WO2024114131A1 - 电池及用电装置 - Google Patents

电池及用电装置 Download PDF

Info

Publication number
WO2024114131A1
WO2024114131A1 PCT/CN2023/124797 CN2023124797W WO2024114131A1 WO 2024114131 A1 WO2024114131 A1 WO 2024114131A1 CN 2023124797 W CN2023124797 W CN 2023124797W WO 2024114131 A1 WO2024114131 A1 WO 2024114131A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
along
extension portion
main body
Prior art date
Application number
PCT/CN2023/124797
Other languages
English (en)
French (fr)
Inventor
余凯勤
张小淋
陈贵泽
赵佩杰
张晓�
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024114131A1 publication Critical patent/WO2024114131A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery and an electrical device.
  • Batteries are widely used in electronic devices, such as electric vehicles, electric cars, electric airplanes, electric ships, etc.
  • the present application provides a battery and an electrical device, which can increase the life of the battery cells.
  • the present application provides a battery, comprising a battery cell group, the battery cell group comprising a plurality of battery cells arranged in a stacked manner; an insulating member connected to the battery cell group; and a box body for accommodating the battery cell group and the insulating member; wherein the insulating member comprises a main body and an extension portion, the main body portion being located on one side of the battery cell group in a first direction, the extension portion being located on one side of the battery cell group in a second direction, the second direction being perpendicular to the first direction, the extension portion being connected to the main body portion, and the extension portion being supported between the battery cell group and an inner wall of the box body.
  • the insulating member includes a main body and an extension part, the main body is located on one side of the battery cell group in the first direction, the extension part is located on one side of the battery cell group in the second direction, the second direction is perpendicular to the first direction, the extension part is connected to the main body, and the extension part is supported between the battery cell group and the inner wall of the box.
  • the extension part when the battery cell group is installed in the box, the extension part can pre-support the battery cell and separate the battery cell from the inner wall of the box, reducing the risk of friction between the surface of the battery cell and the inner wall of the box when the battery cell group is installed in the box along the first direction, resulting in damage to the surface of the battery cell, thereby increasing the life of the battery cell.
  • the plurality of battery cells are stacked along a third direction, and the third direction is perpendicular to the first direction and the second direction.
  • the extension portion has a first surface facing the battery cell group, and a positioning portion is provided on the first surface, and the positioning portion is configured as a groove structure facing the battery cell to accommodate at least a portion of the end of the battery cell close to the extension portion along the second direction.
  • the positioning portion is configured as a plurality of positioning portions, and the plurality of positioning portions correspond one-to-one to the ends of the plurality of battery cells close to the extension portion along the second direction.
  • the extension portion has a second surface facing away from the battery cell group, and the second surface has a first convex portion formed at a position corresponding to the positioning portion along the thickness direction, and a concave portion is formed between two adjacent first convex portions; when viewed along the second direction, the concave portion at least partially overlaps with the gap between two adjacent battery cells.
  • the part of the adhesive squeezed into the concave portion can be used to connect the two adjacent battery cells, so as to pre-fix the two adjacent battery cells, thereby reducing the risk of damage to the surface of the battery cells due to the shaking of the battery cells.
  • a second convex portion is formed on the first surface at a position corresponding to the concave portion along the thickness direction. Such a design enables the second convex portion to provide support force along the third direction to two adjacent battery cells, thereby reducing the risk of a large deviation of the battery cells and improving the stability of the battery cells.
  • a plurality of second protrusions are provided and spaced apart along the third direction, and the maximum sizes of two adjacent second protrusions along the third direction are different.
  • the cross-sectional shape of the extension along the first direction is wavy.
  • the extension having a wavy cross-sectional shape along the first direction has a concave portion facing the battery cell, which can be supported at the bottom of the battery cell, thereby improving the stability of the battery cell after the battery cell is assembled into the box, and the processing difficulty of the wavy extension is relatively low.
  • a buffer is provided between the extension and the battery cell assembly.
  • the extension part and the main body are integrally formed. Such a design shortens the production cycle of the insulating part and improves the force consistency of the insulating part.
  • the extension part is formed by bending from the main body.
  • the extension part can be formed by bending the part of the main body that exceeds the battery cell group toward the battery cell group, which reduces the difficulty of forming the extension part and is low in cost.
  • the battery cells are pouch battery cells.
  • the battery further comprises a busbar component, which is disposed on a surface of the main body facing away from the battery cell.
  • the main body is provided with an opening, and the tabs of the battery cell pass through the opening to connect with the busbar component.
  • the maximum dimension of the extension portion in the first direction is less than or equal to the maximum dimension of the battery cell along the first direction.
  • insulating members are provided on both sides of the battery cell group along the first direction.
  • the maximum dimension of the extension portion in the first direction is less than or equal to half of the maximum dimension of the battery cell along the first direction.
  • the present application provides an electrical device, which includes the battery in the above embodiment, and the battery is used to provide electrical energy.
  • FIG1 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • FIG2 is a schematic diagram of the structure of a battery in some embodiments of the present application.
  • FIG3 is a schematic structural diagram of an insulating member in some embodiments of the present application.
  • FIG4 is a schematic structural diagram of an extension portion in some embodiments of the present application.
  • FIG5 is a schematic structural diagram of an extension portion of some other embodiments of the present application.
  • FIG. 6 is a schematic structural diagram of an extension portion of some further embodiments of the present application.
  • the reference numerals in the specific implementation manner are as follows: 100-Vehicle; 30-Controller; 20-Motor; 10-battery; 1-housing; 2-battery cell; 3-insulating member; 31-main body; 311-opening; 32-extension portion; 321-first surface; 322-second surface; 323-positioning portion; 324-first convex portion; 325-recess; 326-second convex portion; 4-collecting member; X-first direction; Y-second direction; Z-third direction.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • Batteries mentioned in this field can be divided into disposable batteries and rechargeable batteries according to whether they are rechargeable.
  • Common types of rechargeable batteries currently include: lead-acid batteries, nickel-metal hydride batteries and lithium-ion batteries.
  • Lithium-ion batteries are currently widely used in pure electric vehicles and hybrid vehicles. The capacity of lithium-ion batteries used for this purpose is relatively low, but they have larger output, charging current, and longer life, but the cost is higher.
  • the battery described in the embodiments of the present application refers to a rechargeable battery.
  • the embodiments disclosed in the present application will be described below mainly by taking a lithium-ion battery as an example. It should be understood that the embodiments disclosed in the present application are applicable to any other appropriate type of rechargeable battery.
  • the battery mentioned in the embodiments disclosed in the present application can be directly or indirectly applied to an appropriate electrical device to power the electrical device.
  • the battery mentioned in the embodiments disclosed in this application refers to a single physical module including one or more battery cells to provide a predetermined voltage and capacity.
  • Battery cells are the basic units in a battery, and can generally be divided into cylindrical battery cells, rectangular battery cells and soft-pack battery cells according to the packaging method. The following will mainly focus on soft-pack battery cells. It should be understood that the embodiments described below are also applicable to cylindrical battery cells or rectangular battery cells in some aspects.
  • Soft-pack battery is another name for polymer battery. Compared with lithium-ion battery, it has many advantages such as small size, light weight, high specific energy, high reliability and flexible design.
  • the application of batteries includes three levels: battery cells, battery modules and batteries.
  • the battery module is formed by electrically connecting a certain number of battery cells together and placing them in a frame in order to protect the battery cells from external impact, heat, vibration, etc.
  • the battery refers to the final state of the battery system installed in the electric vehicle.
  • the battery generally includes a box for encapsulating one or more battery cells.
  • the battery cell of a battery cell is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the positive electrode sheet includes a positive current collector and a positive active material layer.
  • the positive active material layer is coated on part of the surface of the positive current collector, and the positive current collector not coated with the positive active material layer serves as the positive electrode ear.
  • the material of the positive current collector can be aluminum, and the positive active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative current collector and a negative active material layer.
  • the negative active material layer is coated on part of the surface of the negative current collector, and the negative current collector not coated with the negative active material layer serves as the negative electrode ear.
  • the material of the negative current collector can be copper, and the negative active material can be carbon or silicon, etc.
  • the positive electrode sheet, negative electrode sheet and separator of the soft-pack battery cell are alternately stacked together to form a multi-layer laminated battery cell, and the battery cell is packaged by an aluminum-plastic packaging film to form a battery cell.
  • the positive and negative ears of the soft-pack battery cell at least partially extend out of the aluminum-plastic packaging film. To extract the electrical energy from the battery cell.
  • the tabs of soft-pack battery cells have weak mechanical strength, they usually need to be supported by copper bars fixed on the wiring harness isolation plate when grouping. Generally, the tabs of the soft-pack battery cells are first passed through the wiring harness isolation plate and then welded on the copper bars. In some cases, in order to increase the connection strength between the soft-pack battery cells and the inner wall of the box, an adhesive is applied to the inner wall of the box along the direction in which the soft-pack battery cells are loaded into the box before the soft-pack battery cells are loaded into the box. After the soft-pack battery cells are loaded into the box, in addition to forming a connection with the wiring harness isolation plate, they can also form a connection with the inner wall of the box through an adhesive.
  • the battery system After the battery cell and the box are assembled, the battery system will prompt a battery failure after a period of use. There are many reasons for the above situation, such as electrolyte leakage, circuit leakage, etc., which shortens the life of the battery cell.
  • the above situation may be caused by excessive friction between the outer surface of the battery cell and the inner wall of the box during the assembly of the battery cell into groups.
  • the damage to the outer surface of the battery cell means that the insulation film of the battery cell is damaged, and the probability of insulation abnormality in the battery cell is significantly increased, and the life of the battery cell is naturally reduced.
  • the soft-pack battery is encapsulated with aluminum-plastic film, the mechanical strength is low, and the probability of damage after friction with the inner wall of the box is higher.
  • the battery includes a battery cell group, an insulating member and a box.
  • the battery cell group includes a plurality of battery cells arranged in a stacked manner.
  • the insulating member is connected to the battery cell group, and the box is used to accommodate the battery cell group and the insulating member.
  • the insulating member includes a main body and an extension portion, the extension portion is connected to the main body, and the extension portion is supported between the battery cell group and the inner wall of the box.
  • Electrical devices include, but are not limited to, battery vehicles, electric vehicles, ships, spacecraft, etc.
  • spacecraft include airplanes, rockets, space shuttles, and spacecraft, etc.
  • FIG. 1 is a schematic diagram of the structure of a vehicle 100 in some embodiments of the present application.
  • the vehicle 100 may be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a motor 20, a controller 30 and a battery 10 may be provided inside the vehicle 100.
  • the controller 30 is used to control the battery 10 to power the motor 20.
  • a battery 10 may be provided at the bottom, front or rear of the vehicle 100.
  • the battery 10 may be used to power the vehicle 100.
  • the battery 10 may be used as an operating power source for the vehicle 100, for the circuit system of the vehicle 100, for example, for the working power demand during the start, navigation and operation of the vehicle 100.
  • the battery 10 may not only be used as an operating power source for the vehicle 100, but also as a driving power source for the vehicle 100, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 100.
  • the battery 10 may include a plurality of battery cells 2, wherein the plurality of battery cells 2 may be connected in series, in parallel, or in a hybrid connection, wherein the hybrid connection refers to a mixture of series and parallel connections.
  • the battery 10 may also be referred to as a battery pack.
  • a plurality of battery cells 2 may be connected in series, in parallel, or in a hybrid connection to form a battery module, and a plurality of battery modules may be connected in series, in parallel, or in a hybrid connection to form a battery 10.
  • a plurality of battery cells 2 may directly form a battery 10, or may first form a battery module, and then the battery module may form a battery 10.
  • FIG. 2 is a schematic diagram of the structure of a battery 10 in some embodiments of the present application.
  • the battery 10 may include a plurality of battery cells 2.
  • the battery 10 may also include a case 1, the interior of the case 1 is a hollow structure, and a plurality of battery cells 2 are accommodated in the case 1.
  • the case 1 may include a frame, and an assembly port is provided on at least one side of the frame along the first direction X for the battery cells 2 to be loaded into the case 1.
  • the shape of the frame may be determined according to the shape of the combination of the plurality of battery cells 2.
  • the case 1 may also include a side panel corresponding to the assembly port, and the side panel is used to close the above-mentioned assembly port so that the case 1 forms a closed accommodation space, and the accommodation space is used to accommodate the battery cells 2.
  • Multiple battery cells 2 are connected in parallel, in series or in a mixed combination and placed in the box 1.
  • multiple battery cells 2 can be pushed into the box 1 from the assembly opening along the first direction X after being grouped, and then the assembly opening is closed by the side plate to complete the assembly of the battery 10.
  • the battery 10 may also include other structures, which will not be described in detail here.
  • a wiring harness isolation plate is generally provided inside the box 1
  • a confluence component 4 is generally provided on the wiring harness isolation plate.
  • the present application provides a battery 10, the battery 10 includes 2 groups of battery cells, the battery cells 2 groups include a plurality of battery cells 2 stacked, an insulating member 3 connected to the battery cells 2 groups, a box 1 for accommodating the battery cells 2 groups and the insulating member 3, wherein the insulating member 3 includes a main body 31 and an extension 32, the main body 31 is located at the battery
  • the battery cell group 2 is on one side in the first direction X
  • the extension portion 32 is located on one side of the battery cell group 2 in the second direction Y.
  • the second direction Y is perpendicular to the first direction X.
  • the extension portion 32 is connected to the main body 31, and the extension portion 32 is supported between the battery cell group 2 and the inner wall of the box body 1.
  • the insulating member 3 may be a wire harness isolating plate, etc.
  • the insulating member 3 is a wire harness isolating plate, and the tabs of the battery cells 2 pass through the wire harness isolating plate and are welded to the copper bar on the wire harness isolating plate to achieve connection between the battery cells 2 and the wire harness isolating plate.
  • the first direction X is the length direction of the battery cell 2
  • the second direction Y is the width direction of the battery cell 2.
  • the battery cell 2 group enters the box body 1 along the first direction X.
  • An insulating member 3 may be provided on one side or both sides of the battery cell group 2 in the first direction X.
  • the dimension of the extension portion 32 in the first direction X may be smaller than or equal to the dimension of the battery cell 2 in the first direction X.
  • the extension portion 32 may be a flat plate, a side bent from the end plate of the main body 31 toward the battery cell 2 group, a corrugated plate, etc.
  • the extension portion 32 and the main body portion 31 may be integrally injection molded, the extension portion 32 may also be formed by bending from one end of the main body portion 31 , and the extension portion 32 may also be connected to the main body portion 31 via a fastener.
  • the insulating member 3 may be made of rubber, plastic, etc.
  • the insulating member 3 includes a main body 31 and an extension 32.
  • the main body 31 is located on one side of the battery cell 2 group in the first direction X
  • the extension 32 is located on one side of the battery cell 2 group in the second direction Y.
  • the second direction Y is perpendicular to the first direction X.
  • the extension 32 is connected to the main body 31, and the extension 32 is supported between the battery cell 2 group and the inner wall of the box 1.
  • the extension 32 can pre-support the battery cell 2 and separate the battery cell 2 from the inner wall of the box 1, which reduces the risk of damage to the surface of the battery cell 2 caused by friction between the surface of the battery cell 2 and the inner wall of the box 1 when the battery cell 2 group is installed in the box 1 along the first direction X, thereby improving the life of the battery cell 2.
  • a plurality of battery cells 2 are stacked along a third direction Z, and the third direction Z is perpendicular to the first direction X and the second direction Y.
  • the third direction Z is the stacking direction of the battery cells 2 in the battery cell 2 group.
  • the extension portion 32 has a first surface 321 facing the battery cell 2 group, and the first surface 321 is provided with a positioning portion 323, which is configured as a groove structure facing the battery cell 2 to accommodate at least a portion of the end of the battery cell 2 along the second direction Y close to the extension portion 32.
  • the cross-sectional shape of the positioning portion 323 along the second direction Y may be U-shaped, V-shaped, arc-shaped, etc.
  • the dimension of the positioning portion 323 of the groove structure in the third direction Z may be greater than or equal to the dimension of the battery cell 2 in the third direction Z.
  • the positioning portion 323 may be one or more. For example, there is one positioning portion 323 , and the size of the positioning portion 323 along the third direction Z is greater than the sum of the sizes of all battery cells 2 along the third direction Z.
  • the number of positioning portions 323 may be greater than the number of battery cell 2 groups.
  • the positioning portion 323 can be used for guidance and pre-positioning, which can improve the assembly efficiency of the battery 10 to a certain extent.
  • Such a design allows the end portion of the battery cell 2 to be supported by the positioning portion 323 of the groove structure.
  • the positioning portion 323 is configured in plurality, and the plurality of positioning portions 323 correspond one-to-one to the ends of the plurality of battery cells 2 along the second direction Y close to the extension portion 32 .
  • the distances between adjacent positioning portions 323 in the third direction Z may be the same or different.
  • Such a design enables the end of each battery cell 2 to be supported by the positioning portion 323 of the groove structure, and reduces the risk of surface damage of the battery cell 2 due to friction between adjacent battery cells 2 when the battery cells 2 are assembled into the box body 1 .
  • the extension portion 32 has a second surface 322 that is away from the battery cell 2 group, and the second surface 322 has a first protrusion 324 formed at a position corresponding to the positioning portion 323 along the thickness direction, and a recess 325 is formed between two adjacent first protrusions 324; when viewed along the second direction Y, the recess 325 at least partially overlaps with the gap between two adjacent battery cells 2.
  • the cross-sectional shape of the first protrusion 324 along the second direction Y can be rectangular, semicircular, triangular, etc.
  • the cross-sectional shape of the recess 325 along the second direction Y may be U-shaped, arc-shaped, V-shaped, etc.
  • the first protrusion 324 will push part of the adhesive to move, so that part of the adhesive flows to the area where the concave portion 325 is located along the first direction.
  • the adhesive can extend into the gap between two adjacent battery cells 2 .
  • the first protrusion 324 can squeeze part of the adhesive pre-coated on the inner wall of the box body 1 into the recess 325. Since the recess 325 at least partially overlaps with the gap between two adjacent battery cells 2, the part of the adhesive squeezed into the recess 325 can be used to connect the two adjacent battery cells 2, so as to pre-fix the two adjacent battery cells 2 and reduce the risk of surface damage of the battery cell 2 due to shaking of the battery cell 2.
  • a second convex portion 326 is formed on the first surface 321 at a position corresponding to the concave portion 325 along the thickness direction.
  • the thickness direction is the second direction Y.
  • the cross-sectional shape of the second protrusion 326 along the second direction Y can be rectangular, triangular, semicircular, semi-circular, etc.
  • Such a design enables the second protrusion 326 to provide a supporting force along the third direction Z to two adjacent battery cells 2 , thereby reducing the risk of a significant deflection of the battery cells 2 and improving the stability of the battery cells 2 .
  • a plurality of second protrusions 326 are configured and spaced apart along the third direction Z, and maximum dimensions of two adjacent second protrusions 326 along the third direction Z are different.
  • adjacent second protrusions 326 have different maximum sizes and can be visually distinguished, and between adjacent second protrusions 326 is a positioning portion 323 for supporting the battery cell 2. This can reduce visual interference when the battery cell 2 is installed into the positioning portion 323, effectively preventing confusion.
  • Such a design makes the positioning portion 323 easier to identify, effectively preventing mistakes when the battery cell 2 is installed into the positioning portion 323 , and improving the assembly efficiency of the battery 10 .
  • the cross-sectional shape of the extension portion 32 along the first direction X is a wave shape.
  • the cross-sectional shape of the extension portion 32 along the first direction X is wavy, which means that the extension portion 32 itself has a concave portion facing the battery cell 2 , and the concave portion can be used to support the end of the battery cell 2 .
  • the extension portion 32 having a wavy cross-sectional shape along the first direction X has a recessed portion facing the battery cell 2, which can be supported on the bottom of the battery cell 2 to improve the stability of the battery cell 2 after the battery cell 2 is assembled into the box body 1. At the same time, the wavy extension portion 32 is less difficult to process.
  • a buffer is provided between the extension portion 32 and the battery cell group 2 .
  • the specific material of the buffer is not limited, and it needs to have a certain ability to generate deformation and be able to restore at least part of the deformation when the external force is removed.
  • it can be foam or rubber.
  • the shape of the buffer is not limited, and it can be in the form of a plate, a block, or other shapes.
  • the cross-sectional shape of the extension portion 32 along the first direction X is wavy
  • the cross-sectional shape of the buffer along the first direction X is wavy
  • the buffer fits the first surface 321 .
  • the buffer can reduce the risk of the battery cell 2 being damaged due to the friction between the battery cell 2 and the box body 1 , thereby increasing the life of the battery cell 2 .
  • the extension portion 32 and the main body portion 31 are integrally formed.
  • the extension portion 32 and the main body portion 31 may be integrally formed by a process such as injection molding.
  • the extension portion 32 and the main body portion 31 are integrally formed. Compared with a method in which the extension portion 32 and the main body portion 31 are separately formed and then connected together by fasteners or bonding, since there is no gap between the extension portion 32 and the main body portion 31, the overall force consistency of the insulating member 3 is better.
  • Such a design shortens the production cycle of the insulating member 3 and improves the force consistency of the insulating member 3 .
  • the extension portion 32 is formed by bending from the main body portion 31. With this design, after the insulating member 3 is processed, the extension portion 32 can be formed by simply bending the portion of the main body portion 31 that exceeds the battery cell 2 group toward the battery cell 2 group, which reduces the difficulty of forming the extension portion 32 and is low in cost.
  • the battery cell 2 is a soft-pack battery cell 2 .
  • the battery 10 also includes a busbar component 4, which is arranged on a side surface of the main body 31 away from the battery cell 2, and an opening 311 is provided on the main body 31.
  • the pole ear of the battery cell 2 passes through the opening 311 to be connected to the busbar component 4.
  • One or more openings 311 may be provided on the main body 31 .
  • each battery cell 2 corresponds to two openings 311
  • the two openings 311 correspond to two tabs of the battery cell 2 , respectively.
  • the tabs pass through the openings 311 , are bent through the main body 31 , and are welded to the current collector 4 .
  • the collecting component 4 may be a copper bar disposed on the main body 31 .
  • the maximum dimension of the extension portion 32 in the first direction X is less than or equal to the maximum dimension of the battery cell 2 along the first direction X.
  • the maximum dimension of the extension portion 32 in the first direction X is less than or equal to the maximum dimension of the battery cell 2 along the first direction X, which means that the extension portion 32 is at least located at the end of the battery cell 2 along the first direction X.
  • the main body 31 and the extension portion 32 half wrap a corner of the battery cell 2 .
  • the end of the battery cell 2 is more likely to rub against the inner wall of the box 1 .
  • This design allows the extension portion 32 to at least cover the end of the battery cell 2 , reducing the risk of damage to the surface of the battery cell 2 .
  • insulating members 3 are disposed on both sides of the battery cell group 2 along the first direction X.
  • the structures of the insulating members 3 on both sides of the battery cell group 2 along the first direction X may be the same or different.
  • the insulating members 3 on both sides of the battery cell 2 group along the first direction X have different structures, wherein the first surface 321 of the extension portion 32 of one insulating member 3 is provided with the above-mentioned positioning portion 323, and the extension portion 32 of the other insulating member 3 is a flat plate structure, one end of the battery cell 2 is located in the positioning portion 323, and the other end of the battery cell 2 is abutted against the upper surface of the flat plate structure.
  • Such a design makes the structures of the battery cells 2 on both sides along the first direction X substantially the same. After the battery cells 2 are assembled into the box body 1 , the possibility of the battery cells 2 being deflected in the first direction X is reduced, thereby improving the reliability of the battery cells 2 .
  • the maximum dimension of the extension portion 32 in the first direction X is less than or equal to half of the maximum dimension of the battery cell 2 along the first direction X.
  • the extension portion 32 reduces the risk of damage to the end surface of the battery cell 2 while controlling the length of the extension portion 32 within a reasonable range, thereby reducing costs.
  • the present application further provides an electrical device, comprising the battery 10 described in any of the above schemes, and the battery 10 is used to provide electrical energy.
  • the present application provides a battery 10 , and the battery 10 includes 2 groups of battery cells, a box body 1 and an insulating member 3 .
  • the battery cell group 2 includes a plurality of battery cells 2 which are stacked, the battery cells 2 are soft-pack battery cells 2, and the plurality of battery cells 2 are stacked along a third direction Z, which is perpendicular to the first direction X and the second direction Y.
  • the insulating member 3 is connected to the battery cell group 2.
  • the box 1 is used to accommodate the battery cell group 2 and the insulating member 3.
  • the insulating member 3 includes a main body 31 and an extension portion 32, the main body 31 is located on one side of the battery cell group 2 in the first direction X, and the extension portion 32 is located on one side of the battery cell group 2 in the second direction Y, the second direction Y is perpendicular to the first direction X, the extension portion 32 is connected to the main body 31, and the extension portion 32 is supported between the battery cell group 2 and the inner wall of the box body 1.
  • the extension portion 32 has a first surface 321 facing the battery cell 2 group, and a positioning portion 323 is provided on the first surface 321.
  • the positioning portion 323 is configured as a groove structure facing the battery cell 2 to accommodate at least part of the end of the battery cell 2 close to the extension portion 32 along the second direction Y.
  • the extension portion 32 has a second surface 322 facing away from the battery cell 2 group, and the second surface 322 is formed with a first convex portion 324 at a position corresponding to the positioning portion 323 along the thickness direction, and a concave portion 325 is formed between two adjacent first convex portions 324; when viewed along the second direction Y, the concave portion 325 at least partially overlaps with the gap between two adjacent battery cells 2.
  • the first surface 321 is formed with a second convex portion 326 at a position corresponding to the concave portion 325 along the thickness direction.
  • the battery cell 2 Before the battery cell group 2 is put into the box along the first direction X, the battery cell 2 is first placed in the positioning portion 323 for pre-installation, and then all the battery cells 2 are connected to the insulating member 3 to form the battery cell group 2. Afterwards, the battery cell group 2 is pushed into the box body 1 along the first direction X to complete the assembly of the battery cell 2 and the box body 1.

Landscapes

  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种电池及用电装置,属于电池技术领域。电池包括电池单体组,电池单体组包括层叠设置的多个电池单体;绝缘件,与电池单体组连接;箱体,用于容纳电池单体组和绝缘件;其中,绝缘件包括主体部和延伸部,主体部位于电池单体组在第一方向上的一侧,延伸部位于电池单体组在第二方向上的一侧,第二方向和第一方向垂直,延伸部连接于主体部,延伸部支撑于电池单体组和箱体的内壁之间。在电池单体组装入箱体时,延伸部可对电池单体预支撑并分隔电池单体和箱体的内壁,降低了电池单体组沿第一方向装入箱体时,电池单体的表面与箱体的内壁之间产生摩擦,导致电池单体表面破损的风险,提高了电池单体的寿命。

Description

电池及用电装置
相关申请的交叉引用
本申请要求享有于2022年11月29日提交的名称为“电池及用电装置”的中国专利申请2202223180809.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体涉及一种电池及用电装置。
背景技术
电池广泛用于电子设备,例如电瓶车、电动汽车、电动飞机、电动轮船等等。
在电池技术的发展中,除了提高电池单体的性能外,电池单体的寿命也是一个需要考虑的问题。
因此,如何提高电池单体的寿命,是电池技术中一个亟待解决的问题。
发明内容
鉴于上述问题,本申请提供一种电池及用电装置,能够提高电池单体的寿命。
第一方面,本申请提供了一种电池,电池包括电池单体组,电池单体组包括层叠设置的多个电池单体;绝缘件,与电池单体组连接;箱体,用于容纳电池单体组和绝缘件;其中,绝缘件包括主体部和延伸部,主体部位于电池单体组在第一方向上的一侧,延伸部位于电池单体组在第二方向上的一侧,第二方向和第一方向垂直,延伸部连接于主体部,延伸部支撑于电池单体组和箱体的内壁之间。
本申请实施例的技术方案中,绝缘件包括主体部和延伸部,主体部位于电池单体组在第一方向上的一侧,延伸部位于电池单体组在第二方向上的一侧,第二方向和第一方向垂直,延伸部连接于主体部,延伸部支撑于电池单体组和箱体的内壁之间。这样的设计,在电池单体组装入箱体时,延伸部可对电池单体预支撑并分隔电池单体和箱体的内壁,降低了电池单体组沿第一方向装入箱体时,电池单体的表面与箱体的内壁之间产生摩擦,导致电池单体表面破损的风险,提高了电池单体的寿命。
在一些实施例中,多个电池单体沿第三方向层叠设置,第三方向垂直于第一方向和第二方向。
在一些实施例中,延伸部具有面向电池单体组的第一表面,第一表面设置有定位部,定位部被配置为朝向电池单体的凹槽结构,以容纳电池单体沿第二方向靠近延伸部的端部的至少部分。这样的设计,使电池单体的端部的部分被凹槽结构的定位部支撑,在电池单体组装入箱体时,降低了因电池单体晃动与箱体内壁摩擦,导致电池单体表面破损的风险,提高了电池单体的寿命。
在一些实施例中,定位部被配置为多个,多个定位部与多个电池单体沿第二方向靠近延伸部的端部一一对应。这样的设计,使每个电池单体的端部均被凹槽结构的定位部支撑,在电池单体组装入箱体时,降低了相邻电池单体之间摩擦导致电池单体表面破损的风险。
在一些实施例中,延伸部具有背离电池单体组的第二表面,第二表面在沿厚度方向与定位部对应的位置形成有第一凸部,相邻两个第一凸部之间形成凹部;沿第二方向观察,凹部与相邻两个电池单体之间的间隙至少部分重叠。这样的设计,在电池单体组沿第一方向推入箱体的过程中,第一凸部可将预先涂覆在箱体内壁的部分粘结剂挤压至凹部内,由于凹部与相邻两个电池单体之间的间隙至少部分重叠,挤压至凹部内的部分粘结剂可用于连接相邻两个电池单体,以预先固定相邻的两个电池单体,降低因电池单体的晃动,导致电池单体表面破损的风险。
在一些实施例中,第一表面在沿厚度方向与凹部对应的位置形成有第二凸部。这样的设计,使第二凸部可对相邻的两个电池单体提供沿第三方向的支撑力,降低电池单体出现大幅度偏斜的风险,提高电池单体的稳定性。
在一些实施例中,第二凸部被配置有多个并沿第三方向间隔设置,相邻两个第二凸部沿第三方向的最大尺寸不同。这样的设计,使得定位部更容易被识别,在电池单体装入定位部时有效防呆,提高电池的组装效率。
在一些实施例中,延伸部沿第一方向的截面形状为波浪形。沿第一方向的截面形状为波浪形的延伸部自身具有面向电池单体的凹陷部分,凹陷部分可支撑于电池单体的底部,提高电池单体组装入箱体后电池单体的稳定性,同时波浪形的延伸部的加工难度较低。
在一些实施例中,延伸部和电池单体组之间设置有缓冲件。这样的设计,在电池单体组装入箱体后,缓冲件可降低电池单体晃动与箱体之间产生摩擦,导致电池单体表面破损的风险,提高了电池单体的寿命。
在一些实施例中,延伸部和主体部一体成型。这样的设计,缩短了绝缘件的生产周期,提高了绝缘件受力一致性。
在一些实施例中,延伸部从主体部弯折成型。这样的设计,只需在绝缘件加工完成后,将主体部超出电池单体组的部分朝向电池单体组弯折即可形成延伸部,降低了延伸部的成型难度,成本较低。
在一些实施例中,电池单体为软包电池单体。
在一些实施例中,电池还包括汇流部件,汇流部件设置于主体部背离于电池单体的一侧表面,主体部上设置有开口,电池单体的极耳穿过开口以与汇流部件连接。
在一些实施例中,延伸部在第一方向上的最大尺寸小于或等于电池单体沿第一方向的最大尺寸。在电池单体组装入箱体的过程中,电池单体的端部更容易与箱体的内壁产生摩擦,这样的设计,使延伸部至少覆盖电池单体的端部,降低了电池单体表面出现破损的风险。
在一些实施例中,电池单体组的沿第一方向的两侧均设置有绝缘件。这样的设计,使得电池单体组沿第一方向两侧的结构大致相同,在电池单体组装入箱体后,降低了电池单体组在第一方向上出现偏斜的可能,提高了电池单体的可靠性。
在一些实施例中,延伸部在第一方向上的最大尺寸小于或等于电池单体沿第一方向的最大尺寸的一半。这样的设计,延伸部在具有降低电池单体端部表面破损的风险的同时,将延伸部的长度控制在合理范围内,降低了成本。
第二方面,本申请提供了一种用电装置,用电装置包括上述实施例中的电池,电池用于提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例的车辆的结构示意图;
图2为本申请一些实施例的电池的结构示意图;
图3为本申请一些实施例的绝缘件的结构示意图;
图4为本申请一些实施例的延伸部的结构示意图;
图5为本申请又一些实施例的延伸部的结构示意图;
图6为本申请再一些实施例的延伸部的结构示意图。
具体实施方式中的附图标号如下:
100-车辆;30-控制器;20-马达;
10-电池;1-箱体;2-电池单体;3-绝缘件;31-主体部;311-开口;32-延伸部;321-第一表
面;322-第二表面;323-定位部;324-第一凸部;325-凹部;326-第二凸部;4-汇流部件;X-第一方向;Y-第二方向;Z-第三方向。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本领域中所提到的电池按是否可充电可以分为一次性电池和可充电电池。目前常见的可充电电池的类型有:铅酸电池、镍氢电池和锂离子电池。锂离子电池目前广泛应用于纯电动车及混合动力车,用于这种用途的锂离子电池的容量相对略低,但有较大的输出、充电电流,也有较长的寿命,但成本较高。
本申请实施例中所描述的电池是指可充电电池。下文中将主要以锂离子电池为例来描述本申请公开的实施例。应当理解的是,本申请公开的实施例对于其他任意适当类型的可充电电池都是适用的。本申请中公开的实施例所提到的电池可以直接或者间接应用于适当的用电装置中来为该用电装置供电。
本申请公开的实施例中所提到的电池是指包括一个或多个电池单体以提供预定的电压和容量的单一的物理模块。电池单体是电池中的基本单元,一般按封装的方式可以分为:柱形电池单体、长方体电池单体和软包电池单体。下文中将主要围绕软包电池单体来展开。应当理解的是,下文中所描述的实施例在某些方面对于柱形电池单体或长方体电池单体而言也是适用的。
软包电池是聚合物电池的另一种叫法,与锂离子电池相比,具有体积小、重量轻、比能量高、可靠性高、设计灵活等多种优点。
在一些诸如电动车辆等的大功率应用场合,电池的应用包括三个层次:电池单体、电池模块和电池。电池模块是为了从外部冲击、热、振动等中保护电池单体,将一定数目的电池单体电连接在一起并放入一个框架中而形成的。电池则指的是装入电动车辆的电池***的最终状态。电池一般包括用于封装一个或多个电池单体的箱体。
电池单体的电芯由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的部分表面,未涂覆正极活性物质层的正极集流体作为正极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的部分表面,未涂覆负极活性物质层的负极集流体作为负极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。
软包电池单体的正极极片、负极极片和隔离膜交替堆叠在一起形成多层叠片状的电芯,电芯由铝塑包装膜封装形成电池单体,软包电池单体的正极耳和负极耳至少部分伸出铝塑包装膜,用 于引出电芯的电能。
由于软包电池单体的极耳机械强度较弱,在成组时通常需要借助固定在线束隔离板上的铜巴起支撑作用,一般先将软包电池单体的极耳穿过线束隔离板再搭在铜巴上焊接。在一些情况下,为了增加软包电池单体与箱体内壁的连接强度,在软包电池单体装入箱体前会在箱体内壁沿软包电池单体装入箱体的方向涂抹粘结剂。在软包电池单体装入箱体后,其除了与线束隔离板形成连接外,还可通过粘结剂与箱体内壁形成连接。
在电池单体与箱体组装完成后,使用一段时间会出现电池***提示电池故障的情况。造成上述情况出现的原因有很多,如电解液泄露、线路漏电等,电池单体的寿命较低。
出现上述情况可能是电池单体成组后与箱体组装的过程中,电池单体的外表面与箱体的内壁过度摩擦而使电池单体外表面破损造成的。电池单体的外表面破损意味着电池单体的绝缘膜被破坏,电池单体出现绝缘异常的几率显著提高,电池单体的寿命自然降低。且由于软包电池采用铝塑膜封装,机械强度低,与箱体的内壁产生摩擦后破损的几率更高。
鉴于此,为了解决电池组装过程中,出现电池单体表面破损而使电池单体的寿命降低的问题,设计了一种电池,电池包括电池单体组、绝缘件和箱体,电池单体组包括层叠设置的多个电池单体,绝缘件与电池单体组连接,箱体用于容纳电池单体组和绝缘件。绝缘件包括主体部和延伸部,延伸部连接于主体部,延伸部支撑于电池单体组和箱体的内壁之间。在电池单体组装入箱体时,降低了电池单体与箱体内壁出现过度摩擦,导致电池单体表面破损的风险,提高了电池单体的寿命。
本申请实施例描述的技术方案适用于电池单体、电池以及使用电池的用电装置。
用电装置包括但不限于:电瓶车、电动车辆、轮船、航天器等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆100为例进行说明。
例如,图1为本申请一些实施例的车辆100的结构示意图,车辆100可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆100的内部可以设置马达20,控制器30以及电池10,控制器30用来控制电池10为马达20的供电。例如,在车辆100的底部或车头或车尾可以设置电池10。电池10可以用于车辆100的供电,例如,电池10可以作为车辆100的操作电源,用于车辆100的电路***,例如,用于车辆100的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆100的操作电源,还可以作为车辆100的驱动电源,替代或部分地替代燃油或天然气为车辆100提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体2,其中,多个电池单体2之间可以串联或并联或混联,混联是指串联和并联的混合。电池10也可以称为电池包。可选地,多个电池单体2可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池10。也就是说,多个电池单体2可以直接组成电池10,也可以先组成电池模块,电池模块再组成电池10。
例如,请参照图2,图2为本申请一些实施例的电池10的结构示意图,电池10可以包括多个电池单体2。电池10还可以包括箱体1,箱体1内部为中空结构,多个电池单体2容纳于箱体1内。在一些实施例中,如图2所示,箱体1可以包括围框,围框沿第一方向X的至少一侧设置有装配口,以供电池单体2装入箱体1内。围框的形状可以根据多个电池单体2组合的形状而定。箱体1还可以包括与装配口对应的侧板,侧板用于封闭上述装配口,以使箱体1形成密闭的容纳空间,容纳空间用于容纳电池单体2。
多个电池单体2相互并联或串联或混联组合后置于箱体1内。在一些实施例中,请参照图2,多个电池单体2成组后可沿第一方向X从装配口推入箱体1内,之后通过侧板封闭装配口完成电池10的组装。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,一般箱体1内部还会设置线束隔离板,线束隔离板上一般设置有汇流部件4,通过汇流部件4与电池单体2的极耳焊接可实现多个电池单体2相互并联或串联或混联。
根据本申请的一些实施例,参照图2和图3,本申请提供了一种电池10,电池10包括电池单体2组,电池单体2组包括层叠设置的多个电池单体2;绝缘件3,与电池单体2组连接;箱体1,用于容纳电池单体2组和绝缘件3;其中,绝缘件3包括主体部31和延伸部32,主体部31位于电 池单体2组在第一方向X上的一侧,延伸部32位于电池单体2组在第二方向Y上的一侧,第二方向Y和第一方向X垂直,延伸部32连接于主体部31,延伸部32支撑于电池单体2组和箱体1的内壁之间。
绝缘件3可以是线束隔离板等。在一些实施例中,绝缘件3为线束隔离板,电池单体2的极耳穿过线束隔离板与线束隔离板上的铜巴焊接,实现电池单体2与线束隔离板的连接。
第一方向X为电池单体2的长度方向,第二方向Y为电池单体2的宽度方向。请参照图2,在一些实施例中,电池单体2组沿第一方向X进入箱体1。
电池单体2组在第一方向X上的一侧或两侧均可以设置绝缘件3。
延伸部32在第一方向X上的尺寸可以小于等于电池单体2在第一方向X上的尺寸。
延伸部32可以为平板、从主体部31端板朝向电池单体2组弯折的这边、波浪形板等。
延伸部32与主体部31可一体注塑成型,延伸部32也可以从主体部31一端折弯成型,延伸部32还可以通过紧固件与主体部31连接。
绝缘件3的材质可以为橡胶、塑料等。
本申请实施例的技术方案中,绝缘件3包括主体部31和延伸部32,主体部31位于电池单体2组在第一方向X上的一侧,延伸部32位于电池单体2组在第二方向Y上的一侧,第二方向Y和第一方向X垂直,延伸部32连接于主体部31,延伸部32支撑于电池单体2组和箱体1的内壁之间。这样的设计,在电池单体2组装入箱体1时,延伸部32可对电池单体2预支撑并分隔电池单体2和箱体1的内壁,降低了电池单体2组沿第一方向X装入箱体1时,电池单体2的表面与箱体1的内壁之间产生摩擦,导致电池单体2表面破损的风险,提高了电池单体2的寿命。
根据本申请的一些实施例,多个电池单体2沿第三方向Z层叠设置,第三方向Z垂直于第一方向X和第二方向Y。
第三方向Z为电池单体2组中电池单体2的层叠方向。
根据本申请的一些实施例,请参照图2和图4,延伸部32具有面向电池单体2组的第一表面321,第一表面321设置有定位部323,定位部323被配置为朝向电池单体2的凹槽结构,以容纳电池单体2沿第二方向Y靠近延伸部32的端部的至少部分。
定位部323沿第二方向Y的截面形状可以为U字形、V字形、弧形等。
凹槽结构的定位部323在第三方向Z上的尺寸可以大于等于电池单体2在第三方向Z上的尺寸。
定位部323可以设置为一个或多个,示例性的,定位部323为一个,定位部323沿第三方向Z的尺寸大于所有电池单体2在第三方向Z上的尺寸之和。定位部323的数量可以大于电池单体2组的数量。
在电池单体2与绝缘件3连接时,可通过定位部323进行导向和预定位,一定程度上可以提高电池10的组装效率。
这样的设计,使电池单体2的端部的部分被凹槽结构的定位部323支撑,在电池单体2组装入箱体1时,降低了因电池单体2晃动与箱体1内壁摩擦,导致电池单体2表面破损的风险,提高了电池单体2的寿命。
根据本申请的一些实施例,请参照图2和图4,定位部323被配置为多个,多个定位部323与多个电池单体2沿第二方向Y靠近延伸部32的端部一一对应。
相邻定位部323在第三方向Z上的距离可以相同,也可以不同。
这样的设计,使每个电池单体2的端部均被凹槽结构的定位部323支撑,在电池单体2组装入箱体1时,降低了相邻电池单体2之间摩擦导致电池单体2表面破损的风险。
根据本申请的一些实施例,请参照图2和图5,延伸部32具有背离电池单体2组的第二表面322,第二表面322在沿厚度方向与定位部323对应的位置形成有第一凸部324,相邻两个第一凸部324之间形成凹部325;沿第二方向Y观察,凹部325与相邻两个电池单体2之间的间隙至少部分重叠。
第一凸部324沿第二方向Y的截面形状可以为长方形、半圆形、三角形等。
凹部325沿第二方向Y的截面形状可以为U形、弧形、V形等。
在电池单体2沿第一方向X推入箱体1时,第一凸部324会推动部分粘结接运动,以使部分粘结剂流动至沿一方向凹部325所在的区域内,由于凹部325下方存在空间,流动至凹部325内 的粘结剂可伸入相邻的两个电池单体2之间的间隙内。
这样的设计,在电池单体2组沿第一方向X推入箱体1的过程中,第一凸部324可将预先涂覆在箱体1内壁的部分粘结剂挤压至凹部325内,由于凹部325与相邻两个电池单体2之间的间隙至少部分重叠,挤压至凹部325内的部分粘结剂可用于连接相邻两个电池单体2,以预先固定相邻的两个电池单体2,降低因电池单体2的晃动,导致电池单体2表面破损的风险。
根据本申请的一些实施例,请参照图2和图6,第一表面321在沿厚度方向与凹部325对应的位置形成有第二凸部326。
在一些实施例中,请参照图6,厚度方向为第二方向Y。
第二凸部326沿第二方向Y的截面形状可为长方形、三角形、半圆形、半环形等。
这样的设计,使第二凸部326可对相邻的两个电池单体2提供沿第三方向Z的支撑力,降低电池单体2出现大幅度偏斜的风险,提高电池单体2的稳定性。
根据本申请的一些实施例,第二凸部326被配置有多个并沿第三方向Z间隔设置,相邻两个第二凸部326沿第三方向Z的最大尺寸不同。
在第三方向Z上,相邻的第二凸部326最大尺寸不同,在视觉上可直观区分,而相邻的第二凸部326之间是用于支撑电池单体2的定位部323,这样可以在电池单体2装入定位部323时降低视觉产生的干扰,有效防呆。
这样的设计,使得定位部323更容易被识别,在电池单体2装入定位部323时有效防呆,提高电池10的组装效率。
根据本申请的一些实施例,请参照图2和图6,延伸部32沿第一方向X的截面形状为波浪形。
延伸部32沿第一方向X的截面形状为波浪形,意味着,延伸部32自身具有面向电池单体2的凹陷部分,凹陷部分可用于支撑电池单体2的端部。
沿第一方向X的截面形状为波浪形的延伸部32自身具有面向电池单体2的凹陷部分,凹陷部分可支撑于电池单体2的底部,提高电池单体2组装入箱体1后电池单体2的稳定性,同时波浪形的延伸部32的加工难度较低。
根据本申请的一些实施例,延伸部32和电池单体2组之间设置有缓冲件。
缓冲件的具体材料不作限制,其需要具有一定的产生形变的能力,并能够在外力去除时恢复至少部分形变。例如,可以是泡棉或者橡胶。
缓冲件的性转不作限制,具体可以呈板状、块状或其他形状。
在一些实施例中,延伸部32沿第一方向X的截面形状为波浪形,缓冲件沿第一方向X的截面形状为波浪形,缓冲件与第一表面321贴合。
这样的设计,在电池单体2组装入箱体1后,缓冲件可降低电池单体2晃动与箱体1之间产生摩擦,导致电池单体2表面破损的风险,提高了电池单体2的寿命。
根据本申请的一些实施例,延伸部32和主体部31一体成型。
延伸部32和主体部31可通过注塑等工艺一体成型。
延伸部32和主体部31采用一体成型的方式,相比于延伸部32和主体部31采用分体成型后再通过紧固件或粘接等方式连接在一起的方式,由于延伸部32和主体部31之间不存在间隙,绝缘件3整体的受力一致性较好。
这样的设计,缩短了绝缘件3的生产周期,提高了绝缘件3受力一致性。
在一些实施例中,延伸部32从主体部31弯折成型。这样的设计,只需在绝缘件3加工完成后,将主体部31超出电池单体2组的部分朝向电池单体2组弯折即可形成延伸部32,降低了延伸部32的成型难度,成本较低。
根据本申请的一些实施例,电池单体2为软包电池单体2。
根据本申请的一些实施例,请参照图2和图3,电池10还包括汇流部件4,汇流部件4设置于主体部31背离于电池单体2的一侧表面,主体部31上设置有开口311,电池单体2的极耳穿过开口311以与汇流部件4连接。
主体部31上可以设置一个或多个开口311。
在电池单体2为软包电池单体2的实施例中,每一个电池单体2对应两个开口311,两个开口311分别对应电池单体2的两个极耳,极耳从开口311穿过主体部31折弯后与汇流部件4焊接。
汇流部件4可为设置在主体部31上的铜巴。
根据本申请的一些实施例,请参照图2,延伸部32在第一方向X上的最大尺寸小于或等于电池单体2沿第一方向X的最大尺寸。
延伸部32在第一方向X上的最大尺寸小于或等于电池单体2沿第一方向X的最大尺寸,意味着,延伸部32至少位于沿第一方向X电池单体2的端部。在一些实施例中,请参照图2,主体部31和延伸部32半包裹电池单体2的一个拐角。
在电池单体2组装入箱体1的过程中,电池单体2的端部更容易与箱体1的内壁产生摩擦,这样的设计,使延伸部32至少覆盖电池单体2的端部,降低了电池单体2表面出现破损的风险。
根据本申请的一些实施例,电池单体2组的沿第一方向X的两侧均设置有绝缘件3。
电池单体2组的沿第一方向X的两侧的绝缘件3结构可相同,也可以不同。
在一些实施例中,电池单体2组的沿第一方向X的两侧的绝缘件3结构不同,其中一个绝缘件3的延伸部32的第一表面321设置有上述定位部323,另一个绝缘件3的延伸部32为平板结构,电池单体2的一端位于定位部323内,电池单体2的另一端与平板结构的上表面抵接。
这样的设计,使得电池单体2组沿第一方向X两侧的结构大致相同,在电池单体2组装入箱体1后,降低了电池单体2组在第一方向X上出现偏斜的可能,提高了电池单体2的可靠性。
根据本申请的一些实施例,请参照图2,延伸部32在第一方向X上的最大尺寸小于或等于电池单体2沿第一方向X的最大尺寸的一半。
这样的设计,延伸部32在具有降低电池单体2端部表面破损的风险的同时,将延伸部32的长度控制在合理范围内,降低了成本。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一方案所述的电池10,电池10用于提供电能。
根据本申请的一些实施例,请参照图2、图3和图6,本申请提供了一种电池10,电池10包括电池单体2组、箱体1和绝缘件3。
电池单体2组包括层叠设置的多个电池单体2,电池单体2为软包电池单体2,且多个电池单体2沿第三方向Z层叠设置,第三方向Z垂直于第一方向X和第二方向Y。绝缘件3与电池单体2组连接。箱体1用于容纳电池单体2组和绝缘件3。
其中,绝缘件3包括主体部31和延伸部32,主体部31位于电池单体2组在第一方向X上的一侧,延伸部32位于电池单体2组在第二方向Y上的一侧,第二方向Y和第一方向X垂直,延伸部32连接于主体部31,延伸部32支撑于电池单体2组和箱体1的内壁之间。
延伸部32具有面向电池单体2组的第一表面321,第一表面321设置有定位部323,定位部323被配置为朝向电池单体2的凹槽结构,以容纳电池单体2沿第二方向Y靠近延伸部32的端部的至少部分。延伸部32具有背离电池单体2组的第二表面322,第二表面322在沿厚度方向与定位部323对应的位置形成有第一凸部324,相邻两个第一凸部324之间形成凹部325;沿第二方向Y观察,凹部325与相邻两个电池单体2之间的间隙至少部分重叠。第一表面321在沿厚度方向与凹部325对应的位置形成有第二凸部326。
在电池单体2组沿第一方向X入箱前,先将电池单体2放置在定位部323内预装,之后将所有电池单体2与绝缘件3连接形成电池单体2组。之后,将电池单体2组沿第一方向X推入箱体1内,完成电池单体2与箱体1的组装。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电池,其特征在于,包括:
    电池单体组,包括层叠设置的多个电池单体;
    绝缘件,与所述电池单体组连接;
    箱体,用于容纳所述电池单体组和所述绝缘件;
    其中,所述绝缘件包括主体部和延伸部,所述主体部位于所述电池单体组在第一方向上的一侧,所述延伸部位于所述电池单体组在第二方向上的一侧,所述第二方向和所述第一方向垂直,所述延伸部连接于所述主体部,所述延伸部支撑于所述电池单体组和所述箱体的内壁之间。
  2. 根据权利要求1所述的电池,其特征在于,所述多个电池单体沿第三方向层叠设置,所述第三方向垂直于所述第一方向和所述第二方向。
  3. 根据权利要求2所述的电池,其特征在于,所述延伸部具有面向所述电池单体组的第一表面,所述第一表面设置有定位部,所述定位部被配置为朝向所述电池单体的凹槽结构,以容纳所述电池单体沿所述第二方向靠近所述延伸部的端部的至少部分。
  4. 根据权利要求3所述的电池,其特征在于,所述定位部被配置为多个,所述多个定位部与所述多个电池单体沿所述第二方向靠近所述延伸部的端部一一对应。
  5. 根据权利要求3或4所述的电池,其特征在于,所述延伸部具有背离所述电池单体组的第二表面,所述第二表面在沿厚度方向与所述定位部对应的位置形成有第一凸部,相邻两个所述第一凸部之间形成凹部;
    沿所述第二方向观察,所述凹部与相邻两个所述电池单体之间的间隙至少部分重叠。
  6. 根据权利要求5所述的电池,其特征在于,所述第一表面在沿厚度方向与所述凹部对应的位置形成有第二凸部。
  7. 根据权利要求6所述的电池,其特征在于,所述第二凸部被配置有多个并沿所述第三方向间隔设置,相邻两个所述第二凸部沿所述第三方向的最大尺寸不同。
  8. 根据权利要求1-7中任一项所述的电池,其特征在于,所述延伸部沿所述第一方向的截面形状为波浪形。
  9. 根据权利要求1-8中任一项所述的电池,其特征在于,所述延伸部和所述电池单体组之间设置有缓冲件。
  10. 根据权利要求1-8中任一项所述的电池,其特征在于,所述延伸部和所述主体部一体成型。
  11. 根据权利要求1-8中任一项所述的电池,其特征在于,所述延伸部从所述主体部弯折成型。
  12. 根据权利要求1-11中任一项所述的电池,其特征在于,所述电池单体为软包电池单体。
  13. 根据权利要求1-11中任一项所述的电池,其特征在于,所述电池还包括汇流部件,所述汇流部件设置于所述主体部背离于所述电池单体的一侧表面,所述主体部上设置有开口,所述电池单体的极耳穿过所述开口以与所述汇流部件连接。
  14. 根据权利要求1-11中任一项所述的电池,其特征在于,所述延伸部在所述第一方向上的最大尺寸小于或等于所述电池单体沿所述第一方向的最大尺寸。
  15. 根据权利要求1-11中任一项所述的电池,其特征在于,所述电池单体组的沿所述第一方向的两侧均设置有所述绝缘件。
  16. 根据权利要求15所述的电池,其特征在于,所述延伸部在所述第一方向上的最大尺寸小于或等于所述电池单体沿所述第一方向的最大尺寸的一半。
  17. 一种用电装置,其特征在于,所述用电装置包括如权利要求1-16任一项所述的电池,所述电池用于提供电能。
PCT/CN2023/124797 2022-11-29 2023-10-16 电池及用电装置 WO2024114131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223180809.6U CN219017845U (zh) 2022-11-29 2022-11-29 电池及用电装置
CN202223180809.6 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024114131A1 true WO2024114131A1 (zh) 2024-06-06

Family

ID=86231230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124797 WO2024114131A1 (zh) 2022-11-29 2023-10-16 电池及用电装置

Country Status (2)

Country Link
CN (1) CN219017845U (zh)
WO (1) WO2024114131A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219017845U (zh) * 2022-11-29 2023-05-12 宁德时代新能源科技股份有限公司 电池及用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180071800A (ko) * 2016-12-20 2018-06-28 주식회사 엘지화학 에너지 밀도 향상 및 조립 공정이 간소화된 배터리 모듈
CN110770946A (zh) * 2018-03-30 2020-02-07 株式会社Lg化学 易于组装的包括汇流条框架的电池模块
CN114709547A (zh) * 2022-01-27 2022-07-05 浙江锋锂新能源科技有限公司 一种锂金属负极固态电池模组
CN219017845U (zh) * 2022-11-29 2023-05-12 宁德时代新能源科技股份有限公司 电池及用电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180071800A (ko) * 2016-12-20 2018-06-28 주식회사 엘지화학 에너지 밀도 향상 및 조립 공정이 간소화된 배터리 모듈
CN110770946A (zh) * 2018-03-30 2020-02-07 株式会社Lg化学 易于组装的包括汇流条框架的电池模块
CN114709547A (zh) * 2022-01-27 2022-07-05 浙江锋锂新能源科技有限公司 一种锂金属负极固态电池模组
CN219017845U (zh) * 2022-11-29 2023-05-12 宁德时代新能源科技股份有限公司 电池及用电装置

Also Published As

Publication number Publication date
CN219017845U (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
JP5058646B2 (ja) 二つ以上のユニットセルを備えた高容量電池セル
US20220285799A1 (en) Prismatic lithium ion cell with positive polarity rigid container
TWI713245B (zh) 使用包帶的電池單元的排氣結構、電池組及使用電池組的裝置
US9293785B2 (en) Lithium ion secondary battery, vehicle, and battery mounting device
EP2602840A2 (en) Secondary battery pouch having improved stability, pouch-type secondary battery using same, and medium- or large-sized battery pack
EP2416399A1 (en) Secondary battery and battery system
KR20130139472A (ko) 단일 전극단자 결합부를 가진 전지 조합체
US20230098629A1 (en) Power supply device, vehicle provided with same, and power storage device
US12002994B2 (en) Battery module, battery pack, and battery-powered apparatus
WO2024114131A1 (zh) 电池及用电装置
WO2023083028A1 (zh) 一种电芯、电池及用电装置
KR20120053596A (ko) 신규한 구조의 단위모듈 및 이를 포함하는 전지모듈
CN115842189B (zh) 一种电池冷却结构、电池、用电装置
WO2019187314A1 (ja) 電源装置及びこれを備える車両
US20230411761A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
US20230327264A1 (en) Battery module, battery, power consumption device, and method and device for producing battery
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
KR101084986B1 (ko) 안전성이 향상된 중대형 전지팩
EP4266464A1 (en) Battery, electric device, and method and device for preparing battery
KR20190112467A (ko) 버스바 내장 카트리지
US20230246274A1 (en) Power source device, and vehicle and power storage device each equipped with same
JP2021120961A (ja) 角形二次電池及びそれを用いた組電池
CN115004471A (zh) 电源装置、具备该电源装置的车辆以及蓄电装置
CN220672722U (zh) 电池单体、电池和用电装置
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备