WO2024116313A1 - Machine tool - Google Patents

Machine tool Download PDF

Info

Publication number
WO2024116313A1
WO2024116313A1 PCT/JP2022/044125 JP2022044125W WO2024116313A1 WO 2024116313 A1 WO2024116313 A1 WO 2024116313A1 JP 2022044125 W JP2022044125 W JP 2022044125W WO 2024116313 A1 WO2024116313 A1 WO 2024116313A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
corner
cutting
cutting tool
load value
Prior art date
Application number
PCT/JP2022/044125
Other languages
French (fr)
Japanese (ja)
Inventor
久保田知克
熊崎信也
中川太智
長井修
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/044125 priority Critical patent/WO2024116313A1/en
Publication of WO2024116313A1 publication Critical patent/WO2024116313A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling

Definitions

  • the present invention relates to a machine tool that allows an operator to properly change the position of a cutting tool.
  • Patent Document 1 discloses a machine tool equipped with an analysis device that determines the appropriate replacement time. The analysis device determines the wear state of the cutting blade based on cutting information about the cutting blade, and determines the condition of the cutting blade by considering the effect that characteristics such as wear of the cutting blade have on the measurement results of the sensor.
  • Replaceable tool bits use polygonal tips, such as triangular, square, or diamond tips, which have multiple corners that can be used as cutting edges. With these tips, each corner of a tool is rotated in turn to become the cutting edge, but there is a problem with used corners being mistakenly used. With square tips, the tool is rotated by moving four corners in turn, and if the tool can be used on both sides, it is flipped over and another four corners are moved in turn. The dimensions of the corners of these tips are extremely small, making it difficult for workers to distinguish between used and unused parts. As a result, workers, especially those with little experience, sometimes mistakenly attach used corners as cutting edges.
  • polygonal tips such as triangular, square, or diamond tips
  • the present invention aims to solve this problem by providing a machine tool that can properly change the position of the cutting tool.
  • the machine tool uses a tool changer equipped with a cutting tool that can be repositioned with multiple corners as cutting edges, and has a control device that calculates a confirmation load value based on the machining load measured in a predetermined number of machining operations after the corners of the cutting tool have been repositioned, and compares the confirmation load value with a preset reference load value to determine whether the corners of the cutting tool attached as cutting edges are unused or used.
  • a confirmation load value is calculated during processing after the corner of the cutting tool has been repositioned, and a comparison with a preset reference load value is made to determine whether the corner of the cutting tool attached as the cutting edge is unused or used. Therefore, even if the worker makes a mistake in repositioning the corner, the cutting tool can be properly repositioned.
  • FIG. 1 is a perspective view showing a main internal structure of an embodiment of a machine tool.
  • 1 is an external perspective view showing an entirety of an embodiment of a machine tool;
  • FIG. 2 is a block diagram showing a control system for controlling the machine tool.
  • FIG. 2 is a perspective view showing a cutting tool, which is one of a plurality of tools used in a machine tool.
  • FIG. 13 is a graph showing the life span of a chip.
  • FIG. 13 is a diagram showing a position change guide displayed on a monitor.
  • FIG. 11 is a flowchart showing processing steps according to a cutting tool replacement program.
  • FIG. 11 is a flowchart showing processing steps according to a reference data creation program.
  • FIG. 11 is a flowchart showing processing steps according to a corner determination program.
  • FIG. 13 is a flowchart for executing a correction processing subroutine.
  • FIG. 1 is a perspective view showing the main internal structure of the machine tool of this embodiment.
  • This machine tool 1 is a multi-tasking machine that has the functions of both an NC lathe and a machining center.
  • the machining devices that make up this multi-tasking machine are a first work spindle device 3 and a second work spindle device 5 that grip a workpiece W, and a first turret device 4 and a second turret device 6 that have a plurality of tools T, each of which is arranged symmetrically to the left and right to form an opposed two-axis lathe, and a tool spindle device 2 is further provided in the center of the machine body as a machining device.
  • the first and second work spindle devices 3, 5 are symmetrically constructed and have the same structure, with a spindle rotatably incorporated into the headstock 12, to which is attached a chuck mechanism 11 that grips the workpiece W to be machined.
  • the chuck mechanism 11 is rotated by the drive of a spindle motor 13, and the gripped workpiece W is phased during machining and rotated at a predetermined speed.
  • the headstock 12 and spindle motor 13 have a mounted spindle slide 14 that can slide freely along a guide rail 15, and positioning movement is possible by controlling a Z-axis servo motor connected to a ball screw mechanism.
  • the first and second turret devices 4 and 6 are provided with a drive mechanism that moves the tool rest 16 in two directions perpendicular to the Z axis.
  • the roughly triangular base slide 18 can slide upward at an angle of 45 degrees forward relative to the bed 10, and the turret slide 19 carrying the tool rest 16 is assembled so as to be slid downward at an angle of 45 degrees forward relative to the base slide 18.
  • the base slide 18 and the turret slide 19 are configured to move in each direction via a ball screw mechanism of a screw shaft rotated by each servo motor.
  • the tool spindle device 2 located in the center is a built-in type in which a tool motor and a tool spindle are built into the spindle head 21, and various tools T (spindle head tools) can be replaced using the tool mounting section provided at the lower end.
  • the spindle head 21 is rotatably attached to the spindle slide 22, and is configured so that the rotation of the B-axis motor 23 is transmitted via a rotation transmission mechanism.
  • the tool spindle device 2 has a guide rail fixed along the horizontal Y-axis in the front-rear direction of the machine body, and a base slide 25 is slidably assembled thereto.
  • a rail section is fixed to the front side of the base slide 25 along the vertical X-axis in the up-down direction of the machine body, and the spindle slide 22 is slidably assembled thereto.
  • Both the base slide 25 and the spindle slide 22 are provided with a ball screw mechanism, and the spindle head 21 can be moved in each axial direction by driving the Y-axis servo motor or the X-axis servo motor.
  • Figure 2 is an external perspective view of the entire machine tool 1.
  • various processing devices such as the first workpiece spindle device 3 on the bed 10 are covered by a machine body cover 30.
  • An operation display device 31 is provided in the center of the front of the machine body, and a left front door 33 and a right front door 34 are formed on both the left and right sides of it.
  • An automatic tool changer 8 that changes tools T for the tool spindle device 2 is provided in the center of the front of the machine body, and a tool magazine 35 containing multiple tools is arranged at the top front of the machine body.
  • the machine tool 1 is provided with a gantry-type automatic workpiece transport device 9, which is configured to move the workpiece W in three axial directions inside the machine body.
  • FIG. 3 is a block diagram showing a control system that controls the machine tool 1.
  • the control device 7 of the machine tool 1 is connected to a microprocessor (CPU) 41, a ROM 42, a RAM 43, and a non-volatile memory 44 via a bus line.
  • the CPU 41 controls the entire control device
  • the ROM 42 stores the system program and control parameters executed by the CPU 41
  • the RAM 43 stores temporary calculation data and display data.
  • the non-volatile memory 44 stores information necessary for the processing performed by the CPU 41, and stores the sequence program of the machine tool 1, etc.
  • the control device 7 is provided with an I/O port 45, and the drive motors of each device, such as the first and second work spindle devices 3, 5, the first and second turret devices 4, 6, the automatic tool changer 8, and the automatic work transport device 9, are each connected via a driver circuit 47.
  • the workpiece W is processed by the machine tool 1, with the automatic workpiece transport device 9 transporting the workpiece W to the first workpiece spindle device 3 or the second workpiece spindle device 5, and the workpiece W is gripped by the chuck mechanism 11.
  • the tool T which has been rotated and indexed by the first and second turret devices 4, 6, is sent to a processing position for the workpiece W by the movement of the base slide 18 or the turret slide 19.
  • the spindle slide 24 moves in the Z-axis direction relative to the tool T, and the tool T is brought into contact with the rotating workpiece W, thereby performing cutting processing such as external turning or boring.
  • the first processing of the workpiece W gripped by the first workpiece spindle device 3 is performed by the first turret device 4, as well as by the tool spindle device 2 in addition, or by only the tool spindle device 2. The same is true for the second processing of the workpiece W gripped by the second workpiece spindle device 5.
  • FIG. 4 is a perspective view showing an example of a tool replaceable bit.
  • This tool replaceable bit (hereinafter simply referred to as "bit") 50 is attached to the tool rest 16 of the first turret device 4 or the second turret device 6 as a turret tool.
  • the bit 50 has a tip 52 detachably attached to the end of the shank 51 as a cutting tool, and the square tip 52 has four corners 55 (55A, 55B, 55C, 55D) that serve as cutting edges to enable cutting processing.
  • the lifespan of all tools T is set based on the number of times machining is performed and the machining time, and when the lifespan is reached, the tool is replaced, thereby maintaining the machining precision of the workpiece.
  • the lifespan is set for the corner 55 of the tip 52, and when the lifespan is reached, the cutting edge is repositioned so that the unused corner 55 replaces the used corner 55.
  • the corner 55 has an effect on the machining precision, and for example, a radius of about 0.4-1.2 mm is used in rough machining, and about 0.2-0.4 mm is used in finish machining.
  • the tool replacement assistance function of the machine tool 1 assists the operator in repositioning the tip.
  • the control device 7 counts the life of each tool T for each machining operation, and when the set value is reached, a display and sound are issued on the operation display device 31 to notify the operator of the need to replace the tool. The same is true for the tip 52, where the life is counted according to the use of the cutting tool 50.
  • FIG. 5 is a graph showing the lifespan of the tip 52, with the number of workpieces machined on the horizontal axis and the surface roughness of the machined area on the vertical axis.
  • the standard line 61 for surface roughness is set at 12 um (micrometers), and any workpiece that exceeds this value is deemed defective and is subject to disposal.
  • graph 62 which measures the actual surface roughness, it was confirmed that the tip 52 exceeded the standard line 61 after machining 250 workpieces. For this reason, the lifespan of the corner 55 of the tip 52 is set at a number of workpieces machined of 200.
  • FIG. 7 is a flow chart showing the processing steps according to the cutting tool replacement program.
  • the controller 7 records the count value of the lifespan of each of the multiple tools T attached to the tool rest 16.
  • the lifespan of the cutting tool 50 is determined based on the count value of the number of times each corner 55 has been machined, and the tip 52 is determined to have reached the end of its life when the last corner 55 that was repositioned reaches the end of its lifespan. Therefore, in addition to recording the count value for each corner 55, the number of corners used is also recorded.
  • FIG. 6 is a diagram showing the repositioning guide displayed on the monitor, in which a repositioning guide dialogue 72 is displayed on an operation screen 71 displayed on the monitor.
  • the repositioning guide dialogue 72 shows a band display 73 to clearly inform the operator of the repositioning of the tip 52.
  • the repositioning guide dialogue 72 also shows an execute button 74 for repositioning, allowing the operator to confirm his or her intention (S105), and furthermore the number of corners counted up in step 109, which will be described later, is displayed in a frame 75.
  • the machine tool 1 remains in a standby state until a signal is input from the execute button 74 (S105: NO). Then, when the execute button 74 is pressed (S105: YES), tool replacement movement control is performed to move the corresponding tool T to the replacement position for the first turret device 4 (hereinafter, the same applies to the second turret device 6) (S106).
  • the corresponding tool T is rotated and indexed so that it is positioned in front of the operator who opens the left front door 33, and the tool rest 16 is moved by the drive mechanism. The tool T brought to the replacement position is then replaced by the operator.
  • the cutting tool 50 that has been brought to the replacement position is removed from the tool post 16, and the tip 52 is repositioned.
  • the tip 52 that has been removed from the shank 51 is reattached to the shank 51 with the cutting edge positioned at the next unused corner 55B, replacing the used corner 55A.
  • the cutting tool 50 is then returned to the tool post 16.
  • the execute button 74 is pressed (S105: YES)
  • the monitor of the operation and display device 31 is switched to a screen that displays a complete button, allowing the operator to confirm that the work has been completed (S107).
  • the monitor of the operation display device 31 displays a tool replacement guide display having a configuration similar to that of FIG. 6 (S111). Therefore, when the operator presses the execution button of the replacement guide dialogue (S112: YES), a tool replacement movement control is performed to move the corresponding tool T to the replacement position for the first turret device 4 (S113). The tool T brought to the replacement position is replaced by the operator. In the case of the tool bit 50, a new tip 52 is attached to the shank 51.
  • step S109 of the cutting tool replacement process When the number of corners used is counted up in step S109 of the cutting tool replacement process, the count-up flag is turned ON at the same time, and a position change check is performed to prevent the operator from making a mistake in the corner.
  • This position change check is intended to inform the operator that a used corner 55 has been mistakenly attached to the cutting edge position. In this embodiment, such a mistake in the corner 55 is judged based on the processing load during cutting.
  • the dashed lines in Figure 5 indicate N1, which is the number of times of processing 1-5 to obtain the reference data, and N2, which is the number of times of processing 201-206 using a used corner 55.
  • This graph clearly shows the difference in surface roughness depending on the number of times of processing, but this difference also appears as the processing load received by the tool during processing. Therefore, in this embodiment, the mistake in the position change of the corner 55 is judged based on the difference in processing load.
  • FIG. 8 and 9 are flow charts showing the processing steps of the corner confirmation program.
  • FIG. 8 is a reference data creation program
  • FIG. 9 is a corner judgment program.
  • the reference data creation program of FIG. 8 first, it is confirmed whether the tip 52 has been replaced (S201). The replacement can be confirmed by the replacement flag being turned ON when the work completion button is pressed in step S114 shown in FIG. 7. Therefore, if the replacement flag remains OFF (S201: NO), this reference data creation process ends. On the other hand, if the replacement flag is ON (S201: YES), it is confirmed whether the corner 55A of the next new tip 52 has been machined the number of times N1 (5 times) shown in FIG. 5 (S202).
  • corner 55A has been used for less than five machining operations (S202: NO)
  • the measurement results of the load value during machining are recorded.
  • the load measurement is based on the current value of the servo motor that drives the feed axis of the tool post 16 in the first turret device 4. In this way, the measurement results of the load value during machining are recorded for the first four machining operations immediately after replacement using corner 55A.
  • the load during machining is measured (S204), and a value obtained by adding an arbitrary tolerance to the average value of the machining load for the five operations is set as the reference load value F (S205).
  • the replacement flag is switched OFF and the reference data creation process ends.
  • the measurement results of the load value during machining are recorded (S303). Thereafter, the measurement results of the load value during machining are repeatedly recorded in this manner for the first four machining operations immediately after the corner 55 is repositioned (S303). Then, for the fifth machining operation after the corner 55 is repositioned (S302: YES), the machining load applied to the cutting tool 50 during machining is measured (S304), and a confirmation load value Fn is calculated by averaging the load values for the five operations (S305). The calculated confirmation load value Fn is then compared with the reference load value F to determine whether the repositioning of the tip 52 is appropriate (S306).
  • confirmation load value Fn is smaller than the reference load value F (S306: YES)
  • the position change flag is then switched OFF and the corner determination process ends.
  • the confirmation load value Fn is greater than the reference load value F at this time (S306: NO)
  • FIG. 10 is a flow chart for executing this correction process subroutine.
  • a position change error display is displayed on the monitor of the operation display device 31 to inform the operator that the corner 55 has been selected incorrectly, similar to the tip 52 position change guide display shown in FIG. 6 (S401).
  • An execute button is displayed there, and the operator confirms his or her intention (S402). If the execute button is pressed (S402: YES), tool change movement control is performed for the first turret device 4 to move the cutting tool 50 to the change position (S403), and the tip 52 is changed by the operator.
  • the corner determination process determines whether the corner 55 is unused or used by five load measurements, so even if workpiece machining is performed on a used corner 55, the surface roughness of the machined portion will not exceed the standard line 61 as shown in Figure 5, and no workpiece will be wasted. Also, in the cutting tool replacement process, the tool T of the first turret device 4 is automatically moved to the replacement position by the cutting tool replacement movement control, allowing the worker to complete tool replacement work and the like in a short amount of time.
  • the present invention is not limited to this embodiment, and various modifications are possible without departing from the spirit of the present invention.
  • a multi-tasking machine is used as an example of a machine tool, but a single-axis lathe or the like may also be used.
  • the reference load value F is calculated each time the chip 52 is replaced. However, when multiple identical chips 52 are replaced, the reference load value F measured for the first chip 52 may be used for the second chip 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Tool Replacement In Machine Tools (AREA)

Abstract

A machine tool configured to suitably switch the position of a cutting tool even if the cutting tool was attached while mistaking a used corner for an unused corner, the machine tool using a cutting tool replacement implement provided with a cutting tool, the position of which can be switched and the corners of which serve as cutting edges, and having a control device that calculates a confirmation load value on the basis of machining loads measured for the cutting tool during a prescribed number of instances of machining after switching the positions of the corners and compares the confirmation load value with a preset reference load value to assess whether the corners of the attached cutting tool serving as the cutting edge is an unused corner or a used corner.

Description

工作機械Machine Tools
 本発明は、作業者に対して刃具の位置替えを適切に実行させるための工作機械に関する。 The present invention relates to a machine tool that allows an operator to properly change the position of a cutting tool.
 工作機械に使用される工具には様々なものがあるが、その一つに刃具交換式バイトがある。刃具交換式バイトは、シャンクの端部に刃具として多角形をしたチップの脱着が可能なものである。刃具交換式バイトを含む各種工具には寿命があり、適切なタイミングで交換しなければ加工精度を低下させ、更にはワークの無駄を発生させてしまう。この点、下記特許文献1には適切な交換時期を判定する分析装置を備えた工作機械が開示されている。その分析装置は、切刃に関する切刃の切削情報などに基づいて切刃の摩耗状態を判定し、切刃の消耗などの特性がセンサの計測結果に与える影響を考慮することにより、切刃の状態を判定するものである。 There are various tools used in machine tools, one of which is a replaceable cutting tool bit. A replaceable cutting tool bit has a polygonal tip that can be attached and detached as a cutting tool at the end of a shank. Various tools, including replaceable cutting tool bits, have a lifespan, and if they are not replaced at the appropriate time, the machining accuracy will decrease and even workpiece waste will occur. In this regard, Patent Document 1 below discloses a machine tool equipped with an analysis device that determines the appropriate replacement time. The analysis device determines the wear state of the cutting blade based on cutting information about the cutting blade, and determines the condition of the cutting blade by considering the effect that characteristics such as wear of the cutting blade have on the measurement results of the sensor.
国際公開WO2021-157518号公報International Publication No. WO2021-157518
 刃具交換式バイトは、たとえば三角形、正方形、ひし形など多角形のチップが使用されるが、そのチップは、刃先として切削加工が可能なコーナを複数有している。こうしたチップは、1個の刃具について各コーナを順番に刃先とする位置替えが行われるが、使用済みコーナを誤って使ってしまうという問題があった。正方形のチップの場合、4か所のコーナを順番に移動させた位置替えが行われ、裏表の使用が可能なものであれば、反転させてさらに4か所のコーナを順番に移動させた位置替えが行われる。こうしたチップは、コーナの寸法が極めて小さく、作業者にとって使用済み部分と未使用部分との状態が判別しにくい。そのため、特に経験の浅い作業者は、使用済みコーナを誤って刃先として取り付けてしまうことがあった。  Replaceable tool bits use polygonal tips, such as triangular, square, or diamond tips, which have multiple corners that can be used as cutting edges. With these tips, each corner of a tool is rotated in turn to become the cutting edge, but there is a problem with used corners being mistakenly used. With square tips, the tool is rotated by moving four corners in turn, and if the tool can be used on both sides, it is flipped over and another four corners are moved in turn. The dimensions of the corners of these tips are extremely small, making it difficult for workers to distinguish between used and unused parts. As a result, workers, especially those with little experience, sometimes mistakenly attach used corners as cutting edges.
 そこで、本発明は、かかる課題を解決すべく、刃具の位置替えを適切に実行させる工作機械の提供を目的とする。 The present invention aims to solve this problem by providing a machine tool that can properly change the position of the cutting tool.
 本発明の一態様における工作機械は、複数のコーナを刃先として位置替え可能な刃具を備えた刃具交換工具を使用するものであって、前記刃具についてコーナの位置替えを行った後の所定回数の加工において計測した加工負荷を基に確認用負荷値を算出し、その確認用負荷値と予め設定された基準負荷値との比較により、刃先として取り付けた前記刃具のコーナについて未使用または使用済みのコーナ判定を行う制御装置を有する。 In one aspect of the present invention, the machine tool uses a tool changer equipped with a cutting tool that can be repositioned with multiple corners as cutting edges, and has a control device that calculates a confirmation load value based on the machining load measured in a predetermined number of machining operations after the corners of the cutting tool have been repositioned, and compares the confirmation load value with a preset reference load value to determine whether the corners of the cutting tool attached as cutting edges are unused or used.
 前記構成によれば、刃具についてコーナの位置替えを行った後の加工において確認用負荷値を算出し、予め設定された基準負荷値との比較により、刃先として取り付けた刃具のコーナについて未使用または使用済みのコーナ判定を行うようにしたため、作業者がコーナの位置替えを間違えたとしても、刃具の位置替えを適切に実行させることができる。 According to the above configuration, a confirmation load value is calculated during processing after the corner of the cutting tool has been repositioned, and a comparison with a preset reference load value is made to determine whether the corner of the cutting tool attached as the cutting edge is unused or used. Therefore, even if the worker makes a mistake in repositioning the corner, the cutting tool can be properly repositioned.
工作機械の一実施形態について主要な内部構造を示した斜視図である。FIG. 1 is a perspective view showing a main internal structure of an embodiment of a machine tool. 工作機械の一実施形態について全体を示した外観斜視図である。1 is an external perspective view showing an entirety of an embodiment of a machine tool; 工作機械を制御する制御システムを示したブロック図である。FIG. 2 is a block diagram showing a control system for controlling the machine tool. 工作機械で使用される複数の工具の一つであるバイトを示した斜視図である。FIG. 2 is a perspective view showing a cutting tool, which is one of a plurality of tools used in a machine tool. チップの寿命に関するグラフを示した図である。FIG. 13 is a graph showing the life span of a chip. モニタに表示された位置替え案内を示した図である。FIG. 13 is a diagram showing a position change guide displayed on a monitor. 刃具交換プログラムによる処理工程を示したフローチャート図である。FIG. 11 is a flowchart showing processing steps according to a cutting tool replacement program. 基準データ作成プログラムによる処理工程を示したフローチャート図である。FIG. 11 is a flowchart showing processing steps according to a reference data creation program. コーナ判定プログラムによる処理工程を示したフローチャート図である。FIG. 11 is a flowchart showing processing steps according to a corner determination program. 修正処理サブルーチンを実行するためのフローチャート図である。FIG. 13 is a flowchart for executing a correction processing subroutine.
 本発明に係る工作機械の一実施形態について、図面を参照しながら以下に説明する。図1は、本実施形態の工作機械について主要な内部構造を示した斜視図である。この工作機械1は、NC旋盤とマシニングセンタの両方の機能を持つようにした複合加工機である。この複合加工機を構成する各加工装置は、ワークWを把持する第1ワーク主軸装置3および第2ワーク主軸装置5、複数の工具Tを有する第1タレット装置4および第2タレット装置6であり、それぞれが左右対称に配置され対向2軸旋盤を構成し、更に加工装置として機体中央に工具主軸装置2が設けられている。 One embodiment of the machine tool according to the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing the main internal structure of the machine tool of this embodiment. This machine tool 1 is a multi-tasking machine that has the functions of both an NC lathe and a machining center. The machining devices that make up this multi-tasking machine are a first work spindle device 3 and a second work spindle device 5 that grip a workpiece W, and a first turret device 4 and a second turret device 6 that have a plurality of tools T, each of which is arranged symmetrically to the left and right to form an opposed two-axis lathe, and a tool spindle device 2 is further provided in the center of the machine body as a machining device.
 対称的に構成された第1および第2ワーク主軸装置3,5は同じ構造であり、主軸台12にスピンドルが回転自在に組み込まれ、そこに加工対象であるワークWを把持するチャック機構11が組付けられている。チャック機構11はスピンドルモータ13の駆動によって回転し、そこに把持されたワークWに対する加工時の位相決めや所定速度での回転が与えられる。主軸台12やスピンドルモータ13は、搭載された主軸スライド14がガイドレール15に沿って摺動自在であり、ボールネジ機構に連結されたZ軸サーボモータの制御によって位置決め移動が可能になっている。 The first and second work spindle devices 3, 5 are symmetrically constructed and have the same structure, with a spindle rotatably incorporated into the headstock 12, to which is attached a chuck mechanism 11 that grips the workpiece W to be machined. The chuck mechanism 11 is rotated by the drive of a spindle motor 13, and the gripped workpiece W is phased during machining and rotated at a predetermined speed. The headstock 12 and spindle motor 13 have a mounted spindle slide 14 that can slide freely along a guide rail 15, and positioning movement is possible by controlling a Z-axis servo motor connected to a ball screw mechanism.
 また、対照的に構成された第1タレット装置4および第2タレット装置6も互いに同じ構造であり、刃物台16に複数の工具T(タレット工具)が円周方向に等間隔で取り付けられ、割出し用サーボモータ17の回転制御によって、任意の工具Tを円周上の加工位置に位置決めできるよう構成されている。第1および第2タレット装置4,6は、刃物台16をZ軸に直交する2方向に移動させるようにした駆動機構が設けられている。略三角形状のベーススライド18がベッド10に対して前方斜め45度上方にスライド可能であり、刃物台16を搭載したタレットスライド19がベーススライド18に対して前方斜め45度下方にスライド可能に組み付けられている。そして、ベーススライド18やタレットスライド19は、各々のサーボモータによって回転するネジ軸のボールネジ機構を介して各方向に移動するよう構成されている。 The first turret device 4 and the second turret device 6, which are configured in contrast, also have the same structure, and are configured such that a plurality of tools T (turret tools) are attached to the tool rest 16 at equal intervals in the circumferential direction, and any tool T can be positioned at a machining position on the circumference by controlling the rotation of the indexing servo motor 17. The first and second turret devices 4 and 6 are provided with a drive mechanism that moves the tool rest 16 in two directions perpendicular to the Z axis. The roughly triangular base slide 18 can slide upward at an angle of 45 degrees forward relative to the bed 10, and the turret slide 19 carrying the tool rest 16 is assembled so as to be slid downward at an angle of 45 degrees forward relative to the base slide 18. The base slide 18 and the turret slide 19 are configured to move in each direction via a ball screw mechanism of a screw shaft rotated by each servo motor.
 中央に位置する工具主軸装置2は、主軸ヘッド21内に工具用モータや工具スピンドルが内蔵されたビルトインタイプであり、下端部に設けられた工具装着部に対して様々な工具T(主軸ヘッド工具)の取り換えが行われるようになっている。主軸ヘッド21は、主軸スライド22に対して回転可能に取り付けられ、回転伝達機構を介してB軸モータ23の回転が伝達されるよう構成されている。工具主軸装置2は、機体前後方向の水平なY軸に沿ってガイドレールが固定され、そこにベーススライド25が摺動可能に組付けられている。また、ベーススライド25は、その前面側に機体上下方向の鉛直なX軸に沿ってレール部が固定され、主軸スライド22が摺動可能に組付けられている。ベーススライド25と主軸スライド22は、ともにボールネジ機構が設けられ、Y軸サーボ―モータまたはX軸サーボモータの駆動によって、主軸ヘッド21が各軸方向に移動可能になっている。 The tool spindle device 2 located in the center is a built-in type in which a tool motor and a tool spindle are built into the spindle head 21, and various tools T (spindle head tools) can be replaced using the tool mounting section provided at the lower end. The spindle head 21 is rotatably attached to the spindle slide 22, and is configured so that the rotation of the B-axis motor 23 is transmitted via a rotation transmission mechanism. The tool spindle device 2 has a guide rail fixed along the horizontal Y-axis in the front-rear direction of the machine body, and a base slide 25 is slidably assembled thereto. In addition, a rail section is fixed to the front side of the base slide 25 along the vertical X-axis in the up-down direction of the machine body, and the spindle slide 22 is slidably assembled thereto. Both the base slide 25 and the spindle slide 22 are provided with a ball screw mechanism, and the spindle head 21 can be moved in each axial direction by driving the Y-axis servo motor or the X-axis servo motor.
 図2は、工作機械1全体の外観斜視図である。工作機械1は、ベッド10上の第1ワーク主軸装置3など各種加工装置が機体カバー30によって覆われている。機体正面には中央に操作表示装置31が設けられ、その左右両側には左正面扉33と右正面扉34とが形成されている。機体の正面中央には工具主軸装置2に対して工具Tの交換を行う自動工具交換装置8が設けられ、複数の工具を収納したツールマガジン35が機体前面上部に配置されている。また、工作機械1にはガントリ式のワーク自動搬送装置9が設けられ、機体内部にてワークWを3軸方向に移動させるよう構成されている。 Figure 2 is an external perspective view of the entire machine tool 1. In the machine tool 1, various processing devices such as the first workpiece spindle device 3 on the bed 10 are covered by a machine body cover 30. An operation display device 31 is provided in the center of the front of the machine body, and a left front door 33 and a right front door 34 are formed on both the left and right sides of it. An automatic tool changer 8 that changes tools T for the tool spindle device 2 is provided in the center of the front of the machine body, and a tool magazine 35 containing multiple tools is arranged at the top front of the machine body. In addition, the machine tool 1 is provided with a gantry-type automatic workpiece transport device 9, which is configured to move the workpiece W in three axial directions inside the machine body.
 次に、図3は、工作機械1を制御する制御システムを示したブロック図である。工作機械1の制御装置7は、マイクロプロセッサ(CPU)41、ROM42、RAM43、不揮発性メモリ44がバスラインを介して接続されている。CPU41は、制御装置全体を統括制御するものであり、ROM42にはCPU41が実行するシステムプログラムや制御パラメータ等が格納され、RAM43には一時的な計算データや表示データ等が格納される。不揮発性メモリ44にはCPU41が行う処理に必要な情報が記憶され、工作機械1のシーケンスプログラムなどが格納されている。そして、制御装置7にはI/Oポート45が設けられ、第1及び第2ワーク主軸装置3,5、第1および第2タレット装置4,6、自動工具交換装置8およびワーク自動搬送装置9など、各装置の駆動モータが各々ドライバ回路47を介して接続されている。 Next, FIG. 3 is a block diagram showing a control system that controls the machine tool 1. The control device 7 of the machine tool 1 is connected to a microprocessor (CPU) 41, a ROM 42, a RAM 43, and a non-volatile memory 44 via a bus line. The CPU 41 controls the entire control device, and the ROM 42 stores the system program and control parameters executed by the CPU 41, while the RAM 43 stores temporary calculation data and display data. The non-volatile memory 44 stores information necessary for the processing performed by the CPU 41, and stores the sequence program of the machine tool 1, etc. The control device 7 is provided with an I/O port 45, and the drive motors of each device, such as the first and second work spindle devices 3, 5, the first and second turret devices 4, 6, the automatic tool changer 8, and the automatic work transport device 9, are each connected via a driver circuit 47.
 続いて、工作機械1におけるワークWの加工は、ワーク自動搬送装置9によってワークWが第1ワーク主軸装置3や第2ワーク主軸装置5へと運ばれ、チャック機構11に把持される。第1および第2タレット装置4,6で旋回割出しされた工具Tは、ベーススライド18やタレットスライド19の移動によりワークWに対する加工位置へと送られる。そうした工具Tに対して主軸スライド24がZ軸方向に移動し、回転するワークWに工具Tが当てられることにより外径旋削や中ぐり加工などの切削加工が行われる。第1ワーク主軸装置3で把持されたワークWに対する第1加工は、第1タレット装置4による加工のほか、工具主軸装置2を加えた加工、或いは工具主軸装置2のみによる加工が行われる。第2ワーク主軸装置5で把持されたワークWに対する第2加工でも同様である。 Then, the workpiece W is processed by the machine tool 1, with the automatic workpiece transport device 9 transporting the workpiece W to the first workpiece spindle device 3 or the second workpiece spindle device 5, and the workpiece W is gripped by the chuck mechanism 11. The tool T, which has been rotated and indexed by the first and second turret devices 4, 6, is sent to a processing position for the workpiece W by the movement of the base slide 18 or the turret slide 19. The spindle slide 24 moves in the Z-axis direction relative to the tool T, and the tool T is brought into contact with the rotating workpiece W, thereby performing cutting processing such as external turning or boring. The first processing of the workpiece W gripped by the first workpiece spindle device 3 is performed by the first turret device 4, as well as by the tool spindle device 2 in addition, or by only the tool spindle device 2. The same is true for the second processing of the workpiece W gripped by the second workpiece spindle device 5.
 工作機械では、ワーク加工が繰り返されることで工具Tの摩耗が進むため、寿命に達した工具Tについてその都度交換が行われる。本実施形態の工作機械1は、特に工具Tの中でも刃具交換式バイトについて、作業者によるチップの位置替えを補助する刃具交換補助機能を有し、制御装置7には刃具交換プログラムが格納されている。ここで図4は、刃具交換式バイトの一例を示した斜視図である。この刃具交換式バイト(以下、単に「バイト」と記す)50は、タレット工具として第1タレット装置4や第2タレット装置6の刃物台16に取り付けられている。バイト50は、シャンク51の端部に刃具としてチップ52が着脱可能に取り付けられ、四角形のチップ52は4か所のコーナ55(55A,55B,55C,55D)が刃先となって切削加工を可能にするものである。 In machine tools, tools T wear out as workpiece processing is repeated, and tools T that have reached the end of their life are replaced each time. The machine tool 1 of this embodiment has a tool replacement assistance function that assists the operator in changing the position of the tip of the tool T, particularly the tool replaceable bit, and the control device 7 stores a tool replacement program. Here, FIG. 4 is a perspective view showing an example of a tool replaceable bit. This tool replaceable bit (hereinafter simply referred to as "bit") 50 is attached to the tool rest 16 of the first turret device 4 or the second turret device 6 as a turret tool. The bit 50 has a tip 52 detachably attached to the end of the shank 51 as a cutting tool, and the square tip 52 has four corners 55 (55A, 55B, 55C, 55D) that serve as cutting edges to enable cutting processing.
 工作機械1では、バイト50に限らず全ての工具Tについて加工回数や加工時間などを基準に寿命が設定され、寿命に達したところで工具交換が行われることにより、ワークの加工精度が維持されている。バイト50の場合は、チップ52のコーナ55について寿命が設定され、寿命に達したところで使用済みコーナ55に替えて未使用のコーナ55を刃先とする位置替えが行われる。コーナ55は、そのコーナ半径が加工精度に影響を及ぼすことになるが、例えば荒加工では0.4-1.2mm程度であり、仕上げ加工では0.2-0.4mm程度のものが使用される。 In the machine tool 1, the lifespan of all tools T, not just the bit 50, is set based on the number of times machining is performed and the machining time, and when the lifespan is reached, the tool is replaced, thereby maintaining the machining precision of the workpiece. In the case of the bit 50, the lifespan is set for the corner 55 of the tip 52, and when the lifespan is reached, the cutting edge is repositioned so that the unused corner 55 replaces the used corner 55. The corner 55 has an effect on the machining precision, and for example, a radius of about 0.4-1.2 mm is used in rough machining, and about 0.2-0.4 mm is used in finish machining.
 チップ52のコーナ55は、こうした微小な刃先を構成するものであるため、摩耗状態を確認して行うチップ55の位置替え作業は、未使用のコーナ55と使用済みのコーナ55との判別が難しい。特に、使用済みコーナ55が多くなった場合には付け間違いが起こりやすくなる。工作機械1の刃具交換補助機能は、そうしたチップの位置替えに関して作業者を補助するものである。制御装置7では各工具Tについて加工毎に寿命がカウントされ、設定値に達したところで操作表示装置31に表示や音が発せられ、作業者に対して工具交換などの報知が行われる。このことはチップ52であっても同じであり、バイト50の使用に従って寿命のカウントが行われている。 Since the corners 55 of the tip 52 constitute such a tiny cutting edge, when checking the wear state and repositioning the tip 55, it is difficult to distinguish between unused corners 55 and used corners 55. In particular, when there are many used corners 55, it is easy to make mistakes when attaching them. The tool replacement assistance function of the machine tool 1 assists the operator in repositioning the tip. The control device 7 counts the life of each tool T for each machining operation, and when the set value is reached, a display and sound are issued on the operation display device 31 to notify the operator of the need to replace the tool. The same is true for the tip 52, where the life is counted according to the use of the cutting tool 50.
 バイト50に関する寿命は、ワークの加工個数により決定されるものとして説明する。図5は、チップ52の寿命に関するグラフを示した図であり、横軸に加工個数を示し、縦軸には加工部の面粗さが示されている。ここでは面粗さの規格ライン61が12um(マイクロメートル)として設定され、この値を超えたものはNGワークとして廃棄対象となってしまう。チップ52は、実際の面粗さを測定したグラフ62に示すように、250個の加工で規格ライン61を超えてしまうことが確認できた。そのため、チップ52は、コーナ55の寿命が加工個数を200として設定されている。 The lifespan of the cutting tool 50 will be explained as being determined by the number of workpieces machined. Figure 5 is a graph showing the lifespan of the tip 52, with the number of workpieces machined on the horizontal axis and the surface roughness of the machined area on the vertical axis. Here, the standard line 61 for surface roughness is set at 12 um (micrometers), and any workpiece that exceeds this value is deemed defective and is subject to disposal. As shown in graph 62, which measures the actual surface roughness, it was confirmed that the tip 52 exceeded the standard line 61 after machining 250 workpieces. For this reason, the lifespan of the corner 55 of the tip 52 is set at a number of workpieces machined of 200.
 次に、図7は、刃具交換プログラムによる処理工程を示したフローチャート図である。刃具交換処理では、制御装置7において刃物台16に取り付けられた複数の工具Tについて、工具毎の寿命のカウント値が記録されている。バイト50の寿命は、コーナ55について加工回数のカウント値を基に寿命判定が行われ、チップ52は、位置替えした最後のコーナ55が寿命に達したことによって、それ自体が寿命と判定される。従って、コーナ55毎にカウント値が記録されるほか、使用したコーナの数も記録されるようになっている。 Next, FIG. 7 is a flow chart showing the processing steps according to the cutting tool replacement program. In the cutting tool replacement process, the controller 7 records the count value of the lifespan of each of the multiple tools T attached to the tool rest 16. The lifespan of the cutting tool 50 is determined based on the count value of the number of times each corner 55 has been machined, and the tip 52 is determined to have reached the end of its life when the last corner 55 that was repositioned reaches the end of its lifespan. Therefore, in addition to recording the count value for each corner 55, the number of corners used is also recorded.
 刃具交換処理では、先ずは刃先として使用されているコーナ55(例えば一番目のコーナ55A)について加工回数のカウント値を基に、寿命に達したか否かの確認が行われる(S101)。カウント値が設定回数である200に達していなければ(S101:NO)、コーナ55の加工回数が「1」カウントアップされ(S102)、この刃具交換処理が終了する。一方で、コーナ55による加工が設定回数に達した場合には(S101:YES)、使用コーナ数を基にチップ52の交換について確認が行われる(S103)。チップ52は、4か所のコーナ55が使用されるものであるため、使用コーナ数は「4」である。コーナ55Aを使用している状況では、使用コーナ数の値は「1」となっている。 In the cutting tool replacement process, first, a check is made to see if the corner 55 being used as the cutting edge (for example, the first corner 55A) has reached the end of its life based on the count value of the number of times it has been cut (S101). If the count value has not reached the set number of times, which is 200 (S101: NO), the number of times the corner 55 has been cut is incremented by "1" (S102), and the cutting tool replacement process ends. On the other hand, if the number of times the corner 55 has been cut has reached the set number of times (S101: YES), a check is made to see whether the tip 52 should be replaced based on the number of corners used (S103). The tip 52 uses four corners 55, so the number of corners used is "4". When corner 55A is being used, the value of the number of corners used is "1".
 そこで、チップ52の交換が必要でない場合には(S103:NO)、操作表示装置31のモニタに図6に示すチップ52の位置替え案内表示が行われる(S104)。図6は、モニタに表示された位置替え案内を示した図であり、そこにはモニタに表示された運転画面71上に位置替え案内ダイアログ72が表示されている。位置替え案内ダイアログ72は、チップ52の位置替えを作業者に分かり易く知らせるための帯表示73が示されている。また、位置替え案内ダイアログ72には、位置替えを行うための実行ボタン74が表示され、作業者による意思確認が行われるようになっており(S105)、さらに後述するステップ109でカウントアップされたコーナ数が枠75に表示されるようになっている。 If the tip 52 does not need to be replaced (S103: NO), a tip 52 repositioning guide as shown in FIG. 6 is displayed on the monitor of the operation and display device 31 (S104). FIG. 6 is a diagram showing the repositioning guide displayed on the monitor, in which a repositioning guide dialogue 72 is displayed on an operation screen 71 displayed on the monitor. The repositioning guide dialogue 72 shows a band display 73 to clearly inform the operator of the repositioning of the tip 52. The repositioning guide dialogue 72 also shows an execute button 74 for repositioning, allowing the operator to confirm his or her intention (S105), and furthermore the number of corners counted up in step 109, which will be described later, is displayed in a frame 75.
 工作機械1は、実行ボタン74からの信号入力があるまでは待機状態となっている(S105:NO)。そして、実行ボタン74が押されたならば(S105:YES)、第1タレット装置4(以下、第2タレット装置6でも同じ)に対して該当する工具Tを交換位置にまで移動させる刃具交換移動制御が行われる(S106)。刃具交換移動制御では、左正面扉33を開けた作業者の目の前に位置するように、該当する工具Tについて旋回割り出しが行われ、刃物台16が駆動機構によって移動する。そして、交換位置に運ばれた工具Tは、作業者によって交換作業が行われる。 The machine tool 1 remains in a standby state until a signal is input from the execute button 74 (S105: NO). Then, when the execute button 74 is pressed (S105: YES), tool replacement movement control is performed to move the corresponding tool T to the replacement position for the first turret device 4 (hereinafter, the same applies to the second turret device 6) (S106). In the tool replacement movement control, the corresponding tool T is rotated and indexed so that it is positioned in front of the operator who opens the left front door 33, and the tool rest 16 is moved by the drive mechanism. The tool T brought to the replacement position is then replaced by the operator.
 交換位置に運ばれたバイト50は、刃物台16から取り外され、チップ52の位置替えが行われる。シャンク51から取り外されたチップ52は、使用済みコーナ55Aに替えて未使用である次のコーナ55Bを刃先の位置にし、再びシャンク51に取り付けられる。そして、そのバイト50が刃物台16に戻される。なお、実行ボタン74が押されると(S105:YES)、操作表示装置31のモニタは完了ボタンを表示する画面に切り換えられ、作業者による作業完了の確認が行われるようになっている(S107)。 The cutting tool 50 that has been brought to the replacement position is removed from the tool post 16, and the tip 52 is repositioned. The tip 52 that has been removed from the shank 51 is reattached to the shank 51 with the cutting edge positioned at the next unused corner 55B, replacing the used corner 55A. The cutting tool 50 is then returned to the tool post 16. When the execute button 74 is pressed (S105: YES), the monitor of the operation and display device 31 is switched to a screen that displays a complete button, allowing the operator to confirm that the work has been completed (S107).
 そこで、作業者によって左正面扉33が閉じられて作業完了ボタンが押された場合には(S107:YES)、第1タレット装置4を原点位置に戻す刃具交換移動制御が行われる(S108)。それとともにチップ52の位置替えに伴い使用コーナ数の値が「1」カウントアップされ(S109)、コーナ55の加工回数はゼロにリセットされ(S110)、この刃具交換処理が終了する。以上のようなステップS101-S110までの工程が繰り返されて、チップ52のコーナ55C,55Dについても同じように位置替えが行われる。 When the operator closes the left front door 33 and presses the work complete button (S107: YES), a tool replacement movement control is performed to return the first turret device 4 to the origin position (S108). At the same time, the number of corners used is counted up by "1" due to the repositioning of the tip 52 (S109), the number of times corner 55 has been machined is reset to zero (S110), and the tool replacement process ends. The above steps S101-S110 are repeated, and the corners 55C and 55D of the tip 52 are similarly repositioned.
 続いて、コーナ55Dによる加工が設定回数に達した場合には(S101:YES)、使用コーナ数の値が「4」となることでチップ52の交換が必要と判定される(S103:YES)。このとき操作表示装置31のモニタには、図6と同様な構成の刃具交換案内表示が行われる(S111)。そのため、作業者によって交換案内ダイアログの実行ボタンが押されると(S112:YES)、第1タレット装置4に対して該当する工具Tを交換位置にまで移動させる刃具交換移動制御が行われる(S113)。交換位置に運ばれた工具Tは作業者によって交換作業が行われる。バイト50の場合は、シャンク51に対する新しいチップ52の付け替えである。その後、交換を行った作業者により、左正面扉33が閉じられ作業完了ボタンが押されると(S114:YES)、第1タレット装置4を原点位置に戻す刃具交換移動制御が行われる(S115)。そして、新しいチップ52について寿命のカウントをゼロから開始するため、該当するカウント値がリセットされ(S116)、この刃具交換処理が終了する。 Next, when the number of corners used by the corner 55D reaches the set number (S101: YES), the value of the number of corners used becomes "4", and it is determined that the tip 52 needs to be replaced (S103: YES). At this time, the monitor of the operation display device 31 displays a tool replacement guide display having a configuration similar to that of FIG. 6 (S111). Therefore, when the operator presses the execution button of the replacement guide dialogue (S112: YES), a tool replacement movement control is performed to move the corresponding tool T to the replacement position for the first turret device 4 (S113). The tool T brought to the replacement position is replaced by the operator. In the case of the tool bit 50, a new tip 52 is attached to the shank 51. After that, when the operator who performed the replacement closes the left front door 33 and presses the work completion button (S114: YES), a tool replacement movement control is performed to return the first turret device 4 to the origin position (S115). Then, in order to start counting the life span of the new tip 52 from zero, the corresponding count value is reset (S116), and the cutting tool replacement process ends.
 ところで、刃具交換処理のステップS109で使用コーナ数のカウントアップが行われた場合には、同時にカウントアップフラグがONになり、作業者によるコーナ間違いを無くすための位置替えチェックが行われる。この位置替えチェックは、誤って使用済みコーナ55を刃先の位置に取り付けてしまったことを作業者に知らせるためのものである。本実施形態では、こうしたコーナ55の間違いを切削時の加工負荷によって判定するようにしている。図5で示す破線は、基準データを取得するための1-5回の加工回数分N1と、使用済みコーナ55による201―206回の加工回数分N2とが示されている。このグラフからは加工回数によって面粗さの違いが明確になっているが、こうした違いは加工時の工具が受ける加工負荷にもなって現れる。そこで、本実施形態では加工負荷の違いからコーナ55の位置替えの間違いを判定するようにしている。 When the number of corners used is counted up in step S109 of the cutting tool replacement process, the count-up flag is turned ON at the same time, and a position change check is performed to prevent the operator from making a mistake in the corner. This position change check is intended to inform the operator that a used corner 55 has been mistakenly attached to the cutting edge position. In this embodiment, such a mistake in the corner 55 is judged based on the processing load during cutting. The dashed lines in Figure 5 indicate N1, which is the number of times of processing 1-5 to obtain the reference data, and N2, which is the number of times of processing 201-206 using a used corner 55. This graph clearly shows the difference in surface roughness depending on the number of times of processing, but this difference also appears as the processing load received by the tool during processing. Therefore, in this embodiment, the mistake in the position change of the corner 55 is judged based on the difference in processing load.
 図8および図9は、コーナ確認プログラムによる処理工程を示したフローチャート図である。特に、図8は基準データ作成プログラムであり、図9は、コーナ判定プログラムである。図8の基準データ作成プログラムでは、先ず、チップ52の交換が行われたか否かについて確認が行われる(S201)。交換確認は、図7に示すステップS114で作業完了ボタンが押された場合に交換フラグがONになることで確認できるようになっている。従って、交換フラグがOFFのままであれば(S201:NO)、この基準データ作成処理は終了する。一方、交換フラグがONになっていた場合には(S201:YES)、次に新しいチップ52のコーナ55Aについて図5に示す加工回数部分N1(5回分)の加工が行われたか否かについて確認が行われる(S202)。 8 and 9 are flow charts showing the processing steps of the corner confirmation program. In particular, FIG. 8 is a reference data creation program, and FIG. 9 is a corner judgment program. In the reference data creation program of FIG. 8, first, it is confirmed whether the tip 52 has been replaced (S201). The replacement can be confirmed by the replacement flag being turned ON when the work completion button is pressed in step S114 shown in FIG. 7. Therefore, if the replacement flag remains OFF (S201: NO), this reference data creation process ends. On the other hand, if the replacement flag is ON (S201: YES), it is confirmed whether the corner 55A of the next new tip 52 has been machined the number of times N1 (5 times) shown in FIG. 5 (S202).
 コーナ55Aによる加工が5回未満であれば(S202:NO)、加工時の負荷値について計測結果が記録される。負荷計測は、第1タレット装置4における刃物台16の送り軸を駆動するサーボモータの電流値を基に計測される。コーナ55Aによる交換直後の4回分までの加工は、こうして加工時の負荷値について計測結果が記録される。そして、コーナ55Aによる5回目の加工では(S202:YES)、加工時の負荷について計測が行われ(S204)、更に5回分の加工負荷の平均値に任意の許容値を加算した値が基準負荷値Fとして設定される(S205)。また、このステップS205では、交換フラグがOFFに切り替えられて基準データ作成処理が終了する。 If corner 55A has been used for less than five machining operations (S202: NO), the measurement results of the load value during machining are recorded. The load measurement is based on the current value of the servo motor that drives the feed axis of the tool post 16 in the first turret device 4. In this way, the measurement results of the load value during machining are recorded for the first four machining operations immediately after replacement using corner 55A. Then, for the fifth machining operation using corner 55A (S202: YES), the load during machining is measured (S204), and a value obtained by adding an arbitrary tolerance to the average value of the machining load for the five operations is set as the reference load value F (S205). Also, in this step S205, the replacement flag is switched OFF and the reference data creation process ends.
 次に、図9のコーナ判定プログラムでは、先ず、コーナ55の位置替えが行われたか否かについて確認が行われる(S301)。位置替え確認は、図7に示すステップS107で作業完了ボタンが押された場合に位置替えフラグがONになることで確認できるようになっている。従って、位置替えフラグがOFFのままであれば(S301:NO)、このコーナ判定処理は終了する。一方、位置替えフラグがONになっていた場合には(S301:YES)、その後の加工が5回行われたか否かについて確認が行われる(S302)。 Next, in the corner determination program of FIG. 9, first, it is confirmed whether the position of the corner 55 has been changed (S301). The position change can be confirmed by the position change flag being turned ON when the work completion button is pressed in step S107 shown in FIG. 7. Therefore, if the position change flag remains OFF (S301: NO), this corner determination process ends. On the other hand, if the position change flag has been ON (S301: YES), it is confirmed whether five subsequent machining operations have been performed (S302).
 加工が5回未満の場合であれば(S302:NO)、加工時の負荷値について計測結果が記録される(S303)。その後も、コーナ55の位置替え直後の4回分までの加工は、こうして加工時の負荷値について計測結果が繰り返し記録される(S303)。そして、コーナ55の位置替えから5回目の加工では(S302:YES)、加工時のバイト50に加わる加工負荷について計測が行われ(S304)、更に5回分の負荷値を平均した確認用負荷値Fnが算出される(S305)。その後、算出された確認用負荷値Fnと基準負荷値Fとの比較により、チップ52の位置替えが適切か否かにつて判定が行われる(S306)。 If the number of machining operations is less than five (S302: NO), the measurement results of the load value during machining are recorded (S303). Thereafter, the measurement results of the load value during machining are repeatedly recorded in this manner for the first four machining operations immediately after the corner 55 is repositioned (S303). Then, for the fifth machining operation after the corner 55 is repositioned (S302: YES), the machining load applied to the cutting tool 50 during machining is measured (S304), and a confirmation load value Fn is calculated by averaging the load values for the five operations (S305). The calculated confirmation load value Fn is then compared with the reference load value F to determine whether the repositioning of the tip 52 is appropriate (S306).
 確認用負荷値Fnが基準負荷値Fより小さい場合には(S306:YES)、バイト50の刃先がコーナ55Aではなく、未使用のコーナ55B(コーナ55C,55Dであってもよい)になっていると判定される。そこで、位置替えフラグがOFFに切り替えられてコーナ判定処理が終了する。しかし、このとき確認用負荷値Fnが基準負荷値Fより大きい場合は(S306:NO)、位置替えが間違っていると判定される。つまり、200回の加工に使用されたコーナ55Aを、作業者が誤って刃先として再び取り付けてしまったということである。 If the confirmation load value Fn is smaller than the reference load value F (S306: YES), it is determined that the cutting edge of the cutting tool 50 is not corner 55A but unused corner 55B (or it may be corner 55C or 55D). The position change flag is then switched OFF and the corner determination process ends. However, if the confirmation load value Fn is greater than the reference load value F at this time (S306: NO), it is determined that the position change is incorrect. In other words, the operator has mistakenly reinstalled corner 55A, which has been used for 200 machining operations, as the cutting edge.
 この場合、警報音などを発する報知(S308)とともに、コーナ55の位置を正すための修正処理が実行される(S309)。ここで、図10は、この修正処理サブルーチンを実行するためのフローチャート図である。修正処理では、先ず図6に示すチップ52の位置替え案内表示と同様に、操作表示装置31のモニタにコーナ55の選択ミスを知らせる位置替えエラー表示が行われる(S401)。そこには実行ボタンが表示され作業者による意思確認が行われる(S402)。実行ボタンが押された場合には(S402:YES)、第1タレット装置4に対してバイト50を交換位置にまで移動させる刃具交換移動制御が行われ(S403)、作業者によってチップ52の位置替え作業が行われる。 In this case, a warning such as an alarm is issued (S308), and a correction process is executed to correct the position of the corner 55 (S309). FIG. 10 is a flow chart for executing this correction process subroutine. In the correction process, first, a position change error display is displayed on the monitor of the operation display device 31 to inform the operator that the corner 55 has been selected incorrectly, similar to the tip 52 position change guide display shown in FIG. 6 (S401). An execute button is displayed there, and the operator confirms his or her intention (S402). If the execute button is pressed (S402: YES), tool change movement control is performed for the first turret device 4 to move the cutting tool 50 to the change position (S403), and the tip 52 is changed by the operator.
 実行ボタンが押された場合には操作表示装置31のモニタは完了ボタンを表示する画面に切り換えられ、作業者による作業完了の確認が行われる(S404)。そのため、作業者によって作業完了ボタンが押された場合には(S404:YES)、第1タレット装置4を原点位置に戻す刃具交換移動制御が行われる(S405)。また、コーナ55の加工回数がゼロにリセットされ(S406)、修正処理サブルーチンが終了するとともに、図9に示すコーナ判定処理が終了する。なお、付け直しを行ったコーナ55に対しても、直後の5回分の加工について図9に示すコーナ判定処理が実行される。 When the execute button is pressed, the monitor of the operation display device 31 is switched to a screen displaying a complete button, and the worker confirms that the work is complete (S404). Therefore, when the worker presses the work complete button (S404: YES), tool replacement movement control is performed to return the first turret device 4 to the origin position (S405). In addition, the number of times the corner 55 has been machined is reset to zero (S406), the correction processing subroutine ends, and the corner determination process shown in Figure 9 ends. Note that the corner determination process shown in Figure 9 is also performed on the repositioned corner 55 for the immediately following five machining operations.
 そして、その後のバイト50を使用した加工でも同様に図7に示す刃具交換処理と、図9及び図10に示すコーナ判定処理が繰り返される。こうして、本実施形態によれば、コーナ55の位置替えに作業者の間違いがあったとしても、使用済みコーナ55によって加工を継続させてしまうことを防止することができ、加工品質を保つことができる。特に、複数のコーナを有するチップは未使用コーナが少なくなるとミスが生じやすくなるが、作業者への報知によって適切な位置替えが行われることとなる。 Then, in subsequent machining operations using the bit 50, the cutting tool replacement process shown in FIG. 7 and the corner determination process shown in FIG. 9 and FIG. 10 are repeated in the same manner. Thus, according to this embodiment, even if the operator makes a mistake in repositioning the corner 55, it is possible to prevent machining from continuing with a used corner 55, and machining quality can be maintained. In particular, with chips having multiple corners, mistakes are more likely to occur as the number of unused corners decreases, but the operator is notified and can make appropriate repositioning.
 コーナ判定処理では5回分の負荷計測によってコーナ55の未使用か使用済みかの状態を判定しているため、使用済みのコーナ55でワーク加工が行われたとしても、図5に示すように加工部の面粗さが規格ライン61を超えてしまうことはなく、ワークが無駄になることもない。また、刃具交換処理では、刃具交換移動制御によって第1タレット装置4の工具Tが交換位置まで自動で移動するため、作業者にとって工具交換作業などを短時間で済ますことができる。 The corner determination process determines whether the corner 55 is unused or used by five load measurements, so even if workpiece machining is performed on a used corner 55, the surface roughness of the machined portion will not exceed the standard line 61 as shown in Figure 5, and no workpiece will be wasted. Also, in the cutting tool replacement process, the tool T of the first turret device 4 is automatically moved to the replacement position by the cutting tool replacement movement control, allowing the worker to complete tool replacement work and the like in a short amount of time.
 本発明の一実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、前記実施形態では工作機械として複合加工機を例に挙げたが、一軸旋盤などであってもよい。
 前記実施形態ではチップ52の交換毎に基準負荷値Fを算出するように説明したが、複数個の同じチップ52が交換される場合には、最初の1個目に計測した基準負荷値Fを2個目のチップ52に対して使用するようにしてもよい。
Although one embodiment of the present invention has been described, the present invention is not limited to this embodiment, and various modifications are possible without departing from the spirit of the present invention.
For example, in the above embodiment, a multi-tasking machine is used as an example of a machine tool, but a single-axis lathe or the like may also be used.
In the above embodiment, the reference load value F is calculated each time the chip 52 is replaced. However, when multiple identical chips 52 are replaced, the reference load value F measured for the first chip 52 may be used for the second chip 52.
1…工作機械 2…工具主軸装置 3…第1ワーク主軸装置 4…第1タレット装置 5…第2ワーク主軸装置 6…第2タレット装置 7…制御装置 8…工具交換装置 9…ワーク自動搬送装置 16…刃物台 31…操作表示装置 50…刃具交換式バイト 51…シャンク 52…チップ 55(55A,55B,55C,55D)…コーナ 72…位置替え案内ダイアログ
 
Reference Signs List 1...machine tool 2...tool spindle device 3...first workpiece spindle device 4...first turret device 5...second workpiece spindle device 6...second turret device 7...control device 8...tool exchange device 9...automatic workpiece transport device 16...tool rest 31...operation and display device 50...replaceable cutting tool 51...shank 52...chip 55 (55A, 55B, 55C, 55D)...corner 72...position change guidance dialogue

Claims (4)

  1.  複数のコーナを刃先として位置替え可能な刃具を備えた刃具交換工具を使用する工作機械であって、
     前記刃具についてコーナの位置替えを行った後の所定回数の加工において計測した加工負荷を基に確認用負荷値を算出し、その確認用負荷値と予め設定された基準負荷値との比較により、刃先として取り付けた前記刃具のコーナについて未使用または使用済みのコーナ判定を行う制御装置を有する工作機械。
    A machine tool using a cutting tool changeable tool having a cutting tool that can be changed to a position with a plurality of corners as a cutting edge,
    A machine tool having a control device that calculates a confirmation load value based on the machining load measured during a predetermined number of machining operations after changing the corner position of the cutting tool, and determines whether the corner of the cutting tool attached as a cutting edge is unused or used by comparing the confirmation load value with a preset reference load value.
  2.  前記基準負荷値は、刃先として一番目に使用された前記刃具のコーナについて、所定回数の加工で計測した加工負荷を基に算出したものである請求項1に記載の工作機械。 The machine tool according to claim 1, wherein the reference load value is calculated based on the machining load measured for the corner of the cutting tool that is first used as the cutting edge after a predetermined number of machining operations.
  3.  前記制御装置は、前記確認用負荷値と前記基準負荷値との比較により、刃先として取り付けた前記刃具のコーナが使用済みと判定された場合には、表示装置に前記コーナの選択ミスを知らせる位置替えエラーが表示される請求項1または請求項2に記載の工作機械。 The machine tool according to claim 1 or 2, wherein the control device, when it is determined by comparing the confirmation load value with the reference load value that the corner of the tool attached as the cutting edge has been used, displays a repositioning error on the display device to inform the user that the corner has been selected incorrectly.
  4.  前記制御装置は、前記コーナの位置替えに関する意思確認ボタンの操作に応じて前記刃具交換工具を作業位置へ移動制御する請求項1に記載の工作機械。
     
    2. The machine tool according to claim 1, wherein the control device controls the cutting tool replacer to move to a working position in response to an operation of a button for confirming an intention regarding changing the position of the corner.
PCT/JP2022/044125 2022-11-30 2022-11-30 Machine tool WO2024116313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044125 WO2024116313A1 (en) 2022-11-30 2022-11-30 Machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044125 WO2024116313A1 (en) 2022-11-30 2022-11-30 Machine tool

Publications (1)

Publication Number Publication Date
WO2024116313A1 true WO2024116313A1 (en) 2024-06-06

Family

ID=91323458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044125 WO2024116313A1 (en) 2022-11-30 2022-11-30 Machine tool

Country Status (1)

Country Link
WO (1) WO2024116313A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120954A (en) * 1979-03-13 1980-09-17 Fanuc Ltd Method for detection of machine tool life
JP2003266280A (en) * 2002-03-20 2003-09-24 Kyocera Corp Circuit diagnosis device for throw away tip with circuit
JP2017094437A (en) * 2015-11-24 2017-06-01 ローランドディー.ジー.株式会社 Cutting machine and method for gripping machining tool
JP2021074786A (en) * 2019-11-05 2021-05-20 村田機械株式会社 Vertical lathe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120954A (en) * 1979-03-13 1980-09-17 Fanuc Ltd Method for detection of machine tool life
JP2003266280A (en) * 2002-03-20 2003-09-24 Kyocera Corp Circuit diagnosis device for throw away tip with circuit
JP2017094437A (en) * 2015-11-24 2017-06-01 ローランドディー.ジー.株式会社 Cutting machine and method for gripping machining tool
JP2021074786A (en) * 2019-11-05 2021-05-20 村田機械株式会社 Vertical lathe

Similar Documents

Publication Publication Date Title
EP1243992B1 (en) Tool presetter and tool offset amount calculation method
EP3919225B1 (en) Machine tool including an automatic tool changer and control method therefor
JP2011011332A (en) Machining apparatus and machining method
US20200180036A1 (en) Lathe with tool unit mounted thereto
JP2003175427A (en) Compound machining apparatus
US9902031B2 (en) Spindle phase indexing device for machine tool
WO2024116313A1 (en) Machine tool
JP4047986B2 (en) Numerical control method and apparatus
JP6861796B2 (en) Machine Tools
JP4661494B2 (en) Numerical controller
JP7489487B2 (en) Machine Tools
JP4549150B2 (en) Interference area setting method for machine tools
JPH05162002A (en) Combined machine tool with detector for dimension and position of work to be machined
WO2015011800A1 (en) Cutting edge replacement assistance system
JP4491686B2 (en) Machining control method of workpiece in machine tool
CN114453972B (en) Rapid tool setting method for numerical control machining tool
JPH06262403A (en) Position control device for moving body in machine tool
JP2002052428A (en) Tool correcting or regenerating machining method of machining center and machining center
JP2007015090A (en) Tool kind detecting method and tool kind measuring device
JP4125529B2 (en) Tool index command method for swivel turret
JP2005279835A (en) Composite machining machine and turning method
JP4324264B2 (en) Tool presetter
JP3470358B2 (en) Machine Tools
JP2024045919A (en) Machine tool
CN115213687A (en) Composite processing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22967146

Country of ref document: EP

Kind code of ref document: A1