-angled trapezoid provided in an embodiment of the present application.
  • the right-angled trapezoid The angle a between the oblique waist and the lower base is 45 degrees, the angle b between the oblique waist and the upper base is 135 degrees, the length of the upper base L3 can be 0.89 mm, the length of the lower base L4 can be 1.84 mm, and the height H can be 1 mm.
  • the error of the angle a can be within 10 points
  • the error of the angle b can be within 0.5 degrees
  • the error of the length of the upper base L3 can be within 0.05 mm
  • the error of the lower base L4 can be within 0.15 mm
  • the error of the height H can be within 0.02 mm.
  • the height (dimension in the y direction) of the quadrangular prism can be 1.02 mm
  • the distance between adjacent reflecting prisms in the y direction can be 0.3 mm.
  • each first reflective component 1041 corresponding to each row of first light-emitting chips 103a can also be integrally formed, that is, each first reflective component 1041 is an integral structure.
  • FIG8 is a schematic diagram of the structure of a stepped reflector provided in an embodiment of the present application, and the first reflective component 1041 corresponding to each row of first light-emitting chips 103a can be replaced by the stepped reflector shown in FIG8.
  • the portion where each step in the stepped reflector is located can be used as a first reflective component 1041, and the inclined surface where each step is located (such as the inclined surfaces M1, M2 and M3 in FIG8) are all reflective surfaces, and the laser emitted by each first light-emitting chip 103a can be directed to the inclined surface where a step is located.
  • each second reflective component 1042 in the embodiment of the present application can be independent of each other, such as each second reflective component 1042 can be a plane reflector.
  • the length of the plane reflector is 0.7 mm
  • the width is 0.6 mm
  • the thickness is 0.2 mm.
  • This size is only an example, and the size (length, width and thickness) of the plane reflector can also be other values, which are not limited by the embodiment of the present application.
  • each second reflective component 1042 corresponding to each row of the first light-emitting chip 103a can also be integrally formed, that is, each second reflective component 1042 is an integral structure.
  • the second reflective component 1042 corresponding to each row of the first light-emitting chip 103a can also be replaced by the stepped reflector shown in Figure 8, and it is only necessary to adjust the setting direction of the stepped reflector in Figure 8 so that the reflective surface in the stepped reflector can adjust the laser transmitted along the z direction to be transmitted along the y direction.
  • the laser 10 in the embodiment of the present application may be a monochromatic laser, and each first light-emitting chip 103a in the laser 10 is configured to emit laser light of the same color.
  • the laser 10 may be a blue laser, and each first light-emitting chip 103a therein is configured to emit blue laser light, or the laser 10 may also be a red laser or a green laser, which is not limited in the embodiment of the present application.
  • the arrangement position of the first reflective component 1041 corresponding to each row of the first light-emitting chips 103a may not be limited, and the first reflective component 1041 may increase or decrease in sequence with the corresponding first light-emitting chip 103a along the y direction, or the first reflective component 1041 at any position may have the largest or smallest distance from the corresponding first light-emitting chip 103a.
  • the laser 10 may also be a multicolor laser, and the laser 10 may include at least multiple types of light-emitting chips, and different types of light-emitting chips are configured to emit lasers of different colors.
  • the laser 10 is a three-color laser, and the laser 10 includes a red light-emitting chip, a green light-emitting chip, and a blue light-emitting chip, and each type of light-emitting chip is configured to emit lasers of corresponding colors. Only first light-emitting chips 103a configured to emit lasers of the same color may be arranged in the same row, or different types of first light-emitting chips 103a may also be arranged in the same row.
  • the position of the first light-emitting chip 103a in the row can be set based on the divergence angle of the laser emitted by the different types of first light-emitting chips 103a.
  • the multiple first light-emitting chips 103a located in the same row include at least one first type of light-emitting chip and multiple second type of light-emitting chips, and the divergence angle of the laser emitted by the first type of light-emitting chip is greater than the divergence angle of the laser emitted by the second type of light-emitting chip, then the multiple second type of light-emitting chips can be located on both sides of the at least one first type of light-emitting chip.
  • the laser emitted by the first type of light-emitting chip located in the middle can be mixed with the laser emitted by the second type of light-emitting chips located on both sides, realizing the light combination of lasers of different colors, and ensuring that the spot after light combination is small.
  • the spacing between each first light-emitting chip 103a in each row and the corresponding first reflective component 1041 can be increased or decreased in sequence.
  • the first type of light-emitting chip can be the first light-emitting chip 103a located in the middle, which is configured to emit red laser; the two first light-emitting chips 103a located on both sides are both second type of light-emitting chips, one of which is configured to emit blue laser, and the other first light-emitting chip 103a is configured to emit green laser.
  • the divergence angle of the red laser is greater than the divergence angle of the blue laser, and greater than the divergence angle of the green laser.
  • the red laser located in the middle can be mixed with the blue laser and the green laser located on both sides, realizing the light combination of the three-color laser, and ensuring that the light spot after the light combination is small.
  • the second type of light-emitting chip can also only include the first light-emitting chip 103a configured to emit the same color of laser, such as the second type of light-emitting chips are all blue light-emitting chips or green light-emitting chips.
  • the laser 10 is a multi-color laser
  • a reflective film matching the laser emitted by the light-emitting chip of that type can be plated on its reflective surface to ensure a high reflectivity for the laser.
  • the reflective surface of the corresponding first reflective component 1041 must ensure a high reflectivity for the red laser, and there is no limit on the reflectivity of light of other colors.
  • the laser 10 may further include a plurality of heat sinks 1010.
  • the plurality of heat sinks 1010 may correspond to the plurality of first light-emitting chips 103a one by one.
  • Each first light-emitting chip 103a is located on a corresponding heat sink 1010, and the heat sink 1010 is configured to assist the corresponding first light-emitting chip 103a in heat dissipation.
  • the material of the heat sink 1010 may include ceramic.
  • FIG9 is a schematic diagram of the structure of the laser provided in the fourth embodiment of the present application
  • FIG12 is a schematic diagram of the structure of the laser provided in the seventh embodiment of the present application.
  • the laser 10 further includes a frame 102; the frame 102 is fixed to the bottom plate 101, and the frame 102 surrounds the first light emitting chip 103a and the reflective component 104.
  • the frame 102 can form a complete groove with the bottom plate 101 to hold the first light emitting chip 103a and the reflective component 104.
  • a light emitting chip 103 a and a reflective component 104 are wrapped in the groove, which is beneficial to the processing and packaging of the laser 10 .
  • the laser 10 further includes a frame 102 and a light-transmitting sealing component 1012.
  • Fig. 10 is a schematic diagram of the structure of the laser provided in Example 5 of the present application, and Fig. 10 does not illustrate the frame 102 and the first collimating lens 105, and Fig. 9 may be a front view of the laser shown in Fig. 10.
  • the frame 102 is a frame-like structure, and the two ends of the frame-like structure in the axial direction (such as the z direction) respectively have two opposite annular end faces, and also have an inner wall and an outer wall connecting the two end faces.
  • the frame 102 is fixed to the base plate 101, and surrounds the first light-emitting chip 103a, the first collimating lens 105 and the first reflecting component 1041.
  • one end of the frame 102 can be fixed to the base plate 101, and the frame 102 and the base plate 101 surround a groove, which is also an accommodating space, and the first light-emitting chip 103a, the first collimating lens 105 and the first reflecting component 1041 are located in the accommodating space.
  • the light-transmitting sealing component 1012 may be in the shape of a plate, and the light-transmitting sealing component 1012 is located on a side of the frame 102 away from the bottom plate 101, and is configured to seal the accommodation space enclosed by the frame 102 and the bottom plate 101.
  • the material of the frame 102 may be ceramic, and the edge area of the light-transmitting sealing component 1012 may be directly fixed to the surface of the frame 102 away from the bottom plate 101.
  • the edge area of the light-transmitting sealing component 1012 may be pre-set with solder.
  • the light-transmitting sealing component 1012 may be placed on a side of the frame 102 away from the bottom plate 101, and the solder may be in contact with the surface of the frame 102 away from the bottom plate 101. Then the frame 102 and the light-transmitting sealing component 1012 are placed together in a high-temperature furnace to melt the solder and then weld the frame 102 and the light-transmitting sealing component 1012.
  • the second reflecting component 1042 can be located on the side of the light-transmitting sealing component 1012 away from the bottom plate 101, so that the position of the second reflecting component 1042 can be adjusted after the accommodating space of the laser 10 is sealed, which can ensure that the light-combining quality of the laser is high; and in this way, the accommodating space is small and the height of the frame 102 is low.
  • the second reflecting component 1042 is fixed to the surface of the light-transmitting sealing component 1012 away from the bottom plate 101.
  • the second reflecting component 1042 can be fixed to the corresponding position of the surface of the light-transmitting sealing component 1012 away from the bottom plate 101 by adhesive.
  • the side of the light-transmitting sealing component 1012 away from the bottom plate 101 can have a plurality of grooves, and adhesives can be set in the grooves, and each second reflecting component 1042 is located in one groove.
  • the groove can limit the position of the second reflecting component 1042 to ensure the fixing stability of the second reflecting component 1042.
  • the second reflective component 1042 may also be fixed to the side of the light-transmitting sealing component 1012 away from the bottom plate 101 by other fixing components, instead of being fixed to the light-transmitting sealing component 1012.
  • the fixing component may clamp the opposite sides of the second reflective component 1042 to fix the second reflective component 1042.
  • the setting position of the second reflective component 1042 can be adjusted more flexibly, which is conducive to shaping the laser by adjusting the position of the second reflective component 1042.
  • Figure 11 is a schematic diagram of the structure of the laser provided in Example 6 of the present application.
  • the laser 10 may also include a sealing frame 1013.
  • the outer edge area of the sealing frame 1013 is fixed to the surface of the frame 102 away from the bottom plate 101, and the inner edge area of the sealing frame 1013 is fixed to the edge of the light-transmitting sealing component 1012.
  • the light-transmitting sealing component 1012 is fixed to the frame 102 through the sealing frame 1013.
  • the inner edge area of the sealing frame 1013 can be recessed toward the bottom plate 101 relative to the outer edge area.
  • the fixing method of the second reflective component 1042 in the laser 10 shown in Figure 11 can refer to the above-mentioned introduction to Figures 9 and 10, and the embodiments of the present application will not be repeated.
  • the frame 102 and the sealing frame 1013 may both be made of metal, and the sealing frame 1013 and the frame 102 may be welded by parallel welding. Since parallel welding generates heat locally in the contact area of the welded object, and the generated heat is small, when the light-transmitting sealing component 1012 and the frame 102 are fixed, less heat is conducted to the first light-emitting chip 103a, and the heat has less impact on the first light-emitting chip 103a, thereby reducing the risk of damage to the first light-emitting chip 103a.
  • the second reflective component 1042 being located on the side of the light-transmitting sealing component 1012 away from the base plate 101.
  • the second reflective component 1042 may also be located on the side of the light-transmitting sealing component 1012 close to the base plate 101, that is, located in the accommodating space of the laser 10.
  • the second reflective component 1042 may be fixed to the surface of the light-transmitting sealing component 1012 close to the base plate 101, such as being integrally formed with the light-transmitting sealing component 1012.
  • each second reflective component 1042 may be fixed to the corresponding first reflective component 1041, such as being integrally formed with the second reflective component 1042.
  • each second reflective component 1042 corresponding to each row of first light-emitting chips 103a and each second reflective component 1042 may be fixed, such as being integrally formed.
  • each second reflecting component 1042 is a stepped reflecting mirror, and each first reflecting component 1041 is an independent reflecting prism or plane reflecting mirror; or each second reflecting component 1042 is an independent plane reflecting mirror, and each first reflecting component 1041 is a stepped reflecting mirror.
  • the first collimating lens 105 is arranged on the base plate 101, so there is no need to arrange another layer of collimating lens outside the light-transmitting sealing component 1012, which can reduce the thickness of the laser 10 to a certain extent, which is conducive to the miniaturization of the laser 10.
  • a collimating lens is arranged on the bottom plate, and the collimating lens is used to reduce the divergence angle of the laser emitted by the light-emitting chip on the fast axis, so that the divergence angle and the spot width of the laser on the fast axis are smaller than the divergence angle and the spot size on the slow axis, and then emitted to the first reflecting component; the first reflecting component can emit the laser in a direction away from the bottom plate to the second reflecting component, so that the second reflecting component can emit the laser in a target direction parallel to the bottom plate and perpendicular to the light emitting direction of the light-emitting chip.
  • the divergence angles of the laser on the fast and slow axes can be replaced after passing through the first reflecting component and the second reflecting component, so that the laser emitted from the second reflecting component has a larger divergence angle on the fast axis and a smaller spot width, and a smaller divergence angle on the slow axis and a larger spot width. Therefore, the light of the laser on the fast axis and the slow axis is different. The difference in parameter products is small, and the quality of the laser emitted by the laser can be better.
  • Figure 12 is a schematic diagram of the structure of the laser provided in Example 7 of the present application
  • Figure 13 is a schematic diagram of the structure of the laser provided in Example 8 of the present application
  • Figure 12 is a top view of the laser shown in Figure 13
  • Figure 13 is a schematic diagram of the cross-section of the laser shown in Figure 12.
  • the reflective component 104 includes a concave reflector 1043; the concave reflector 1043 is located on the base plate 101, and the concave reflector corresponds to the first light-emitting chip 103a; the first light-emitting chip 103a is configured to emit a laser to the concave reflector 1043, and the concave reflector 1043 is configured to reflect the received laser along the target direction.
  • the concave reflector 1043 in the laser 10 of this embodiment also converges the laser to a certain extent during the process of reflecting the laser, so the divergence angle of the laser after being reflected by the concave reflector 1043 can be reduced, thereby achieving the shaping of the laser beam.
  • the concave reflector 1043 can collimate the laser, that is, adjust the laser to be close to parallel light.
  • the laser 10 also includes a first light homogenizing component 106; the first light homogenizing component 106 is located in the target direction of the concave reflector 1043; the concave reflector 1043 is configured to direct the received laser to the first light homogenizing component 106, and the first light homogenizing component 106 is configured to homogenize the received laser and then emit it along the target direction.
  • the number of the first light-emitting chips 103a is multiple, the multiple first light-emitting chips 103a have the same light-emitting direction, and the multiple first light-emitting chips 103a are arranged along an arrangement direction, and the arrangement direction is perpendicular to the light-emitting direction of the first light-emitting chip 103a.
  • the arrangement direction is represented by the y direction in FIG. 12 .
  • the laser 10 further includes a frame 102; the frame 102 is fixed to the base plate 101, and the frame 102 surrounds the first light-emitting chip 103a and the reflective component 104.
  • the frame 102 can construct a complete groove with the base plate 101, and the first light-emitting chip 103a and the reflective component 104 are wrapped in the groove, which is beneficial to the processing and packaging of the laser 10.
  • the laser 10 includes: a base plate 101 , a frame 102 , at least one first light emitting chip 103 a , at least one concave reflector 1043 , and a first light homogenizing component 106 .
  • the bottom plate 101 is a plate-like structure, having two relatively large plate surfaces, and a plurality of smaller side surfaces connecting the two plate surfaces.
  • the frame 102 is a frame-like structure, having two relatively annular end surfaces, and an inner wall and an outer wall connecting the two annular end surfaces. It can also be said that the frame-like structure includes a plurality of side walls, which can be connected in sequence to enclose a closed area, and the frame-like structure has two connected openings in the height direction of the side wall (such as the z direction in Figure 12), and each opening is surrounded by an annular end surface.
  • one of the side walls of the frame 102 has a light outlet K.
  • the bottom plate 101 is fixed to the frame 102, and the at least one first light-emitting chip 103a and the at least one concave reflector 1043 are both located on the bottom plate 101 and surrounded by the frame 102.
  • the bottom plate 101 and the frame 102 can enclose a groove, the bottom plate 101 forms the bottom of the groove, and the frame 102 forms the side wall of the groove.
  • the groove is an accommodating space, and the at least one first light-emitting chip 103a and the at least one concave reflector 1043 are both located in the groove, and the first light-emitting chip 103a and the concave reflector 1043 are both located on the bottom plate 101 and surrounded by the frame 102.
  • the structure composed of the bottom plate 101 and the frame 102 can be called a tube shell.
  • the at least one first light-emitting chip 103a in the laser 10 corresponds to at least one concave reflector 1043, and each concave reflector 1043 is located on the light-emitting side of the corresponding first light-emitting chip 103a.
  • the laser emitted by the first light-emitting chip 103a is directed to the corresponding concave reflector 1043, and the concave reflector 1043 is configured to reflect the received laser.
  • the concave reflector 1043 also converges the laser to a certain extent in the process of reflecting the laser, so the divergence angle of the laser after being reflected by the concave reflector 1043 can be reduced.
  • the concave reflector 1043 can collimate the laser, that is, adjust the laser to be close to parallel light.
  • the laser 10 includes three first light-emitting chips 103a as an example for illustration.
  • the number of first light-emitting chips 103a can also be one, two or more, which is not limited in the embodiment of the present application.
  • the first light homogenizing component 106 is located on the transmission path of the laser emitted from the concave reflector 1043, and is configured to homogenize the received laser before emitting it.
  • the laser reflected by the concave reflector 1043 can be emitted through the first light homogenizing component 106 and the light outlet K on the side wall of the frame 102 to achieve the light emission of the laser 10. In this way, it can be ensured that the uniformity of the laser emitted by the laser 10 is high.
  • the laser 10 of the embodiment of the present application can also be called a side-emitting laser.
  • the first light homogenizing component 106 can be located in a groove surrounded by the base plate 101 and the frame 102, and the laser reflected by the concave reflector 1043 is homogenized by the first light homogenizing component 106 and then emitted from the groove through the light outlet K.
  • the first light homogenizing component 106 is located on the base plate 101 and surrounded by the frame 102.
  • the first light homogenizing component 106 can also be fixed to the frame 102, such as the first light homogenizing component 106 can be fixed to the inner wall surface of the side wall where the light outlet K is located in the frame 102, and cover the light outlet K. This method is not illustrated in the embodiments and drawings of the present application. In this method, the first light homogenizing component 106 can simultaneously achieve the sealing of the light outlet K.
  • the first light homogenizing component 106 is located outside the groove, and the laser reflected by the concave reflector 1043 is emitted from the light outlet K and then homogenized by the first light homogenizing component 106.
  • FIG. 14 is a schematic diagram of the structure of the laser provided in Example 9 of the present application. As shown in FIG. 14, the first light homogenizing component 106 can be fixed to the outer wall surface of the side wall where the light outlet K is located in the frame 102, and cover the light outlet K. In this manner, the first light homogenizing component 106 can simultaneously achieve sealing of the light outlet K.
  • the laser 10 is a side-emitting laser, so there is no need to set a reflective prism or a collimating lens group with a larger size outside the tube shell.
  • the laser emitted by the first light-emitting chip 103a in the laser 10 is directly reflected by the concave reflector 1043, so the divergence angle of the laser can be directly reduced, the spot formed by the laser in the subsequent transmission process is smaller, and the size of the components on the subsequent transmission path of the laser (such as the first light homogenizing component 106) can be smaller.
  • the laser 10 includes smaller components than the lasers of the related art, the volume of the laser 10 can be smaller.
  • the laser 10 is used as a light source in a projection device, it can also be beneficial to the miniaturization of the projection device.
  • the laser emitted by the light-emitting chip can be directly emitted after being reflected by the concave reflector and homogenized by the light homogenizing component.
  • the concave reflector can collimate the laser while reflecting the laser, so the laser emitted by the laser has good collimation and uniformity, and the light efficiency of the laser is good.
  • the laser is directly collimated after being emitted from the light-emitting chip, which reduces the divergence angle of the laser, so the divergence degree of the laser in the subsequent transmission process is small, and the size of the components in the collimated optical path (such as the light homogenizing component) is small. In this way, the size of the components in the laser is small, so the volume of the laser is small.
  • the first light-emitting chip 103a refers only to the light-emitting chip that emits laser light to the concave reflector 1043.
  • the first light-emitting chip 103a may include different types of light-emitting chips configured to emit laser light of different colors, such as a light-emitting chip configured to emit red laser light, a light-emitting chip configured to emit green laser light, and a light-emitting chip configured to emit blue laser light. There will be certain differences in the divergence angles of laser light of different colors.
  • the parameters (such as curvature) of the concave reflector 1043 corresponding to the different types of light-emitting chips can be designed accordingly according to the divergence angle of the laser light configured to be received, so that the collimation of the laser light emitted by each concave reflector 1043 is relatively high.
  • the parameters of each concave reflector 1043 can also be the same to simplify the preparation process of the laser 10.
  • the arc-shaped reflecting surface of the concave reflector 1043 can be a shape formed by parabolic rotation.
  • the first light homogenizing component 106 may include a light homogenizing sheet or a fly-eye lens.
  • the first light homogenizing component 106 is illustrated as a fly-eye lens as an example in the accompanying drawings.
  • the fly-eye lens may be composed of two opposing single-sided fly-eye lenses, or may be a double-sided fly-eye lens.
  • the light homogenizing sheet may have a plurality of micro lenses or prisms to homogenize and superimpose the incident light beam to achieve the light homogenization function.
  • the parameters of the microlenses on both sides of the compound eye lens can be the same.
  • the parallel light beam is vertically projected onto the multiple microlenses on the first side of the compound eye lens, and can be divided into multiple small light beams by each microlens.
  • Each microlens can focus the received small light beam on the center of the corresponding microlens on the second side, and then be emitted by the microlens on the second side.
  • the small light beams emitted from each microlens can be superimposed on each other to compensate for the slight unevenness of each small light beam, thereby realizing the uniform light function and ensuring a high uniformity of the light spot.
  • the laser 10 also includes a heat sink 1010 fixed on the base plate 101 and surrounded by the frame 102.
  • the heat sink 1010 can correspond to the light-emitting chip in the laser 10 one by one, and each light-emitting chip is fixed to the corresponding heat sink 1010, so as to achieve fixation with the base plate 101 through the heat sink 1010.
  • Figures 12 to 14 are illustrated by taking the light-emitting chip as an example that the corresponding heat sink 1010 is located on the surface away from the base plate 101.
  • Figure 15 is a structural schematic diagram of the laser provided in Example 10 of the present application. As shown in Figure 15, the light-emitting chip can also be located on the side of the corresponding heat sink 1010.
  • the side of the heat sink 1010 is also on the surface perpendicular to the base plate 101.
  • the vertical (or parallel) to the base plate 101 described in the embodiment of the present application refers to the vertical (or parallel) to the plate surface of the base plate 101.
  • the subsequent embodiments are all illustrated by taking the light-emitting chip as an example that the light-emitting chip can also be located on the side of the corresponding heat sink 1010.
  • the heat sink 1010 has good thermal conductivity, can assist the corresponding light-emitting chip to dissipate heat well, and can also assist the corresponding light-emitting chip to be electrically connected.
  • the thermal expansion coefficient of the heat sink 1010 is close to that of the light-emitting chip, which can well relieve the stress generated during the temperature change of the material.
  • the material of the heat sink 1010 may include ceramics.
  • the light-emitting chip and the heat sink 1010 can be formed by eutectic welding, and the upper and lower surfaces of the light-emitting chip and the heat sink 1010 can be plated with gold.
  • the mounting surfaces of the light-emitting chip and the heat sink 1010 can be pre-set with solder, and the mounting of the light-emitting chip and the heat sink 1010 is achieved by the solder.
  • the laser 10 also includes a sealing cover 1011, and Figure 12 does not illustrate the sealing cover 1011.
  • the sealing cover 1011 is fixed to the side of the frame 102 away from the bottom plate 101, and the sealing cover 1011 is configured to seal the groove surrounded by the bottom plate 101 and the frame 102.
  • the sealing cover 1011 can be a light-transmitting component or an opaque component, which is not limited in the embodiment of the present application.
  • the sealing components of the bottom plate 101, the frame 102, the sealing cover 1011 and the light outlet K can form a packaging structure, which is configured to encapsulate the components in the groove.
  • the bottom edge of the sealing cover 1011 can be pre-set with solder (such as gold-tin solder), and the sealing cover and the frame 102 are fixed by high-temperature welding of the solder to seal the groove.
  • solder such as gold-tin solder
  • FIG14 takes the first light homogenizing component 106 as a sealing component of the light outlet K as an example.
  • the laser 10 may further include a sealing component of the light outlet K.
  • the sealing component may be a flat glass P.
  • FIG16 is a schematic diagram of the structure of the laser provided in the eleventh embodiment of the present application.
  • the laser 10 may further include a converging lens 108, which is configured to converge the received laser.
  • the converging lens 108 is located outside the groove surrounded by the base plate 101 and the frame 102.
  • the converging lens 108 may be fixed to the frame 102, such as a schematic diagram of the structure of a laser provided in another embodiment of the present application shown in FIG16.
  • the converging lens 108 is fixed to the outer wall surface of the side wall where the light outlet K in the frame 102 is located, and covers the light outlet K.
  • FIG16 takes the example of the converging lens 108 having two opposite convex curved surfaces.
  • the converging lens 108 may also be a plano-convex lens, which is not limited in the embodiments of the present application.
  • the converging lens 108 may be located in the optical path before the first light homogenizing component 106.
  • the mirror 108 converges the laser light passing through the concave reflector 1043 to the first light homogenizing component 106; or the converging lens 108 can also be located in the optical path after the first light homogenizing component 106, and the laser light homogenized by the first light homogenizing component 106 is then converged by the converging lens 108 and then emitted.
  • the converging lens 108 of this arrangement is not shown in the drawings.
  • the converging lens 108 is located in a groove surrounded by the bottom plate 101 and the frame 102.
  • the converging lens 108 is located on the bottom plate 101 and surrounded by the frame 102.
  • the converging lens 108 may also be fixed to the frame 102, for example, the converging lens 108 is fixed to the inner wall surface of the side wall where the light outlet K is located in the frame 102, and covers the light outlet K. It should be noted that the converging lens 108 in this arrangement is not shown in the drawings.
  • the converging lens 108 can serve as a sealing component of the light outlet K, and an additional sealing component of the light outlet K may not be additionally provided in the laser 10; or, the laser 10 may still be provided with another sealing component to seal the light outlet K, which is not limited in the embodiment of the present application.
  • the components in the laser 10 can be arranged in a variety of ways, and accordingly the optical path of the laser emitted by the light-emitting chip can also be implemented in a variety of different ways.
  • the optional arrangements of the components in the laser 10 and the optional transmission methods of the laser are introduced below.
  • the laser 10 includes a plurality of first light-emitting chips 103a and a plurality of concave reflectors 1043 corresponding to each other.
  • the plurality of first light-emitting chips 103a are arranged in a row, such as the arrangement direction is the y direction.
  • the light emission directions of the plurality of first light-emitting chips 103a can be the same and perpendicular to the arrangement direction, such as the light emission directions of the first light-emitting chips 103a are all in the x direction, and the x direction is perpendicular to the y direction.
  • the plurality of concave reflectors 1043 can be staggered with each other in the arrangement direction of the first light-emitting chips 103a to avoid blocking the laser reflected by other concave reflectors 1043.
  • the plurality of first light-emitting chips 103a may not be arranged in a row along a certain direction, but staggered with each other.
  • the distances between each first light-emitting chip 103a and the corresponding concave reflector 04 decrease in sequence along the y direction.
  • the distances between each first light-emitting chip 103a and the corresponding concave reflector 04 may not decrease or increase in sequence.
  • the distance between the first light-emitting chip 103a located in the middle and the corresponding concave reflector 1043 may be the largest, which is not limited in the embodiment of the present application.
  • the laser 10 may also have two first light-emitting chips 103a with opposite light-emitting directions, and the two concave reflectors 1043 corresponding to the two first light-emitting chips 103a are located between the two first light-emitting chips 103a.
  • the two first light-emitting chips 103a and the two corresponding concave reflectors 1043 may be arranged in a straight line in the light-emitting direction of the first light-emitting chip 103a.
  • the side wall with the light outlet K is a side wall in a direction other than the light emitting direction of the first light emitting chip 103a in the frame 102.
  • the side wall is a side wall in a direction perpendicular to the light emitting direction in the frame 102, that is, one of the two side walls in the y direction.
  • the side wall having the light outlet K is the side wall on the light-emitting side of the first light-emitting chip 103 a in the frame 102 .
  • FIG17 is a schematic diagram of the structure of the laser provided in Example 12 of the present application.
  • the laser 10 also includes a plane reflector 109 corresponding to each concave reflector 1043, and the plane reflector 109 can be located on the bottom plate 101 and surrounded by the frame 102.
  • Each plane reflector 109 is located on the light-emitting side of the corresponding concave reflector 1043, and is configured to turn the transmission direction of the laser reflected by the concave reflector 1043 so that the transmission direction of the emitted laser is parallel to the light-emitting direction of the first light-emitting chip 103a.
  • each concave reflector 1043 and the plane reflector 109 can also be arranged along the y direction.
  • FIG17 takes the case where the reflection directions of the laser beams by the concave reflectors 1043 are the same as an example, such as the laser beams emitted by the concave reflectors 1043 are all emitted in the opposite direction of the y direction.
  • the reflection directions of the laser beams by the concave reflectors 1043 may be opposite. In this way, the area occupied by the concave reflectors 1043 and the plane reflectors 109 is small, and the volume of the laser 10 can be small.
  • the laser beams reflected by the plane reflectors 109 can be arranged more closely, and accordingly, the volume of the first light homogenizing component 106 can be smaller, and the size of the light outlet K can also be smaller, so the strength of the frame 102 can be higher, and it is conducive to the subsequent adjustment of the laser beams.
  • FIG18 is a schematic diagram of the structure of the laser provided in the thirteenth embodiment of the present application.
  • the number of the first light-emitting chips 103a is multiple, and the multiple first light-emitting chips 103a are arranged along the arrangement direction, and the arrangement direction is perpendicular to the light emitting direction;
  • the multiple first light-emitting chips 103a are respectively located in the first area and the second area along the arrangement direction, and the first area and the second area each have at least one first light-emitting chip 103a, and the concave reflector 1043 corresponding to the first light-emitting chip 103a in the first area reflects the laser in the first direction, and the concave reflector 1043 corresponding to the first light-emitting chip 103a in the second area reflects the laser in the second direction, and the first direction and the second direction are relative.
  • the first region (not shown in the figure) and the second region (not shown in the figure) are arranged along the arrangement direction of the first light-emitting chip 103a (i.e., the y direction), and the reflection direction of the laser by the concave reflector 1043 corresponding to the first light-emitting chip 103a in the first region is opposite to the reflection direction of the laser by the concave reflector 1043 corresponding to the first light-emitting chip 103a in the second region.
  • the first region and the second region are not marked in FIG18.
  • the first region may be the region where the uppermost first light-emitting chip 103a in FIG18 is located
  • the second region may be the region where the lowermost first light-emitting chip 103a in FIG18 is located.
  • the embodiment of the present application takes the example of only one light-emitting chip being arranged in the first region and the second region. Multiple first light-emitting chips 103a may also be arranged in the first region and the second region, and the embodiment of the present application is not limited thereto.
  • the laser 10 may further include other light-emitting chips in addition to the first light-emitting chip 103a.
  • the laser 10 may also include at least one second light-emitting chip 103b and at least one second collimating lens 107 in one-to-one correspondence.
  • the second light-emitting chip 103b and the second collimating lens 107 are both located on the bottom plate 101, and the second light-emitting chip 103b and the second collimating lens 107 are surrounded by the frame 102.
  • FIG. 18 takes the case where the number of the second light-emitting chip 103b and the second collimating lens 107 is one as an example.
  • the laser emitted by the second light-emitting chip 103b is directed to the corresponding second collimating lens 107, and the second collimating lens 107 is configured to collimate the received laser.
  • the collimated laser is then emitted through the first light homogenizing component 106 and the light outlet K.
  • the laser 10 shown in FIG18 is based on the laser 10 shown in FIG17, and is configured with a second light-emitting chip 103b and a second collimating lens 107. On the basis of other lasers 10 provided in the present application, the laser 10 can also be configured with a second light-emitting chip 103b and a second collimating lens 107.
  • FIG19 is a schematic diagram of the structure of another laser provided in another embodiment of the present application.
  • the laser 10 further includes a second light-emitting chip 103b and a corresponding second collimating lens 107, and the light emitting direction of the second light-emitting chip 103b is perpendicular to the light emitting direction of the first light-emitting chip 103a.
  • first light-emitting chips 103a there are multiple first light-emitting chips 103a, and multiple first light-emitting chips 103a and at least one second light-emitting chip 103b are arranged along an arrangement direction; at least one second light-emitting chip 103b has at least one first light-emitting chip 103a on both sides.
  • a plurality of first light-emitting chips 103a and a second light-emitting chip 103b may be arranged in a row, and the plurality of first light-emitting chips 103a may be located on both sides of the second light-emitting chip 103b in the arrangement direction.
  • the number of first light-emitting chips 103a on both sides of the second light-emitting chip 103b may be equal or differ by 1. In this way, the symmetry of the arrangement positions of the various components in the laser 10 can be ensured to be good, and the arrangement spacing of the lasers emitted by the various light-emitting chips is relatively uniform, so that the light effect of the laser emitted by the laser 10 is better.
  • the second collimating lens 107 in the embodiment of the present application may be an aspherical lens or a free-form lens.
  • the parameters of the second collimating lens 107 may also be designed based on the divergence angle of the laser emitted by the second light-emitting chip 103b to ensure that the laser emitted by the second light-emitting chip 103b is well collimated.
  • the second light-emitting chip 103b and the first light-emitting chip 103a located on different sides of the second light-emitting chip 103b may be light-emitting chips of different types, configured to emit lasers of different colors.
  • the first light-emitting chip 103a may include a light-emitting chip configured to emit red laser light and a light-emitting chip configured to emit blue laser light
  • the second light-emitting chip 103b may include a light-emitting chip configured to emit green laser light.
  • the laser emitted by the light-emitting chip can be directly emitted after being reflected by the concave reflector and homogenized by the light homogenizing component.
  • the concave reflector can collimate the laser while reflecting the laser, so the laser emitted by the laser has good collimation and uniformity, and the light efficiency of the laser is good.
  • the laser is directly collimated after being emitted from the light-emitting chip, which reduces the divergence angle of the laser, so the divergence degree of the laser in the subsequent transmission process is small, and the size of the components in the collimated optical path (such as the light homogenizing component) is small. In this way, the size of the components in the laser is small, so the volume of the laser is reduced.
  • the laser in the above embodiment of the present application can be applied to laser projection as a light source in a projection device.
  • the projection light source may also include other optical components.
  • Fig. 20 is a schematic diagram of the structure of a projection light source provided in Embodiment 15 of the present application
  • Fig. 21 is a schematic diagram of the structure of a projection light source provided in Embodiment 16 of the present application.
  • the present embodiment provides a projection light source, and the projection light source includes the laser described in any embodiment of the present application.
  • the projection light source further includes at least one of a light combining component 50 , a second light homogenizing component 20 , and a third collimating lens 30 ; the light combining component 50 , the second light homogenizing component 20 , or the third collimating lens 30 is located in the target direction of the laser 10 .
  • the projection light source may include a laser 10 and a second light homogenizing component 20, such as the second light homogenizing component 20 may be a light guide, and the laser 10 may be any of the lasers 10 in FIG1 to FIG3 and FIG9 to FIG19.
  • the second light homogenizing component 20 may be configured to homogenize the laser light emitted by the laser 10 and then emit it for subsequent use.
  • the projection light source may further include a cylindrical third collimating lens 30 located between the laser 10 and the second light homogenizing component 20.
  • the third collimating lens 30 is configured to reduce the divergence angle of the laser light emitted by the laser 10 on the fast axis before emitting the laser light
  • the second light homogenizing component 20 is configured to homogenize the laser light emitted by the third collimating lens 30.
  • the divergence angle on the fast axis becomes larger (such as 5 degrees).
  • the size of the light spot on the fast axis will become larger and larger. Therefore, in order to avoid the subsequent difference in the size of the light spot on the fast and slow axes, the divergence angle on the fast axis needs to be shrunk again.
  • a third collimating lens 30 can be set on the transmission path of the laser emitted by the laser 10, so that only the divergence angle of the laser on the fast axis can be shrunk through the third collimating lens 30, without changing the divergence angle of the laser on the slow axis.
  • the second light homogenizing component 20 requires that the spot of the received laser be square.
  • the third collimating lens 30 in the embodiment of the present application can be placed at this position.
  • the divergence angle of the laser on the fast axis can be reduced to 0.5 degrees through the third collimating lens 30, so that the subsequent spot size and divergence angle of the laser on the fast and slow axes can be ensured to be the same.
  • the position of the third collimating lens 30 can also be adjusted accordingly to ensure that the laser directed to the second light homogenizing component 20 meets the requirements.
  • the projection light source may further include a focusing lens 40 located between the third collimating lens 30 and the second light homogenizing component 20, and the laser light after passing through the third collimating lens 30 may be converged to the second light homogenizing component 20 through the focusing lens 40.
  • the quality of the laser light emitted by the laser 10 on the fast and slow axes is relatively balanced, and the divergence angle of the laser light on the fast and slow axes can be adjusted to be consistent in the projection light source, so the quality of the laser light emitted by the projection light source is good.
  • the laser light emitted by the laser 10 can be a laser light after light combination, so there is no need to set multiple reflective sheets behind the laser 10 to be configured for light combination, so the structure in the projection light source can be less, which is conducive to the miniaturization of the projection light source.
  • the projection light source may include a laser 10 and a light combining component 50.
  • the light combining component 50 is located on the light output side of the laser 10 and is configured to mix different colors emitted by the laser 10 to reduce the spot size.
  • the laser 10 may be any of the lasers 10 in FIGS. 1 to 3 and 9 to 19 above.
  • the laser 10 may be a monochromatic laser, configured to emit laser light of only one color.
  • the laser 10 may be a polychromatic laser, configured to emit laser light of multiple colors.
  • the light combining component 50 may mix the laser light of multiple colors emitted by the laser 10.
  • the laser 10 is a three-color laser
  • the light combining component 50 includes a plurality of light combining lenses arranged in sequence, each of which is configured to receive a laser of one color and reflect the received laser in the same direction parallel to the arrangement direction of the light combining lenses, so as to achieve light combining of lasers of different colors.
  • the light combining lenses in the rear optical path of the plurality of light combining lenses can be reflectors
  • the light combining lenses in the front optical path (such as the lenses J2 and J3 in FIG. 21 ) can be dichroic mirrors to facilitate the passage of light in the rear optical path.
  • the front optical path refers to the optical path where the laser is transmitted earlier
  • the rear optical path refers to the optical path where the laser is transmitted later.
  • a light homogenizing component and a converging lens are provided in the laser 10, so that the laser light emitted directly by the laser 10 is uniform and relatively convergent. Therefore, there is no need to provide a light homogenizing component or a converging lens outside the laser 10, which can reduce the volume of the projection light source.
  • the projection light source may further include a shaping component configured to homogenize the laser light emitted by the laser device.
  • the shaping component may shape the laser spot into a shape required for forming a projection image and transmit it to subsequent components.
  • the embodiment of the present application also provides a projection device, which may include the above-mentioned light source assembly, and may also include a light valve and a lens.
  • the laser emitted by the above-mentioned light source assembly may be directed to the light valve, modulated by the light valve and directed to the lens, and then the lens may project the received laser to form a projection picture. Since the quality of the laser emitted by the projection light source is good, the display effect of the projection picture formed based on the laser may also be good, which may improve the display effect of the projection device.
  • the terms "at least one of A and B” and “A and/or B” are merely a description of the association relationship of associated objects, indicating that three relationships may exist, namely, A exists alone, A and B exist at the same time, and B exists alone.
  • the term "at least one of A, B, and C” indicates that seven relationships may exist, indicating: A exists alone, B exists alone, C exists alone, A and B exist at the same time, A and C exist at the same time, C and B exist at the same time, and A, B, and C exist at the same time.
  • the terms “first” and “second” are configured only for descriptive purposes and cannot be understood as indicating or implying relative importance.
  • the term “at least one” refers to one or more, and the term “multiple” refers to two or more, unless otherwise expressly defined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器(10)、投影光源及投影设备,激光器(10)包括底板(101)、第一发光芯片(103a)和反射组件(104);第一发光芯片(103a)位于底板(101)上,每个第一发光芯片(103a)均具有对应的反射组件(104);第一发光芯片(103a)被配置为向反射组件(104)发出激光,反射组件(104)被配置为将接收到的激光沿目标方向反射,并在反射过程中对激光进行整形处理。优化了激光器(10)输出的激光在快慢轴的发散角度和光斑宽度,提高了激光器(10)发出的激光的光束质量;激光器(10)的结构简单,体积较小,有利于激光器(10)的小型化发展。

Description

激光器、投影光源及投影设备
本申请要求于2022年12月09日提交的申请号为202211588657.5、申请名称为“激光器、投影光源及投影设备”的中国专利申请的优先权,以及,于2023年02月13日提交的申请号为202310112842.5、申请名称为“激光器、投影光源和投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,特别涉及一种激光器、投影光源和投影设备。
背景技术
随着光电技术的发展,激光器的应用越来越广泛,如可以用于投影设备中作为光源。目前对投影设备的小型化的要求越来越高,相应地要求激光器的体积也较小。
公开内容
本申请一方面提供了一种激光器,其中,所述激光器包括:底板、第一发光芯片和反射组件;
所述第一发光芯片位于所述底板上,每个所述第一发光芯片均具有对应的所述反射组件;
所述第一发光芯片被配置为向所述反射组件发出激光,所述反射组件被配置为将接收到的激光沿目标方向反射,并在反射过程中对激光进行整形处理。
本申请实施例提供的激光器,第一发光芯片位于底板上,采用反射组件将第一发光芯片发射的激光朝向目标方向反射,并在激光反射过程中进行整形处理,优化激光器输出的激光在快慢轴的发射角度和光斑宽度,提高激光器发出的激光的光束质量;激光器的结构简单,体积较小,有利于激光器的小型化发展。
本申请另一方面提供了一种投影光源,其中,所述投影光源包括本申请所述的激光器。
本申请再一方面提供了一种投影设备,其中,所述投影设备包括本申请所述的投影光源,以及光阀和镜头;
所述光阀被配置为将所述投影光源发出的激光进行调制后射向所述镜头,所述镜头被配置为将接收到的激光进行投射,以形成投影画面。
附图说明
图1是本申请实施例一提供的激光器的结构示意图;
图2是本申请实施例二提供的激光器的结构示意图;
图3是本申请实施例三提供的激光器的结构示意图;
图4是本申请实施例提供的第一反射部件前激光形成的光斑的示意图;
图5是本申请实施例提供的第二反射部件后激光形成的光斑的示意图;
图6是本申请实施例提供的第一反射部件和第二反射部件的设置位置示意图;
图7是本申请实施例提供的反射棱镜的呈直角梯形的侧面底面的示意图;
图8是本申请实施例提供的阶梯型反射镜的结构示意图;
图9是本申请实施例四提供的激光器的结构示意图;
图10是本申请实施例五提供的激光器的结构示意图;
图11是本申请实施例六提供的激光器的结构示意图;
图12是本申请实施例七提供的激光器的结构示意图;
图13是本申请实施例八提供的激光器的结构示意图;
图14是本申请实施例九提供的激光器的结构示意图;
图15是本申请实施例十提供的激光器的结构示意图;
图16是本申请实施例十一提供的激光器的结构示意图;
图17是本申请实施例十二提供的激光器的结构示意图;
图18是本申请实施例十三提供的激光器的结构示意图;
图19是本申请实施例十四提供的激光器的结构示意图;
图20是本申请实施例十五提供的投影光源的结构示意图;
图21是本申请实施例十六提供的投影光源的结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本申请做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
随着光电技术的发展,激光器的应用越来越广,如激光器可以应用于激光投影中作为投影设备中的光源,基于激光器发出的激光可以形成显示效果较好的投影画面。目前各种电子产品(包括投影设备)逐渐向小型化、便携化和多功能化发展,相应地对于激光器的小型化和发光效果的要求也越来越高。
激光器可以包括多个发光芯片,由于发光芯片自身有源层的结构特点,导致出射光束快慢轴的光束质量差别较大,无法被直接使用。光束质量可以采用光参数积(beam parameter product,BPP)来表征,某一方向上的光参数积为该方向上光束的光斑宽度和发散角度的乘积。示例地,激光器中一行发光芯片包括三个发光芯片,该行发光芯片发出的激光在快轴上的光斑长度为0.002毫米,发散角为23.25度,快轴上的光参数积为0.8毫米(mm)×毫弧度(mrad);该行发光芯片发出的激光在慢轴上的光斑整体长度为2.75毫米,发散角为5度,慢轴上的光参数积为240mm×mrad。由此可知,慢轴上的光参数积是快轴上的光参数积的300倍,光束能量严重不均衡,光束质量较差。
相关技术中,激光器中发光芯片发出的激光还可以经过准直镜以对激光在快轴上进行准直,激光器发出的激光经过该准直镜后在快轴上的光参数积仍小于在慢轴上的光参数积。相关技术中,为了提升光束质量,还对光束进行整形匀化。激光器出射的光先经过由多个反射镜构成的合光镜组进行合光。由于激光器发出的激光在慢轴上未被准直,随着光路距离的增加光斑将逐渐增大,可能会超出光学元件尺寸范围,因此在反射镜组之后还需增加一套光束准直***对激光在慢轴上进行准直。最后,利用复眼透镜或扩散片等元件对激光进行整形。虽然这些功能不同的光学元件组合起来可以达到提升光束质量的目的,但会造成光源的体积较大,激光的质量提升的实现较为复杂。
本申请以下实施例提供了一种激光器、投影光源和投影设备,该激光器发出的激光的光束质量较好且体积可以较小,投影光源的体积也可以较小,有利于投影设备的小型化以及提高的投影画面的显示效果。
图1是本申请实施例一提供的激光器的结构示意图,图12是本申请实施例七提供的激光器的结构示意图。如图1和图12所示,在一些实施例中,激光器10包括:底板101、第一发光芯片103a和反射组件104;第一发光芯片103a位于底板101上,每个第一发光芯片103a均具有对应的反射组件104;第一发光芯片103a被配置为向反射组件104发出激光,反射组件104被配置为将接收到的激光沿目标方向反射,并在反射过程中对激光进行整形处理。
本实施例提供的激光器,第一发光芯片103a位于底板101上,采用反射组件104将第一发光芯片103a发射的激光朝向目标方向反射,并在激光反射过程中进行整形处理,优化激光器输出的激光在快慢轴的发射角度和光斑宽度,提高激光器发出的激光的光束质量;激光器的结构简单,体积较小,有利于激光器的小型化发展。
在一些可能的实现方式中,反射组件104包括但不限于发射棱镜、平面反射镜、曲面反射镜(例如凸面反射镜、凹面反射镜)等等。还可以,反射组件104中包括至少一个反射镜,该反射镜还可以是球面反射镜和非球面反射镜。
反射组件104对激光光束的整形处理包括但不限于对激光光束在快轴的发散角度、在快轴的光斑宽度,以及激光光束在慢轴的发散角度、在慢轴的光斑宽度等等光学参数或光学特性进行整形处理。例如,减小或增大激光光束在快轴的发散角度,减小或增加激光光束在快轴的光斑宽度,减小或增加激光光束在慢轴的发散角度,减小或增大激光光束在慢轴的光斑宽度等等。
如图1至图3所示,在一些实施例中,反射组件104包括第一反射部件1041和第二反射部件1042;第一反射部件1041位于底板101上,第二反射部件1042位于第一反射部件1041远离底板101的一侧,第一反射部件1041和第二反射部件1042均与第一发光芯片103a对应;第一反射部件1041被配置为将接收到的激光沿远离底板101的方向射向第二反射部件1042,第二反射部件1042被配置为将接收到的激光沿目标方向反射,目标方向平行于底板101的板面,且目标方向垂直于第一发光芯片103a的出光方向。
通过上述布置,利用第一反射部件1041和第二反射部件1042能够对激光光束进行两次发射,不仅可以改变激光光束的出光方向,使其沿目标方向射出,还可以通过对第一反射部件1041和第二反射部件1042中的反射面进行调整,以实现对激光光束的整形处理。
如图1至图3所示,在一些实施例中,激光器10还包括第一准直透镜105;第一准直透镜105位于底板101上,第一准直透镜105与发光芯片第一发光芯片103a对应,且第一准直透镜105位于发光芯片第一发光芯片103a和第一反射部件1041之间;发光芯片第一发光芯片103a被配置为向第一准直透镜105发出激光,第一准直透镜105被配置为将接收到的激光在快轴上的发散角度缩小后射向第一反射部件1041;射向第一反射部件1041的激光在快轴上的发散角度小于在慢轴上的发散角度。
利用第一准直透镜105,可以对第一发射芯片发出的激光光束进行快轴发散角度进行缩小,使得激光光束的光斑缩小,从而后续的光学元件(例如第一反射部件1041和第二反射部件1042)仅需要较小的尺寸就可以实现对激光的接收及调整,有利于激光器10的小型化。
如图1至图3所示,在一些实施例中,第一发光芯片103a的数量为多个,多个第一发光芯片103a出光方向相同,且多个第一发光芯片103a沿排布方向排列布置,该排布方向与第一发光芯片103a的出光方向垂直。图1中以y方向表示该排布方向。
如图1至图3所示,在一些实施例中,激光器10包括:底板101,位于底板上的第一发光芯片103a、第一准直透镜105和第一反射部件1041,位于第一反射部件1041远离底板101的一侧的第二反射部件1042。示例性地,底板101大致呈板状结构,板状结构具有两个相对且较大的板面,以及连接该两个板面的多个较小的侧面,该两个板面可以平行。第一发光芯片103a、第一准直透镜105和第一反射部件1041均位于底板101的一个板面上。
第一发光芯片103a的数量可以为一个也可以为多个,图1以激光器包括沿y方向排成一行的三个第一发光芯片103a为例进行示意,该第一发光芯片103a的行方向平行y方向。其中,三个第一发光芯片103a的相邻的方向即为前述排布方向。
每个第一发光芯片103a具有对应的第一准直透镜105、第一反射部件1041和第二反射部件1042。第一准直透镜105、第一反射部件1041和第二反射部件1042的数量均可以与第一发光芯片103a的数量相同,每个第一发光芯片103a对应一个第一准直透镜105、一个第一反射部件1041和一个第二反射部件1042。每个第一发光芯片103a及其对应的第一准直透镜105、第一反射部件1041和第二反射部件1042中任意两个部件均对应,如该第一准直透镜105也与该第一反射部件1041对应,该第一反射部件1041也与该第二反射部件1042对应。每个第一发光芯片103a也可以对应多个第一反射部件1041和多个第二反射部件1042,第一反射部件1041的数量与第二反射部件1042的数量相同;或者多个第一发光芯片103a可以对应一个第一反射部件1041和一个第二反射部件1042,本申请实施例不做限定。
每个第一发光芯片103a及其对应的第一准直透镜105和第一反射部件1041可以沿一方向(如图1中的x方向)依次排布,该x方向为第一发光芯片103a的出光方向,x方向垂直y方向。示例性地,第一反射部件1041和第二反射部件1042均具有反光面,且利用该反光面进行激光的反射,第一反射部件1041的反光面与对应的第二反射部件1042的反光面相对。在底板101上,每个第二反射部件1042的反光面的正投影与对应的第一反射部件1041的反光面的正投影至少部分重合,以保证激光可以在第一反射部件1041和第二反射部件1042中该重合的正投影对应的区域之间传输,保证第一反射部件1041的反光面反射的光可以射向第二反射部件1042的反光面。图1至图3均以在底板101上,第二反射部件1042的反光面的正投影与对应的第一反射部件1041的反光面的正投影部分重合为例。第二反射部件1042的反光面的正投影也可以与对应的第一反射部件1041的反光面的正投影完全重合,本申请实施例不做限定。
每个第一发光芯片103a被配置为向对应的第一准直透镜105发出激光。第一发光芯片103a发出的激光在垂直芯片表面的方向(如平行z方向)上的发散角度较大,该方向可以称为激光的快轴;在平行芯片表面的方向(如平行y方向)上的发散角度较小,该方向可以称为激光的慢轴。第一准直透镜105被配置为将接收到的激光在该快轴上进行准直后射向对应的第一反射部件1041,对激光在快轴上进行准直也即是将激光在该快轴上的发散角度缩小。经过第一准直透镜105的激光在快轴上的发散角度可以小于在慢轴上的发散角度。之后可以利用第一反射部件1041和第二反射部件1042的配合来使激光在快轴和慢轴上的光参数积达到平衡。本申请实施例中,第一发光芯片103a发出的激光先经过第一准直透镜105对快轴上的发散角度进行缩小,如此可以使从第一准直透镜105射出的激光形成的光斑较小。相应地,后续的光学元件(如第一反射部件1041和第二反射部件1042)仅需较小的尺寸便可以实现对激光的接收及调整,有利于激光器10的小型化。
从第一准直透镜105射出的激光可以射向对应的第一反射部件1041的反光面。每个第一反射部件1041可以利用其反光面,将接收到的激光沿远离底板101的方向射向对应的第二反射部件1042的反光面。第二反射部件1042利用其反光面将接收到的激光沿目标方向反射,目标方向平行底板101的板面且垂直第一发光芯片103a的出光方向。如图1至图3所示,第一反射部件1041将激光沿z方向射向对应的第二反射部件1042,第二反射部件1042将接收到的激光的传输方向转折90度,使激光沿y方向反射。经过第一反射部件1041和第二反射部件1042后,激光的快轴从平行z方向变为平行x方向,激光的慢轴从平行y方向变为平行z方向;且激光在快轴和慢轴上的发散角度进行了互换,而光斑尺寸并未发生较大改变。如 此在快轴上激光的发散角度变大,而光斑尺寸仍较小,相当于增大了在快轴上的光参数积;在慢轴上激光的发散角度变小,而光斑尺寸仍较大,相当于减小了在慢轴上的光参数积。因此,激光在快轴和慢轴上的光参数积可以较为相近,保证激光在快慢轴上的光束质量较为平衡。
示例地,图4是本申请实施例提供的一种第一反射部件前激光形成的光斑的示意图。如图4所示,在第一反射部件1041处,一行第一发光芯片103a发出的激光整体形成一个矩形光斑,该矩形光斑在快轴上的宽度小于在慢轴上的宽度,且该激光在快轴上的发散角度也小于在慢轴上的发散角度。例如,第一反射部件1041处,在z方向(快轴)上激光形成的矩形光斑的宽度约为0.3毫米,该激光的发散角度约为0.5度,激光在z方向上的光参数积为26mm×mrad。在y方向(慢轴)上该矩形光斑的宽度约为2.75毫米,该激光的发散角度约为5度,激光在y方向上的光参数积为240mm×mrad。图5是本申请实施例提供的一种第二反射部件后激光形成的光斑的示意图。如图5所示,经过第二反射部件1042后,激光会变成在光束变为在x方向(快轴)上激光形成的矩形光斑的宽度约为3毫米,发散角约为0.5度,在z方向(慢轴)上矩形光斑的宽度约为0.3毫米,发散角约为5度。如此,经过第二反射部件1042后,激光在快轴上的光参数积BPP(快)=0.3mm×5°=26mm×mrad,在慢轴上的光参数积BPP(慢)=3mm×0.5°=26mm×mrad。由此可以看出,经过该第一反射部件1041和第二反射部件1042后,激光在快慢轴上的光参数积基本相同,激光在不同方向上的光束质量较为平衡。
本申请实施例中,第一反射部件1041的反光面和第二反射部件1042的反光面的倾斜度可以均为45度,该倾斜度指的是与板面所成的夹角。射向第一反射部件1041的激光为x方向,第一反射部件1041将该激光转折90度后沿z方向射向第二反射部件1042,进而第二反射部件1042将该激光再转折90度后沿目标方向出射。可选地,第一反射部件1041的反光面和第二反射部件1042的反光面的倾斜度也可以为其他角度,相应地激光在第一反射部件1041和第二反射部件1042之间的传输方向也会发生一定的偏离,本申请实施例不做限定。
本申请实施例中将第一准直透镜105设置在底板101上,如此无需再在z方向上设置一层准直透镜,可以减小激光器10的厚度,有利于激光器10的小型化。
综上所述,本申请实施例中提供的激光器10中,将准直透镜设置在底板101上,采用准直透镜对发光芯片发出的激光在快轴上缩小发散角度,使激光在快轴上的发散角度和光斑宽度均小于慢轴上的发散角度和光斑宽度后射向第一反射部件1041;第一反射部件1041可以将该激光沿远离底板101的方向射向第二反射部件1042,以供第二反射部件1042将该激光沿平行底板101且垂直发光芯片的出光方向的目标方向出射。如此一来,经过第一反射部件1041和第二反射部件1042后激光的快慢轴上的发散角度可以进行置换,使得从第二反射部件1042射出的激光在快轴上的发散角度较大且光斑宽度较小,在慢轴上的发散角度较小且光斑宽度较大。因此,激光在快轴和慢轴上的光参数积相差较小,激光器10发出的激光的质量可以较好。
本申请实施例中以第一准直透镜105位于底板101上,第一发光芯片103a发出的激光经过第一准直透镜105准直后再依次射向第一反射部件1041和第二反射部件1042为例。可选地,第一准直透镜105也可以位于第二反射部件1042远离底板101的一侧,第一发光芯片103a发出的激光可以先经过第一反射部件1041和第二反射部件1042进行快慢轴光束质量的均衡,之后再射向第一准直透镜105对发散角度进行限缩。该种方式中,从第一发光芯片103a射出的激光在经过第一反射部件1041传输到第二反射部件1042的过程中光斑会进行较大的扩展,第二反射部件1042的尺寸需要较大,以保证对激光的完全接收。相应地,从第二反射部件1042射出的激光所形成的光斑也较大,对激光后续的传输利用会造成一定的影响。
针对该种方式中第二反射部件1042射出的激光形成的光斑较大的问题,可以在第二反射部件1042之后再设置二向色镜,以对各个第二反射部件1042射出的激光进行合光,以缩小光斑尺寸。或者,可以将第二反射部件1042设置为二向色镜,使部分第二反射部件1042将激光反射至其他第二反射部件1042,且使激光从该其他第二反射部件1042透射,以缩小光斑尺寸。但是该种方式中,由于激光需要经过额外的反射或透射,可能对合光后的激光的亮度和质量产生一定的影响。
本申请实施例中,激光器10可以包括出光方向相同且排成一行的多个第一发光芯片103a,该多个第一发光芯片103a的行方向(即排布方向)垂直出光方向,如该多个第一发光芯片103a的出光口可以处于同一直线。图1至图3以激光器10仅包括沿y方向排成一行的三个第一发光芯片103a为例,该三个第一发光芯片103a的出光方向均为x方向。可选地,激光器10也可以包括多行第一发光芯片103a,每行中第一发光芯片103a的数量可以为2、3、4或者其他数量;每行第一发光芯片103a及其对应的第一准直透镜105、第一反射部件1041和第二反射部件1042,均可以参考关于图1至图3中该行第一发光芯片103a的相关介绍。可选地,激光器10中第一发光芯片103a也可以不成行排布,如可以交错排布或散乱排布,仅需保证每个第一发光芯片103a均对应有第一准直透镜105、第一反射部件1041和第二反射部件1042,第一发光芯片103a发出的激光能通过第一反射部件1041和第二反射部件1042进行传输方向的转折,以实现对激光快慢轴上发散角度的调整即可。
激光器10中,一行第一发光芯片103a中的每个第一发光芯片103a均对应一个第一反射部件1041和一个第二反射部件1042,且不同的第一发光芯片103a对应不同的第一反射部件1041和第二反射部件1042。该行第一发光芯片103a对应的各个第一反射部件1041的反光面可以相互平行,各个第二反射部件1042的反光面也可以相互平行。该行第一发光芯片103a对应的各个第一反射部件1041在第一发光芯片103a的行方向(如y方向)上错开,相应地各个第二反射部件1042可以在x方向上错开。
如图1至图3所示,同行中不同第一发光芯片103a与对应的第一反射部件1041的反光面的间距不同;也即是,对于位于同行中的两个第一发光芯片103a,其中一个第一发光芯片103a与其对应的第一反射部件1041的反光面的间距,不同于另一个第一发光芯片103a与其对应的第一反射部件1041的反光面的间距。两个部件的间距指的是该两个部件相互靠近的一端的距离。在垂直x方向的参考平面上,各个第二反射部件1042的正投影至少部分不重合,以避免第二反射部件1042反射的激光受到其他第二反射部件1042的阻挡。
示例地,激光器10中沿第一发光芯片103a的行方向(即排布方向),第一发光芯片103a与对应的第一反射部件1041的反光面的间距依次增大。如图1至图3中,沿y方向数,第二个第一发光芯片103a与对应的第一反射部件1041的反光面的间距,大于第一个第一发光芯片103a与对应的第一反射部件1041的反光面的间距;第三个第一发光芯片103a与对应的第一反射部件1041的反光面的间距,大于第二个第一发光芯片103a与对应的第一反射部件1041的反光面的间距。可选地,激光器10中也可以沿y方向的反方向,第一发光芯片103a与对应的第一反射部件1041的反光面的间距依次增大。如此可以保证基于此对第二反射部件1042进行相应地设置后,经各个第二反射部件1042射出的激光形成的光斑的排布方式与各个第一发光芯片103a射向第一反射部件1041的激光形成的光斑的排布方式相同,保证各个位置激光光斑的排布一致性。可选地,各个第一发光芯片103a与对应的第一反射部件1041的反光面的间距也可以并不规则地沿y方向增大或减小,如沿y方向数也可以第二个第一发光芯片103a与对应的第一反射部件1041的反光面的间距最大,本申请实施例不做限定。
可选地,在x方向上距离最远的两个第一反射部件1041的距离,可以等于在y方向上距离最远的两个第一反射部件1041的距离,以保证基于此对第二反射部件1042进行相应地设置后,可以使经各个第二反射部件1042射出的激光宽度与各个第一反射部件1041射出的激光宽度相近。两个部件的距离可以指该两个部件的中心点的距离,或者该两个部件中位于同一侧的一端的距离。
可选地,在x方向上距离最近的任意两个第一反射部件1041的距离相等,如此可以保证基于此对第二反射部件1042进行相应地设置后,可以使经各个第二反射部件1042射出的激光分布均匀。图6是本申请实施例提供的一种第一反射部件和第二反射部件的设置位置示意图。如图6所示,在x方向上距离最近的两个第一反射部件1041的距离L1可以为0.35毫米,也可以为0.4毫米或其他距离,本申请实施例不做限定。在y方向上距离最近的任意两个第一反射部件1041的距离也可以相等。如图6所示,该距离L2可以为1.3毫米,也可以为1.4毫米或其他距离,本申请实施例不做限定。可选地,L1也可以等于L2。
激光器10中一行第一发光芯片103a对应的各个第二反射部件1042与底板101的间距均可以相同。如此可以保证经各个第二反射部件1042射出的激光整体形成所需形状的光斑,如矩形光斑,保证射出的激光满足收光要求,避免该激光形成的是多个位置错落的小光斑。
本申请实施例中可以调整在x方向上各个第一反射部件1041的距离和各个第二反射部件1042的距离,以调整激光形成的光斑的长宽比,实现对激光的整形,使光斑形状符合后端收光的需求。在x方向上各个第一反射部件1041的距离越远,则对应设置第二反射部件1042后,经第二反射部件1042射出的激光在x方向上的长度越长。本申请实施例中还可以通过调整第二反射部件1042与底板101的距离,也可以称为调整第二反射部件1042的高度,以调整激光形成的光斑的长宽比。第二反射部件1042距底板101越远,由于从第一反射部件1041到第二反射部件1042之间激光的扩散,会导致经第二反射部件1042射出的激光在z方向上的宽度越宽。
本申请实施例中,可以采用高精度的贴片装置对各个第一反射部件1041和各个第二反射部件1042进行贴装,以保证各个第一反射部件1041之间的位置关系满足需求,各个第二反射部件1042之间的位置关系满足需求,且保证每个第一反射部件1041与对应的第二反射部件1042之间的位置关系也满足需求。在贴装后还可以对各个反射部件的位置进行测量,对于不满足需求的反射部件可以进行重新贴装。
本申请实施例中,各个第一反射部件1041可以均相互独立。在一种可选方式中,第一反射部件1041可以为平面反射镜。平面反射镜指的是整体呈平板状,且一个板面为反光面的反射镜。在另一种可选实现中,如图1至图3所示,第一反射部件1041可以为反射棱镜,该反射棱镜中靠近对应的第一发光芯片103a的表面为反光面。示例地,反射棱镜大致为底面为直角梯形的四棱柱,该直角梯形的斜腰为反光面的边,由于反射棱镜的反光面朝向对应的第一发光芯片103a,故该呈直角梯形的面为反射棱镜的一个侧面。各个第一反射部件1041的形状、大小和尺寸均可以完全相同。
图7是本申请实施例提供的一种反射棱镜的呈直角梯形的底面的示意图。如图7所示,该直角梯形中 的斜腰边与下底边的夹角a为45度,斜腰边与上底边的夹角b为135度,上底边L3的长度可以为0.89毫米,下底边L4的长度可以为1.84毫米,高度H可以为1毫米。由于在制备时会存在一定的制备误差,故夹角以及各边的长度均可能存在一定的误差,如夹角a的误差可以在10分以内,夹角b的误差可以在0.5度以内,上底边L3的长度误差可以在0.05毫米以内,下底边L4的误差可以在0.15毫米以内,高度H的误差可以在0.02毫米以内。可选地,该四棱柱的高(在y方向的尺寸)可以为1.02毫米,在y方向上相邻的反射棱镜的距离可以为0.3毫米。
可选地,每行第一发光芯片103a对应的各个第一反射部件1041也可以一体成型,也即是各个第一反射部件1041为一体结构。示例地,图8是本申请实施例提供的一种阶梯型反射镜的结构示意图,每行第一发光芯片103a对应的第一反射部件1041可以采用图8所示的阶梯型反射镜代替。该阶梯型反射镜中每个台阶所在部分可以作为一个第一反射部件1041,每个台阶所在处的倾斜面(如图8中的倾斜面M1,M2和M3)均为反光面,每个第一发光芯片103a发出的激光可以射向一个台阶所在处的倾斜面。
如图1至图3所示,示例性地,本申请实施例中的第二反射部件1042可以相互独立,如每个第二反射部件1042均可以为平面反射镜。例如,该平面反射镜的长度为0.7毫米,宽度为0.6毫米,厚度为0.2毫米。该尺寸仅为示例,该平面反射镜的尺寸(长度、宽度及厚度)也可以为其他值,本申请实施例不做限定。可选地,每行第一发光芯片103a对应的各个第二反射部件1042也可以一体成型,也即是各个第二反射部件1042为一体结构。如每行第一发光芯片103a对应的第二反射部件1042也可以采用图8所示的阶梯型反射镜代替,仅需调整图8中该阶梯型反射镜的设置方向,使该阶梯型反射镜中的反光面可以将沿z方向传输的激光调整至沿y方向传输。
本申请实施例中的激光器10可以为单色激光器,该激光器10中的各个第一发光芯片103a均被配置为发出同一颜色的激光。如激光器10可以为蓝色激光器,其中的各个第一发光芯片103a均被配置为发出蓝色激光,或者激光器10也可以为红色激光器或绿色激光器,本申请实施例不做限定。对于单色激光器,每行第一发光芯片103a对应的第一反射部件1041的排布位置可以不做限定,第一反射部件1041可以沿y方向与对应的第一发光芯片103a的间距依次增大或减小,或者也可以任意位置的第一反射部件1041与对应的第一发光芯片103a的间距最大或最小。
激光器10也可以为多色激光器,该激光器10中可以至少多类发光芯片,不同类发光芯片被配置为发出不同颜色的激光。示例地,激光器10为三色激光器,激光器10包括红色发光芯片、绿色发光芯片和蓝色发光芯片,每类发光芯片被配置为发出对应颜色的激光。同一行中可以仅设置被配置为发出同一颜色的激光的第一发光芯片103a,或者同一行中也可以设置不同类的第一发光芯片103a。
当同一行中设置有不同类的第一发光芯片103a时,可以基于不同类第一发光芯片103a发出的激光的发散角度对第一发光芯片103a在该行中的位置进行设置。示例性地,位于同一行的多个第一发光芯片103a包括至少一个第一类发光芯片和多个第二类发光芯片,该第一类发光芯片发出的激光的发散角度大于第二类发光芯片发出的激光的发散角度,则可以使该多个第二类发光芯片位于该至少一个第一类发光芯片的两侧。如此一来,随着激光在传输过程中进行扩散,位于中间的第一类发光芯片发出的激光可以与位于两侧的第二类发光芯片发出的激光混合,实现了不同颜色激光的合光,且保证合光后的光斑较小。在该种设置方式中,沿y方向,每行中各个第一发光芯片103a可以与对应的第一反射部件1041的间距依次增大或减小。
示例地,图1至图3中的该行第一发光芯片103a中,第一类发光芯片可以为位于中间的第一发光芯片103a,该第一发光芯片103a被配置为发出红色激光;位于两侧的两个第一发光芯片103a均为第二类发光芯片,其中一个第一发光芯片103a被配置为发出蓝色激光,另一个第一发光芯片103a被配置为发出绿色激光。红色激光的发散角度大于蓝色激光的发散角度,且大于绿色激光的发散角度。如此位于中间的红色激光可以与位于两侧的蓝色激光和绿色激光混合,实现了三色激光的合光,且保证合光后的光斑较小。可选地,第二类发光芯片也可以仅包括被配置为发出同一种颜色的激光的第一发光芯片103a,如第二类发光芯片均为蓝色发光芯片或者绿色发光芯片。
若激光器10为多色激光器,则对于每类发光芯片对应的第一反射部件1041,可以对其反光面镀制与该类发光芯片发出的激光相匹配的反射膜,保证对该激光有较高的反射率。如针对被配置为发出红色激光的第一发光芯片103a,其对应的第一反射部件1041的反光面需保证对红色激光有较高的反射率,对其他颜色的光的反射率不做限定。
请继续参考图1至图3,示例性地,激光器10还可以包括多个热沉1010。该多个热沉1010可以均与该多个第一发光芯片103a一一对应。每个第一发光芯片103a位于对应的热沉1010上,热沉1010被配置为辅助对应的第一发光芯片103a散热。热沉1010的材料可以包括陶瓷。
图9是本申请实施例四提供的激光器的结构示意图,图12是本申请实施例七提供的激光器的结构示意图。如图9和图12所示,在一些实施例中,激光器10还包括框体102;框体102与底板101固定,且框体102包围第一发光芯片103a和反射组件104。框体102能够与底板101构建出一个完整的凹槽,将第 一发光芯片103a和反射组件104包裹在凹槽内,有利于激光器10的加工封装。
如图9所示,在前述激光器的基础上,示例性地,激光器10还包括框体102和透光密封部件1012。图10是本申请实施例五提供的激光器的结构示意图,图10未对框体102和第一准直透镜105进行示意,图9可以为图10所示的激光器的正视图。
框体102为框状结构,框状结构在轴向(如z方向)上的两端分别具有两个相对的环形的端面,还具有连接该两个端面的内壁和外壁。框体102与底板101固定,且包围第一发光芯片103a、第一准直透镜105和第一反射部件1041。如框体102中的一个端部可以与底板101固定,且框体102与底板101围出凹槽,该凹槽也即是一个容置空间,第一发光芯片103a、第一准直透镜105和第一反射部件1041位于该容置空间中。
透光密封部件1012可以呈板状,透光密封部件1012位于框体102远离底板101的一侧,被配置为密封框体102与底板101围成的容置空间。框体102的材质可以为陶瓷,透光密封部件1012的边缘区域可以直接与框体102远离底板101的表面固定。示例地,透光密封部件1012的边缘区域可以预置有焊料。可以将该透光密封部件1012放置在框体102远离底板101的一侧,且使该焊料与框体102远离底板101的表面接触。接着将框体102与该透光密封部件1012一同放置于高温炉中,以使焊料熔化进而将框体102与该透光密封部件1012焊接。
第二反射部件1042可以位于透光密封部件1012远离底板101的一侧,如此在将激光器10的容置空间密封后还可以调整第二反射部件1042的位置,可以保证激光的合光质量较高;且如此使容置空间较小,框体102的高度较低即可。示例地,如图9所示,第二反射部件1042与透光密封部件1012远离底板101的表面固定。如第二反射部件1042可以通过粘贴胶固定在透光密封部件1012远离底板101的表面中相应的位置。可选地,透光密封部件1012远离底板101的一侧可以具有多个凹槽,凹槽中可以设置粘贴剂,每个第二反射部件1042位于一个凹槽中。该凹槽可以限制第二反射部件1042的位置,保证第二反射部件1042的固定稳定性。
可选地,第二反射部件1042也可以采用其他固定部件固定在透光密封部件1012远离底板101的一侧,而不与透光密封部件1012固定。如该固定部件可以夹持第二反射部件1042的相对两侧以固定第二反射部件1042。此种方式以及图9中透光密封部件1012上不设置凹槽对第二反射部件1042进行固定的方式中,第二反射部件1042的设置位置可以较为灵活地进行调整,有利于通过调整第二反射部件1042的位置实现对激光的整形。
可选地,图11是本申请实施例六提供的激光器的结构示意图。如图11所示,激光器10还可以包括密封框1013。该密封框1013的外边缘区域与框体102远离底板101的表面固定,密封框1013的内边缘区域与透光密封部件1012的边缘固定。透光密封部件1012通过该密封框1013实现与框体102的固定。可选地,密封框1013的内边缘区域可以相对于外边缘区域朝底板101凹陷。图11所示的激光器10中第二反射部件1042的固定方式可以参考上述对图9和图10的相关介绍,本申请实施例不再赘述。
该种激光器10中,框体102和密封框1013的材质可以均包括金属,密封框1013与框体102可以通过平行封焊技术进行焊接。由于平行封焊被焊接物的接触区域局部产生热量,且产生的热量较少;因此,在固定透光密封部件1012与框体102时传导至第一发光芯片103a的热量较少,该热量对第一发光芯片103a的影响较小,进而可以降低第一发光芯片103a损坏的风险。
本申请上述内容均针对第二反射部件1042位于透光密封部件1012远离底板101的一侧进行说明。可选地,第二反射部件1042也可以位于透光密封部件1012靠近底板101的一侧,也即是位于激光器10的容置空间中。在一种可选实现中,第二反射部件1042可以与透光密封部件1012靠近底板101的表面固定,如与透光密封部件1012一体成型。在另一种可选实现中,每个第二反射部件1042可以与对应的第一反射部件1041固定,如与该第二反射部件1042一体成型。在又一种可选实现中,每行第一发光芯片103a对应的各个第二反射部件1042和各个第二反射部件1042可以均固定,如均一体成型。例如,各个第二反射部件1042呈阶梯型反射镜,各个第一反射部件1041均呈单独的反射棱镜或平面反射镜;或者各个第二反射部件1042均呈独立的平面反射镜,各个第一反射部件1041呈阶梯型反射镜。
如图9至图11所示,本申请实施例的激光器10中,将第一准直透镜105设置在底板101上,如此无需再在透光密封部件1012之外再设置一层准直透镜,可以一定程度地减小激光器10的厚度,有利于激光器10的小型化。
综上所述,本申请实施例中提供的激光器中,将准直透镜设置在底板上,采用准直透镜对发光芯片发出的激光在快轴上缩小发散角度,使激光在快轴上的发散角度和光斑宽度均小于慢轴上的发散角度和光斑尺寸后射向第一反射部件;第一反射部件可以将该激光沿远离底板的方向射向第二反射部件,以供第二反射部件将该激光沿平行底板且垂直发光芯片的出光方向的目标方向出射。如此一来,经过第一反射部件和第二反射部件后激光的快慢轴上的发散角度可以进行置换,使得从第二反射部件射出的激光在快轴上的发散角度较大且光斑宽度较小,在慢轴上的发散角度较小且光斑宽度较大。因此,激光在快轴和慢轴上的光 参数积相差较小,激光器发出的激光的质量可以较好。
图12是本申请实施例七提供的激光器的结构示意图,图13是本申请实施例八提供的激光器的结构示意图,图12为图13所示的激光器的俯视图,图13为图12所示的激光器的截面示意图。
如图12和图13所示,在一些实施例中,反射组件104包括凹面反射镜1043;凹面反射镜1043位于底板101上,且凹面发射镜与第一发光芯片103a对应;第一发光芯片103a被配置为向凹面反射镜1043发出激光,凹面反射镜1043被配置为将接收到的激光沿目标方向进行反射。
通过上述布置,本实施例的激光器10中凹面反射镜1043在对激光进行反射的过程中还对激光进行了一定程度的会聚,故经过凹面反射镜1043反射后的激光的发散角度可以缩小,从而实现对激光光束的整形处理。例如凹面反射镜1043可以对激光进行准直,也即是将激光调整为接***行光。
如图12和图13所示,在一些实施例中,激光器10还包括第一匀光部件106;第一匀光部件106位于凹面反射镜1043的目标方向上;凹面反射镜1043被配置为将接收到的激光射向第一匀光部件106,第一匀光部件106被配置为将接收到的激光匀化后沿目标方向射出。
如图12和图13所示,在一些实施例中,第一发光芯片103a的数量为多个,多个第一发光芯片103a出光方向相同,且多个第一发光芯片103a沿排布方向排列布置,该排布方向与第一发光芯片103a的出光方向垂直。图12中以y方向表示该排布方向。在另一些实施例中,激光器10还包括框体102;框体102与底板101固定,且框体102包围第一发光芯片103a和反射组件104。框体102能够与底板101构建出一个完整的凹槽,将第一发光芯片103a和反射组件104包裹在凹槽内,有利于激光器10的加工封装。
如图12和图13所示,在一些实施例中,激光器10包括:底板101、框体102、至少一个第一发光芯片103a、至少一个凹面反射镜1043和第一匀光部件106。
底板101呈板状结构,具有相对且较大的两个板面,以及连接该两个板面的多个较小的侧面。框体102呈框状结构,其具有相对的两个环状端面,以及连接该两个环状端面的内壁和外壁。也可以说框状结构包括多个侧壁,该多个侧壁可以依次连接围出封闭区域,且框状结构在侧壁的高度方向(如图12中的z方向)上具有连通的两个开口,每个开口由一个环状端面围出。本申请实施例中,框体102中的一个侧壁具有出光口K。
底板101与框体102固定,该至少一个第一发光芯片103a和该至少一个凹面反射镜1043均位于底板101上且被框体102包围。底板101与框体102可以围出凹槽,底板101形成该凹槽的底部,框体102形成该凹槽的侧壁。该凹槽即是一个容置空间,该至少一个第一发光芯片103a和该至少一个凹面反射镜1043均位于该凹槽中,第一发光芯片103a和凹面反射镜1043均位于底板101上且被框体102包围。其中,底板101与框体102组成的结构可以称为管壳。
激光器10中的该至少一个第一发光芯片103a与至少一个凹面反射镜1043一一对应,每个凹面反射镜1043位于对应的第一发光芯片103a的出光侧。第一发光芯片103a发出的激光射向对应的凹面反射镜1043,凹面反射镜1043被配置为将接收到的激光进行反射。凹面反射镜1043在对激光进行反射的过程中还对激光进行了一定程度的会聚,故经过凹面反射镜1043反射后的激光的发散角度可以缩小。如凹面反射镜1043可以对激光进行准直,也即是将激光调整为接***行光。
由于每个第一发光芯片103a发出的激光可以通过对应的凹面反射镜1043进行准直,故即使各个第一发光芯片103a的贴装位置存在误差,也可以通过相应地调整对应的凹面反射镜1043的位置来保证对各个第一发光芯片103a发出的激光均进行较好地准直,因此激光器10发出的激光的准直效果较好。图12和3中以激光器10包括三个第一发光芯片103a为例进行示意,可选地,第一发光芯片103a的数量也可以为一个、两个或者更多,本申请实施例不作限定。
第一匀光部件106位于从凹面反射镜1043出射的激光的传输路径上,被配置为将接收到的激光进行匀化后射出。凹面反射镜1043反射出的激光可以经过第一匀光部件106和框体102中侧壁上的出光口K射出,以实现激光器10的出光。如此可以保证激光器10发出的激光的均匀度较高。本申请实施例的激光器10也可以称为侧面出光的激光器。
在第一匀光部件106的一种设置方式中,第一匀光部件106可以位于底板101与框体102围出的凹槽中,凹面反射镜1043反射出的激光经过第一匀光部件106匀化后再经过出光口K射出该凹槽。如图12和3所示,第一匀光部件106位于底板101上且被框体102包围。可选地,第一匀光部件106也可以与框体102固定,如第一匀光部件106可以与框体102中出光口K所在的侧壁的内壁面固定,且覆盖该出光口K,本申请实施例及附图中未对该种方式进行示意。该种方式中第一匀光部件106可以同时实现对该出光口K的密封。
在第一匀光部件106的另一种设置方式中,第一匀光部件106位于该凹槽外,凹面反射镜1043反射出的激光从出光口K射出后再经过第一匀光部件106匀化。图14是本申请实施例九提供的激光器的结构示意图。如图14所示,第一匀光部件106可以与框体102中出光口K所在的侧壁的外壁面固定,且覆盖该出光口K。该种方式中第一匀光部件106可以同时实现对该出光口K的密封。
本申请实施例中,激光器10为侧面出光的激光器,故无需设置反射棱镜以及在管壳外设置尺寸较大的准直镜组。激光器10中第一发光芯片103a发出的激光直接经凹面反射镜1043反射,故激光可以直接被缩小发散角度,激光在后续传输过程中形成的光斑较小,激光的后续传输路径上的部件(如第一匀光部件106)的尺寸可以较小。由于激光器10相对相关技术的激光器,包括的部件尺寸较小,故激光器10的体积可以较小。激光器10在用作投影设备中的光源时,也可以有利于投影设备的小型化。
综上所述,本申请实施例提供的激光器中,发光芯片发出的激光经过凹面反射镜的反射和匀光部件的匀化后可以直接射出,凹面反射镜在对激光进行反射的同时还可以对激光进行准直,故激光器发出的激光准直度和均匀度均较好,激光的光效较好。并且,激光从发光芯片射出后就直接被准直,缩小了激光的发散角度,故激光在后续传输过程中的发散程度较小,准直后的光路中的部件(如匀光部件)的尺寸。如此激光器中的部件尺寸较小,故激光器的体积较小。
本申请实施例中,第一发光芯片103a仅指的是向凹面反射镜1043射出激光的发光芯片。第一发光芯片103a中可以包括被配置为发出不同颜色的激光的不同类发光芯片,如可以包括被配置为发出红色激光的发光芯片、被配置为发出绿色激光的发光芯片和被配置为发出蓝色激光的发光芯片。不同颜色的激光的发散角度会存在一定的差异,不同类发光芯片对应的凹面反射镜1043的参数(如曲率)可以依据被配置为接收的激光的发散角度进行相应地设计,以使各个凹面反射镜1043射出的激光的准直度均较高。可选地,各个凹面反射镜1043的参数也可以均相同,以简化激光器10的制备过程。凹面反射镜1043的弧形反射面可以为抛物线回转所形成的形状。
本申请实施例中,第一匀光部件106可以包括匀光片或复眼透镜,附图中均以第一匀光部件106为复眼透镜为例进行示意。该复眼透镜可以由两个相对的单面复眼透镜组成,或者也可以为一个双面复眼透镜。匀光片可以具有多个微型透镜或棱镜,以对射入的光束进行匀化叠加,实现匀光功能。
复眼透镜的两面上的微透镜的参数可以相同。平行光束垂直投射在复眼透镜第一面上的多个微透镜上,可以被各个微透镜分为多个小光束。每个微透镜可以将接收到的小光束聚焦于第二面上对应的微透镜的中心,再被该第二面上的微透镜射出。从各个微透镜射出的小光束可以相互叠加,将各个小光束的细微不均匀性进行补偿,进而实现匀光功能,且保证光斑的均匀性较高。
参考图12至图14,示例性地,激光器10还包括固定于底板101上且被框体102包围的热沉1010。热沉1010可以与激光器10中的发光芯片一一对应,每个发光芯片与对应的热沉1010相固定,以通过热沉1010实现与底板101的固定。图12至图14以发光芯片位于对应的热沉1010远离底板101的表面上为例进行示意。可选地,图15是本申请实施例十提供的激光器的结构示意图。如图15所示,发光芯片也可以位于对应的热沉1010的侧面。如热沉1010呈长方体状,热沉1010的侧面也即是与底板101垂直的表面上。本申请实施例中所述的与底板101垂直(或平行),指的是与底板101的板面垂直(或平行)。后续实施例均以发光芯片也可以位于对应的热沉1010的侧面为例进行示意。
热沉1010的热传导性能较好,可以辅助对应的发光芯片较好地散热,还可以辅助对应的发光芯片进行电连接。热沉1010的热膨胀系数与发光芯片接近,可以很好的缓解材料温度变化过程中产生的应力。如热沉1010的材料可以包括陶瓷。发光芯片和热沉1010可以通过共晶焊接而成,发光芯片和热沉1010的上下面可以均镀有金,发光芯片和热沉1010的贴装面可以预置焊料,通过该焊料实现发光芯片和热沉1010的贴装。
参考图13和图14,示例性地,激光器10还包括密封盖1011,图12未对密封盖1011进行示意。密封盖1011与框体102远离底板101的一侧固定,密封盖1011被配置为对底板101和框体102围出的凹槽进行密封。密封盖1011可以为透光部件也可以为不透光的部件,本申请实施例不做限定。底板101、框体102、密封盖1011和出光口K的密封部件可以组成一个封装结构,该封装结构被配置为对该凹槽中的部件进行封装。如此可以避免外界水氧等物质侵蚀该凹槽中的各个部件,保证各个部件的工作可靠性,延长激光器的寿命。如密封盖1011的底部边缘可以预置焊料(如金锡焊料),通过该焊料高温焊接的方式将密封盖与框体102固定,以对该凹槽进行密封。
图14以第一匀光部件106为出光口K的密封部件为例。当第一匀光部件106位于底板101与框体102围出的凹槽中时,激光器10还可以包括出光口K的密封部件。如图13所示,该密封部件可以为平面玻璃P。
图16是本申请实施例十一提供的激光器的结构示意图。如图16所示,可选地,激光器10还可以包括会聚透镜108,该会聚透镜108被配置为对接收到的激光进行会聚。在会聚透镜108的一种设置方式中,会聚透镜108位于底板101与框体102围出的凹槽外。可选地,会聚透镜108可以与框体102固定,例如图16示出的本申请另一实施例提供的一种激光器的结构示意图。如图16所示,会聚透镜108与框体102中出光口K所在的侧壁的外壁面固定,且覆盖该出光口K。图16以会聚透镜108具有相对的两个凸弧面为例,会聚透镜108也可以为平凸透镜,本申请实施例不作限定。
在会聚透镜108的一种设置方式中,会聚透镜108可以位于第一匀光部件106之前的光路中,会聚透 镜108将经过凹面反射镜1043的激光会聚至第一匀光部件106;或者会聚透镜108也可以位于第一匀光部件106之后的光路中,第一匀光部件106匀化后的激光再经过会聚透镜108进行会聚后射出。需要说明的,该种设置方式的会聚透镜108未在附图中示出。
在会聚透镜108的另一种设置方式中,会聚透镜108位于底板101与框体102围出的凹槽中。可选地,会聚透镜108位于底板101上且被框体102包围。另一可选地,会聚透镜108也可以与框体102固定,例如,会聚透镜108与框体102中出光口K所在的侧壁的内壁面固定,且覆盖该出光口K。需要说明的,该种设置方式的会聚透镜108未在附图中示出。
在会聚透镜108覆盖出光口K的方式中,会聚透镜108可以作为出光口K的密封部件,激光器10中可以不再额外设置出光口K的密封部件;或者,激光器10也可以仍再设置一个密封部件密封出光口K,本申请实施例不作限定。
激光器10中各个部件可以有多种排布方式,相应地发光芯片发出的激光的光路也可以有多种不同实现,下面对激光器10中部件的可选排布方式以及激光的可选传输方式进行介绍。
在一种激光器10的可选结构中,请参考图12至图16,激光器10包括一一对应的多个第一发光芯片103a和多个凹面反射镜1043。该多个第一发光芯片103a排成一排,如排布方向为y方向。该多个第一发光芯片103a的出光方向可以均相同且垂直该排布方向,如第一发光芯片103a的出光方向均为x方向,x方向垂直于y方向。该多个凹面反射镜1043可以在第一发光芯片103a的排布方向上相互错开,以避免阻挡其他凹面反射镜1043反射的激光。可选地,该多个第一发光芯片103a也可以不沿某一方向排成一排,而是相互错开。
图12至图16以沿y方向为例,各个第一发光芯片103a与对应的凹面反射镜04的距离依次减小。可选地,各个第一发光芯片103a与对应的凹面反射镜04的距离也可以不依次减小或增大。如位于中间的第一发光芯片103a与对应的凹面反射镜1043的距离可以最大,本申请实施例不作限定。
可选地,激光器10中也可以存在两个第一发光芯片103a的出光方向相对,该两个第一发光芯片103a对应的两个凹面反射镜1043位于该两个第一发光芯片103a之间。该两个第一发光芯片103a及两个对应的凹面反射镜1043可以在第一发光芯片103a的出光方向上直线排列。
在该种激光器10中,由于凹面反射镜1043对第一发光芯片103a发出的激光的传输方向进行了转折,故具有出光口K的侧壁为框体102中第一发光芯片103a的出光方向之外的其他方向上的侧壁。如该侧壁为框体102中与该出光方向垂直的方向上的侧壁,也即y方向上的两个侧壁中的一个。
在另一种激光器10的可选结构中,具有出光口K的侧壁为框体102中第一发光芯片103a的出光侧的侧壁。
图17是本申请实施例十二提供的激光器的结构示意图。如图17所示,示例性地,激光器10还包括与各个凹面反射镜1043一一对应的平面反射镜109,平面反射镜109可以位于底板101上且被框体102包围。每个平面反射镜109位于对应的凹面反射镜1043的出光侧,被配置为对凹面反射镜1043反射的激光的传输方向进行转折,以使射出的激光的传输方向平行于第一发光芯片103a的出光方向。此种方式中,射向第一匀光部件106和出光口K的激光为经过平面反射镜109反射的激光。该种方式中各个凹面反射镜1043和平面反射镜109也可以沿y方向排列。
图17以各个凹面反射镜1043对激光的反射方向均相同为例,如凹面反射镜1043射出的激光均沿y方向的反方向出射。可选地,也可以存在凹面反射镜1043对激光的反射方向相对。如此一来,各个凹面反射镜1043和平面反射镜109占用的面积较小,激光器10的体积可以较小。并且,经过平面反射镜109反射后的各束激光可以更加紧密地排布,相应地第一匀光部件106的体积可以较小,出光口K的尺寸也可以较小,故框体102的强度可以较高,且有利于后续对激光的调整。
图18是本申请实施例十三提供的激光器的结构示意图。如18所示,在一些实施例中,发光芯片第一发光芯片103a的数量为多个,且多个发光芯片第一发光芯片103a沿排布方向排列布置,排布方向与出光方向垂直;多个发光芯片第一发光芯片103a分别位于沿排布方向的第一区域和第二区域中,第一区域和第二区域中均具有至少一个第一发光芯片103a,第一区域中的第一发光芯片103a对应的凹面反射镜1043对激光的反射方向为第一方向,第二区域中的第一发光芯片103a对应的凹面反射镜1043对激光的反射方向为第二方向,第一方向和第二方向是相对的。
第一区域(图中未示出)与第二区域(图中未示出)沿第一发光芯片103a的排布方向(也即y方向)排布,第一区域中的第一发光芯片103a对应的凹面反射镜1043对激光的反射方向,与第二区域中第一发光芯片103a对应的凹面反射镜1043对激光的反射方向相反。图18中未对第一区域和第二区域进行标注,以图18所示的方向为基准,第一区域可以为图18中最靠上的第一发光芯片103a所在的区域,第二区域为图18中最靠下的第一发光芯片103a所在的区域。本申请实施例以第一区域和第二区域中仅设置有一个发光芯片为例,第一区域和第二区域中也可以设置多个第一发光芯片103a,本申请实施例不作限定。
可选地,激光器10还可以包括第一发光芯片103a之外的其他发光芯片。示例性地,请继续参考图18, 激光器10还可以包括一一对应的至少一个第二发光芯片103b和至少一个第二准直透镜107,第二发光芯片103b和第二准直透镜107均位于底板101上,且第二发光芯片103b和第二准直透镜107被框体102包围,图18以第二发光芯片103b和第二准直透镜107的数量均为一个为例。第二发光芯片103b发出的激光射向对应的第二准直透镜107,第二准直透镜107被配置为对接收到的激光进行准直。该准直后的激光再经过第一匀光部件106和出光口K射出。
图18所示的激光器10是以在图17所示的激光器10为基础,为激光器10配置第二发光芯片103b和第二准直透镜107。在本申请提供的其他激光器10的基础上,激光器10同样可以配置第二发光芯片103b和第二准直透镜107。图19是本申请另一实施例提供的又一种激光器的结构示意图。如图19所示,在图15所示的激光器10的基础上,激光器10还包括第二发光芯片103b和对应的第二准直透镜107,第二发光芯片103b的出光方向与第一发光芯片103a的出光方向垂直。
参考图18,在一些实施例中,第一发光芯片103a的数量为多个,多个第一发光芯片103a与至少一个第二发光芯片103b沿排布方向排列布置;至少一个第二发光芯片103b的两侧均具有至少一个第一发光芯片103a。
可选地,请继续参考图18,多个第一发光芯片103a和第二发光芯片103b可以排成一排,该多个第一发光芯片103a可以位于第二发光芯片103b在该排布方向上的两侧。第二发光芯片103b两侧的第一发光芯片103a的数量可以相等或者差1。如此一来,可以保证激光器10中各个部件的排布位置的对称性较好,各个发光芯片发出的激光的排布间距较为均匀,使得激光器10出射的激光的光效较好。
可选地,本申请实施例中的第二准直透镜107可以为非球面透镜或自由曲面透镜。第二准直透镜107的参数也可以基于第二发光芯片103b发出的激光的发散角度进行设计,以保证对第二发光芯片103b发出的激光进行较好的准直。
可选地,第二发光芯片103b和位于第二发光芯片103b不同侧的第一发光芯片103a可以分别为不同类发光芯片,被配置为发出不同颜色的激光。如第一发光芯片103a可以包括被配置为发出红色激光的发光芯片和被配置为发出蓝色激光的发光芯片,第二发光芯片103b可以包括被配置为发出绿色激光的发光芯片。
综上所述,本申请实施例提供的激光器中,发光芯片发出的激光经过凹面反射镜的反射和匀光部件的匀化后可以直接射出,凹面反射镜在对激光进行反射的同时还可以对激光进行准直,故激光器发出的激光准直度和均匀度均较好,激光的光效较好。并且,激光从发光芯片射出后就直接被准直,缩小了激光的发散角度,故激光在后续传输过程中的发散程度较小,准直后的光路中的部件(如匀光部件)的尺寸。如此激光器中的部件尺寸较小,故减小激光器的体积较小。
本申请上述实施例中的激光器可以应用于激光投影中作为投影设备中的光源。投影光源除了包括该激光器,还可以包括其他光学部件。
图20是本申请实施例十五提供的投影光源的结构示意图;图21是本申请实施例十六提供的一种投影光源的结构示意图。如图20和21所示,本实施例提供了一种投影光源,投影光源包括本申请任一项实施例所述的激光器。
参考图20和图21,在一些实施例中,投影光源还包括合光部件50、第二匀光部件20和第三准直透镜30中的至少之一;合光部件50、第二匀光部件20或第三准直透镜30位于激光器10的目标方向上。
示例性地,如图20所示,该投影光源可以包括激光器10和第二匀光部件20,如该第二匀光部件20可以为光导管,激光器10可以为上述图1至图3、图9至图19中的任一激光器10。第二匀光部件20可以被配置为对激光器10发出的激光进行匀化后射出,以便于后续的利用。
请继续参考图20,投影光源还可以包括位于激光器10与第二匀光部件20之间的柱状的第三准直透镜30。第三准直透镜30被配置为将激光器10发出的激光在快轴上的发散角度缩小后射出,第二匀光部件20被配置为对第三准直透镜30射出的激光进行匀化。
由于经过第二反射部件1042后,尽管激光在快轴和慢轴上的光参数积较为相近,但是在快轴上的发散角度变得较大(如为5度)。如此随着光束传播距离的增大,快轴上光斑的尺寸将越来越大,故为了避免快慢轴上光斑尺寸的后续差异,还需对快轴上的发散角度再次进行收缩。如可以在激光器10发出的激光的传输路径上设置第三准直透镜30,以通过该第三准直透镜30仅对激光在快轴上的发散角度进行收缩,而不改变激光在慢轴上的发散角度。
示例地,第二匀光部件20要求接收到的激光的光斑为正方形。在激光器10发出的激光按照原发散角度传输的过程中,将有一个位置处快慢轴的光斑大小尺寸相同,在该位置激光可以形成方形光斑。本申请实施例中的第三准直透镜30可以放置在该位置处,如经过该第三准直透镜30可以将激光在快轴上的发散角度也缩小至0.5度,如此可以保证激光后续在快慢轴上的光斑尺寸和发散角度均相同。可选地,若第二匀光部件20要求接收到的激光的光斑为矩形,则也可以相应地调整第三准直透镜30的位置,以保证射向第二匀光部件20的激光满足需求。
可选地,请继续参考图20,投影光源还可以包括位于第三准直透镜30和第二匀光部件20之间的聚焦镜40,经过第三准直透镜30后的激光可以通过聚焦镜40会聚至第二匀光部件20。
本申请实施例提供的投影光源中,激光器10发出的激光在快慢轴上的质量较为均衡,投影光源中还可以将激光的快慢轴上的发散角度调整为一致,故投影光源发出的激光的质量较好。且激光器10射出的激光可以为合光后的激光,故无需再在激光器10之后设置多个反射片被配置为合光,故投影光源中的结构可以较少,有利于投影光源的小型化。
另一示例性地,如图21所示,该投影光源可以包括激光器10和合光部件50。该合光部件50位于激光器10的出光侧,被配置为将激光器10发出的不同颜色进行混光,以缩小光斑尺寸。激光器10可以为上述图1至图3、图9至图19中的任一激光器10。
该激光器10可以为单色激光器,仅被配置为发出一种颜色的激光。或者激光器10也可以为多色激光器,被配置为发出多种颜色的激光。合光部件50可以将激光器10发出的多种颜色的激光进行混合。
可选地,激光器10为三色激光器,合光部件50包括依次排布的多个合光镜片,每个合光镜片被配置为接收一种颜色的激光,并将接收到的激光朝平行于该合光镜片的排布方向的同一方向反射,以实现对不同颜色的激光的合光。该多个合光镜片中靠后的光路中的合光镜片(如图21中的镜片J1)可以为反射镜,靠前的光路中的合光镜片(如图21中的镜片J2和J3)可以为二向色镜,以便于通过靠后的光路中的光。该靠前的光路指的是激光较早传输的光路,靠后的光路指的是激光较晚传输的光路。
本申请实施例提供的投影光源中,激光器10中设置匀光部件和会聚透镜,使激光器10射出的直接为均匀且较为会聚的激光,故可以不再在激光器10之外再设置匀光部件或会聚透镜,可以减小投影光源的体积。
可选地,投影光源还可以包括整形部件,被配置为对激光器发出的激光进行匀化。整形部件可以将激光的光斑整形成形成投影画面所需的形状并传输至后续部件中。
本申请实施例还提供了一种投影设备,该投影设备可以包括上述的光源组件,还可以包括光阀和镜头。上述光源组件发出的激光可以射向光阀,被光阀调制后射向镜头,进而镜头可以将接收到的激光进行投射以形成投影画面。由于投影光源发出的激光的质量较好,故基于该激光形成的投影画面的显示效果也可以较好,可以提升投影设备的显示效果。
本申请中术语“A和B的至少一种”以及“A和/或B”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,分别为单独存在A,同时存在A和B,单独存在B这三种情况。术语“A、B和C的至少一种”表示可以存在七种关系,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在A和C,同时存在C和B,同时存在A、B和C这七种情况。在本申请实施例中,术语“第一”和“第二”仅被配置为描述目的,而不能理解为指示或暗示相对重要性。术语“至少一个”指的是一个或多个,术语“多个”指两个或两个以上,除非另有明确的限定。
在通篇说明书及权利要求当中所提及的“包含”和“包括”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接受的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。在说明书及权利要求当中使用了某些词汇来指称特定组件,本领域技术人员应可理解,制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (25)

  1. 一种激光器,其中,所述激光器包括:底板、第一发光芯片和反射组件;
    所述第一发光芯片位于所述底板上,每个所述第一发光芯片均具有对应的所述反射组件;
    所述第一发光芯片被配置为向所述反射组件发出激光,所述反射组件被配置为将接收到的激光沿目标方向反射,并在反射过程中对激光进行整形处理。
  2. 根据权利要求1所述的激光器,其中,所述反射组件包括第一反射部件和第二反射部件;
    所述第一反射部件位于所述底板上,所述第二反射部件位于所述第一反射部件远离所述底板的一侧,所述第一反射部件和所述第二反射部件均与所述第一发光芯片对应;
    所述第一反射部件被配置为将接收到的激光沿远离所述底板的方向射向所述第二反射部件,所述第二反射部件被配置为将接收到的激光沿所述目标方向反射,所述目标方向平行于所述底板的板面,且所述目标方向垂直于所述第一发光芯片的出光方向。
  3. 根据权利要求2所述的激光器,其中,所述激光器还包括第一准直透镜;
    所述第一准直透镜位于所述底板上,所述第一准直透镜与所述第一发光芯片对应,且所述第一准直透镜位于所述第一发光芯片和所述第一反射部件之间;
    所述第一发光芯片被配置为向所述第一准直透镜发出激光,所述第一准直透镜被配置为将接收到的激光在快轴上的发散角度缩小后射向所述第一反射部件;射向所述第一反射部件的激光在所述快轴上的发散角度小于在慢轴上的发散角度。
  4. 根据权利要求1所述的激光器,其中,所述反射组件包括凹面反射镜;
    所述凹面反射镜位于所述底板上,且所述凹面发射镜与所述第一发光芯片对应;
    所述第一发光芯片被配置为向所述凹面反射镜发出激光,所述凹面反射镜被配置为将接收到的激光沿所述目标方向进行反射。
  5. 根据权利要求4所述的激光器,其中,所述激光器还包括第一匀光部件;
    所述第一匀光部件位于所述凹面反射镜的所述目标方向上;
    所述凹面反射镜被配置为将接收到的激光射向所述第一匀光部件,所述第一匀光部件被配置为将接收到的激光匀化后沿所述目标方向射出。
  6. 根据权利要求1至5中任一项所述的激光器,其中,所述第一发光芯片的数量为多个,多个所述第一发光芯片出光方向相同,且多个所述第一发光芯片沿排布方向排列布置,所述排布方向与所述出光方向垂直。
  7. 根据权利要求6所述的激光器,其中,所述反射组件包括第一反射部件和第二反射部件时;
    所述第一反射部件与所述第二反射部件均利用反光面对接收到的激光进行反射,所述多个第一发光芯片中不同第一发光芯片与对应的所述第一反射部件的反光面的间距不同,在所述底板上所述第二反射部件的反光面的正投影与所述第一反射部件的反光面的正投影至少部分重合。
  8. 根据权利要求7所述的激光器,其中,沿所述排布方向所述第一发光芯片与对应的所述第一反射部件的反光面的间距依次增大。
  9. 根据权利要求7或8所述的激光器,其中,多个所述第一发光芯片对应的所述第一反射部件相互独立或一体成型;多个所述第一发光芯片对应的所述第二反射部件相互独立或一体成型。
  10. 根据权利要求7或8所述的激光器,其中,所述第一发光芯片包括至少一个第一类发光芯片和多个第二类发光芯片,所述第一类发光芯片发出的激光的发散角度大于所述第二类发光芯片发出的激光的发散角度,所述多个第二类发光芯片位于所述至少一个第一类发光芯片的两侧。
  11. 根据权利要求6所述的激光器,其中,所述反射组件包括凹面反射镜时,所述凹面反射镜的数量为多个,每个所述凹面反射镜均位于对应的所述第一发光芯片的出光侧,多个所述凹面反射镜在所述排布方 向上相互错开。
  12. 根据权利要求5所述的激光器,其中,所述激光器还包括与所述凹面反射镜对应的平面反射镜;
    所述凹面反射镜射出的激光射向对应的平面反射镜;所述平面反射镜被配置为将接收到的激光进行反射,以使射出的激光的传输方向平行于所述第一发光芯片的出光方向;
    所述平面反射镜反射出的激光经过所述第一匀光部件射出。
  13. 根据权利要求11所述的激光器,其中,所述第一发光芯片的数量为多个,且多个所述第一发光芯片沿排布方向排列布置,所述排布方向与所述出光方向垂直;
    多个所述第一发光芯片分别位于沿所述排布方向的第一区域和第二区域中,所述第一区域和所述第二区域中均具有至少一个所述第一发光芯片,所述第一区域中的所述第一发光芯片对应的所述凹面反射镜对激光的反射方向为第一方向,所述第二区域中的所述第一发光芯片对应的所述凹面反射镜对激光的反射方向为第二方向,所述第一方向和所述第二方向是相对的。
  14. 根据权利要求12或13所述的激光器,其中,所述激光器还包括至少一个第二发光芯片和至少一个第二准直透镜;所述第二发光芯片和所述第二准直透镜对应;
    所述第二发光芯片发出的激光射向对应的所述第二准直透镜,所述第二准直透镜被配置为对接收到的激光进行准直。
  15. 根据权利要求14所述的激光器,其中,所述第一发光芯片的数量为多个,多个所述第一发光芯片与所述至少一个第二发光芯片沿排布方向排列布置;
    所述至少一个第二发光芯片的两侧均具有至少一个所述第一发光芯片。
  16. 根据权利要求1至15中任一项所述的激光器,其中,所述激光器还包括框体;
    所述框体与所述底板固定,且所述框体包围所述第一发光芯片和所述反射组件。
  17. 根据权利要求16所述的激光器,其中,所述激光器还包括透光密封部件,所述透光密封部件与所述框体远离所述底板的一侧固定;
    所述反射组件包括第一反射部件和第二反射部件时;
    所述第一发光芯片和所述第一反射部件均位于所述框体、所述底板围成的腔体内,所述第二反射部件位于所述透光密封部件远离所述底板的一侧。
  18. 根据权利要求17所述的激光器,其中,所述第二反射部件与所述透光密封部件固定连接。
  19. 根据权利要求16所述的激光器,其特征在于,所述框体包括依次连接的多个侧壁,所述多个侧壁中的一个侧壁具有出光口;所述出光口位于所述目标方向上,所述反射组件发射的激光通过所述出光***出。
  20. 根据权利要求19所述的激光器,其特征在于,所述激光器包括第一匀光部件时,所述第一匀光部件位于所述底板上,且所述第一匀光部件被所述框体包围;
    或者,所述第一匀光部件与所述框体固定,且所述第一匀光部件被配置为密封所述出光口。
  21. 根据权利要求19所述的激光器,其特征在于,所述激光器还包括会聚透镜;所述会聚透镜位于所述底板上,且所述会聚透镜被所述框体包围;
    或者,所述会聚透镜与所述框体固定,且所述会聚透镜被配置为密封所述出光口。
  22. 根据权利要求1至21中任一项所述的激光器,所述激光器还包括热沉;所述第一发光芯片位于所述热沉中远离所述底板的表面上,或者位于所述热沉的与所述底板垂直的表面上。
  23. 一种投影光源,其中,所述投影光源包括权利要求1至22中任一项所述的激光器。
  24. 根据权利要求23所述的投影光源,其中,所述投影光源还包括合光部件、第二匀光部件和第三准直透镜中的至少之一;所述合光部件、所述第二匀光部件或所述第三准直透镜位于所述激光器的目标方向 上。
  25. 一种投影设备,其中,所述投影设备包括权利要求23或24所述的投影光源,以及光阀和镜头;
    所述光阀被配置为将所述投影光源发出的激光进行调制后射向所述镜头,所述镜头被配置为将接收到的激光进行投射,以形成投影画面。
PCT/CN2023/136667 2022-12-09 2023-12-06 激光器、投影光源及投影设备 WO2024120420A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211588657.5 2022-12-09
CN202211588657.5A CN115939926A (zh) 2022-12-09 2022-12-09 激光器、投影光源及投影设备
CN202310112842.5 2023-02-13
CN202310112842.5A CN116300283A (zh) 2023-02-13 2023-02-13 激光器、投影光源和投影设备

Publications (1)

Publication Number Publication Date
WO2024120420A1 true WO2024120420A1 (zh) 2024-06-13

Family

ID=91378584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/136667 WO2024120420A1 (zh) 2022-12-09 2023-12-06 激光器、投影光源及投影设备

Country Status (1)

Country Link
WO (1) WO2024120420A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768467A (zh) * 2019-03-28 2019-05-17 吉林省长光瑞思激光技术有限公司 一种半导体激光器光路调整设备
JP2020194799A (ja) * 2019-05-24 2020-12-03 ヌヴォトンテクノロジージャパン株式会社 半導体レーザモジュール及びレーザ加工装置
CN214478427U (zh) * 2021-04-28 2021-10-22 武汉锐科光纤激光技术股份有限公司 一种半导体激光器
CN113703272A (zh) * 2021-09-09 2021-11-26 青岛海信激光显示股份有限公司 激光器及投影设备
US20210384698A1 (en) * 2019-02-27 2021-12-09 Nuvoton Technology Corporation Japan Semiconductor laser module
CN114527578A (zh) * 2022-03-31 2022-05-24 青岛海信激光显示股份有限公司 投影光源及投影设备
CN216773795U (zh) * 2022-03-09 2022-06-17 青岛海信激光显示股份有限公司 激光器及投影光源
CN114976876A (zh) * 2022-06-20 2022-08-30 北京凯普林光电科技股份有限公司 一种多芯片封装的半导体激光器
CN217823692U (zh) * 2022-06-30 2022-11-15 青岛海信激光显示股份有限公司 激光器
CN115939926A (zh) * 2022-12-09 2023-04-07 青岛海信激光显示股份有限公司 激光器、投影光源及投影设备
CN116300283A (zh) * 2023-02-13 2023-06-23 青岛海信激光显示股份有限公司 激光器、投影光源和投影设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210384698A1 (en) * 2019-02-27 2021-12-09 Nuvoton Technology Corporation Japan Semiconductor laser module
CN109768467A (zh) * 2019-03-28 2019-05-17 吉林省长光瑞思激光技术有限公司 一种半导体激光器光路调整设备
JP2020194799A (ja) * 2019-05-24 2020-12-03 ヌヴォトンテクノロジージャパン株式会社 半導体レーザモジュール及びレーザ加工装置
CN214478427U (zh) * 2021-04-28 2021-10-22 武汉锐科光纤激光技术股份有限公司 一种半导体激光器
CN113703272A (zh) * 2021-09-09 2021-11-26 青岛海信激光显示股份有限公司 激光器及投影设备
CN216773795U (zh) * 2022-03-09 2022-06-17 青岛海信激光显示股份有限公司 激光器及投影光源
CN114527578A (zh) * 2022-03-31 2022-05-24 青岛海信激光显示股份有限公司 投影光源及投影设备
CN114976876A (zh) * 2022-06-20 2022-08-30 北京凯普林光电科技股份有限公司 一种多芯片封装的半导体激光器
CN217823692U (zh) * 2022-06-30 2022-11-15 青岛海信激光显示股份有限公司 激光器
CN115939926A (zh) * 2022-12-09 2023-04-07 青岛海信激光显示股份有限公司 激光器、投影光源及投影设备
CN116300283A (zh) * 2023-02-13 2023-06-23 青岛海信激光显示股份有限公司 激光器、投影光源和投影设备

Similar Documents

Publication Publication Date Title
CN218887796U (zh) 激光器及投影光源
US10989995B2 (en) Laser assembly, laser source and laser projection apparatus
CN114527578B (zh) 投影光源及投影设备
CN113703272A (zh) 激光器及投影设备
CN116300283A (zh) 激光器、投影光源和投影设备
CN114609854A (zh) 投影光源及投影设备
US10634981B2 (en) Light source device and projection type display apparatus
CN114594610A (zh) 投影光源及投影设备
WO2021259276A1 (zh) 光源组件和投影设备
CN115939926A (zh) 激光器、投影光源及投影设备
CN218350698U (zh) 投影光源及投影设备
WO2024120420A1 (zh) 激光器、投影光源及投影设备
CN113960866A (zh) 激光光源及激光投影设备
CN114721159A (zh) 投影光源
WO2022078436A1 (zh) 投影光学***
CN211786559U (zh) 一种激光光源模块及激光显示装置
CN113703271A (zh) 激光器及投影设备
WO2023185768A1 (zh) 一种投影光源及投影设备
CN115343904B (zh) 投影光源及投影设备
CN114253061A (zh) 激光器及投影设备
WO2022007679A1 (zh) 光源组件和投影设备
CN217007947U (zh) 投影光源及投影设备
CN114721158B (zh) 投影光源及投影设备
CN220105505U (zh) 激光单元和投影设备
WO2022111334A1 (zh) 激光器和投影设备