WO2024113176A1 - 有机电致发光器件和显示装置 - Google Patents

有机电致发光器件和显示装置 Download PDF

Info

Publication number
WO2024113176A1
WO2024113176A1 PCT/CN2022/135104 CN2022135104W WO2024113176A1 WO 2024113176 A1 WO2024113176 A1 WO 2024113176A1 CN 2022135104 W CN2022135104 W CN 2022135104W WO 2024113176 A1 WO2024113176 A1 WO 2024113176A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sublayer
layer
substituted
unsubstituted
Prior art date
Application number
PCT/CN2022/135104
Other languages
English (en)
French (fr)
Inventor
高荣荣
王丹
陈磊
邱丽霞
孙玉倩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/135104 priority Critical patent/WO2024113176A1/zh
Publication of WO2024113176A1 publication Critical patent/WO2024113176A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • a hole injection layer and a hole transport layer are disposed between the anode and the light-emitting layer, and an electron injection layer and an electron transport layer are disposed between the cathode and the light-emitting layer.
  • the design of the hole injection layer is relatively important.
  • An organic electroluminescent device and a display apparatus An organic electroluminescent device and a display apparatus.
  • X is O, S, C or N
  • L1 and L2 are each independently a direct bond, and each independently a substituted or unsubstituted C6-C60 aryl group;
  • Ar1 and Ar2 are each independently hydrogen, deuterium, a halogen group, a nitrile group, a nitro group, a hydroxyl group, a carbonyl group, an ester group, an imide group, an amino group, a substituted or unsubstituted silyl group, a substituted or unsubstituted boron group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted alkylsulfonyl group, a substituted or unsubstituted arylsulfonyl group, a substituted or unsubstituted
  • R1, R2, R3, R4 are each independently selected from deuterium, a halogen group, a cyano group, a C3-C20 heteroaryl group, a C6-C20 aryl group, a C3-C12 trialkylsilyl group, a C18-C30 triarylsilyl group, a C1-C5 alkyl group, a C1-C10 haloalkyl group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C5-C10 cycloalkenyl group, a C4-C10 heterocycloalkenyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a C6-C18 aryloxy group, a C6-C18 arylthio group, a C6-C24 phosphoxy group, a C6-C18 alkylsulfony
  • a, b, m, and n are each independently an integer of 0-4.
  • the first hole sublayer is located between the second hole sublayer and the anode.
  • the difference between the LUMO energy level of the first material and the HOMO energy level of the second material is between -0.3 eV and 1.0 eV.
  • the organic electroluminescent device further comprises a first electron blocking layer, wherein the first electron blocking layer is located between the first light-emitting layer and the first hole transport layer, and the difference between the HOMO energy level of the second hole sublayer material and the LUMO energy level of the first electron blocking layer is less than or equal to 0.4 eV.
  • the mobility of the second hole sublayer material is greater than the mobility of the first electron blocking layer.
  • a difference between a LUMO energy level of the first electron blocking layer and a HOMO energy level of the first light emitting layer is less than or equal to 0.4 eV.
  • the first electron blocking layer includes a first blocking sublayer, or the first electron blocking layer includes a first blocking sublayer and a second blocking sublayer, the second blocking sublayer is located between the first blocking sublayer and the first light-emitting layer, and the material of the first blocking sublayer is different from the material of the second blocking sublayer.
  • the organic electroluminescent device further includes a hole injection layer, the hole injection layer is located between the first hole transport layer and the anode, and the resistivity of the hole injection layer is greater than or equal to 100 ⁇ m.
  • the organic electroluminescent device further includes a charge generation layer, a second hole transport layer and a second light-emitting layer, the charge generation layer is located on a side of the first light-emitting layer close to the cathode, the second hole transport layer is located on a side of the charge generation layer close to the cathode, and the second light-emitting layer is located between the second hole transport layer and the cathode; the second hole transport layer includes at least a third hole sublayer, and the material of the third hole sublayer includes a first material and a second material.
  • the third hole sublayer is located between the second light emitting layer and the charge generating layer.
  • the mobility M2 of the second hole sub-layer material and the mobility M4 of the third hole sub-layer material satisfy the following conditions:
  • the organic electroluminescent device further includes a second electron blocking layer, the second electron blocking layer includes a third blocking sublayer, or the second electron blocking layer includes a third blocking sublayer and a fourth blocking sublayer, the second electron blocking layer is located between the second light-emitting layer and the second hole transport layer, and the difference between the HOMO energy level of the third hole sublayer material and the LUMO energy level of the second electron blocking layer is less than or equal to 0.4 eV.
  • the mobility of the third hole sublayer material is greater than the mobility of the second electron blocking layer.
  • a difference between a LUMO energy level of the fourth blocking sublayer and a HOMO energy level of the second light emitting layer is less than or equal to 0.4 eV.
  • the second electron blocking layer includes a third blocking sublayer, or the second electron blocking layer includes a third blocking sublayer and a fourth blocking sublayer, the fourth blocking sublayer is located between the third blocking sublayer and the second light-emitting layer, and the material of the third blocking sublayer is different from that of the fourth blocking sublayer.
  • the compound of Formula 1 is selected from one or more of the following compounds:
  • the second material includes but is not limited to a compound having a structure of Formula 3:
  • A1-A6 are each independently substituted or unsubstituted halogen, substituted or unsubstituted cyano, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and aryl substituted by an electron-deficient group or heteroaryl substituted by an electron-deficient group;
  • A is a 3-membered ring, a 4-membered ring, a 5-membered ring or a 6-membered ring.
  • the compound of Formula 3 is selected from one or more of the following compounds:
  • the electron blocking layer includes, but is not limited to, a compound having a structure of Formula 4:
  • Ar3, Ar4, Ar5, and Ar6 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group;
  • L1, L2, L3, and L4 are each independently a direct bond, and each independently a substituted or unsubstituted C6-C60 aryl group;
  • R5 and R6 are each independently selected from deuterium, a halogen group, a cyano group, a C3-C20 heteroaryl group, a C6-C20 aryl group, a C3-C12 trialkylsilyl group, a C18-C30 triarylsilyl group, a C1-C5 alkyl group, a C1-C10 haloalkyl group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C5-C10 cycloalkenyl group, a C4-C10 heterocycloalkenyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a C6-C18 aryloxy group, a C6-C18 arylthio group, a C6-C24 phosphoxy group, a C6-C18 alkylsulfonyl group,
  • Ar3, Ar4, Ar5, Ar6 are each independently the following groups:
  • An embodiment of the present disclosure provides a display device including the organic electroluminescent device.
  • FIG1 is a schematic structural diagram of an OLED display device
  • FIG2 is a schematic diagram of a planar structure of a display area of a display substrate
  • FIG3 is a schematic diagram of a cross-sectional structure of a display substrate
  • FIG4 is a schematic diagram of the structure of an organic electroluminescent device according to an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of another organic electroluminescent device structure according to an embodiment of the present disclosure.
  • FIGS. 6A and 6B are schematic diagrams of other organic electroluminescent devices according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another exemplary structure of an organic electroluminescent device according to an embodiment of the present disclosure.
  • FIGS. 8A and 8B are schematic diagrams of other organic electroluminescent devices according to an embodiment of the present disclosure.
  • FIG9 is a schematic diagram of another exemplary structure of an organic electroluminescent device according to an embodiment of the present disclosure.
  • FIG10 is a schematic diagram of another exemplary structure of an organic electroluminescent device according to an embodiment of the present disclosure.
  • FIG11 is a schematic diagram of another exemplary structure of an organic electroluminescent device according to an embodiment of the present disclosure.
  • FIG12 is an exemplary crosstalk phenomenon
  • FIG. 13 is an exemplary crosstalk-free spectrum of a device of the present disclosure.
  • 60 charge generation layer
  • 61 N-type charge generation layer
  • 62 P-type charge generation layer
  • 80 electron transport layer
  • 89 electron injection layer
  • 90 cathode
  • 101 substrate
  • 102 driving circuit layer
  • 103 light-emitting device
  • 104 encapsulation layer
  • 201 first insulating layer
  • 202 second insulating layer
  • 203 third insulating layer
  • 204 fourth insulating layer
  • 205 flat layer
  • 210 driving transistor
  • 211 storage capacitor
  • 301 anode
  • 302 pixel definition layer
  • 303 organic light emitting layer
  • 304 cathode
  • 401 first encapsulation layer
  • 402 second encapsulation layer
  • 403 third encapsulation layer.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate, or the internal communication of two elements.
  • installed can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate, or the internal communication of two elements.
  • a transistor refers to a component including at least three terminals: a gate electrode, a drain electrode, and a source electrode.
  • a transistor has a channel region between a drain electrode (or drain electrode terminal, drain region, or drain electrode) and a source electrode (or source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, the channel region, and the source electrode.
  • the channel region refers to the region where the current mainly flows.
  • the first electrode may be a drain electrode and the second electrode may be a source electrode, or the first electrode may be a source electrode and the second electrode may be a drain electrode.
  • the functions of the "source electrode” and the “drain electrode” may sometimes be interchanged. Therefore, in this article, the "source electrode” and the “drain electrode” may be interchanged.
  • electrical connection includes the situation where the components are connected together through an element having some electrical function.
  • element having some electrical function There is no particular limitation on the “element having some electrical function” as long as it can transmit and receive electrical signals between the connected components.
  • the “element having some electrical function” can be, for example, an electrode or wiring, or a switching element such as a transistor, or other functional elements such as a resistor, inductor or capacitor.
  • parallel means that the angle formed by two straight lines is greater than -10° and less than 10°, and therefore, also includes the state where the angle is greater than -5° and less than 5°.
  • perpendicular means that the angle formed by two straight lines is greater than 80° and less than 100°, and therefore, also includes the state where the angle is greater than 85° and less than 95°.
  • film and “layer” can be interchanged.
  • conductive layer can sometimes be replaced by “conductive film”.
  • insulating film can sometimes be replaced by “insulating layer”.
  • FIG. 1 is a schematic diagram of the structure of an OLED display device.
  • the OLED display device may include a scan signal driver, a data signal driver, a light emitting signal driver, an OLED display substrate, a first power supply unit, a second power supply unit, and an initial power supply unit.
  • the OLED display substrate at least includes a plurality of scan signal lines (S1 to SN), a plurality of data signal lines (D1 to DM), and a plurality of light emitting signal lines (EM1 to EMN),
  • the scan signal driver is configured to sequentially provide scan signals to the plurality of scan signal lines (S1 to SN)
  • the data signal driver is configured to provide data signals to the plurality of data signal lines (D1 to DM)
  • the light emitting signal driver is configured to sequentially provide light emitting control signals to the plurality of light emitting signal lines (EM1 to EMN).
  • the plurality of scan signal lines and the plurality of light emitting signal lines extend in a horizontal direction
  • the plurality of data signal lines extend in a vertical direction
  • the display device includes a plurality of sub-pixels, and one sub-pixel is, for example, connected to one scan signal line, one light emitting control line, and one data signal line.
  • the first power supply unit, the second power supply unit, and the initial power supply unit are configured to provide a first power supply voltage, a second power supply voltage, and an initial power supply voltage to the pixel circuit through a first power supply line, a second power supply line, and an initial signal line, respectively.
  • FIG2 is a schematic diagram of a planar structure of a display area of a display substrate.
  • the display area may include a plurality of pixel units P arranged in a matrix manner, at least one of the plurality of pixel units P includes a first sub-pixel P1 emitting a first color light, a second sub-pixel P2 emitting a second color light, and a third sub-pixel P3 emitting a third color light, and the first sub-pixel P1, the second sub-pixel P2, and the third sub-pixel P3 each include a pixel driving circuit and a light-emitting device.
  • the pixel driving circuits in the first sub-pixel P1, the second sub-pixel P2, and the third sub-pixel P3 are respectively connected to the scanning signal line, the data signal line, and the light-emitting signal line, and the pixel driving circuit is configured to receive the data voltage transmitted by the data signal line under the control of the scanning signal line and the light-emitting signal line, and output a corresponding current to the light-emitting device.
  • the light-emitting devices in the first sub-pixel P1, the second sub-pixel P2, and the third sub-pixel P3 are respectively connected to the pixel driving circuits of the sub-pixels in which they are located, and the light-emitting devices are configured to emit light of corresponding brightness in response to the current output by the pixel driving circuit of the sub-pixel in which they are located.
  • the pixel unit P may include a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel, or may include a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white (W) sub-pixel, which is not limited in the present disclosure.
  • the shape of the sub-pixel in the pixel unit may be a rectangle, a rhombus, a pentagon, or a hexagon.
  • the pixel unit includes three sub-pixels, the three sub-pixels may be arranged in a horizontal parallel, vertical parallel, or in a triangular manner.
  • the pixel unit includes four sub-pixels, the four sub-pixels may be arranged in a horizontal parallel, vertical parallel, or square manner, which is not limited in the present disclosure.
  • FIG3 is a schematic diagram of a cross-sectional structure of a display substrate, illustrating the structure of three sub-pixels of an OLED display substrate.
  • the display substrate may include a driving circuit layer 102 disposed on a substrate 101, a light-emitting device 103 disposed on a side of the driving circuit layer 102 away from the substrate 101, and an encapsulation layer 104 disposed on a side of the light-emitting device 103 away from the substrate 101.
  • the display substrate may include other film layers, such as spacers, etc., which are not limited in the present disclosure.
  • the substrate may be a flexible substrate or a rigid substrate.
  • the flexible substrate may include a first flexible material layer, a first inorganic material layer, a semiconductor layer, a second flexible material layer, and a second inorganic material layer stacked together.
  • the materials of the first flexible material layer and the second flexible material layer may be polyimide (PI), polyethylene terephthalate (PET), or a surface-treated polymer soft film, etc.
  • the materials of the first inorganic material layer and the second inorganic material layer may be silicon nitride (SiNx) or silicon oxide (SiOx), etc., for improving the water and oxygen resistance of the substrate, and the material of the semiconductor layer may be amorphous silicon (a-Si).
  • the driving circuit layer 102 of each sub-pixel may include a plurality of transistors and storage capacitors constituting a pixel driving circuit, and FIG3 is illustrated by taking one driving transistor and one storage capacitor in each sub-pixel as an example.
  • the driving circuit layer 102 of each sub-pixel may include: a first insulating layer 201 disposed on a substrate; an active layer disposed on the first insulating layer; a second insulating layer 202 covering the active layer; a gate electrode and a first capacitor electrode disposed on the second insulating layer 202; a third insulating layer 203 covering the gate electrode and the first capacitor electrode; a second capacitor electrode disposed on the third insulating layer 203; a fourth insulating layer 204 covering the second capacitor electrode, a via hole being provided on the second insulating layer 202, the third insulating layer 203 and the fourth insulating layer 204, the active layer being exposed through the via hole; a source electrode and a drain electrode disposed on the
  • the light emitting device 103 may include an anode 301, a pixel definition layer 302, an organic light emitting layer 303, and a cathode 304.
  • the anode 301 is disposed on the planar layer 205, and is connected to the drain electrode of the driving transistor 210 through a via hole provided on the planar layer 205;
  • the pixel definition layer 302 is disposed on the anode 301 and the planar layer 205, and a pixel opening is provided on the pixel definition layer 302, and the pixel opening exposes the anode 301;
  • the organic light emitting layer 303 is at least partially disposed in the pixel opening, and the organic light emitting layer 303 is connected to the anode 301;
  • the cathode 304 is disposed on the organic light emitting layer 303, and the cathode 304 is connected to the organic light emitting layer 303;
  • the organic light emitting layer 303 emits light of corresponding colors under the drive of the anode
  • the encapsulation layer 104 may include a first encapsulation layer 401, a second encapsulation layer 402 and a third encapsulation layer 403 stacked together.
  • the first encapsulation layer 401 and the third encapsulation layer 403 may be made of inorganic materials, and the second encapsulation layer 402 may be made of organic materials.
  • the second encapsulation layer 402 is arranged between the first encapsulation layer 401 and the third encapsulation layer 403, which can ensure that external water vapor cannot enter the light-emitting device 103.
  • the organic light emitting layer 303 may include at least a hole injection layer 11 , a hole transport layer 20 , a light emitting layer 40 , and a hole blocking layer 50 stacked on the anode 301 .
  • FIG4 is a schematic diagram of the structure of an organic electroluminescent device according to an embodiment of the present disclosure, wherein the organic electroluminescent device comprises an anode 10, a cathode 90, and a first hole transport layer 20 and a first light-emitting layer 40 disposed between the anode and the cathode, wherein the first hole transport layer 20 is located between the first light-emitting layer 40 and the anode 10; the first hole transport layer 20 comprises at least a first hole sublayer 21 and a second hole sublayer 22; the material of the first hole sublayer 21 comprises a first material and a second material, and the material of the second hole sublayer 22 comprises at least one of the first material and the second material; and
  • the first material is not limited to a compound having a structure of Formula 1:
  • X is O, S, C or N
  • L1 and L2 are each independently a direct bond, and each independently a substituted or unsubstituted C6-C60 aryl group;
  • Ar1 and Ar2 are each independently hydrogen, deuterium, a halogen group, a nitrile group, a nitro group, a hydroxyl group, a carbonyl group, an ester group, an imide group, an amino group, a substituted or unsubstituted silyl group, a substituted or unsubstituted boron group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted alkylsulfonyl group, a substituted or unsubstituted arylsulfonyl group, a substituted or unsubstituted
  • R1, R2, R3, R4 are each independently selected from deuterium, a halogen group, a cyano group, a C3-C20 heteroaryl group, a C6-C20 aryl group, a C3-C12 trialkylsilyl group, a C18-C30 triarylsilyl group, a C1-C5 alkyl group, a C1-C10 haloalkyl group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C5-C10 cycloalkenyl group, a C4-C10 heterocycloalkenyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a C6-C18 aryloxy group, a C6-C18 arylthio group, a C6-C24 phosphoxy group, a C6-C18 alkylsulfony
  • a, b, m, and n are each independently an integer of 0-4.
  • the first hole sublayer 21 is located between the second hole sublayer 22 and the anode 10.
  • the difference between the LUMO (Lowest Unoccupied Molecular Orbit) energy level of the first material and the HOMO (Highest Occupied Molecular Orbit) energy level of the second material is between -0.3 eV and 1.0 eV.
  • FIG5 is a schematic diagram of another structure of an organic electroluminescent device according to an embodiment of the present disclosure, wherein the organic electroluminescent device comprises an anode 10, a cathode 90, and a first hole transport layer 20 and a first light-emitting layer 40 disposed between the anode and the cathode, wherein the first hole transport layer 20 is located between the first light-emitting layer 40 and the anode 10; the first hole transport layer 20 comprises at least a first hole sublayer 21 and a second hole sublayer 22; the material of the first hole sublayer 21 comprises a first material and a second material, and the material of the second hole sublayer 22 comprises at least one of the first material and the second material; and the organic electroluminescent device further comprises a first electron blocking layer 30, wherein the first electron blocking layer 30 is located between the first light-emitting layer 40 and the first hole transport layer 20, and the difference between the HOMO energy level of the second hole sublayer material and the LUMO energy level of the first electron blocking layer is less
  • the difference between the LUMO energy level of the first electron blocking layer and the HOMO energy level of the first light-emitting layer is less than or equal to 0.4 eV.
  • the mobility of the second hole sublayer material is greater than the mobility of the first electron blocking layer.
  • a difference between a LUMO energy level of the first electron blocking layer and a HOMO energy level of the first light emitting layer is less than or equal to 0.4 eV.
  • the organic electroluminescent device includes an anode 10, a cathode 90, and a first hole transport layer 20 and a first light-emitting layer 40 arranged between the anode and the cathode, the first hole transport layer 20 is located between the first light-emitting layer 40 and the anode 10; the first hole transport layer 20 at least includes a first hole sublayer 21 and a second hole sublayer 22; the material of the first hole sublayer 21 includes a first material and a second material, and the material of the second hole sublayer 22 includes at least one of the first material and the second material; and the organic electroluminescent device also includes a first electron blocking layer 30, the first electron blocking layer 30 is located between the first light-emitting layer 40 and the first hole transport layer 20, the difference between the HOMO energy level of the second hole sublayer material and the LUMO energy level of the first electron blocking layer is less than or equal
  • the organic electroluminescent device comprises an anode 10, a cathode 90, and a first hole transport layer 20 and a first light-emitting layer 40 disposed between the anode and the cathode, wherein the first hole transport layer 20 is located between the first light-emitting layer 40 and the anode 10; the first hole transport layer 20 comprises at least a first hole sublayer 21 and a second hole sublayer 22; the material of the first hole sublayer 21 comprises a first material and a second material, and the material of the second hole sublayer 22 comprises at least one of the first material and the second material; and the organic electroluminescent device further comprises a first electron blocking layer 30, the first The electron blocking layer 30 is located between the first light-emitting layer 40 and the first hole transport layer 20, and the difference between the HOMO energy level of the second hole sublayer material and the LUMO energy level of the first electron blocking layer is less than or equal to 0.4 eV; the difference between the LUMO energy level of the first electron blocking
  • the resistivity of the first hole sub-layer 21 is greater than or equal to 100 ⁇ m.
  • FIG7 is a schematic diagram of another organic electroluminescent device structure according to an embodiment of the present disclosure, wherein the organic electroluminescent device further comprises a charge generation layer 60, a second hole transport layer 20' and a second light-emitting layer 40', wherein the charge generation layer 60 is located on the side of the first light-emitting layer 40 close to the cathode, the second hole transport layer 20' is located on the side of the charge generation layer close to the cathode, and the second light-emitting layer 40' is located between the second hole transport layer 20' and the cathode; the second hole transport layer 20' comprises at least a third hole sublayer 21', the material of the third hole sublayer 21' comprises a first material and a second material; the third hole sublayer 21' is located between the second light-emitting layer 40' and the charge generation layer 60; the mobility M2 of the material of the second hole sublayer 22 and the mobility M4 of the material of the third hole sublayer 21' satisfy the following conditions:
  • the organic electroluminescent device also includes a second electron blocking layer 30', which is located between the second light-emitting layer 40' and the second hole transport layer 20'.
  • the difference between the HOMO energy level of the third hole sublayer 21' material and the LUMO energy level of the second electron blocking layer 30' is less than or equal to 0.4 eV; the mobility of the third hole sublayer 21' material is greater than the mobility of the second electron blocking layer 30'; the difference between the LUMO energy level of the fourth blocking sublayer 32' and the HOMO energy level of the second light-emitting layer is less than or equal to 0.4 eV.
  • Fig. 8A and Fig. 8B are schematic diagrams of other organic electroluminescent devices according to the embodiments of the present disclosure.
  • the organic electroluminescent device further includes a second electron blocking layer 30', and the second electron blocking layer 30' includes a third blocking sublayer 31'.
  • the organic electroluminescent device further includes a second electron blocking layer 30', and the second electron blocking layer 30' includes a third blocking sublayer 31' and a fourth blocking sublayer 32', and the fourth blocking sublayer 32' is located between the third blocking sublayer 31' and the second light-emitting layer 40', and the material of the third blocking sublayer 31' is different from the material of the fourth blocking sublayer 32'.
  • FIG9 is a schematic diagram of another exemplary structure of an organic electroluminescent device according to an embodiment of the present disclosure, comprising an anode 10, a cathode 90, and a first hole transport layer 20 and a first light-emitting layer 40 disposed between the anode and the cathode, wherein the first hole transport layer 20 is located between the first light-emitting layer 40 and the anode 10; the first hole transport layer 20 at least comprises a first hole sublayer 21 and a second hole sublayer 22; the material of the first hole sublayer 21 comprises a first material and a second material, and the material of the second hole sublayer 22 comprises at least one of the first material and the second material; and the organic electroluminescent device further comprises a first electron blocking layer 30, wherein the first electron blocking layer 30 is located between the first light-emitting layer 40 and the first hole transport layer 20, and the difference between the HOMO energy level of the second hole sublayer material and the LUMO energy level of the first electron blocking layer is less than or equal to 0.4
  • the organic electroluminescent device also includes a second electron blocking layer 30', which is located between the second light-emitting layer 40' and the second hole transport layer 20', and the difference between the HOMO energy level of the third hole sublayer 21' material and the LUMO energy level of the second electron blocking layer 30' is less than or equal to 0.4 eV; the mobility of the third hole sublayer 21' material is greater than the mobility of the second electron blocking layer 30'; the difference between the LUMO energy level of the fourth blocking sublayer 30' and the HOMO energy level of the second light-emitting layer is less than or equal to 0.4 eV.
  • the organic electroluminescent device also includes a second electron blocking layer 30', the second electron blocking layer 30' includes a third blocking sublayer 31' and a fourth blocking sublayer 32', the fourth blocking sublayer 32' is located between the third blocking sublayer 31' and the second light-emitting layer 40', and the material of the third blocking sublayer 31' is different from that of the fourth blocking sublayer 32' (wherein 41' is the light-emitting layer 1, which can emit red light; 42' is the light-emitting layer 2, which can emit green light; 43' is the light-emitting layer 3, which can emit blue light; and each light-emitting layer is provided with its own corresponding electron blocking sublayer 32'-1, 32'-2 or 32'-3).
  • FIG10 is a schematic diagram of another exemplary structure of an organic electroluminescent device according to an embodiment of the present disclosure, comprising an anode 10, a cathode 90, and a first hole transport layer 20 and a first light-emitting layer 40 disposed between the anode and the cathode, wherein the first hole transport layer 20 is located between the first light-emitting layer 40 and the anode 10; the first hole transport layer 20 at least comprises a first hole sublayer 21 and a second hole sublayer 22; the material of the first hole sublayer 21 comprises a first material and a second material, and the material of the second hole sublayer 22 comprises at least one of the first material and the second material; and the organic electroluminescent device further comprises a first electron blocking layer 30, wherein the first electron blocking layer 30 is located between the first light-emitting layer 40 and the first hole transport layer 20, and the difference between the HOMO energy level of the second hole sublayer material and the LUMO energy level of the first electron blocking layer is less than or equal to 0.4
  • the organic electroluminescent device also includes a second electron blocking layer 30', which is located between the second light-emitting layer 40' and the second hole transport layer 20', and the difference between the HOMO energy level of the third hole sublayer 21' material and the LUMO energy level of the second electron blocking layer 30' is less than or equal to 0.4 eV; the mobility of the third hole sublayer 21' material is greater than the mobility of the second electron blocking layer 30'; the difference between the LUMO energy level of the fourth blocking sublayer 30' and the HOMO energy level of the second light-emitting layer is less than or equal to 0.4 eV.
  • the organic electroluminescent device also includes a second electron blocking layer 30', the second electron blocking layer 30' includes a third blocking sublayer 31' and a fourth blocking sublayer 32', the fourth blocking sublayer 32' is located between the third blocking sublayer 31' and the second light-emitting layer 40', and the material of the third blocking sublayer 31' is different from that of the fourth blocking sublayer 32' (wherein 41' is the light-emitting layer 1, which can emit red light, green light or blue light; 42' is the light-emitting layer 2, which can emit red light, green light or blue light; 43' is the light-emitting layer 3, which can emit red light, green light or blue light; and each light-emitting layer is provided with its own corresponding electron blocking sublayer 32'-1, 32'-2 or 32'-3).
  • FIG 11 is a schematic diagram of the structure of another organic electroluminescent device exemplified by an embodiment of the present disclosure.
  • the main structure of the device in this figure is similar to the main structure of the device in Figure 10, except that: 41 is the light-emitting layer 1, which can emit red light, green light or blue light; 42 is the light-emitting layer 2, which can emit red light, green light or blue light; 43 is the light-emitting layer 3, which can emit red light, green light or blue light; and 41 is located above 42 and 43, and 41 is provided with a corresponding electron blocking sublayer 32-1; 41' is the light-emitting layer 1, which can emit red light, green light or blue light; 42' is the light-emitting layer 2, which can emit red light, green light or blue light; 43' is the light-emitting layer 3, which can emit red light, green light or blue light; and 41' is located above 42' and 43', and 41' is provided with a corresponding electron blocking sublayer 32'-1.
  • Figure 12 is an exemplary crosstalk phenomenon, where the vertical direction represents light intensity and the horizontal direction represents wavelength, the wavelength range of blue light is 440nm-475nm, the wavelength range of green light is 492nm-577nm, and the wavelength range of red light is 622nm-760nm. It can be seen from the figure that when the light-emitting layer is working, the electrons of the green light at the middle wavelength flow horizontally to the peak of the red light at the right wavelength, and there is a smaller peak.
  • Figure 13 is an exemplary crosstalk-free light spectrum of the device disclosed in the present invention, wherein the vertical direction represents light intensity and the horizontal direction represents wavelength, the wavelength range of blue light is 440nm-475nm, the wavelength range of green light is 492nm-577nm, and the wavelength range of red light is 622nm-760nm. It can be seen from the figure that the light-emitting device disclosed in the present invention can effectively reduce crosstalk and improve display effects.
  • the organic light-emitting layer of the OLED light-emitting element may include an emitting layer (EML), and one or more film layers including a hole injection layer (HIL), a hole transport layer (HTL), a hole blocking layer (HBL), an electron blocking layer (EBL), an electron injection layer (EIL), and an electron transport layer (ETL).
  • EML emitting layer
  • HIL hole injection layer
  • HTL hole transport layer
  • HBL hole blocking layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • ETL electron transport layer
  • the material used for the hole injection layer HIL can be selected from inorganic oxides, such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, tungsten oxide, manganese oxide, etc.; it can also be selected from dopants of strong electron-withdrawing systems, such as F4TCNQ, HATCN, etc.
  • inorganic oxides such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, tungsten oxide, manganese oxide, etc.
  • dopants of strong electron-withdrawing systems such as F4TCNQ, HATCN, etc.
  • the charge generation layer includes a P-type charge generation layer (CGL) and an N-type CGL.
  • the P-type CGL can be a hole-type material, such as NPB, TPD, etc.
  • the N-type charge generation layer can be an electron-type material containing phenanthroline or phosphine. Both the P-type CGL and the N-type CGL can contain dopants.
  • the dopant of the P-type charge generation layer can be HATCN, F4TCNQ, etc.
  • the dopant of the N-type charge generation layer can be an alkali metal such as lithium (Li), sodium (Na), potassium (K) or cesium (Cs) or an alkali metal or alkaline earth metal and its oxide such as magnesium (Mg), strontium (Sr), barium (Ba) or radium (Ra).
  • an N-type CGL electrons can be injected into the first light-emitting unit.
  • As a P-type CGL holes can be injected into the second light-emitting unit.
  • the electron injection layer is generally an alkali metal or a metal, such as LiF, Yb, Mg, Ca or a compound thereof.
  • the indium tin oxide ITO layer on the glass substrate is used as the anode, the hole injection layer (5-30nm), the first hole sublayer (15-25nm), the second hole sublayer (5-45nm), the third hole sublayer (10-25nm), the red light emitting layer (30-50nm), the green light emitting layer (30-50nm), the blue light emitting layer (10-20nm), the first hole blocking layer (5-15nm), the N-type charge generation layer (15-25nm) , P-type charge generation layer (5-15nm), first hole sublayer (15-25nm), second hole sublayer (5-45nm), third hole sublayer GEBL (10-25nm), red light emitting layer (30-50nm), green light emitting layer (30-50nm), blue light emitting layer (10-20nm), second blocking sublayer (5-15nm), electron transport layer (20-100nm), electron injection layer (1-10nm), cathode (10-20nm).
  • Both the first EML and the second EML layer contain three RGB light-emitting layers, and the wavelength difference of the same color of the upper and lower layers is less than or equal to 20nm, ensuring that there is no obvious color difference between the two light-emitting layers;
  • the light-emitting layer can emit red light, green light, or blue light.
  • red light, blue light, or green light can be emitted.
  • the difference between the HOMO energy level of the second hole sublayer material and the LUMO energy level of the first electron blocking layer is less than or equal to 0.4 eV, ensuring smooth carrier transmission;
  • the difference between the LUMO energy level of the first electron blocking layer and the HOMO energy level of the first light-emitting layer is less than or equal to 0.4 eV, ensuring that holes are well injected into the light-emitting layer;
  • the mobility of the second hole sublayer material is greater than that of the first electron blocking layer.
  • the second hole sublayer has a larger mobility in the thickness direction of the electron blocking layer, which can prevent the problem of high voltage and ensure the device voltage and performance.
  • the mobility M2 of the second hole sublayer (HTL-1) material in the first light-emitting unit and the mobility M4 of the third hole sublayer (HTL-2) material in the second light-emitting unit satisfy the following conditions:
  • Resistivity of the hole injection layer ⁇ 100 ⁇ m, lateral current of the hole transport layer, solving the color crosstalk problem between light-emitting units.
  • N-CGL can be expressed by the following formula 5:
  • R1 to R7 are the same or different and are each independently selected from any one of the following: hydrogen; deuterium; tritium; halogen; cyano; nitro; C6-C60 aryl; C2-C60 heterocyclic group containing at least one heteroatom from O, N, S, Si and P; a condensed ring group of a C3-C60 aliphatic ring and a C6-C60 aromatic ring; C1-C50 alkyl; C2-C20 alkenyl; C2-C20 alkynyl; C1-C30 alkoxy; C6-C30 aryloxy; C3-C60 alkylsilyl; C18-C60 arylsilyl; and C8-C60 alkylarylsilyl; and one or more of R1 to R6 are cyano;
  • Ar is each independently any one selected from the following: hydrogen; deuterium; tritium; halogen; cyano; nitro; C6-C60 aryl; C2-C60 heterocyclic group containing at least one heteroatom from O, N, S, Si and P; a condensed ring group of a C3-C60 aliphatic ring and a C6-C60 aromatic ring; C1-C50 alkyl; C2-C20 alkenyl; C2-C20 alkynyl; C1-C30 alkoxy; C6-C30 aryloxy; C3-C60 alkylsilyl; C18-C60 arylsilyl; and C8-C60 alkylarylsilyl;
  • L is selected from any one of the following: a C6-C60 arylene group; a C2-C60 divalent heterocyclic group containing at least one heteroatom selected from O, N, S, Si and P; and a divalent condensed ring group of a C3-C60 aliphatic ring and a C6-C60 aromatic ring.
  • the compound of formula 5 is selected from one or more of the following compounds:
  • the structure used in the resistivity test in the table below is: lateral resistance substrate/P-type doped hole injection layer/hole transport layer.
  • the film resistivity can reflect the resistivity of the compound.
  • the compound of formula 1 in the present invention has an electron-rich unit, and the conjugation length in the molecule can be effectively adjusted by the connection between the groups, and its reorganization energy is lower and has a high hole mobility. Higher has a more suitable HOMO energy level; it makes the hole better transported.
  • the spatial structure of this type of molecule is three-dimensional, and the deposited film has a larger lateral resistance, and the color crosstalk is mainly caused by the lateral leakage of the hole injection layer. Therefore, the compound of formula 1 has a large lateral resistance as a hole transport material after P-type doping, which can well solve the lateral diffusion of charges between different colors of light, greatly reduce the color crosstalk problem, and improve the display effect.
  • the compound of Formula 3 has a deeper HOMO energy level than the comparative compound, and has a deeper HOMO energy level than the compound of Formula 2, which can well reduce the barrier between the hole transport layer and the light-emitting layer, and is beneficial to the transport of carriers. At the same time, compared with the comparative compound, it has a larger lateral resistance, which can further improve color crosstalk.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件和显示装置。所述有机电致发光器件,包括阳极(10)、阴极(90)以及设置在所述阳极(10)和所述阴极(90)之间的第一空穴传输层(20)和第一发光层(40),所述第一空穴传输层(20)位于所述第一发光层(40)与所述阳极(10)之间;所述第一空穴传输层(20)至少包括第一空穴子层(21)和第二空穴子层(22);所述第一空穴子层(21)的材料包括第一材料和第二材料,所述第二空穴子层(22)的材料包括所述第一材料和所述第二材料中的至少一种。本公开通过优化OLED器件的空穴传输层以及电子阻挡层的材料,并且同时优化器件不同功能层的物性参数关系,在改善器件性能的同时,也改善了器件的显示串扰现象。

Description

有机电致发光器件和显示装置 技术领域
本公开涉及但不限于显示技术领域,尤指一种叠层式有机电致发光器件和显示装置。
背景技术
有机电致发光器件(Organic Light Emitting Device,简称OLED)为主动发光器件,具有发光、超薄、广视角、高亮度、高对比度、较低耗电、极高反应速度等优点,已逐渐成为极具发展前景的下一代显示技术。
OLED包括阳极、阴极以及设置在阳极和阴极之间的发光层,其发光原理是将空穴、电子分别由阳极、阴极注入至发光层,当电子和空穴在发光层中相遇时,电子和空穴复合从而产生激子(exciton),在从激发态转变为基态的同时,这些激子发光。为了使电子和空穴在较低的驱动电压下顺利地从电极注入至发光层,阳极与发光层之间配置有空穴注入层和空穴传输层,阴极与发光层之间配置有电子注入层和电子传输层。为了使OLED达到更好的发光效率,实现低电压和长寿命,空穴注入层的设计是比较重要的。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一种有机电致发光器件和显示装置。
本公开的实施方式提供了一种有机电致发光器件,包括阳极、阴极以及设置在所述阳极和所述阴极之间的第一空穴传输层和第一发光层,所述第一空穴传输层位于所述第一发光层与所述阳极之间;所述第一空穴传输层至少包括第一空穴子层和第二空穴子层;所述第一空穴子层的材料包括第一材料和第二材料,所述第二空穴子层的材料包括所述第一材料和所述第二材料中的至少一种;并且
Figure PCTCN2022135104-appb-000001
在式1中:
X为O、S、C或N
L1、L2各自独立地为直接键,各自独立地为取代或未取代的C6-C60的芳基;
Ar1与Ar2各自独立地为氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、取代或未取代的甲硅烷基、取代或未取代的硼基、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的烷基硫基、取代或未取代的芳基硫基、取代或未取代的烷基磺酰基、取代或未取代的芳基磺酰基、取代或未取代的烯基、取代或未取代的芳烷基、取代或未取代的芳烯基、取代或未取代的烷基芳基、取代或未取代的烷基胺基、取代或未取代的芳烷基胺基、取代或未取代的杂芳基胺基、取代或未取代的芳基胺基、取代或未取代的芳基杂芳基胺基、取代或未取代的芳基膦基、取代或未取代的氧化膦基团、取代或未取代的芳基、或者取代或未取代的杂环基;或者由以下式2表示:
Figure PCTCN2022135104-appb-000002
R1、R2、R3、R4各自独立地选自氘、卤素基团、氰基、C3-C20杂芳基、C6-C20芳基、C3-C12三烷基硅基、C18-C30三芳基硅基、C1-C5烷基、C1-C10 卤代烷基、C3-C10环烷基、C2-C10杂环烷基、C5-C10环烯基、C4-C10杂环烯基、C1-C10烷氧基、C1-C10烷硫基、C6-C18芳氧基、C6-C18芳硫基、C6-C24磷氧基、C6-C18烷基磺酰基、C3-C18三烷基膦基、C3-C18三烷基硼基;或者任选地与相邻基团键合以形成环;
a、b、m、n各自独立地为0-4的整数。
在本公开的示例性实施方式中,所述第一空穴子层位于所述第二空穴子层与所述阳极之间。
在本公开的示例性实施方式中,所述第一材料的LUMO能级与所述第二材料的HOMO能级的差值在-0.3eV至1.0eV之间。
在本公开的示例性实施方式中,所述有机电致发光器件还包括第一电子阻挡层,所述第一电子阻挡层位于所述第一发光层与所述第一空穴传输层之间,所述第二空穴子层材料的HOMO能级与所述第一电子阻挡层的LUMO能级之间的差值小于或等于0.4eV。
在本公开的示例性实施方式中,所述第二空穴子层材料的迁移率大于所述第一电子阻挡层的迁移率。
在本公开的示例性实施方式中,所述第一电子阻挡层的LUMO能级与所述第一发光层的HOMO能级之间的差值小于或等于0.4eV。
在本公开的示例性实施方式中,所述第一电子阻挡层包括第一阻挡子层,或者,所述第一电子阻挡层包括第一阻挡子层和第二阻挡子层,所述第二阻挡子层位于所述第一阻挡子层与所述第一发光层之间,所述第一阻挡子层的材料与所述第二阻挡子层的材料不同。
在本公开的示例性实施方式中,所述有机电致发光器件还包括空穴注入层,所述空穴注入层位于所述第一空穴传输层与所述阳极之间,所述空穴注入层的电阻率大于或等于100Ω·m。
在本公开的示例性实施方式中,所述有机电致发光器件还包括电荷产生层、第二空穴传输层和第二发光层,所述电荷产生层位于所述第一发光层靠近所述阴极一侧,所述第二空穴传输层位于所述电荷产生层靠近所述阴极一侧,所述第二发光层位于所述第二空穴传输层与所述阴极之间;所述第二空 穴传输层至少包括第三空穴子层,所述第三空穴子层的材料包括第一材料和第二材料。
在本公开的示例性实施方式中,所述第三空穴子层位于所述第二发光层与所述电荷产生层之间。
在本公开的示例性实施方式中,所述第二空穴子层材料的迁移率M 2与所述第三空穴子层材料的迁移率M 4满足以下条件:
10 -1cm 2/Vs≤M 2/M 4≤10cm 2/Vs。
在本公开的示例性实施方式中,所述有机电致发光器件还包括第二电子阻挡层,所述第二电子阻挡层包括第三阻挡子层,或者,所述第二电子阻挡层包括第三阻挡子层和第四阻挡子层,所述第二电子阻挡层位于所述第二发光层与所述第二空穴传输层之间,所述第三空穴子层材料的HOMO能级与所述第二电子阻挡层的LUMO能级之间的差值小于或等于0.4eV。
在本公开的示例性实施方式中,所述第三空穴子层材料的迁移率大于所述第二电子阻挡层的迁移率。
在本公开的示例性实施方式中,所述第四阻挡子层的LUMO能级与所述第二发光层的HOMO能级之间的差值小于或等于0.4eV。
在本公开的示例性实施方式中,所述第二电子阻挡层包括第三阻挡子层,或者,所述第二电子阻挡层包括第三阻挡子层和第四阻挡子层,所述第四阻挡子层位于所述第三阻挡子层与所述第二发光层之间,所述第三阻挡子层的材料与所述第四阻挡子层的材料不同。
在本公开的示例性实施方式中,式1的化合物选自以下化合物的一种或多种:
Figure PCTCN2022135104-appb-000003
在本公开的示例性实施方式中,所述第二材料包括但不限于具有式3结构的化合物:
Figure PCTCN2022135104-appb-000004
Figure PCTCN2022135104-appb-000005
在式3中:
A1-A6各自独立地为取代或未取代的卤素、取代或未取代的氰基、取代或未取代的芳基、取代或未取代的杂芳基,并且被缺电子基团取代的芳基或被缺电子基团取代的杂芳基;
A为3元环、四元环、五元环或六元环。
在本公开的示例性实施方式中,式3的化合物选自以下化合物的一种或多种:
Figure PCTCN2022135104-appb-000006
在本公开的示例性实施方式中,所述电子阻挡层包括但不限于具有式4结构的化合物:
Figure PCTCN2022135104-appb-000007
在式4中,Ar3、Ar4、Ar5、Ar6各自独立地为取代或未取代的芳基、取代或未取代的杂芳基;
L1、L2、L3、L4各自独立地为直接键,各自独立地为取代或未取代的C6-C60的芳基;
R5、R6各自独立地选自氘、卤素基团、氰基、C3-C20杂芳基、C6-C20芳基、C3-C12三烷基硅基、C18-C30三芳基硅基、C1-C5烷基、C1-C10卤代烷基、C3-C10环烷基、C2-C10杂环烷基、C5-C10环烯基、C4-C10杂环烯基、C1-C10烷氧基、C1-C10烷硫基、C6-C18芳氧基、C6-C18芳硫基、C6-C24磷氧基、C6-C18烷基磺酰基、C3-C18三烷基膦基、C3-C18三烷基硼基;或者任选地与相邻基团键合以形成环;
Ar3、Ar4、Ar5、Ar6各自独立地为以下基团:
Figure PCTCN2022135104-appb-000008
本公开的实施方式提供了一种显示装置,包括上述有机电致发光器件。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1为一种OLED显示装置的结构示意图;
图2为一种显示基板显示区域的平面结构示意图;
图3为一种显示基板的剖面结构示意图;
图4为本公开实施例示例性的一种有机电致发光器件结构示意图;
图5为本公开实施例示例性的另一种有机电致发光器件结构示意图;
图6A和图6B为本公开实施例示例性的另外的有机电致发光器件结构示意图;
图7为本公开实施例示例性的另外的有机电致发光器件结构示意图;
图8A和图8B为本公开实施例示例性的另外的有机电致发光器件结构示意图;
图9为本公开实施例示例性的另外的有机电致发光器件结构示意图;
图10为本公开实施例示例性的另外的有机电致发光器件结构示意图;
图11为本公开实施例示例性的另外的有机电致发光器件结构示意图;
图12为一种示例性串扰现象;
图13为本公开器件的示例性无串扰谱。
附图标记说明:
10—阳极;             20—第一空穴传输层;   21—第一空穴子层;
22—第二空穴子层;     20’—第二空穴传输层; 21’—第三空穴子层;
30—第一电子阻挡层;   31—第一阻挡子层;     32—第二阻挡子层;
30’—第二电子阻挡层;   31’—第三阻挡子层;    32’—第四阻挡子层;
40—第一发光层;        40’—第二发光层;      41—发光层1;
42—发光层2;           43—发光层3;           41’—发光层1;
42’—发光层2;         43’—发光层3;         50—空穴阻挡层;
60—电荷产生层;        61—N型电荷产生层;     62—P型电荷产生层;
80—电子传输层;        89—电子注入层;        90—阴极;
101—基底;             102—驱动电路层;       103—发光器件;
104—封装层;           201—第一绝缘层;       202—第二绝缘层;
203—第三绝缘层;       204—第四绝缘层;       205—平坦层;
210—驱动晶体管;       211—存储电容;         301—阳极;
302—像素定义层;       303—有机发光层;       304—阴极;
401—第一封装层;       402—第二封装层;       403—第三封装层。
具体实施方式
本文中的实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是实现方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,可能夸大表示了构成要素的大小、层的厚度或区域。因此,本公开的任意一个实现方式并不一定限定于图中所示尺寸,附图中部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的任意一个实现方式不局限于附图所示的形状或数值等。
本文中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本文中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照 附图说明构成要素的位置关系,仅是为了便于描述实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系可根据描述的构成要素的方向进行适当地改变。因此,不局限于在文中说明的词句,根据情况可以适当地更换。
在本文中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。
在本文中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(或称漏电极端子、漏区域或漏电极)与源电极(或称源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。在本文中,沟道区域是指电流主要流过的区域。
在本文中,第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况下,“源电极”及“漏电极”的功能有时可以互相调换。因此,在本文中,“源电极”和“漏电极”可以互相调换。
在本文中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”例如可以是电极或布线,或者是晶体管等开关元件,或者是电阻器、电感器或电容器等其它功能元件等。
在本文中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本文中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本文中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
图1为一种OLED显示装置的结构示意图。如图1所示,OLED显示装置可以包括扫描信号驱动器、数据信号驱动器、发光信号驱动器、OLED显示基板、第一电源单元、第二电源单元和初始电源单元。在示例性实施方式中,OLED显示基板至少包括多个扫描信号线(S1到SN)、多个数据信号线(D1到DM)和多个发光信号线(EM1到EMN),扫描信号驱动器被配置为依次向多个扫描信号线(S1到SN)提供扫描信号,数据信号驱动器被配置为向多个数据信号线(D1到DM)提供数据信号,发光信号驱动器被配置为依次向多个发光信号线(EM1到EMN)提供发光控制信号。在示例性实施方式中,多个扫描信号线和多个发光信号线沿着水平方向延伸,多个数据信号线沿着竖直方向延伸。所述显示装置包括多个子像素,一个子像素例如连接一条扫描信号线、一条发光控制线和一条数据信号线。第一电源单元、第二电源单元和初始电源单元分别被配置为通过第一电源线、第二电源线和初始信号线向像素电路提供第一电源电压、第二电源电压和初始电源电压。
图2为一种显示基板显示区域的平面结构示意图。如图2所示,显示区域可以包括以矩阵方式排布的多个像素单元P,多个像素单元P的至少一个中包括出射第一颜色光线的第一子像素P1、出射第二颜色光线的第二子像素P2和出射第三颜色光线的第三子像素P3,第一子像素P1、第二子像素P2和第三子像素P3均包括像素驱动电路和发光器件。第一子像素P1、第二子像素P2和第三子像素P3中的像素驱动电路分别与扫描信号线、数据信号线和发光信号线连接,像素驱动电路被配置为在扫描信号线和发光信号线的控制下,接收数据信号线传输的数据电压,向所述发光器件输出相应的电流。第一子像素P1、第二子像素P2和第三子像素P3中的发光器件分别与所在子像素的像素驱动电路连接,发光器件被配置为响应所在子像素的像素驱动电路输出的电流发出相应亮度的光。
在示例性实施方式中,像素单元P中可以包括红色(R)子像素、绿色 (G)子像素和蓝色(B)子像素,或者可以包括红色子像素、绿色子像素、蓝色子像素和白色(W)子像素,本公开在此不做限定。在示例性实施方式中,像素单元中子像素的形状可以是矩形状、菱形、五边形或六边形。像素单元包括三个子像素时,三个子像素可以采用水平并列、竖直并列或品字方式排列,像素单元包括四个子像素时,四个子像素可以采用水平并列、竖直并列或正方形(Square)方式排列,本公开在此不做限定。
图3为一种显示基板的剖面结构示意图,示意了OLED显示基板三个子像素的结构。如图3所示,在垂直于显示基板的平面上,显示基板可以包括设置在基底101上的驱动电路层102、设置在驱动电路层102远离基底101一侧的发光器件103以及设置在发光器件103远离基底101一侧的封装层104。在一些可能的实现方式中,显示基板可以包括其它膜层,如隔垫柱等,本公开在此不做限定。
在示例性实施方式中,基底可以是柔性基底,或者可以是刚性基底。柔性基底可以包括叠设的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层,第一柔性材料层和第二柔性材料层的材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料,第一无机材料层和第二无机材料层的材料可以采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高基底的抗水氧能力,半导体层的材料可以采用非晶硅(a-si)。
在示例性实施方式中,每个子像素的驱动电路层102可以包括构成像素驱动电路的多个晶体管和存储电容,图3中以每个子像素中包括一个驱动晶体管和一个存储电容为例进行示意。在一些可能的实现方式中,每个子像素的驱动电路层102可以包括:设置在基底上的第一绝缘层201;设置在第一绝缘层上的有源层;覆盖有源层的第二绝缘层202;设置在第二绝缘层202上的栅电极和第一电容电极;覆盖栅电极和第一电容电极的第三绝缘层203;设置在第三绝缘层203上的第二电容电极;覆盖第二电容电极的第四绝缘层204,第二绝缘层202、第三绝缘层203和第四绝缘层204上开设有过孔,过孔暴露出有源层;设置在第四绝缘层204上的源电极和漏电极,源电极和漏电极分别通过过孔与有源层连接;覆盖前述结构的平坦层205,平坦层205 上开设有过孔,过孔暴露出漏电极。有源层、栅电极、源电极和漏电极组成驱动晶体管210,第一电容电极和第二电容电极组成存储电容211。
在示例性实施方式中,发光器件103可以包括阳极301、像素定义层302、有机发光层303和阴极304。阳极301设置在平坦层205上,通过平坦层205上开设的过孔与驱动晶体管210的漏电极连接;像素定义层302设置在阳极301和平坦层205上,像素定义层302上设置有像素开口,像素开口暴露出阳极301;有机发光层303至少部分设置在像素开口内,有机发光层303与阳极301连接;阴极304设置在有机发光层303上,阴极304与有机发光层303连接;有机发光层303在阳极301和阴极304驱动下出射相应颜色的光线。
在示例性实施方式中,封装层104可以包括叠设的第一封装层401、第二封装层402和第三封装层403,第一封装层401和第三封装层403可采用无机材料,第二封装层402可采用有机材料,第二封装层402设置在第一封装层401和第三封装层403之间,可以保证外界水汽无法进入发光器件103。
在示例性实施方式中,有机发光层303可以至少包括在阳极301上叠设的空穴注入层11、空穴传输层20、发光层40和空穴阻挡层50。
图4为本公开实施例示例性的一种有机电致发光器件结构示意图,其中,所述有机电致发光器件,包括阳极10、阴极90以及设置在所述阳极和所述阴极之间的第一空穴传输层20和第一发光层40,所述第一空穴传输层20位于所述第一发光层40与所述阳极10之间;所述第一空穴传输层20至少包括第一空穴子层21和第二空穴子层22;所述第一空穴子层21的材料包括第一材料和第二材料,所述第二空穴子层22的材料包括所述第一材料和所述第二材料中的至少一种;并且
其中,所述第一材料包括但不限于具有式1结构的化合物:
Figure PCTCN2022135104-appb-000009
在式1中:
X为O、S、C或N
L1、L2各自独立地为直接键,各自独立地为取代或未取代的C6-C60的芳基;
Ar1与Ar2各自独立地为氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、取代或未取代的甲硅烷基、取代或未取代的硼基、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的烷基硫基、取代或未取代的芳基硫基、取代或未取代的烷基磺酰基、取代或未取代的芳基磺酰基、取代或未取代的烯基、取代或未取代的芳烷基、取代或未取代的芳烯基、取代或未取代的烷基芳基、取代或未取代的烷基胺基、取代或未取代的芳烷基胺基、取代或未取代的杂芳基胺基、取代或未取代的芳基胺基、取代或未取代的芳基杂芳基胺基、取代或未取代的芳基膦基、取代或未取代的氧化膦基团、取代或未取代的芳基、或者取代或未取代的杂环基;或者由以下式2表示:
Figure PCTCN2022135104-appb-000010
R1、R2、R3、R4各自独立地选自氘、卤素基团、氰基、C3-C20杂芳基、C6-C20芳基、C3-C12三烷基硅基、C18-C30三芳基硅基、C1-C5烷基、C1-C10 卤代烷基、C3-C10环烷基、C2-C10杂环烷基、C5-C10环烯基、C4-C10杂环烯基、C1-C10烷氧基、C1-C10烷硫基、C6-C18芳氧基、C6-C18芳硫基、C6-C24磷氧基、C6-C18烷基磺酰基、C3-C18三烷基膦基、C3-C18三烷基硼基;或者任选地与相邻基团键合以形成环;
a、b、m、n各自独立地为0-4的整数。
所述第一空穴子层21位于所述第二空穴子层22与所述阳极10之间。所述第一材料的LUMO(Lowest Unoccupied Molecular Orbit,最低未占分子轨道)能级与所述第二材料的HOMO(Highest Occupied Molecular Orbit,最高占据分子轨道)能级的差值在-0.3eV至1.0eV之间。
图5为本公开实施例示例性的另一种有机电致发光器件结构示意图,其中,所述有机电致发光器件,包括阳极10、阴极90以及设置在所述阳极和所述阴极之间的第一空穴传输层20和第一发光层40,所述第一空穴传输层20位于所述第一发光层40与所述阳极10之间;所述第一空穴传输层20至少包括第一空穴子层21和第二空穴子层22;所述第一空穴子层21的材料包括第一材料和第二材料,所述第二空穴子层22的材料包括所述第一材料和所述第二材料中的至少一种;并且所述有机电致发光器件还包括第一电子阻挡层30,所述第一电子阻挡层30位于所述第一发光层40与所述第一空穴传输层20之间,所述第二空穴子层材料的HOMO能级与所述第一电子阻挡层的LUMO能级之间的差值小于或等于0.4eV。所述第一电子阻挡层的LUMO能级与所述第一发光层的HOMO能级之间的差值小于或等于0.4eV。所述第二空穴子层材料的迁移率大于所述第一电子阻挡层的迁移率。所述第一电子阻挡层的LUMO能级与所述第一发光层的HOMO能级之间的差值小于或等于0.4eV。
图6A和图6B为本公开实施例示例性的另外的有机电致发光器件结构示意图。在图6A中,所述有机电致发光器件,包括阳极10、阴极90以及设置在所述阳极和所述阴极之间的第一空穴传输层20和第一发光层40,所述第一空穴传输层20位于所述第一发光层40与所述阳极10之间;所述第一空穴传输层20至少包括第一空穴子层21和第二空穴子层22;所述第一空穴子层21的材料包括第一材料和第二材料,所述第二空穴子层22的材料包括所述 第一材料和所述第二材料中的至少一种;并且所述有机电致发光器件还包括第一电子阻挡层30,所述第一电子阻挡层30位于所述第一发光层40与所述第一空穴传输层20之间,所述第二空穴子层材料的HOMO能级与所述第一电子阻挡层的LUMO能级之间的差值小于或等于0.4eV;所述第一电子阻挡层的LUMO能级与所述第一发光层的HOMO能级之间的差值小于或等于0.4eV;并且所述第一电子阻挡层30包括第一阻挡子层31。在图6B中,所述有机电致发光器件,包括阳极10、阴极90以及设置在所述阳极和所述阴极之间的第一空穴传输层20和第一发光层40,所述第一空穴传输层20位于所述第一发光层40与所述阳极10之间;所述第一空穴传输层20至少包括第一空穴子层21和第二空穴子层22;所述第一空穴子层21的材料包括第一材料和第二材料,所述第二空穴子层22的材料包括所述第一材料和所述第二材料中的至少一种;并且所述有机电致发光器件还包括第一电子阻挡层30,所述第一电子阻挡层30位于所述第一发光层40与所述第一空穴传输层20之间,所述第二空穴子层材料的HOMO能级与所述第一电子阻挡层的LUMO能级之间的差值小于或等于0.4eV;所述第一电子阻挡层的LUMO能级与所述第一发光层的HOMO能级之间的差值小于或等于0.4eV;并且所述第一电子阻挡层30包括第一阻挡子层31和第二阻挡子层32,所述第二阻挡子层位于所述第一阻挡子层与所述第一发光层之间,所述第一阻挡子层的材料与所述第二阻挡子层的材料不同。
在本公开示例性实施方式中,所述第一空穴子层21的电阻率大于或等于100Ω·m。
图7为本公开实施例示例性的另外的有机电致发光器件结构示意图,其中,所述有机电致发光器件还包括电荷产生层60、第二空穴传输层20’和第二发光层40’,所述电荷产生层位60于所述第一发光层40靠近所述阴极一侧,所述第二空穴传输层20’位于所述电荷产生层靠近所述阴极一侧,所述第二发光层40’位于所述第二空穴传输层20’与所述阴极之间;所述第二空穴传输层20’至少包括第三空穴子层21’,所述第三空穴子层21’的材料包括第一材料和第二材料;所述第三空穴子层21’位于所述第二发光层40’与所述电荷产生层60之间;所述第二空穴子层22材料的迁移率M 2与所述第三空穴 子层21’材料的迁移率M 4满足以下条件:
10 -1cm 2/Vs≤M 2/M 4≤10cm 2/Vs;并且
所述有机电致发光器件还包括第二电子阻挡层30’,所述第二电子阻挡层30’位于所述第二发光层40’与所述第二空穴传输层20’之间,所述第三空穴子层21’材料的HOMO能级与所述第二电子阻挡层30’的LUMO能级之间的差值小于或等于0.4eV;所述第三空穴子层21’材料的迁移率大于所述第二电子阻挡层30’的迁移率;所述第四阻挡子层32’的LUMO能级与所述第二发光层的HOMO能级之间的差值小于或等于0.4eV。
图8A和图8B为本公开实施例示例性的另外的有机电致发光器件结构示意图,在图8A中,所述有机电致发光器件还包括第二电子阻挡层30’,所述第二电子阻挡层30’包括第三阻挡子层31’。在图8B中,所述有机电致发光器件还包括第二电子阻挡层30’,所述第二电子阻挡层30’包括第三阻挡子层31’和第四阻挡子层32’,所述第四阻挡子层32’位于所述第三阻挡子层31’与所述第二发光层40’之间,所述第三阻挡子层31’的材料与所述第四阻挡子层32’的材料不同。
图9为本公开实施例示例性的另外的有机电致发光器件结构示意图,包括阳极10、阴极90以及设置在所述阳极和所述阴极之间的第一空穴传输层20和第一发光层40,所述第一空穴传输层20位于所述第一发光层40与所述阳极10之间;所述第一空穴传输层20至少包括第一空穴子层21和第二空穴子层22;所述第一空穴子层21的材料包括第一材料和第二材料,所述第二空穴子层22的材料包括所述第一材料和所述第二材料中的至少一种;并且所述有机电致发光器件还包括第一电子阻挡层30,所述第一电子阻挡层30位于所述第一发光层40与所述第一空穴传输层20之间,所述第二空穴子层材料的HOMO能级与所述第一电子阻挡层的LUMO能级之间的差值小于或等于0.4eV;所述第一电子阻挡层的LUMO能级与所述第一发光层的HOMO能级之间的差值小于或等于0.4eV;并且所述第一电子阻挡层30包括第一阻挡子层31和第一阻挡子层32;(其中41为发光层1,可以发送红光;42为发光层2,可以发送绿光;43为发光层3,可以发送蓝光;并且各个发光层设置有各自对应的电子阻挡子层32-1、32-2或32-3);所述有机电致发光器 件还包括电荷产生层60(61为N型电荷产生层,62为P型电荷产生层)、第二空穴传输层20’和第二发光层40’,所述电荷产生层位60于所述第一发光层40靠近所述阴极一侧,所述第二空穴传输层20’位于所述电荷产生层靠近所述阴极一侧,所述第二发光层40’位于所述第二空穴传输层20’与所述阴极之间;所述第二空穴传输层20’至少包括第三空穴子层21’,所述第三空穴子层21’的材料包括第一材料和第二材料;所述第三空穴子层21’位于所述第二发光层40’与所述电荷产生层60之间;所述第二空穴子层22材料的迁移率M 2与所述第三空穴子层21’材料的迁移率M 4满足以下条件:
10 -1cm 2/Vs≤M 2/M 4≤10cm 2/Vs;并且
所述有机电致发光器件还包括第二电子阻挡层30’,所述第二电子阻挡层30’位于所述第二发光层40’与所述第二空穴传输层20’之间,所述第三空穴子层21’材料的HOMO能级与所述第二电子阻挡层30’的LUMO能级之间的差值小于或等于0.4eV;所述第三空穴子层21’材料的迁移率大于所述第二电子阻挡层30’的迁移率;所述第四阻挡子层30’的LUMO能级与所述第二发光层的HOMO能级之间的差值小于或等于0.4eV。所述有机电致发光器件还包括第二电子阻挡层30’,所述第二电子阻挡层30’包括第三阻挡子层31’和第四阻挡子层32’,所述第四阻挡子层32’位于所述第三阻挡子层31’与所述第二发光层40’之间,所述第三阻挡子层31’的材料与所述第四阻挡子层32’的材料不同(其中,41’为发光层1,可以发送红光;42’为发光层2,可以发送绿光;43’为发光层3,可以发送蓝光;并且各个发光层设置有各自对应的电子阻挡子层32’-1、32’-2或32’-3)。
图10为本公开实施例示例性的另外的有机电致发光器件结构示意图,包括阳极10、阴极90以及设置在所述阳极和所述阴极之间的第一空穴传输层20和第一发光层40,所述第一空穴传输层20位于所述第一发光层40与所述阳极10之间;所述第一空穴传输层20至少包括第一空穴子层21和第二空穴子层22;所述第一空穴子层21的材料包括第一材料和第二材料,所述第二空穴子层22的材料包括所述第一材料和所述第二材料中的至少一种;并且所述有机电致发光器件还包括第一电子阻挡层30,所述第一电子阻挡层30位于所述第一发光层40与所述第一空穴传输层20之间,所述第二空穴子层材 料的HOMO能级与所述第一电子阻挡层的LUMO能级之间的差值小于或等于0.4eV;所述第一电子阻挡层的LUMO能级与所述第一发光层的HOMO能级之间的差值小于或等于0.4eV;并且所述第一电子阻挡层30包括第一阻挡子层31和第一阻挡子层32;(其中41为发光层1,可以发送红光、绿光或蓝光;42为发光层2,可以发送红光、绿光或蓝光;43为发光层3,可以发送红光、绿光或蓝光;并且各个发光层设置有各自对应的电子阻挡子层32-1、32-2或32-3);所述有机电致发光器件还包括电荷产生层60(61为N型电荷产生层,62为P型电荷产生层)、第二空穴传输层20’和第二发光层40’,所述电荷产生层位60于所述第一发光层40靠近所述阴极一侧,所述第二空穴传输层20’位于所述电荷产生层靠近所述阴极一侧,所述第二发光层40’位于所述第二空穴传输层20’与所述阴极之间;所述第二空穴传输层20’至少包括第三空穴子层21’,所述第三空穴子层21’的材料包括第一材料和第二材料;所述第三空穴子层21’位于所述第二发光层40’与所述电荷产生层60之间;所述第二空穴子层22材料的迁移率M 2与所述第三空穴子层21’材料的迁移率M 4满足以下条件:
10 -1cm 2/Vs≤M 2/M 4≤10cm 2/Vs;并且
所述有机电致发光器件还包括第二电子阻挡层30’,所述第二电子阻挡层30’位于所述第二发光层40’与所述第二空穴传输层20’之间,所述第三空穴子层21’材料的HOMO能级与所述第二电子阻挡层30’的LUMO能级之间的差值小于或等于0.4eV;所述第三空穴子层21’材料的迁移率大于所述第二电子阻挡层30’的迁移率;所述第四阻挡子层30’的LUMO能级与所述第二发光层的HOMO能级之间的差值小于或等于0.4eV。所述有机电致发光器件还包括第二电子阻挡层30’,所述第二电子阻挡层30’包括第三阻挡子层31’和第四阻挡子层32’,所述第四阻挡子层32’位于所述第三阻挡子层31’与所述第二发光层40’之间,所述第三阻挡子层31’的材料与所述第四阻挡子层32’的材料不同(其中,41’为发光层1,可以发送红光、绿光或蓝光;42’为发光层2,可以发送红光、绿光或蓝光;43’为发光层3,可以发送红光、绿光或蓝光;并且各个发光层设置有各自对应的电子阻挡子层32’-1、32’-2或32’-3)。
图11为本公开实施例示例性的另外的有机电致发光器件结构示意图,该图器件主体结构与图10器件主体结构相似,不同之处在于:41为发光层1,可以发送红光、绿光或蓝光;42为发光层2,可以发送红光、绿光或蓝光;43为发光层3,可以发送红光、绿光或蓝光;并且,41位于42与43上方,且41设置有对应的电子阻挡子层32-1;41’为发光层1,可以发送红光、绿光或蓝光;42’为发光层2,可以发送红光、绿光或蓝光;43’为发光层3,可以发送红光、绿光或蓝光;并且,41’位于42’与43’上方,且41’设置有对应的电子阻挡子层32’-1。
图12为一种示例性串扰现象;其中,纵向表示光强度;横向表示波长,蓝光的波长范围为440nm-475nm,绿光的波长范围为492nm-577nm,红光的波长范围为622nm-760nm。由图可见,在发光层工作时,处于中间波长的绿光的电子横向流动到右侧波长红光的峰内,存在一较小波峰。
图13为本公开器件的示例性无串扰发光谱,其中,纵向表示光强度;横向表示波长,蓝光的波长范围为440nm-475nm,绿光的波长范围为492nm-577nm,红光的波长范围为622nm-760nm。由图可见,本公开的发光器件能够有效减少串扰,改进显示效果。
在示例性实施方式中,OLED发光元件的有机发光层可以包括发光层(Emitting Layer,简称EML),以及包括空穴注入层(Hole Injection Layer,简称HIL)、空穴传输层(Hole Transport Layer,简称HTL)、空穴阻挡层(Hole Block Layer,简称HBL)、电子阻挡层(Electron Block Layer,简称EBL)、电子注入层(Electron Injection Layer,简称EIL)、电子传输层(Electron Transport Layer,简称ETL)中的一个或多个膜层。在阳极和阴极的电压驱动下,利用有机材料的发光特性根据需要的灰度发光。
一种OLED结构中,空穴注入层HIL采用的材料可以选自无机的氧化物,诸如,钼氧化物、钛氧化物、钒氧化物、铼氧化物、钌氧化物、铬氧化物、锆氧化物、铪氧化物、钽氧化物、银氧化物、钨氧化物、锰氧化物等;也可以选自强吸电子体系的掺杂物,例如F4TCNQ、HATCN等。
又一种OLED结构中,电荷产生层包括P型电荷产生层(CGL)和N型CGL,P型CGL可以为空穴型材料,如NPB、TPD等,N型电荷产生层可 以为含菲啰啉或膦氧基的电子型材料。P型CGL与N型CGL均可含有掺杂剂,P型电荷产生层的掺杂剂可以为HATCN、F4TCNQ等,N型电荷产生层的掺杂剂可以为诸如锂(Li)、钠(Na)、钾(K)或铯(Cs)之类的碱金属或者诸如镁(Mg)、锶(Sr)、钡(Ba)或镭(Ra)之类的碱金属或碱土金属及其氧化物。作为N型CGL,可将电子注入到第一发光单元中。作为P型CGL可将空穴注入到第二发光单元中。
又一种OLED结构中,电子注入层一般为碱金属或者金属,例如LiF、Yb、Mg、Ca或者他们的化合物等。
又另外的OLED结构中,玻璃衬底上的氧化铟锡ITO层作为阳极,空穴注入层(5-30nm),第一空穴子层(15-25nm),第二空穴子层(5-45nm),第三空穴子层(10-25nm),红光发光层(30-50nm),绿光发光层(30-50nm),蓝光发光层(10-20nm),第一空穴阻挡层(5-15nm),N型电荷产生层(15-25nm),P型电荷产生层(5-15nm),第一空穴子层(15-25nm),第二空穴子层(5-45nm),第三空穴子层GEBL(10-25nm),红光发光层(30-50nm),绿光发光层(30-50nm),蓝光发光层(10-20nm),第二阻挡子层(5-15nm),电子传输层(20-100nm),电子注入层(1-10nm),阴极(10-20nm)。
又一种OLED结构中,叠层式有机发光器件各层的物性关系如下:
(1)第一EML与第二EML层均包含RGB3个发光层,并且上下2层相同颜色的波长相差小于等于20nm,保证两个发光层之间没有明显的色差;
当两个发光单元只含一个发光层时,该发光层可发红色的光、绿色的光,蓝色的光之一。当含有3个发光层时,可发红色的光、蓝色的光、绿色的光;
(2)第一材料的LUMO能级与第二材料的HOMO能级的差值在-0.3eV至1.0eV之间;
第二空穴子层材料的HOMO能级与第一电子阻挡层的LUMO能级之间的差值小于等于0.4eV,确保载流子顺畅的传输;
第一电子阻挡层的LUMO能级与第一发光层的HOMO能级之间的差值小于等于0.4eV,确保空穴很好的注入到发光层中;
(3)第二空穴子层材料的迁移率大于第一电子阻挡层的迁移率,第二空 穴子层在电子阻挡层的厚度方向上有较大的迁移率,可以防止电压偏高的问题,保证了器件电压和性能;
第一发光单元中的第二空穴子层(HTL-1)材料的迁移率M 2与第二发光单元中的第三空穴子层(HTL-2)材料的迁移率M 4满足以下条件:
10 -1cm 2/Vs≤M 2/M 4≤10cm 2/Vs,使得2个EML层的复合区域没有明显的差异;
(4)空穴注入层的电阻率:≥100Ω·m,空穴传输层的横向电流,解决发光单元之间的颜色串扰问题。
表1各功能层常用商业化材料
Figure PCTCN2022135104-appb-000011
Figure PCTCN2022135104-appb-000012
N-CGL可由如下的式5表示:
Figure PCTCN2022135104-appb-000013
在式5中,R1至R7相同或不同,各自独立地选自以下中的任一种:氢;氘;氚;卤素;氰基;硝基;C6-C60芳基;含有来自O、N、S、Si和P的至少一个杂原子的C2-C60杂环基;C3-C60脂族环和C6-C60芳族环的稠环基;C1-C50烷基;C2-C20烯基;C2-C20炔基;C1-C30烷氧基;C6-C30芳氧基;C3-C60烷基甲硅烷基;C18-C60芳基甲硅烷基;和C8-C60烷基芳基甲硅烷基;以及R1至R6中的一者或更多者为氰基;
Ar各自独立地为选自以下中的任一种:氢;氘;氚;卤素;氰基;硝基;C6-C60芳基;含有来自O、N、S、Si和P的至少一个杂原子的C2-C60杂环基;C3-C60脂族环和C6-C60芳族环的稠环基;C1-C50烷基;C2-C20烯基;C2-C20炔基;C1-C30烷氧基;C6-C30芳氧基;C3-C60烷基甲硅烷基;C18-C60芳基甲硅烷基;和C8-C60烷基芳基甲硅烷基;
L选自以下中的任一种:C6-C60亚芳基;含有来自O、N、S、Si和P 的至少一个杂原子的C2-C60二价杂环基;C3-C60脂族环和C6-C60芳族环的二价稠环基。
式5的化合物选自以下化合物的一种或多种:
Figure PCTCN2022135104-appb-000014
电阻率测试
下表电阻率测试采用的结构为:横向电阻基板/P型掺杂的空穴注入层/空穴传输层,薄膜电阻率,可以反映化合物的电阻率大小。
表2各化合物的性能比较
Figure PCTCN2022135104-appb-000015
由表结果可以看出,本发明中的式1的化合物中,具有富电子单元,并且可以通过基团间的连接可有效的调整分子内的共轭长度,其重组能更低,具有高的空穴迁移率。更高具有较合适的HOMO能级;是使空穴更好的传输。通过基团间的特定连接,使该类分子空间结构立体,沉积形成的薄膜具有更大的横向电阻,而色彩串扰主要是由于空穴注入层横向漏电导致的,因此,式1的化合物作为空穴传输材料在P型掺杂后具有大的横向电阻,可以很好解决不同颜色光间电荷的横向扩散,大大减弱颜色串扰问题,提高显示效果。
式3的化合物,相对对比化合物来说,具有较深的HOMO能级,且比式2的化合物具有较深的HOMO能级,能够很好降低空穴传输层与发光层之间的势垒,利于载流子的传输。同时相对于对比化合物来说,具有较大的横向电阻,可进一步改善色彩串扰。
实施例中所用功能层材料
Figure PCTCN2022135104-appb-000016
表3本公开制备的EL器件
编号 第一空穴传输层 第二空穴传输层 EBL NCGL
实施例1 1-2和3-6 3-6 4-2 5-1
实施例2 1-3和3-6 3-6 4-1 5-1
实施例3 1-2和3-6 对比REBL 4-2 5-1
实施例4 1-2和3-6 3-6 4-2 对比NCGL
实施例5 1-2和3-6 对比HTL 4-2 对比NCGL
实施例6 对比HIL和对比HTL 3-6 4-2 5-1
对比例1 对比HIL和对比HTL 对比HTL 对比EBL 对比NCGL
表4以上表3的EL器件的各参数
编号 电压 效率 寿命 EL光谱 CIEx CIEy
实施例1 94.89% 115.06% 115.02% 625 0.685 0.315
实施例2 95.63% 110.77% 111.62% 625 0.684 0.315
实施例3 96.06% 106.85% 106.14% 625 0.685 0.316
实施例4 96.29% 104.72% 105.51% 626 0.685 0.316
实施例5 99.08% 103.21% 102.78% 626 0.686 0.315
实施例6 99.83% 102.06% 101.87% 624 0.683 0.317
对比例1 100% 100% 100% 626 0.685 0.315
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (20)

  1. 一种有机电致发光器件,包括阳极、阴极以及设置在所述阳极和所述阴极之间的第一空穴传输层和第一发光层,所述第一空穴传输层位于所述第一发光层与所述阳极之间;所述第一空穴传输层至少包括第一空穴子层和第二空穴子层;所述第一空穴子层的材料包括第一材料和第二材料,所述第二空穴子层的材料包括所述第一材料和所述第二材料中的至少一种;并且
    其中,所述第一材料包括但不限于具有式1结构的化合物:
    Figure PCTCN2022135104-appb-100001
    在式1中:
    X为O、S、C或N
    L1、L2各自独立地为直接键,各自独立地为取代或未取代的C6-C60的芳基;
    Ar1与Ar2各自独立地为氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、取代或未取代的甲硅烷基、取代或未取代的硼基、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的烷基硫基、取代或未取代的芳基硫基、取代或未取代的烷基磺酰基、取代或未取代的芳基磺酰基、取代或未取代的烯基、取代或未取代的芳烷基、取代或未取代的芳烯基、取代或未取代的烷基芳基、取代或未取代的烷基胺基、取代或未取代的芳烷基胺基、取代或未取代的杂芳基胺基、取代或未取代的芳基胺基、取代或未取代的芳基杂芳基胺基、取代或未取代的芳基膦基、取代或未取代的氧化膦基团、取代或未取代的芳基、或者取代或未取代的杂环基;或者由以下式2表示:
    Figure PCTCN2022135104-appb-100002
    R1、R2、R3、R4各自独立地选自氘、卤素基团、氰基、C3-C20杂芳基、C6-C20芳基、C3-C12三烷基硅基、C18-C30三芳基硅基、C1-C5烷基、C1-C10卤代烷基、C3-C10环烷基、C2-C10杂环烷基、C5-C10环烯基、C4-C10杂环烯基、C1-C10烷氧基、C1-C10烷硫基、C6-C18芳氧基、C6-C18芳硫基、C6-C24磷氧基、C6-C18烷基磺酰基、C3-C18三烷基膦基、C3-C18三烷基硼基;或者任选地与相邻基团键合以形成环;
    a、b、m、n各自独立地为0-4的整数。
  2. 根据权利要求1所述的有机电致发光器件,其中,所述第一空穴子层位于所述第二空穴子层与所述阳极之间。
  3. 根据权利要求1所述的有机电致发光器件,其中,所述第一材料的LUMO能级与所述第二材料的HOMO能级的差值在-0.3eV至1.0eV之间。
  4. 根据权利要求1所述的有机电致发光器件,其中,所述有机电致发光器件还包括第一电子阻挡层,所述第一电子阻挡层位于所述第一发光层与所述第一空穴传输层之间,所述第二空穴子层材料的HOMO能级与所述第一电子阻挡层的LUMO能级之间的差值小于或等于0.4eV。
  5. 根据权利要求4所述的有机电致发光器件,其中,所述第二空穴子层材料的迁移率大于所述第一电子阻挡层的迁移率。
  6. 根据权利要求4所述的有机电致发光器件,其中,所述第一电子阻挡层的LUMO能级与所述第一发光层的HOMO能级之间的差值小于或等于0.4eV。
  7. 根据权利要求4所述的有机电致发光器件,其中,所述第一电子阻挡层包括第一阻挡子层,或者,所述第一电子阻挡层包括第一阻挡子层和第二阻挡子层,所述第二阻挡子层位于所述第一阻挡子层与所述第一发光层之间, 所述第一阻挡子层的材料与所述第二阻挡子层的材料不同。
  8. 根据权利要求1所述的有机电致发光器件,其中,所述第一空穴子层的电阻率大于或等于100Ω·m。
  9. 根据权利要求1所述的有机电致发光器件,其中,所述有机电致发光器件还包括电荷产生层、第二空穴传输层和第二发光层,所述电荷产生层位于所述第一发光层靠近所述阴极一侧,所述第二空穴传输层位于所述电荷产生层靠近所述阴极一侧,所述第二发光层位于所述第二空穴传输层与所述阴极之间;所述第二空穴传输层至少包括第三空穴子层,所述第三空穴子层的材料包括第一材料和第二材料。
  10. 根据权利要求9所述的有机电致发光器件,其中,所述第三空穴子层位于所述第二发光层与所述电荷产生层之间。
  11. 根据权利要求9所述的有机电致发光器件,其中,所述第二空穴子层材料的迁移率M 2与所述第三空穴子层材料的迁移率M 4满足以下条件:
    10 -1cm 2/Vs≤M 2/M 4≤10cm 2/Vs。
  12. 根据权利要求9所述的有机电致发光器件,其中,所述有机电致发光器件还包括第二电子阻挡层,所述第二电子阻挡层包括第三阻挡子层,或者,所述第二电子阻挡层包括第三阻挡子层和第四阻挡子层,所述第二电子阻挡层位于所述第二发光层与所述第二空穴传输层之间,所述第三空穴子层材料的HOMO能级与所述第二电子阻挡层的LUMO能级之间的差值小于或等于0.4eV。
  13. 根据权利要求12所述的有机电致发光器件,其中,所述第三空穴子层材料的迁移率大于所述第二电子阻挡层的迁移率。
  14. 根据权利要求12所述的有机电致发光器件,其中,所述第四阻挡子层的LUMO能级与所述第二发光层的HOMO能级之间的差值小于或等于0.4eV。
  15. 根据权利要求12所述的有机电致发光器件,其中,所述第二电子阻挡层包括第三阻挡子层,或者,所述第二电子阻挡层包括第三阻挡子层和第四阻挡子层,所述第四阻挡子层位于所述第三阻挡子层与所述第二发光层之 间,所述第三阻挡子层的材料与所述第四阻挡子层的材料不同。
  16. 根据权利要求1至15中任一项所述的有机电致发光器件,其中,式1的化合物选自以下化合物的一种或多种:
    Figure PCTCN2022135104-appb-100003
  17. 根据权利要求1至15中任一项所述的有机电致发光器件,其中,所述第二材料包括但不限于具有式3结构的化合物:
    Figure PCTCN2022135104-appb-100004
    在式3中:
    A1-A6各自独立地为取代或未取代的卤素、取代或未取代的氰基、取代或未取代的芳基、取代或未取代的杂芳基,并且被缺电子基团取代的芳基或被缺电子基团取代的杂芳基;
    A为3元环、四元环、五元环或六元环。
  18. 根据权利要求17所述的有机电致发光器件,其中,式3的化合物选自以下化合物的一种或多种:
    Figure PCTCN2022135104-appb-100005
  19. 根据权利要求4所述的有机电致发光器件,其中,所述电子阻挡层包括但不限于具有式4结构的化合物:
    Figure PCTCN2022135104-appb-100006
    在式4中,Ar3、Ar4、Ar5、Ar6各自独立地为取代或未取代的芳基、取代或未取代的杂芳基;
    L1、L2、L3、L4各自独立地为直接键,各自独立地为取代或未取代的C6-C60的芳基;
    R5、R6各自独立地选自氘、卤素基团、氰基、C3-C20杂芳基、C6-C20芳基、C3-C12三烷基硅基、C18-C30三芳基硅基、C1-C5烷基、C1-C10卤代烷基、C3-C10环烷基、C2-C10杂环烷基、C5-C10环烯基、C4-C10杂环烯基、C1-C10烷氧基、C1-C10烷硫基、C6-C18芳氧基、C6-C18芳硫基、C6-C24磷氧基、C6-C18烷基磺酰基、C3-C18三烷基膦基、C3-C18三烷基硼基;或者任选地与相邻基团键合以形成环;
    Ar3、Ar4、Ar5、Ar6各自独立地为以下基团:
    Figure PCTCN2022135104-appb-100007
  20. 一种显示装置,包括权利要求1至19中任一项所述的有机电致发光器件。
PCT/CN2022/135104 2022-11-29 2022-11-29 有机电致发光器件和显示装置 WO2024113176A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135104 WO2024113176A1 (zh) 2022-11-29 2022-11-29 有机电致发光器件和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135104 WO2024113176A1 (zh) 2022-11-29 2022-11-29 有机电致发光器件和显示装置

Publications (1)

Publication Number Publication Date
WO2024113176A1 true WO2024113176A1 (zh) 2024-06-06

Family

ID=91322601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135104 WO2024113176A1 (zh) 2022-11-29 2022-11-29 有机电致发光器件和显示装置

Country Status (1)

Country Link
WO (1) WO2024113176A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120077987A1 (en) * 2010-09-27 2012-03-29 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN104505464A (zh) * 2014-12-31 2015-04-08 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光器件
CN110492007A (zh) * 2018-05-14 2019-11-22 江苏三月光电科技有限公司 一种吖啶化合物及其在机电致发光器件中的应用
CN110669040A (zh) * 2019-09-26 2020-01-10 上海天马有机发光显示技术有限公司 化合物、显示面板和显示装置
CN111244310A (zh) * 2018-11-29 2020-06-05 固安鼎材科技有限公司 一种有机电致发光器件及有机电致发光显示装置
US20210122723A1 (en) * 2019-10-28 2021-04-29 Shanghai Tianma Am-Oled Co.,Ltd. Compound, organic electroluminescent device, and display device
CN113823752A (zh) * 2021-09-18 2021-12-21 京东方科技集团股份有限公司 空穴注入材料、电致发光器件和显示装置
CN114335399A (zh) * 2021-12-03 2022-04-12 陕西莱特迈思光电材料有限公司 有机电致发光器件及包括其的电子装置
CN114759148A (zh) * 2021-01-08 2022-07-15 固安鼎材科技有限公司 一种有机电致发光器件
CN114784080A (zh) * 2022-05-25 2022-07-22 云谷(固安)科技有限公司 显示面板和显示装置
CN115050895A (zh) * 2021-03-08 2022-09-13 京东方科技集团股份有限公司 发光器件、发光基板和发光装置
CN115244727A (zh) * 2021-01-26 2022-10-25 京东方科技集团股份有限公司 有机电致发光器件和显示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120077987A1 (en) * 2010-09-27 2012-03-29 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN104505464A (zh) * 2014-12-31 2015-04-08 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光器件
CN110492007A (zh) * 2018-05-14 2019-11-22 江苏三月光电科技有限公司 一种吖啶化合物及其在机电致发光器件中的应用
CN111244310A (zh) * 2018-11-29 2020-06-05 固安鼎材科技有限公司 一种有机电致发光器件及有机电致发光显示装置
CN110669040A (zh) * 2019-09-26 2020-01-10 上海天马有机发光显示技术有限公司 化合物、显示面板和显示装置
US20210122723A1 (en) * 2019-10-28 2021-04-29 Shanghai Tianma Am-Oled Co.,Ltd. Compound, organic electroluminescent device, and display device
CN114759148A (zh) * 2021-01-08 2022-07-15 固安鼎材科技有限公司 一种有机电致发光器件
CN115244727A (zh) * 2021-01-26 2022-10-25 京东方科技集团股份有限公司 有机电致发光器件和显示装置
CN115050895A (zh) * 2021-03-08 2022-09-13 京东方科技集团股份有限公司 发光器件、发光基板和发光装置
CN113823752A (zh) * 2021-09-18 2021-12-21 京东方科技集团股份有限公司 空穴注入材料、电致发光器件和显示装置
CN114335399A (zh) * 2021-12-03 2022-04-12 陕西莱特迈思光电材料有限公司 有机电致发光器件及包括其的电子装置
CN114784080A (zh) * 2022-05-25 2022-07-22 云谷(固安)科技有限公司 显示面板和显示装置

Similar Documents

Publication Publication Date Title
KR101320655B1 (ko) 유기전계발광표시장치
KR101950836B1 (ko) 유기 발광 소자 및 그의 제조 방법
KR102104978B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
KR102106146B1 (ko) 유기전계발광표시장치 및 이의 제조방법
CN110838554B (zh) 有机电致发光装置
KR102081123B1 (ko) 유기 발광 표시 장치
CN106848084B (zh) 一种oled显示面板、制作方法及含有其的电子设备
KR20150113308A (ko) 유기 발광 소자
US8878171B2 (en) Organic light emitting display device
CN109216416A (zh) 有机发光二极管和包括其的显示装置
KR20100073417A (ko) 유기전계발광소자
KR20140059713A (ko) 유기 발광 표시 장치
KR20140048028A (ko) 유기전계발광소자 및 이를 이용한 유기전계발광표시장치
KR101926524B1 (ko) 유기 발광 표시 장치
KR20200038061A (ko) 유기전계발광소자
KR20130057738A (ko) 유기전계발광소자
KR101965910B1 (ko) 유기 전계 발광 소자
CN112687815B (zh) 有机发光二极管和包括有机发光二极管的有机发光装置
KR102101202B1 (ko) 유기발광다이오드 및 이를 포함하는 유기발광다이오드 표시장치
KR102009804B1 (ko) 유기 발광 다이오드 표시 장치 및 이의 제조 방법
KR101777124B1 (ko) 백색 유기 발광 소자
KR101002004B1 (ko) 유기전계발광표시장치
WO2024113176A1 (zh) 有机电致发光器件和显示装置
KR20170124012A (ko) 백색 유기전계 발광 소자 및 그를 이용한 표시 장치
CN101388437B (zh) 电激发光元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966774

Country of ref document: EP

Kind code of ref document: A1