WO2024114556A1 - 温度控制***及锂电池生产设备 - Google Patents

温度控制***及锂电池生产设备 Download PDF

Info

Publication number
WO2024114556A1
WO2024114556A1 PCT/CN2023/134237 CN2023134237W WO2024114556A1 WO 2024114556 A1 WO2024114556 A1 WO 2024114556A1 CN 2023134237 W CN2023134237 W CN 2023134237W WO 2024114556 A1 WO2024114556 A1 WO 2024114556A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
air
fan
formation chamber
temperature
Prior art date
Application number
PCT/CN2023/134237
Other languages
English (en)
French (fr)
Inventor
蔡琳
邓映翔
张文科
Original Assignee
珠海泰坦新动力电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海泰坦新动力电子有限公司 filed Critical 珠海泰坦新动力电子有限公司
Publication of WO2024114556A1 publication Critical patent/WO2024114556A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of lithium battery production, and in particular to a temperature control system and lithium battery production equipment.
  • the present application provides a temperature control system that can accurately control the temperature within a storage location, facilitating the production and processing of lithium batteries.
  • a temperature control system which is arranged on a storage location, and the temperature control system includes a partition, which separates the storage location into an air guide chamber and a formation chamber, and the partition is provided with an opening.
  • the opening is used to connect the air guide chamber and the formation chamber, and the opening includes a first opening, a second opening and a third opening, the first opening is located at the first side of the formation chamber, the second opening is located at the first side or the second side of the formation chamber, and the third opening is located at the third side of the formation chamber;
  • the temperature control system also includes: a heat source, which is arranged at the first opening; an air volume control component, which is arranged at the first opening and/or the second opening, and the air volume control component is used to control the air volume flowing through the first opening and the second opening, and the air in the formation chamber flows to the air guide chamber through the first opening and/or the second opening; a third fan, which is arranged at the third opening, and the third fan is used to guide the air in
  • the air volume control component includes a second fan, the second fan is arranged at the second opening, the second fan is a fixed-speed fan that can rotate forward and reverse, and the third fan is a speed-regulating fan.
  • the air volume control assembly further includes a first fan blade, and the first fan blade is disposed at the first opening.
  • the air volume control component includes a first louver and a second louver, the first louver is arranged at the first opening, the second louver is arranged at the second opening, and the first louver and the second louver are used to adjust the air volume flowing through the first opening and the second opening.
  • the heat source is an electric heater or a water heat exchanger.
  • the partition is provided with a heat dissipation port, and a heat dissipation control component is provided at the heat dissipation port, and the heat dissipation control component is used to control the air volume flowing through the heat dissipation port.
  • the heat dissipation control component includes heat dissipation electric shutters, and the heat dissipation electric shutters are arranged at the heat dissipation port.
  • the third opening is located at the top of the formation chamber, and the third opening is higher than the first opening and the second opening, and the first opening and the second opening are both located at the first side of the formation chamber.
  • a lithium battery production device including: a storage location; the aforementioned temperature control system, which is arranged on the storage location; a charge and discharge mechanism, which is arranged in the formation chamber, and the charge and discharge mechanism includes a probe assembly and a tray, the probe assembly and the tray are arranged in a vertical direction, and the first opening or the second opening and the joint between the probe assembly and the tray are located on the same plane.
  • the temperature sensor is disposed on the tray.
  • the air volume control component cooperates with the third fan, on the one hand, to form air circulation. Since the two are located on different sides of the storage location, the air in the storage location can form a large-scale circulation, so that the temperature of each place in the storage location is roughly the same, the heat is evenly distributed, and the formation of local hot spots is prevented. In particular, when one of them is located on the upper side of the storage location, the air in the storage location can be circulated up and down to prevent the occurrence of temperature stratification.
  • the heat transferred to the storage location by the heat source component can be controlled, thereby controlling whether the temperature in the storage location rises and how fast the temperature rises, that is, if the air volume at the first opening is large, the temperature in the storage location rises quickly; if the air volume at the first opening is small, the temperature in the storage location rises slowly; if there is no air circulation at the first opening, the temperature in the storage location will not rise.
  • the lithium battery production equipment provided in the present application can adjust the temperature in the warehouse by setting up a temperature control system, while ensuring air circulation in the warehouse so that the temperature of each area in the warehouse is balanced, thereby facilitating the production and processing of lithium batteries.
  • FIG1 is a schematic diagram of the working state of the lithium battery production equipment in the first embodiment of the present application when it is in the heating stage;
  • FIG2 is a schematic diagram of the working state of the lithium battery production equipment shown in FIG1 when the temperature in the storage location reaches the lower limit of the target temperature range;
  • FIG3 is a schematic diagram of the working state of the lithium battery production equipment in the second embodiment of the present application when it is in the heating stage;
  • FIG. 4 is a schematic diagram of the working state of the lithium battery production equipment shown in FIG. 3 when it is in the constant temperature stage.
  • orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the present application and simplifying the description, and do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on the present application.
  • the side wall refers to the left side wall and/or the right side wall.
  • the terms "setting”, “installation”, “connection” and “connection” should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, a movable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be a connection between the two components.
  • “Bolt connection” and “screw connection” can be equivalently replaced.
  • a temperature control system according to an embodiment of the present invention is provided on a storage location 100 , and includes a partition 200 , a heat source, an air volume control assembly, a third fan and a temperature sensor.
  • the partition 200 divides the storage location 100 into an air guide chamber 110 and a formation chamber 120.
  • the partition 200 is provided with an opening for connecting the air guide chamber 110 and the formation chamber 120.
  • the opening includes a first opening 210, a second opening 220 and a third opening 230.
  • the first opening 210 is located at a first side of the formation chamber 120
  • the second opening 220 is located at a first side or a second side of the formation chamber 120
  • the third opening 230 is located at a third side of the formation chamber 120.
  • partition plate 200 is an air guide plate, which not only plays the effect of isolating storage position 100 from the outside world, air guide chamber 110 and formation chamber 120, but also can guide and limit the flow direction of wind.It should be explained that the opening involved in the present embodiment should include the region formed to be able to place the following air volume control assembly.
  • the heat source is arranged at the first opening 210. Only the air flowing through the first opening 210 can pass through the heat source, take away the heat on the heat source and finally transfer it to the storage position 100.
  • the air flowing through other openings cannot directly blow to the heat source, but in some cases can be mixed with the air flowing through the first opening 210, so as to dilute the hot air directly brought by the heat source, balance the temperature of the mixed air, and accurately control the temperature of the formation chamber 120.
  • the blocking member is used to block the air entering the air guide chamber 110 from the second opening 220 from blowing to the heat source, and the blocking member can guide the air passing through the heat source and the air entering the air guide chamber 110 from the second opening 220 to mix in the air guide chamber 110.
  • the heat source is a component that brings heat to the storage position 100. In this embodiment, the self-heating of the heat source has a low effect on the temperature in the storage position 100 and can be ignored.
  • the rise in temperature in the storage location 100 is mainly due to the fact that the air actively takes away the heat of the heat source component and transfers it to the entire storage location 100, causing the storage location 100 to heat up, in addition to the reason that the equipment in the storage location 100 (such as lithium battery charging and discharging equipment) may emit heat.
  • the heat source component is arranged at the first opening 210, so by controlling the air volume (or the amount of air) flowing through the first opening 210, the heat transferred to the storage location 100 by the heat source component can be controlled.
  • the air volume control component is arranged at the first opening 210 and/or the second opening 220, and the air volume control component is used to control the air volume flowing through the first opening 210 and the second opening 220, and the air in the formation chamber 120 flows to the air guide chamber 110 through the first opening 210 and/or the second opening 220.
  • the air at the first opening 210 can only be blown into the air guide chamber 110 from the formation chamber 120, thereby preventing the hot air flowing through the heat source from directly blowing onto the equipment in the formation chamber 120; the hot air passing through the heat source will first enter the air guide chamber 110 for mixing, so that the air temperature is more uniform, and then it will be blown into the formation chamber 120 from the air guide chamber 110 through another opening.
  • the third fan is arranged at the third opening 230 and is used to guide the air of the air guide chamber 110 to the formation chamber 120.
  • the air volume control component cooperates with the third fan to form an air circulation.
  • the two are located at different sides of the storage location 100, and the air of the formation chamber 120 flows to the air guide chamber 110 through the first opening 210 and/or the second opening 220, and the third fan guides the air of the air guide chamber 110 to the formation chamber 120, so the air in the storage location 100 can form a large-scale circulation, so that the temperature at various places in the storage location 100 is roughly the same, the heat is evenly distributed, and the formation of local hot spots is prevented.
  • the air in the storage location 100 can be circulated up and down to prevent the temperature stratification phenomenon; on the other hand, by controlling the air volume of the wind flowing through the first opening 210, the heat transferred to the storage location 100 by the heat source component can be controlled, thereby controlling whether the temperature in the storage location 100 rises and how fast it rises, that is, if the air volume at the first opening 210 is large, the temperature in the storage location 100 rises quickly, if the air volume at the first opening 210 is small, the temperature in the storage location 100 rises slowly, and if there is no wind circulation at the first opening 210, the temperature in the storage location 100 will not rise.
  • the air in the storage location 100 can always circulate through the other two openings, thereby realizing wind circulation and uniformizing the temperature in the storage location 100.
  • the temperature sensor is arranged in the formation chamber 120.
  • the temperature condition in the formation chamber 120 can be monitored in real time, so as to control the air volume of the wind flowing through the first opening 210 in real time according to the temperature condition in the formation chamber 120, and then control the temperature of the storage position 100 and its temperature change.
  • a plurality of temperature sensors can be arranged, for example, they can be arranged on the equipment in the formation chamber 120, or they can be arranged on the inner wall of the formation chamber 120; some temperature sensors can also be arranged at the opening to monitor the temperature condition of the opening.
  • the air volume control component includes a second fan, which is arranged at the second opening 220.
  • the second fan is a fixed-speed fan that can be reversed
  • the third fan is a speed-regulating fan. It can be understood that in this embodiment, there is no fan at the first opening 210, and air can flow naturally through the first opening 210.
  • the air flowing from the formation chamber 120 to the air guide chamber 110 through the opening is referred to as the opening being in the first state
  • the air flowing from the air guide chamber 110 to the formation chamber 120 through the opening is referred to as the opening being in the second state.
  • the air volume of the wind flowing through the first opening 210 is set to q1
  • the air volume of the wind flowing through the second opening 220 is set to q2
  • the air volume of the wind flowing through the third opening 230 is set to q3; by controlling q1, the temperature change in the storage location 100 can be controlled.
  • the second fan is a fixed speed fan
  • q2 is a fixed value
  • the second fan can be reversed, that is, the second fan can rotate forward or reverse, so the second opening
  • the air at port 220 can be in the first state or the second state
  • the third fan is a speed-adjustable fan, so q3 can be changed.
  • forward and reverse only indicate that the second fan rotates in opposite directions in two situations, and are not related to the actual fan rotation standard, that is, in practice, forward rotation can be counterclockwise rotation or clockwise rotation, and can be the forward state and reverse state specified in the fan operation manual (or instructions and other similar items).
  • the rotation speed of the fan is proportional to the size of the air flow at the opening, and the air flow at the opening is the same when the fan rotation speed is the same; and in practice, for example, in the present embodiment, there may be multiple third fans, and through actual measurement, recording, statistics, and calculation, when each third fan is at a specific rotation speed, the total air volume of the third opening 230 is the same as the air volume of the second opening 220.
  • the rotation speed of the third fan is generally smaller than that of the second fan.
  • the rotation speed of a specific fan is still proportional to the size of the air flow at the opening, but the rotation speed of each fan and the size of the air flow at the corresponding opening may be different, and need to be multiplied by a coefficient for conversion to be the same. In this way, the following temperature adjustment process and principle can be applied to practice.
  • the air volume at the first opening 210 is larger, and the temperature of the storage position 100 rises faster;
  • the air volume at the first opening 210 further decreases.
  • the heat input into the storage location 100 by the heat source is approximately equal to the heat dissipated from the storage location 100 to the environment (the surface of the storage location 100 dissipates heat to the environment), and the temperature in the storage location 100 remains basically unchanged;
  • the air volume at the first opening 210 becomes very small.
  • the heat input into the storage location 100 by the heat source is slightly less than the heat dissipated from the storage location 100 to the environment (the heat dissipated from the surface of the storage location 100 to the environment), and the temperature in the storage location 100 will slowly drop;
  • the second fan is a constant-speed fan, it can be understood that in the above two stages, the second fan is always in operation, and the air volume q2 of the wind flowing through the second opening 220 is a constant value. Therefore, no matter what the circumstances, there is at least air with a volume of q2 circulating in the storage location 100, so that the temperature of each area in the storage location 100 is balanced.
  • the air volume control assembly further includes a first fan blade, which is disposed at the first opening 210 , wherein the first fan blade is not connected to the driving member and is rotated only by air pressure or wind force to accelerate the circulation of air in the first opening 210 .
  • a first fan blade is provided at the first opening 210.
  • the first fan blade is provided between the heat source and the formation chamber. 120.
  • the first fan blade rotates, which can further drive the subsequent air inertial circulation and facilitate the formation of a circulation path for wind circulation.
  • the first fan blade is arranged at the first opening 210, which can block the heat of the heat source from flowing to the formation chamber 120 to a certain extent.
  • the first fan blade is arranged at the first opening 210, and the first fan blade is self-adjusted according to the air pressure of the air guide chamber 110, which is conducive to achieving precise temperature control.
  • the air volume control assembly includes a first louver 300 and a second louver 400 , the first louver 300 is disposed at the first opening 210 , and the second louver 400 is disposed at the second opening 220 , and the first louver 300 and the second louver 400 are used to adjust the air volume flowing through the first opening 210 and the second opening 220 .
  • the first louver 300 and the second louver 400 are both controllable parts that can close or open the opening; and the opening of the louver can be adjusted to adjust the air volume of the corresponding opening.
  • the opening of the louver can be adjusted to adjust the air volume of the corresponding opening.
  • Heating stage as shown in Figure 3, the first louver 300 is controlled to open the first opening 210, the second louver 400 is controlled to close the second opening 220, and the third blower at the third opening 230 rotates normally to blow air, so the air in the formation chamber 120 can flow between the first opening 210 and the third opening 230, forming a wind circulation with air entering from the first opening 210 and air exiting from the third opening 230, balancing the temperature between various areas in the formation chamber 120, and the wind passing through the first opening 210 can bring the heat of the heat source component into the formation chamber 120, so that the temperature of the formation chamber 120 rises.
  • Constant temperature stage as shown in Figure 4, the first louver 300 is controlled to close the first opening 210, the second louver 400 is controlled to open the second opening 220, and the third fan at the third opening 230 rotates normally to blow air, so the air in the formation chamber 120 can flow between the second opening 220 and the third opening 230, forming a wind circulation with air entering from the second opening 220 and air exiting from the third opening 230, thereby balancing the temperature between various areas in the storage location 100, and the wind does not pass through the first opening 210, so the heat of the heat source component will basically not be brought into the formation chamber 120.
  • the constant temperature stage refers to that the temperature of the formation chamber 120 is maintained within a preset temperature range. As the air in the formation chamber 120 flows between the second opening 220 and the third opening 230, the temperature in the storage location 100 drops due to the heat dissipation from the surface of the storage location 100 to the external environment. When it is lower than the lower limit of the preset temperature range, the heating stage is entered again.
  • the shutters in the present application can all be electric shutters. Using electric shutters to close or open openings has a simple and reliable structure and is easy to control.
  • the heat source element is an electric heater or a water heat exchanger.
  • Electric heaters and water-heat exchangers are both common components that can provide heat. They are widely available and easy to purchase and install.
  • the partition 200 is provided with a heat dissipation port 240 , and a heat dissipation control component is provided at the heat dissipation port 240 , and the heat dissipation control component is used to control the air volume flowing through the heat dissipation port 240 .
  • the heat dissipation control component can be controlled to open the heat dissipation port 240, so that storage location 100 is forced to dissipate heat, and the cold air outside storage location 100 can enter into storage location 100 and the hot air inside storage location 100 can be discharged outside storage location 100.
  • the heat dissipation control assembly includes a heat dissipation electric shutter 500 , and the heat dissipation electric shutter 500 is disposed at the heat dissipation port 240 .
  • the heat dissipation electric shutter 500 can be controlled to close or open the heat dissipation port 240, thereby controlling whether the storage location 100 is forced to dissipate heat, which is simple, convenient and easy to control.
  • the opening of the heat dissipation electric shutter 500 can be adjusted, that is, the air volume flowing through the heat dissipation port 240 can be controlled by adjusting the opening of the heat dissipation electric shutter 500.
  • the heat dissipation control component can force air intake or exhaust.
  • the heat dissipation control component also includes a heat dissipation fan, which is arranged at the heat dissipation port 240. After the heat dissipation electric shutter 500 is partially or fully opened, the heat dissipation fan rotates to exhaust heat and cool down, or inhale cold air and cool down.
  • the third opening 230 is located at the top of the formation chamber 120 , and the level of the third opening 230 is higher than the first opening 210 and the second opening 220 , and the first opening 210 and the second opening 220 are both located at the first side of the formation chamber 120 .
  • the formation chamber 120 can be divided into six directions: front, back, left, right, top, and bottom. Therefore, the formation chamber 120 has six sides, namely the front side, the back side, the left side, the right side, the top side (or the top), and the bottom side.
  • the first side of the formation chamber 120 is one of the above six sides, and the second side and the third side are the same.
  • the air guide chamber 110 is arranged on the left side and the top of the formation chamber 120. Therefore, in the present embodiment, the first side is the left side of the formation chamber 120, which is close to the air guide chamber 110, and the third side is the top side (or the top) of the formation chamber 120, which is close to the air guide chamber 110.
  • the air in the air guide chamber 110 is The third opening 230 for guiding air into the formation chamber 120 is arranged at the top of the formation chamber 120, and the first opening 210 and the second opening 220 are both arranged below the third opening 230.
  • the third fan can directly blow air to the equipment in the formation chamber 120, so that when the air circulates in the formation chamber 120, the air circulation between the upper and lower layers can always be carried out, thereby preventing the temperature stratification phenomenon in the formation chamber 120.
  • the first opening 210 and the second opening 220 By arranging the first opening 210 and the second opening 220 on the first side of the formation chamber 120, it is prevented that when the second opening 220 is in a state of blowing the air in the air guide chamber 110 toward the formation chamber 120, the first opening 210 and the second opening 220 form a certain degree of convection, thereby affecting the temperature control effect.
  • a plurality of third fans are disposed on the top of the formation chamber 120 to allow air to circulate at all locations within the formation chamber 120 .
  • the lithium battery production equipment includes a storage location 100 , a charging and discharging mechanism, and the aforementioned temperature control system.
  • the aforementioned temperature control system is arranged on the storage location 100 .
  • the charge and discharge mechanism is arranged in the formation chamber 120, and includes a probe assembly and a tray 620 arranged on a frame 640.
  • the probe assembly and the tray 620 are arranged in a vertical direction, and the first opening 210 or the second opening 220 and the joint between the probe assembly and the tray 620 are located on the same plane.
  • the probe assembly of the charging and discharging mechanism can be a single-sided probe with only the upper part pressed together, that is, the probe assembly is an upper probe assembly 610, as shown in Figures 3 and 4; the probe assembly can also be a double-sided probe pressed together from top to bottom, that is, the probe assembly includes an upper probe assembly 610 and a lower probe assembly 630, as shown in Figures 1 and 2.
  • the first opening 210 is provided with a first louver 300
  • the second opening 220 is provided with a second louver 400
  • the second opening 220 and the joint between the probe assembly and the tray 620 are located on the same plane
  • the first opening 210 is provided below the second opening 220, so that when in the heating stage, the hot air heated by the first opening 210 can be blown out from the second opening 220 toward the joint between the probe assembly and the tray 620, thereby reducing the possibility of uneven temperature at the joint between the probe assembly and the tray 620 due to heat.
  • the first opening 210 is provided with a first fan blade
  • the second opening 220 is provided with a second fan
  • the first opening 210 corresponds to the upper probe assembly 610
  • the second opening 220 corresponds to the lower probe assembly 630.
  • the first openings 210 and 220 can be formed respectively.
  • At least one of the first opening 210 and the second opening 220 is disposed corresponding to the joint.
  • the lithium battery production equipment of the present application by setting up a temperature control system, can regulate the temperature rise and fall in the formation chamber 120 on the basis of ensuring air circulation in the formation chamber 120 so that the temperature of each area in the formation chamber 120 is balanced, thereby facilitating the production and processing of lithium batteries.
  • the temperature sensor is disposed on the tray 620 .
  • the temperature sensor is arranged on the tray 620 to monitor the temperature of the battery on the tray 620 and facilitate the production and processing of the lithium battery.
  • a temperature sensor can be arranged in the middle of each frame of the tray 620 and in the center of the upper end surface of the tray 620, and the air volume at the first opening 210 can be controlled so that the temperature value of each temperature sensor and the average temperature value of all sensors are within a preset range.
  • Air guide chamber 110
  • Formation chamber 120

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种温度控制***及锂电池生产设备,温度控制***包括隔板(200)、热源件、风量控制组件、第三风机和温度传感器。温度控制***能够精准控制库位(100)内的温度,方便锂电池的生产加工。

Description

温度控制***及锂电池生产设备
本申请要求于2022年11月30日提交中国专利局、申请号为202223218698.3、发明名称为“温度控制***及锂电池生产设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂电池生产领域,特别涉及一种温度控制***及锂电池生产设备。
背景技术
在锂电池生产工艺中,为了提高电池的性能以及保证电池的一致性,通常需要对电池的充放电环境进行控温,现有的锂电池厂主要是通过在高温厂房布置进风口与排风口来调节厂房的环境温度,也就是说,充放电设备本身不具有控温功能,库位内的温度环境只与库位周围的厂房环境温度有关,而电池在充放电过程中均会有不同程度的放热,显然这种方式难以基于每个库位内的实际情况来进行温度控制。
此外,采用厂房控温的方式,还出现如下问题:首先,由于厂房空间较大,且设备布置在厂房内会阻挡厂房内的气流组织,造成车间温度不均匀,进而出现局部热点的问题;其次,由于受热空气通常膨胀上升,而受冷空气下沉的原因,车间高度过高还会出现温度分层现象,即上层环境温度高于下层环境温度。再者,由于在不同时间厂房内工作的库位数量以及库位的工作状态有所不同,这种变化会导致厂房内的温度产生较大波动,进而给厂房的控温造成较大的困扰。
技术问题
本申请提供一种温度控制***,能够精准控制库位内的温度,方便锂电池的生产加工。
技术解决方案
第一方面,提供一种温度控制***,设置在库位上,所述温度控制***包括隔板,隔板将所述库位分隔为导风室和化成室,所述隔板设有开口,所述开 口用于连通所述导风室和所述化成室,所述开口包括第一开口、第二开口和第三开口,所述第一开口位于所述化成室的第一侧,所述第二开口位于所述化成室的第一侧或者第二侧,所述第三开口位于所述化成室的第三侧;所述温度控制***还包括:热源件,设置在所述第一开口处;风量控制组件,设置在所述第一开口和/或所述第二开口处,所述风量控制组件用于控制流经所述第一开口和所述第二开口的风量,所述化成室的空气经所述第一开口和/或所述第二开口流向所述导风室;第三风机,设置在所述第三开口处,所述第三风机用于将所述导风室的空气引导至所述化成室;温度传感器,设置在所述化成室内。
在一些实施方式中,所述风量控制组件包括第二风机,所述第二风机设置在所述第二开口处,所述第二风机为可正反转的定速风机,所述第三风机为调速风机。
在一些实施方式中,所述风量控制组件还包括第一风叶,所述第一风叶设置在所述第一开口处。
在一些实施方式中,所述风量控制组件包括第一百叶和第二百叶,所述第一百叶设置在所述第一开口处,所述第二百叶设置在所述第二开口处,所述第一百叶和所述第二百叶用于调节流经所述第一开口和所述第二开口的风量。
在一些实施方式中,所述热源件为电加热器或者水热换热器。
在一些实施方式中,所述隔板设置有散热口,所述散热口处设置有散热控制组件,所述散热控制组件用于控制流经所述散热口的风量。
在一些实施方式中,所述散热控制组件包括散热电动百叶,所述散热电动百叶设置在所述散热口处。
在一些实施方式中,所述第三开口位于所述化成室的顶部,所述第三开口的水平高度高于所述第一开口以及所述第二开口,所述第一开口和所述第二开口均位于所述化成室的第一侧。
另一方面,提供一种锂电池生产设备,包括:库位;前述的温度控制***,设置在所述库位上;充放电机构,设于所述化成室内,所述充放电机构包括探针组件和托盘,所述探针组件与所述托盘沿竖直方向设置,所述第一开口或所述第二开口和所述探针组件与所述托盘的接合部位位于同一平面上。
在一些实施方式中,所述温度传感器设于所述托盘上。
有益效果
相较于现有技术,本申请提供的温度控制***,风量控制组件配合第三风机,一方面,形成空气循环,由于两者处在库位的不同侧,故库位内的空气可以形成大范围的流通,从而使得库位内各处的温度大致相同,热量分布均匀,防止局部热点的形成,特别是当其中一个处在库位的上侧时,可以使得库位内上下空气流通,防止出现温度分层现象;另一方面,通过控制流经第一开口的风量,即可以控制热源件传递给库位的热量,从而控制库位内的温度是否上升以及上升的快慢程度,即第一开口处的风量大,则库位内温度上升快,第一开口处的风量小,则库位内温度上升慢,第一开口处无风流通,则库位内的温度不会上升。
本申请提供的锂电池生产设备,通过设置温度控制***,在保证库位内风循环,使得库位内各区域温度均衡的基础上,可以调控库位内温度的升降,方便锂电池的生产加工。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请第一种实施例锂电池生产设备处在加热阶段时的工作状态示意图;
图2为图1所示锂电池生产设备处在库位内温度达到目标温度范围的下限时的工作状态示意图;
图3为本申请第二种实施例锂电池生产设备处在加热阶段时的工作状态示意图;
图4为图3所示锂电池生产设备处在恒温阶段时的工作状态示意图。
本发明的实施方式
下面详细描述本申请的实施例,该实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解 为对本申请的限制。
在本申请的描述中,需要理解的是,涉及到方位描述,例如“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“尖”、“内”、“外”、“轴向”、“径向”、“周向”、“四周”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,侧壁表示左侧壁和/或右侧壁。
在本申请的描述中,“多个”的含义是两个以上,“大于”、“小于”、“超过”等理解为不包括本数,“以上”、“以下”、“以内”等理解为包括本数。如果有描述到“第一”、“第二”只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
在本申请的描述中,需要理解的是,“A设置在B上”、“B上设置有A”,表述A与B之间的连接关系或者位置关系,而不代表A一定在B的上方。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接、活动连接或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。“螺栓连接”和“螺钉连接”可以等同替换。对于本领域的普通技术人员而言,可以结合具体情况理解上述术语在本申请中的具体含义。
需要理解的是,本申请中的多个相似的特征只是以不同前缀加以区分,故在本申请中,以不加区分前缀的特征名称(或者加了部分前缀的特征名称)来表示这一类的相似特征的综合。
参照图1至图4,根据本发明实施例的温度控制***,设置在库位100上,温度控制***包括隔板200、热源件、风量控制组件、第三风机和温度传感器。
隔板200将库位100分隔为导风室110和化成室120,隔板200设有开口,开口用于连通导风室110和化成室120,开口包括第一开口210、第二开口220和第三开口230,第一开口210位于化成室120的第一侧,第二开口220位于化成室120的第一侧或者第二侧,第三开口230位于化成室120的第三侧。需 要理解的是,一般情况下,导风室110、化成室120与外界大致是隔绝的,也就是说,导风室110、化成室120与外界间的空气流通受到限制,故导风室110、化成室120与外界的温度传递是受限的。需要理解的是,在本实施例中,一部分隔板200为导风板,既起到隔绝库位100与外界、导风室110与化成室120的作用,通过可以引导、限制风的流向。需要解释的是,本实施例中所涉及的开口应当包括形成能够放置下述的风量控制组件的区域。
热源件,设置在第一开口210处。仅有通过第一开口210流通的空气才能经过热源件,将热源件上的热量带走、最终传递到库位100内,其他开口处流通的空气不能直接吹袭到热源件上,但在一些情况下可以和流经第一开口210的空气混合,从而稀释热源件所直接带来的热空气、均衡混合空气的温度,以精准控制化成室120的温度。例如,通过在热源件和第二开口220之间设置阻挡件,阻挡件用于阻挡从第二开口220进入导风室110的空气正面吹袭至热源件上,且该阻挡件能够引导经过热源件的空气以及从第二开口220进入导风室110的空气在导风室110内混合。热源件,即为库位100带来热量的部件,本实施例中,热源件自主散热对库位100内的温度影响较低,可以忽略不计。库位100内温度的上升,除了库位100内的设备(比如锂电池充放电设备)可能散发出的热量的原因外,主要是因为空气主动带走热源件的热量,将其传递到整个库位100内,导致库位100升温;而热源件设置在第一开口210处,故控制流经第一开口210的风的风量(或者说空气的量),即可以控制热源件传递给库位100的热量。
风量控制组件,设置在第一开口210和/或第二开口220处,风量控制组件用于控制流经第一开口210和第二开口220的风量,化成室120的空气经第一开口210和/或第二开口220流向导风室110。需要理解的是,第一开口210处的空气只能由化成室120吹入到导风室110内,从而防止流经热源件上的热风直接吹袭到化成室120内的设备上;经过热源件上的热风会先进入到导风室110进行混合,使得空气温度更加均匀后再由导风室110经另外的开口吹入到化成室120内。
第三风机,设置在第三开口230处,第三风机用于将导风室110的空气引导至化成室120。风量控制组件配合第三风机,一方面,形成空气循环,由于 两者处在库位100的不同侧,且化成室120的空气经第一开口210和/或第二开口220流向导风室110、第三风机将导风室110的空气引导至化成室120,故库位100内的空气可以形成大范围的流通,从而使得库位100内各处的温度大致相同,热量分布均匀,防止局部热点的形成,特别是当其中一个处在库位100的顶部时,可以使得库位100内上下空气流通,防止出现温度分层现象;另一方面,通过控制流经第一开口210的风的风量,即可以控制热源件传递给库位100的热量,从而控制库位100内的温度是否上升以及上升的快慢程度,即第一开口210处的风量大,则库位100内温度上升快,第一开口210处的风量小,则库位100内温度上升慢,第一开口210处无风流通,则库位100内的温度不会上升。特别的,因为设置有至少三个开口,故即使在设置有热源件的第一开口210封闭、空气无法从第一开口210流通、不通过热源件加热库位100的情况下,库位100内的空气也能够通过另外两个开口始终进行循环流通,从而实现风循环,均匀库位100内的温度。
温度传感器,设置在化成室120内。通过设置温度传感器,可以实时监测化成室120内的温度情况,从而根据化成室120内的温度情况实时控制流经第一开口210的风的风量,进而控制库位100的温度及其温度变化。需要理解的是,温度传感器可以设置有多个,例如,可以设于化成室120内的设备上,也可以设于化成室120的内壁上;还可以将部分温度传感器设于开口处,以监测开口的温度情况。
参照图1和图2,在本申请的一些实施例中,风量控制组件包括第二风机,第二风机设置在第二开口220处,第二风机为可正反转的定速风机,第三风机为调速风机,可以理解的是,在本实施例中第一开口210处无风机,空气可通过第一开口210自然流通。
为了方便描述,将空气经开口由化成室120流向导风室110称为该开口处在第一状态,将空气经开口由导风室110流向化成室120称为该开口处在第二状态。将流经第一开口210的风的风量设为q1,将流经第二开口220的风的风量设为q2,将流经第三开口230的风的风量设为q3;通过控制q1,即可控制库位100内的温度变化。在本实施例中,由于第二风机为定速风机,故q2为定值,且第二风机可正反转,即第二风机可以正转,也可以反转,故第二开 口220处的空气可以处在第一状态,也可以处在第二状态;第三风机为调速风机,故q3可变动。需要理解的是,在本申请的描述中,“正转”、“反转”只表明第二风机在两种情况下转动方向相反,不和实际中的风机转向标准相关,即在实际中,正转可以为逆时针转动,也可以为顺时针转动,可以为风机操作手册(或者说明书等类似物品)中规定的正转状态及反转状态。需要理解的是,实际中,第二风机、第三风机可以设置有多个,或者,各开口大小不相同;而下述内容为了方便理解,简化了模型,第二风机、第三风机均为一个,每个开口大小均相同,故理论上,风机的转速与开口处的空气流量大小呈正比,风机转速相同,则开口处的空气流量也相同;而实际中,比如本实施例中,第三风机可能设置有多个,可以通过实际测量、记录、统计、计算,使得每个第三风机的处在特定转速时,第三开口230总的风量和第二开口220的风量相同,此时,第三风机的转速一般比第二风机小,此时,具体某一处风机的转速与开口处的空气流量大小仍呈正比,但是各风机的转速与对应开口处的空气流量大小,则可能不相同,需要乘以一个系数进行换算后才会对应相同,依此可以将下述的温度调节过程以及原理应用于实际中。
加热阶段:
如图1所示,控制第二风机正转,使得第二开口220处的空气处在第二状态,而第三开口230处的空气也处在第二状态,故两开口处均向化成室120内吹风,因此,化成室120内的空气从第一开口210处向导风室110自然排出,即第一开口210处的空气处在第一状态,也因此,此时q1=q2+q3,q2为定值、q3可变动,故q1≥q2>0,故第一开口210处始终有较大量的空气流通,库位100内的温度上升。
如图2所示,当库位100内温度达到目标温度范围的下限时(例如目标温度范围是55±3℃,则当达到52℃时):
控制第二风机反转,使得第二开口220处的空气处在第一状态,控制该阶段第三风机的转速大于或等于第二风机的转速,故此时,q1+q2=q3,即q1=q3-q2,q2为定值、q3可变动,故通过控制q3的大小,也就控制第三风机的转速,即可以控制流经第一开口210的风的风量,进而控制化成室120的温度及其温度变化。
举例来说,当化成室120内温度为52℃时,通过调控第三风机的转速,使得q3=1.5q2,则q1=q3-q2=0.5q2,或者说q1/q2=50%,第一开口210处的风量较大,库位100升温较快;
当库位100内温度为53℃时,通过调控第三风机的转速,使得q3=1.4q2,则q1=q3-q2=0.4q2,或者说q1/q2=40%,第一开口210处的风量变小,库位100升温开始变慢;
当库位100内温度为54℃时,通过调控第三风机的转速,使得q3=1.3q2,则q1=q3-q2=0.3q2,或者说q1/q2=30%,第一开口210处的风量进一步变小,库位100升温进一步变慢;
当库位100内温度为55℃时,通过调控第三风机的转速,使得q3=1.2q2,则q1=q3-q2=0.2q2,或者说q1/q2=20%,第一开口210处的风量再进一步变小,此时热源件输入库位100内的热量约等于库位100对环境逸散的热量(库位100表面对环境散热),库位100内温度基本不变;
当库位100内温度为56℃时,通过调控第三风机的转速,使得q3=1.1q2,则q1=q3-q2=0.1q2,或者说q1/q2=10%,第一开口210处的风量变得十分小,此时热源件输入库位100内的热量稍小于库位100对环境逸散的热量(库位100表面对环境散热),库位100内温度会缓慢下降;
当库位100内温度为57℃时,通过调控第三风机的转速,使得q3=q2,则q1=q3-q2=0,或者说q1/q2=0%,第一开口210处基本无空气流通,故此时热源件输入库位100内的热量基本为零,库位100内为降温状态(库位100表面对环境散热)。
需要理解的是,在上述两阶段中,由于第二风机为定速风机,则可以理解在上述两阶段中,第二风机一直在运作,且流经第二开口220的风的风量q2为定值,故不管在什么情况下,库位100内均至少有风量为q2的风在循环,使得库位100内各区域温度均衡。
参照图1和图2,在本申请的一些实施例中,风量控制组件还包括第一风叶,第一风叶设置在第一开口210处,其中,第一风叶不与驱动件连接,仅靠气压或风力使其转动,以加速空气在第一开口210的流通。
在第一开口210处设置第一风叶,具体地,第一风叶设于热源件和化成室 120之间。当空气经第一开口210流通时,第一风叶转动,可以进一步带动后续的空气惯性流通,且方便形成流通通路,进行风循环。另一方面,在第一开口210处设置第一风叶,能够在一定程度上阻隔热源件的热量流向化成室120。此外,在第一开口210处设置第一风叶,通过第一风叶根据导风室110的气压自调节,有利于实现精准的温度控制。
参照图3和图4,在本申请的一些实施例中,风量控制组件包括第一百叶300和第二百叶400,第一百叶300设置在第一开口210处,第二百叶400设置在第二开口220处,第一百叶300和第二百叶400用于调节流经第一开口210和第二开口220的风量。
第一百叶300、第二百叶400,均为可以被控制的、能够封闭或者打开开口的零件;且可以调节百叶的开度,从而调节对应开口的风量。当开口被封闭时,此开口处的空气不能流通(导风室110、化成室120两者的空气不能经该开口流通);当开口被打开时,此开口处的空气能够正常流通。
加热阶段:如图3所示,控制第一百叶300打开第一开口210,控制第二百叶400封闭第二开口220,而第三开口230处的第三风机正常转动吹风,故化成室120内的空气可以在第一开口210和第三开口230之间流动,形成从第一开口210进风,第三开口230出风的风循环,均衡化成室120内各区域之间的温度,而风从第一开口210处通过,即可将热源件的热量带入化成室120内,使化成室120温度上升。
恒温阶段:如图4所示,控制第一百叶300封闭第一开口210,控制第二百叶400放开第二开口220,而第三开口230处的第三风机正常转动吹风,故化成室120内的空气可以在第二开口220和第三开口230之间流动,形成从第二开口220进风,第三开口230出风的风循环,均衡库位100内各区域之间的温度,而风不从第一开口210处通过,故热源件的热量基本不会被带入化成室120内。
可以理解的是,恒温阶段指的是化成室120的温度维持在预设的温度范围内,随着化成室120内的空气在第二开口220和第三开口230之间流动,由于库位100表面对外界环境散热,使库位100内温度下降,当低于预设的温度范围下限时,则再次进入加热阶段。
需要理解的是,本申请中的百叶均可以是电动百叶。使用电动百叶封闭或者打开开口,结构简单可靠,易于控制。
参照图1至图4,在本申请的一些实施例中,热源件为电加热器或者水热换热器。
电加热器、水热换热器均为常见的可提供热量的部件,来源广,易于采购安装。
参照图1和图2,在本申请的一些实施例中,隔板200设置有散热口240,散热口240处设置有散热控制组件,散热控制组件用于控制流经散热口240的风量。
当库位100内温度高于预设的温度范围上限时,可以控制散热控制组件打开散热口240,使得库位100强制散热,库位100外的冷空气能够进入至库位100内、库位100内的热空气排出至库位100外。
参照图1和图2,在本申请的一些实施例中,散热控制组件包括散热电动百叶500,散热电动百叶500设置在散热口240处。
散热电动百叶500可以被控制封闭或者打开散热口240,从而控制库位100是否强制散热,简单方便,易于控制。散热电动百叶500的开度可以调节,即通过调节散热电动百叶500的开度进而控制流经散热口240的风量。
进一步的,散热控制组件可以强制进风或者排气,比如散热控制组件还包括一个散热风机,散热风机设置在散热口240处,待散热电动百叶500部分或全部打开后,散热风机转动,排热降温,或者吸入冷空气降温
参照图1至图4,在本申请的一些实施例中,第三开口230位于化成室120的顶部,第三开口230的水平高度高于第一开口210以及第二开口220,第一开口210和第二开口220均位于化成室120的第一侧。
以化成室120为中心,可以将化成室120分出前、后、左、右、上、下六处方位,故化成室120具有六侧,即前侧、后侧、左侧、右侧、上侧(或者说顶部)、下侧,化成室120的第一侧,即为上述六侧中的一个,第二侧、第三侧同理;在本实施例中,导风室110设置在化成室120的左侧以及顶部,故本实施例中,第一侧即为化成室120的、其靠近导风室110的左侧,第三侧即为化成室120的、其靠近导风室110的上侧(或者说顶部)。将导风室110内的空 气引导至化成室120内的第三开口230设置在化成室120的顶部,而第一开口210以及第二开口220均低于第三开口230设置,第三风机能够直接向化成室120内的设备吹气,可以使得化成室120内空气循环时,始终能够进行上下层之间的空气循环,从而防止化成室120内出现温度分层现象。
而通过将第一开口210和第二开口220均设于化成室120的第一侧,从而防止当第二开口220处于将导风室110内的空气吹向化成室120的状态时,第一开口210和第二开口220形成一定程度的对流,进而影响温控效果。
优选地,多个第三风机设于化成室120的顶部,以使化成室120内的各位置均能够流通。
参照图1至图4,根据本发明实施例的锂电池生产设备,包括库位100、充放电机构和前述的温度控制***。
库位100。
前述的温度控制***,设置在库位100上。
充放电机构,设于化成室120内,充放电机构包括设于机架640上的探针组件和托盘620,探针组件与托盘620沿竖直方向设置,第一开口210或第二开口220和探针组件与托盘620的接合部位位于同一平面上。
充放电机构,其探针组件可以为仅有上压合的单侧探针,即其探针组件为上探针组件610,即如图3和图4所示;其探针组件也可以为上下压合的双侧探针,即其探针组件包括上探针组件610和下探针组件630,即如图1和图2所示。
具体地,作为一实施例,探针组件仅有上压合的单侧探针时,第一开口210设有第一百叶300,第二开口220设有第二百叶400,其中,第二开口220和探针组件与托盘620的接合部位位于同一平面上,第一开口210设于第二开口220的下方,以使处于加热阶段时,经第一开口210加热后的热风能够从第二开口220朝向探针组件和托盘620的结合部位吹出,降低探针组件和托盘620的结合部位因发热而温度不均的可能。
而当探针为上下压合的双侧探针时,第一开口210设有第一风叶,第二开口220设有第二风机,其中,第一开口210与上探针组件610对应,第二开口220与下探针组件630对应,如此设置,在加热阶段,可以分别形成第一开口 210和第三风机之间,以及第一开口210和第二开口220之间的两个风循环。
可以理解的是,由于在生产过程中,探针组件与托盘620的接合部位处的温度波动大,故至少使第一开口210和第二开口220中的一者对应该结合部位设置。
本申请的锂电池生产设备,通过设置温度控制***,在保证化成室120内风循环,使得化成室120内各区域温度均衡的基础上,可以调控化成室120内温度的升降,方便锂电池的生产加工。
参照图1至图4,根据本发明实施例的锂电池生产设备,温度传感器设于托盘620上。
温度传感器设于托盘620上,方便监控托盘620上电池的温度,便于锂电池的生产加工。例如,可以在托盘620的每个边框中部以及托盘620上端面的中心处均设有温度传感器,通过对第一开口210处的风量进行控制,进而使各个温度传感器的温度值以及所有传感器的温度平均值均处于预设范围内。
上面结合附图对本发明实施例作了详细说明,但是本申请不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。
附图标记:
库位100;
导风室110;
化成室120;
隔板200;
第一开口210;
第二开口220;
第三开口230;
散热口240;
第一百叶300;
第二百叶400;
散热电动百叶500;
上探针组件610;
托盘620;
下探针组件630;
机架640。

Claims (10)

  1. 一种温度控制***,设置在库位上,所述温度控制***包括隔板,隔板将所述库位分隔为导风室和化成室,其中,所述隔板设有开口,所述开口用于连通所述导风室和所述化成室,
    所述开口包括第一开口、第二开口和第三开口,所述第一开口位于所述化成室的第一侧,所述第二开口位于所述化成室的第一侧或者第二侧,所述第三开口位于所述化成室的第三侧;所述温度控制***还包括:
    热源件,设置在所述第一开口处;
    风量控制组件,设置在所述第一开口和/或所述第二开口处,所述风量控制组件用于控制流经所述第一开口和所述第二开口的风量,所述化成室的空气经所述第一开口和/或所述第二开口流向所述导风室;
    第三风机,设置在所述第三开口处,所述第三风机用于将所述导风室的空气引导至所述化成室;
    温度传感器,设置在所述化成室内。
  2. 根据权利要求1所述的温度控制***,其中,所述风量控制组件包括第二风机,所述第二风机设置在所述第二开口处,所述第二风机为可正反转的定速风机,所述第三风机为调速风机。
  3. 根据权利要求1或2所述的温度控制***,其中,所述风量控制组件还包括第一风叶,所述第一风叶设置在所述第一开口处。
  4. 根据权利要求1至3任一项所述的温度控制***,其中,所述风量控制组件包括第一百叶和第二百叶,所述第一百叶设置在所述第一开口处,所述第二百叶设置在所述第二开口处,所述第一百叶和所述第二百叶用于调节流经所述第一开口和所述第二开口的风量。
  5. 根据权利要求1至4任一项所述的温度控制***,其中,所述热源件为电加热器或者水热换热器。
  6. 根据权利要求1至5任一项所述的温度控制***,其中,所述隔板设置有散热口,所述散热口处设置有散热控制组件,所述散热控制组件用于控制流经所述散热口的风量。
  7. 根据权利要求6所述的温度控制***,其中,所述散热控制组件包括散 热电动百叶,所述散热电动百叶设置在所述散热口处。
  8. 根据权利要求1至7任一项所述的温度控制***,其中,所述第三开口位于所述化成室的顶部,所述第三开口的水平高度高于所述第一开口以及所述第二开口,所述第一开口和所述第二开口均位于所述化成室的第一侧。
  9. 一种锂电池生产设备,其中,包括:
    库位;
    根据权利要求1至8中任一项所述的温度控制***,设置在所述库位上;
    充放电机构,设于所述化成室内,所述充放电机构包括探针组件和托盘,所述探针组件与所述托盘沿竖直方向设置,所述第一开口或所述第二开口和所述探针组件与所述托盘的接合部位位于同一平面上。
  10. 根据权利要求9所述的锂电池生产设备,其中,所述温度传感器设于所述托盘上。
PCT/CN2023/134237 2022-11-30 2023-11-27 温度控制***及锂电池生产设备 WO2024114556A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223218698.3 2022-11-30
CN202223218698.3U CN218957844U (zh) 2022-11-30 2022-11-30 温度控制***及锂电池生产设备

Publications (1)

Publication Number Publication Date
WO2024114556A1 true WO2024114556A1 (zh) 2024-06-06

Family

ID=86106622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/134237 WO2024114556A1 (zh) 2022-11-30 2023-11-27 温度控制***及锂电池生产设备

Country Status (2)

Country Link
CN (1) CN218957844U (zh)
WO (1) WO2024114556A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218957844U (zh) * 2022-11-30 2023-05-02 珠海泰坦新动力电子有限公司 温度控制***及锂电池生产设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234795A (ja) * 2011-04-18 2012-11-29 Denso Corp 温度調整構造
CN109449527A (zh) * 2018-09-18 2019-03-08 深圳市科陆电子科技股份有限公司 一种用于蓄电池储能***的温控装置
CN111146517A (zh) * 2019-12-19 2020-05-12 珠海泰坦新动力电子有限公司 电池化成恒温设备及控制方法
CN114843635A (zh) * 2022-03-29 2022-08-02 福建星云电子股份有限公司 一种锂电池化成设备
CN114865055A (zh) * 2022-06-14 2022-08-05 广东锦熹智能科技有限公司 一种锂电池高温化成恒温循环***
CN218957844U (zh) * 2022-11-30 2023-05-02 珠海泰坦新动力电子有限公司 温度控制***及锂电池生产设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234795A (ja) * 2011-04-18 2012-11-29 Denso Corp 温度調整構造
CN109449527A (zh) * 2018-09-18 2019-03-08 深圳市科陆电子科技股份有限公司 一种用于蓄电池储能***的温控装置
CN111146517A (zh) * 2019-12-19 2020-05-12 珠海泰坦新动力电子有限公司 电池化成恒温设备及控制方法
CN114843635A (zh) * 2022-03-29 2022-08-02 福建星云电子股份有限公司 一种锂电池化成设备
CN114865055A (zh) * 2022-06-14 2022-08-05 广东锦熹智能科技有限公司 一种锂电池高温化成恒温循环***
CN218957844U (zh) * 2022-11-30 2023-05-02 珠海泰坦新动力电子有限公司 温度控制***及锂电池生产设备

Also Published As

Publication number Publication date
CN218957844U (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2024114556A1 (zh) 温度控制***及锂电池生产设备
US7031154B2 (en) Louvered rack
WO2020155502A1 (zh) 冷却散热箱体及散热控制方法
WO2021036405A1 (zh) 室内机、空调器及空调器控制的方法
CN102105033B (zh) 货柜式数据中心的环境调节***及调节方法
WO2021077749A1 (zh) 一种液冷散热***、散热控制方法及控制芯片
TWI457522B (zh) 節能空調系統及其空調模式
WO2009003396A1 (fr) Dispositif de diffusion de chaleur à ventilation directe et procédé de commande
WO2021082453A1 (zh) 空调室内机的控制方法
JP2019219163A (ja) 空調システム
WO2023231432A1 (zh) 储物空调控制装置、控制方法及储物空调
WO2020035942A1 (ja) フリークーリングシステム
JP2999710B2 (ja) ワイドレンジ型環境試験装置
CN210112519U (zh) 多级调控智能精密送风***
EP3026357A2 (en) A ventilation system
JP2006250386A (ja) 換気空調装置
CN214013515U (zh) 一种电力设施用可快速降温的配电柜
TWI653386B (zh) 資料中心散熱系統
WO2023273739A1 (zh) 冰箱
CN217064442U (zh) 机房密闭冷却***
CN220771237U (zh) 一种供热二次网供水温度调控装置
TWI384190B (zh) 空調設備及其所適用之空調系統
TW201521560A (zh) 數據中心及其散熱系統
TWI794980B (zh) 機櫃溫度控制方法及系統
CN217685502U (zh) 空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896707

Country of ref document: EP

Kind code of ref document: A1