WO2024119684A1 - 一种离心式分散装置 - Google Patents

一种离心式分散装置 Download PDF

Info

Publication number
WO2024119684A1
WO2024119684A1 PCT/CN2023/087828 CN2023087828W WO2024119684A1 WO 2024119684 A1 WO2024119684 A1 WO 2024119684A1 CN 2023087828 W CN2023087828 W CN 2023087828W WO 2024119684 A1 WO2024119684 A1 WO 2024119684A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
wall
cylinder
slurry
flow channel
Prior art date
Application number
PCT/CN2023/087828
Other languages
English (en)
French (fr)
Inventor
杜保东
可建
金旭东
石桥
Original Assignee
深圳市尚水智能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市尚水智能股份有限公司 filed Critical 深圳市尚水智能股份有限公司
Publication of WO2024119684A1 publication Critical patent/WO2024119684A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis

Definitions

  • the present application relates to the technical field of slurry dispersion equipment, and in particular to a centrifugal dispersion device.
  • the existing twin-screw extruder has all the functional components strung together on two parallel screws, including all functions of powder conveying, powder mixing, kneading, dilution and dispersion.
  • the speed requirement of the dispersion function is inconsistent with the speed requirement of the previous other functions and the difference is extremely large, the dispersion effect cannot meet the use requirements.
  • twin-screw extruders The current solution to the insufficient dispersion capacity of twin-screw extruders on the market is to add a buffer tank at the rear end of the twin-screw and use the high and low speed stirring shafts of the buffer tank to disperse the slurry.
  • this solution sacrifices the natural advantage of continuous production of the twin-screw extruder.
  • the twin-screw itself is a continuous production, which liberates production capacity, but the buffer tank at the back can only mix batches before outputting to the back-end process, which cannot achieve continuous pulping operations and reduces production capacity.
  • the technical problem to be solved by the present application is to overcome the defects of the prior art that continuous pulping operation cannot be achieved, the pulping capacity is small, and the efficiency is low, thereby providing a centrifugal dispersion device.
  • a centrifugal dispersing device comprises: a barrel, a plurality of rotor units and a plurality of stator units; the barrel is connected to the discharge end of a screw extruder, and a shaft core driven to rotate by a driving member is arranged in the barrel; the rotor unit comprises a rotor inner barrel, a rotor outer barrel and a stator connected between the rotor inner barrel and the rotor outer barrel.
  • the rotor inner cylinder is fixedly sleeved on the shaft core and rotates with the shaft core, the rotor inner cylinder and the rotor outer cylinder form a rotor cavity on at least one side of the rotor rib plate, and a plurality of flow holes communicating with the rotor cavity are opened on the cylinder wall of the rotor outer cylinder;
  • the plurality of stator units and the plurality of rotor units are alternately arranged in the axial direction of the shaft core, and the stator unit comprises a stator cylinder fixedly connected to the inner wall of the cylinder and a baffle extending from the inner wall of the stator cylinder to the gap between two adjacent rotor units;
  • a first flow passage for shearing the slurry is formed between the inner wall of the stator cylinder and the outer wall of the rotor outer cylinder, and the first flow passage is communicated with the plurality of flow holes.
  • a second flow channel for shearing the slurry is formed between the opposite side walls of the barrier portion and the corresponding side walls of the rotor outer tube
  • a third flow channel for shearing the slurry is formed between the inner wall of the barrier portion facing the shaft core and the outer wall of the rotor inner tube
  • the first flow channel, the second flow channel and the third flow channel are connected in sequence
  • the third flow channel is connected to the two second flow channels on both sides of the corresponding barrier portion.
  • the distance between the inner wall of the barrier portion and the inner wall of the stator cylinder is greater than the distance between the inner wall of the rotor outer cylinder and the inner wall of the stator cylinder.
  • the flow directions of the first flow channel and the third flow channel are in the same direction as the axial direction of the shaft core, and the flow direction of the second flow channel is perpendicular to the axial direction of the shaft core.
  • a width of the first flow channel is 2-3 mm.
  • the rotor cavity is a cavity structure with the rotor rib plate as the cavity bottom wall, the outer wall of the rotor inner tube as the cavity inner peripheral wall, the inner wall of the rotor outer tube as the cavity outer peripheral wall, and the end facing away from the rotor rib plate is open, and the rotor cavity is directly connected to the second flow channel and the third flow channel.
  • the rotor rib plate is integrally formed in the middle of the rotor inner tube and the rotor outer tube, the rotor cavities are formed on opposite sides of the rotor rib plate, and the flow holes are provided on the rotor outer tube corresponding to the two rotor cavities.
  • the plurality of flow holes are evenly spaced along the circumference of the rotor outer cylinder.
  • a front end plate suitable for connecting to a screw extruder is provided at the port of the barrel, and the front end plate is sealed and connected to the outer barrel of the continuous pulping equipment via fasteners.
  • a rear end plate is provided on the side of the cylinder close to the slurry outlet, the driving member is sealingly connected to the rear end plate, the driving member is a motor, a main shaft extending into the cylinder is connected to the output end of the motor, the shaft core is connected to the outer periphery of the main shaft, and the cylinder and the main shaft are sealingly connected.
  • the dispersion speed of the rotor unit is 10-30 m/s.
  • the centrifugal dispersing device comprises a plurality of stator units and a plurality of rotor units which are interlaced and installed in a cylinder body, a rotor inner cylinder is fixedly sleeved on an axis core and rotates with the axis core, a rotor inner cylinder and a rotor outer cylinder are provided with a rotor cavity on at least one side of a rotor rib plate, and a plurality of flow holes communicating with the rotor cavity are opened on the cylinder wall of the rotor outer cylinder; a first flow channel is formed between the inner wall of the stator cylinder body and the outer wall of the rotor outer cylinder, and the first flow channel is communicated with the plurality of flow holes, and when the slurry is extruded from the screw extruder and flows into the cylinder body, and the slurry flows into the rotor cavity, since the rotor unit rotates with the axis core, the
  • the inner wall of the rotor outer cylinder is pressed against the outer wall, that is, the slurry flows through the flow hole.
  • the flow hole filled with slurry produces local pressure changes under the flow of slurry.
  • the local pressure changes will diverge around the flow hole, thereby driving the slurry to make irregular movements, so as to achieve the preliminary overall dispersion of the slurry; and the slurry forms turbulence in the flow hole, which can further disperse the slurry; the slurry flows to the first flow channel after being dispersed through the flow hole on the rotor outer cylinder.
  • the centrifugal dispersion device has a strong dispersion ability, can achieve rapid dispersion of the slurry, and improve the dispersion efficiency of the slurry.
  • the centrifugal dispersion device has a second flow channel formed between the opposite side walls of the baffle and the side walls of the corresponding rotor outer tube, and a third flow channel formed between the inner wall of the baffle facing the shaft core and the outer wall of the rotor inner tube; the first flow channel, the second flow channel and the third flow channel are connected in sequence, and the third flow channel is connected to the two second flow channels on both sides of the corresponding baffle.
  • the slurry flows through the second flow channel and the third flow channel in sequence, and enters the next rotor unit for centrifugal dispersion.
  • the centrifugal dispersing device has a baffle disposed between two rotor units to baffle the slurry in the rotor cavity, preventing the slurry from flowing out of the cavity opening of the rotor cavity during rotation, so that the slurry adheres to the outer cylinder of the rotor.
  • the baffle forms turbulence on the flow of the slurry, so that part of the slurry flows back to the first flow channel and is sheared and dispersed again, thereby improving the dispersion of the slurry.
  • the baffle effectively improves the dispersing ability of the centrifugal dispersing device, and can fully disperse the slurry.
  • the centrifugal dispersion device has rotor cavities formed on both sides of the rotor ribs of the rotor outer cylinder, and flow holes are provided on the wall surfaces of the two rotor cavities on both sides of the rotor outer cylinder.
  • the opening of the rotor cavity at the rear side is connected to the second flow channel, and part of the slurry enters the rotor cavity at the rear side and is centrifugally dispersed again, and re-enters the first flow channel.
  • the rotor cavities are formed on both sides of the rotor ribs, so that the slurry can be reciprocated and centrifugally dispersed, and the slurry can be fully dispersed, which effectively improves the efficiency of centrifugal dispersion.
  • FIG1 is an exploded view of a centrifugal dispersion device provided in some embodiments of the present application.
  • FIG2 is a half-sectional view of a centrifugal dispersion device provided in some embodiments of the present application.
  • FIG3 is a structural view of the portion A shown in FIG2 ;
  • FIG. 4 is a schematic diagram of the structure of a rotor unit of a centrifugal dispersion device provided in some embodiments of the present application.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • a centrifugal dispersing device proposed in the present application includes: a barrel 1, a plurality of rotor units 2 and a plurality of stator units 3; the barrel 1 is connected to the discharge end of the screw extruder, and an axis core 4 driven to rotate by a driven member 5 is provided in the barrel 1; the rotor unit 2 includes a rotor inner barrel 21, a rotor outer barrel 22 and a rotor rib plate 23 connected between the rotor inner barrel 21 and the rotor outer barrel 22, the rotor inner barrel 21 is fixedly sleeved on the axis core 4 and rotates with the axis core 4, the rotor inner barrel 21 and the rotor outer barrel 22 form a rotor cavity 6 on at least one side of the rotor rib plate 23, and a plurality of flow holes 221 communicating with the rotor cavity 6 are opened on the barrel wall of the rotor outer barrel 22.
  • the stator unit 3 comprises a stator cylinder 30 fixedly connected to the inner wall of the cylinder 1 and a baffle 31 extending from the inner wall of the stator cylinder 30 to the gap between two adjacent rotor units 2 .
  • a first flow channel 7 is formed between the inner wall of the stator cylinder 30 and the outer wall of the rotor outer cylinder 22, and the first flow channel 7 is connected to multiple flow holes 221; a second flow channel 8 is formed between the opposite side walls of the partition part 31 and the corresponding side walls of the rotor outer cylinder 22, and a third flow channel 9 is formed between the inner wall of the partition part 31 facing the shaft core 4 and the outer wall of the rotor inner cylinder 21.
  • the first flow channel 7, the second flow channel 8 and the third flow channel 9 are connected in sequence, and the third flow channel 9 is connected to the two second flow channels 8 on both sides of the corresponding partition part 31.
  • a plurality of stator units 3 and a plurality of rotor units 2 are alternately arranged in the axial direction of the shaft core 4, the rotor inner cylinder 21 is fixedly sleeved on the shaft core 4 and rotates with the shaft core 4, the rotor inner cylinder 21 and the rotor outer cylinder 22 form a rotor cavity 6 on at least one side of the rotor rib plate 23, and a plurality of flow holes 221 communicating with the rotor cavity 6 are opened on the cylinder wall of the rotor outer cylinder 22; the inner wall of the stator cylinder 30 and the outer wall of the rotor outer cylinder 22 A first flow passage 7 for shearing the slurry is formed therebetween, and the first flow passage 7 is connected to a plurality of flow holes 221 .
  • a second flow channel 8 for shearing the slurry is formed between the opposite side walls of the barrier portion 31 and the corresponding side walls of the rotor outer tube 22, and a third flow channel 9 for shearing the slurry is formed between the inner wall of the barrier portion 31 facing the shaft core 4 and the outer wall of the rotor inner tube 21; the first flow channel 7, the second flow channel 8 and the third flow channel 9 are connected in sequence, and the third flow channel 9 is connected to the two second flow channels 8 on both sides of the corresponding barrier portion 31.
  • the local pressure change will diverge to the surrounding of the flow hole 221, thereby driving the slurry to do irregular movement, so as to achieve the initial slurry
  • the slurry is dispersed as a whole; and the slurry forms turbulence in the flow holes 221, which can further disperse the slurry; the slurry flows to the first flow channel 7 after being dispersed through the flow holes 221 on the rotor outer cylinder 22.
  • the stator cylinder 30 blocks the slurry flowing out of the flow holes 221, so that part of the slurry refluxes, and the slurry reciprocates through the flow holes 221. Dense convection can be formed between multiple flow holes 221, and the initial dispersion of the slurry is quickly completed;
  • the relative movement of the rotor unit 2 and the stator unit 3 generates a large shear force in the first flow channel 7, so as to perform secondary shear dispersion on the slurry in the first flow channel 7.
  • the slurry flows backward along the axis from the first flow channel 7, and under the action of the baffle 31, the slurry flows through the second flow channel 8 and the third flow channel 9 in sequence, and enters the next rotor unit 2 for centrifugal dispersion.
  • the centrifugal dispersion device has a strong dispersion ability, can realize rapid dispersion of the slurry, and improve the dispersion efficiency of the slurry.
  • a plurality of flow holes 221 communicating with the rotor cavity 6 are provided on the wall of the rotor outer cylinder 22.
  • the number, shape and size of the flow holes 221 are not limited to the present application. The smaller the size of the flow holes 221, the stronger its centrifugal dispersion ability, but the slower the dispersion efficiency.
  • the dispersion holes can be evenly distributed along the circumference of the wall of the rotor outer cylinder 22, or irregularly distributed.
  • the stator units 3 and the rotor units 2 are arranged alternately.
  • the specific number of the stator units 3 and the rotor units 2 can be determined according to the slurry introduced during actual application. Increasing the number of groups of stator units 3 and rotor units 2 can enhance the dispersion ability. In some embodiments of the present application, a structure of three stator units 3 and three rotor units 2 is adopted. The specific number of rotor units 2 and stator units 3 is not limited to the present application.
  • the barrier portion In the radial direction of the shaft core 4, the barrier portion The distance between the inner wall of the rotor outer cylinder 22 and the inner wall of the stator cylinder 30 is greater than the distance between the inner wall of the rotor outer cylinder 22 and the inner wall of the stator cylinder 30 .
  • the slurry will preferentially adhere to the inner wall of the rotor outer cylinder 22, so before the slurry flows through the third flow channel 9 and enters the next rotor unit 2, the slurry will automatically fill the area outside the inner wall of the baffle 31, that is, the slurry will completely submerge all the flow holes 221 on the rotor unit 2, so as to achieve full centrifugal dispersion of the slurry.
  • the baffle 31 provided between the two rotor units 2 blocks the slurry in the rotor cavity 6 to prevent the slurry from flowing out of the cavity of the rotor cavity 6 during rotation, so that the slurry adheres to the rotor outer cylinder 22.
  • the baffle 31 forms turbulence for the flow of the slurry, so that part of the slurry flows back to the first flow channel 7 and is sheared and dispersed again, thereby improving the dispersion of the slurry.
  • the baffle 31 effectively improves the dispersion capacity of the centrifugal dispersion device, so that the slurry can be fully dispersed.
  • the flow directions of the first flow channel 7 and the third flow channel 9 are in the same direction as the axial direction of the shaft core 4 , and the flow direction of the second flow channel 8 is perpendicular to the axial direction of the shaft core 4 .
  • the width of the first flow channel 7 is 2-3 mm.
  • the width of the first flow channel 7 is the distance between the outer wall of the rotor outer cylinder 22 and the inner wall of the stator cylinder 30.
  • the width of the first flow channel 7 is narrower, the shear force in the first flow channel 7 is greater, and the rotation speed of the rotor unit 2 is slower.
  • the greater the shear force the higher the dispersion of the slurry, the slower the rotation speed of the rotor unit 2, and the slower the dispersion efficiency of the slurry.
  • the width of the first pot channel is set at 2-3mm, and the dispersion speed of the rotor unit 2 is 10-30m/s.
  • the dispersion speed of the rotor unit 2 is adjustable.
  • the rotation speed of the rotor unit 2 can be adjusted according to the components, viscosity and other characteristics of the slurry to match the requirements of different slurries for shear dispersion efficiency.
  • the speed adjustment method of the rotor unit 2 can be adjusted by changing the speed of the driving member 5 through the PLC controller.
  • the speed adjustment method of the rotor unit 2 is not a limitation of the present application.
  • the specifications and sizes of the rotor unit 2 and the stator unit 3 can be changed according to the properties of the slurry introduced, so as to change the width of the first flow channel 7 .
  • the rotor cavity 6 is a cavity structure with the rotor rib 23 as the cavity bottom wall, the outer wall of the rotor inner tube 21 as the cavity inner peripheral wall, the inner wall of the rotor outer tube 22 as the cavity outer peripheral wall, and the end facing away from the rotor rib 23 is open, and the rotor cavity 6 is directly connected to the second flow channel 8 and the third flow channel 9.
  • the rotor rib plate 23 is integrally formed at the middle of the rotor inner cylinder 21 and the rotor outer cylinder 22, and rotor cavities 6 are formed on opposite sides of the rotor rib plate 23.
  • the sub-outer cylinder 22 is provided with a flow hole 221 .
  • the rotor outer cylinder 22 is formed with rotor cavities 6 on both sides of the rotor rib plate 23, and the wall surfaces of the two rotor cavities 6 on the corresponding sides of the rotor outer cylinder 22 are provided with flow holes 221.
  • the slurry After the slurry is centrifugally dispersed in the rotor cavity 6 at the front end of the rotor rib plate 23, it enters the first flow channel 7 and is sheared and dispersed again.
  • the slurry flows along the rear side of the axis in the first flow channel 7, and after being blocked by the baffle 31, turbulence is formed, part of it flows back to the first flow channel 7, and part of it flows along the second flow channel 8.
  • the opening of the rotor cavity 6 at the rear end of the rotor rib plate 23 is connected with the second flow channel 8, and part of the slurry enters the rotor cavity 6 on the opposite rear side and is centrifugally dispersed again, and re-enters the first flow channel 7.
  • the rotor cavities 6 are formed on both sides of the rotor rib plate 23, so that the slurry can be reciprocated and centrifugally dispersed, and the slurry can be fully dispersed, which effectively improves the efficiency of centrifugal dispersion.
  • the rotor cavity 6 is a smooth cavity without dead corners, which avoids the accumulation of slurry in the dead zone and affects the dispersion and flow of the slurry.
  • a plurality of flow holes 221 are evenly spaced along the circumference of the rotor outer cylinder 22, so that when the rotor unit 2 rotates, the slurry is dispersed from the rotor cavity 6, and the plurality of flow holes 221 can form dense convection to quickly disperse the slurry.
  • the shape of the flow hole 221 can be circular, elliptical or square, and the specific shape of the flow hole 221 is not limited to the present application.
  • a front end plate 11 suitable for connecting to a screw extruder is provided at the end of the barrel 1, and the front end plate 11 is sealed and connected to the outer barrel of the screw extruder via fasteners.
  • the barrel 1 is sealed and connected to the end plate of the discharge end of the screw extruder.
  • a front end plate 11 is fixedly provided at one end of the barrel 1, and the front end plate 11 of the barrel 1 and the discharge end of the screw extruder are fixedly connected by a plurality of connecting bolts.
  • a sealing component is provided on the connection surface between the front end plate 11 and the discharge end of the screw extruder.
  • Such a configuration can not only ensure a good seal at the connection between the barrel 1 and the screw extruder to prevent slurry leakage; but also has a simple structure and is easy to install, which is conducive to shortening the interval between the end of the screw extruder and the rotor unit 2, and avoiding the problem of local sedimentation of the slurry due to the long interval, which affects the quality of the slurry product.
  • a rear end plate 12 is provided on the side of the cylinder 1 close to the slurry outlet, and the driving member 5 is sealed and connected to the rear end plate 12.
  • the driving member 5 is a motor, and a main shaft 51 extending into the cylinder 1 is connected to the output end of the motor.
  • the shaft core 4 is connected to the outer periphery of the main shaft 51, and the cylinder 1 and the main shaft 51 are sealed and connected.
  • the driving member 5 is a motor, and the output end of the motor is connected to a main shaft extending into the cylinder 1. 51, the shaft core 4 is fixedly connected to the outer periphery of the main shaft 51, and as the main shaft 51 rotates, the cylinder 1 and the main shaft 51 are sealed and connected. Specifically, a sealing structure is provided at the connection between the rear end plate 12 of the cylinder 1 and the main shaft 51, and the sealing structure can prevent the slurry from leaking outward from the gap at the connection between the cylinder 1 and the main shaft 51.
  • a medium heat exchange channel is provided on the cylinder wall of the cylinder 1, and the medium heat exchange channel has a medium inlet and a medium outlet, and the medium heat exchange channel is spirally arranged around the circumferential wall of the cylinder 1.
  • the medium heat exchange channel is a refrigerant channel, and the refrigerant medium enters from the medium inlet and flows out from the medium outlet after passing through the refrigerant channel.
  • the refrigerant medium can take away part of the heat of the cylinder 1 to cool the slurry in the cylinder 1.
  • the medium heat exchange channel is a heat medium channel, and the heat medium enters from the medium inlet and flows out from the medium outlet after passing through the heat medium channel.
  • the heat medium can heat the slurry in the cylinder 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

一种离心式分散装置,包括:筒体(1)、多个转子单元(2)和多个定子单元(3);浆料流进转子腔(6)内时,由于转子单元(2)随着轴芯(4)转动,在离心力作用下,浆料向转子外筒(22)的内壁贴合挤压,过流孔(221)产生局部压力变化,局部压力变化会发散到过流孔(221)的周围,从而带动浆料做不规则运动;浆料经过转子外筒(22)上的过流孔(221)分散后流向第一过流通道(7),第一过流通道(7)内产生较大的剪切力,以浆料进行二次剪切分散;浆料从第一过流通道(7)沿轴线向后流动,在隔挡部(31)的作用下,浆料依次流经第二过流通道(8)和第三过流通道(9),进入下一个转子单元(2)被离心分散。

Description

一种离心式分散装置
相关申请的交叉引用
本申请要求在2022年12月7日提交中国专利局、申请号为202211570043.4、发明名称为“一种离心式分散装置”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及浆料分散设备技术领域,具体涉及一种离心式分散装置。
背景技术
现有的双螺杆挤出装置是将所有的功能元件全部串在两根平行螺杆上,包含粉体输送、粉体混合、捏合、稀释、分散所有功能,但是由于分散功能对转速的需求与前面其它功能对转速的需求并不一致,并且相差极大,所以分散效果不能满足使用需求。
市面上目前解决双螺杆分散能力不足的方式是在双螺杆后端加缓存罐,利用缓存罐的高、低速搅拌轴去分散浆料,但是这种解决问题的方法牺牲了双螺杆挤出装置连续生产的天然优势,本身双螺杆是连续式生产,解放了产能,但是后面的缓存罐却只能一批批搅拌好才能输出到后端工艺,无法实现连续性制浆作业,降低产能。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中无法实现连续性制浆作业,制浆产能小,效率低的缺陷,从而提供一种离心式分散装置。
为解决上述技术问题,本申请的技术方案如下:
一种离心式分散装置,包括:筒体、多个转子单元和多个定子单元;筒体与螺杆挤出装置的出料端连通,所述筒体内设有受驱动件驱动转动的轴芯;所述转子单元包括转子内筒、转子外筒和连接在所述转子内筒和所述转子外筒之 间的转子筋板,所述转子内筒固定套设于所述轴芯上随所述轴芯转动,所述转子内筒和转子外筒在所述转子筋板的至少一侧形成有转子腔,所述转子外筒的筒壁上开设有多个与所述转子腔相通的所述过流孔;
多个所述定子单元与多个转子单元在所述轴芯的轴向方向上交替设置,所述定子单元包括与所述筒体内壁固定连接的定子筒体和由所述定子筒体的内壁伸向相邻两个所述转子单元之间间隙处的隔挡部;
所述定子筒体的内壁和所述转子外筒的外壁之间形成有用于对浆料进行剪切的第一过流通道,所述第一过流通道与多个所述过流孔连通。
根据本申请的一些实施例,所述隔挡部的相对两侧壁和对应的所述转子外筒的侧壁之间形成有用于对浆料进行剪切的第二过流通道,所述隔挡部朝向所述轴芯的内壁和所述转子内筒的外壁之间形成有用于对浆料进行剪切的第三过流通道,所述第一过流通道、所述第二过流通道和所述第三过流通道依次连通,所述第三过流通道连通对应的所述隔挡部两侧的两条所述第二过流通道。
根据本申请的一些实施例,在所述轴芯的径向方向上,所述隔挡部的内壁和所述定子筒体的内壁之间的间距大于所述转子外筒的内壁和所述定子筒体的内壁之间的间距。
根据本申请的一些实施例,所述第一过流通道和所述第三过流通道的流向与所述轴芯的轴线方向同向,所述第二过流通道的流向与所述轴芯的轴线方向垂直。
根据本申请的一些实施例,所述第一过流通道的宽度为2-3mm。
根据本申请的一些实施例,所述转子腔为以所述转子筋板为腔体底壁、以所述转子内筒的外壁为腔体内周壁、以所述转子外筒的内壁为腔体外周壁、且背向所述转子筋板一端为敞口的腔体结构,所述转子腔与所述第二过流通道和所述第三过流通道均直接相通。
根据本申请的一些实施例,所述转子筋板一体成型于所述转子内筒和所述转子外筒的中部,所述转子筋板的相对两侧均形成有所述转子腔,对应两个所述转子腔的所述转子外筒上均设有所述过流孔。
根据本申请的一些实施例,所述过流孔有多个,多个所述过流孔沿所述转子外筒的周向均匀间隔布置。
根据本申请的一些实施例,所述筒体端口处设有适于与螺杆挤出装置连接的前端板,所述前端板通过紧固件与连续制浆设备的外筒密封连接。
根据本申请的一些实施例,所述筒体靠近浆料出口的一侧设置有后端板,所述驱动件与所述后端板密封连接,所述驱动件为电机,所述电机的输出端上连接有伸向所述筒体内的主轴,所述轴芯连接在所述主轴的外周,所述筒体和所述主轴密封连接。
根据本申请的一些实施例,所述转子单元的分散速度为10-30m/s。
本申请技术方案,具有如下优点:
1.本申请提供的离心式分散装置,多个定子单元和多个转子单元相互穿插安装在筒体内,转子内筒固定套设于轴芯上随所述轴芯转动,转子内筒和转子外筒在转子筋板的至少一侧形成有转子腔,转子外筒的筒壁上开设有多个与转子腔相通的过流孔;定子筒体的内壁和转子外筒的外壁之间形成有第一过流通道,第一过流通道与多个过流孔连通,当浆料从螺杆挤出装置挤出流进筒体,浆料流进转子腔内时,由于转子单元随着轴芯转动,在离心力作用下,浆料向转子外筒的内壁贴合挤压,即浆料流经过流孔,充满浆料的过流孔内在浆料流动下产生局部压力变化,局部压力变化会发散到过流孔的周围,从而带动浆料做不规则运动,以达到将浆料进行初步的整体分散;而且浆料在过流孔形成紊流,可对浆料进一步分散;浆料经过转子外筒上的过流孔分散后流向第一过流通道,转子单元转动过程中,转子单元和定子单元的相对运动,使得第一过流通道内产生较大的剪切力,以对第一过流通道内的浆料进行二次剪切分散。浆料从第一过流通道沿轴线向后流动。该离心式分散装置,具有较强的分散能力,可实现浆料的快速分散,提高浆料的分散效率。
2.本申请提供的离心式分散装置,隔挡部的相对两侧壁和对应的转子外筒的侧壁之间形成有第二过流通道,隔挡部朝向轴芯的内壁和转子内筒的外壁之间形成有第三过流通道;第一过流通道、第二过流通道和第三过流通道依次连通,第三过流通道连通对应的隔挡部两侧的两条第二过流通道。在隔挡部的作用下,浆料依次流经第二过流通道和第三过流通道,进入下一个转子单元被离心分散。
3.本申请提供的离心式分散装置,设于两个转子单元之间的隔挡部对位于转子腔内的浆料进行隔档,避免转动过程中浆料从转子腔的腔口流出,使得浆料贴合转子外筒,此外,隔挡部对浆料的流动形成湍流,使得部分浆料回流至第一过流通道内被再次剪切分散,提高浆料的分散度。隔挡部有效的提高了该离心式分散装置的分散能力,可使得浆料充分分散。
4.本申请提供的离心式分散装置,转子外筒在转子筋板的相对两侧均形成有转子腔,转子外筒对应两侧的两个转子腔的壁面上均设有过流孔,浆料在相对前端的转子腔经过离心分散后进去第一过流通道内被再次剪切分散,浆料在第一过流通道内沿轴线后侧流动,收到隔挡部的阻挡后,形成湍流,部分回流至第一过流通道,部分沿第二过流通道流动,相对后侧的转子腔的开口与第二过流通道连通,部分浆料进入相对后侧的转子腔内被再次离心分散,重新进入第一过流通道。转子筋板的相对两侧均形成转子腔,使得浆料可被往复离心分散,可使得浆料被充分分散,有效的提高了离心分散的效率。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的一些实施例中提供的离心式分散装置的***视图;
图2为本申请的一些实施例中提供的离心式分散装置的半剖视图;
图3为图2所示的A处的结构视图;
图4为本申请的一些实施例中提供的离心式分散装置的转子单元的结构示意图。
附图标记说明:1、筒体;2、转子单元;3、定子单元;4、轴芯;5、驱动件;6、转子腔;7、第一过流通道;8、第二过流通道;9、第三过流通道;11、前端板;12、后端板;21、转子内筒;22、转子外筒;23、转子筋板;221、过流孔;30、定子筒体;31、隔挡部;51、主轴。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或 位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
参照图1至图4所示,本申请提出的一种离心式分散装置,包括:筒体1、多个转子单元2和多个定子单元3;筒体1与螺杆挤出装置的出料端连通,筒体1内设有受驱动件5驱动转动的轴芯4;转子单元2包括转子内筒21、转子外筒22和连接在转子内筒21和转子外筒22之间的转子筋板23,转子内筒21固定套设于轴芯4上随轴芯4转动,转子内筒21和转子外筒22在转子筋板23的至少一侧形成有转子腔6,转子外筒22的筒壁上开设有多个与转子腔6相通的过流孔221。
多个定子单元3和多个转子单元2在轴芯4的轴向方向上交替设置,定子单元3包括与筒体1内壁固定连接的定子筒体30和由定子筒体30的内壁伸向相邻两个转子单元2之间间隙处的隔挡部31。
定子筒体30的内壁和转子外筒22的外壁之间形成有第一过流通道7,第一过流通道7与多个过流孔221连通;隔挡部31的相对两侧壁和对应的转子外筒22的侧壁之间形成有第二过流通道8,隔挡部31朝向轴芯4的内壁和转子内筒21的外壁之间形成有第三过流通道9,第一过流通道7、第二过流通道8和第三过流通道9依次连通,第三过流通道9连通对应的隔挡部31两侧的两条第二过流通道8。
具体说明,多个定子单元3和多个转子单元2在轴芯4的轴向方向上交替设置,转子内筒21固定套设于轴芯4上随轴芯4转动,转子内筒21和转子外筒22在转子筋板23的至少一侧形成有转子腔6,转子外筒22的筒壁上开设有多个与转子腔6相通的过流孔221;定子筒体30的内壁和转子外筒22的外壁 之间形成有用于对浆料进行剪切的第一过流通道7,第一过流通道7与多个过流孔221连通。
隔挡部31的相对两侧壁和对应的转子外筒22的侧壁之间形成有用于对浆料进行剪切的第二过流通道8,隔挡部31朝向轴芯4的内壁和转子内筒21的外壁之间形成有用于对浆料进行剪切的第三过流通道9;第一过流通道7、第二过流通道8和第三过流通道9依次连通,第三过流通道9连通对应的隔挡部31两侧的两条第二过流通道8。
可以理解的是,当浆料从螺杆挤出装置挤出流进筒体1,浆料流进转子腔6内时,由于转子单元2随着轴芯4转动,在离心力作用下,浆料向转子外筒22的内壁贴合挤压,即浆料流经过流孔221,充满浆料的过流孔221内在浆料流动下产生局部压力变化,局部压力变化会发散到过流孔221的周围,从而带动浆料做不规则运动,以达到将浆料进行初步的整体分散;而且浆料在过流孔221形成紊流,可对浆料进一步分散;浆料经过转子外筒22上的过流孔221分散后流向第一过流通道7,浆料流动到第一过流通道7后,定子筒体30对从过流孔221内流出的浆料进行隔挡,使得部分浆料产生回流,浆料会往复流经过流孔221,多个过流孔221之间可以形成密集的对流,快速完成对浆料的初步分散;
转子单元2转动过程中,转子单元2和定子单元3的相对运动,使得第一过流通道7内产生较大的剪切力,以对第一过流通道7内的浆料进行二次剪切分散。浆料从第一过流通道7沿轴线向后流动,在隔挡部31的作用下,浆料依次流经第二过流通道8和第三过流通道9,进入下一个转子单元2被离心分散。该离心式分散装置,具有较强的分散能力,可实现浆料的快速分散,提高浆料的分散效率。
需要说明,转子外筒22的筒壁上开设有多个与转子腔6相通的过流孔221,过流孔221的数量、形状以及尺寸大小不作为本申请的限制过流孔221的尺寸越小,其离心分散的能力越强,但分散效率会越慢;该分散孔可沿转子外筒22的筒壁周向均匀布设,或不规则分布。
定子单元3和转子单元2交替设置,定子单元3和转子单元2的具体数量可根据实际应用时通入的浆料决定,定子单元3和转子单元2组数的增加可增强分散能力,在本申请的一些实施例中,采用三个定子单元3搭配三个转子单元2的结构,转子单元2和定子单元3的具体数量不作为本申请的限制。
参照图3所示,在本申请的一些实施例,在轴芯4的径向方向上,隔挡部 31的内壁和定子筒体30的内壁之间的间距大于转子外筒22的内壁和定子筒体30的内壁之间的间距。
具体说明,浆料由于离心力会优先贴合转子外筒22的内壁,所以浆料在流经第三过流通道9进入下一个转子单元2之前,浆料会自动填充满隔挡部31内壁以外的区域,即浆料会完全淹没转子单元2上所有的过流孔221,实现对浆料的充分离心分散。设于两个转子单元2之间的隔挡部31对位于转子腔6内的浆料进行隔档,避免转动过程中浆料从转子腔6的腔口流出,使得浆料贴合转子外筒22,此外,隔挡部31对浆料的流动形成湍流,使得部分浆料回流至第一过流通道7内被再次剪切分散,提高浆料的分散度。隔挡部31有效的提高了该离心式分散装置的分散能力,可使得浆料充分分散。
在本申请的一些实施例中,第一过流通道7和第三过流通道9的流向与轴芯4的轴线方向同向,第二过流通道8的流向与轴芯4的轴线方向垂直。
在本申请的一些实施例中,第一过流通道7的宽度为2-3mm。
具体说明,第一过流通道7的宽度即转子外筒22的外壁与定子筒体30的内壁之间的间距,当该间距越小即第一过流通道7的宽度越窄时,第一过流通道7内的剪切力就越大,转子单元2的转动速度越慢。剪切力越大,浆料的分散度就越高,转子单元2的转速越慢,浆料的分散效率就越慢。在本申请的一些实施例中,第一锅通道的宽度设置在2-3mm,转子单元2的分散速度为10-30m/s。
需要说明,转子单元2的分散速度可调,在实际应用中,可以根据浆料的组分、黏度等特性,调节转子单元2的转速,以匹配不同浆料对剪切分散效率的要求,转子单元2的转速调节方式可以通过PLC控制器改变驱动件5的转速的方式进行调节,转子单元2的转速调节方式不作为本申请的限制。
可根据通入浆料的性质,对转子单元2和定子单元3的规格尺寸进行更换,以实现对第一过流通道7宽度大小的更改。
参照图4所示,在本申请的一些实施例中,转子腔6为以转子筋板23为腔体底壁、以转子内筒21的外壁为腔体内周壁、以转子外筒22的内壁为腔体外周壁、且背向转子筋板23一端为敞口的腔体结构,转子腔6与第二过流通道8和第三过流通道9均直接相通。
在本申请的一些实施例,转子筋板23一体成型于转子内筒21和转子外筒22的中部,转子筋板23的相对两侧均形成有转子腔6,对应两个转子腔6的转 子外筒22上均设有过流孔221。
具体说明,转子外筒22在转子筋板23的相对两侧均形成有转子腔6,转子外筒22对应两侧的两个转子腔6的壁面上均设有过流孔221,浆料在位于转子筋板23前端的的转子腔6内经过离心分散后进去第一过流通道7内被再次剪切分散,浆料在第一过流通道7内沿轴线后侧流动,受到隔挡部31的阻挡后,形成湍流,部分回流至第一过流通道7,部分沿第二过流通道8流动,位于转子筋板23后端的转子腔6的开口与第二过流通道8连通,部分浆料进入相对后侧的转子腔6内被再次离心分散,重新进入第一过流通道7。转子筋板23的相对两侧均形成转子腔6,使得浆料可被往复离心分散,可使得浆料被充分分散,有效的提高了离心分散的效率。
可以理解,转子腔6内为光滑无死角的腔体,避免了浆料在死区内堆积,影响浆料的分散和流动。
在本申请的一些实施例中,过流孔221有多个,多个过流孔221沿转子外筒22的周向均匀间隔布置。
具体说明,过流孔221沿转子外筒22的周向均匀间隔布置多个,使得当转子单元2转动时,使得浆料从转子腔6内被分散出去,多个过流孔221可以形成密集的对流,快速完成对浆料的分散。过流孔221的形状可为圆形或椭圆形或方形,过流孔221的具体形状不作为本申请的限制。
根据本申请的一些实施例,筒体1端口处设有适于与螺杆挤出装置连接的前端板11,前端板11通过紧固件与螺杆挤出装置的外筒密封连接。
具体说明,筒体1密封连接在螺杆挤出装置出料端的端板上。具体的,筒体1的一端固定设有前端板11,筒体1的前端板11和螺杆挤出装置出料端通过多个连接螺栓固定连接。前端板11和螺杆挤出装置出料端之间的连接面上设有密封部件,如此设置,不仅可以保证筒体1和螺杆挤出装置连接处的良好密封,防止出现浆料泄漏;而且结构简单、安装方便,有利于缩短螺杆挤出装置末端和转子单元2之间的间隔,避免因间隔过长导致浆料出现局部沉降而影响浆料产品质量的问题。
根据本申请的一些实施例,筒体1靠近浆料出口的一侧设置有后端板12,驱动件5与后端板12密封连接,驱动件5为电机,电机的输出端上连接有伸向筒体1内的主轴51,轴芯4连接在主轴51的外周,筒体1和主轴51密封连接。
具体说明,驱动件5为电机,电机的输出端上连接有伸向筒体1内的主轴 51,轴芯4与主轴51的外周固定连接,随着主轴51转动,筒体1和主轴51密封连接。具体的,筒体1的后端板12和主轴51的连接处设有密封结构,密封结构可以防止浆料从筒体1和主轴51连接处的缝隙向外泄漏。
可以理解的是,筒体1的筒壁上设有介质换热通道,介质换热通道具有介质入口和介质出口,介质换热通道环绕筒体1的周壁螺旋设置。具体的,介质换热通道为冷媒通道,冷媒介质从介质入口进入经过冷媒通道后从介质出口流出,冷媒介质可以带走筒体1的一部分热量,以对筒体1内浆料进行降温。或者,介质换热通道为热媒通道,热媒介质从介质入口进入经过热媒通道后从介质出口流出,热媒介质可以对筒体1内浆料进行加热。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种离心式分散装置,其特征在于,包括:
    筒体(1),与螺杆挤出装置的出料端连通,所述筒体(1)内设有受驱动件(5)驱动转动的轴芯(4);
    多个转子单元(2),所述转子单元(2)包括转子内筒(21)、转子外筒(22)和连接在所述转子内筒(21)和所述转子外筒(22)之间的转子筋板(23),所述转子内筒(21)固定套设于所述轴芯(4)上随所述轴芯(4)转动,所述转子内筒(21)和转子外筒(22)在所述转子筋板(23)的至少一侧形成有转子腔(6),所述转子外筒(22)的筒壁上开设有多个与所述转子腔(6)相通的过流孔(221);
    多个定子单元(3),与多个所述转子单元(2)在所述轴芯(4)的轴向方向上交替设置,所述定子单元(3)包括与所述筒体(1)内壁固定连接的定子筒体(30)和由所述定子筒体(30)的内壁伸向相邻两个所述转子单元(2)之间间隙处的隔挡部(31);
    所述定子筒体(30)的内壁和所述转子外筒(22)的外壁之间形成有用于对浆料进行剪切的第一过流通道(7),所述第一过流通道(7)与多个所述过流孔(221)连通。
  2. 根据权利要求1所述的离心式分散装置,其特征在于,所述隔挡部(31)的相对两侧壁和对应的所述转子外筒(22)的侧壁之间形成有用于对浆料进行剪切的第二过流通道(8),所述隔挡部(31)朝向所述轴芯(4)的内壁和所述转子内筒(21)的外壁之间形成有用于对浆料进行剪切的第三过流通道(9),所述第一过流通道(7)、所述第二过流通道(8)和所述第三过流通道(9)依次连通,所述第三过流通道(9)连通对应的所述隔挡部(31)两侧的两条所述第二过流通道(8)。
  3. 根据权利要求1所述的离心式分散装置,其特征在于,在所述轴芯(4)的径向方向上,所述隔挡部(31)的内壁和所述定子筒体(30)的内壁之间的间距大于所述转子外筒(22)的内壁和所述定子筒体(30)的内壁之间的间距。
  4. 根据权利要求2所述的离心式分散装置,其特征在于,所述第一过流通道(7)和所述第三过流通道(9)的流向与所述轴芯(4)的轴线方向同向,所述第二过 流通道(8)的流向与所述轴芯(4)的轴线方向垂直。
  5. 根据权利要求4所述的离心式分散装置,其特征在于,所述第一过流通道(7)的宽度为2-3mm。
  6. 根据权利要求2所述的离心式分散装置,其特征在于,所述转子腔(6)为以所述转子筋板(23)为腔体底壁、以所述转子内筒(21)的外壁为腔体内周壁、以所述转子外筒(22)的内壁为腔体外周壁、且背向所述转子筋板(23)一端为敞口的腔体结构,所述转子腔(6)与所述第二过流通道(8)和所述第三过流通道(9)均直接相通。
  7. 根据权利要求6所述的离心式分散装置,其特征在于,所述转子筋板(23)一体成型于所述转子内筒(21)和所述转子外筒(22)的中部,所述转子筋板(23)的相对两侧均形成有所述转子腔(6),对应两个所述转子腔(6)的所述转子外筒(22)上均设有所述过流孔(221)。
  8. 根据权利要求7所述的离心式分散装置,其特征在于,所述过流孔(221)有多个,多个所述过流孔(221)沿所述转子外筒(22)的周向均匀间隔布置。
  9. 根据权利要求1所述的离心式分散装置,其特征在于,所述筒体(1)端口处设有适于与所述螺杆挤出装置连接的前端板(11),所述前端板(11)通过紧固件与所述螺杆挤出装置的外筒密封连接。
  10. 根据权利要求1所述的离心式分散装置,其特征在于,所述转子单元(2)的分散速度为10-30m/s。
PCT/CN2023/087828 2022-12-07 2023-04-12 一种离心式分散装置 WO2024119684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211570043.4 2022-12-07
CN202211570043.4A CN115999392A (zh) 2022-12-07 2022-12-07 一种离心式分散装置

Publications (1)

Publication Number Publication Date
WO2024119684A1 true WO2024119684A1 (zh) 2024-06-13

Family

ID=86018296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087828 WO2024119684A1 (zh) 2022-12-07 2023-04-12 一种离心式分散装置

Country Status (2)

Country Link
CN (1) CN115999392A (zh)
WO (1) WO2024119684A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1568888A (en) * 1977-05-19 1980-06-11 Geyer P Extrusion and mixing apparatus
CN111236930A (zh) * 2020-01-17 2020-06-05 中国科学院地质与地球物理研究所 一种剪切式泥浆脉冲发生装置
CN112118903A (zh) * 2018-05-18 2020-12-22 维美德公司 包括转子和定子的混合设备
CN217042141U (zh) * 2022-03-01 2022-07-26 宏工科技股份有限公司 一种筒式分散装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1568888A (en) * 1977-05-19 1980-06-11 Geyer P Extrusion and mixing apparatus
CN112118903A (zh) * 2018-05-18 2020-12-22 维美德公司 包括转子和定子的混合设备
CN111236930A (zh) * 2020-01-17 2020-06-05 中国科学院地质与地球物理研究所 一种剪切式泥浆脉冲发生装置
CN217042141U (zh) * 2022-03-01 2022-07-26 宏工科技股份有限公司 一种筒式分散装置

Also Published As

Publication number Publication date
CN115999392A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2024119689A1 (zh) 一种剪切分散装置及连续制浆设备
CN104647721A (zh) 一种挤出装置
CN107718504A (zh) 一种高流动性的聚乙烯管件成型挤出设备
WO2024119684A1 (zh) 一种离心式分散装置
CN105749774A (zh) 一种管道混合器
CN107159045A (zh) 一种基于液体磁化的预混合式搅拌罐
CN204746226U (zh) 一种焊缝胶制备生产线
CN103770231A (zh) 一种双向拉伸形变协同作用的混合方法及装置
WO2024051094A1 (zh) 多功能捏合式制浆机
WO2023082879A1 (zh) 分散换热设备和搅拌***
CN101259389B (zh) 一种高剪切细化均质机
CN214552715U (zh) 氧化石墨烯浆料均质后用的冷却罐
CN219054910U (zh) 一种窄缝式高速分散装置
CN201643994U (zh) 一种真空乳化搅拌机高效液粉均质乳化装置
CN204911372U (zh) 分散溶解脱泡***
CN219168171U (zh) 一种连续制浆设备
CN211389641U (zh) 一种阻燃pp塑料母料的分散混合装置
CN209278113U (zh) 一种双液泵
CN203739042U (zh) 一种双向拉伸形变协同作用的混合装置
CN220513884U (zh) 一种卧式螺带混料机
CN208406707U (zh) 一种混合装置
CN220390277U (zh) 一种同向旋转的偏心差速双螺杆挤出机
CN219291110U (zh) 一种高效管线式固液混合机
CN220835331U (zh) 一种动态混合器
CN204710222U (zh) 一种汽车密封胶制备用混合釜