WO2024120141A1 - 加热器以及气溶胶生成装置 - Google Patents

加热器以及气溶胶生成装置 Download PDF

Info

Publication number
WO2024120141A1
WO2024120141A1 PCT/CN2023/131708 CN2023131708W WO2024120141A1 WO 2024120141 A1 WO2024120141 A1 WO 2024120141A1 CN 2023131708 W CN2023131708 W CN 2023131708W WO 2024120141 A1 WO2024120141 A1 WO 2024120141A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electric heating
film layer
heating film
substrate
Prior art date
Application number
PCT/CN2023/131708
Other languages
English (en)
French (fr)
Inventor
陈伟
胡瑞龙
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2024120141A1 publication Critical patent/WO2024120141A1/zh

Links

Definitions

  • the present application relates to the field of electronic atomization technology, and in particular to a heater and an aerosol generating device.
  • Smoking articles such as cigarettes and cigars burn tobacco to produce smoke during use. Attempts have been made to provide alternatives to these tobacco-burning articles by creating products that release compounds without burning. Examples of such products are so-called heat-not-burn products, which release compounds by heating tobacco rather than burning it.
  • the problem with existing aerosol generating devices is that the resistance of the electric heating film layer is relatively large, the heating rate of the aerosol forming matrix is relatively slow, and the user experience is low.
  • the present application provides a heater and an aerosol generating device, aiming to solve the problems in existing aerosol generating devices that the resistance of the electric heating film layer is relatively large and the heating rate of the aerosol forming matrix is relatively slow.
  • the present application provides a heater configured to heat an aerosol-forming substrate in an aerosol-generating article to generate an aerosol; the heater comprising:
  • An electric heating film layer is arranged on the surface of the substrate; the electric heating film layer comprises a first electric heating film layer and a second electric heating film layer;
  • the conductive element comprises a first electrode and a second electrode, wherein the first electrode and the second electrode The electrode feeds electric power to the first electric heating film layer and the second electric heating film layer simultaneously;
  • the first electrode includes a short-circuited third electrode and a fourth electrode
  • the second electrode includes a short-circuited fifth electrode and a sixth electrode
  • the third electrode and the fifth electrode are at least partially in contact with the first electric heating film layer to form an electrical connection
  • the fourth electrode and the sixth electrode are at least partially in contact with the second electric heating film layer to form an electrical connection.
  • an aerosol generating device comprising:
  • the heater being disposed in the housing assembly
  • Battery cells are used to provide electrical power.
  • the heater and aerosol generating device provided in the present application feed electric power to the first electric heating film layer and the second electric heating film layer simultaneously through short-circuited electrodes; in this way, the resistance of the electric heating film layer can be reduced as a whole, the heating rate of the aerosol forming matrix can be increased, and the user experience is improved.
  • FIG1 is a schematic diagram of an aerosol generating device provided in an embodiment of the present application.
  • FIG2 is an exploded schematic diagram of an aerosol generating device provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a heater provided in an embodiment of the present application.
  • FIG4 is a planar expansion schematic diagram of a heater provided in an embodiment of the present application.
  • FIG5 is a planar expansion schematic diagram of another heater provided in an embodiment of the present application.
  • FIG. 6 is a planar expansion schematic diagram of another heater provided in an embodiment of the present application.
  • the aerosol generating device 100 includes a shell component 6 and a heater 11 .
  • the heater 11 is disposed in the shell component 6 .
  • the shell assembly 6 includes an outer shell 61, a fixed shell 62, a base and a bottom cover 64.
  • the fixed shell 62 and the base are both fixed in the outer shell 61, wherein the base is used to fix the heater 11, and the base is arranged in the fixed shell 62.
  • the bottom cover 64 is arranged at one end of the outer shell 61 and covers the outer shell 61.
  • the base includes a base 15 arranged at the proximal end of the heater 11 and a base 13 arranged at the distal end of the heater 11.
  • the base 15 and the base 13 are both arranged in a fixed shell 62.
  • An air inlet pipe 641 is convexly provided on the bottom cover 64.
  • the end of the base 13 away from the base 15 is connected to the air inlet pipe 641.
  • the base 15, the heater 11, the base 13 and the air inlet pipe 641 are coaxially arranged, and the heater 11 and the base 15 and the base 13 are sealed by a seal.
  • the base 13 and the air inlet pipe 641 are also sealed.
  • the air inlet pipe 641 is connected to the outside air so that the user can smoothly inhale when inhaling.
  • the aerosol generating device 100 also includes a circuit 3 and a battery cell 7.
  • the fixed shell 62 includes a front shell 621 and a rear shell 622, the front shell 621 and the rear shell 622 are fixedly connected, the circuit 3 and the battery cell 7 are both arranged in the fixed shell 62, the battery cell 7 is electrically connected to the circuit 3, the button 4 is convexly arranged on the shell 61, and by pressing the button 4, the electric heating film layer on the heater 11 can be powered on or off, and the electric heating film layer includes an electric heating coating, preferably an infrared electric heating coating that can radiate infrared rays.
  • the circuit 3 is also connected to a charging interface 31, which is exposed on the bottom cover 64 and is used The user can charge or upgrade the aerosol generating device 100 through the charging interface 31 to ensure the continuous use of the aerosol generating device 100.
  • the aerosol generating device 100 further includes an insulating tube 17, which is disposed in the fixed shell 62 and is disposed on the periphery of the heater 11.
  • the insulating tube 17 can prevent a large amount of heat from being transferred to the shell 61 and causing the user to feel hot.
  • the insulating tube includes an insulating material, which can be insulating glue, aerogel, aerogel felt, asbestos, aluminum silicate, calcium silicate, diatomaceous earth, zirconium oxide, etc.
  • the insulating tube 17 can also be a vacuum insulating tube.
  • An infrared reflective coating can also be formed on the insulating tube 17 to reflect part of the heat dissipated by the heater 11 back to the heater 11, thereby improving the heating efficiency.
  • the aerosol generating device 100 further includes a temperature sensor 2, such as an NTC thermistor, a PTC thermistor or a thermocouple, for detecting the real-time temperature of the heater 11 and transmitting the detected real-time temperature to the circuit 3, which adjusts the magnitude of the current flowing through the heater 11 according to the real-time temperature.
  • a temperature sensor 2 such as an NTC thermistor, a PTC thermistor or a thermocouple
  • FIG3-FIG4 is a heater provided in the first example of the present application. As shown in FIG3-FIG4, the heater 11 includes:
  • the substrate 111 has a cavity formed therein suitable for accommodating an aerosol-forming substrate.
  • the substrate 111 includes a proximal end and a distal end, and a surface extending between the proximal end and the distal end.
  • the interior of the substrate 111 is hollow to form the chamber.
  • the substrate 111 can be tubular, such as a cylindrical, prism or other cylindrical shapes.
  • the substrate 111 is preferably cylindrical, and the chamber is a cylindrical hole that runs through the middle of the substrate 111.
  • the inner diameter of the substrate 111 is between 6 mm and 15 mm, or between 7 mm and 15 mm, or between 7 mm and 14 mm, or between 7 mm and 12 mm, or between 7 mm and 10 mm.
  • the axial extension length of the substrate 111 is between 15 mm and 30 mm, or between 15 mm and 28 mm, or between 15 mm and 25 mm, or between 16 mm and 25 mm, or between 18 mm and 25 mm, or between 18 mm and 24 mm, or between 18 mm and 22 mm.
  • the substrate 111 of this size is suitable for a short and thick aerosol generating product.
  • the inner diameter of the substrate 111 is between 5 mm and 5.9 mm, and in a specific example, it can be 5.5 mm, 5.4 mm, etc.
  • the axial extension length of the substrate 111 is between 30 mm and 60 mm, or between 30 mm and 55 mm, or between 30 mm and 50 mm, or between 30 mm and 45 mm, or between 30 mm and 40 mm.
  • the substrate 111 of this size is suitable for a slender aerosol generating product.
  • the substrate 111 can be made of high temperature resistant and infrared transparent materials such as quartz glass, ceramics or mica, or other materials with high infrared transmittance, for example, high temperature resistant materials with infrared transmittance above 95%, which is not specifically limited here.
  • An aerosol-forming substrate is a substrate capable of releasing volatile compounds that can form an aerosol. Such volatile compounds can be released by heating the aerosol-forming substrate.
  • the aerosol-forming substrate can be solid or liquid or include solid and liquid components.
  • the aerosol-forming substrate can be adsorbed, coated, impregnated or otherwise loaded onto a carrier or support.
  • the aerosol-forming substrate can conveniently be part of an aerosol-generating article.
  • the aerosol-forming substrate may include nicotine.
  • the aerosol-forming substrate may include tobacco, for example, may include a tobacco-containing material containing volatile tobacco flavor compounds, which are released from the aerosol-forming substrate when heated.
  • the aerosol-forming substrate may include at least one aerosol-forming agent, which may be any suitable known compound or mixture of compounds, which, in use, is conducive to the formation of a dense and stable aerosol and is substantially resistant to thermal degradation at the operating temperature of the aerosol generating system.
  • Suitable aerosol-forming agents include, but are not limited to, polyols, such as triethylene glycol, 1,3-butylene glycol and glycerol; esters of polyols, such as glycerol mono-, di- or triacetates; and fatty acid esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyl tetradecanoic acid.
  • polyols such as triethylene glycol, 1,3-butylene glycol and glycerol
  • esters of polyols such as glycerol mono-, di- or triacetates
  • fatty acid esters of mono-, di- or polycarboxylic acids such as dimethyl dodecanedioate and dimethyl tetradecanoic acid.
  • the infrared electrothermal coating 112 receives electric power to generate heat, and then generates infrared rays of a certain wavelength, for example, far infrared rays of 8 ⁇ m to 15 ⁇ m, which heat the aerosol-forming matrix in the chamber after passing through the substrate 111.
  • a certain wavelength for example, far infrared rays of 8 ⁇ m to 15 ⁇ m
  • the energy of the infrared rays is easily absorbed by the aerosol-forming matrix.
  • the infrared electrothermal coating 112 is preferably prepared by mixing far-infrared electrothermal ink, ceramic powder and inorganic adhesive, and then coating it on the outer surface of the substrate 111, and then drying and curing it for a certain period of time.
  • the thickness of the infrared electrothermal coating 112 is 30 ⁇ m-50 ⁇ m; of course, the infrared electrothermal coating 112 can also be prepared by mixing tin tetrachloride, tin oxide, antimony trichloride, titanium tetrachloride and anhydrous copper sulfate in a certain proportion and then coating it on the outer surface of the substrate 111; or a silicon carbide ceramic layer, a carbon fiber composite layer, a zirconium-titanium oxide ceramic layer, a zirconium-titanium nitride ceramic layer, a zirconium-titanium boride ceramic layer, a zirconium-titanium carbide ceramic layer, an iron oxide ceramic layer, an iron nitride ceramic layer, or a silicon carbide ceramic layer.
  • porcelain layer iron boride ceramic layer, iron carbide ceramic layer, rare earth oxide ceramic layer, rare earth nitride ceramic layer, rare earth boride ceramic layer, rare earth carbide ceramic layer, nickel cobalt oxide ceramic layer, nickel cobalt nitride ceramic layer, nickel cobalt boride ceramic layer, nickel cobalt carbide ceramic layer or high silicon molecular sieve ceramic layer;
  • the infrared electric heating coating 112 can also be other existing material coatings.
  • the infrared electrothermal coating 112 is formed on the surface of the substrate 111.
  • the infrared electrothermal coating 112 may be formed on the outer surface of the substrate 111 or on the inner surface of the substrate 111.
  • the infrared electrothermal coating 112 is formed on the outer surface of the substrate 111.
  • the infrared electrothermal coating 112 is spaced apart from the proximal end or the distal end of the substrate 111, that is, the axial extension length of the infrared electrothermal coating 112 is less than the axial extension length of the substrate 111; in other examples, the infrared electrothermal coating 112 is not spaced apart from the proximal end or the distal end of the substrate 111, that is, the axial extension length of the infrared electrothermal coating 112 is equal to the axial extension length of the substrate 111, which is also feasible.
  • the spacing distance between the infrared electrothermal coating 112 and the proximal end of the substrate 111 is 0 to 1 mm, and the spacing distance between the infrared electrothermal coating 112 and the distal end of the substrate 111 is 2.5 mm to 4 mm, that is, the spacing distance between the infrared electrothermal coating 112 and the proximal end of the substrate 111 is less than the spacing distance between the infrared electrothermal coating 112 and the distal end of the substrate 111.
  • the infrared electrothermal coating 112 includes an infrared electrothermal coating 112 a , an infrared electrothermal coating 112 b , an infrared electrothermal coating 112 c and an infrared electrothermal coating 112 d which are arranged at intervals.
  • the conductive element includes an electrode 113 and an electrode 114 which are arranged at intervals on the substrate 111 , and is used to feed the electric power provided by the battery core 7 to the infrared electric heating coating 112 .
  • the electrodes 113 and 114 may be conductive coatings, which may be metal coatings.
  • the metal coatings may include silver, gold, palladium, platinum, copper, nickel, molybdenum, tungsten, niobium or alloys of the above metals.
  • the electrode 113 is substantially U-shaped, and includes an arc-shaped electrode 113 a extending in the circumferential direction of the substrate 111 , and strip-shaped electrodes 113 b and 113 c extending in the axial direction of the substrate 111 .
  • the electrode 113a is disposed between the distal end of the substrate 111 and the infrared electrothermal coating 112.
  • the electrode 113a is spaced apart from the distal end of the substrate 111 and the infrared electrothermal coating 112.
  • the spacing between the outer electrothermal coatings 112 is slightly larger than the spacing between the electrode 113a and the distal end of the substrate 111; in a specific example, the spacing between the electrode 113a and the infrared electrothermal coating 112 is about 1 mm, and the spacing between the electrode 113a and the distal end of the substrate 111 is about 0.5 mm.
  • Electrode 113b and electrode 113c are arranged at intervals along the circumferential direction of substrate 111. Electrode 113b and electrode 113c are substantially parallel; of course, it is also feasible that electrode 113b and electrode 113c are not parallel. Electrode 113b and electrode 113c are short-circuited by electrode 113a. Specifically:
  • One end of the electrode 113b is connected to the electrode 113a, and the other end of the electrode 113b is extended along the axial direction of the substrate 111 and is arranged near the proximal end of the substrate 111.
  • the axial extension length of the electrode 113b is greater than the axial extension length of the infrared electrothermal coating 112a.
  • Part of the electrode 113b is in contact with the infrared electrothermal coating 112a to form an electrical connection, and the part of the electrode 113b is also in contact with the infrared electrothermal coating 112c.
  • One end of the electrode 113c is connected to the electrode 113a, and the other end of the electrode 113c is extended along the axial direction of the substrate 111 and is arranged near the proximal end of the substrate 111.
  • the axial extension length of the electrode 113c is greater than the axial extension length of the infrared electrothermal coating 112b.
  • a portion of the electrode 113c is in contact with the infrared electrothermal coating 112b to form an electrical connection, and the portion of the electrode 113c is also in contact with the infrared electrothermal coating 112c.
  • the electrode 114 is substantially U-shaped, and includes an arc-shaped electrode 114 a extending in the circumferential direction of the substrate 111 , and strip-shaped electrodes 114 b and 114 c extending in the axial direction of the substrate 111 .
  • electrode 114a The structural design of electrode 114a is similar to that of electrode 113a, the structural design of electrode 114b is similar to that of electrode 113b, and the structural design of electrode 114c is similar to that of electrode 113c.
  • the difference is that part of electrode 114b is in contact with infrared electrothermal coating 112a to form an electrical connection, and the part of electrode 114b is also in contact with infrared electrothermal coating 112d; part of electrode 114c is in contact with infrared electrothermal coating 112b to form an electrical connection, and the part of electrode 114c is also in contact with infrared electrothermal coating 112d.
  • the electrodes 113 and 114 feed the electric power provided by the battery cell 7 to the infrared electric heating coating 112a and the infrared electric heating coating 112b at the same time. That is, the infrared electric heating coating 112a and the infrared electric heating coating 112b are equivalent to being connected in parallel between the electrodes 113 and 114. By connecting the infrared electric heating coatings in parallel, the infrared electric heating can be reduced as a whole. The resistance value of the coating 112 .
  • the current flow direction on the infrared electrothermal coating 112a and the infrared electrothermal coating 112b is substantially extended along the circumferential direction of the substrate 111 (as shown by the dotted arrow in the figure). If the current flow direction on the infrared electrothermal coating 112a is substantially extended clockwise along the circumferential direction of the substrate 111, the current flow direction on the infrared electrothermal coating 112b is substantially extended counterclockwise along the circumferential direction of the substrate 111.
  • the infrared electric heating coating 112c is electrically connected between the electrodes 113b and 113c, and the infrared electric heating coating 112d is electrically connected between the electrodes 114b and 114c. Since the electrodes 113b and 113c are short-circuited by the electrode 113a, and the electrodes 114b and 114c are short-circuited by the electrode 114a, no current flows through the infrared electric heating coating 112c and the infrared electric heating coating 112d, that is, the infrared electric heating coating 112c and the infrared electric heating coating 112d will not actively generate heat when powered on.
  • the temperature of the infrared electrothermal coating 112c and the infrared electrothermal coating 112d will increase, and then infrared rays can be radiated to heat the aerosol-forming matrix in the corresponding area. In this way, the consistency of the suction can be further maintained, ensuring that the user can also inhale enough aerosol with rich taste in the later stage.
  • the infrared electrothermal coating 112c does not keep contact with the electrodes 113b and 113c, but is only arranged between the electrodes 113b and 113c, which is also feasible.
  • the infrared electrothermal coating 112d does not keep contact with the electrodes 114b and 114c, but is only arranged between the electrodes 114b and 114c, which is also feasible.
  • the resistance of the infrared electrothermal coating 112a or the infrared electrothermal coating 112b can be adjusted as needed.
  • the resistance value depends on L and S. Therefore, by setting the two parameters L and S of the infrared electrothermal coating, The resistance value of each infrared electrothermal coating can be adjusted.
  • reducing the circumferential distance between electrode 113b and electrode 114b or the circumferential distance between electrode 113c and electrode 114c can reduce the resistance of infrared electrothermal coating 112a or infrared electrothermal coating 112b; at the same time, the circumferential distance between infrared electrothermal coating 112c and infrared electrothermal coating 112d increases, and the corresponding resistance will increase.
  • the equivalent resistance value of each infrared electrothermal coating the power distribution of each area can be adjusted, thereby adjusting the temperature distribution of each area.
  • the infrared electrothermal coating 112a and the infrared electrothermal coating 112b connected in parallel may have the same or different resistance values (for example, the infrared electrothermal coating 112a and the infrared electrothermal coating 112b have the same axial extension length, but different circumferential extension lengths; or, the electrode 113b has a first circumferential distance from the electrode 114b along the counterclockwise direction of the substrate 111, and the electrode 113c has a second circumferential distance from the electrode 114c along the clockwise direction of the substrate 111, and the first circumferential distance is different from the second circumferential distance); the heating power is similar to this.
  • the number of infrared electrothermal coatings 112a and infrared electrothermal coatings 112b is not limited, and can be multiple.
  • the heating power of the infrared electrothermal coating 112a is relatively larger and the heating speed is relatively faster; in this way, the temperature of the part of the aerosol-forming matrix corresponding to the infrared electrothermal coating 112a can rise rapidly and produce inhalable aerosol relative to the part of the aerosol-forming matrix corresponding to the infrared electrothermal coating 112b, thereby shortening the preheating time of the aerosol-forming matrix and reducing the waiting time for inhalation.
  • the heating speed of the infrared electrothermal coating 112a is faster than that of the infrared electrothermal coating 112b, which can be verified in the following way: when the same preset temperature is set, and the heating temperature of the infrared electrothermal coating 112a reaches the preset temperature from the initial temperature (such as the ambient temperature), if the heating temperature of the infrared electrothermal coating 112b is lower than the preset temperature, it can be said that the heating speed of the infrared electrothermal coating 112a is faster than that of the infrared electrothermal coating 112b.
  • the preset temperature can be the maximum temperature of the aerosol generating device 100, or it can be the operating temperature, that is, the temperature at which the aerosol-forming substrate can generate aerosol.
  • the electrode 113a and the electrode 114a are both disposed close to the distal end of the substrate 111 , which is convenient for wiring with the battery cell 7 , for example: A first wire electrically connected to 113 and a second wire electrically connected to electrode 114 , one end of the first wire and the second wire can be arranged at the far end of the substrate 111 , and the other end of the first wire and the second wire is electrically connected to the battery cell 7 .
  • FIG. 5 is a heater provided in the second example of the present application.
  • no infrared electrothermal coating 112c is provided between the electrode 113b and the electrode 113c, and no infrared electrothermal coating 112d is provided between the electrode 114b and the electrode 114c.
  • FIG. 6 is a heater provided in the third example of the present application.
  • Electrodes 113 and 114 are in a V shape. Specifically, one end of electrode 113b is connected to one end of electrode 113c so that a short circuit is formed between electrode 113b and electrode 113c; the other end of electrode 113b and the other end of electrode 113c extend along the axial direction of substrate 111 and are spaced apart from each other; the short circuit between electrode 113b and electrode 113c is set between the distal end of substrate 111 and infrared electrothermal coating 112. Electrode 114b has a similar structural design to electrode 114c.
  • the structural designs of the electrodes 113 and 114 may be different.
  • the electrode 113 may be in a U shape and the electrode 114 may be in a V shape, which is also feasible.

Landscapes

  • Resistance Heating (AREA)

Abstract

本申请提供一种加热器以及气溶胶生成装置,所述加热器包括:基体;电加热膜层,包括第一电加热膜层和第二电加热膜层;导电元件,包括第一电极和第二电极,第一电极和第二电极将电功率同时馈送至第一电加热膜层和第二电加热膜层;第一电极包括短接的第三电极和第四电极,第二电极包括短接的第五电极和第六电极;第三电极和第五电极均与第一电加热膜层保持接触,第四电极和第六电极均与第二电加热膜层保持接触。本申请通过短接且至少部分间隔设置的电极将电功率同时馈送至第一电加热膜层和第二电加热膜层;这样,整体上能够降低电加热膜层的电阻,提升气溶胶形成基质的升温速率,提高了用户的使用体验。

Description

加热器以及气溶胶生成装置
相关申请的交叉引用参考
本申请要求于2022年12月08日提交中国专利局,申请号为202211573314.1,名称为“加热器以及气溶胶生成装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子雾化技术领域,尤其涉及一种加热器以及气溶胶生成装置。
背景技术
诸如香烟和雪茄的吸烟物品在使用期间燃烧烟草以产生烟雾。已经尝试通过产生在不燃烧的情况下释放化合物的产品来为这些燃烧烟草的物品提供替代物。此类产品的示例是所谓的加热不燃烧产品,其通过加热烟草而不是燃烧烟草来释放化合物。
现有气溶胶生成装置存在的问题是,电加热膜层的阻值较大,气溶胶形成基质的升温速率较慢,用户的使用体验低。
申请内容
本申请提供一种加热器以及气溶胶生成装置,旨在解决现有气溶胶生成装置中存在的电加热膜层的阻值较大,气溶胶形成基质的升温速率较慢的问题。
本申请一方面提供一种加热器,被配置为加热气溶胶生成制品中的气溶胶形成基质以生成气溶胶;所述加热器包括:
基体;
电加热膜层,设置在所述基体的表面上;所述电加热膜层包括第一电加热膜层和第二电加热膜层;
导电元件,包括第一电极和第二电极,所述第一电极和所述第二电 极将电功率同时馈送至所述第一电加热膜层和所述第二电加热膜层;
其中,所述第一电极包括短接的第三电极和第四电极,所述第二电极包括短接的第五电极和第六电极;所述第三电极和所述第五电极均至少部分与所述第一电加热膜层保持接触以形成电连接,所述第四电极和所述第六电极均至少部分与所述第二电加热膜层保持接触以形成电连接。
本申请另一方面提供一种气溶胶生成装置,包括:
壳体组件;
加热器,所述加热器设置在所述壳体组件内;
电芯,用于提供电功率。
本申请提供的加热器以及气溶胶生成装置,通过短接的电极将电功率同时馈送至第一电加热膜层和第二电加热膜层;这样,整体上能够降低电加热膜层的电阻,提升气溶胶形成基质的升温速率,提高了用户的使用体验。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限定。
图1是本申请实施方式提供的气溶胶生成装置示意图;
图2是本申请实施方式提供的气溶胶生成装置的分解示意图;
图3是本申请实施方式提供的一种加热器示意图;
图4是本申请实施方式提供的一种加热器的平面展开示意图;
图5是本申请实施方式提供的另一种加热器的平面展开示意图;
图6是本申请实施方式提供的又一种加热器的平面展开示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进 行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1-图2是本申请实施方式提供的一种气溶胶生成装置100,气溶胶生成装置100包括壳体组件6和加热器11,加热器11设于壳体组件6内。
壳体组件6包括外壳61、固定壳62、基座以及底盖64,固定壳62、基座均固定于外壳61内,其中基座用于固定加热器11,基座设置于固定壳62内,底盖64设于外壳61一端且盖设外壳61。
基座包括设置在加热器11近端的基座15和设置在加热器11远端的基座13,基座15和基座13均设于固定壳62内,底盖64上凸设有进气管641,基座13背离基座15的一端与进气管641连接,基座15、加热器11、基座13以及进气管641同轴设置,且加热器11与基座15、基座13之间通过密封件密封,基座13与进气管641也密封,进气管641与外界空气连通以便于用户抽吸时可以顺畅进气。
气溶胶生成装置100还包括电路3和电芯7。固定壳62包括前壳621与后壳622,前壳621与后壳622固定连接,电路3和电芯7均设置在固定壳62内,电芯7与电路3电连接,按键4凸设在外壳61上,通过按压按键4,可以实现对加热器11上电加热膜层的通电或断电,电加热膜层包括电热涂层,优选的采用能够辐射出红外线的红外电热涂层。电路3还连接有一充电接口31,充电接口31裸露于底盖64上,用 户可以通过充电接口31对气溶胶生成装置100进行充电或升级,以保证气溶胶生成装置100的持续使用。
气溶胶生成装置100还包括隔热管17,隔热管17设置在固定壳62内,隔热管17设置在加热器11的***,隔热管17可以避免大量的热量传递到外壳61上而导致用户觉得烫手。隔热管包括隔热材料,隔热材料可以为隔热胶、气凝胶、气凝胶毡、石棉、硅酸铝、硅酸钙、硅藻土、氧化锆等。隔热管17也可以为真空隔热管。隔热管17上还可形成有红外线反射涂层,以将加热器11散热的部分热量反射回加热器11,进而提高加热效率。
气溶胶生成装置100还包括温度传感器2,例如NTC热敏电阻、PTC热敏电阻或热电偶,用于检测加热器11的实时温度,并将检测的实时温度传输到电路3,电路3根据该实时温度调节流经加热器11的电流的大小。
图3-图4是本申请第一示例提供的一种加热器。如图3-图4所示,加热器11包括:
基体111,内部形成有适于收容气溶胶形成基质的腔室。
具体地,基体111包括近端和远端,延伸于近端和远端之间的表面。基体111内部中空形成所述腔室。基体111可以为管状,例如圆柱体状、棱柱体状或者其他柱体状。基体111优选为圆柱体状,腔室即为贯穿基体111中部的圆柱体状孔。
在一示例中,基体111的内径介于6mm~15mm,或介于7mm~15mm,或介于7mm~14mm,或介于7mm~12mm,或介于7mm~10mm。基体111的轴向延伸长度介于15mm~30mm,或介于15mm~28mm,或介于15mm~25mm,或介于16mm~25mm,或介于18mm~25mm,或介于18mm~24mm,或介于18mm~22mm。该尺寸的基体111适用于粗短型的气溶胶生成制品。
在一示例中,基体111的内径介于5mm~5.9mm,具体示例中可以为5.5mm、5.4mm等等。基体111的轴向延伸长度介于30mm~60mm,或介于30mm~55mm,或介于30mm~50mm,或介于30mm~45mm,或介于30mm~40mm。该尺寸的基体111适用于细长型的气溶胶生成制品。
基体111可以由石英玻璃、陶瓷或云母等耐高温且透红外线的材料制成,也可以由其它具有较高的红外线透过率的材料制成,例如:红外线透过率在95%以上的耐高温材料,具体地在此不作限定。
气溶胶形成基质是一种能够释放可形成气溶胶的挥发性化合物的基质。这种挥发性化合物可通过加热该气溶胶形成基质而被释放出来。气溶胶形成基质可以是固体或液体或包括固体和液体组分。气溶胶形成基质可吸附、涂覆、浸渍或以其它方式装载到载体或支承件上。气溶胶形成基质可便利地是气溶胶生成制品的一部分。
气溶胶形成基质可以包括尼古丁。气溶胶形成基质可以包括烟草,例如可以包括含有挥发性烟草香味化合物的含烟草材料,当加热时所述挥发性烟草香味化合物从气溶胶形成基质释放。气溶胶形成基质可以包括至少一种气溶胶形成剂,气溶胶形成剂可为任何合适的已知化合物或化合物的混合物,在使用中,所述化合物或化合物的混合物有利于致密和稳定气溶胶的形成,并且对在气溶胶生成***的操作温度下的热降解基本具有抗性。合适的气溶胶形成剂是本领域众所周知的,并且包括但不限于:多元醇,例如三甘醇,1,3-丁二醇和甘油;多元醇的酯,例如甘油单、二或三乙酸酯;和一元、二元或多元羧酸的脂肪酸酯,例如二甲基十二烷二酸酯和二甲基十四烷二酸酯。
红外电热涂层112接受电功率产生热量,进而生成一定波长的红外线,例如:8μm~15μm的远红外线,透过基体111后对腔室中的气溶胶形成基质进行加热。当红外线的波长与气溶胶形成基质的吸收波长匹配时,红外线的能量易于被气溶胶形成基质吸收。
红外电热涂层112优选的由远红外电热油墨、陶瓷粉末和无机粘合剂充分搅拌均匀后涂覆在基体111的外表面上,然后烘干固化一定的时间,红外电热涂层112的厚度为30μm-50μm;当然,红外电热涂层112还可以由四氯化锡、氧化锡、三氯化锑、四氯化钛以及无水硫酸铜按一定比例混合搅拌后涂覆到基体111的外表面上;或者为碳化硅陶瓷层、碳纤维复合层、锆钛系氧化物陶瓷层、锆钛系氮化物陶瓷层、锆钛系硼化物陶瓷层、锆钛系碳化物陶瓷层、铁系氧化物陶瓷层、铁系氮化物陶 瓷层、铁系硼化物陶瓷层、铁系碳化物陶瓷层、稀土系氧化物陶瓷层、稀土系氮化物陶瓷层、稀土系硼化物陶瓷层、稀土系碳化物陶瓷层、镍钴系氧化物陶瓷层、镍钴系氮化物陶瓷层、镍钴系硼化物陶瓷层、镍钴系碳化物陶瓷层或高硅分子筛陶瓷层中的一种;红外电热涂层112还可以是现有的其他材料涂层。
红外电热涂层112形成在基体111的表面上。红外电热涂层112可以形成在基体111的外表面上,也可以形成在基体111的内表面上。
优选的实施中,红外电热涂层112形成在基体111的外表面上。红外电热涂层112与基体111的近端或者远端间隔设置,即红外电热涂层112的轴向延伸长度小于基体111的轴向延伸长度;在其它示例中,红外电热涂层112与基体111的近端或者远端不间隔设置,即红外电热涂层112的轴向延伸长度等于基体111的轴向延伸长度,也是可行的。在一示例中,红外电热涂层112与基体111近端之间的间隔距离为0~1mm,红外电热涂层112与基体111远端之间的间隔距离为2.5mm~4mm,即红外电热涂层112与基体111近端之间的间隔距离小于红外电热涂层112与基体111远端之间的间隔距离。
沿基体111的周向方向,红外电热涂层112包括间隔设置的红外电热涂层112a、红外电热涂层112b、红外电热涂层112c以及红外电热涂层112d。
导电元件,包括间隔设置于基体111上的电极113和电极114,用于将电芯7提供的电功率馈送至红外电热涂层112。
电极113和电极114可以为导电涂层,导电涂层可以为金属涂层,金属涂层可以包括银、金、钯、铂、铜、镍、钼、钨、铌或上述金属合金材料。
电极113大致呈U字形状,包括沿基体111的周向方向延伸且呈弧形状的电极113a,沿基体111的轴向方向延伸且呈条形状的电极113b和电极113c。
电极113a设置在基体111的远端与红外电热涂层112之间。电极113a与基体111的远端和红外电热涂层112间隔设置。电极113a与红 外电热涂层112之间的间隔距离略大于电极113a与基体111远端之间的间隔距离;具体示例中,电极113a与红外电热涂层112之间的间隔距离约为1mm,电极113a与基体111远端之间的间隔距离约为0.5mm。
电极113b和电极113c沿基体111周向方向间隔设置。电极113b和电极113c大致上是平行的;当然,电极113b和电极113c不是平行的,也是可行的。电极113b和电极113c通过电极113a短接。具体地:
电极113b的一端与电极113a连接,电极113b的另一端沿基体111的轴向方向延伸之后靠近基体111的近端设置。电极113b的轴向延伸长度大于红外电热涂层112a的轴向延伸长度。部分电极113b与红外电热涂层112a保持接触以形成电连接,该部分电极113b还与红外电热涂层112c保持接触。
电极113c的一端与电极113a连接,电极113c的另一端沿基体111的轴向方向延伸之后靠近基体111的近端设置。电极113c的轴向延伸长度大于红外电热涂层112b的轴向延伸长度。部分电极113c与红外电热涂层112b保持接触以形成电连接,该部分电极113c还与红外电热涂层112c保持接触。
电极114大致呈U字形状,包括沿基体111的周向方向延伸且呈弧形状的电极114a,沿基体111的轴向方向延伸且呈条形状的电极114b和电极114c。
电极114a的结构设计与电极113a的结构设计类似、电极114b的结构设计与电极113b的结构设计类似、电极114c的结构设计与电极113c的结构设计类似。不同的是,部分电极114b与红外电热涂层112a保持接触以形成电连接,该部分电极114b还与红外电热涂层112d保持接触;部分电极114c与红外电热涂层112b保持接触以形成电连接,该部分电极114c还与红外电热涂层112d保持接触。
在电极113和电极114导电之后,电极113和电极114将电芯7提供的电功率同时馈送至红外电热涂层112a和红外电热涂层112b。即,红外电热涂层112a和红外电热涂层112b相当于是并联连接在电极113和电极114之间的。通过并联的红外电热涂层,整体上可降低红外电热 涂层112的阻值。
假设电流从电极113流入,从电极114流出,则红外电热涂层112a和红外电热涂层112b上的电流流向基本上是沿基体111的周向方向延伸的(如图中的虚线箭头所示)。若红外电热涂层112a上的电流流向基本上是沿基体111的周向方向顺时针延伸,则红外电热涂层112b上的电流流向基本上是沿基体111的周向方向逆时针延伸。
红外电热涂层112c是电连接在电极113b与电极113c之间,红外电热涂层112d是电连接在电极114b与电极114c之间。由于电极113b与电极113c通过电极113a部分短接,电极114b与电极114c通过电极114a部分短接,因此红外电热涂层112c和红外电热涂层112d上是没有电流流过的,即红外电热涂层112c和红外电热涂层112d在通电中不会主动发热。
这样,在初始的加热过程中,由于红外电热涂层112a和红外电热涂层112b通电发热,而红外电热涂层112c和红外电热涂层112d在通电中不会主动发热,沿基体111的周向方向,将形成一个高低温交错的不均匀温场,这种温场利于气溶胶形成基质中不同成分的挥发,形成口感丰富的气溶胶。
随着加热时间的增加,由于热传导的效应,红外电热涂层112c和红外电热涂层112d的温度将提高,进而可辐射出红外线以加热对应区域的气溶胶形成基质。这样,又可进一步地维持抽吸的一致性,确保用户在后期也能够吸食到足够的、口感丰富的气溶胶。
需要说明的是,在图3-图4的示例中,红外电热涂层112c不与电极113b和电极113c保持接触,仅设置在电极113b与电极113c之间,也是可行的。红外电热涂层112d不与电极114b和电极114c保持接触,仅设置在电极114b与电极114c之间,也是可行的。
需要说明的是,红外电热涂层112a或者红外电热涂层112b的电阻可以根据需要进行调整。依据电阻的通用计算公式R=ρL/S,在电阻率ρ一定时(红外电热涂层涂覆均匀时,其电阻率ρ是一定的),电阻的阻值取决于L、S。因此,通过红外电热涂层的L、S两个参数的设置, 可以调节每一个红外电热涂层的电阻值。例如:减小电极113b与电极114b之间的周向距离或者电极113c与电极114c之间的周向距离,可以降低红外电热涂层112a或者红外电热涂层112b的电阻;与此同时,红外电热涂层112c和红外电热涂层112d的周向距离增加,对应的电阻将增大。通过调节每一个红外电热涂层的等效阻值,可以调节每个区域的功率分布,从而调节每个区域的温度分布。
可以理解的,并联连接的红外电热涂层112a和红外电热涂层112b,两者之间的电阻值可以相同,也可以不同(例如,红外电热涂层112a和红外电热涂层112b的轴向延伸长度相同,而周向延伸长度不同;或者,电极113b沿基体111的逆时针方向与电极114b之间具有第一周向距离,电极113c沿基体111的顺时针方向与电极114c之间具有第二周向距离,所述第一周向距离与所述第二周向距离不相同);加热功率与此类似。红外电热涂层112a和红外电热涂层112b的数量也不作限定,可以是多个。
在一示例中,若红外电热涂层112a相对红外电热涂层112b的等效阻值较小,则红外电热涂层112a的加热功率相对的要大些,加热速度相对的要快些;这样,红外电热涂层112a对应的部分气溶胶形成基质,相对于红外电热涂层112b对应的部分气溶胶形成基质来说,其温度可以快速上升并产生可抽吸的气溶胶,进而缩短了气溶胶形成基质的预热时间,减少了抽吸等待时间。
需要说明的是,红外电热涂层112a的加热速度相对于红外电热涂层112b的加热速度的要更快,可以通过以下方式来验证:设置同一个预设温度,红外电热涂层112a的加热温度从初始温度(例如环境温度)达到预设温度时,如果红外电热涂层112b的加热温度是低于预设温度的,则可以说明红外电热涂层112a的加热速度相对于红外电热涂层112b的加热速度的要更快。预设温度可以为气溶胶生成装置100的最大温度,也可以为工作温度,即能够使得气溶胶形成基质产生气溶胶的温度。
需要说明的是,在图3-图4的示例中,电极113a和电极114a均靠近基体111的远端设置,这样利于与电芯7之间的走线,例如:与电极 113电连接的第一导线、与电极114电连接的第二导线,第一导线和第二导线的一端都可以设置在基体111的远端,第一导线和第二导线的另一端与电芯7电连接。
图5是本申请第二示例提供的一种加热器。
与图3-图4示例不同的是,在电极113b与电极113c之间没有设置红外电热涂层112c,在电极114b与电极114c之间没有设置红外电热涂层112d。
需要说明的是,在一替代的示例中,将电极113a设置在电极113b与电极113c之间,电极114a设置在电极114b与电极114c之间,以使得电极113和电极114呈H字形状,也是可行的。
图6是本申请第三示例提供的一种加热器。
与图3-图4示例不同的是,电极113没有设置电极113a,电极114没有设置电极114a。电极113、电极114呈V字形状。具体地,电极113b的一端与电极113c的一端连接在一起,以使得电极113b和电极113c之间形成短接;电极113b的另一端和电极113c的另一端沿基体111轴向方向延伸且彼此间隔设置;电极113b与电极113c的短接处设置在基体111的远端与红外电热涂层112之间。电极114b与电极114c类似结构设计。
需要说明的是,电极113、电极114的结构设计可以不同,例如,电极113呈U字形状、电极114呈V字形状,也是可行的。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (15)

  1. 一种加热器,被配置为加热气溶胶生成制品中的气溶胶形成基质以生成气溶胶;其特征在于,所述加热器包括:
    基体;
    电加热膜层,设置在所述基体的表面上;所述电加热膜层包括第一电加热膜层和第二电加热膜层;
    导电元件,包括第一电极和第二电极,所述第一电极和所述第二电极将电功率同时馈送至所述第一电加热膜层和所述第二电加热膜层;
    其中,所述第一电极包括短接的第三电极和第四电极,所述第二电极包括短接的第五电极和第六电极;所述第三电极和所述第五电极均至少部分与所述第一电加热膜层保持接触以形成电连接,所述第四电极和所述第六电极均至少部分与所述第二电加热膜层保持接触以形成电连接。
  2. 根据权利要求1所述的加热器,其特征在于,所述第三电极、所述第四电极、所述第五电极以及所述第六电极均沿所述基体轴向方向延伸;
    所述第一电加热膜层和所述第二电加热膜层沿所述基体周向方向间隔设置,电流在所述第一电加热膜层和所述第二电加热膜层上的流向基本上是沿所述基体周向方向延伸的。
  3. 根据权利要求1所述的加热器,其特征在于,
    所述第三电极的一端与所述第四电极的一端连接在一起,所述第三电极的另一端和所述第四电极的另一端彼此间隔设置;和/或,
    所述第五电极的一端与所述第六电极的一端连接在一起,所述第五电极的另一端和所述第六电极的另一端彼此间隔设置。
  4. 根据权利要求3所述的加热器,其特征在于,所述基体包括近端和远端;所述第三电极和所述第四电极之间的连接处位于所述电加热膜层与所述基体远端之间,所述第五电极和所述第六电极之间的连接处位于所述电加热膜层与所述基体远端之间。
  5. 根据权利要求3所述的加热器,其特征在于,所述第一电极和所述第二电极呈V字形状。
  6. 根据权利要求1所述的加热器,其特征在于,
    所述第三电极和所述第四电极间隔设置,所述第一电极包括第七电极,所述第七电极的一端与所述第三电极连接,所述第七电极的另一端与所述第四电极连接;和/或,
    所述第五电极和所述第六电极间隔设置,所述第二电极包括沿所述基体周向方向延伸的第八电极,所述第八电极的一端与所述第五电极连接,所述第八电极的另一端与所述第六电极连接。
  7. 根据权利要求6所述的加热器,其特征在于,所述基体包括近端和远端,所述第七电极和所述第八电极设置在所述电加热膜层与所述基体远端之间。
  8. 根据权利要求6所述的加热器,其特征在于,所述第一电极和所述第二电极呈U字形状或者H字形状。
  9. 根据权利要求1所述的加热器,其特征在于,所述第三电极和所述第四电极之间没有设置电加热膜层,所述第五电极和所述第六电极之间没有设置电加热膜层;或者,
    所述电加热膜层还包括第三电加热膜层和第四电加热膜层,所述第三电加热膜层设置在所述第三电极和所述第四电极之间,所述第四电加热膜层设置在所述第五电极和所述第六电极之间。
  10. 根据权利要求1所述的加热器,其特征在于,所述基体被构造成管状结构;
    所述基体的内径介于6mm~15mm且所述基体的轴向延伸长度介于15mm~30mm。
  11. 根据权利要求1所述的加热器,其特征在于,所述电加热膜层包括用于接受电功率产生热量进而生成红外线的红外电热涂层。
  12. 根据权利要求1所述的加热器,其特征在于,所述电加热膜层的轴向延伸长度小于或者等于所述基体的轴向延伸长度。
  13. 根据权利要求1所述的加热器,其特征在于,所述基体包括近 端和远端;
    所述电加热膜层与所述基体的近端和远端间隔设置,所述电加热膜层与所述基体近端之间的间隔距离小于所述电加热膜层与所述基体远端之间的间隔距离。
  14. 根据权利要求1所述的加热器,其特征在于,所述第一电加热膜层的轴向延伸长度与所述第二电加热膜层的轴向延伸长度相同,而所述第一电加热膜层的周向延伸长度与所述第二电加热膜层的周向延伸长度不相同;或者,
    第一电加热膜层的电阻与所述第二电加热膜层的电阻不相同;或者,
    所述第一电加热膜层的加热功率与所述第二电加热膜层的加热功率不相同;或者,
    所述第三电极沿所述基体的第一周向方向与所述第五电极之间具有第一周向距离,所述第四电极沿与所述基体的第二周向方向与所述第六电极之间具有第二周向距离,所述第一周向距离与所述第二周向距离不相同。
  15. 一种气溶胶生成装置,其特征在于,包括:
    壳体组件;
    权利要求1-14任一所述的加热器,所述加热器设置在所述壳体组件内;
    电芯,用于提供电功率。
PCT/CN2023/131708 2022-12-08 2023-11-15 加热器以及气溶胶生成装置 WO2024120141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211573314.1 2022-12-08
CN202211573314.1A CN118160983A (zh) 2022-12-08 2022-12-08 加热器以及气溶胶生成装置

Publications (1)

Publication Number Publication Date
WO2024120141A1 true WO2024120141A1 (zh) 2024-06-13

Family

ID=91347538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131708 WO2024120141A1 (zh) 2022-12-08 2023-11-15 加热器以及气溶胶生成装置

Country Status (2)

Country Link
CN (1) CN118160983A (zh)
WO (1) WO2024120141A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107116A (ja) * 2016-12-27 2018-07-05 株式会社アドバネクス 発熱体
US20190343179A1 (en) * 2018-05-10 2019-11-14 Rai Strategic Holdings, Inc. Control component for segmented heating in an aerosol delivery device
CN113367409A (zh) * 2021-07-22 2021-09-10 深圳市基克纳科技有限公司 一种气溶胶生成装置的发热管和气溶胶生成装置
CN113647691A (zh) * 2021-07-23 2021-11-16 深圳麦时科技有限公司 加热组件和气溶胶产生装置
CN216875043U (zh) * 2021-12-31 2022-07-05 芜湖艾尔达科技有限责任公司 加热组件、气溶胶生成装置及流体加热装置
CN217184816U (zh) * 2022-01-14 2022-08-16 芜湖艾尔达科技有限责任公司 一种电加热管及电子烟
CN219353089U (zh) * 2022-12-08 2023-07-18 深圳市合元科技有限公司 加热器及气溶胶生成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107116A (ja) * 2016-12-27 2018-07-05 株式会社アドバネクス 発熱体
US20190343179A1 (en) * 2018-05-10 2019-11-14 Rai Strategic Holdings, Inc. Control component for segmented heating in an aerosol delivery device
CN113367409A (zh) * 2021-07-22 2021-09-10 深圳市基克纳科技有限公司 一种气溶胶生成装置的发热管和气溶胶生成装置
CN113647691A (zh) * 2021-07-23 2021-11-16 深圳麦时科技有限公司 加热组件和气溶胶产生装置
CN216875043U (zh) * 2021-12-31 2022-07-05 芜湖艾尔达科技有限责任公司 加热组件、气溶胶生成装置及流体加热装置
CN217184816U (zh) * 2022-01-14 2022-08-16 芜湖艾尔达科技有限责任公司 一种电加热管及电子烟
CN219353089U (zh) * 2022-12-08 2023-07-18 深圳市合元科技有限公司 加热器及气溶胶生成装置

Also Published As

Publication number Publication date
CN118160983A (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
WO2022048569A1 (zh) 气溶胶生成装置以及红外加热器
WO2022012678A1 (zh) 加热器以及包括该加热器的烟具
WO2021129679A1 (zh) 加热器以及包括该加热器的烟具
CN219353089U (zh) 加热器及气溶胶生成装置
US20230284699A1 (en) Heater and cigarette device with the heater
CN219781579U (zh) 加热器及气溶胶生成装置
WO2021104471A1 (zh) 加热器以及包含该加热器的烟具
CN219182820U (zh) 加热组件以及气溶胶生成装置
WO2021104472A1 (zh) 加热器以及包括该加热器的烟具
WO2021129675A1 (zh) 加热器以及包含该加热器的烟具
WO2022095900A1 (zh) 气溶胶生成装置及其控制方法
EP4218448A1 (en) Aerosol generation device and infrared heater
WO2024017059A1 (zh) 加热组件以及气溶胶生成装置
CN215347048U (zh) 气溶胶生成装置以及红外加热器
CN219182821U (zh) 加热组件以及气溶胶生成装置
WO2022028430A1 (zh) 加热器以及含有该加热器的烟具
WO2024120141A1 (zh) 加热器以及气溶胶生成装置
WO2022095899A1 (zh) 气溶胶生成装置
WO2024120193A1 (zh) 加热器及其制作方法、气溶胶生成装置
WO2024060982A1 (zh) 加热组件以及气溶胶生成装置
WO2024017062A1 (zh) 加热器以及包括该加热器的气溶胶生成装置
JP7510569B2 (ja) ヒータ及び該ヒータを含む喫煙具
WO2024017370A1 (zh) 气溶胶生成装置及其控制方法、生成气溶胶的方法