WO2024113873A1 - 一种立式加工中心 - Google Patents

一种立式加工中心 Download PDF

Info

Publication number
WO2024113873A1
WO2024113873A1 PCT/CN2023/105994 CN2023105994W WO2024113873A1 WO 2024113873 A1 WO2024113873 A1 WO 2024113873A1 CN 2023105994 W CN2023105994 W CN 2023105994W WO 2024113873 A1 WO2024113873 A1 WO 2024113873A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed
insert
column
ram
saddle
Prior art date
Application number
PCT/CN2023/105994
Other languages
English (en)
French (fr)
Inventor
宫兴林
任志辉
荆传思
鲍文禄
邓鑫
Original Assignee
科德数控股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科德数控股份有限公司 filed Critical 科德数控股份有限公司
Publication of WO2024113873A1 publication Critical patent/WO2024113873A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine

Definitions

  • the invention relates to the technical field of vertical machining centers, and in particular to a vertical machining center.
  • a vertical machining center refers to a machining center with the spindle axis set perpendicular to the worktable. It is mainly suitable for machining complex parts such as plates, discs, molds and small shells.
  • the vertical machining center can complete milling, boring, drilling, tapping and cutting threads.
  • the digital control system can control the machine tool according to different processes, automatically select and replace tools, automatically change the machine tool spindle speed, feed rate and tool movement trajectory relative to the workpiece and other auxiliary functions, and complete multiple processes on several faces of the workpiece in sequence. There are also multiple tool changing or tool selection functions, and the production efficiency is high. Because gray cast iron has the advantages of high strength and good wear resistance, it is often used in the manufacture of existing CNC machine tool bed, guide rails, saddles, rams, columns and other castings with large forces.
  • the density of gray cast iron HT150 is 7g/ cm3 , the thermal expansion coefficient is 11.1 ⁇ 10-8 /°C, and the thermal conductivity is 45w/(mK).
  • the gray cast iron casting parts of the machine tool (such as the bed, columns, saddles, rams and guides) will produce the following two problems under the influence of the internal and external heat of the machine tool: on the one hand, the main parts of the machine tool, such as the bed, columns, saddles, rams and guides, will be deformed, thereby destroying the processing accuracy of the machine tool and affecting the processing quality of the workpiece; on the other hand, the matching clearance between different relatively moving parts will change, affecting the movement accuracy of the machine tool and even interfering with the normal operation of the machine tool.
  • Heat is always generated at the tip of the tool during the cutting process, and the heat is always radiated from the tip of the tool to the processing area.
  • the movement trajectory of the tool tip in the processing area is uncertain, and the temperature change affected by the heat source of the tool tip is uncertain. Due to the continuous changes in the position of the tool tip and the heat radiated by the tool tip, the temperature distribution in the processing area is uneven, the heat radiation direction is irregular, and the heat diffusion is uneven, resulting in an uneven temperature field on the machine tool components located in the processing area.
  • the cutting fluid will take away most of the cutting heat, a part of the heat carried by the cutting fluid will still be transferred to other parts of the machine tool. Due to the existence of the uneven temperature field, the heat radiation direction is irregular and the heat diffusion is uneven, so that other parts of the machine tool are heated differently, causing different degrees of thermal deformation of other parts of the machine tool. For example, the temperature of the upper surface of the bed is higher than that of the lower surface of the bed, forming a temperature difference, the bed will bend and deform, and the upper surface of the bed will be convex, which affects the linearity of the guide rail installed on the bed.
  • the column will also produce corresponding position changes due to the thermal deformation of the bed, thereby destroying the original geometric accuracy of the machine tool and causing processing errors.
  • the ambient temperature of the machine tool will also have a certain impact on the geometric accuracy of the machine tool.
  • the machine tool Since the machine tool is always affected by internal and external heat sources during operation, and the heat radiation generated by the internal and external heat sources is nonlinear and irregular, the machine tool will always be affected by unstable and uncertain heat. Its main components such as the bed, column, saddle, ram, workbench, and transmission components such as guide rails, lead screws, nuts, and nut seats are prone to temperature changes under the influence of heat, and then deform. Therefore, it is difficult for existing machine tools to ensure stable geometric accuracy during long-term operation.
  • the geometric accuracy of the machine tool comprehensively reflects the comprehensive geometric shape and position errors of the key parts and components of the machine tool and their assembly, including the component's own accuracy and the relative position accuracy between the components.
  • the invention discloses a vertical machining center, which solves the problem that the existing machine tools are affected by unstable and uncertain heat sources, causing various parts to deform to different degrees, making it difficult for the machine tools to maintain stable geometric accuracy during long-term operation.
  • a vertical machining center includes a bed, a column, a saddle, a ram, a workbench and a support.
  • the bed, columns, saddle, bolster, worktable and support are all cast from mineral cementitious materials;
  • the bed is provided with a workbench driving device for driving the workbench to move along the Y-axis direction on the bed;
  • the column is fixed on the bed, and the column is a symmetrical gantry structure, including a gantry left column, a gantry right column and a gantry crossbeam, and a saddle driving device for driving the saddle to move along the X-axis direction is provided on the gantry crossbeam;
  • the saddle is provided with a ram driving device capable of driving the ram to slide along the Z-axis direction;
  • a tool spindle and a spindle motor capable of driving the tool spindle to work are installed inside the ram.
  • the mineral cementitious material is selected from cast stone or foamed cement.
  • the present application adopts mineral cementitious material to cast the bed, column, saddle, ram, worktable and support.
  • the thermal conductivity is reduced to only 1/20 of the gray cast iron.
  • the temperature change of the machine tool using mineral cementitious material castings is smaller than the temperature change of the machine tool using gray cast iron parts, so that the casting deformation of the machine tool is small, and the geometric accuracy of the machine tool is guaranteed; at the same time, since the moving parts such as the saddle and ram are prone to vibration during the movement of the machine tool when the machine tool is working, the moving parts themselves and their connecting parts vibrate synchronously, reducing the repeat positioning accuracy and relative position accuracy of the moving parts, thereby affecting the processing accuracy.
  • the mineral cementitious material has good vibration reduction performance, can reduce the vibration amplitude of the moving parts and their connecting parts, and keep the relative position between adjacent parts stable, so that the fitting clearance between the relatively moving parts is not easy to change, and the repeat positioning accuracy between the relatively moving parts is guaranteed.
  • the impact of heat sources on the temperature of the machine tool and reducing the vibration amplitude of each machine tool component the deformation of each component during the operation of the machine tool is reduced, so that the machine tool can maintain stable geometric accuracy, positioning accuracy and repeatability during long-term operation.
  • a plurality of metal inserts are preset on the bed, column, saddle, ram, workbench and support, respectively, and the metal inserts provide interfaces for installing other workpieces; and the plurality of metal inserts are evenly and symmetrically distributed.
  • the connection between castings can be achieved by drilling and welding on the formed castings; while the improved bed, column, saddle, ram, worktable and support are cast by mineral cementitious materials.
  • the material properties of the gel material make it difficult to perform operations such as drilling and welding on the molded castings, making it difficult to connect the castings.
  • the metal inserts and the castings such as the bed, columns, saddles, rams, workbenches and supports are formed in one piece.
  • the presence of the metal inserts provides an interface for the installation between adjacent castings and the installation of other workpieces on the castings, and provides an installation basis for the subsequent connection and fixation between castings. Since the metal inserts are evenly and symmetrically distributed, the internal heat is easily transferred to the metal inserts, making the temperature of the castings symmetrically distributed, and thus making the heat dissipation area, heat conduction path and mass of the parts of the machine tool symmetrically distributed, and being able to generate a uniform temperature field on each casting of the machine tool. At this time, the heat radiation of each casting of the machine tool is linear and regular, reducing the thermal deformation of the machine tool, thereby ensuring the geometric accuracy, motion accuracy, positioning accuracy and repeatability of the machine tool.
  • the metal inserts located on the bed include a foot insert, a bed insert and a bed tubular insert, the foot insert can form a connection portion on the cast bed, the connection portion is used to install a foot that can support the bed;
  • the bed insert is provided with an insert cavity, the inner wall of the insert cavity is provided with a threaded structure;
  • the bed tubular insert can form a glue injection channel in the bed;
  • the metal inserts located in the column include a guide rail insert, a column insert and a column tubular insert.
  • the column insert is provided with an insert cavity, the inner wall of the insert cavity is provided with a threaded structure, and the column tubular insert can form an exhaust hole in the column;
  • the structural adhesive is injected into the joint surface between the column and the bed through the adhesive injection hole, so that the column and the bed are bonded and fixed together by the structural adhesive.
  • the bed and the column are bonded by structural adhesive.
  • the structural adhesive can make up for the defects in the roughness of the joint surface of the bed and the column, and ensure 100% bonding between the column and the bed. Since the structural adhesive has good anti-aging ability, a strong and buffering anti-wear layer is formed at the joint surface of the bed and the column.
  • the structural adhesive After curing, the structural adhesive has good physical properties such as earthquake resistance, compression resistance, tension resistance, and impact resistance, so that the connection between the bed and the column is not easy to produce gaps under the vibration of the moving parts, thereby ensuring the connection between the bed and the column, and keeping the relative position between the bed and the column in a stable vertical state for a long time, thereby ensuring the positioning accuracy and geometric accuracy between the bed and the column.
  • the saddle is provided with a slide connecting groove and a pressure plate
  • the slide rail is located between the pressure plate and the slide connecting groove
  • the contact surfaces of the pressure plate, the slide connecting groove and the slide rail are respectively provided with wear-resistant layers
  • the contact surfaces of the wear-resistant layer and the slide rail are processed into precision surfaces.
  • the precision surface can make up for The accuracy is poor, ensuring that the geometric accuracy of the slide connection groove and the contact surface of the pressure plate and the slide rail is consistent.
  • the setting of the wear-resistant layer reduces the structural damage caused by friction and increases the service life of the structure, thereby reducing the heat generated by friction between the structures and improving the repeatability of the relative moving parts.
  • the workbench drive device, the saddle drive device and the ram drive device all include a lead screw pair, and a Y-axis nut housing cooperating with the lead screw pair is fixedly disposed on the workbench;
  • the slide saddle is fixed with an X-axis nut housing that cooperates with the lead screw pair;
  • the ram is fixed with a Z-axis nut housing that cooperates with the lead screw pair;
  • the saddle, the ram and the workbench are respectively provided with nut shell inserts for mounting the nut shell;
  • Cooling jackets are respectively arranged outside the X-axis nut shell, the Y-axis nut shell and the Z-axis nut shell.
  • the nut shell and the screw pair cooperate with each other. Since a large amount of heat is generated during the transmission process of the screw pair, a cooling jacket is provided on the outside of the nut shell and coolant is introduced into the cooling jacket. The coolant can absorb a large amount of heat and keep the temperature of the nut shell and the temperature of the screw pair from changing significantly, thereby ensuring the fitting clearance of the screw pair structure and the movement accuracy.
  • the peripheries of the bed, columns, saddle, bolster, workbench and support are respectively provided with thermal insulation cotton.
  • the setting of the thermal insulation cotton can delay the conduction of external heat sources to the bed, columns, saddles, slide pillows, worktables and support castings, thereby ensuring that the temperature of each casting of the machine tool is lower than the specified temperature and reducing the impact of external heat sources.
  • the introduction of external heat sources of the machine tool is reduced, that is, irregular heat is isolated outside the machine tool.
  • cooling pipelines are arranged inside the bed, columns, saddles, rams and work tables.
  • coolant can be passed into the cooling pipeline.
  • the coolant can absorb a large amount of heat while keeping the temperature from changing significantly, thereby achieving constant temperature control of the bed, column, saddle, ram and workbench, thereby reducing the impact of internal heat sources.
  • prestressed metal rod inserts are arranged inside the ram, and the prestressed metal rod inserts are symmetrically embedded in the ram along the length direction of the ram.
  • the prestressed metal rod insert can offset the tensile stress caused by the thermal expansion of the ram, thereby reducing the deformation of the ram.
  • the arrangement of the prestressed metal rod insert can increase the rigidity of the ram and avoid the ram from being damaged. Ensure the geometric accuracy of the slide.
  • the cooling pipeline includes at least two cooling pipes, and the cooling pipes are evenly distributed on both sides of the prestressed metal rod insert.
  • the prestressed metal rod insert is embedded in the interior of the ram, part of the heat of the ram is transferred to the prestressed metal rod insert. Since the prestressed metal rod insert is made of metal, it is easy to deform when heated. By arranging cooling pipes on both sides of the prestressed metal rod insert, the cooling pipes can cool the prestressed metal rod insert and keep the temperature of the prestressed metal rod insert equal to the temperature of the ram, thereby reducing the deformation of the prestressed metal rod insert and the ram and ensuring the geometric accuracy of the ram.
  • an oil cooling pipeline is arranged inside the slide, and the oil cooling pipeline includes a first oil inlet pipe and a first oil return pipe and a second oil inlet pipe and a second oil return pipe.
  • the first oil inlet pipe and the first oil return pipe are used to provide an interface for a spindle motor provided with an oil cooling ring; the second oil inlet pipe and the second oil return pipe are used to provide an interface for the bearings of the tool spindle provided with an oil cooling ring.
  • oil itself has the characteristics of non-magnetic and non-conductive, it has no effect on the motor magnetic circuit, so oil is selected as the medium for direct internal cooling. Since the parameter limits of the spindle motor such as torque and speed are often limited by the temperature rise limit of the motor rotor, the cooling method of the oil cooling ring directly cooling the heat source through the combination of oil cooling and oil cooling ring improves the heat dissipation efficiency of the spindle motor and can significantly improve the power limit of the spindle motor.
  • water cooling requires the heat source inside the spindle motor (such as the winding inside the motor coil) to be transferred to the stator housing of the spindle motor through layers of materials, and then carried away by the coolant in the water channel of the stator housing. Because of the thermal resistance between the materials, there is a temperature gradient from the spindle to the housing of the spindle motor. The spindle located inside the spindle motor cannot be directly cooled, resulting in temperature accumulation, forming local hot spots, and the cooling efficiency is not ideal.
  • the heat source inside the spindle motor such as the winding inside the motor coil
  • oil cooling is used to directly cool the heat source, force the spindle motor to cool, reduce the temperature rise of the spindle motor and the bearing, thereby reducing the heat generated by the spindle motor and the bearing, realizing the thermal deformation control of the machine tool, and improving the machining accuracy of the machine tool.
  • the present application adopts mineral cementitious materials to cast the bed, columns, saddles, bolsters, worktables and supports.
  • the thermal conductivity of the mineral cementitious materials under heating is only 1/20 of that of gray cast iron.
  • the temperature rise of each casting of the machine tool cast by the mineral cementitious materials is small due to the influence of external heat radiation, so that the deformation of the casting of the machine tool is small, thereby ensuring the shape accuracy of the machine tool;
  • the ram, worktable and support castings are all made of the same material, so that the thermal deformation of the castings in relative motion is the same, which improves the geometric accuracy of the machine tool; when the machine tool is working, the saddle, ram and other moving parts are prone to vibration during movement, causing the moving parts themselves and their connecting parts to vibrate synchronously, reducing the motion accuracy and position accuracy of the moving parts, thereby affecting the processing accuracy.
  • Mineral cementitious materials have good vibration reduction properties, can absorb the vibration of the moving parts and their connecting parts, reduce their vibration amplitude, and keep the relative position between the relatively moving parts stable, so that the matching clearance between the relatively moving parts is not easy to change, ensuring the motion accuracy, positioning accuracy and repeatability of the machine tool.
  • the present application reduces the influence of heat sources on the temperature of the machine tool, reduces the vibration of each component of the machine tool, and reduces the thermal deformation of each component during the operation of the machine tool, so that the machine tool can maintain stable geometric accuracy, motion accuracy, positioning accuracy and repeatability during long-term operation.
  • FIG1 is a schematic diagram of the overall structure of a vertical machining center disclosed in the present invention.
  • FIG2 is an enlarged view of portion A in FIG1 ;
  • FIG3 is a schematic diagram of the overall structure of the bed disclosed in the present invention.
  • FIG4 is a schematic structural diagram showing the relationship between the metal inserts and cooling pipelines inside the bed disclosed in the present invention.
  • FIG5 is a schematic diagram showing the overall structure of the cast stone tooling platform disclosed in the present invention.
  • FIG. 6 is a schematic structural diagram of the connection relationship between the internal workbench assembly insert, the Y-axis nut housing insert, and the workbench of the cast stone tooling table disclosed in the present invention
  • FIG7 is a schematic diagram of the overall structure of the column disclosed in the present invention.
  • FIG8 is a schematic structural diagram showing the relationship between the metal insert and the cooling pipeline inside the column disclosed in the present invention.
  • FIG9 is a schematic diagram of the overall structure of the saddle disclosed in the present invention.
  • FIG10 is a schematic structural diagram of the relationship between the internal metal insert and the cooling pipeline of the saddle disclosed in the present invention.
  • FIG11 is a schematic diagram of the overall structure of the X-axis nut shell insert disclosed in the present invention.
  • FIG12 is a schematic diagram of the overall structure of the ram disclosed in the present invention.
  • FIG13 is a front view of the ram disclosed in the present invention.
  • Fig. 14 is a cross-sectional view taken along the line B-B of Fig. 13;
  • FIG15 is a top view of the ram disclosed in the present invention.
  • Fig. 16 is a cross-sectional view taken along the line C-C of Fig. 15;
  • FIG17 is a rear view of the ram disclosed in the present invention without the Z-axis nut seat installed;
  • FIG18 is a schematic structural diagram of the relationship between the cooling jacket, the X-axis lead screw, the X-axis nut, and the X-axis nut shell insert disclosed in the present invention
  • FIG19 is a schematic structural diagram of the relationship between the cooling pipeline and the pipe joint insert disclosed in the present invention.
  • FIG20 is a schematic diagram of the force application after the bed and the column are assembled according to the present invention.
  • FIG21 is a schematic diagram of the distribution of points on the front side of the machine tool disclosed in the present invention.
  • FIG. 22 is a schematic diagram of the points on the back of the machine tool disclosed in the present invention.
  • the Y-axis guide rail insert 8432, workbench assembly insert 861, guide rail insert 871, saddle assembly insert 881, and Z-axis guide rail insert involved in the present application all have the same structure as the connecting insert 851. Since the above-mentioned inserts are respectively arranged on different castings and provide installation interfaces for installing other components on the castings, in order to facilitate the distinction of the uses of inserts on different castings, the above-mentioned inserts are represented by different names in the corresponding castings.
  • a vertical machining center includes a bed 1, a column 2, a saddle 3, a ram 4, a worktable 5 and a support 6.
  • the bed 1, the column 2, the saddle 3, the ram 4, the worktable 5 and the support 6 are all castings made of cast stone.
  • the temperature rise of each casting of the machine tool cast by mineral cementitious material is small due to the influence of external heat radiation, so that the deformation of the casting of the machine tool is small, and the shape accuracy of the machine tool is guaranteed;
  • the bed 1, the column 2, the saddle 3, the ram 4, the worktable 5 and the support 6 are all made of the same material, so that the thermal deformation of the castings in relative motion is the same, so that the relative position between the relatively moving parts remains stable, and the positioning accuracy is improved.
  • the inside of the bed 1, the column 2, the saddle 3, the ram 4 and the workbench 5 are respectively provided with cooling pipes 9 and multiple metal inserts 8.
  • the cooling pipes 9 can perform constant temperature cooling control on the machine tool body.
  • the outer surfaces of the bed 1, the column 2, the saddle 3, the ram 4 and the workbench 5 are pasted with foam insulation cotton to reduce the influence of the external temperature on the accuracy of the machine tool.
  • the metal inserts 8 provide interfaces for the connection between different castings and the installation of the assembly on the casting.
  • the metal inserts 8 are preferably steel inserts with high strength. The steel inserts can make up for the lack of strength of the cast stone material and ensure the overall rigidity of the casting.
  • multiple steel inserts are symmetrically and evenly distributed inside the corresponding castings, and the heat of the cast stone material can be conducted to the steel inserts.
  • a uniform temperature field is generated on the castings of the machine tool, and the temperature fields of the castings of the machine tool are similar, so that the heat radiation of the castings of the machine tool has linearity and regularity.
  • the metal insert 8 and the cooling pipe 9 cooperate to quickly conduct the internal heat source of the machine tool, and at the same time, the external foam insulation cotton reduces the introduction of the external heat source of the machine tool.
  • irregular heat is insulated outside the machine tool, and heat is conducted out from the inside of the machine tool, thereby reducing the impact of the heat source on the temperature of the machine tool and reducing the thermal deformation of various components during the operation of the machine tool, so that the machine tool can maintain stable geometric accuracy, motion accuracy, positioning accuracy and repeatability during long-term operation.
  • cooling pipes 9 are pre-buried in the inside of the bed 1, column 2, saddle 3, ram 4 and worktable 5 respectively.
  • the cooling pipes 9 are arranged in rows and spaced apart and their shapes are adapted to the structures of the corresponding bed 1, column 2, saddle 3, ram 4 and worktable 5.
  • the layout of the cooling pipes 9 avoids the structure of the metal inserts 8 inside the bed 1, column 2, saddle 3, ram 4 and worktable 5, which can achieve heat dissipation inside the machine tool, keep the internal temperature of the machine tool constant, reduce the influence of internal heat on the machine tool and the metal insert 8, and make the machine tool not easily deformed under the influence of internal heat, so that the machine tool can maintain stable high precision during long-term operation.
  • the metal insert 8 on the bed 1 includes a foot insert 841, a bed assembly insert 842, and a bed tubular insert 843.
  • the bed assembly insert 842 and the bed tubular insert 843 are both multiple, and the multiple inserts are symmetrically distributed on the bed 1.
  • the temperature of the bed 1 is symmetrically distributed, and then the heat dissipation area, heat conduction path and mass of the parts of the bed 1 are symmetrically distributed, thereby reducing the thermal deformation of the bed 1.
  • the bed assembly insert 842 includes a flange insert 8431, a Y-axis guide rail insert 8432 and a connecting insert 851.
  • the connecting insert 851 is provided with an insert cavity with an inner wall of a threaded structure, and the fixing bolt can pass through the insert cavity of the threaded structure, so as to facilitate the connection between the fixing bolt and the connecting insert 851.
  • the Y-axis guide rail insert 8432 can be set as a multi-threaded steel insert, a T-shaped threaded steel structure insert or a groove insert.
  • the groove insert, the T-shaped threaded steel insert and the multi-threaded steel insert can all increase the surface area of the installation part, and the inserts are arranged in rows, which can make the connection between the installation part and other components more stable, ensuring high-precision and long-term stability.
  • This embodiment does not limit the Y-axis guide rail insert 8432.
  • the anchor insert 841 can form a connection part on the cast bed, and the connection part is used to install the anchor that can support the bed 1.
  • the setting of the anchor insert 841 can form a ground connection part on the corresponding surface of the bed 1, connect the structure of the fixed bed, and improve the stability, durability and use effect of the bed.
  • One end of the bed tubular insert 843 is inserted from the side of the bed 1 and then extends from the upper end surface of the bed 1.
  • the pre-embedded tubular insert is formed on the bed 1 to form a glue injection channel. 2
  • the glue injection holes 14 located on the side of the bed 1 are inlets
  • the glue injection holes 14 located on the upper end surface of the bed 1 are outlets.
  • the glue injection holes 14 communicate with the outside of the bed 1 and the contact surface between the bed 1 and the column 2.
  • the metal insert 8 on the workbench 5 includes a plurality of workbench assembly inserts 861 and a Y-axis nut housing seat insert 862, and the plurality of workbench assembly inserts 861 are symmetrically distributed on the workbench 5.
  • the structure of the workbench assembly insert 861 is the same as that of the connection insert 851, and will not be repeated here.
  • a workbench driving device for driving the workbench 5 to move along the Y-axis direction on the bed 1 is provided on the bed 1.
  • the workbench driving device includes a Y-axis guide rail 11, a Y-axis lead screw 12, and a Y-axis servo motor 13 for driving the Y-axis lead screw 12 to rotate.
  • the Y-axis guide rail 11 is fixed to the bed 1 through a Y-axis guide rail insert 8432
  • the Y-axis lead screw 12 is fixed to the bed 1 through a connecting insert 851
  • the Y-axis servo motor 13 is fixed to the bed 1 through a flange insert 8431.
  • a Y-axis nut 15 is provided on the Y-axis lead screw 12, and a Y-axis nut shell 16 is provided on the outside of the Y-axis nut 15, and the Y-axis nut shell 16 is fixed to the Y-axis nut shell seat 17, and the Y-axis nut shell seat 17 is fixed to the workbench 5 through a Y-axis nut shell seat insert 862.
  • the Y-axis nut 15 is threadedly driven with the Y-axis lead screw 12 , and the Y-axis servo motor 13 drives the workbench 5 to slide back and forth in a straight line along the Y-axis direction through the Y-axis lead screw 12 .
  • the Y-axis nut housing seat insert 862 is machined with a Y-axis nut housing seat mounting surface, and the Y-axis nut housing seat insert 862 is fixed to the workbench 5.
  • the nut housing seat mounting surface is a finely machined surface for mounting the Y-axis nut housing seat 17, and the nut housing seat mounting surface is parallel to the Y-axis guide rail mounting surface to ensure the relative accuracy of the screw nut pair and the guide rail of the machine tool after overall assembly.
  • the metal insert 8 on the column 2 includes a guide rail insert 871 and a column tubular insert 8711.
  • the structure of the guide rail insert 871 is the same as that of the connecting insert 851, and will not be described in detail.
  • the column 2 is composed of a left gantry column 21, a right gantry column 22 and a gantry crossbeam 23.
  • the left gantry column 21 and the right gantry column 22 are symmetrically arranged.
  • the crossbeam 23 is horizontally arranged above the left gantry column 21 and the right gantry column 22.
  • the three constitute a symmetrical gantry structure.
  • Some guide rail inserts 871 are arranged at the ends of the crossbeam 23 to provide interfaces for the installation of the motor seat of the X-axis servo motor 26. Since the metal insert 8 is made of metal, the internal heat source of the column 2 is easily transferred to the metal insert 8. Under the action of the metal insert 8, the temperature of the column 2 is symmetrically distributed, thereby making the heat dissipation area, heat conduction path and quality of the parts of the column 2 symmetrically distributed, reducing the thermal deformation of the column 2.
  • One end of the column tubular insert 8711 is inserted from the side of the column 2 and then extends from the lower end face of the column 2.
  • the pre-buried tubular part forms an exhaust channel on the column 2.
  • a plurality of exhaust holes 27 are formed on the side and lower end face of the column 2.
  • the exhaust holes 27 located on the side of the column 2 are outlets, and the exhaust holes 27 located on the lower end face of the column 2 are inlets.
  • the exhaust holes 27 connect the outside of the column 2 and the joint surface between the bed 1 and the column 2. Since there are multiple exhaust holes 27 on the left gantry column 21 and the right gantry column 22, the contact area between the exhaust holes 27 and the joint surface is increased, which can facilitate the discharge of air at the joint surface when injecting glue into the joint surface.
  • the column 2 when assembling the bed and the column, the column 2 is hoisted onto the bed 1 as a whole, and the structural glue is injected into the joint surface between the column 2 and the bed 1 through the glue injection hole 14 until the structural glue overflows from the exhaust hole 27.
  • the structural glue is fully filled in the joint surface between the column 2 and the bed 1.
  • the structural glue can make up for the defects in the roughness of the joint surface between the bed and the column, so that the bed 1 and the column 2 are 100% bonded together; finally, the column 2 is kept stationary in place until the structural glue is fully cured.
  • the structural glue After curing, the structural glue has good physical properties such as earthquake resistance, compression resistance, tension resistance, and impact resistance. It can not only bond and fix the column 2 to the bed 1, but also increase the connection stiffness between the bed and the column because the structural glue has good physical properties such as earthquake resistance, compression resistance, tension resistance, and impact resistance after curing.
  • the metal insert 8 on the saddle 3 includes a saddle assembly insert 881 and an X-axis nut shell insert 8811.
  • the structure of the saddle assembly insert 881 is the same as that of the connecting insert 851, and will not be described in detail; the support 6 is fixed to the saddle 3 through the saddle assembly insert 881.
  • the column 2 is provided with a saddle driving device for driving the saddle 3 to move along the X-axis direction.
  • the saddle driving device includes an X-axis guide rail 24, an X-axis lead screw 25, and an X-axis servo motor 26 that can drive the X-axis lead screw 25 to rotate so that the saddle 3 slides along the X-axis direction.
  • the X-axis guide rail 24 is fixed to the column 2 through a guide rail insert 871
  • the X-axis servo motor 26 is fixed to the column 2 through a guide rail insert 871.
  • An X-axis nut 28 is provided on the X-axis lead screw 25, and the X-axis nut 28 and the X-axis lead screw 25 are threadedly driven.
  • the outer sleeve of the X-axis nut 28 is provided with an X-axis nut shell, and the X-axis nut shell is installed on the saddle 3 through the X-axis nut shell insert 8811.
  • the X-axis servo motor 26 drives the X-axis nut 28 to slide linearly reciprocatingly along the X-axis direction through the X-axis lead screw 25.
  • the X-axis nut shell insert 8811 includes a shell body 88111, which is arranged in an arc shape, the arc of which is equal to the arc of the outer circumference of the X-axis nut 28, and a plurality of connecting blocks 88112 are arranged on the outer circumference of the shell body 88111, and the connecting blocks 88112 are evenly arranged on the outer circumference of the shell body 88111.
  • the connecting blocks 88112 extend outward along the radial direction of the shell body 88111. The contact area between the housing body 88111 and the saddle 3 is increased by the action of the connecting block 88112.
  • the vibration frequency of the connecting parts of the X-axis nut housing insert 8811 and the saddle 3 and the X-axis nut housing insert 8811 can be reduced, so that the relative position between the adjacent parts remains stable, so that the matching clearance between the relatively moving parts is not easy to change, thereby improving the stability of the X-axis lead screw 25 and the X-axis nut 28 during the transmission process, and providing a guarantee for the saddle 3 to maintain stable and high-precision operation along the X-axis direction.
  • the metal insert 8 on the ram 4 includes a ram assembly 8812, a Z-axis nut housing seat insert 83, and a prestressed metal rod insert 10.
  • the ram assembly 8812 includes a Z-axis guide rail insert and a flange insert 8431.
  • the Z-axis guide rail insert has the same structure as the connecting insert 851, and will not be described in detail.
  • prestressed metal bar inserts 10 which are symmetrically embedded in the interior of the ram 4 along the length direction of the ram 4.
  • the prestressed metal bar inserts 10 are preferably prestressed steel bar inserts.
  • the prestressed metal bar inserts 10 apply pressure in advance to offset the tensile stress caused by the thermal expansion of the ram 4, further reduce the deformation of the ram 4, and increase the strength of the ram 4 to prevent the ram 4 from being damaged.
  • the cooling pipeline 9 inside the ram 4 includes two cooling pipes, which form a group.
  • the number of cooling pipe groups is equal to the number of prestressed metal rod inserts 10.
  • the two cooling pipes in the same group are a water inlet pipe 91 and a water return pipe 92.
  • the water inlet pipes 91 of the two groups of cooling pipes are connected in parallel.
  • the two cooling pipes are respectively fixed on both sides of the prestressed metal rod insert 10, so that the prestressed metal rod insert 10 can be well cooled and the deformation of the prestressed metal rod insert 10 can be reduced.
  • the ram 4 is provided with a through hole extending in the length direction;
  • the metal insert 8 on the ram 4 also includes a motor steel sleeve insert 81 for mounting the spindle motor 43, a spindle steel sleeve insert 82 for mounting the spindle, and a Z-axis nut shell seat insert 83 capable of cooperating with the Z-axis lead screw 32;
  • the motor steel sleeve insert 81 and the spindle steel sleeve insert 82 are respectively fixed at the two ends of the through hole, and the motor steel sleeve end face 811 of the motor steel sleeve insert 81 protrudes from the through hole.
  • the motor steel sleeve end face 811 is a mating surface, and the motor steel sleeve end face 811 protruding from the through hole can ensure that the motor steel sleeve end face 811 can be finely processed separately, avoiding unnecessary waste caused by overall processing.
  • the spindle steel sleeve end face 821 of the spindle steel sleeve insert 82 is flush with the through hole, and the plane where the spindle steel sleeve end face 821 is located is the matching surface, and the matching surface is flush with the through hole, so that the two can be processed synchronously to ensure accuracy;
  • a nut shell seat mounting surface 831 is machined on the Z-axis nut shell seat insert 83 , the Z-axis nut shell seat insert 83 is fixed to the slide 4 , the nut shell seat mounting surface 831 is parallel to the guide rail mounting surface 44 , and the nut shell seat mounting surface 831 is located between the two guide rail mounting surfaces 44 .
  • the nut housing seat mounting surface 831 is a precision-machined surface for mounting the lead screw nut housing seat.
  • the nut housing seat mounting surface 831 is parallel to the guide rail mounting surface 44 to ensure the relative accuracy of the lead screw nut pair and the guide rail of the machine tool after overall assembly.
  • the tool spindle 42 and the spindle motor 43 that can drive the tool spindle 42 to work are installed inside the ram 4.
  • the tool spindle 42 is fixedly installed inside the ram 4 through the spindle steel sleeve insert 82, and the spindle motor 43 is fixed inside the ram 4 through the motor steel sleeve insert 81.
  • the above structure realizes the rear-positioning of the motor. Since the closer to the front end of the spindle, the greater the heat, the greater the deformation effect on the ram.
  • the rear-positioning of the spindle motor 43 is equivalent to putting the heat of the spindle motor 43 away from the ram and the electric spindle, which is convenient for better controlling the heat of the ram 4 and facilitating the suppression of the heat of the spindle motor 43.
  • an oil cooling pipeline is also provided inside the slide 4, and the oil cooling pipeline includes a first oil inlet pipe 71 and a first oil return pipe 72 arranged on the motor steel sleeve insert 81, and a second oil inlet pipe 73 and a second oil return pipe 74 arranged on the spindle steel sleeve insert 82;
  • the first oil inlet pipe 71 and the first oil return pipe 72 are used to provide an interface for the motor provided with an oil cooling ring, so as to facilitate cooling of the spindle motor 43;
  • the second oil inlet pipe 73 and the second oil return pipe 74 are used to provide an interface for the spindle bearing provided with an oil cooling ring, so as to facilitate cooling of the electric spindle and reduce the influence of deformation caused by temperature on the spindle accuracy.
  • the ram 4 is mounted on the side of the saddle 3, and the saddle 3 is provided with a ram connection groove 34 and a pressure plate 35 correspondingly.
  • the saddle 3 is provided with a ram driving device capable of driving the ram 4 to slide along the Z-axis direction.
  • the ram driving device comprises a Z-axis lead screw 32 and a Z-axis servo motor 33 capable of driving the Z-axis lead screw 32 to rotate so that the ram 4 slides along the Z-axis.
  • the Z-axis servo motor 33 is mounted on the support 6.
  • the Z-axis guide rail 31 is fixed to the saddle 3 through a guide rail insert 871, and a Z-axis nut 36 is provided on the Z-axis lead screw 32.
  • the Z-axis nut 36 is sleeved with a Z-axis nut shell 41 on the outside, and the Z-axis nut shell 41 is fixed on the Z-axis nut shell seat 45.
  • the Z-axis nut shell seat Z-axis nut shell seat insert 83 is mounted on the ram 4, and the Z-axis nut 36 is threadedly driven with the Z-axis lead screw 32.
  • the Z-axis servo motor 33 drives the ram 4 to slide linearly and reciprocatingly along the Z-axis direction through the Z-axis lead screw 32.
  • the Z-axis guide rail 31 is located between the pressing plate 35 and the ram connecting groove 34.
  • the contact surfaces of the ram 34 and the slide rail are respectively provided with a wear-resistant layer 20.
  • the provision of the wear-resistant layer 20 reduces structural damage caused by friction, increases the service life of the structure, and thus reduces the heat generated by friction between the structures.
  • the contact surface between the wear-resistant layer 20 and the Z-axis guide rail 31 is processed into a precision surface, wherein the precision surface located on the pressure plate 35 is a copy of the precision surface of the slide pillow connecting groove 34, and is copied by a copy processing method.
  • the contact surface is first polished to reserve a filling space for the guide rail glue.
  • the copy tooling has a precision surface that is processed and polished.
  • the guide rail glue is evenly applied on the polished surface of the saddle 3.
  • the guide rail glue has the accuracy of the copy tooling precision surface.
  • the accuracy of the copy tooling precision surface can be copied to the saddle 3, thereby ensuring the geometric accuracy of the saddle 3.
  • the cooling sleeve 30 includes an inner sleeve 301 and an outer sleeve 302 connected together, and the inner sleeve 301 and the outer sleeve 302 are fixed by bolts.
  • An annular groove 3011 is provided on the outer wall of the inner sleeve 301, and a cooling channel for the coolant to pass through is formed between the annular groove 3011 and the inner circumference of the outer sleeve 302. The axial cooling of the nut shell is achieved under the action of the annular groove 3011.
  • the axial cooling can directly take away the heat generated during the transmission process of the nut and the lead screw.
  • the heat is transferred to the cooling pipeline 9 through the outer sleeve 302, and finally taken away by the coolant in the cooling pipeline 9.
  • This method can greatly improve the heat dissipation of the nut, thereby controlling the temperature of the nut shell and the lead screw.
  • Embodiment 2 The only difference from Embodiment 1 is that the bed 1, the column 2, the saddle 3, the ram 4, the worktable 5 and the support 6 are all made of castings made of foamed cement, and a reinforcement frame capable of enhancing the strength of the casting is also provided inside the bed 1, the column 2, the saddle 3, the ram 4, the worktable 5 and the support 6.
  • the reinforcement frame is a steel frame made of steel bars, and the shape of the steel frame is adapted to the shape of the corresponding casting.
  • the steel bars are pre-tied into a steel skeleton, and then the steel skeleton is hoisted as a whole into the casting mold of the corresponding casting.
  • the steel bars are arranged to avoid the metal inserts 8 and cooling pipes 9 inside the bed 1, column 2, saddle 3, ram 4 and worktable 5, and the steel skeleton and casting material are cast as a whole.
  • the steel bar is embedded inside the foamed cement so that the integrally cast casting can have both the compressive resistance of the foamed cement and the tensile resistance of the steel bar.
  • the combined effect of the two can further improve the bearing capacity of the casting.
  • the porous structure of the foamed cement itself has good vibration absorption ability, which reduces the impact of vibration on the relative position accuracy and geometric accuracy between the castings in the relative motion of the machine tool.
  • the thermal conductivity of cast stone materials is only 1/20 of that of cast iron, and it is insensitive to short-term changes in ambient temperature. Therefore, when the bed, column, saddle, ram, workbench and support castings of the present application are all made of mineral cast stone materials, the thermal deformation of the machine tool using mineral cast stone castings is less than that of the machine tool using gray cast iron parts under the same heat per unit time. Since the deformation of the castings of the machine tool is small, the geometric accuracy of each casting of the machine tool is guaranteed.
  • Mineral cast stone materials also have good vibration reduction performance, and their damping characteristic value is 6-10 times that of cast iron.
  • the bed, column, saddle, ram, worktable and support castings are all made of mineral cast stone materials with excellent vibration reduction performance, which can reduce the vibration amplitude of the moving parts and their connecting parts, keep the relative position between adjacent parts stable, and make the matching clearance between the relatively moving parts less likely to change. Due to the reduction of the casting deformation of the machine tool and the matching clearance between the relatively moving parts, the machine tool can maintain stable geometric accuracy, positioning accuracy and repeated positioning accuracy during long-term operation.
  • Embodiment 3 The only difference from Embodiment 1 is that, in conjunction with Figures 1 and 19, the bed 1, column 2, saddle 3, ram 4 and workbench 5 are respectively provided with pipe joints at both ends of the cooling pipeline 9, and the specifications of the pipe joints are adapted to the ends of the cooling pipeline.
  • the pipe joints can realize the connection of the cooling pipelines between adjacent castings.
  • the pipe joints can be selected and connected to the cooling pipelines according to actual needs, and are not limited here.
  • the bed 1, column 2, saddle 3, ram 4 and workbench 5 are respectively provided with pipe joint inserts 40, and the pipe joint inserts 40 are provided with cavities adapted to the cooling pipeline.
  • the pipe joints are fixed to the corresponding castings through the pipe joint inserts, and the ends of the cooling pipelines are inserted into the cavities before casting.
  • the inner wall of the cavity is provided with threaded sections, and the outside of the casting is provided with templates, and the templates are provided with through holes, and the centers of the through holes and the cavities coincide.
  • Bolts are passed through the through holes and threadedly connected to the threaded sections of the cavities, and the positions of the ends of the cooling pipelines are fixed under the action of the templates, and at the same time, the setting of the templates can prevent the casting materials from entering the interior of the cooling pipelines; after casting, the templates are removed, and the pipe joints and the pipe joint inserts 40 are connected by bolts, and the cooling pipelines of adjacent castings are connected by pipe joints, so as to realize the connection between the cooling pipelines.
  • Example 1 The connection stiffness of Example 1 and the machine tool bed and column made of cast iron were tested. The test results are shown in Tables 2 and 3.
  • Test method See Figure 21. After the bed and the column are assembled, fix the bed, drive the lead screw through the motor to apply a force of 1000N to different points of the machine tool, simulate a weight of 17000N on the bed, and use the German MAHR digital display indicator to measure the deformation.
  • test point distribution is shown in Figures 21 and 22.
  • Figure 21 shows the point distribution on the front of the machine tool;
  • Figure 22 shows the point distribution on the back of the machine tool.
  • the bed, column, saddle, bolster, worktable and support castings of the present application are all made of mineral cast stone materials.
  • the present application arranges metal inserts inside the cast stone materials. With the combination of cast stone materials, the thermal deformation at different points of the casting is similar, and the casting is heated evenly as a whole, which proves that the thermal deformation degree of each casting of the machine tool is similar, thus ensuring the geometric accuracy of the machine tool.
  • the bed, column, saddle, ram, worktable and support castings of the present application are all made of mineral cast stone materials.
  • the present application arranges metal inserts inside the cast stone materials. Through the cooperation of the metal inserts and the cast stone materials, the machine tool castings after molding have higher rigidity, which makes up for the poor tensile strength and compressive strength of the cast stone materials themselves, extends the service life of the various castings of the machine tool, and at the same time improves the bearing capacity of the various castings of the machine tool, so that the machine tool castings are not easily deformed under the influence of external forces, thereby ensuring the geometric accuracy and positioning accuracy of the various castings on the machine tool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)

Abstract

本发明公开了一种立式加工中心,包括均采用矿物胶凝材料浇铸而成的床身、立柱、滑鞍、滑枕、工作台以及支座;床身上设置有用于驱动工作台在床身上沿Y轴方向运动的工作台驱动装置;立柱为对称龙门结构,包括龙门左立柱、龙门右立柱以及龙门横梁组成,龙门横梁上设置有用于驱动滑鞍沿X轴方向运动的滑鞍驱动装置;滑鞍上设置滑枕驱动装置;滑枕内部安装有刀具主轴和能够驱动刀具主轴工作的主轴电机。本发明公开的一种立式加工中心,降低热源对机床温度的影响,并降低了机床各部件的振动,减小了机床工作过程中各零部件产生的热变形,使机床能够在长时间的工作过程中保持稳定的几何精度、运动精度、定位精度和重复定位精度。

Description

一种立式加工中心 技术领域
本发明涉及立式加工中心技术领域,尤其涉及一种立式加工中心。
背景技术
立式加工中心是指主轴轴线与工作台垂直设置的加工中心,主要适用于加工板类、盘类、模具及小型壳体类复杂零件;立式加工中心能完成铣、镗削、钻削、攻螺纹和用切削螺纹等工序,工件在加工中心上经一次装夹后,数字控制***能控制机床按不同工序,自动选择和更换刀具,自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其他辅助机能,依次完成工件几个面上多工序的加工,并且有多种换刀或选刀功能,生产效率高。由于灰铸铁具有强度高、耐磨性好等优点,因此常用于现有数控机床的床身、导轨、滑鞍、滑枕、立柱等受力较大的铸件的制造。
灰铸铁HT150密度为7g/cm3,热膨胀系数为11.1×10-8/℃,热导率为45w/(m.K),当机床的温度较高,超过灰铸铁铸造的部件的规定温度时,机床上采用灰铸铁铸造的部件(如,床身、立柱、滑鞍、滑枕以及导轨)在机床内部热量和外部热量的影响下,产生如下两方面的问题:一方面,会使机床的主要部件,如床身、立柱、滑鞍、滑枕以及导轨等发生形变量,从而破坏机床的加工精度,影响工件的加工质量;另一方面,会使不同的相对运动零部件之间的配合间隙发生变化,影响机床的运动精度,甚至干扰机床的正常工作。
能够影响机床的热量来源有多处,其中内部热量主要来源于机床本身产生的热量,如电机长时间工作所产生的热,这些热量一方面通过电机固定装置,如电机座,传递给机床,另一方面也会通过热辐射影响电机周围的部件,如床身、滑鞍、或滑枕等部件;坐标轴传动和运动过程中会产生摩擦热,摩擦热直接作用于运动副,导轨、丝杠、螺母以及螺母座等部件既是产生摩擦热的部件,又是受摩擦热影响的部件;外部热量主要来源于外界对机床的热传递或热辐射而引起的发热,如切削工件产生的切削热。切削过程中刀尖点处始终产生热量,热量始终从刀尖点向加工区域内辐射, 刀尖点在加工区域内的运动轨迹不确定,受刀尖点热源影响的温度变化不确定,由于刀尖点位置和刀尖点辐射的热量的不断变化,造成加工区域内的温度分布不均匀、热辐射方向无规律、热扩散不均匀,使位于加工区域内的机床部件上产生不均匀的温度场。
尽管切削液会带走大部分的切削热,但是,切削液携带的热量仍然会有一部分传递给机床的其他部件,由于不均匀的温度场的存在使得热辐射方向无规律,热扩散不均匀,从而使机床的其他部件受热不同,造成机床的其他部件发生不同程度的热变形,如床身上表面比床身下表面温度高而形成温差,床身将弯曲变形,床身上表面成中凸状,使得安装在床身上导轨的直线性受到影响,此外立柱也会因为床身的热变形而产生相应的位置变化,从而破坏机床原有的几何精度,引起了加工误差。除了切削热以外,机床的使用环境温度也会对机床的几何精度产生一定的影响。
由于,机床在工作过程中,始终受到内部热源和外部热源的影响,并且内部热源和外部热源产生的热辐射均为非线性、无规律的,所以,机床始终会受到不稳定、不确定的热影响,其床身、立柱、滑鞍、滑枕、工作台等主要部件以及导轨、丝杠、螺母以及螺母座等传动部件在热量的影响下,容易产生温度的变化,进而产生形变,所以,现有的机床难以在长时间的工作过程中,保证稳定的几何精度,而机床的几何精度综合反应机床各关键零、部件及其组装后的综合几何形状和位置误差,包括部件自身精度和部件之间的相互位置精度。
因此,急需提出一种立式加工中心,解决现有的机床受到不稳定、不确定的热源影响,造成各部件发生不同程度形变,难以使机床在长时间的工作过程中保持稳定的几何精度的问题。
发明内容
本发明公开了一种立式加工中心,解决现有的机床受到不稳定、不确定的热源影响,造成各部件发生不同程度形变,难以使机床在长时间的工作过程中保持稳定的几何精度的问题。
为了实现上述目的,本发明的技术方案是:
一种立式加工中心,包括床身、立柱、滑鞍、滑枕、工作台以及支座, 所述床身、立柱、滑鞍、滑枕、工作台以及支座均采用矿物胶凝材料浇铸而成;
所述床身上设置有用于驱动工作台在床身上沿Y轴方向运动的工作台驱动装置;
所述立柱固定在床身上,所述立柱为对称龙门结构,包括龙门左立柱、龙门右立柱以及龙门横梁组成,所述龙门横梁上设置有用于驱动所述滑鞍沿X轴方向运动的滑鞍驱动装置;
所述滑鞍上设置能够驱动所述滑枕沿Z轴方向滑动的滑枕驱动装置;
所述滑枕内部安装有刀具主轴和能够驱动刀具主轴工作的主轴电机。
优选的,所述矿物胶凝材料选自铸石或发泡水泥。
通过采用上述技术方案,相比于传统的灰铸铁,本申请通过采用矿物胶凝材料浇铸床身、立柱、滑鞍、滑枕和工作台以及支座,矿物胶凝材料的在受热的状况下,热导率降低仅为灰铸铁的1/20,单位时间内,采用矿物胶凝材料铸件的机床对温度的变化小于采用灰铸铁零件的机床对温度的变化,使机床的铸件形变量较小,保证了机床的几何精度;同时,由于机床工作时,滑鞍、滑枕等运动部件运动过程中容易产生振动,使运动部件自身以及其连接部件同步振动,降低运动部件的重复定位精度和相对位置精度,进而影响加工精度,矿物胶凝材料具有良好的减振性能,能够降低运动部件及其连接部件的振动幅度,使相邻部件之间的相对位置保持稳定,从而使相对运动的部件之间的配合间隙不易发生变化,保证了相对运动的部件之间的重复定位精度。通过降低热源对机床温度的影响,并降低了机床各部件的振动幅度,减小了机床工作过程中各零部件产生的形变,使机床能够在长时间的工作过程中保持稳定的几何精度、定位精度以及重复定位精度。
进一步地,所述床身、立柱、滑鞍、滑枕和工作台以及支座的上分别预设有若干金属嵌件,所述金属嵌件为安装其他工件提供接口;若干所述金属嵌件均匀且对称分布。
通过采用上述技术方案,由于传统的床身、立柱、滑鞍、滑枕和工作台以及支座铸件分别采用铸铁材质制成,可以通过在成型后的铸件上打孔、焊接等操作实现铸件和铸件之间的连接;而改进后的床身、立柱、滑鞍、滑枕和工作台以及支座分别采用矿物胶凝材料浇铸而成,由于矿物胶凝材料自身 的材料特性不易在成型后的铸件上进行打孔、焊接等操作,从而不便于实现铸件和铸件之间的连接,通过在浇铸时将金属嵌件预设于凝胶材料的内部,使得金属嵌件和床身、立柱、滑鞍、滑枕和工作台以及支座等铸件一体成型,由于金属嵌件的存在为相邻铸件之间的安装以及铸件上其他工件的安装提供接口,为后续铸件之间的连接固定提供安装基础。由于金属嵌件均匀且对称分布,内部热量容易传导至金属嵌件上,使铸件的温度呈对称分布,进而使得机床的散热面积、导热途径和零件的质量等对称分布,能够在机床各铸件上产生均匀的温度场,此时机床各铸件的热辐射呈线性、规律的,减少机床的热变形量,进而保证机床的几何精度、运动精度、定位精度和重复定位精度。
进一步地,位于所述床身的金属嵌件包括地脚嵌件和床身嵌件以及床身管状嵌件,所述地脚嵌件能够于铸造后的床身上形成连接部,所述连接部用于安装能够支撑床身的地脚;所述床身嵌件开设有嵌件空腔,所述嵌件空腔内壁设有螺纹结构;所述床身管状嵌件能够于床身内形成注胶孔道;
位于所述立柱的金属嵌件包括导轨嵌件和立柱嵌件以及立柱管状嵌件,所述立柱嵌件开设有嵌件空腔,所述嵌件空腔内壁设有螺纹结构,所述立柱管状嵌件能够于立柱内形成排气孔;
通过注胶孔道将结构胶注入立柱和床身之间的接合面处,使得所述立柱和床身采用结构胶粘结固定在一起。
通过采用上述技术方案,床身、立柱采用结构胶粘接的方式,结构胶可以弥补床身和立柱接合面的粗拙度上的缺陷,保证立柱与床身100%的粘接,由于结构胶具有较好的抗老化能力,于床身和立柱的接合面处形成坚固且有缓冲力的抗磨层,固化后结构胶具有较好的抗震、抗压、抗拉、抗冲击等物理性能,使得床身和立柱的连接处不易在运动部件的振动下产生间隙,保证床身和立柱的连接,使床身和立柱之间的相对位置长时间保持稳定的垂直状态,进而保证了床身和立柱之间的定位精度和几何精度。
进一步地,所述滑鞍上设置有滑枕连接槽和压板,滑枕滑轨位于所述压板和滑枕连接槽之间,所述压板与滑枕连接槽和滑枕滑轨的接触面分别设有耐磨层,所述耐磨层与滑枕滑轨的接触面加工成精度面。
通过采用上述技术方案,通过在耐磨层上设置精度面,精度面能够弥补 精度差,保证滑枕连接槽和压板与滑枕滑轨接触面的几何精度一致,同时耐磨层的设置降低了由于摩擦而造成的结构损坏,增加了结构的使用寿命,从而降低了结构之间由于摩擦产生的热量,提高相对运动部件之间的重复定位精度。
进一步地,所述工作台驱动装置、滑鞍驱动装置和滑枕驱动装置均包括丝杠副,所述工作台上固设有和丝杠副配合的Y轴螺母壳;
所述滑鞍上固设有和丝杠副配合的X轴螺母壳;
所述滑枕上固设有和丝杠副配合的Z轴螺母壳;
所述滑鞍、滑枕和工作台上内部分别设置有用于安装螺母壳的螺母壳体嵌件;
所述X轴螺母壳、Y轴螺母壳和Z轴螺母壳外部分别设置有冷却套。
通过采用上述技术方案,机床在工作时,螺母壳和丝杠副配合配合,由于丝杠副传动过程中会产生大量的热,通过在螺母壳外部设置了冷却套并向冷却套内通入冷却液,冷却液能吸收大量的热量而保持螺母壳温度和丝杠副温度不会明显变化,从而保证丝杠副结构的配合间隙,保证运动精度。
进一步地,所述床身、立柱、滑鞍、滑枕和工作台以及支座的外周分别设置有保温棉。
通过采用上述技术方案,保温棉的设置能够延缓外部热源传导至床身、立柱、滑鞍、滑枕和工作台以及支座铸件上,从而保证机床各铸件的温度低于规定温度,降低外部热源的影响,通过保温棉和矿物胶凝材料的配合,降低机床外部热源的导入,即将无规律的热隔在机床外部。
进一步地,床身、立柱、滑鞍、滑枕和工作台的内部均设置有冷却管路。
通过采用上述技术方案,冷却管路内部可以通入冷却液,冷却液能吸收大量的热量而保持温度不会明显变化,从而实现对床身、立柱、滑鞍、滑枕和工作台的恒温控制,从而降低内部热源的影响。
进一步地,所述滑枕的内部设置有至少两个的预应力金属棒嵌件,所述预应力金属棒嵌件沿滑枕的长度方向对称嵌入于滑枕的内部。
通过采用上述技术方案,通过在滑枕内部设置预应力金属棒嵌件,预应力金属棒嵌件能够抵消滑枕受热膨胀导致的拉应力,从而减少滑枕的形变量,同时预应力金属棒嵌件的设置能够增加滑枕的刚性强度,避免滑枕被破坏, 保证滑枕的几何精度。
进一步地,所述冷却管路包括至少两根冷却管,所述冷却管均匀分布在预应力金属棒嵌件的两侧。
通过采用上述技术方案,由于预应力金属棒嵌件嵌设于滑枕的内部,滑枕的热量部分传导至预应力金属棒嵌件嵌上,由于预应力金属棒嵌件为金属材质,其受热易发生形变量,通过将冷却管的设置在预应力金属棒嵌件的两侧,冷却管能够对预应力金属棒嵌件进行冷却,保持预应力金属棒嵌件温度和滑枕温度相等,从而减少预应力金属棒嵌件和滑枕形变量,保证滑枕的几何精度。
进一步地,所述滑枕的内部设置有油冷管路,所述油冷管路包括第一进油管和第一回油管以及第二进油管和第二回油管,所述第一进油管和第一回油管用于为设置有油冷环的主轴电机提供接口;所述第二进油管和第二回油管用于为设置有油冷环的刀具主轴的轴承提供接口。
通过采用上述技术方案,由于油本身具有不导磁不导电的特性,对电机磁路无影响,因此选择油来作为内部直接冷却的介质。由于主轴电机扭矩、转速等参数极限往往受电机转子温升极限限制,通过油冷和油冷环配合,油冷环直接冷却热源的冷却方式,提高主轴电机的散热效率,并可显著提升主轴电机的功率极限。相比于水冷的方式,由于水冷需要主轴电机内部的热源(如电机线圈内部的绕组)通过层层材料传递到主轴电机定子壳体,再被定子壳体水道中冷却液带走。因为材料之间热阻的存在,从主轴到主轴电机的机壳存在温度梯度。位于主轴电机内部的主轴无法直接冷却,导致温度堆积,形成局部热点,冷却效率不太理想,因此采用油冷的方式直接冷却热源,对主轴电机进行强制冷却,降低主轴电机以及轴承的温升,从而减少由主轴电机及轴承产生的热量,实现对机床的热变形控制,提高机床的加工精度。
本发明公开的立式加工中心的有益效果:
本申请通过采用矿物胶凝材料浇铸床身、立柱、滑鞍、滑枕和工作台以及支座,矿物胶凝材料的在受热的状况下,热导率仅为灰铸铁的1/20,单位时间内,采用矿物胶凝材料浇铸的机床各铸件受外源热辐射影响的温升较小,使机床的铸件形变量较小,从而保证了机床的形状精度;床身、立柱、滑鞍、 滑枕和工作台以及支座铸件均采用相同材质制成,使得相对运动的铸件的热变形量相同,提高了机床的几何精度;由于机床工作时,滑鞍、滑枕等运动部件运动过程中容易产生振动,使运动部件自身以及其连接部件同步振动,降低运动部件的运动精度和位置精度,进而影响加工精度,矿物胶凝材料具有良好的减振性能,能够吸收运动部件及其连接部件的振动,降低其振动幅度,使相对运动部件之间的相对位置保持稳定,从而使相对运动的部件之间的配合间隙不易发生变化,保证了机床的运动精度、定位精度和重复定位精度。本申请通过降低热源对机床温度的影响,并降低了机床各部件的振动,减小了机床工作过程中各零部件产生的热变形,使机床能够在长时间的工作过程中保持稳定的几何精度、运动精度、定位精度和重复定位精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明公开的立式加工中心的整体结构示意图;
图2为图1中的A部放大图;
图3为本发明公开的床身的整体结构示意图;
图4为本发明公开的显示床身内部金属嵌件、冷却管路之间关系的结构示意图;
图5为本发明公开的显示铸石工装台的整体结构示意图;
图6为本发明公开的铸石工装台内部工作台装配嵌件、Y轴螺母壳座嵌件、工作台之间连接关系的结构示意图;
图7为本发明公开的立柱的整体结构示意图;
图8为本发明公开的显示立柱内部金属嵌件、冷却管路之间关系的结构示意图;
图9为本发明公开的滑鞍的整体结构示意图;
图10为本发明公开的滑鞍内部金属嵌件、冷却管路之间关系的结构示意图;
图11为本发明公开的X轴螺母壳嵌件的整体结构示意图;
图12为本发明公开的滑枕的整体结构示意图;
图13为本发明公开的滑枕的正视图;
图14为图13的B-B向剖视图;
图15为本发明公开的滑枕的俯视图;
图16为图15的C-C向剖视图;
图17为本发明公开的滑枕未安装Z轴螺母座的后视图;
图18为本发明公开的冷却套、X轴丝杠、X轴螺母、X轴螺母壳嵌件之间关系的结构示意图;
图19为本发明公开的冷却管路、管接头嵌件之间关系的结构示意图;
图20为本发明公开的床身和立柱装配后施力示意图;
图21为本发明公开的机床正面点位点位分布示意图;
图22为本发明公开的机床背面点位点位示意图。
图中:1、床身;11、Y轴导轨;12、Y轴丝杠;13、Y轴伺服电机;14、注胶孔;15、Y轴螺母;16、Y轴螺母壳;17、Y轴螺母壳座;2、立柱;21、龙门左立柱;22、龙门右立柱;23、龙门横梁;24、X轴导轨;25、X轴丝杠;26、X轴伺服电机;27、排气孔;28、X轴螺母;3、滑鞍;31、Z轴导轨;32、Z轴丝杠;33、Z轴伺服电机;34、滑枕连接槽;35、压板;36、Z轴螺母;4、滑枕;41、Z轴螺母壳;42、刀具主轴;43、主轴电机;44、导轨安装面;45、Z轴螺母壳座;5、工作台;6、支座;71、第一进油管;72、第一回油管;73、第二进油管;74、第二回油管;8、金属嵌件;81、电机钢套嵌件;811、电机钢套端面;82、主轴钢套嵌件;821、主轴钢套端面;83、Z轴螺母壳座嵌件;831、螺母壳座安装面;841、地脚嵌件;842、床身装配嵌件;843、床身管状嵌件;8431、法兰嵌件;8432、Y轴导轨嵌件;851、连接嵌件;861、工作台装配嵌件;862、Y轴螺母壳座嵌件;871、导轨嵌件;8711、立柱管状嵌件;881、滑鞍装配嵌件;8811、X轴螺母壳嵌件;88111、壳体本体;88112、连接块;8812、滑枕装配件;9、冷却管路;91、进水管;92、回水管;10、预应力金属棒嵌件;20、耐磨层;30、冷却套;301、内套;3011、环形槽;302、外套;40、管接头嵌件。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图1-22,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请中所涉及的Y轴导轨嵌件8432、工作台装配嵌件861、导轨嵌件871、滑鞍装配嵌件881、Z轴导轨嵌件均和连接嵌件851的结构相同,由于上述嵌件分别布设于不同的铸件上,且分别为铸件上安装其他部件提供了安装接口,为了便于区别不同铸件上嵌件的用途,将上述嵌件在对应的铸件中以不同的命名表示。
实施例1
结合图1和图2,一种立式加工中心,包括床身1、立柱2、滑鞍3、滑枕4和工作台5以及支座6,床身1、立柱2、滑鞍3、滑枕4和工作台5以及支座6均为采用铸石的材料制成铸件,采用矿物胶凝材料浇铸的机床各铸件受外源热辐射影响的温升较小,使机床的铸件形变量较小,保证了机床的形状精度;床身1、立柱2、滑鞍3、滑枕4和工作台5以及支座6均采用相同材质制成,使得相对运动的铸件的热变形量相同,使相对运动部件之间的相对位置保持稳定,提高定位精度。
结合图1、图3和图4,床身1、立柱2、滑鞍3、滑枕4和工作台5的内部分别设置有冷却管路9和多个金属嵌件8,冷却管路9能够对机床主体进行恒温冷却控制,床身1、立柱2、滑鞍3、滑枕4、工作台5的外表面粘贴有发泡保温棉,降低***温度对于机床精度的影响,金属嵌件8为不同铸件之间的连接以及铸件上装配体的安装提供接口。金属嵌件8优选为强度较高的钢制嵌件,钢制嵌件能过弥补铸石材料强度上的不足,保证铸件的整体刚度;同时,多个钢制嵌件于对应的铸件内部对称均匀分布,铸石材料的热量能够传导至钢制嵌件上,在多个对称分布的钢制嵌件作用下使得机床的铸件上分别产生均匀的温度场,机床各铸件的温度场相近似,使机床各铸件的热辐射具有线性和规律性。再通过金属嵌件8和冷却管路9配合,将机床内部热源快速导出,同时在外部发泡保温棉的作用下降低机床外部热源的导入, 即无规律的热隔在机床外部,机床内部热导出,从而降低热源对机床温度的影响,减小了机床工作过程中各零部件产生的热变形,使机床能够在长时间的工作过程中保持稳定的几何精度、运动精度、定位精度和重复定位精度。
在浇铸床身1、立柱2、滑鞍3、滑枕4和工作台5铸件时,将冷却管路9分别预埋至床身1、立柱2、滑鞍3、滑枕4和工作台5的内部,冷却管路9成排间隔设置且形状与对应床身1、立柱2、滑鞍3、滑枕4和工作台5的结构适应,冷却管路9的布设走向避开床身1、立柱2、滑鞍3、滑枕4和工作台5内部金属嵌件8的结构,能够实现对机床内部的散热,保持机床内部温度恒定,降低内部热量对机床以及金属嵌件8的影响,使得机床不易在内部热量影响下产生形变,从而机床能够在长时间的工作过程中保持稳定的高精度。
结合图3和图4,床身1上的金属嵌件8包括地脚嵌件841、床身装配嵌件842和床身管状嵌件843,床身装配嵌件842和床身管状嵌件843均为多个,多个嵌件于床身1上对称分布,地脚嵌件841为多个,多个地脚嵌件841于床身1下端面上对称分布。当床身1受热时,床身1的热量容易传导至金属嵌件8上,在多个对称布设的嵌件的作用下使床身1的温度呈对称分布,进而使得床身1的散热面积、导热途径和零件的质量等对称分布,从而减少床身1的热变形。
床身装配嵌件842包括法兰嵌件8431、Y轴导轨嵌件8432和连接嵌件851,连接嵌件851开设有内壁为螺纹结构的嵌件空腔,固定螺栓能够穿过该螺纹结构的嵌件空腔,便于固定螺栓与连接嵌件851连接。Y轴导轨嵌件8432可以设置为多螺纹钢嵌件、T型螺纹钢结构嵌件或凹槽嵌件。凹槽嵌件、T型螺纹钢嵌件和多螺纹钢嵌件均能够增大安装部表面积,且嵌件成排设置,能使安装部与其他部件连接更稳定,保证高精度长期的稳定性。本实施例对Y轴导轨嵌件8432不作限定。地脚嵌件841能够于铸造后的床身上形成连接部,连接部用于安装能够支撑床身1的地脚。地脚嵌件841的设置能够在对应的床身1表面形成地脚连接部,连接固定床身的结构,提高了床身的稳定性、耐用性和使用效果。
床身管状嵌件843的一端从床身1的侧面***后从床身1的上端面延伸出,预埋管状件于床身1上形成注胶通道,在床身1侧面和床身1朝向立柱 2的端面上分别形成多个注胶孔14,位于床身1侧面的注胶孔14为进口,位于床身1上端面的注胶孔14为出口,注胶孔14连通床身1外部和床身1与立柱2的接触面处。
结合图5和图6,工作台5上的金属嵌件8包括多个工作台装配嵌件861和Y轴螺母壳座嵌件862,多个工作台装配嵌件861对称式分布在工作台5上。工作台装配嵌件861结构与连接嵌件851的结构相同,在此不再赘述。
结合图3、图4和图5,床身1上设置有驱动工作台5在床身1上沿Y轴方向运动的工作台驱动装置。工作台驱动装置包括Y轴导轨11、Y轴丝杠12、以及驱动Y轴丝杠12转动的Y轴伺服电机13。Y轴导轨11通过Y轴导轨嵌件8432固定在床身1上,Y轴丝杠12通过连接嵌件851固定在床身1上,Y轴伺服电机13通过法兰嵌件8431固定在床身1上。Y轴丝杠12上设置有Y轴螺母15,Y轴螺母15的外部套设有Y轴螺母壳16,Y轴螺母壳16固定在Y轴螺母壳座17上,Y轴螺母壳座17通过Y轴螺母壳座嵌件862固定在工作台5上。Y轴螺母15与Y轴丝杠12螺纹传动,Y轴伺服电机13通过Y轴丝杠12驱动工作台5沿Y轴方向做直线往复滑动。
Y轴螺母壳座嵌件862上加工有Y轴螺母壳座安装面,Y轴螺母壳座嵌件862与工作台5固定。螺母壳座安装面为精加工面,用于安装Y轴螺母壳座17,螺母壳座安装面与Y轴导轨安装面平行,确保整体装配后机床的丝杠螺母副与导轨的相对精度。
结合图7和图8,立柱2上的金属嵌件8包括导轨嵌件871和立柱管状嵌件8711。导轨嵌件871结构与连接嵌件851结构相同,在此不再赘述。
立柱2由龙门左立柱21、龙门右立柱22以及龙门横梁23组成,龙门左立柱21和龙门右立柱22对称设置,龙门横梁23水平设置于龙门左立柱21和龙门右立柱22的上方,三者构成对称龙门结构。导轨嵌件871为多个,部分导轨嵌件871均分为两组,对称分布于龙门横梁23的两侧为X轴导轨的安装提供接口,部分导轨嵌件871布设于龙门横梁23的端部,为X轴伺服电机26的电机座的安装提供接口。由于金属嵌件8为金属材质,立柱2内部热源容易传导至金属嵌件8上,在金属嵌件8的作用下使立柱2的温度呈对称分布,进而使得立柱2的散热面积、导热途径和零件的质量等对称分布,减少立柱2的热变形。
立柱管状嵌件8711的一端从立柱2的侧面***后从立柱2的下端面延伸出,预埋管状件于立柱2上形成排气通道,在立柱2侧面以及下端面上分别形成多个排气孔27,位于立柱2侧面的排气孔27为出口,位于立柱2下端面的排气孔27为进口,排气孔27连通立柱2外部和床身1与立柱2的接合面处。由于龙门左立柱21和龙门右立柱22上的排气孔27均为多个,增大了排气孔27和接合面的接触面积,能够在向接合面注胶时,便于接合面处空气的排出。
结合图1和图7,装配床身和立柱时,将立柱2整体吊装至床身1上,将结构胶通过注胶孔14注入立柱2和床身1之间的接合面处,直至排气孔27有结构胶溢出为止,结构胶充分填充在立柱2和床身1的接合面,结构胶可以弥补床身和立柱接合面的粗拙度上的缺陷,使床身1和立柱2之间100%粘接在一起;最后,保持立柱2原位静止,直到结构胶充分固化,固化后结构胶具有较好的抗震、抗压、抗拉、抗冲击等物理性能,不仅能够将立柱2粘结固定在床身1上,由于固化后结构胶具有较好的抗震、抗压、抗拉、抗冲击等物理性能,能够增加了床身和立柱之间的连接刚度。
结合图8,图9和图10,滑鞍3上的金属嵌件8包括滑鞍装配嵌件881和X轴螺母壳嵌件8811。滑鞍装配嵌件881结构与连接嵌件851结构相同,在此不再赘述;支座6通过滑鞍装配嵌件881固定在滑鞍3上。
立柱2上设置有用于驱动滑鞍3沿X轴方向运动的滑鞍驱动装置。滑鞍驱动装置包括X轴导轨24、X轴丝杠25以及能够驱动X轴丝杠25转动使得滑鞍3沿X轴方向滑动的X轴伺服电机26。X轴导轨24通过导轨嵌件871固定在立柱2上,X轴伺服电机26通过导轨嵌件871固定在立柱2上。X轴丝杠25上设置有X轴螺母28,X轴螺母28与X轴丝杠25螺纹传动。X轴螺母28的外部套设有X轴螺母壳,X轴螺母壳通过X轴螺母壳嵌件8811安装于滑鞍3上,X轴伺服电机26通过X轴丝杠25驱动X轴螺母28沿X轴方向做直线往复滑动。
结合图7和图11,X轴螺母壳嵌件8811包括壳体本体88111,壳体本体88111设置为弧形,该弧形的弧度等于X轴螺母28外周面的弧度,壳体本体88111的外周面上设有若干连接块88112,若干连接块88112均匀布设于壳体本体88111的外周面上。连接块88112沿壳体本体88111的径向方向向外延 伸,在连接块88112的的作用下增大了壳体本体88111和滑鞍3的接触面积。由于Y轴丝杠12和Y轴螺母15传动的过程中会产生一定的振动,通过增加若干连接块88112浇铸进工作台5内部,增加了Y轴螺母壳座嵌件862与滑鞍3连接的紧密性与牢固性,通过X轴螺母壳嵌件8811和滑鞍3本身材质的配合下,能够降低X轴螺母壳嵌件8811和滑鞍3及X轴螺母壳嵌件8811的连接部件的振动频率,使相邻部件之间的相对位置保持稳定,从而使相对运动的部件之间的配合间隙不易发生变化,从而提高X轴丝杠25和X轴螺母28传动过程中的稳定性,为滑鞍3沿X轴方向保持保持稳定的高精度运行提供保障。
结合图12、图13和图14,滑枕4上的金属嵌件8包括滑枕装配件8812、Z轴螺母壳座嵌件83、预应力金属棒嵌件10。滑枕装配件8812包括Z轴导轨嵌件和法兰嵌件8431,Z轴导轨嵌件结构和连接嵌件851结构相同,在此不再赘述。
结合图15和图16,预应力金属棒嵌件10为两个,两个预应力金属棒嵌件10沿滑枕4的长度方向对称嵌入于滑枕4的内部,预应力金属棒嵌件10优选为预应力钢棒嵌件。预应力金属棒嵌件10预先施加压力,用于抵消滑枕4受热膨胀导致的拉应力,进一步减少滑枕4的形变量,同时增加滑枕4的强度,避免滑枕4被破坏。
滑枕4内部的冷却管路9包括两根冷却管,两根冷却管为一组,冷却管的组数和预应力金属棒嵌件10的数量相等。位于同一组的两根冷却管,一个为进水管91、一个为回水管92,两组冷却管的进水管91并联。两根冷却管分别固定在预应力金属棒嵌件10的两侧,使得预应力金属棒嵌件10能够得到良好的冷却,减少预应力金属棒嵌件10的形变量。
滑枕4设有沿长度方向贯通的通孔;滑枕4上的金属嵌件8还包括用于安装主轴电机43的电机钢套嵌件81、用于安装主轴的主轴钢套嵌件82,Z轴螺母壳座嵌件83能够和Z轴丝杠32配合;
参照图14,电机钢套嵌件81和主轴钢套嵌件82分别固定在通孔的两端,电机钢套嵌件81的电机钢套端面811探出通孔,电机钢套端面811为配合面,电机钢套端面811探出通孔能够确保电机钢套端面811能够单独得到精加工,避免整体加工造成不必要的浪费。
主轴钢套嵌件82的主轴钢套端面821与通孔平齐,主轴钢套端面821所处平面为配合面,配合面与通孔平齐,使得两者能够同步加工,确保精度;
结合图14和图17,Z轴螺母壳座嵌件83上加工有螺母壳座安装面831,Z轴螺母壳座嵌件83与滑枕4固定,螺母壳座安装面831平行于导轨安装面44,螺母壳座安装面831位于两个导轨安装面44之间。
螺母壳座安装面831为精加工面,用于安装丝杠螺母壳座,螺母壳座安装面831与导轨安装面44平行,确保整体装配后机床的丝杠螺母副与导轨的相对精度。
滑枕4的内部安装有刀具主轴42和能够驱动刀具主轴42工作的主轴电机43,刀具主轴42通过主轴钢套嵌件82固定安装在滑枕4的内部,主轴电机43通过电机钢套嵌件81固定在滑枕4的内部。上述结构实现电机的后置,由于越靠近主轴前端的地方热量越大,对滑枕的形变影响越大。通过主轴电机43后置相当于主轴电机43的热量放到远离滑枕和电主轴,便于更好的控制滑枕4的热量,便于实现对主轴电机43的发热抑制。
参照图14,滑枕4的内部还设置有油冷管路,油冷管路包括设置在电机钢套嵌件81上的第一进油管71和第一回油管72以及设置在主轴钢套嵌件82上的第二进油管73和第二回油管74;第一进油管71和第一回油管72用于为设置有油冷环的电机提供接口,便于冷却主轴电机43;第二进油管73和第二回油管74用于为设置有油冷环的主轴轴承提供接口,便于冷却电主轴,减少因温度产生的形变对主轴精度造成影响。
结合图1、图2和图10,滑枕4安装在滑鞍3的侧面,滑鞍3上对应设置有滑枕连接槽34和压板35,滑鞍3上设置能够驱动滑枕4沿Z轴方向滑动的滑枕驱动装置,滑枕驱动装置包括Z轴丝杠32以及能够驱动Z轴丝杠32转动使得滑枕4沿Z轴滑动的Z轴伺服电机33,Z轴伺服电机33安装在支座6上。Z轴导轨31通过导轨嵌件871固定在滑鞍3上,Z轴丝杠32上设置有Z轴螺母36,Z轴螺母36的外部套设有Z轴螺母壳41,Z轴螺母壳41固定在Z轴螺母壳座45上,Z轴螺母壳座Z轴螺母壳座嵌件83安装在滑枕4上,Z轴螺母36与Z轴丝杠32螺纹传动,Z轴伺服电机33通过Z轴丝杠32驱动滑枕4沿Z轴方向做直线往复滑动。
Z轴导轨31位于压板35和滑枕连接槽34之间,压板35与滑枕连接槽 34和滑枕滑轨的接触面分别设有耐磨层20,耐磨层20的设置降低了由于摩擦而造成的结构损坏,增加了结构的使用寿命,从而降低了结构之间由于摩擦产生的热量。
耐磨层20与Z轴导轨31的接触面加工成精度面,其中位于压板35上的精度面为滑枕连接槽34的精度面的复印面,采用复印加工的方法复印而成,复印前先将接触面进行打磨,预留出导轨胶的填充空间,复印工装上具有加工打磨而成的精度面,当滑鞍3和复印工装的精度面接触时,导轨胶均匀涂抹在滑鞍3的打磨面上,此时导轨胶具有了复印工装精度面的精度,通过导轨胶和复印工装配合,能够将复印工装精度面的精度复印至滑鞍3上,保证滑鞍3的几何精度。
参照图18,X轴螺母壳、Y轴螺母壳和Z轴螺母壳41的外部均套设有冷却套30。冷却套30包括内外套302接在一起的内套301和外套302,且内套301和外套302通过螺栓连接固定,内套301的外壁面开设有环形槽3011,环形槽3011和外套302内周面之间围成供冷却液通过的冷却通道,在环形槽3011的作用下实现对螺母壳轴向冷却,轴向冷却能够直接带走螺母和丝杠传动过程中产生的热量,热量通过外套302传递冷却管路9,最后被冷却管路9内的冷却液带走,这种方式能够大幅度改善螺母散热情况,进而控制螺母壳和丝杠的温度。
实施例2:和实施例1的区别仅在于,床身1、立柱2、滑鞍3、滑枕4和工作台5以及支座6均为采用发泡水泥的材料制成铸件,床身1、立柱2、滑鞍3、滑枕4和工作台5以及支座6的内部还设置有能够加强铸件强度的加强骨架。加强骨架为采用钢筋制成的钢筋骨架,钢筋骨架的形状和对应铸件的形状相适配。
在浇铸床身1、立柱2、滑鞍3、滑枕4和工作台5铸件前,预先将钢筋绑扎成钢筋骨架,然后将钢筋骨架整体吊装至对应铸件的浇铸模具内部,钢筋的布设走向避开床身1、立柱2、滑鞍3、滑枕4和工作台5内部金属嵌件8和冷却管路9,将钢筋骨架和浇铸材料一体浇铸成型。
由于发泡水泥本身具有较强的抗压能力,钢筋具有较强的抗拉能力,因此在发泡水泥内部嵌设钢筋,使得一体浇铸成型的铸件能够同时具有发泡水泥的抗压性能和钢筋的抗拉性能,两者共同作用更能提高铸件的承载能力。
发泡水泥本身的多孔结构具有较好的吸振能力,减小了振动对机床相对运动的各铸件之间的相对位置精度和几何精度的影响。
对铸铁和铸石以及发泡水泥材料进行性能对比,对比结果见表1。
表1铸铁和铸石、发泡水泥性能分析
由表1可知,铸石材料与传统铸铁材料相对比,热导率仅为铸铁的1/20,对短时的环境温度变化不敏感。因此,当本申请的床身、立柱、滑鞍、滑枕和工作台以及支座铸件均采用矿物铸石材料材质制成时,单位时间内,相同热量下,采用矿物铸石材料铸件的机床的热变形小于采用灰铸铁零件的机床的热变形,由于机床的铸件形变量较小,保证了机床各铸件的几何精度。
矿物铸石材料还具有良好的减振性能,其阻尼特性数值为铸铁的6-10倍, 床身、立柱、滑鞍、滑枕和工作台以及支座铸件均采用减振性能优异的矿物铸石材料,能够降低运动部件及其连接部件的振动幅度,使相邻部件之间的相对位置保持稳定,从而使相对运动的部件之间的配合间隙不易发生变化。由于降低了机床的铸件形变量以及相对运动的部件之间的配合间隙,使的机床能够在长时间的工作过程中保持稳定的几何精度、定位精度以及重复定位精度。
实施例3:和实施例1的区别仅在于,结合图1和图19,床身1、立柱2、滑鞍3、滑枕4和工作台5于冷却管路9的两端分别设置有管接头,管接头的规格和冷却管路的端部相适配,管接头能够实现相邻铸件之间冷却管路的连通,管接头可依据实际需求进行选择与冷却管路连接,在此不作限定。
床身1、立柱2、滑鞍3、滑枕4和工作台5上分别预设有管接头嵌件40,管接头嵌件40开设有和冷却管路相适配的空腔,管接头通过管接头嵌件固定在对应的铸件上,在浇铸成型前冷却管路的端部插接于空腔内,该空腔内壁设置有螺纹段,铸件的外部设置有模板,模板上设置有通孔,通孔和空腔的中心重合,将螺栓贯穿于通孔后和空腔的螺纹段螺纹连接,在模板的作用下实现对冷却管路端部的位置固定,同时模板的设置能够防止浇铸材料进入冷却管路内部;在浇铸成型后,拆除模板,将管接头和管接头嵌件40通过螺栓连接,相邻铸件的冷却管路之间通过管接头连接,实现对冷却管路之前的连通。
性能测试:
对实施例1以及铸铁材质的机床床身和立柱进行连接刚度的测试。检测结果见表2和表3。
测试方法:参见图21,在床身和立柱装配完成后,将床身进行固定,通过电机驱动丝杠分别对机床不同点位施加1000N的作用力,在床身上模拟重物=17000N,用德国马尔MAHR数显指示表测量形变量。
测试点位分布参见图21和图22,图21为机床正面的点位点位分布;图21为机床背面的点位分布。
表2、铸石材质床身、立柱受力形变量测试数据
表3、铸铁材质床身、立柱受力形变量测试数据
由表2和表3对比可以看出,相同温度、相同测试点位、相同作用力、相同时间下,采用铸石材料制成的铸件形变量小于采用铸铁材料制成的铸件形变量,即铸石材料制成的铸件的刚性大于铸铁材料制成的铸件的刚性,从而保证了铸件的几何精度。
本申请的床身、立柱、滑鞍、滑枕和工作台以及支座铸件均采用矿物铸石材料材质制成,本申请通过在铸石材料内部布设金属嵌件,通过金属嵌件 和铸石材料的配合,铸件不同点位处热变形相近,铸件整体受热均匀,证明机床的各铸件热变形程度相近,从而保证机床的几何精度。
本申请的床身、立柱、滑鞍、滑枕和工作台以及支座铸件均采用矿物铸石材料材质制成,本申请通过在铸石材料内部布设金属嵌件,通过金属嵌件和铸石材料的配合,使成型后的机床铸件具有更高的刚度,弥补了铸石材料本身抗拉强度和抗压强度较差的问题,延长机床各铸件的使用寿命,同时提高了机床各铸件的承重能力,使得机床铸件不易在外力影响下形变,保证机床上各铸件的几何精度和定位精度。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种立式加工中心,包括床身(1)、立柱(2)、滑鞍(3)、滑枕(4)、工作台(5)以及支座(6),其特征在于,所述床身(1)、立柱(2)、滑鞍(3)、滑枕(4)、工作台(5)以及支座(6)均采用矿物胶凝材料浇铸而成;
    所述床身(1)上设置有用于驱动工作台(5)在床身(1)上沿Y轴方向运动的工作台驱动装置;
    所述立柱(2)固定在床身(1)上,所述立柱(2)为对称龙门结构,包括龙门左立柱(21)、龙门右立柱(22)以及龙门横梁(23)组成,所述龙门横梁(23)上设置有用于驱动所述滑鞍(3)沿X轴方向运动的滑鞍驱动装置;
    所述滑鞍(3)上设置能够驱动所述滑枕(4)沿Z轴方向滑动的滑枕驱动装置;
    所述滑枕(4)内部安装有刀具主轴(42)和能够驱动刀具主轴(42)工作的主轴电机(43)。
  2. 根据权利要求1所述的立式加工中心,其特征在于,所述床身(1)、立柱(2)、滑鞍(3)、滑枕(4)和工作台(5)以及支座(6)的内部分别预设有金属嵌件(8),所述金属嵌件(8)为安装其他工件提供接口。
  3. 根据权利要求2所述的立式加工中心,其特征在于,位于所述床身(1)的金属嵌件(8)包括地脚嵌件(841)和床身装配嵌件(842)以及床身管状嵌件(843),所述地脚嵌件(841)能够于铸造后的床身上形成连接部,所述连接部用于安装能够支撑床身(1)的地脚;所述床身装配嵌件(842)开设有嵌件空腔,所述嵌件空腔内壁设有螺纹结构;所述床身管状嵌件(843)能够于床身内形成注胶孔(14)道;
    位于所述立柱(2)的金属嵌件(8)包括导轨嵌件(871)和立柱装配嵌件(8711)以及立柱管状嵌件(8712),所述立柱装配嵌件(8711)开设有嵌件空腔,所述嵌件空腔内壁设有螺纹结构;所述立柱管状嵌件(8712)能够于立柱内形成排气孔(27);
    通过注胶孔(14)道将结构胶注入立柱(2)和床身(1)之间的接合面处,使得所述立柱(2)和床身(1)采用结构胶粘结固定在一起。
  4. 根据权利要求1所述的立式加工中心,其特征在于,所述滑鞍(3)上设置有滑枕连接槽(34)和压板(35),滑枕滑轨位于所述压板(35) 和滑枕连接槽(34)之间,所述压板(35)与滑枕连接槽(34)和滑枕滑轨的接触面分别设有耐磨层(20),所述耐磨层(20)与滑枕滑轨的接触面加工成精度面。
  5. 根据权利要求1所述的立式加工中心,其特征在于,所述工作台驱动装置、滑鞍驱动装置和滑枕驱动装置均包括丝杠副,所述工作台(5)上固设有和丝杠副配合的Y轴螺母(15)壳;
    所述滑鞍(3)上固设有和丝杠副配合的X轴螺母(28)壳;
    所述滑枕(4)上固设有和丝杠副配合的Z轴螺母(36)壳;
    所述X轴螺母(28)壳、Y轴螺母(15)壳和Z轴螺母(36)壳外部分别设置有冷却套(30);
    所述滑鞍(3)、滑枕(4)和工作台(5)上内部分别设置有用于安装螺母壳的螺母壳嵌件。
  6. 根据权利要求1所述的立式加工中心,其特征在于,所述床身(1)、立柱(2)、滑鞍(3)、滑枕(4)、工作台(5)以及支座(6)的外周分别设置有保温棉。
  7. 根据权利要求1所述的立式加工中心,其特征在于,床身(1)、立柱(2)、滑鞍(3)、滑枕(4)和工作台(5)的内部均设置有冷却管路(9)。
  8. 根据权利要求7所述的立式加工中心,其特征在于,所述滑枕(4)的内部设置有至少两个预应力金属棒嵌件(10),所述预应力金属棒嵌件(10)沿滑枕(4)的长度方向对称嵌入于滑枕(4)的内部。
  9. 根据权利要求8所述的立式加工中心,其特征在于,所述冷却管路(9)包括至少两根冷却管,所述冷却管均匀分布在预应力金属棒嵌件(10)的两侧。
  10. 根据权利要求1所述的立式加工中心,其特征在于,所述滑枕(4)的内部设置有油冷管路,所述油冷管路包括第一进油管(71)和第一回油管(72)以及第二进油管(73)和第二回油管(74),所述第一进油管(71)和第一回油管(72)用于为设置有油冷环的主轴电机(43)提供接口;所述第二进油管(73)和第二回油管(74)用于为设置有油冷环的刀具主轴(42)的轴承提供接口。
PCT/CN2023/105994 2022-11-29 2023-07-06 一种立式加工中心 WO2024113873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211516497.3 2022-11-29
CN202211516497.3A CN115722936A (zh) 2022-11-29 2022-11-29 一种立式加工中心

Publications (1)

Publication Number Publication Date
WO2024113873A1 true WO2024113873A1 (zh) 2024-06-06

Family

ID=85299272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105994 WO2024113873A1 (zh) 2022-11-29 2023-07-06 一种立式加工中心

Country Status (2)

Country Link
CN (1) CN115722936A (zh)
WO (1) WO2024113873A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722936A (zh) * 2022-11-29 2023-03-03 科德数控股份有限公司 一种立式加工中心

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286734A (ja) * 1997-04-11 1998-10-27 Toshiba Mach Co Ltd 門形工作機械
CN101559562A (zh) * 2009-05-27 2009-10-21 成都普瑞斯数控机床有限公司 数控机床床身、立柱装配方法
CN102294599A (zh) * 2011-08-03 2011-12-28 杭州大天数控机床有限公司 一种刀库与主轴共装在滑鞍上的数控龙门加工中心
CN102476286A (zh) * 2010-11-23 2012-05-30 大连创达技术交易市场有限公司 一种机床床身与立柱装配方法
CN206286824U (zh) * 2016-12-02 2017-06-30 山东新力数控机床有限公司 超精密立式加工中心
CN107962189A (zh) * 2017-11-30 2018-04-27 广州义同机械实业有限公司 一种防丝杠热伸长的龙门式加工中心
CN207656268U (zh) * 2017-11-28 2018-07-27 深圳市创世纪机械有限公司 光机结构
CN108500836A (zh) * 2018-06-04 2018-09-07 江苏汤普斯伦新材料科技有限公司 一种采用矿物铸件的导轨磨床基础构件及制备方法和制备模具
CN209125323U (zh) * 2018-12-05 2019-07-19 沈阳海克机床有限公司 一种立式加工中心主体结构
CN113427317A (zh) * 2021-05-27 2021-09-24 北京精雕科技集团有限公司 一种机床结构件的温控结构及制造方法
CN217224746U (zh) * 2022-04-21 2022-08-19 广东省机械研究所有限公司 一种cnc高速高精机床身内部冷却循环***
CN115722936A (zh) * 2022-11-29 2023-03-03 科德数控股份有限公司 一种立式加工中心

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286734A (ja) * 1997-04-11 1998-10-27 Toshiba Mach Co Ltd 門形工作機械
CN101559562A (zh) * 2009-05-27 2009-10-21 成都普瑞斯数控机床有限公司 数控机床床身、立柱装配方法
CN102476286A (zh) * 2010-11-23 2012-05-30 大连创达技术交易市场有限公司 一种机床床身与立柱装配方法
CN102294599A (zh) * 2011-08-03 2011-12-28 杭州大天数控机床有限公司 一种刀库与主轴共装在滑鞍上的数控龙门加工中心
CN206286824U (zh) * 2016-12-02 2017-06-30 山东新力数控机床有限公司 超精密立式加工中心
CN207656268U (zh) * 2017-11-28 2018-07-27 深圳市创世纪机械有限公司 光机结构
CN107962189A (zh) * 2017-11-30 2018-04-27 广州义同机械实业有限公司 一种防丝杠热伸长的龙门式加工中心
CN108500836A (zh) * 2018-06-04 2018-09-07 江苏汤普斯伦新材料科技有限公司 一种采用矿物铸件的导轨磨床基础构件及制备方法和制备模具
CN209125323U (zh) * 2018-12-05 2019-07-19 沈阳海克机床有限公司 一种立式加工中心主体结构
CN113427317A (zh) * 2021-05-27 2021-09-24 北京精雕科技集团有限公司 一种机床结构件的温控结构及制造方法
CN217224746U (zh) * 2022-04-21 2022-08-19 广东省机械研究所有限公司 一种cnc高速高精机床身内部冷却循环***
CN115722936A (zh) * 2022-11-29 2023-03-03 科德数控股份有限公司 一种立式加工中心

Also Published As

Publication number Publication date
CN115722936A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2024113873A1 (zh) 一种立式加工中心
RU2417871C2 (ru) Устройство, системы и способы для сухой изотермической обработки и сборочные приспособления для заготовок
CN101195178B (zh) 龙门式超精密飞切铣床
US20010042424A1 (en) Reduced vibration lathe
CN106826474B (zh) 小尺寸薄壁复杂结构件超精密磨削用机床
CN105171479A (zh) 通用柔性夹具及其使用方法
WO2024113872A1 (zh) 一种床身和立柱的连接辅助装置及方法
CN208276515U (zh) 智能温升热补偿矿物铸件床身
CN207127515U (zh) 由矿物铸料制成的机床
Kim et al. Design and manufacture of a three-axis ultra-precision CNC grinding machine
CN108500836B (zh) 一种采用矿物铸件的导轨磨床基础构件及制备方法
CN219005241U (zh) 一种立式加工中心
CN205834729U (zh) 由矿物铸料制成的龙门式机床
CN108422208A (zh) 智能温升热补偿矿物铸件床身
JP4660096B2 (ja) 工作機械に主軸を支持するための構造およびその製造方法
CN108162437B (zh) 碳纤维杆件的修复方法
CN219005242U (zh) 一种适用于高精度加工的滑枕
Lee et al. An Analytical Study on the Thermal-Structure Stability Evaluation of Mill-Turn Spindle with Curvic Coupling
CN113427317A (zh) 一种机床结构件的温控结构及制造方法
JP6351056B2 (ja) 工作機械用プレート及びこれを用いた加工方法
EP0050544B2 (en) Method of assembling a machine tool and machine tool
CN218836050U (zh) 一种滑枕铸造模具
Smoli´ k et al. Application of sandwich-based designs on main structural parts of machine tools
JPS6218301B2 (zh)
CN219114569U (zh) 一种滑鞍铸造模具