WO2024119477A1 - 一种阿洛酮糖晶体的制备方法 - Google Patents

一种阿洛酮糖晶体的制备方法 Download PDF

Info

Publication number
WO2024119477A1
WO2024119477A1 PCT/CN2022/137915 CN2022137915W WO2024119477A1 WO 2024119477 A1 WO2024119477 A1 WO 2024119477A1 CN 2022137915 W CN2022137915 W CN 2022137915W WO 2024119477 A1 WO2024119477 A1 WO 2024119477A1
Authority
WO
WIPO (PCT)
Prior art keywords
psicose
effect
concentrated sugar
sugar solution
preparation
Prior art date
Application number
PCT/CN2022/137915
Other languages
English (en)
French (fr)
Inventor
戴永辉
易建康
朱岁繁
韩勇
Original Assignee
安徽金禾实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽金禾实业股份有限公司 filed Critical 安徽金禾实业股份有限公司
Priority to PCT/CN2022/137915 priority Critical patent/WO2024119477A1/zh
Priority to CN202280005440.9A priority patent/CN118317969A/zh
Publication of WO2024119477A1 publication Critical patent/WO2024119477A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides

Definitions

  • D-allulose (abbreviated as allulose) is a natural sweetener that exists in many products such as wheat, figs, raisins, and jackfruit. It is a blood sugar-friendly product that will not be rapidly digested and absorbed. Allulose has special physiological properties.
  • the absorption rate of allulose in the human body is lower, and it can compete with glucose and fructose on the transporter protein on the cell membrane surface, thereby reducing the absorption of fructose and glucose in the daily diet, making it of great significance to human health, such as enhancing insulin tolerance, inhibiting postprandial blood sugar increase, reducing abdominal fat accumulation, preventing diabetes, anti-inflammatory, protecting nerves, scavenging reactive oxygen free radicals, and treating atherosclerosis. It has broad application prospects in the fields of medicine and health food.
  • the crystallization process of allulose mainly includes water crystallization and organic solvent extraction-cooling crystallization.
  • Chinese patent CN104447888A discloses a method for preparing allulose, wherein a D-psicose solution (with a dry matter concentration of 5-20% and a D-psicose purity of 70-90%) is evaporated and concentrated to a dry matter concentration of 70-90%, and a crystalline D-psicose product is obtained by cooling and crystallizing with an organic solvent method (alcohol), and the content of the crystalline D-psicose product is 98.5-99.5%.
  • this prior art does not add seed crystals during the crystallization process, resulting in a long crystallization time.
  • Chinese patent CN110627847A discloses a method for preparing psicose crystals, wherein the psicose solution after enzyme conversion is subjected to chromatographic separation to purify the psicose to a purity of more than 98.5%; the purified psicose is concentrated to a solid content of 75-85%, rapidly cooled to 35-45°C, seed crystals are added, and constant temperature evaporation and crystallization are carried out at 35-45°C and -0.03-0.09MPa for 40-60h to obtain crystals with a particle size greater than 60 mesh.
  • the above preparation method has a long crystallization time.
  • an object of the present invention is to provide a method for preparing psicose crystals.
  • the preparation method provided by the present invention has a short crystallization time.
  • the present invention provides a method for preparing psicose crystals, comprising the following steps:
  • the allulose solution is concentrated by single-effect evaporation to obtain a single-effect concentrated sugar solution
  • the first-effect concentrated sugar solution is subjected to a second-effect evaporation and concentration to obtain a second-effect concentrated sugar solution;
  • the second-effect concentrated sugar solution is cooled to 40-50° C., mixed with psicose seed crystals and lower alcohol, and subjected to cooling crystallization to obtain psicose crystals; the cooling crystallization time is ⁇ 30 hours.
  • the initial temperature of the cooling crystallization is 40-50°C
  • the final temperature is 30-33°C
  • the cooling rate is 0.5-1°C/h
  • the stirring speed is 1-5 rpm.
  • the psicose solution comprises psicose, fructose and a solvent; the purity of the psicose is 95-99%; and the solid content of the psicose solution is 6-8.5 wt%.
  • the temperature of the single-effect evaporation concentration is 55-60° C.
  • the pressure is -0.07 kPa-0.09 kPa.
  • the solid content of the first-effect concentrated sugar solution is 50-55wt%.
  • the solid content of the second-effect concentrated sugar solution is 85-87wt%.
  • the mass of the allulose seed crystals is 1 to 2 ⁇ of the dry weight of the second-effect concentrated sugar solution.
  • the lower alcohol includes methanol and/or ethanol; the mass of the lower alcohol is 1-2 ⁇ of the dry weight of the second-effect concentrated sugar solution.
  • the mixing is: first mixing the psicose seed crystals and the lower alcohol, and second mixing the obtained seed solution with the second-effect concentrated sugar solution.
  • the temperature of the first mixing is 20-40°C
  • the stirring speed is 150-200 rpm
  • the time is 60-120 min
  • the temperature of the second mixing is 40-50°C.
  • the method further comprises: performing solid-liquid separation on the obtained crystallization liquid and drying the obtained crystals; the drying temperature is 40-45°C.
  • the present invention provides a method for preparing psicose crystals, comprising the following steps: performing a first-effect evaporation concentration on a psicose solution to obtain a first-effect concentrated sugar solution; performing a second-effect evaporation concentration on the first-effect concentrated sugar solution using the heat released by the first-effect evaporation concentration to obtain a second-effect concentrated sugar solution; cooling the second-effect concentrated sugar solution to 40-50° C. and then mixing it with psicose crystal seeds and lower alcohols to perform cooling crystallization to obtain psicose crystals; the cooling crystallization time is ⁇ 30 hours.
  • the preparation method provided by the present invention by adding psicose crystal seeds and lower alcohols, adopts a cooling crystallization method, greatly shortens the crystallization time, has a fast crystallization speed, a short crystallization cycle and a high yield; the addition of lower alcohols can also make the particles and crystal forms of the psicose crystals smoother, smaller in size and better in uniformity.
  • the present invention adopts a double-effect evaporation system for concentration, and the heat energy used for the second-effect evaporation concentration comes from the first-effect evaporation concentration, which greatly reduces the energy consumption of evaporation concentration.
  • the preparation method provided by the present invention is simple to operate and suitable for industrial production.
  • the final temperature of the cooling crystallization in the preparation method provided by the present invention is 30-33°C, and industrial circulating water can reach the terminal temperature of the crystallization of the target product, which greatly reduces the large-scale consumption of refrigeration units and public works such as chilled water, has low energy consumption and low production cost.
  • FIG1 is a morphology of psicose crystals obtained after 4 hours of cooling crystallization under a microscope in the embodiment
  • FIG2 is a morphology of the Psicose crystals obtained after 16 hours of crystallization under a microscope in the embodiment
  • FIG3 is a physical picture of psicose crystals with a particle size greater than 40 mesh prepared in Example
  • FIG4 is a physical picture of the psicose crystals with a particle size of 40 to 60 mesh prepared in Example;
  • FIG5 is a physical picture of the D-psicose crystals with a particle size of 60 to 80 mesh (excluding 60 mesh) prepared in Example;
  • FIG6 is a physical picture of the D-psicose crystals with a particle size of 80 to 100 (excluding 80 mesh) prepared in the example.
  • the present invention provides a method for preparing psicose crystals, comprising the following steps:
  • the allulose solution is concentrated by single-effect evaporation to obtain a single-effect concentrated sugar solution
  • the first-effect concentrated sugar solution is subjected to a second-effect evaporation and concentration to obtain a second-effect concentrated sugar solution;
  • the second-effect concentrated sugar solution is cooled to 40-50° C., mixed with psicose seed crystals and lower alcohol, and subjected to cooling crystallization to obtain psicose crystals; the cooling crystallization time is ⁇ 30 hours.
  • the invention conducts single-effect evaporation concentration on the allulose solution to obtain single-effect concentrated sugar solution.
  • the psicose solution preferably comprises psicose, fructose and a solvent.
  • the purity of the psicose i.e., the mass fraction of psicose in the total mass of psicose and fructose
  • the purity of the fructose i.e., the mass fraction of fructose in the total mass of psicose and fructose
  • the solvent is preferably water.
  • the solid content of the psicose solution is preferably 6-8.5wt%, more preferably 7-8wt%.
  • the psicose solution is preferably obtained by simulated moving bed separation.
  • the temperature of the first-effect evaporation concentration is preferably 55-60°C, more preferably 56-59°C, and further preferably 57-58°C.
  • the pressure of the first-effect evaporation concentration is preferably -0.07kPa-0.09kPa, more preferably -0.075kPa-0.085kPa, and further preferably -0.08kPa.
  • the present invention has no particular limitation on the time of the first-effect evaporation concentration, and a first-effect concentrated sugar solution with a solid content of 50-55wt% can be obtained.
  • the solid content of the first-effect concentrated sugar solution is more preferably 51-54wt%, and more preferably 52-53.5wt%.
  • the present invention uses the heat released by the first-effect evaporation and concentration to perform a second-effect evaporation and concentration on the first-effect concentrated sugar solution to obtain a second-effect concentrated sugar solution.
  • the temperature of the second-effect evaporation concentration is preferably 50-55°C, more preferably 51-54°C, and further preferably 52-53°C.
  • the pressure of the second-effect evaporation concentration is preferably -0.07kPa-0.09kPa, more preferably -0.075kPa-0.085kPa, and further preferably -0.08kPa.
  • the present invention has no particular limitation on the time of the second-effect evaporation concentration, and a second-effect concentrated sugar solution with a solid content of 85-87wt% can be obtained.
  • the solid content of the second-effect concentrated sugar solution is more preferably 85.2-86.8wt%, and more preferably 85.4-86.5wt%.
  • the first-effect evaporation concentration and the second-effect evaporation concentration are preferably carried out in a double-effect evaporator.
  • the present invention cools the second-effect concentrated sugar solution to 40-50° C., mixes it with psicose seed crystals and lower alcohol, and performs cooling crystallization to obtain psicose crystals; the cooling crystallization time is ⁇ 30 hours.
  • the mass of the psicose seed crystals is preferably 1-2 ⁇ of the dry weight of the second-effect concentrated sugar solution, more preferably 1.2-1.8 ⁇ , and further preferably 1.4-1.6 ⁇ .
  • the lower alcohol preferably includes methanol and/or ethanol, more preferably methanol or ethanol.
  • the mass of the lower alcohol is preferably 1-2 ⁇ of the dry weight of the second-effect concentrated sugar solution, more preferably 1.2-1.8 ⁇ , and further preferably 1.4-1.6 ⁇ .
  • the mixing is preferably: first mixing the D-psicose seed crystals and the lower alcohol to obtain a seed solution; and second mixing the seed solution with the second-effect concentrated sugar solution.
  • the temperature of the first mixing is preferably 20-40°C, more preferably 25-30°C
  • the stirring speed of the first mixing is preferably 150-200rpm, more preferably 160-180rpm
  • the time of the first mixing is preferably 60-120min, more preferably 80-100min.
  • the temperature of the second mixing is preferably 40-50°C, more preferably 42-47°C
  • the stirring speed of the second mixing is preferably 1-5rpm, more preferably 1-3rpm
  • the present invention has no special restrictions on the time of the second mixing, as long as the raw materials can be mixed evenly.
  • the second mixing is specifically preferably: placing the second-effect concentrated sugar solution in a crystallization kettle at a temperature of 40-50°C, and adding the seed solution after cooling to 40-50°C.
  • the initial temperature of the temperature drop crystallization is preferably 40 to 50°C, more preferably 42 to 47°C.
  • the final temperature of the temperature drop crystallization is preferably 30 to 33°C, more preferably 30 to 32°C.
  • the cooling rate of the temperature drop crystallization is preferably 0.5 to 1°C/h, more preferably 0.6 to 0.7°C/h.
  • the temperature drop crystallization is preferably carried out under stirring conditions, and the stirring speed is preferably 1 to 5rpm, more preferably 1 to 3rpm.
  • the time of the temperature drop crystallization is preferably ⁇ 25h, more preferably 10 to 23h, and further preferably 20 to 22h.
  • the present invention preferably further comprises: performing solid-liquid separation on the obtained crystallization liquid, and drying the obtained crystals to obtain D-psicose crystals.
  • the present invention has no particular limitation on the solid-liquid separation method, and any solid-liquid separation method well known to those skilled in the art can be used, such as centrifugal separation, which is preferably performed in a centrifuge.
  • the drying temperature is preferably 40-45°C, and more preferably 42-43°C.
  • the present invention preferably further comprises sieving the obtained psicose crystals to obtain finished psicose crystals; the finished psicose crystals have a particle size of 40 to 60 mesh accounting for more than 80 wt %.
  • the purity of the psicose crystals is more than 95%.
  • the second-effect concentrated sugar solution was pumped into a crystallization kettle at 42° C., 2.8 kg of psicose seed crystals and 3 kg of methanol were stirred and mixed for 85 min, the obtained seed solution was added to the crystallization kettle, and the temperature was lowered to 30° C. (the cooling crystallization time was 20 h) under the conditions of a stirring speed of 1 rpm and a cooling rate of 0.6° C./h.
  • the bottom valve of the crystallization kettle was opened, and the crystallization solution was placed in a centrifuge for centrifugal separation.
  • the obtained crystals were dried at 40° C. for 80 min, and sieved (20 mesh sieve, 40-60 mesh sieve, 60-80 mesh sieve and 80-100 mesh sieve) to obtain psicose crystals.
  • the second-effect concentrated sugar solution was pumped into a crystallization kettle at 47° C., 2.4 kg of psicose seed crystals and 2.5 kg of methanol were stirred and mixed for 90 min, the obtained seed solution was added to the crystallization kettle, and the temperature was lowered to 32° C. (the cooling crystallization time was 21.4 h) under the conditions of a stirring speed of 2 rpm and a cooling rate of 0.7° C./h.
  • the bottom valve of the crystallization kettle was opened, and the crystallization solution was placed in a centrifuge for centrifugal separation.
  • the obtained crystals were dried at 43° C. for 65 min, and sieved (20 mesh sieve, 40-60 mesh sieve, 60-80 mesh sieve and 80-100 mesh sieve) to obtain psicose crystals.
  • Example 1 and Example 2 the morphology of the psicose crystals obtained after 4 hours of crystallization under a microscope is shown in Figure 1, and the morphology of the psicose crystals after 16 hours of crystallization is shown in Figure 2. It can be seen from Figures 1 and 2 that the crystal particles are uniform in size.
  • the actual picture of the allulose crystals with a particle size greater than 40 mesh prepared in Example 1 and Example 2 is shown in Figure 3, the actual picture of the allulose crystals with a particle size of 40-60 mesh is shown in Figure 4, the actual picture of the allulose crystals with a particle size of 60-80 mesh (excluding 60 mesh) is shown in Figure 5, and the actual picture of the allulose crystals with a particle size of 80-100 mesh (excluding 80 mesh) is shown in Figure 6.
  • D-psicose crystals were prepared according to the method of Example 2, with the only difference from Example 2 being that the stirring speed of the cooling crystallization was 10 rpm and the cooling rate was 2° C./h.
  • D-psicose crystals were prepared according to the method of Example 2, the only difference from Example 2 being that no seed crystals were added and methanol was directly added to the crystallization kettle.
  • the yield of the psicose crystals prepared by the preparation method provided by the present invention is high, the psicose crystals with a particle size of 40-60 mesh account for more than 81.7% of the total psicose crystals, and the particle size is uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Abstract

一种阿洛酮糖晶体的制备方法,包括以下步骤:将阿洛酮糖液进行一效蒸发浓缩,得到一效浓缩糖液;采用一效蒸发浓缩释放的热量将一效浓缩糖液进行二效蒸发浓缩,得到二效浓缩糖液;将二效浓缩糖液降温至 40~50℃后与阿洛酮糖晶种和低级醇混合,进行降温结晶,得到阿洛酮糖晶体; 降温结晶的时间≤30h,通过加入阿洛酮糖晶种以及低级醇,采用降温结晶方式,大大缩短了结晶时间,结晶速度快,结晶周期短,收率高,晶体的颗粒与晶型均更加光滑平整、粒度小且均一性好,操作简单,采用双效蒸发***进行浓缩,能耗低。

Description

一种阿洛酮糖晶体的制备方法 技术领域
本发明涉及生物工程技术领域,特别涉及一种阿洛酮糖晶体的制备方法。
背景技术
D-阿洛酮糖(简称阿洛酮糖)是一种天然的甜味剂,存在于小麦、无花果、葡萄干、菠萝蜜等多种产品中,属于血糖友好型产品,不会被急速的消化和吸收。阿洛酮糖具有特殊的生理性质,例如,与葡萄糖相比,阿洛酮糖在人体内的吸收速率更低,并且能够与葡萄糖和果糖在细胞膜表面的转运蛋白上发生竞争,从而减少日常饮食中的果糖和葡萄糖的吸收,使其对人体健康有重要的意义,如增强胰岛素耐受性,抑制餐后血糖升高、减少腹内脂肪堆积、预防糖尿病、抗炎、保护神经、清除活性氧自由基以及治疗动脉粥状硬化的诸多作用,在医药和保健食品领域具有广阔的应用前景。
目前,阿洛酮糖结晶工艺主要包括水结和有机溶剂萃取-降温结晶。例如,中国专利CN104447888A公开了一种阿洛酮糖的制备方法,将D-阿洛酮糖溶液(干物质量浓度为5~20%、D-阿洛酮糖纯度为70~90%)蒸发浓缩至干物质量浓度为70~90%,通过有机溶剂法(酒精)降温结晶得到晶体D-阿洛酮糖产品,其含量为98.5~99.5%。然而,该现有技术在结晶过程中未加入晶种,导致其结晶时间长。
中国专利CN110627847A公开了一种阿洛酮糖晶体的制备方法,将酶转化完成的阿洛酮糖液经过色谱分离,将阿洛酮糖提纯至纯度为98.5%以上;提纯后的阿洛酮糖浓缩至固形物质量含量75~85%,迅速降温至35~45℃,加入晶种,在35~45℃、-0.03~-0.09MPa条件下恒温蒸发结晶40~60h,得到粒径大于60目的晶体。然而,上述制备方法的结晶时间长。
发明内容
有鉴于此,本发明的目的在于提供一种阿洛酮糖晶体的制备方法,本发明提供的制备方法结晶时间短。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种阿洛酮糖晶体的制备方法,包括以下步骤:
将阿洛酮糖液进行一效蒸发浓缩,得到一效浓缩糖液;
采用所述一效蒸发浓缩释放的热量将所述一效浓缩糖液进行二效蒸发浓缩,得到二效浓缩糖液;
将所述二效浓缩糖液降温至40~50℃后与阿洛酮糖晶种和低级醇混合,进行降温结晶,得到阿洛酮糖晶体;所述降温结晶的时间≤30h。
优选地,所述降温结晶的初始温度为40~50℃,终温度为30~33℃,降温速率为0.5~1℃/h,搅拌速度为1~5rpm。
优选地,所述阿洛酮糖液包括阿洛酮糖、果糖和溶剂;所述阿洛酮糖的纯度为95~99%;所述阿洛酮糖液的固含量为6~8.5wt%。
优选地,所述一效蒸发浓缩的温度为55~60℃,压力为-0.07kPa~-0.09kPa。
优选地,所述一效浓缩糖液的固含量为50~55wt%。
6、根据权利要求1所述的制备方法,其特征在于,所述二效蒸发浓缩的温度为50~55℃,压力为-0.07kPa~-0.09kPa。
优选地,所述二效浓缩糖液的固含量为85~87wt%。
优选地,所述阿洛酮糖晶种的质量为二效浓缩糖液干重的1~2‰。
优选地,所述低级醇包括甲醇和/或乙醇;所述低级醇的质量为二效浓缩糖液干重的1~2‰。
优选地,所述混合为:将阿洛酮糖晶种和低级醇第一混合,将得到的晶种液与所述二效浓缩糖液第二混合。
优选地,所述第一混合的温度为20~40℃,搅拌速度为150~200rpm,时间为60~120min;
所述第二混合的温度为40~50℃。
优选地,所述降温结晶后还包括:将得到的结晶液进行固液分离,将所得晶体进行干燥;所述干燥的温度为40~45℃。
本发明提供了一种阿洛酮糖晶体的制备方法,包括以下步骤:将阿洛酮糖液进行一效蒸发浓缩,得到一效浓缩糖液;采用所述一效蒸发浓缩释放的热量将所述一效浓缩糖液进行二效蒸发浓缩,得到二效浓缩糖液;将所述二效浓缩糖液降温至40~50℃后与阿洛酮糖晶种和低级醇混合,进行降温结晶,得到阿洛酮糖晶体;所述降温结晶的时间≤30h。本发明提供 的制备方法,通过加入阿洛酮糖晶种以及低级醇,采用降温结晶方式,大大缩短了结晶时间,结晶速度快,结晶周期短且收率高;低级醇的加入还能够使得阿洛酮糖晶体的颗粒与晶型均更加光滑平整、粒度小且均一性好。本发明采用双效蒸发***进行浓缩,二效蒸发浓缩所用的热能来自于一效蒸发浓缩,极大地减少了蒸发浓缩的能耗。而且,本发明提供的制备方法,操作简单,适宜工业化生产。
进一步的,本发明提供的制备方法的降温结晶的终温度为30~33℃,工业上循环水即可达到目标产物结晶的终点温度,大大减轻了制冷机组以及冷冻水等公用工程的大规模的消耗,能耗低,生产成本低。
附图说明
图1为实施例中显微镜下降温结晶4h后所得阿洛酮糖晶体的形貌图;
图2为实施例中显微镜下结晶16h后所得阿洛酮糖晶体形貌图;
图3为实施例制备得到的粒度大于40目阿洛酮糖晶体实物图;
图4为实施例制备得到的粒度为40~60目的阿洛酮糖晶体实物图;
图5为实施例制备得到的粒度为60~80目(不包括60目)的阿洛酮糖晶体实物图如;
图6为实施例制备得到的粒度为80~100(不包括80目)目的阿洛酮糖晶体实物图。
具体实施方式
本发明提供了一种阿洛酮糖晶体的制备方法,包括以下步骤:
将阿洛酮糖液进行一效蒸发浓缩,得到一效浓缩糖液;
采用所述一效蒸发浓缩释放的热量将所述一效浓缩糖液进行二效蒸发浓缩,得到二效浓缩糖液;
将所述二效浓缩糖液降温至40~50℃后与阿洛酮糖晶种和低级醇混合,进行降温结晶,得到阿洛酮糖晶体;所述降温结晶的时间≤30h。
在本发明中,若无特殊说明,所有的原料组分均为本领域技术人员熟知的市售商品。
本发明将阿洛酮糖液进行一效蒸发浓缩,得到一效浓缩糖液。
在本发明中,所述阿洛酮糖液优选包括阿洛酮糖、果糖和溶剂。在本发明中,所述阿洛酮糖的纯度(即阿洛酮糖质量占阿洛酮糖与果糖总质量 的质量分数)优选为95~99%,更优选为96~98%。在本发明中,所述果糖的纯度(即果糖质量占阿洛酮糖与果糖总质量的质量分数)优选为1~5%,更优选为2~4%。在本发明中,所述溶剂优选为水。在本发明中,所述阿洛酮糖液的固含量优选为6~8.5wt%,更优选为7~8wt%。在本发明中,所述阿洛酮糖液优选由模拟移动床分离得到。
在本发明中,所述一效蒸发浓缩的温度优选为55~60℃,更优选为56~59℃,进一步优选为57~58℃,所述一效蒸发浓缩的压力优选为-0.07kPa~-0.09kPa,更优选为-0.075kPa~-0.085kPa,进一步优选为-0.08kPa。本发明对于所述一效蒸发浓缩的时间没有特殊限定,能够得到固含量为50~55wt%的一效浓缩糖液即可,所述一效浓缩糖液的固含量更优选为51~54wt%,更优选为52~53.5wt%。
得到一效浓缩糖液后,本发明采用所述一效蒸发浓缩释放的热量将所述一效浓缩糖液进行二效蒸发浓缩,得到二效浓缩糖液。
在本发明中,所述二效蒸发浓缩的温度优选为50~55℃,更优选为51~54℃,进一步优选为52~53℃,所述二效蒸发浓缩的压力优选为-0.07kPa~-0.09kPa,更优选为-0.075kPa~-0.085kPa,进一步优选为-0.08kPa。本发明对于所述二效蒸发浓缩的时间没有特殊限定,能够得到固含量为85~87wt%的二效浓缩糖液即可,所述二效浓缩糖液的固含量更优选为85.2~86.8wt%,更优选为85.4~86.5wt%。
在本发明中,所述一效蒸发浓缩和二效蒸发浓缩优选在双效蒸发器中进行。
得到二效浓缩糖液后,本发明将所述二效浓缩糖液降温至40~50℃后与阿洛酮糖晶种和低级醇混合,进行降温结晶,得到阿洛酮糖晶体;所述降温结晶的时间≤30h。
在本发明中,所述阿洛酮糖晶种的质量优选为二效浓缩糖液干重的1~2‰,更优选为1.2~1.8‰,进一步优选为1.4~1.6‰。
在本发明中,所述低级醇优选包括甲醇和/或乙醇,更优选为甲醇或乙醇。在本发明中,所述低级醇的质量优选为二效浓缩糖液干重的1~2‰,更优选为1.2~1.8‰,进一步优选为1.4~1.6‰。
在本发明的具体实施例中,所述混合优选为:将阿洛酮糖晶种和低级 醇第一混合,得到晶种液;将所述晶种液与所述二效浓缩糖液第二混合。在本发明中,所述第一混合的温度优选为20~40℃,更优选为25~30℃,所述第一混合的搅拌速度优选为150~200rpm,更优选为160~180rpm,所述第一混合的时间优选为60~120min,更优选为80~100min。在本发明中,所述第二混合的温度优选为40~50℃,更优选为42~47℃,所述第二混合的搅拌速度优选为1~5rpm,更优选为1~3rpm,本发明对于所述第二混合的时间没有特殊限定,能够将原料混合均匀即可。在本发明中,所述第二混合具体优选为:将二效浓缩糖液置于温度为40~50℃的结晶釜中,降温至40~50℃后加入晶种液。
在本发明中,所述降温结晶的初始温度优选为40~50℃,更优选为42~47℃。在本发明中,所述降温结晶的终温度优选为30~33℃,更优选为30~32℃。在本发明中,所述降温结晶的降温速率优选为0.5~1℃/h,更优选为0.6~0.7℃/h。在本发明中,所述降温结晶优选在搅拌条件下进行,所述搅拌的速度优选为1~5rpm,更优选为1~3rpm。在本发明中,所述降温结晶的时间优选为<25h,更优选为10~23h,进一步优选为20~22h。
所述降温结晶后,本发明优选还包括:将得到的结晶液进行固液分离,将所得晶体进行干燥,得到阿洛酮糖晶体。本发明对于所述固液分离的方式没有特殊限定采用本领域技术人员熟知的固液分离方式即可,具体如离心分离,所述离心分离优选在离心机中进行。在本发明中,所述干燥的温度优选为40~45℃,更优选为42~43℃。
所述干燥后,本发明优选还包括将所得阿洛酮糖晶体进行筛分,得到阿洛酮糖晶体成品;所述阿洛酮糖晶体成品中粒径为40~60目的占比为80wt%以上。在本发明中,所述阿洛酮糖晶体的纯度在95%以上。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)将模拟移动床分离出的4m 3阿洛酮糖液(组成:阿洛酮糖96.4wt%,果糖3.6wt%,溶剂为水,固含量为8wt%)泵入双效蒸发器中 的一效蒸发器中,在56℃、-0.08kPa一效蒸发浓缩至固含量为52.3wt%,得到一效浓缩糖液;其中,一效蒸发浓缩过程中保持液位在循环口上方,其液位低于一效浓缩器视镜时补加阿洛酮糖液;
(2)将所述一效浓缩糖液经出料泵转移至二效蒸发器中,二效蒸发浓缩至固含量为85.4wt%,得到2.4m 3二效浓缩糖液;其中,二效蒸发浓缩所用的蒸汽来自一效蒸发浓缩过程;
(3)将所述二效浓缩糖液泵入至42℃的结晶釜中,将2.8kg阿洛酮糖晶种和3kg甲醇搅拌混合85min,将所得晶种液加入到结晶釜中,在搅拌速度为1rpm、降温速度为0.6℃/h的条件下降温至30℃(降温结晶时间为20h),打开结晶釜的底阀,将结晶液置于离心机中离心分离,将所得晶体在40℃条件下干燥80min,筛分(20目筛、40~60目筛、60~80目筛和80~100目筛),得到阿洛酮糖晶体。
实施例2
(1)将模拟移动床分离出的4.2m 3阿洛酮糖液(组成:阿洛酮糖97.3wt%,果糖2.7wt%,溶剂为水,固含量为7.6wt%)泵入双效蒸发器中的一效蒸发器中,60℃、-0.09kPa一效蒸发浓缩至固含量为53.1wt%,得到一效浓缩糖液;其中,一效蒸发浓缩过程中保持液位在循环口上方,液位低于一效浓缩器视镜时补加阿洛酮糖液;
(2)将所述一效浓缩糖液经出料泵转移至二效蒸发器中,二效蒸发浓缩至固含量为86.3wt%,得到2.6m 3二效浓缩糖液;其中,二效蒸发浓缩所用的蒸汽来自一效蒸发浓缩过程;
(3)将所述二效浓缩糖液泵入至47℃的结晶釜中,将2.4kg阿洛酮糖晶种和2.5kg甲醇搅拌混合90min,将所得晶种液加入到结晶釜中,在搅拌速度为2rpm、降温速度为0.7℃/h的条件下降温至32℃(降温结晶时间为21.4h),打开结晶釜的底阀,将结晶液置于离心机中离心分离,将所得晶体在43℃条件下干燥65min,筛分(20目筛、40~60目筛、60~80目筛和80~100目筛),得到阿洛酮糖晶体。
实施例1和实施例2中,显微镜下降温结晶4h后所得阿洛酮糖晶体的形貌图如图1所示,结晶16h后的阿洛酮糖晶体形貌图如图2所示。由图1~图2可知晶体颗粒大小均一。
实施例1和实施例2制备得到的粒度大于40目的阿洛酮糖晶体实物图如图3所示,粒度为40~60目的阿洛酮糖晶体实物图如图4所示,粒度为60~80目(不包括60目)的阿洛酮糖晶体实物图如图5所示,粒度为80~100目(不包括80目)的阿洛酮糖晶体实物图如图6所示。
对比例1
按照实施例2的方法制备阿洛酮糖晶体,与实施例2的区别仅在于:降温结晶的搅拌速度为10rpm,降温速率为2℃/h。
对比例2
(1)将模拟移动床分离出的2.1m 3阿洛酮糖液(组成:阿洛酮糖97.3wt%,果糖2.7wt%,溶剂为水,固含量为7.6wt%)泵入双效蒸发器中的一效蒸发器中,同时将2.1m 3阿洛酮糖液泵入二效蒸发器中,均蒸发浓缩至固含量为86.3wt%,得到2.6m 3浓缩糖液;蒸发浓缩的温度均为60℃,压力均为-0.09kPa。
(3)将所述浓缩糖液按照实施例2步骤(3)进行处理,得到阿洛酮糖晶体。
对比例3
按照实施例2的方法制备阿洛酮糖晶体,与实施例2的区别仅在于不加入晶种,直接将甲醇加入到结晶釜中。
实施例1~2和对比例1~3制备得到的阿洛酮糖晶体的纯度、收率和粒度分布(即不同粒度的阿洛酮糖晶体占阿洛酮糖晶体总量的质量分数)如表1所示:
表1实施例1~2和对比例1~3制备得到的阿洛酮糖晶体的纯度、收率和粒度分布
Figure PCTCN2022137915-appb-000001
Figure PCTCN2022137915-appb-000002
由表1可知,本发明提供的制备方法制备得到的阿洛酮糖晶体的收率高,粒度在40~60目的阿洛酮糖晶体占阿洛酮糖晶体总量的81.7%以上,粒度均一。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种阿洛酮糖晶体的制备方法,其特征在于,包括以下步骤:
    将阿洛酮糖液进行一效蒸发浓缩,得到一效浓缩糖液;
    采用所述一效蒸发浓缩释放的热量将所述一效浓缩糖液进行二效蒸发浓缩,得到二效浓缩糖液;
    将所述二效浓缩糖液降温至40~50℃后与阿洛酮糖晶种和低级醇混合,进行降温结晶,得到阿洛酮糖晶体;所述降温结晶的时间≤30h。
  2. 根据权利要求1所述的制备方法,其特征在于,所述降温结晶的初始温度为40~50℃,终温度为30~33℃,降温速率为0.5~1℃/h,搅拌速度为1~5rpm。
  3. 根据权利要求1所述的制备方法,其特征在于,所述阿洛酮糖液包括阿洛酮糖、果糖和溶剂;所述阿洛酮糖的纯度为95~99%;所述阿洛酮糖液的固含量为6~8.5wt%。
  4. 根据权利要求1所述的制备方法,其特征在于,所述一效蒸发浓缩的温度为55~60℃,压力为-0.07kPa~-0.09kPa。
  5. 根据权利要求1或4所述的制备方法,其特征在于,所述一效浓缩糖液的固含量为50~55wt%。
  6. 根据权利要求1所述的制备方法,其特征在于,所述二效蒸发浓缩的温度为50~55℃,压力为-0.07kPa~-0.09kPa。
  7. 根据权利要求1或6所述的制备方法,其特征在于,所述二效浓缩糖液的固含量为85~87wt%。
  8. 根据权利要求1所述的制备方法,其特征在于,所述阿洛酮糖晶种的质量为二效浓缩糖液干重的1~2‰。
  9. 根据权利要求1所述的制备方法,其特征在于,所述低级醇包括甲醇和/或乙醇;所述低级醇的质量为二效浓缩糖液干重的1~2‰。
  10. 根据权利要求1所述的制备方法,其特征在于,所述混合为:将阿洛酮糖晶种和低级醇第一混合,将得到的晶种液与所述二效浓缩糖液第二混合。
  11. 根据权利要求10所述的制备方法,其特征在于,所述第一混合的温度为20~40℃,搅拌速度为150~200rpm,时间为60~120min;
    所述第二混合的温度为40~50℃。
  12. 根据权利要求1或2所述的制备方法,其特征在于,所述降温结晶后还包括:将得到的结晶液进行固液分离,将所得晶体进行干燥;所述干燥的温度为40~45℃。
PCT/CN2022/137915 2022-12-09 2022-12-09 一种阿洛酮糖晶体的制备方法 WO2024119477A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/137915 WO2024119477A1 (zh) 2022-12-09 2022-12-09 一种阿洛酮糖晶体的制备方法
CN202280005440.9A CN118317969A (zh) 2022-12-09 2022-12-09 一种阿洛酮糖晶体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137915 WO2024119477A1 (zh) 2022-12-09 2022-12-09 一种阿洛酮糖晶体的制备方法

Publications (1)

Publication Number Publication Date
WO2024119477A1 true WO2024119477A1 (zh) 2024-06-13

Family

ID=91378317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137915 WO2024119477A1 (zh) 2022-12-09 2022-12-09 一种阿洛酮糖晶体的制备方法

Country Status (2)

Country Link
CN (1) CN118317969A (zh)
WO (1) WO2024119477A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638695A (zh) * 2009-08-24 2010-02-03 安徽丰原发酵技术工程研究有限公司 一种结晶果糖的制备方法
US20190177351A1 (en) * 2014-10-20 2019-06-13 Cj Cheiljedang Corporation Method for preparing d-psicose crystal
CN110627847A (zh) * 2019-09-17 2019-12-31 山东百龙创园生物科技股份有限公司 一种阿洛酮糖晶体的制备方法
CN110872332A (zh) * 2019-10-24 2020-03-10 翁源广业清怡食品科技有限公司 一种阿洛酮糖的结晶工艺
CN112574263A (zh) * 2020-12-04 2021-03-30 山东百龙创园生物科技股份有限公司 一种阿洛酮糖结晶的制备方法
CN113412266A (zh) * 2018-11-30 2021-09-17 Cj第一制糖株式会社 D-阿洛酮糖晶体及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638695A (zh) * 2009-08-24 2010-02-03 安徽丰原发酵技术工程研究有限公司 一种结晶果糖的制备方法
US20190177351A1 (en) * 2014-10-20 2019-06-13 Cj Cheiljedang Corporation Method for preparing d-psicose crystal
CN113412266A (zh) * 2018-11-30 2021-09-17 Cj第一制糖株式会社 D-阿洛酮糖晶体及其制备方法
CN110627847A (zh) * 2019-09-17 2019-12-31 山东百龙创园生物科技股份有限公司 一种阿洛酮糖晶体的制备方法
CN110872332A (zh) * 2019-10-24 2020-03-10 翁源广业清怡食品科技有限公司 一种阿洛酮糖的结晶工艺
CN112574263A (zh) * 2020-12-04 2021-03-30 山东百龙创园生物科技股份有限公司 一种阿洛酮糖结晶的制备方法

Also Published As

Publication number Publication date
CN118317969A (zh) 2024-07-09

Similar Documents

Publication Publication Date Title
CN104788345B (zh) 一种高纯度盐酸二甲双胍的生产方法
WO2015010497A1 (zh) 黑果枸杞多糖的制备方法
CN102524701A (zh) 果渣膳食纤维及其制备方法
WO2022117074A1 (zh) 一种阿洛酮糖结晶的制备方法
CN105192723B (zh) 一种玛咖膳食纤维及其制备方法和应用
CN114031649B (zh) 一种提高阿洛酮糖晶体粒度和流动性的方法
CN114456215A (zh) 一种d-阿洛酮糖晶体及其制备方法
WO2023134467A1 (zh) 一种以大米为原料制备淀粉及无热变性蛋白粉的方法
CN103275047B (zh) 一种灰黄霉素的制备方法
WO2024119477A1 (zh) 一种阿洛酮糖晶体的制备方法
CN106473147B (zh) 一种紫山药抗消化淀粉及其制备方法
CN115232044B (zh) 一种以鲜蒜为原料制备γ-谷氨酰-S-烯丙基-L-半胱氨酸的方法
CN115192623A (zh) 一种山苦瓜高能清脂素提取工艺
CN101823955B (zh) 一种从玉米皮中提取阿魏酸的方法
CN108300751A (zh) 一种花生粕提取花生多肽的方法
CN104557651B (zh) 一种双水相耦合破壁技术从雨生红球藻中提取分离虾青素的方法
CN112314954A (zh) 一种玉米膳食纤维的制备方法
CN108887482A (zh) 一种提高甲鱼耐低温的专用饲料及其制备方法
CN114685303B (zh) 一种从火麻籽壳中制备***酰胺b的方法
CN115193100B (zh) 一种植物活性成分的萃取方法
US11155645B2 (en) Preparation method of slowly digestible starch
CN115785172A (zh) 一种阿洛酮糖浓缩液高效结晶的方法
CN109679761A (zh) 一种米糠的稳定化方法
CN115819211B (zh) 一种辅酶q10的分离纯化方法
CN113831374B (zh) 一种甜茶苷的结晶方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22967625

Country of ref document: EP

Kind code of ref document: A1