WO2024113604A1 - 一种直驱传输***及控制方法 - Google Patents

一种直驱传输***及控制方法 Download PDF

Info

Publication number
WO2024113604A1
WO2024113604A1 PCT/CN2023/087085 CN2023087085W WO2024113604A1 WO 2024113604 A1 WO2024113604 A1 WO 2024113604A1 CN 2023087085 W CN2023087085 W CN 2023087085W WO 2024113604 A1 WO2024113604 A1 WO 2024113604A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch signal
stator
driver
mover
transmission system
Prior art date
Application number
PCT/CN2023/087085
Other languages
English (en)
French (fr)
Inventor
史卫领
朱学园
郭顺
钱林
Original Assignee
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声科技(南京)有限公司 filed Critical 瑞声科技(南京)有限公司
Priority to US18/338,380 priority Critical patent/US20240178780A1/en
Publication of WO2024113604A1 publication Critical patent/WO2024113604A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/02Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type

Definitions

  • the present invention relates to the technical field of direct drive transmission, and in particular to a direct drive transmission system and a control method.
  • direct-drive transmission systems use: multiple windings to form a stator, a position feedback device to feedback the relative position of the stator and the mover, a coordinated control algorithm between the stators, and the coils in the windings are energized to drive the mover.
  • position feedback devices such as absolute grating scales and magnetic scales
  • position feedback devices are expensive, and there are some areas in the transmission system that do not have high positioning accuracy requirements, but these areas still use position feedback devices, resulting in a high cost for the direct-drive transmission system.
  • the object of the present invention is to provide a direct drive transmission system and a control method, which can solve the technical problem of high cost of direct drive transmission systems in related technologies.
  • a direct-drive transmission system comprising a substrate, a guide rail fixed to the substrate, a plurality of stators fixed to the substrate and connected in sequence along the extension direction of the guide rail, a mover slidably assembled on the guide rail and spaced apart from the stator, a plurality of drivers electrically connected to each of the stators one by one, and a controller electrically connected to the driver, the stator being used to drive the mover to slide on the guide rail, the transmission line where each of the stators is located is configured into connected low-precision sections and high-precision sections, the direct-drive transmission system also comprising a first switch signal device fixed to the mover, and a plurality of second switch signal devices fixed to the substrate and corresponding one by one to each of the stators located in the low-precision section, the first switch signal device and the second switch signal device being arranged correspondingly, and each of the second switch signal devices being electrically connected to the corresponding driver or both being electrically connected to the controller.
  • the stator has a head end along the sliding direction of the mover, the second switch signal device is located at the head end of the stator, and two first switch signal devices are provided and are respectively located at two ends of the mover.
  • each of the second switch signal devices is electrically connected to the drivers connected to two adjacent stators, so as to be electrically connected to the corresponding driver.
  • the stator includes a first magnetic conductor fixed to the substrate, a plurality of protrusions formed by protruding outward from a surface of a side of the first magnetic conductor away from the substrate, and a plurality of coils wound and fixed on the outside of each of the protrusions in a one-to-one manner, the plurality of protrusions are spaced apart along the extension direction of the guide rail, and two adjacent coils are spaced apart, and all coils of the same stator are electrically connected to a driver corresponding to the stator.
  • the mover includes a mounting plate slidably assembled on the guide rail, a second magnetic conductor fixed to a side of the mounting plate close to the substrate, and a plurality of magnets fixed to a side of the second magnetic conductor away from the mounting plate, the plurality of magnets corresponding to the plurality of coils one by one and arranged opposite to each other, and the magnets are spaced apart from the protrusions.
  • a control method of a direct drive transmission system is used for the direct drive transmission system as described in any one of the above items, and the control method of the direct drive transmission system includes:
  • a first switch signal device is respectively provided at both ends of the mover, wherein determining the driver to be driven according to the trigger signal comprises:
  • the driver connected to the stator corresponding to the specific value is determined as the driver to be driven.
  • the acquiring a specific value of a second switch signal device corresponding to the trigger signal comprises:
  • the specific value of the second switch signal device corresponding to the trigger signal in the mapping table is determined according to the pointer; wherein the mapping table is preset in the controller, and the mapping table includes the mapping relationship between the pointer, the stator, and the specific value.
  • the stator has a head end along the sliding direction of the mover, the second switch signal device is located at the head end of the stator, and each of the second switch signal devices is electrically connected to the drivers connected to two adjacent stators, characterized in that the driver to be driven is determined according to the trigger signal, comprising:
  • two stators are obtained that are arranged adjacent to a second switch signal device corresponding to the trigger signal;
  • the drives to which the two stators are connected are determined as drives to be driven.
  • the driver connected to the stator located in the low-precision segment adopts sensorless control or variable frequency control to drive the corresponding stator, and the drivers connected to all stators are electrically connected to the same controller.
  • the driver when each second switch signal device is electrically connected to the corresponding driver, the driver receives the trigger signal generated by the second switch signal device and transmits it to the controller, and the controller sends a corresponding control instruction to the corresponding driver according to the trigger signal; when each second switch signal device is electrically connected to the controller, the controller receives the trigger signal generated by the second switch signal device and sends a corresponding control instruction to the corresponding driver according to the trigger signal, so that the controller sends a corresponding control instruction to the driver according to the trigger signal generated by the second switch signal device triggered by the first switch signal device, so that the stator drives the mover to slide on the guide rail under the control of the driver, thereby realizing the motion control of the mover in the low-precision section of the transmission line, that is, the scheme adopts the switch signal device to replace the expensive position feedback device in the low-precision section of the transmission line, thereby reducing the amount of position feedback device used and reducing the hardware cost; at the same time, the motion
  • FIG1 is a schematic structural diagram of a linear transmission system according to an embodiment of the present invention.
  • Fig. 2 is a cross-sectional view along the line A-A in Fig. 11;
  • FIG. 3 is a front view of a linear transmission system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a basic flow chart of a control method for a linear transmission system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a specific flow chart of a control method for a linear transmission system according to an embodiment of the present invention.
  • An embodiment of the present invention provides a direct-drive transmission system, including a substrate 1, a guide rail 2 fixed to the substrate 1, a plurality of stators 3 fixed to the substrate 1 and connected in sequence along the extension direction of the guide rail 2, a mover 4 slidably assembled on the guide rail 2 and spaced apart from the stator 3, a plurality of drivers (not shown in the figure) electrically connected to each stator 3 one by one, and a controller (not shown in the figure) electrically connected to the driver, the stator 3 is used to drive the mover 4 to slide on the guide rail 2, and the transmission line where each stator 3 is located is configured into connected low-precision sections and high-precision sections.
  • the direct-drive transmission system also includes a first switch signal device 5 fixed to the mover 4, and a plurality of second switch signal devices 6 fixed to the substrate 1 and corresponding one by one to each stator 3 located in the low-precision section, the first switch signal device 5 and the second switch signal device 6 are correspondingly arranged, and each second switch signal device 6 is electrically connected to a corresponding driver or is electrically connected to the controller.
  • each second switch signal device 6 when each second switch signal device 6 is electrically connected to the corresponding driver, the driver receives the trigger signal generated by the second switch signal device 6 and transmits it to the controller, and the controller sends a corresponding control instruction to the corresponding driver according to the trigger signal; when each second switch signal device 6 is electrically connected to the controller, the controller receives the trigger signal generated by the second switch signal device 6 and sends a corresponding control instruction to the corresponding driver according to the trigger signal, so that the controller sends a corresponding control instruction to the driver according to the trigger signal generated by the second switch signal device 6 triggered by the first switch signal device 5, so that the stator 3 drives the mover 4 to slide on the guide rail 2 under the control of the driver, and realizes the motion control of the mover 4 in the low-precision section of the transmission line, that is, the present scheme adopts the switch signal device to replace the expensive position feedback device in the low-precision section of the transmission line, thereby reducing the use of the position feedback device and reducing the hardware cost; at the
  • the stator 3 includes a first magnetic conductor 31 fixed to the substrate 1, a plurality of protrusions 32 protruding outward from a surface of the first magnetic conductor 31 on a side away from the substrate 1, and a plurality of coils 33 correspondingly wound and fixed on the outside of each protrusion 32.
  • the plurality of protrusions 32 are spaced apart along the extension direction of the guide rail 2, and two adjacent coils 33 are spaced apart. All coils 33 of the same stator 3 are electrically connected to the driver of the corresponding stator 3.
  • the first magnetic conductor 31 can be a magnetic conductive plate
  • the protrusion 32 can be a rectangular plate
  • the protrusions 32 are evenly spaced
  • the coil 33 and the protrusion 32 together form a winding, so that the distribution of the traveling wave magnetic field generated after a suitable current is passed through the winding is relatively uniform
  • the spacing between two adjacent coils 33 can provide heat dissipation space for the coil 33, and is also conducive to winding the wire around the outside of the protrusion 32 to form the coil 33
  • all coils 33 of the same stator 3 are electrically connected to the driver of the corresponding stator 3, so that one driver can drive one stator 3, thereby reducing the number of drivers used in the direct-drive transmission system and reducing the cost of the direct-drive transmission system.
  • the mover 4 includes a mounting plate 41 slidably mounted on the guide rail 2, a second magnetizer 42 fixed to the side of the mounting plate 41 close to the base plate 1, and a plurality of magnets 43 fixed to the side of the second magnetizer 42 away from the mounting plate 41.
  • the plurality of magnets 43 correspond to the plurality of coils 33 one by one and are arranged opposite to each other.
  • the magnets 43 are arranged at intervals from the protrusion 32.
  • the two ends of the mounting plate 41 are respectively slidably mounted on the two guide rails 2, which is conducive to improving the sliding stability of the mover 4.
  • the second magnetizer 42 is in the shape of a plate, and the plurality of magnets 43 are evenly distributed on the second magnetizer 42.
  • the plurality of magnets 43 correspond to the plurality of coils 33 one by one and are arranged opposite to each other, so that the coils 33 and the protrusion 32 together form a winding that is arranged opposite to the magnets 43.
  • the magnet 43 induces a magnetic field, and a gap magnetic field is generated between the magnet 43 and the winding.
  • a suitable current is passed through the winding, a traveling wave magnetic field is generated.
  • the gap magnetic field and the traveling wave magnetic field interact with each other to generate a thrust between the magnet 43 and the winding, thereby causing the stator 3 to drive the mover 4 to slide on the guide rail 2 in the direction of the thrust.
  • the mover 4 further includes a slide plate 44 slidably mounted on the guide rail 2 and fixed on the mounting plate 41 on both sides.
  • a first limiting structure is provided on the slide plate 44
  • a second limiting structure is provided on the guide rail 2.
  • the first limiting structure and the second limiting structure jointly limit the slide plate 44 to slide only along the guide direction of the guide rail 2.
  • the first limiting structure can be a limiting portion formed by bending 90° from one end of the slide plate 44 toward the direction close to the base plate 1 and then bending 90° toward the direction close to the guide rail 2.
  • the second limiting structure can be a limiting groove provided on opposite sides of the guide rail 2 and extending along the guide direction of the guide rail 2. The limiting portion extends into the limiting groove to limit the slide plate 44 from being separated from the guide rail 2, thereby ensuring the stability of the mover 4 sliding on the guide rail 2.
  • the outer dimensions of the second magnetic conductor 42 are the same as those of the first magnetic conductor 31, and multiple windings and multiple magnets 43 are arranged one by one, so that the driving range of a stator 3 is matched with that of a mover 4; the number of movers 4 and the number of stators 3, as well as the number of windings and magnets 43 can be set according to actual needs, and no relevant restrictions are made here; the high-precision segments and the low-precision segments are alternately arranged, and the mover 4 can enter the low-precision segment from the high-precision segment, and can also enter the high-precision segment from the low-precision segment.
  • the stator 3 has a head end and a tail end along the sliding direction of the mover 4.
  • the second switch signal device 6 is located at the head end of the stator 3.
  • Two first switch signal devices 5 are provided and are respectively located at the two ends of the mover 4.
  • the first switch signal device 5 can be a trigger plate
  • the second switch signal device 6 can be a photoelectric switch, which is conducive to reducing hardware costs.
  • the second switch signal device 6 is located at the head end of the stator 3, and can timely determine that the mover 4 has begun to enter the low-precision section or enter the stator corresponding to the second switch signal device 6 through the trigger signal generated by the second switch signal device 6.
  • one of the two first switch signal devices 5 triggers the second switch signal device 6 so that the second switch signal device 6 is triggered for the first time, and the other triggers the second switch signal device 6 so that the second switch signal device 6 is triggered for the second time.
  • each second switch signal device 6 is electrically connected to the driver connected to the two adjacent stators 3, so as to be electrically connected to the corresponding driver. Specifically, in the low-precision section of the transmission line, the trigger signal generated by each second switch signal device 6 will be divided into two paths and transmitted to the drivers connected to the two adjacent stators 3.
  • the controller when the trigger signal is transmitted to the drivers connected to the two adjacent stators 3 for the first time, the controller receives the trigger signal transmitted by the driver and determines that along the sliding direction of the mover 4, the mover 4 begins to move in a direction away from the front one of the two stators 3, and begins to move in a direction close to the rear one of the two stators 3; when the trigger signal is transmitted to the driver connected to the two adjacent stators 3 for the second time, the controller can determine that along the sliding direction of the mover 4, the mover 4 just leaves the driving range of the front one of the two stators 3, and begins to move in a direction away from the rear one of the two stators 3.
  • the second switch signal device 6 is located at the head end of the low-precision section stator 3, that is, between the stator 3 of the low-precision section and the stator 3 of the high-precision section; when the second switch signal device 6 generates a trigger signal, the driver connected to the two adjacent stators 3 receives the trigger signal and transmits it to the controller, and the controller can determine that the mover 4 begins to leave the high-precision section and begins to enter the low-precision section based on the trigger signal.
  • each second switch signal device 6 is electrically connected to a controller, and the controller receives a trigger signal generated by the second switch signal device and sends a corresponding control instruction to a driver corresponding to the trigger signal according to the trigger signal.
  • the controller receives the trigger signal generated by the second switch signal device 6 for the first time, it can be determined that along the sliding direction of the mover 4, the mover 4 begins to move in a direction away from the front one of the two stators 3, and begins to move in a direction close to the rear one of the two stators 3; when the controller receives the trigger signal for the second time, the controller can determine that along the sliding direction of the mover 4, the mover 4 just leaves the driving range of the front one of the two stators 3, and begins to move in a direction away from the rear one of the two stators 3.
  • the controller when the mover 4 moves toward the direction approaching the stator 3, the controller sends a control instruction to increase the output current to the driver connected to the stator 3, which can ensure the acceleration performance of the mover 4; when the mover 4 moves toward the direction away from the stator 3 and moves toward the next stator 3 connected to the stator 3, the controller sends a control instruction to reduce the output current to the driver connected to the stator 3, which can avoid speed fluctuations of the mover 4. It should be understood that such dynamic current adjustment is conducive to saving the power of the driver, thereby reducing the use cost of the direct drive transmission system.
  • the second switch signal device 6 can also be set at the tail end of the stator 3, and the first low-precision segment must be set after the high-precision segment to determine the real-time position of the mover 4.
  • the mover 4 just completely enters the driving range of the stator 3 corresponding to the second switch signal device 6, and when the second switch signal device 6 is triggered for the second time, the mover 4 just completely leaves the driving range of the stator 3 corresponding to the second switch signal device 6.
  • the direct drive transmission system further includes a first position feedback device 7 fixed to the mover 4, and a plurality of second position feedback devices fixed to the substrate 1 and corresponding to each stator 3 located in the high-precision section.
  • the first position feedback device 7 and the second position feedback device are correspondingly arranged, and the first position feedback device 7 and the second position feedback device are both electrically connected to the driver.
  • the first position feedback device 7 can be a reader
  • the second position feedback device can be an absolute grating scale or a magnetic scale to ensure that the position detection accuracy of the mover 4 in the high-precision section is high
  • the real-time position of the mover 4 can be determined by the mutual cooperation of the first position feedback device 7 and the second position feedback device, and the driver transmits the real-time position information to the controller, and the controller controls the driver to send corresponding control instructions to the driver of the corresponding stator 3 according to the real-time position information.
  • the embodiment of the present invention further provides a control method of a direct drive transmission system, which is used in the direct drive transmission system as described above.
  • the control method of the direct drive transmission system includes the following steps:
  • Step S10 receiving a trigger signal from the second switch signal device 6 .
  • Step S11 Determine the driver to be driven according to the trigger signal.
  • Step S12 Send corresponding control instructions to the driver to be driven.
  • step S10 the first switch signal device 5 of the mover 4 triggers the second switch signal device 6 to generate a trigger signal, each trigger signal contains the position information of the mover 4, and the position information of the mover 4 contained in each trigger signal is different.
  • the controller can receive the trigger signal generated by the second switch signal device 6 through the driver, or directly receive the trigger signal, that is, the controller can directly receive the position information of the mover 4 without the need for transmission through the driver, thereby simplifying the control method of the transmission system.
  • step S12 the controller sends corresponding control instructions to the driver to be driven, including: the driver outputs an increased current to the stator 3, the driver outputs a reduced current to the stator 3, and the driver outputs a current to the stator 3 that remains unchanged, so that the stator 3 drives the mover 4 to slide stably on the guide rail 2.
  • two first switch signal devices 5 are respectively provided at both ends of the mover 4, and the two first switch signal devices 5 of the mover 4 can trigger the second switch signal device 6 to generate a trigger signal, that is, the same second switch signal device 6 can be triggered twice to generate two trigger signals at different times, and the positions of the mover 4 corresponding to the two trigger signals are different; each mover 4 is adapted to the driving range of a stator 3.
  • the control method of the direct drive transmission system in this embodiment may include the following steps:
  • Step S20 receiving a trigger signal from the second switch signal device 6 .
  • Step S21 obtaining a pointer of a trigger signal.
  • Step S22 determining a specific value of the second switch signal device corresponding to the trigger signal in the mapping table according to the pointer.
  • Step S23 determine the driver connected to the stator 3 corresponding to the specific value as the driver to be driven.
  • Step S24 Send corresponding control instructions to the driver to be driven.
  • the controller is provided with a plurality of pins connected to the plurality of second switch signal devices 6 in a one-to-one correspondence, each pin is provided with a corresponding pointer, and each pointer points to a certain position in the mapping table.
  • a mapping table is preset in the controller, and the mapping table includes a mapping relationship between the pointer, the stator 3, and a specific value. To facilitate understanding of the mapping table, a specific example is described below:
  • the driver connected to the stator 3 corresponding to the specific value is determined as the driver to be driven. According to actual needs, when the magnetic field range of all the magnetic steels 43 of a single mover 4 is greater than the driving range of all the windings of multiple stators 3, the driver connected to the stator 3 corresponding to the specific value and the drivers connected to all the stators 3 between the stators 3 corresponding to the specific value are determined as the drivers to be driven.
  • the second switch signal device 6 is located at the head end of the stator 3.
  • the mover 4 When the same second switch signal device 6 is triggered for the first time (that is, triggered by the first switch signal device 5 at the right end), the mover 4 will enter the driving range of the stator 3 corresponding to the second switch signal device 6. At this time, the mover 4 moves in the direction close to the stator 3.
  • the driver connected to the stator 3 is the driver to be driven.
  • the controller sends a control instruction to the driver to be driven to output an increased current to the winding, thereby ensuring the acceleration performance of the mover 4; when the same second switch signal device 6 is triggered for the second time (that is, triggered by the first signal switch device at the left end), the mover 4 completely enters the driving range of the stator 3 corresponding to the second switch signal device 6. At this time, the mover 4 will move in the direction away from the stator 3.
  • the driver connected to the stator 3 is the driver to be driven.
  • the controller sends a control instruction to the driver to be driven to output a reduced current to the winding, thereby ensuring the acceleration performance of the mover 4 and realizing the control of the movement of the mover 4 in the low-precision segment.
  • the real-time position of the mover 4 is detected in real time through the cooperation between the first position feedback device 7 and the second position feedback device to determine whether the mover 4 has entered the low-precision section. Specifically, when a part of the mover 4 cannot be detected, it is determined that the part of the mover 4 has entered the low-precision section.
  • the controller controls the direct-drive transmission system through the method as described above; when the mover 4 enters the high-precision section from the low-precision section, when the real-time position of the mover 4 can be detected through the cooperation between the first position feedback device 7 and the second position feedback device, it is determined that the mover 4 has entered the high-precision section.
  • the driver transmits the received real-time position information of the mover 4 to the controller, and the controller sends corresponding control instructions to the driver according to the real-time position information of the mover 4, so as to realize the control of the movement of the mover 4 in the high-precision section.
  • step S11 may further include the following steps:
  • Step S110 arranging the low-precision segments on the transmission line in the order of the sliding direction of the mover 4 to obtain low-precision segments with primary sequence numbers.
  • Step S112 arranging the plurality of second switch signal devices 6 provided in the same low-precision segment in the order of the sliding direction of the mover 4 to obtain the second switch signal devices 6 with secondary serial numbers.
  • Step S113 according to the trigger signal, determine the primary serial number of the low-precision segment corresponding to the trigger signal and the secondary serial number of the second switch signal device 6 corresponding to the trigger signal.
  • Step S114 combining the first-level sequence number of the low-precision segment and the second switch signal device 6 that determines the sequence number of the sub-3 to obtain a specific value of the second switch signal device 6.
  • Step S115 determine the driver connected to the stator 3 corresponding to the specific value as the driver to be driven.
  • the low-precision segments on the transmission line may be arranged in alphabetical order and numerical order, for example, the first low-precision segment has a primary serial number A, and the second low-precision segment has a primary serial number B;
  • the second switch signal devices 6 on the transmission line may be arranged in alphabetical order and numerical order, for example, the first second switch signal device 6 has a secondary serial number 1, and the second second switch signal device 6 has a secondary serial number 2. Therefore, in step S114, the specific value of the second second switch signal device 6 of the first low-precision segment is A2, and the specific value of the first second switch signal device 6 of the third low-precision segment is C1.
  • the stator 3 has a head end along the sliding direction of the mover 4, the second switch signal device 6 is located at the head end of the stator 3, and each second switch signal device 6 is electrically connected to the driver connected to two adjacent stators 3.
  • Step S11 may also include the following steps:
  • Step S110 According to the trigger signal, two stators 3 are obtained that are arranged adjacent to the second switch signal device 6 corresponding to the trigger signal.
  • Step S111 determine the driver connected to the two stators 3 as the driver to be driven.
  • the driver receives the trigger signal generated by the second switch signal device and transmits it to the controller.
  • the controller sends corresponding control instructions to the driver corresponding to the trigger signal according to the trigger signal, that is, each driver has two trigger signal inputs, thereby reducing the use of position feedback devices, improving control efficiency, and reducing solution costs.
  • the driver connected to the stator 3 in the low-precision segment adopts sensorless control or variable frequency control to drive the corresponding stator 3.
  • the driver uses a sensorless algorithm to control the stator 3, and the sensorless algorithm includes any one of a sliding mode algorithm, a model reference adaptive algorithm, a state observer algorithm, a Kalman filter algorithm, and a Romberg observation algorithm.
  • all drivers connected to the stators 3 are electrically connected to the same controller, which can avoid excessive differences in currents output by different drivers, or the generation of currents that cause the movers 4 to act in different directions, thereby avoiding speed fluctuations of the same mover 4 during movement due to different control instructions received by the drivers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Control Of Linear Motors (AREA)

Abstract

本发明提供了一种直驱传输***及控制方法,直驱传输***包括基板、导轨、多个定子、动子、多个驱动器、以及控制器,定子用于驱动动子在导轨上滑动,各定子所在的传输线被配置成相连的低精度段和高精度段,直驱传输***还包括第一开关信号装置、以及多个第二开关信号装置,第一开关信号装置和第二开关信号装置对应设置,各第二开关信号装置电连接于对应的驱动器或均电连接于控制器。本方案可以在低精度段采用开关信号装置替代昂贵的位置反馈装置,减少了位置反馈装置的用量,降低硬件成本;同时,动子在低精度段的运动控制简单,可以降低控制成本,从而极大地降低了成本。

Description

一种直驱传输***及控制方法 技术领域
本发明涉及直驱传输技术领域,尤其涉及一种直驱传输***及控制方法。
背景技术
随着直驱传输***技术的发展,直驱传输***的控制方法在各种直驱电机中得到广泛的应用。
在相关技术中,直驱传输***采用:多个绕组组成一个定子,采用位置反馈装置来反馈定子和动子相对位置,定子间使用协同控制算法,绕组中的线圈通电后驱动动子运行。然而,位置反馈装置(如绝对式光栅尺和磁栅尺等)较昂贵,传输***存在一些区域没有较高的定位精度要求,但这些区域依旧采用位置反馈装置,导致直驱传输***的成本较高。
因此,有必要提供一种新的直驱传输***。
技术问题
本发明的目的在于提供一种直驱传输***及控制方法,能够解决相关技术中直驱传输***的成本较高的技术问题。
技术解决方案
本发明的技术方案如下:一种直驱传输***,包括基板、固定于所述基板的导轨、固定于所述基板且沿所述导轨的延伸方向依次相连的多个定子、滑动装配于所述导轨并与所述定子间隔设置的动子、一一对应电连接于各所述定子的多个驱动器、以及电连接于所述驱动器的控制器,所述定子用于驱动所述动子在所述导轨上滑动,各所述定子所在的传输线被配置成相连的低精度段和高精度段,所述直驱传输***还包括固定于所述动子的第一开关信号装置、以及固定于所述基板且与位于所述低精度段的各定子一一对应的多个第二开关信号装置,所述第一开关信号装置和所述第二开关信号装置对应设置,各所述第二开关信号装置电连接于对应的所述驱动器或均电连接于所述控制器。
可选地,所述定子具有沿所述动子滑动方向的首端,所述第二开关信号装置位于所述定子的首端,所述第一开关信号装置设有两个且分别位于所述动子的两端。
可选地,每一个所述第二开关信号装置电连接于相邻两个定子所连接的驱动器,以电连接于对应的所述驱动器。
可选地,所述定子包括固定于所述基板的第一导磁体、自所述第一导磁体远离所述基板的一侧表面朝外凸起形成的多个凸起部、以及一一对应绕设固定于各所述凸起部外侧的多个线圈,多个所述凸起部沿所述导轨的延伸方向间隔分布,且相邻两个所述线圈间隔设置,同一个所述定子的所有线圈均电连接于对应所述定子的驱动器。
可选地,所述动子包括滑动装配于所述导轨的安装板、固定于所述安装板靠近所述基板的一侧的第二导磁体、以及固定于所述第二导磁体远离所述安装板的一侧的多个磁钢,多个所述磁钢与多个所述线圈一一对应且正对设置,所述磁钢与所述凸起部间隔设置。
可选地,一种直驱传输***的控制方法,用于如上任一项所述的直驱传输***,所述直驱传输***的控制方法包括:
接收第二开关信号装置的触发信号;
根据所述触发信号,确定待驱动的驱动器;
向待驱动的所述驱动器下发相应的控制指令。
可选地,所述动子的两端分别设有一个所述第一开关信号装置,其特征在于,所述根据所述触发信号,确定待驱动的驱动器包括:
获取所述触发信号对应第二开关信号装置的特定值;其中,所述特定值为所述第二开关信号装置对应的定子在动子滑动方向上的排序;
将所述特定值对应的定子所连接的驱动器确定为待驱动的驱动器。
可选地,所述获取所述触发信号对应第二开关信号装置的特定值包括:
获取触发信号的指针;
根据所述指针确定所述触发信号对应的第二开关信号装置在映射表中的特定值;其中,控制器内预设有所述映射表,所述映射表包含所述指针、定子、以及所述特定值的映射关系。
可选地,所述定子具有沿所述动子滑动方向的首端,所述第二开关信号装置位于所述定子的首端,每一个所述第二开关信号装置电连接于相邻两个定子所连接的驱动器,其特征在于,所述根据所述触发信号,确定待驱动的驱动器包括:
根据所述触发信号,得到与对应于所述触发信号的第二开关信号装置相邻设置的两个定子;
将两个所述定子所连接的驱动器确定为待驱动的驱动器。
可选地,位于所述低精度段内的定子所连接的驱动器采用无感控制或变频控制驱动对应的定子,所有定子所连接的驱动器均电连接于同一个控制器。
有益效果
本发明的有益效果在于:当各第二开关信号装置电连接于对应的驱动器时,驱动器接收第二开关信号装置产生的触发信号并传输至控制器,控制器根据触发信号向对应驱动器下发相应的控制指令;当各第二开关信号装置均电连接于控制器时,控制器接收第二开关信号装置产生的触发信号并根据触发信号向对应驱动器下发相应的控制指令,使得控制器根据第一开关信号装置触发第二开关信号装置产生的触发信号,向驱动器下发相应的控制指令,从而使得定子在驱动器的控制下驱动动子在导轨上滑动,实现对动子在传输线上低精度段的运动控制,即本方案在传输线上的低精度段采用开关信号装置替代昂贵的位置反馈装置,减少了位置反馈装置的用量,降低硬件成本;同时,动子在传输线上低精度段的运动控制简单,可以降低控制成本,从而进一步降低了直驱传输***的成本。
附图说明
图1是本发明实施例直线传输***的结构示意图;
图2是图11中A-A向剖视图;
图3是本发明实施例直线传输***的主视图;
图4是本发明实施例直线传输***的控制方法的基本流程示意图;
图5是本发明实施例直线传输***的控制方法的具体流程示意图。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
请参阅图1、图2和图3,本发明实施例提供了一种直驱传输***,包括基板1、固定于基板1的导轨2、固定于基板1且沿导轨2的延伸方向依次相连的多个定子3、滑动装配于导轨2并与定子3间隔设置的动子4、一一对应电连接于各定子3的多个驱动器(图中未示出)、以及电连接于驱动器的控制器(图中未示出),定子3用于驱动动子4在导轨2上滑动,各定子3所在的传输线被配置成相连的低精度段和高精度段,直驱传输***还包括固定于动子4的第一开关信号装置5、以及固定于基板1且与位于低精度段的各定子3一一对应的多个第二开关信号装置6,第一开关信号装置5和第二开关信号装置6对应设置,各第二开关信号装置6电连接于对应的驱动器或均电连接于控制器。
应当理解,当各第二开关信号装置6电连接于对应的驱动器时,驱动器接收第二开关信号装置6产生的触发信号并传输至控制器,控制器根据触发信号向对应驱动器下发相应的控制指令;当各第二开关信号装置6均电连接于控制器时,控制器接收第二开关信号装置6产生的触发信号并根据触发信号向对应驱动器下发相应的控制指令,使得控制器根据第一开关信号装置5触发第二开关信号装置6产生的触发信号,向驱动器下发相应的控制指令,从而使得定子3在驱动器的控制下驱动动子4在导轨2上滑动,实现对动子4在传输线上低精度段的运动控制,即本方案在传输线上的低精度段采用开关信号装置替代昂贵的位置反馈装置,减少了位置反馈装置的用量,降低硬件成本;同时,动子4在传输线上低精度段的运动控制简单,可以降低控制成本,从而进一步降低了直驱传输***的成本。
请参阅图1、图2和图3,在一个实施例中,定子3包括固定于基板1的第一导磁体31、自第一导磁体31远离基板1的一侧表面朝外凸起形成的多个凸起部32、以及一一对应绕设固定于各凸起部32外侧的多个线圈33,多个凸起部32沿导轨2的延伸方向间隔分布,且相邻两个线圈33间隔设置,同一个定子3的所有线圈33均电连接于对应定子3的驱动器。具体的,第一导磁体31可以为导磁板,凸起部32可以为矩形板状,各凸起部32均匀间隔分布,线圈33与凸起部32共同形成绕组,使得在向绕组通入合适的电流后所产生的行波磁场的分布较为均匀;相邻两个线圈33间隔设置可以提供线圈33散热空间,同时有利于将导线绕设在凸起部32的外侧形成线圈33;同一个定子3的所有线圈33均电连接于对应定子3的驱动器,使得可以用一个驱动器驱动一个定子3,从而可以减少直驱传输***中驱动器的使用数量,降低直驱传输***的成本。
请参阅图1、图2和图3,在一个实施例中,动子4包括滑动装配于导轨2的安装板41、固定于安装板41靠近基板1的一侧的第二导磁体42、以及固定于第二导磁体42远离安装板41的一侧的多个磁钢43,多个磁钢43与多个线圈33一一对应且正对设置,磁钢43与凸起部32间隔设置。具体的,导轨2共设有两个且间隔设置,安装板41的两端分别滑动装配在两个导轨2上,有利于提升动子4的滑动稳定性;第二导磁体42为平板状,多个磁钢43均匀分布在第二导磁体42上,且多个磁钢43与多个线圈33一一对应且正对设置,使得线圈33与凸起部32共同形成绕组与磁钢43正对设置。应当理解,在直驱传输***处于待机状态时,磁钢43感应出磁场,磁钢43和绕组之间产生间隙磁场,绕组在通入合适的电流后会产生行波磁场,此时间隙磁场和行波磁场之间相互作用,以使磁钢43和绕组之间产生推力,从而使得定子3驱动动子4在导轨2上沿推力的方向滑动。
请参阅图1、图2和图3,在一个实施例中,动子4还包括两侧分别滑动装配于导轨2和固定于安装板41的滑板44,滑板44上设有第一限位结构,导轨2上设有第二限位结构,所述第一限位结构和所述第二限位结构共同限制所述滑板44仅沿所述导轨2导向方向滑动。具体的,第一限位结构可以为自所述滑板44的一端朝靠近基板1的方向弯折90°后再朝靠近导轨2的方向弯折90°形成的限位部,第二限位结构可以为开设在导轨2的相对两侧并沿导轨2的导向方向延伸的限位槽,限位部伸入限位槽内,以限制滑板44脱离导轨2,从而保证动子4在导轨2上滑动的稳定性。
需要说明的是,第二导磁体42的外形尺寸与第一导磁体31的外形尺寸相同,且多个绕组和多个磁钢43一一正对设置,使得一个定子3的驱动范围和一个动子4相适配;动子4的数量和定子3的数量、以及绕组和磁钢43的数量均可以根据实际需要设置,在此不作相关限定;高精度段和低精度段相互交替设置,动子4既可以从高精度段进入低精度段,也可以从低精度段进入高精度段。
请参阅图1、图2和图3,在一个实施例中,定子3具有沿动子4滑动方向的首端和尾端,第二开关信号装置6位于定子3的首端,第一开关信号装置5设有两个且分别位于动子4的两端。具体的,第一开关信号装置5可以为触发片,第二开关信号装置6可以为光电开关,有利于降低降低硬件成本,第二开关信号装置6位于定子3的首端,可以及时地通过第二开关信号装置6所产生的触发信号,确定动子4已经开始进入低精度段或进入对应第二开关信号装置6的定子。其中,两个第一开关信号装置5中的一个触发第二开关信号装置6使得第二开关信号装置6被第一次触发,另一个触发第二开关信号装置6使得第二开关信号装置6被第二次触发。
进一步地,每一个第二开关信号装置6电连接于相邻两个定子3所连接的驱动器,以电连接于对应的驱动器。具体的,在传输线的低精度段内,每一个第二开关信号装置6产生的触发信号会分成两路传输至相邻的两个定子3所连接的驱动器。其中,当触发信号第一次传输至相邻的两个定子3所连接的驱动器时,控制器接收驱动器传输的触发信号并确定在沿动子4的滑动方向上,动子4开始朝远离两个定子3中在前的一个的方向运动,并朝靠近两个定子3中在后的一个的方向开始运动;当触发信号第二次传输至相邻的两个定子3所连接的驱动器时,控制器可以确定在沿动子4的滑动方向上,动子4恰好脱离两个定子3中在前的一个的驱动范围,并开始朝远离两个定子3中在后的一个的方向开始运动。
需要说明的是,在传输线的低精度段和高精度段上,第二开关信号装置6位于低精度段定子3的首端即位于低精度段的定子3和高精度段的定子3之间;当该第二开关信号装置6产生触发信号时,则相邻两个定子3所连接的驱动器接收触发信号并传输至控制器,控制器根据触发信号可以判定动子4开始脱离高精度段且开始进入低精度段。
在一个实施例中,各第二开关信号装置6均电连接于控制器,控制器接收第二开关信号装置产生的触发信号并根据触发信号向对应触发信号的驱动器下发相应的控制指令。对于同一个第二开关信号装置6,当控制器第一次接收第二开关信号装置6产生的触发信号时,可以判断在沿动子4的滑动方向上,动子4开始朝远离两个定子3中在前的一个的方向运动,并朝靠近两个定子3中在后的一个的方向开始运动;当控制器第二次接收触发信号时,控制器可以确定在沿动子4的滑动方向上,动子4恰好脱离两个定子3中在前的一个的驱动范围,并开始朝远离两个定子3中在后的一个的方向开始运动。
需要说明的是,当动子4朝靠近定子3的方向运动时,控制器向该定子3所连接的驱动器下发增大输出电流的控制指令,可以保证动子4的加速性能;当动子4朝远离定子3的方向运动以及朝靠近与该定子3相连的下一个定子3运动时,控制器向该定子3所连接的驱动器下发减小输出电流的控制指令,可以避免动子4的速度波动。应当理解,通过这样的动态电流调整,有利于节约驱动器的功率,从而降低直驱传输***的使用成本。
根据实际需要,也可以将第二开关信号装置6设置在定子3的尾端,则必须设置第一个低精度段在高精度段之后,以确定动子4的实时位置。当第二开关信号装置6被第一次触发时,动子4恰好完全进入对应该第二开关信号装置6的定子3驱动范围内,当第二开关信号装置6被第二次触发时,动子4恰好完全脱离对应该第二开关信号装置6的定子3驱动范围内。
请参阅图1、图2和图3,在一个实施例中,直驱传输***还包括固定于动子4的第一位置反馈装置7、以及固定于基板1且与位于高精度段的各定子3一一对应的多个第二位置反馈装置,第一位置反馈装置7和第二位置反馈装置对应设置,且第一位置反馈装置7和第二位置反馈装置均电连接于驱动器。具体的,第一位置反馈装置7可以为读头,第二位置反馈装置可以为绝对式光栅尺或磁栅尺,保证高精度段内动子4的位置检测精度较高;通过第一位置反馈装置7和第二位置反馈装置的相互配合可以确定动子4的实时位置,驱动器将该实时位置信息传输至控制器,控制器根据该实时位置信息控制驱动器向对应定子3的驱动器下发相应的控制指令。
请参阅图4,本发明实施例还提供了一种直驱传输***的控制方法,用于如上述的直驱传输***,直驱传输***的控制方法包括如下步骤:
步骤S10、接收第二开关信号装置6的触发信号。
步骤S11、根据触发信号,确定待驱动的驱动器。
步骤S12、向待驱动的驱动器下发相应的控制指令。
具体的,在步骤S10中,动子4的第一开关信号装置5触发第二开关信号装置6产生触发信号,每一个触发信号均包含动子4的位置信息,且各个触发信号所包含的动子4位置信息均不相同。控制器可以通过驱动器接收第二开关信号装置6产生的触发信号,也可以直接接收触发信号,即控制器可以直接接收动子4的位置信息,不需要经过驱动器的传输,从而简化传输***的控制方法。在步骤S12中,控制器向待驱动的驱动器下发相应的控制指令包括:驱动器向定子3输出增大后的电流、驱动器向定子3输出减小后的电流、以及驱动器向定子3输出的电流保持不变,从而使定子3驱动动子4在导轨2上稳定地滑动。
在一个实施例中,动子4的两端分别设有两个第一开关信号装置5,动子4的两个第一开关信号装置5均可以触发第二开关信号装置6产生触发信号,即同一个第二开关信号装置6可以被触发两次而产生处于不同时间的两个触发信号,两个触发信号对应的动子4位置不相同;每一个动子4与一个定子3的驱动范围相适配。请参阅图5,本实施例中直驱传输***的控制方法可以包括如下步骤:
步骤S20、接收第二开关信号装置6的触发信号。
步骤S21、获取触发信号的指针。
步骤S22、根据指针确定触发信号对应的第二开关信号装置在映射表中的特定值。
步骤S23、将特定值对应定子3所连接的驱动器确定为待驱动的驱动器。
步骤S24、向待驱动的驱动器下发相应的控制指令。
具体的,控制器上设有一一对应连接于多个第二开关信号装置6的多个引脚,每一个引脚设有一个对应的指针,且每一个指针指向映射表中的一个确定位置。在步骤S22中,控制器内预设有映射表,映射表包含指针、定子3、以及特定值的映射关系,为了便于理解映射表,下面以具体的示例描述:
在本实施例中,由于单个动子4所有磁钢43的磁场范围与单个定子3所有绕组的驱动范围相适配,使得特定值对应的定子3所连接的驱动器确定为待驱动的驱动器。根据实际需要,当单个动子4所有磁钢43的磁场范围大于多个定子3所有绕组的驱动范围时,将特定值对应的定子3所连接的驱动器、以及特定值对应的定子3之间的所有定子3所连接的驱动器均确定为待驱动的驱动器。
在本实施例中,第二开关信号装置6位于定子3的首端,当同一个第二开关信号装置6被第一次触发时(即被右端的第一开关信号装置5触发),则动子4将要进入对应第二开关信号装置6的定子3驱动范围内,此时动子4朝靠近该定子3的方向运动,该定子3所连接的驱动器为待驱动的驱动器,控制器向待驱动的驱动器下发向绕组输出增大的电流的控制指令,保证动子4的加速性能;当同一个第二开关信号装置6被第而次触发时(即被左端的第一信号开关装置触发),则动子4完全进入对应第二开关信号装置6的定子3驱动范围内,此时动子4将要朝远离该定子3的方向运动,该定子3所连接的驱动器为待驱动的驱动器,控制器向待驱动的驱动器下发向绕组输出减小的电流的控制指令,保证动子4的加速性能,实现对低精度段内动子4运动的控制。
需要说明的是,在动子4从高精度段进入低精度段时,通过第一位置反馈装置7和第二位置反馈装置的相互配合实时检测动子4的实时位置,判断动子4是否进入低精度段内,具体为当不能检测到动子4的一部分时,则确定动子4的该部分进入低精度段内,此时控制器通过如上述的方法控制直驱传输***;在动子4从低精度段进入高精度段时,当通过第一位置反馈装置7和第二位置反馈装置的相互配合能够检测到动子4的实时位置,则确定动子4进入高精度段内,此时驱动器将接收的动子4实时位置信息传输至控制器,控制器根据动子4的实时位置信息向驱动器下发相应的控制指令,以实现对高精度段内动子4运动的控制。
在一个实施例中,步骤S11还可以包括如下步骤:
步骤S110、将传输线上的低精度段按动子4的滑动方向顺序排列得到具有一级序号的低精度段。
步骤S112、将同一低精度段内设有的多个第二开关信号装置6按动子4的滑动方向顺序排列得到具有二级序号的第二开关信号装置6。
步骤S113、根据触发信号,确定对应触发信号的低精度段的一级序号以及对应触发信号的第二开关信号装置6的二级序号。
步骤S114、结合确定低精度段的一级序号和确定子3序号的第二开关信号装置6,得到第二开关信号装置6的特定值。
步骤S115、将特定值对应定子3所连接的驱动器确定为待驱动的驱动器。
具体的,在步骤步骤S110中,可以将传输线上的各低精度段依次按字母顺序排列和数字顺序排列,例如第一个低精度段的一级序号A,第二个低精度段的一级序号B;步骤S111中,可以对传输线上各第二开关信号装置6依次按字母顺序排列和数字顺序排列,例如第一个第二开关信号装置6的二级序号为1,第二个第二开关信号装置6的二级序号为2。因此,在步骤S114中,第一个低精度段的第二个第二开关信号装置6的特定值为A2,第三个低精度段的第一个第二开关信号装置6的特定值为C1。
在一个实施例中,定子3具有沿动子4滑动方向的首端,第二开关信号装置6位于定子3的首端,每一个第二开关信号装置6电连接于相邻两个定子3所连接的驱动器,步骤S11还可以包括如下步骤:
步骤S110、根据触发信号,得到与对应于触发信号的第二开关信号装置6相邻设置的两个定子3。
步骤S111、将两个定子3所连接的驱动器确定为待驱动的驱动器。
在本实施例中,驱动器接收第二开关信号装置产生的触发信号并传输至控制器,控制器根据触发信号向对应触发信号的驱动器下发相应的控制指令,即每一个驱动器均有两路触发信号输入,从而减少位置反馈装置的用量,提高控制效率,降低方案成本。
在一些实施例中,位于低精度段内的定子3所连接的驱动器采用无感控制或变频控制驱动对应的定子3。其中,当驱动器采用无感控制时,驱动器使用无感算法控制定子3,无感算法包括滑模算法、模型参考自适应算法、状态观测器算法、卡尔曼滤波器算法、龙伯格观测算法中的任意一种。
在一个实施例中,所有定子3所连接的驱动器均电连接于同一个控制器,可以避免不同的驱动器输出的电流存在过大的差异,或者产生了对于使动子4朝不同方向作用的电流,从而避免同一动子4在运动过程中因为驱动器收到的控制指令的不同导致速度波动。
以上的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种直驱传输***,包括基板、固定于所述基板的导轨、固定于所述基板且沿所述导轨的延伸方向依次相连的多个定子、滑动装配于所述导轨并与所述定子间隔设置的动子、一一对应电连接于各所述定子的多个驱动器、以及电连接于所述驱动器的控制器,所述定子用于驱动所述动子在所述导轨上滑动,其特征在于,各所述定子所在的传输线被配置成相连的低精度段和高精度段,所述直驱传输***还包括固定于所述动子的第一开关信号装置、以及固定于所述基板且与位于所述低精度段的各定子一一对应的多个第二开关信号装置,所述第一开关信号装置和所述第二开关信号装置对应设置,各所述第二开关信号装置电连接于对应的所述驱动器或均电连接于所述控制器。
  2. 根据权利要求1所述的直驱传输***,其特征在于,所述定子具有沿所述动子滑动方向的首端,所述第二开关信号装置位于所述定子的首端,所述第一开关信号装置设有两个且分别位于所述动子的两端。
  3. 根据权利要求2所述的直驱传输***,其特征在于,每一个所述第二开关信号装置电连接于相邻两个定子所连接的驱动器,以电连接于对应的所述驱动器。
  4. 根据权利要求1所述的直驱传输***,其特征在于,所述定子包括固定于所述基板的第一导磁体、自所述第一导磁体远离所述基板的一侧表面朝外凸起形成的多个凸起部、以及一一对应绕设固定于各所述凸起部外侧的多个线圈,多个所述凸起部沿所述导轨的延伸方向间隔分布,且相邻两个所述线圈间隔设置,同一个所述定子的所有线圈均电连接于对应所述定子的驱动器。
  5. 根据权利要求4所述的直驱传输***,其特征在于,所述动子包括滑动装配于所述导轨的安装板、固定于所述安装板靠近所述基板的一侧的第二导磁体、以及固定于所述第二导磁体远离所述安装板的一侧的多个磁钢,多个所述磁钢与多个所述线圈一一对应且正对设置,所述磁钢与所述凸起部间隔设置。
  6. 一种直驱传输***的控制方法,其特征在于,用于如权利要求1-5中任一项所述的直驱传输***,所述直驱传输***的控制方法包括:
    接收第二开关信号装置的触发信号;
    根据所述触发信号,确定待驱动的驱动器;
    向待驱动的所述驱动器下发相应的控制指令。
  7. 根据权利要求6所述的直驱传输***的控制方法,所述动子的两端分别设有一个所述第一开关信号装置,其特征在于,所述根据所述触发信号,确定待驱动的驱动器包括:
    获取所述触发信号对应第二开关信号装置的特定值;其中,所述特定值为所述第二开关信号装置对应的定子在动子滑动方向上的排序;
    将所述特定值对应的定子所连接的驱动器确定为待驱动的驱动器。
  8. 根据权利要求7所述的直驱传输***的控制方法,其特征在于,所述获取所述触发信号对应第二开关信号装置的特定值包括:
    获取触发信号的指针;
    根据所述指针确定所述触发信号对应的第二开关信号装置在映射表中的特定值;其中,控制器内预设有所述映射表,所述映射表包含所述指针、定子、以及所述特定值的映射关系。
  9. 根据权利要求6所述的直驱传输***的控制方法,所述定子具有沿所述动子滑动方向的首端,所述第二开关信号装置位于所述定子的首端,每一个所述第二开关信号装置电连接于相邻两个定子所连接的驱动器,其特征在于,所述根据所述触发信号,确定待驱动的驱动器包括:
    根据所述触发信号,得到与对应于所述触发信号的第二开关信号装置相邻设置的两个定子;
    将两个所述定子所连接的驱动器确定为待驱动的驱动器。
  10. 根据权利要求6所述的直驱传输***的控制方法,其特征在于,位于所述低精度段内的定子所连接的驱动器采用无感控制或变频控制驱动对应的定子,所有定子所连接的驱动器均电连接于同一个控制器。
PCT/CN2023/087085 2022-11-29 2023-04-07 一种直驱传输***及控制方法 WO2024113604A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/338,380 US20240178780A1 (en) 2022-11-29 2023-06-21 Direct drive transmission system and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211510271.2 2022-11-29
CN202211510271.2A CN115765326A (zh) 2022-11-29 2022-11-29 一种直驱传输***及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/338,380 Continuation US20240178780A1 (en) 2022-11-29 2023-06-21 Direct drive transmission system and control method

Publications (1)

Publication Number Publication Date
WO2024113604A1 true WO2024113604A1 (zh) 2024-06-06

Family

ID=85340050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087085 WO2024113604A1 (zh) 2022-11-29 2023-04-07 一种直驱传输***及控制方法

Country Status (2)

Country Link
CN (1) CN115765326A (zh)
WO (1) WO2024113604A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115765326A (zh) * 2022-11-29 2023-03-07 瑞声科技(南京)有限公司 一种直驱传输***及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308280A (ja) * 1995-04-28 1996-11-22 Oriental Motor Co Ltd 直線駆動装置
CN1588259A (zh) * 2004-07-09 2005-03-02 浙江大学 软位置传感器精密直线进给装置
CN105591588A (zh) * 2015-12-31 2016-05-18 中国科学院宁波材料技术与工程研究所 永磁同步直线电机及其控制装置和控制方法
CN115065296A (zh) * 2022-06-30 2022-09-16 瑞声光电科技(常州)有限公司 直线驱动装置
CN115765326A (zh) * 2022-11-29 2023-03-07 瑞声科技(南京)有限公司 一种直驱传输***及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308280A (ja) * 1995-04-28 1996-11-22 Oriental Motor Co Ltd 直線駆動装置
CN1588259A (zh) * 2004-07-09 2005-03-02 浙江大学 软位置传感器精密直线进给装置
CN105591588A (zh) * 2015-12-31 2016-05-18 中国科学院宁波材料技术与工程研究所 永磁同步直线电机及其控制装置和控制方法
CN115065296A (zh) * 2022-06-30 2022-09-16 瑞声光电科技(常州)有限公司 直线驱动装置
CN115765326A (zh) * 2022-11-29 2023-03-07 瑞声科技(南京)有限公司 一种直驱传输***及控制方法

Also Published As

Publication number Publication date
CN115765326A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN102246401B (zh) 推力产生机构、驱动装置、xy工作台以及xyz工作台
CN101009455B (zh) 长行程大推力永磁式无刷直线直流电动机
WO2024113604A1 (zh) 一种直驱传输***及控制方法
WO2020223996A1 (zh) 基于磁传动的直线定位平台及直线定位***
CN204835887U (zh) 一种凸杆式无铁芯直线电机运动模组
CN110855119B (zh) 一种分数极两相游标永磁直线电机
CN209088784U (zh) 一种无铁芯直线电机
CN105099123A (zh) 基于环形绕组和斥力磁场的直线电机
CN102510202B (zh) 永磁直线同步电机
WO2024000712A1 (zh) 直驱***的控制方法及相关设备
CN105356722A (zh) 一种双磁路e型结构横向磁通直线开关磁阻电机
CN102891585A (zh) 一种单边型动磁直线电机
JP2003244929A (ja) リニアモータ
CN218829314U (zh) 直线驱动装置
Zhang et al. Modeling and design of an integrated winding synchronous permanent magnet planar motor
WO2024119682A1 (zh) 一种直驱传输***及控制方法
CN205509831U (zh) 直线电机
CN108494211B (zh) 一种轴向磁通永磁同步磁阻电机
CN101707429A (zh) 一种两相混合式直线步进电机
CN102480210B (zh) 模块化、长行程电磁直线执行器及其电流换相方法
CN209375384U (zh) 一种永磁直线同步电机磁极检测***
CN205212678U (zh) 一种双磁路e型结构横向磁通直线开关磁阻电机
CN107885036A (zh) 运动台驱动装置
CN105591519A (zh) 快速响应直线电机及控制方法与集成控制芯片
CN202818064U (zh) 一种单边型动磁直线电机