WO2024119643A1 - 数据中心浸没式双循环多模式液冷散热调节***及方法 - Google Patents

数据中心浸没式双循环多模式液冷散热调节***及方法 Download PDF

Info

Publication number
WO2024119643A1
WO2024119643A1 PCT/CN2023/080640 CN2023080640W WO2024119643A1 WO 2024119643 A1 WO2024119643 A1 WO 2024119643A1 CN 2023080640 W CN2023080640 W CN 2023080640W WO 2024119643 A1 WO2024119643 A1 WO 2024119643A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
fluorinated liquid
data center
cooling
liquid
Prior art date
Application number
PCT/CN2023/080640
Other languages
English (en)
French (fr)
Inventor
刘旭
李奥
姚江枫
邓梓龙
张程宾
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US18/368,026 priority Critical patent/US11889663B1/en
Publication of WO2024119643A1 publication Critical patent/WO2024119643A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20781Liquid cooling without phase change within cabinets for removing heat from server blades
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20818Liquid cooling with phase change within cabinets for removing heat from server blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to a heat dissipation system, and in particular to an immersion dual-circulation multi-mode liquid cooling heat dissipation adjustment system and method for a data center, belonging to the technical field of server cooling in a computer room.
  • Coolant is one of the key issues of immersion liquid cooling technology.
  • the coolant used in server immersion liquid cooling equipment is usually electronic fluoride liquid.
  • the electronic fluoride liquids Novec7000 and HFE-7100 that can be used for immersion liquid cooling have a boiling point difference of nearly 30°C under standard atmospheric pressure.
  • the impact of different electronic fluoride liquids on the performance of the immersion cooling system is very significant. Therefore, the performance of the electronic fluoride liquid and the server immersion liquid cooling system must be matched to achieve efficient heat dissipation performance.
  • the power consumption of cooling and heat dissipation in data centers accounts for the vast majority of the power consumption of data centers except for the power supply of IT equipment. Therefore, how to solve the heat dissipation problem of data centers with low energy consumption has become a key factor in reducing PUE (Power Usage Effectiveness). Due to the large fluctuation range of server workload, if the cooling system of the cabinet can dynamically and flexibly allocate cooling capacity according to the server workload and perform mode conversion according to the server load size to achieve a match between the cabinet cooling performance and the server cooling requirements, it can avoid the increase of energy consumption of the cabinet cooling system and the waste of cooling capacity when the server is running at low load.
  • PUE Power Usage Effectiveness
  • the present invention proposes a data center immersion dual-circulation multi-mode liquid cooling heat dissipation adjustment system and method, which not only has adaptability to electronic fluorinated liquids of different specifications, but also can adjust the cooling mode according to the data center server load, thereby achieving flexible distribution of cooling capacity and lower energy consumption.
  • the data center immersion dual-circulation multi-mode liquid cooling heat dissipation regulation system of the present invention includes a data center cabinet array, a microchannel condensing heat exchanger, a plate heat exchanger, a first waste heat recovery device, a second waste heat recovery device, a fluorinated liquid storage tank, a second cooling water drive pump, a cooling water storage tank, a fluorinated liquid pump, a first cooling water drive pump, an external back-clamp fan, a single-phase loop cooling water valve, and a two-phase loop cooling water valve;
  • the data center cabinet array is composed of a plurality of data center cabinets, the data center cabinet is connected to the plate heat exchanger through a fluorinated liquid outlet pipe, the outlet end of the plate heat exchanger is connected to the fluorinated liquid storage tank through a fluorinated liquid drive pump and a fluorinated liquid outlet pipe valve, the upper part of the data center cabinet is connected to the microchannel condensing heat exchanger through a fluorinated
  • the upper part of the cooling water storage tank returns to the lower part of the cooling water storage tank through the two-phase loop cooling water valve, the first cooling water drive pump, the microchannel condensing heat exchanger, and the first waste heat recovery device in sequence, thereby forming a cooling water working loop; in addition, the middle part of the cooling water storage tank also returns to the cooling water storage tank through the second waste heat recovery device, the second cooling water drive pump, the plate heat exchanger, and the single-phase loop cooling water valve, thereby forming a second cooling water working loop; the cooling water circulation and the cooling fluorinated liquid circulation are independent of each other, and the two only exchange heat.
  • the data center cabinet array includes multiple data center cabinets.
  • the fluorinated liquid cooling systems of each data center cabinet are connected in parallel to ensure connectivity between various areas.
  • the blade server is fixed inside the data center cabinet and is completely immersed in the fluorinated liquid. Sufficient space for the fluorinated liquid phase change is reserved on the liquid surface inside the data center cabinet.
  • Part of the surface area of the data center cabinet is made of transparent interface low thermal resistance material, which is used to observe the working condition of the blade server inside the cabinet and check whether the remaining amount of fluorinated liquid is sufficient.
  • air pressure sensors, liquid level sensors and temperature sensors are installed inside the data center cabinet.
  • the upper part of the data center cabinet is connected to the microchannel condensation heat exchanger through a fluorinated liquid vapor outlet pipe, that is, the fluorinated liquid vapor outlet is connected to the working medium inlet of the microchannel condensation heat exchanger, and the working medium outlet of the microchannel condensation heat exchanger is connected to the fluorinated liquid storage tank, that is, the fluorinated liquid vapor condenses and exchanges heat inside the microchannel condensation heat exchanger and then flows back to the fluorinated liquid storage tank, and the entire circuit constitutes a fluorinated liquid two-phase circulation circuit; there is a fluorinated liquid outlet pipe at the bottom of the data center cabinet, and the fluorinated liquid outlet pipe is connected to the condensation inlet of the plate heat exchanger, and the low-temperature fluorinated liquid after heat exchange with cooling water flows back into the fluorinated liquid storage tank under the action of the fluorinated liquid drive pump, and the entire circuit constitutes a fluorinated liquid single-phase circulation circuit.
  • the cooling water is deionized distilled water.
  • the electronic fluorinated liquid Fluorinert FC-3283 with high boiling point, wide liquid range, narrow boiling range and good thermal stability is adopted.
  • the electronic fluorinated liquid Novec71DA with low boiling point and wide boiling range is adopted.
  • the fluorinated liquid outlet pipe is an enhanced heat transfer pipe with an internal fin structure and has high thermal conductivity.
  • the microchannel condensing heat exchanger is also equipped with an external back-clamp fan, which uses the convection effect of the external back-clamp fan to further improve the heat dissipation efficiency.
  • microchannel condensing heat exchanger The microchannel condensing heat exchanger, data center cabinet array, fluorinated liquid storage tank, and plate heat exchanger are arranged in descending order of height.
  • the first immersion dual-cycle multi-mode liquid cooling heat dissipation regulation method of the regulation system of the present invention is: when the dual-cycle multi-mode liquid cooling heat dissipation regulation system only works in a single-phase circulation loop, the fluorinated liquid steam pressure relief valve, the two-phase loop cooling water valve, and the first cooling water drive pump are closed, the fluorinated liquid outlet pipeline valve is opened, and the fluorinated liquid outlet pipeline is opened.
  • the cold source of the entire cycle is the low-temperature cold air where the data center cabinet is located, the single-phase loop cooling water valve is closed, and the system works in the ambient cooling mode.
  • the fluorinated liquid flows into the plate heat exchanger driven by gravity, and transfers heat to the external cold air during the flow process; when the cold source of the entire cycle is When low-temperature cooling water is used, the single-phase loop cooling water valve is opened, and the system works in single-phase cooling mode.
  • the cooling water in the cooling water storage tank automatically flows into the plate heat exchanger due to gravity, and the cooling water and high-temperature fluorinated liquid complete heat exchange in the plate heat exchanger.
  • the cooling water that receives heat through the plate heat exchanger flows through the first waste heat recovery device to recover heat and is pumped to the cooling water storage tank to complete the cooling water single-phase cooling cycle;
  • the fluorinated liquid outlet pipe of the plate heat exchanger is connected to the fluorinated liquid storage tank, and the fluorinated liquid after cooling is powered by the fluorinated liquid drive pump and then flows back into the fluorinated liquid storage tank to replenish the fluorinated liquid in the data center cabinet.
  • the second immersed dual-circulation multi-mode liquid cooling heat dissipation regulation method of the regulation system of the present invention is: when the dual-circulation multi-mode liquid cooling heat dissipation regulation system only works in a two-phase circulation loop, the fluorinated liquid outlet pipeline valve, the single-phase loop cooling water valve, and the second cooling water drive pump are closed, and the fluorinated liquid vapor pressure relief valve and the two-phase loop cooling water valve are opened. Due to the pressure difference, the fluorinated liquid vapor is sent to the microchannel condensation heat exchanger through the steam inlet.
  • the cooling water enters the upper cooling water pipeline of the microchannel condensation heat exchanger under the action of the first cooling water drive pump, and is diverted through the microchannel with diamond-shaped micro-heat dissipation columns inside.
  • the fluorinated liquid vapor is liquefied, condensed and released heat at the diamond interface. After absorbing the heat, the droplets are gathered and flow into the cooling water storage tank through the waste heat recovery device with gravity as the driving force. The fluorinated liquid flows back into the fluorinated liquid storage tank under the action of gravity.
  • the third immersed dual-circulation multi-mode liquid cooling heat dissipation regulation method of the regulation system of the present invention is: when the dual-circulation multi-mode liquid cooling heat dissipation regulation system works in the compound cooling mode, that is, the single-phase circulation loop and the two-phase circulation loop are enabled at the same time, the single-phase loop cooling water valve and the two-phase loop cooling water valve, the fluorinated liquid steam pressure relief valve, the first cooling water drive pump, the second cooling water drive pump and the fluorinated liquid outlet pipeline valve are all opened, the fluorinated liquid liquid phase zone in the cabinet enters the single-phase circulation loop, and the fluorinated liquid gas phase zone enters the two-phase circulation loop to achieve the most efficient heat dissipation.
  • the data center immersion dual-cycle multi-mode liquid cooling heat dissipation adjustment system and method of the present invention have the following advantages:
  • each data center cabinet of the present invention is interconnected through pipelines and pipeline valves, and a certain transparent area is left to facilitate observation of the working conditions of the internal servers and whether the remaining amount of fluorinated liquid is sufficient, which is convenient for replenishing fluorinated liquid and repairing the cabinets.
  • the present invention has adaptive switching capabilities according to the thermal properties of different electronic fluoride liquids to achieve the best matching effect between the electronic fluoride liquid and the heat dissipation system;
  • the present invention designs four working modes, including two-phase circulation loop and one-way circulation loop, according to the different loads of the data center cabinets and the working environment of the equipment. Selecting a suitable working mode can ensure the PUE of the data center as low as possible on the basis of ensuring the heat dissipation effect;
  • the present invention controls each pipeline valve according to the detection data of the sensor in the data center cabinet, so as to achieve flexible switching between modes and reasonably distribute the cooling capacity of each cabinet.
  • Figure 1 is a schematic diagram of the system structure of the present invention.
  • FIG2 is a schematic diagram of a data center cabinet array.
  • FIG3 is a cross-sectional view of the interior of a single data center cabinet.
  • Figure 4 is a schematic diagram of the heat dissipation device on the top of the data center cabinet.
  • FIG5 is a schematic diagram of a microchannel with micro heat dissipation columns.
  • FIG6 is a left side cross-sectional view of the microchannel condensation heat exchanger.
  • FIG. 7 is an internal cross-sectional view of a microchannel condensing heat exchanger.
  • the figure includes: data center cabinet array 1, data center cabinet 2, microchannel condensing heat exchanger 3, plate heat exchanger 4, first waste heat recovery device 5-1, second waste heat recovery device 5-2, fluorinated liquid storage tank 6, second cooling water drive pump 7, cooling water storage tank 8, blade server 9, fluorinated liquid 10, fluorinated liquid outlet pipe 11, condensed fluorinated liquid reflux pipe 12, cooling water inlet pipe 13, cooling water outlet pipe 14, fluorinated liquid steam outlet pipe 15, cabinet spare maintenance pipe 16, air pressure sensor 17, temperature sensor 18, liquid level sensor 19, blade server fixed slide rail 20, blade server fixed baffle 2 1, cabinet connecting liquid pipeline 22, cabinet connecting gas manifold 23, microchannel heat sink 24, super hydrophobic copper nanocone structure 25, microchannel cooling water inlet 26, fluorinated liquid drive pump 27, cabinet connecting liquid pipeline valve 28, cold capacity control valve 29, cabinet connecting gas pipeline valve 30, fluorinated liquid steam pressure relief valve 31, server cabinet shell 32, first cooling water drive pump 33, external back clamp fan 34, fluorinated liquid outlet pipeline valve 35, transparent window 36, two-phase loop cooling water valve 37-1, single-phase
  • the regulation system includes a data center cabinet array 1, a microchannel condensing heat exchanger 3, a plate heat exchanger 4, a first waste heat recovery device 5-1, a second waste heat recovery device 5-2, a fluorinated liquid storage tank 6, a second cooling water drive pump 7, a cooling water storage tank 8, a fluorinated liquid pump 27, a first cooling water drive pump 33, an external back-clamp fan 34, a single-phase loop cooling water valve 37-2, and a two-phase loop cooling water valve 37-1; wherein the data center cabinet array 1 is composed of multiple data centers.
  • the data center cabinet 2 is composed of a data center cabinet 2, the data center cabinet 2 is connected to the plate heat exchanger 4 through a fluorinated liquid outlet pipe 11, the outlet end of the plate heat exchanger 4 is connected to the fluorinated liquid storage tank 6 through a fluorinated liquid driving pump 27 and a fluorinated liquid outlet pipe valve 35, the upper part of the data center cabinet 2 is connected to the microchannel condensing heat exchanger 3 through a fluorinated liquid steam outlet pipe 15, the middle part of the data center cabinet 2 is connected to the fluorinated liquid storage tank 6, and the upper part of the fluorinated liquid storage tank 6 is connected to the microchannel condensing heat exchanger 3, thereby forming a working circuit of the fluorinated liquid;
  • the upper part of the cooling water storage tank 8 returns to the lower part of the cooling water storage tank 8 through the two-phase loop cooling water valve 37-1, the first cooling water drive pump 33, the microchannel condensing heat exchanger 3, and the first waste heat recovery device 5-1 in sequence, thereby forming a cooling water working loop; in addition, the middle part of the cooling water storage tank 8 also returns to the cooling water storage tank 8 through the second waste heat recovery device 5-2, the second cooling water drive pump 7, the plate heat exchanger 4, and the single-phase loop cooling water valve 37-2, thereby forming a second cooling water working loop; the cooling water circulation and the cooling fluorinated liquid circulation are independent of each other, and the two only exchange heat.
  • the single-phase circulation loop includes components: a fluorinated liquid storage tank 6, a fluorinated liquid drive pump 27, a plate heat exchanger 4, a second waste heat recovery device 5-2, a cooling water storage tank 8, a fluorinated liquid outlet pipe 11 and a fluorinated liquid outlet pipe valve 35; wherein the second cooling water drive pump 7, the second waste heat recovery device 5-2, the plate heat exchanger 4, the single-phase loop cooling water valve 37-2 and the cooling water storage tank 8 constitute a second cooling water cycle, which is independent of the heat dissipation cycle of the data center cabinet 2.
  • the plate heat exchanger 4 is placed in a horizontal position lower than the data center cabinet 2 and the cooling water storage tank 8; the microchannel condensing heat exchanger 3 is at a position higher than the horizontal position of the cooling water storage tank 8 and the data center cabinet 2.
  • the fluorinated liquid storage tank 6 is at the same horizontal position as the data center cabinet 2, and the two-phase circulation loop assembly includes a microchannel condensing heat exchanger 3, a first waste heat recovery device 5-1, a first cooling water drive pump 33, a cooling water storage tank 8, a fluorinated liquid storage tank 6, and a two-phase loop cooling water valve 37-1, wherein the first cooling water drive pump 33, the two-phase loop cooling water valve 37-1, the microchannel condensing heat exchanger 3 and the first waste heat recovery device 5-1 constitute a first cooling water cycle; the two-phase loop cooling water valve 37-1 and the single-phase loop cooling water valve 37-2 respectively control the activation of the first cooling water cycle and the second cooling water cycle, and are both in a closed state when the blade
  • the thermal properties of the fluorinated liquid 10 and the ambient temperature of the data center cabinet array 1, the single-phase circulation loop and the two-phase circulation loop can be flexibly enabled and can work in four modes:
  • the ambient temperature of the entire data center cabinet array 1 is lower than 20°C, and the boiling point of the fluorinated liquid 10 used in the system is higher than the server chip shell temperature, the single-phase loop cooling water valve 37-2 and the two-phase loop cooling water valve 37-1 are closed.
  • the system operates in a single-phase circulation loop, the first cooling water circulation and the second cooling water circulation are not enabled, and the system is in ambient cooling mode.
  • the fluorinated liquid steam pressure relief valve 31 is closed, and the temperature sensor 18 detects a temperature rise.
  • the fluorinated liquid outlet pipeline valve 35 is controlled to open, and the fluorinated liquid outlet pipeline 11 is opened.
  • the fluorinated liquid outlet pipeline 11 is an enhanced heat transfer pipeline with an inner wing structure, which has a large heat transfer coefficient and high thermal conductivity.
  • the fluorinated liquid outlet pipeline 11 is connected to the cooling medium inlet of the plate heat exchanger 4. The fluorinated liquid 10 flows into the plate heat exchanger 4 under gravity drive, and transfers heat to the external cold air during the flow process.
  • the fluorinated liquid after cooling is powered by the fluorinated liquid drive pump 27 and then flows back into the fluorinated liquid storage tank 6 to replenish the fluorinated liquid 10 in the data center cabinet 2 to complete the cycle. Since the cold source of the entire cycle is the cold air in the data center cabinet 2, the loop only needs one liquid pump to complete the cycle, and the power consumption of the system is very low.
  • the fluorinated liquid steam pressure relief valve 31 is closed to prevent the blade server 9 from heating up too high, causing the fluorinated liquid 10 to increase in temperature and undergo phase change, leaking from the fluorinated liquid steam outlet pipe 15, and preventing the system from entering a two-phase circulation loop.
  • the temperature of the fluorinated liquid 10 also continues to rise.
  • the fluorinated liquid outlet pipeline valve 35 and the single-phase loop cooling water valve 37-2 are opened, and the fluorinated liquid outlet pipeline 11 is connected to the plate heat exchanger 4.
  • the high-temperature fluorinated liquid 10 flows into the fluorinated liquid outlet pipeline 11 and flows into the plate heat exchanger 4 with gravity as the driving force.
  • the cooling water in the cooling water storage tank 8 automatically flows into the plate heat exchanger 4 due to gravity as a cold source.
  • the heat generated by the blade server 9 is absorbed by the sensible heat of the fluorinated liquid 10, and then the cooling water and the fluorinated liquid 10 exchange heat in the plate heat exchanger 4.
  • the system works in a single-phase cooling mode, and the cooled fluorinated liquid 10 is pumped to the fluorinated liquid storage tank 6 via the fluorinated liquid drive pump 27 to complete the heat dissipation cycle of the fluorinated liquid 10; the cooling water that receives heat through the plate heat exchanger 4 flows through the second waste heat recovery device 5-2 to recover heat, and then is powered by the second cooling water drive pump 7 to return to the cooling water storage tank 8 to complete the second cooling water cycle. It is worth noting that with long-term operation in a single-phase circulation loop, that is, when the system is in an ambient cooling mode or a single-phase cooling mode, the temperature of the data center cabinet 2 will gradually stabilize.
  • the cabinet connecting liquid pipeline valve 28 is closed at this time, and the opening and closing degree of the fluorinated liquid outlet pipeline valve 35 is controlled, and the fluorinated liquid outlet flow of each cabinet is dynamically adjusted to ensure the reasonable distribution of the system cooling capacity.
  • the system's two-phase circulation loop is enabled and operates in a two-phase cooling mode, using the latent heat of vaporization of the fluorinated liquid to dissipate heat from the blade server 9, further improving the heat dissipation efficiency.
  • the air pressure sensor 17 detects that the air pressure in the cabinet rises to the saturated air pressure, and closes the fluorinated liquid outlet pipeline valve 35 and the single-phase loop cooling water valve 37-2 to prevent the system from entering the single-phase circulation loop, and opens the fluorinated liquid vapor pressure relief valve 31 and the two-phase loop cooling water valve 37-1 to start the first cooling water circulation. Due to the pressure between the gas phase area in the cabinet and the condensation chamber 39 inside the microchannel condensation heat exchanger 3 The force difference drives the fluorinated liquid vapor to the microchannel condensation heat exchange device 3.
  • the fluorinated liquid vapor generated by the boiling phase change of the fluorinated liquid 10 enters the microchannel condensation heat exchanger 3 through the fluorinated liquid vapor outlet pipe 15 for liquefaction, condensation and heat release.
  • the cooling water in the cooling water storage tank 8 flows through the cooling water inlet pipe 13 and is pumped to the microchannel condensation heat exchanger 3 by the first cooling water driving pump 33, and completes heat exchange with the fluorinated liquid vapor. After that, it flows back to the cooling water storage tank 8 through the cooling water outlet pipe 14 under the driving action of gravity to complete the cycle.
  • the microchannel condensation heat exchanger 3 is also equipped with an external back-clamp fan 34, and the convection effect of the external back-clamp fan 34 can be used to further improve the heat dissipation efficiency.
  • the temperature of the data center cabinet 2 will gradually stabilize. According to the temperature of each data center cabinet 2, the cabinet connecting gas pipeline valve 30 is closed, and the opening and closing degree of the fluorinated liquid steam pressure relief valve 31 and the cooling control valve 29 are controlled.
  • the fluorinated steam outlet flow of each cabinet and the cooling water flow of the microchannel condensing heat exchanger 3 are dynamically adjusted to ensure the reasonable distribution of system cooling capacity.
  • the single-phase circulation loop and the two-phase circulation loop can be enabled at the same time, and the system works in a composite cooling mode to achieve a heat dissipation and cooling effect with ultra-high heat flux density.
  • the single-phase circuit cooling water valve 37-2 and the two-phase circuit cooling water valve 37-1 are both opened, that is, the first cooling water circulation and the second cooling water circulation are both in working state.
  • the temperature sensor 18 detects that the temperature of the fluorinated liquid 10 in the cabinet rises to the boiling point, as the fluorinated liquid is continuously converted from liquid phase to gas phase, the gas
  • the pressure sensor 17 detects that the air pressure in the cabinet is constantly rising.
  • the fluorinated liquid vapor pressure relief valve 31 and the fluorinated liquid outlet pipe valve 35 are opened, so that the system can work in the above-mentioned single-phase cooling mode and two-phase cooling mode at the same time.
  • the liquid phase area of the fluorinated liquid in the cabinet enters the single-phase circulation loop, and the gas phase area of the fluorinated liquid enters the two-phase circulation loop.
  • the plate heat exchanger 4 and the microchannel condensing heat exchanger 3 are used to dissipate heat from the data center cabinet 2 at the same time, ensuring that the system has extremely efficient heat dissipation performance to cope with the high heat flux density of the server under ultra-high load and the extreme working environment of the server.
  • the blade server 9 is fixed to the bottom of the server cabinet housing 32 via the blade server fixed slide rail 20 and the blade server fixed baffle 21, and is immersed in the fluorinated liquid 10.
  • the blade server fixed slide rail 20 facilitates the disassembly and maintenance of the blade server 9, and there is enough gas space above the server cabinet housing 32 for the fluorinated liquid 10 to undergo a phase change, ensuring that the air pressure does not change drastically.
  • the temperature sensor 18 is attached to the server cabinet housing 32 near the location of the concentrated heating unit of the blade server 9.
  • the liquid level of the fluorinated liquid 10 should reserve a portion of the liquid level drop caused by the phase change of the fluorinated liquid when the system works in a two-phase circulation loop, and the liquid level at this time should be recorded as a safe liquid level.
  • the liquid level sensor 19 is attached to the server cabinet housing 32 at a position where it is level with the liquid surface of the fluorinated liquid 10, and the air pressure sensor 17 is attached to the top of the server cabinet housing 32 near the fluorinated liquid vapor outlet pipe 15. At the same time, a transparent window 36 is left in the server cabinet shell 32, which is convenient for observing the working condition of the internal blade server 9 and checking whether the residual amount of the fluoride liquid 10 is sufficient.
  • the microchannel condensing heat exchanger 3 is located above the data center cabinet 2, and the two are connected via the fluoride liquid vapor outlet pipe 15, and the fluoride liquid vapor outlet pipe 15 is controlled by the fluoride liquid vapor pressure relief valve 31.
  • the cooling water inlet pipe 13 and the cooling water outlet pipe 14 are respectively connected to the microchannel cooling water inlet 26 and the microchannel cooling water outlet 40, and the fluoride liquid vapor outlet pipe 15 and the condensed fluoride liquid return pipe 12 are connected to the condensation chamber 39 inside the microchannel condensing heat exchanger 3.
  • Each data center cabinet 2 and the fluoride liquid storage tank 6 are cascaded by the cabinet connecting liquid pipe 22 and the cabinet connecting gas manifold 23 to ensure the air pressure and liquid level balance between each cabinet.
  • the fluoride liquid in the cabinet can be replenished by replenishing the fluoride liquid storage tank 6. It is worth noting that when a system failure occurs, the connection between the cabinets can be disconnected by closing the cabinet connecting liquid pipeline valve 28 and the cabinet connecting gas pipeline valve 30, and the drainage pipeline of each cabinet can be checked separately.
  • Each server cabinet also has a cabinet spare maintenance pipeline 16 to ensure that there is sufficient residual fluorinated liquid in the cabinet and drainage maintenance when the connection is disconnected.
  • the upper part of the microchannel condensation heat exchanger 3 is equipped with an external back-clamp fan 34, which can be turned on according to the heat dissipation requirements to enhance the convective heat transfer between the air in the cabinet and the heat exchanger.
  • the microchannel condensation heat exchanger 3 includes a fluorinated liquid vapor inlet, a condensed fluorinated liquid outlet, a microchannel cooling water inlet 26, a microchannel cooling water outlet 40 and corresponding pipes.
  • the interior of the microchannel condensation heat exchanger 3 is divided into a microchannel cold plate and a condensation chamber 39 by a partition, so that the fluorinated liquid 10 and the cooling water are separated from each other and will not contaminate each other.
  • the partition material is diamond with a high thermal conductivity coefficient, and the side close to the condensation chamber 39 is covered with a super-hydrophobic copper nanocone structure 25.
  • the cooling water is pumped to the microchannel cooling water inlet 26 by the first cooling water driving pump 33, and then the cooling water is diverted to each microchannel heat sink 24, as a cold source for convective heat exchange with high-temperature fluorinated liquid steam, and two rhombus micro heat dissipation columns 38 are introduced into each microchannel to increase the heat exchange area inside the microchannel.
  • the microchannel wall is also engraved with a rhombus groove 41 to ensure that the cooling water flow will not be excessively lost due to the heat dissipation column, which improves the cooling efficiency and heat dissipation stability to a certain extent.
  • the cold control valve 29 and the fluorinated liquid steam pressure relief valve 31 dynamically regulate the flow of cooling water into the microchannel heat sink 24 and the fluorinated liquid steam flow under the control of the air pressure sensor 17 and the temperature sensor 18 to ensure the best heat dissipation performance and the reasonable distribution of the cold capacity of each cabinet.
  • the super-hydrophobic copper nano-cone structure 25 can realize the fusion and removal of condensed droplets at a small scale, and the micro-nano structure can increase the nucleation density and separation frequency of the condensed liquid, thereby achieving a significant improvement in the condensation heat transfer coefficient. Since the fluorine liquid vapor inlet is above the fluorine liquid outlet, the condensed fluorine liquid is collected and separated from the surface of the super-hydrophobic copper nanocone structure 25 under the action of gravity, and flows through the condensed fluorine liquid reflux pipe 12 to the fluorine liquid storage tank 6. The cooling water after absorbing heat flows from the microchannel cooling water outlet 40 through the cooling water outlet pipe 14 into the first waste heat recovery device 5-1 to release heat, and then is driven by gravity to flow back to the cooling water storage tank 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明提供了一种数据中心浸没式双循环多模式液冷散热调节***及方法,调节***包括数据中心机柜,微流道冷凝换热器,板式换热器,余热回收装置,冷却水储液罐,氟化液储液罐、液体泵以及氟化液、相应管道以及管道阀。本发明根据服务器的工作功耗以及冷却工质的热物性切换至单相与两相的循环回路,根据机柜散热需求、载荷大小、工作环境灵活调节控制,避免了因数据中心载荷不同而造成的资源浪费,且冷却水流经余热回收装置回收热量,以节省***用电量,极大地提高了制冷量利用效率,本发明可靠性高、便于管理、对不同工质的自适应性、冷源利用率高、能在不同模式下进行高效精准的散热。

Description

数据中心浸没式双循环多模式液冷散热调节***及方法 技术领域
 本发明涉及一种散热***,特别涉及一种数据中心浸没式双循环多模式液冷散热调节***及方法,属于机房服务器冷却技术领域。
背景技术
 随着人工智能、物联网等计算密集型应用的快速发展,日益增长的计算需求使数据中心逐渐向“高性能、高密度、高能耗”发展,极高的产热量会导致服务器工作不稳定,因此设计数据中心机柜散热***以匹配大型服务器的高散热需求是必要的。
 常见的服务器冷却***采用有风冷散热和液冷散热两种方式。其中,浸没式液冷传热效率最高且能避免局部热点,是目前最有可能解决高性能计算环境中散热***所面临各种问题的技术手段。
 冷却液是浸没式液冷技术的关键问题之一,目前服务器浸没式液冷设备所使用的冷却液通常为电子氟化液,但由于热物性、绝缘性等性质的差异,面向的使用场景和适用的液冷技术也不尽相同,如目前可用于浸没式液冷的电子氟化液Novec7000和 HFE-7100 在标准大气压下的沸点相差接近30℃,不同电子氟化液对于浸没式冷却***性能的影响是十分显著的,所以电子氟化液与服务器浸没式液冷***的性能匹配才能达到高效的散热效能。
 数据中心的冷却散热耗电占数据中心除IT设备供电之外的绝大部分,因此,如何低能耗的解决数据中心散热问题成为降低PUE(Power Usage Effectiveness,电能利用效率)的关键因素。而由于服务器工作负载变化幅度大,如果机柜的散热***能根据服务器工作载荷动态灵活分配冷量,根据服务器载荷大小进行模式转换,以达成机柜散热效能和服务器散热需求的匹配,可以避免服务器在低负载运行时,导致机柜散热***能耗增加和冷量的浪费。
 根据目前数据中心机柜散热方案,有较多涉及到散热模式的转换,以实现根据散热需求而改变散热模式进而实现减小能耗的目标,但风冷散热与单相热管散热的切换难以满足高负载数据中心的散热需求,且热管与服务器接触面积小,在服务器高负载工作时因服务器热点分布不均会导致过大的热应力。
 结合以上情况,现在的数据中心机柜需要一种对于不同规格氟化液具有自适应性,同时能够根据数据中心服务器载荷变化改变散热模式的散热***,保证***的高散热效能和低散热能耗。
发明内容
 技术问题:针对现有数据中心机柜散热***的不足,本发明提出了一种数据中心浸没式双循环多模式液冷散热调节***及方法,不仅具有对不同规格电子氟化液的自适应性,还能根据数据中心服务器载荷调整散热模式,从而达到冷量的灵活分配和较低的能耗。
 技术方案:本发明的数据中心浸没式双循环多模式液冷散热调节***包括数据中心机柜阵列、微流道冷凝换热器、板式换热器、第一余热回收装置、第二余热回收装置、氟化液储液罐、第二冷却水驱动泵、冷却水储液罐、氟化液液体泵、第一冷却水驱动泵、外置背夹风扇、单相回路冷却水阀、两相回路冷却水阀;其中,数据中心机柜阵列由多个数据中心机柜组成,数据中心机柜通过氟化液出口管道接板式换热器,板式换热器的出端通过氟化液驱动泵和氟化液出口管道阀连接氟化液储液罐,数据中心机柜的上部通过氟化液蒸汽出口管道接微流道冷凝换热器,数据中心机柜的中部与氟化液储液罐连通,氟化液储液罐的上部与微流道冷凝换热器连通,由此形成氟化液的工作回路;
冷却水储液罐的上部顺序通过两相回路冷却水阀、第一冷却水驱动泵、微流道冷凝换热器、第一余热回收装置回到冷却水储液罐的下部,由此形成一个冷却水的工作回路;另外,冷却水储液罐的中部还通过第二余热回收装置、第二冷却水驱动泵、板式换热器、单相回路冷却水阀回到冷却水储液罐,由此形成第二个冷却水的工作回路;冷却水循环和冷却氟化液的循环彼此独立,二者只有热量上的交换。
 所述数据中心机柜阵列包含多个数据中心机柜,各数据中心机柜氟化液冷却***之间相互并联以保证各个区域的连通,刀片式服务器固定在数据中心机柜内部且完全浸没在氟化液中,数据中心机柜内液面上预留有足够氟化液相变的空间。
 所述数据中心机柜表面部分区域由透明界面低热阻材料制成,用于观察机柜内部的刀片式服务器工作情况以及检查氟化液的余量是否充足,同时数据中心机柜内部设置有气压传感器、液位传感器和温度传感器。
 所述数据中心机柜的上部通过氟化液蒸汽出口管道接微流道冷凝换热器,即氟化液蒸汽出口与微流道冷凝换热器工质入口相连,微流道冷凝换热器工质出口与氟化液储液罐相连,即氟化液蒸汽在微流道冷凝换热器内部冷凝换热后回流到氟化液储液罐,整个回路构成氟化液两相循环回路;数据中心机柜底部有氟化液出口管道,氟化液出口管道与板式换热器冷凝入口相连,与冷却水换热后的低温氟化液在氟化液驱动泵的作用下回流入氟化液储液罐,整个回路构成氟化液单相循环回路。
 所述冷却水为去离子的蒸馏水;所述的氟化液,对于单相循环,采用高沸点、宽液程、窄沸程、热稳定好的电子氟化液Fluorinert FC-3283;对于两相循环及复合工作模式,采用低沸点、宽沸程的电子氟化液Novec71DA;通过调节氟化液出口管道阀和氟化液蒸汽泄压阀以及冷量控制阀的开闭程度,保证数据中心机柜阵列的各个机柜都分配到合适的冷量。
 所述氟化液出口管道为含有内翅结构的强化传热管道,具有高热传导性;微流道冷凝换热器还配有外置背夹风扇,利用外置背夹风扇的对流作用进一步提升散热效能。
 所述微流道冷凝换热器、数据中心机柜阵列、氟化液储液罐、板式换热器按照高度由高到低的顺序设置。
 本发明调节***的第一种浸没式双循环多模式液冷散热调节方法为:当所述双循环多模式液冷散热调节***仅工作在单相循环回路时,氟化液蒸汽泄压阀,两相回路冷却水阀、第一冷却水驱动泵关闭,氟化液出口管道阀打开,开启氟化液出口管道,当整个循环的冷源为数据中心机柜所在低温冷空气时,关闭单相回路冷却水阀,***工作在环境冷却模式,氟化液在重力驱动下流入板式换热器,流动过程中将热量传递给外界冷空气;当整个循环的冷源为低温冷却水时,打开单相回路冷却水阀,***工作在单相冷却模式,冷却水储液罐中的冷却水由于重力自动流入板式换热器,冷却水和高温氟化液在板式换热器中完成热量交换,经过板式换热器接收热量的冷却水流经第一余热回收装置回收热量后泵送至冷却水储液罐,完成冷却水单相冷却循环;板式换热器氟化液出口管道与氟化液储液罐相连接,降温之后的氟化液由氟化液驱动泵提供动力再回流入氟化液储液罐,对数据中心机柜中的氟化液进行补充。
 本发明调节***的第二种浸没式双循环多模式液冷散热调节方法为:当所述双循环多模式液冷散热调节***仅工作在两相循环回路时,氟化液出口管道阀、单相回路冷却水阀、第二冷却水驱动泵关闭,氟化液蒸汽泄压阀以及两相回路冷却水阀打开,氟化液蒸汽由于压力差经蒸汽入口将氟化液送至微流道冷凝换热器,与此同时,冷却水在第一冷却水驱动泵的作用下进入微流道冷凝换热器上部冷却水管道,经内部带有菱形微散热柱的微流道分流,同时氟化液蒸汽在金刚石分界面液化冷凝放热,吸收热量后的液滴汇集后经过余热回收装置由重力作为驱动力流入冷却水储液罐,氟化液在重力的作用下回流入氟化液储液罐。
 本发明调节***的第三种浸没式双循环多模式液冷散热调节方法为:当所述双循环多模式液冷散热调节***工作在复合冷却模式,即单相循环回路和两相循环回路同时启用,单相回路冷却水阀和两相回路冷却水阀、氟化液蒸汽泄压阀、第一冷却水驱动泵、第二冷却水驱动泵以及氟化液出口管道阀均打开,柜内氟化液液相区进入单相循环回路,氟化液气相区进入两相循环回路,以实现最高效能的散热。
 有益效果:本发明的数据中心浸没式双循环多模式液冷散热调节***及方法具有以下优点:
第一、本发明每个数据中心机柜通过管道及管道阀相互连通,且留有一定的透明区域便于观察内部服务器的工作情况和氟化液余量是否充足,便于氟化液的补充以及机柜维修。
 第二、本发明根据针对不同电子氟化液的热物性具有自适应切换能力,以达到使用电子氟化液与散热***的最佳匹配效果;
第三、本发明根据数据中心机柜的载荷不同以及设备工作环境,设计了两相循环回路和单向循环回路共四种工作模式,选用合适的工作模式可以保证散热效果的基础上保证了数据中心的PUE尽可能低;
第四、本发明根据数据中心机柜内传感器的检测数据控制各个管道阀,以达成模式之间的灵活切换以及合理分配各个机柜的冷量。
附图说明
 图1为本发明的***结构简图,
图2为数据中心机柜阵列的示意图,
图3为单个数据中心机柜的内部剖视图,
图4是数据中心机柜顶部散热装置示意图,
图5是带有微散热柱的微流道示意图,
图6是微流道冷凝换热器的左视剖面图,
图7是微流道冷凝换热器的内部剖视图。
 图中有:数据中心机柜阵列1,数据中心机柜2,微流道冷凝换热器3,板式换热器4,第一余热回收装置5-1,第二余热回收装置5-2,氟化液储液罐6,第二冷却水驱动泵7,冷却水储液罐8,刀片式服务器9,氟化液10,氟化液出口管道11,冷凝氟化液回流管道12,冷却水入口管道13,冷却水出口管道14,氟化液蒸汽出口管道15,机柜备用维修管道16,气压传感器17,温度传感器18,液位传感器19,刀片服务器固定滑轨20,刀片服务器固定挡板21,机柜连通液体管道22,机柜连通气体歧管23,微流道热沉24,超疏水铜纳米锥结构25,微流道冷却水入口26,氟化液驱动泵27,机柜连通液体管道阀28,冷量控制阀门29,机柜连通气体管道阀30,氟化液蒸汽泄压阀31,服务器机柜外壳32,第一冷却水驱动泵33,外置背夹风扇34,氟化液出口管道阀35,透明窗口36,两相回路冷却水阀37-1,单相回路冷却水阀37-2,菱形微散热柱38,冷凝室39,微流道冷却水出口40,菱形凹槽41。
实施方式
 下面结合附图对本发明的数据中心浸没式双循环多模式液冷散热调节***及方法做出进一步详细说明。
 如图1所示,该调节***包括数据中心机柜阵列1、微流道冷凝换热器3、板式换热器4、第一余热回收装置5-1、第二余热回收装置5-2、氟化液储液罐6、第二冷却水驱动泵7、冷却水储液罐8、氟化液液体泵27、第一冷却水驱动泵33、外置背夹风扇34、单相回路冷却水阀37-2、两相回路冷却水阀37-1;其中,数据中心机柜阵列1由多个数据中心机柜2组成,数据中心机柜2通过氟化液出口管道11接板式换热器4,板式换热器4的出端通过氟化液驱动泵27和氟化液出口管道阀35连接氟化液储液罐6,数据中心机柜2的上部通过氟化液蒸汽出口管道15接微流道冷凝换热器3,数据中心机柜2的中部与氟化液储液罐6连通,氟化液储液罐6的上部与微流道冷凝换热器3连通,由此形成氟化液的工作回路;
冷却水储液罐8的上部顺序通过两相回路冷却水阀37-1、第一冷却水驱动泵33、微流道冷凝换热器3、第一余热回收装置5-1回到冷却水储液罐8的下部,由此形成一个冷却水的工作回路;另外,冷却水储液罐8的中部还通过第二余热回收装置5-2、第二冷却水驱动泵7、板式换热器4、单相回路冷却水阀37-2回到冷却水储液罐8,由此形成第二个冷却水的工作回路;冷却水循环和冷却氟化液的循环彼此独立,二者只有热量上的交换。
 其中单相循环回路包括组件:氟化液储液罐6,氟化液驱动泵27,板式换热器4,第二余热回收装置5-2,冷却水储液罐8,氟化液出口管道11及氟化液出口管道阀35;其中第二冷却水驱动泵7,第二余热回收装置5-2,板式换热器4,单相回路冷却水阀37-2以及冷却水储液罐8构成第二冷却水循环,独立于数据中心机柜2散热循环之外。其中板式换热器4放置在水平位置低于数据中心机柜2以及冷却水储液罐8的位置;微流道冷凝换热器3处于比冷却水储液罐8和数据中心机柜2水平位置高的位置。氟化液储液罐6与数据中心机柜2处于相同水平位置,两相循环回路组件包括微流道冷凝换热器3,第一余热回收装置5-1,第一冷却水驱动泵33,冷却水储液罐8,氟化液储液罐6,两相回路冷却水阀37-1,其中第一冷却水驱动泵33,两相回路冷却水阀37-1,微流道冷凝换热器3和第一余热回收装置5-1构成第一冷却水循环;两相回路冷却水阀37-1和单相回路冷却水阀37-2分别控制第一冷却水循环和第二冷却水循环的启用,刀片式服务器9未处于工作状态时均处于关闭状态。
 根据刀片式服务器9的运行功耗、氟化液10的热物性及数据中心机柜阵列1所处环境温度可以灵活启用单相循环回路和两相循环回路,可工作在四个模式下:
当数据中心处于低负载工作状态,整个数据中心机柜阵列1所处的环境温度低于20℃,且***所用氟化液10的沸点高于服务器芯片壳温时,单相回路冷却水阀37-2和两相回路冷却水阀37-1关闭,此时***工作在单相循环回路,第一冷却水循环和第二冷却水循环均不启用,***处于环境冷却模式。随着刀片式服务器9的不断产热,关闭氟化液蒸汽泄压阀31,温度传感器18检测到温度上升,当氟化液温度上升至芯片壳温时,由于氟化液10沸点高于芯片壳温,气压传感器17在氟化液10升温过程中检测到的柜内气压应维持恒定值,此时控制氟化液出口管道阀35打开,开启氟化液出口管道11,且氟化液出口管道11为含有内翅结构的强化传热管道,具有较大的换热系数和高导热性,氟化液出口管道11与板式换热器4的冷却工质入口相连,氟化液10在重力驱动下流入板式换热器4,流动过程中将热量传递给外界冷空气,降温之后的氟化液由氟化液驱动泵27提供动力再回流入氟化液储液罐6,对数据中心机柜2中的氟化液10进行补充,完成循环。由于整个循环的冷源为数据中心机柜2所处的冷空气,回路只需一个液体泵就能完成循环,***的耗电量很低。
 当刀片式服务器9载荷升高,或数据中心机柜阵列1所处环境温度高于20℃,仅靠室内空气作为唯一冷源不能满足刀片式服务器9的散热需求,且***所用氟化液的沸点高于服务器芯片壳温时,此时开启单相回路冷却水阀37-2,***仍工作在单相循环回路下,仅启用第二冷却水循环,气压传感器17在氟化液升温阶段检测到柜内气压不变,此时氟化液蒸汽泄压阀31关闭,阻止刀片式服务器9发热功率过高导致氟化液10温度升高发生相变从氟化液蒸汽出口管道15泄露,阻止***进入两相循环回路。随着刀片式服务器9产热的不断积累,氟化液10的温度也不断升高,当氟化液10温度上升至芯片壳温时,打开氟化液出口管道阀35以及单相回路冷却水阀37-2,氟化液出口管道11与板式换热器4相连接,高温氟化液10合流入氟化液出口管道11,并由重力作为驱动力流入板式换热器4,冷却水储液罐8中的冷却水作为冷源由于重力自动流入板式换热器4。利用氟化液10的显热吸收刀片式服务器9产生的热量,再由冷却水与氟化液10在板式换热器4交换热量,***工作在单相冷却模式,冷却后的氟化液10经由氟化液驱动泵27泵送至氟化液储液罐6,完成氟化液10的散热循环;经过板式换热器4接收热量的冷却水流经第二余热回收装置5-2回收热量后由第二冷却水驱动泵7提供动力回到冷却水储液罐8,完成第二冷却水循环。值得注意的是,随着长时间工作在单相循环回路,即***处于环境冷却模式或单相冷却模式时,数据中心机柜2的温度会逐渐趋于稳定,根据各个数据中心机柜2温度的高低,此时关闭机柜连通液体管道阀28,控制氟化液出口管道阀35的开闭程度,动态调控各个机柜氟化液出口流量,保证***冷量合理分配。
 当刀片式服务器9载荷较大时,发热功率较高,且所用氟化液10沸点低于芯片壳温时,随着刀片式服务器9的不断产热,数据中心机柜2内部的氟化液温度在上升至芯片壳温之前就开始沸腾,此时***两相循环回路启用,工作在两相冷却模式,利用氟化液的气化潜热对刀片式服务器9进行散热,进一步提高散热效率。温度传感器18检测到柜内氟化液温度上升至沸点时,随着氟化液由液相不断转化为气相,气压传感器17检测到柜内气压上升至饱和气压时,关闭氟化液出口管道阀35和单相回路冷却水阀37-2,阻止***进入单相循环回路,并打开氟化液蒸汽泄压阀31以及两相回路冷却水阀37-1,开启第一冷却水循环,由于机柜内气相区域与微流道冷凝换热器3内部冷凝室39之间的压力差,驱动氟化液蒸汽至微流道冷凝换热装置3,氟化液10沸腾相变产生的氟化液蒸汽经过氟化液蒸汽出口管道15进入微流道冷凝换热器3进行液化冷凝放热,同时冷却水储液罐8中的冷却水流经冷却水入口管道13由第一冷却水驱动泵33泵送至微流道冷凝换热器3,并与氟化液蒸汽完成热量交换,后经冷却水出口管道14在重力的驱动作用下回流到冷却水储液罐8完成循环。同时微流道冷凝换热器3还配有外置背夹风扇34,可以利用外置背夹风扇34的对流作用进一步提升散热效能。同样的,随着***长时间工作在两相循环回路,即***两相冷却模式时,数据中心机柜2的温度会逐渐趋于稳定,根据各个数据中心机柜2温度的高低,关闭机柜连通气体管道阀30,控制氟化液蒸汽泄压阀31和冷量控制阀门29的开闭程度,动态调控各个机柜氟化蒸汽出口流量以及微流道冷凝换热器3的冷却水流量,保证***冷量合理分配。
 除此以外,所用氟化液10沸点低于芯片壳温时,单相循环回路和两相循环回路可以同时启用,***即工作在复合冷却模式,以达成超高热流密度的散热冷却效果,现对其进行具体说明:刀片式服务器9满负载工作时,单相回路冷却水阀37-2和两相回路冷却水阀37-1均打开,即第一冷却水循环和第二冷却水循环都处于工作状态,温度传感器18检测到柜内氟化液10温度上升至沸点时,随着氟化液由液相不断转化为气相,气压传感器17检测到柜内的气压不断上升,当柜内气压上升至饱和气压时,此时打开氟化液蒸汽泄压阀31以及氟化液出口管道阀35,让***同时工作在上述的单相冷却模式和两相冷却模式,柜内氟化液液相区进入单相循环回路,氟化液气相区进入两相循环回路,利用板式换热器4和微流道冷凝换热器3同时对数据中心机柜2进行散热,保证***具有极高效的散热效能,以应对超高负载下的服务器高热流密度和服务器的极端工作环境。
 如图2、图3所示,其中刀片式服务器9经由刀片服务器固定滑轨20和刀片服务器固定挡板21固定于服务器机柜外壳32底部,且浸没在氟化液10中。其中刀片服务器固定滑轨20便于刀片式服务器9的拆卸维修,服务器机柜外壳32上方留有足够使得氟化液10产生相变的气体空间,保证气压不会发生剧烈变化。温度传感器18贴附在服务器机柜外壳32靠近刀片式服务器9集中发热单元位置附近,氟化液10液位应预留出***工作在两相循环回路时,由于氟化液相变导致的液位下降部分,并记此时的液位为安全液位,液位传感器19贴附在服务器机柜外壳32与氟化液10液面持平的位置,气压传感器17贴附在服务器机柜外壳32顶部靠近氟化液蒸汽出口管道15的位置。同时,服务器机柜外壳32留有透明窗口36,方便观察内部刀片式服务器9工作情况,以及检查氟化液10的余量是否足够。微流道冷凝换热器3位于数据中心机柜2上方,二者经由氟化液蒸汽出口管道15相连接,氟化液蒸汽出口管道15由氟化液蒸汽泄压阀31控制通断,冷却水入口管道13,冷却水出口管道14分别与微流道冷却水入口26以及微流道冷却水出口40相连,氟化液蒸汽出口管道15和冷凝氟化液回流管道12与微流道冷凝换热器3内部的冷凝室39相连。各个数据中心机柜2以及氟化液储液罐6由机柜连通液体管道22和机柜连通气体歧管23相级联,以保证各个机柜之间的气压以及液面平衡,当液位传感器19检测到氟化液液位下降至安全液位以下时,可以通过对氟化液储液罐6补液对机柜内的氟化液进行补充。值得注意的是,在***出现故障时可以通过关闭机柜连通液体管道阀28以及机柜连通气体管道阀30断开各个机柜间的连接,对各个机柜的排液管道进行单独排查,每个服务器机柜还留有机柜备用维修管道16以保证断开连接时机柜内氟化液的余量充足以及排液维修。
 如图4、图5、图6、图7所示,微流道冷凝换热器3上部备有外置背夹风扇34,可以根据散热需求选择开启以强化机柜所处空气与换热器之间的对流传热,微流道冷凝换热器3包含有氟化液蒸汽进口、冷凝氟化液出口、微流道冷却水入口26、微流道冷却水出口40和对应管道。微流道冷凝换热器3内部被隔板分为微流道冷板和冷凝室39,使氟化液10和冷却水彼此分离,不会相互污染,隔板材料为高导热系数的金刚石,靠近冷凝室39的一面覆盖有超疏水铜纳米锥结构25。当***的两相循环回路启用时,冷却水被第一冷却水驱动泵33泵送至微流道冷却水入口26,随后冷却水分流至各个微流道热沉24,作为冷源与高温氟化液蒸汽进行对流热交换,并且每条微流道内部各引入两个菱形微散热柱38,以增加微流道内部换热面积,相应的,微流壁面也刻有菱形凹槽41,以保证冷却水流量不会因散热柱过分损失,一定程度上提高了冷却效率以及散热稳定性,冷量控制阀门29以及氟化液蒸汽泄压阀31在气压传感器17、温度传感器18的控制下动态调控冷却水流入微流道热沉24的流量和氟化液蒸汽流量,以保证最佳的散热效能和各个机柜冷量的合理分配。同时超疏水铜纳米锥结构25可实现冷凝液滴在小尺度下发生融合去除,而微纳结构可以增加冷凝液体的成核密度与脱离频率,从而达到冷凝传热系数的显著提升。由于氟化液蒸汽进口在氟化液出口上方,冷凝成型的氟化液液体汇集后在重力的作用下脱离超疏水铜纳米锥结构25表面,通过冷凝氟化液回流管道12至氟化液储液罐6,吸收热量后的冷却水从微流道冷却水出口40流经冷却水出口管道14流入第一余热回收装置5-1放热后由重力驱动回流至冷却水储液罐8。

Claims (10)

  1. 一种数据中心浸没式双循环多模式液冷散热调节***,其特征在于,该调节***包括数据中心机柜阵列(1)、微流道冷凝换热器(3)、板式换热器(4)、第一余热回收装置(5-1)、第二余热回收装置(5-2)、氟化液储液罐(6)、第二冷却水驱动泵(7)、冷却水储液罐(8)、氟化液液体泵(27)、第一冷却水驱动泵(33)、外置背夹风扇(34)、单相回路冷却水阀(37-2)、两相回路冷却水阀(37-1);其中,数据中心机柜阵列(1)由多个数据中心机柜(2)组成,数据中心机柜(2)通过氟化液出口管道(11)接板式换热器(4),板式换热器(4)的出端通过氟化液驱动泵(27)和氟化液出口管道阀(35)连接氟化液储液罐(6),数据中心机柜(2)的上部通过氟化液蒸汽出口管道(15)接微流道冷凝换热器(3),数据中心机柜(2)的中部与氟化液储液罐(6)连通,氟化液储液罐(6)的上部与微流道冷凝换热器(3)连通,由此形成氟化液的工作回路;
    冷却水储液罐(8)的上部顺序通过两相回路冷却水阀(37-1)、第一冷却水驱动泵(33)、微流道冷凝换热器(3)、第一余热回收装置(5-1)回到冷却水储液罐(8)的下部,由此形成一个冷却水的工作回路;另外,冷却水储液罐(8)的中部还通过第二余热回收装置(5-2)、第二冷却水驱动泵(7)、板式换热器(4)、单相回路冷却水阀(37-2)回到冷却水储液罐(8),由此形成第二个冷却水的工作回路;冷却水循环和冷却氟化液的循环彼此独立,二者只有热量上的交换。
  2.  根据权利要求1所述的数据中心浸没式双循环多模式液冷散热调节***,其特征在于,所述数据中心机柜阵列(1)包含多个数据中心机柜(2),各数据中心机柜(2)氟化液冷却***之间相互并联以保证各个区域的连通,刀片式服务器(9)固定在数据中心机柜(2)内部且完全浸没在氟化液中,数据中心机柜(2)内液面上预留有足够氟化液相变的空间。
  3.  根据权利要求2所述的数据中心浸没式双循环多模式液冷散热调节***,其特征在于,所述数据中心机柜(2)表面部分区域由透明界面低热阻材料制成,用于观察机柜内部的刀片式服务器(9)工作情况以及检查氟化液的余量是否充足,同时数据中心机柜(2)内部设置有气压传感器(17)、温度传感器(18)和液位传感器(19)。
  4.  根据权利要求3所述的数据中心浸没式双循环多模式液冷散热调节***,其特征在于,所述数据中心机柜(2)的上部通过氟化液蒸汽出口管道(15)接微流道冷凝换热器(3),即氟化液蒸汽出口与微流道冷凝换热器(3)工质入口相连,微流道冷凝换热器(3)工质出口与氟化液储液罐(6)相连,即氟化液蒸汽在微流道冷凝换热器(3)内部冷凝换热后回流到氟化液储液罐(6),整个回路构成氟化液两相循环回路;数据中心机柜(2)底部有氟化液出口管道(11),氟化液出口管道(11)与板式换热器(4)冷凝入口相连,与冷却水换热后的低温氟化液在氟化液驱动泵(27)的作用下回流入氟化液储液罐(6),整个回路构成氟化液单相循环回路。
  5.  根据权利要求4所述的数据中心浸没式双循环多模式液冷散热调节***,其特征在于,所述冷却水为去离子的蒸馏水;所述的氟化液,对于单相循环,采用高沸点、宽液程、窄沸程、热稳定好的电子氟化液Fluorinert FC-3283;对于两相循环及复合工作模式,采用低沸点、宽沸程的电子氟化液Novec71DA;通过调节氟化液出口管道阀(35)和氟化液蒸汽泄压阀(31)以及冷量控制阀(29)的开闭程度,保证数据中心机柜阵列(1)的各个机柜都分配到合适的冷量。
  6.  根据权利要求5所述的数据中心浸没式双循环多模式液冷散热调节***,其特征在于,所述氟化液出口管道(11)为含有内翅结构的强化传热管道,具有高热传导性;微流道冷凝换热器(3)还配有外置背夹风扇(34),利用外置背夹风扇(34)的对流作用进一步提升散热效能。
  7.  根据权利要求6所述的数据中心浸没式双循环多模式液冷散热调节***,其特征在于,所述微流道冷凝换热器(3)、数据中心机柜阵列(1)、氟化液储液罐(6)、板式换热器(4)按照高度由高到低的顺序设置。
  8.  一种如权利要求1、2、3、4、5、6或7所述调节***的浸没式双循环多模式液冷散热调节方法,其特征在于,当所述双循环多模式液冷散热调节***仅工作在单相循环回路时,氟化液蒸汽泄压阀(31),两相回路冷却水阀(37-1)、第一冷却水驱动泵(33)关闭,氟化液出口管道阀(35)打开,开启氟化液出口管道(11),当整个循环的冷源为数据中心机柜(2)所在低温冷空气时,关闭单相回路冷却水阀(37-2),***工作在环境冷却模式,氟化液在重力驱动下流入板式换热器(4),流动过程中将热量传递给外界冷空气;当整个循环的冷源为低温冷却水时,打开单相回路冷却水阀(37-2),***工作在单相冷却模式,冷却水储液罐(8)中的冷却水由于重力自动流入板式换热器(4),冷却水和高温氟化液在板式换热器(4)中完成热量交换,经过板式换热器(4)接收热量的冷却水流经第一余热回收装置(5-1)回收热量后泵送至冷却水储液罐(8),完成冷却水单相冷却循环;板式换热器(4)氟化液出口管道与氟化液储液罐(6)相连接,降温之后的氟化液由氟化液驱动泵(27)提供动力再回流入氟化液储液罐(6),对数据中心机柜(2)中的氟化液进行补充。
  9.  一种如权利要求1、2、3、4、5、6或7所述调节***的浸没式双循环多模式液冷散热调节方法,其特征在于,当所述双循环多模式液冷散热调节***仅工作在两相循环回路时,氟化液出口管道阀(35)、单相回路冷却水阀(37-2)、第二冷却水驱动泵(7)关闭,氟化液蒸汽泄压阀(31)以及两相回路冷却水阀(37-1)打开,氟化液蒸汽由于压力差经蒸汽入口将氟化液送至微流道冷凝换热器(3),与此同时,冷却水在第一冷却水驱动泵(33)的作用下进入微流道冷凝换热器(3)上部冷却水管道,经内部带有菱形微散热柱(38)的微流道分流,同时氟化液蒸汽在金刚石分界面液化冷凝放热,吸收热量后的液滴汇集后经过余热回收装置由重力作为驱动力流入冷却水储液罐(8),氟化液经过在重力的作用下回流入氟化液储液罐(6)。
  10.  一种如权利要求1、2、3、4、5、6或7所述调节***的浸没式双循环多模式液冷散热调节方法,其特征在于,当所述双循环多模式液冷散热调节***工作在复合冷却模式,即单相循环回路和两相循环回路同时启用,单相回路冷却水阀(37-2)和两相回路冷却水阀(37-1)、氟化液蒸汽泄压阀(31)、第一冷却水驱动泵(33)、第二冷却水驱动泵(7)以及氟化液出口管道阀(35)均打开,柜内氟化液液相区进入单相循环回路,氟化液气相区进入两相循环回路,以实现最高效能的散热。
PCT/CN2023/080640 2022-12-07 2023-03-09 数据中心浸没式双循环多模式液冷散热调节***及方法 WO2024119643A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/368,026 US11889663B1 (en) 2022-12-07 2023-09-14 Immersion dual-cycle multi-mode liquid cooling regulation system and method for data center

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211563962.9A CN115568193B (zh) 2022-12-07 2022-12-07 数据中心浸没式双循环多模式液冷散热调节***及方法
CN202211563962.9 2022-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/368,026 Continuation US11889663B1 (en) 2022-12-07 2023-09-14 Immersion dual-cycle multi-mode liquid cooling regulation system and method for data center

Publications (1)

Publication Number Publication Date
WO2024119643A1 true WO2024119643A1 (zh) 2024-06-13

Family

ID=84770510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080640 WO2024119643A1 (zh) 2022-12-07 2023-03-09 数据中心浸没式双循环多模式液冷散热调节***及方法

Country Status (2)

Country Link
CN (1) CN115568193B (zh)
WO (1) WO2024119643A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11889663B1 (en) 2022-12-07 2024-01-30 Southeast University Immersion dual-cycle multi-mode liquid cooling regulation system and method for data center
CN115568193B (zh) * 2022-12-07 2023-03-21 东南大学 数据中心浸没式双循环多模式液冷散热调节***及方法
CN115793819B (zh) * 2023-01-09 2023-04-25 苏州浪潮智能科技有限公司 一种浸没式液冷服务器及其余热回收***
CN116799369B (zh) * 2023-08-21 2023-12-05 青岛理工大学 带有冷凝回收的电池浸没热安全管理实验装置与方法
CN117241566B (zh) * 2023-11-14 2024-01-30 东南大学 一种浸没式多相耦合液冷***
CN117355116B (zh) * 2023-11-17 2024-07-02 广东液冷时代科技有限公司 一种数据中心多段式流道冷板相变散热***及其控制方法
CN117707308B (zh) * 2024-02-05 2024-05-03 苏州元脑智能科技有限公司 一种服务器相变浸没式液冷动态调控***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465299A (zh) * 2020-06-08 2020-07-28 南京佳力图机房环境技术股份有限公司 一种数据中心浸没式和间接接触式结合的液冷***
CN112839490A (zh) * 2021-01-25 2021-05-25 东南大学 一种两相流主被动式多层级数据中心机柜散热装置及方法
US20210185857A1 (en) * 2017-11-03 2021-06-17 Alibaba Group Holding Limited Cooling apparatus
CN113056167A (zh) * 2021-03-05 2021-06-29 上海菡威装备有限公司 一种基于分离式热管换热器的液冷服务器换热设备
CN113093890A (zh) * 2021-04-08 2021-07-09 大连理工大学 一种用于数据中心刀片式服务器两相浸没式液冷***
CN115568193A (zh) * 2022-12-07 2023-01-03 东南大学 数据中心浸没式双循环多模式液冷散热调节***及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278691B (zh) * 2019-07-01 2020-03-31 北京航空航天大学 用于高功率密度机柜的泵驱两相环路散热***
CN113473802B (zh) * 2021-06-29 2023-03-21 苏州浪潮智能科技有限公司 一种冷板式服务器的散热***及控制方法
CN113778205A (zh) * 2021-07-29 2021-12-10 依米康科技集团股份有限公司 一种多联强制两相浸没式液冷***及其控制方法
CN113782868B (zh) * 2021-09-10 2023-02-14 大连理工大学 一种新型的电动汽车两相浸没式液冷***与冷启动***
CN113771699B (zh) * 2021-09-10 2023-07-18 大连理工大学 一种基于涡流加热的两相浸没式液冷电动汽车冷启动***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210185857A1 (en) * 2017-11-03 2021-06-17 Alibaba Group Holding Limited Cooling apparatus
CN111465299A (zh) * 2020-06-08 2020-07-28 南京佳力图机房环境技术股份有限公司 一种数据中心浸没式和间接接触式结合的液冷***
CN112839490A (zh) * 2021-01-25 2021-05-25 东南大学 一种两相流主被动式多层级数据中心机柜散热装置及方法
CN113056167A (zh) * 2021-03-05 2021-06-29 上海菡威装备有限公司 一种基于分离式热管换热器的液冷服务器换热设备
CN113093890A (zh) * 2021-04-08 2021-07-09 大连理工大学 一种用于数据中心刀片式服务器两相浸没式液冷***
CN115568193A (zh) * 2022-12-07 2023-01-03 东南大学 数据中心浸没式双循环多模式液冷散热调节***及方法

Also Published As

Publication number Publication date
CN115568193A (zh) 2023-01-03
CN115568193B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2024119643A1 (zh) 数据中心浸没式双循环多模式液冷散热调节***及方法
WO2022012302A1 (zh) 一种两相流主被动式多层级数据中心机柜散热装置及方法
US11528829B2 (en) Overall efficient heat dissipation system for high power density cabinet
Yuan et al. Phase change cooling in data centers: A review
US20190208668A1 (en) Refrigeration system and refrigeration method for data center
CN111642103A (zh) 高热流密度多孔热沉流动冷却装置
CN108882654B (zh) 相变冷却***、冷却***及变流器柜冷却***
WO2019085090A1 (zh) 一种用于多热源散热的微泵辅助环路热管
CN113093890A (zh) 一种用于数据中心刀片式服务器两相浸没式液冷***
WO2019015407A1 (zh) 一种能够同时实现对cpu芯片和服务器进行散热的***
CN111465299A (zh) 一种数据中心浸没式和间接接触式结合的液冷***
WO2022198944A1 (zh) 温度调节装置、空调***、控制方法和可读存储介质
CN114071972A (zh) 一种用于高功率密度机柜的泵驱双环路热管组合散热***
CN212138202U (zh) 一种数据中心浸没式和间接接触式结合的液冷***
CN206895121U (zh) 一种能够同时实现对cpu芯片和服务器进行散热的***
CN113013120A (zh) 散热装置及电子设备
CN112000206A (zh) 一种基于泵驱毛细相变回路的散热***
US11889663B1 (en) Immersion dual-cycle multi-mode liquid cooling regulation system and method for data center
CN114980669A (zh) 一种数据中心气液散热***及控制方法
CN114727566A (zh) 一种能耗低的超算/数据中心被动式散热***
WO2022110744A1 (zh) 数据中心装置
CN211506391U (zh) 一种服务器芯片重力型热管的服务器散热***及散热装置
CN220674233U (zh) 数据中心用液冷***
CN211293867U (zh) 一种计算机组辅助散热设备
CN207702776U (zh) 一种制冷设备的冷凝装置