WO2024108910A1 - 一种igct变流器、电源***及过流保护方法 - Google Patents

一种igct变流器、电源***及过流保护方法 Download PDF

Info

Publication number
WO2024108910A1
WO2024108910A1 PCT/CN2023/092697 CN2023092697W WO2024108910A1 WO 2024108910 A1 WO2024108910 A1 WO 2024108910A1 CN 2023092697 W CN2023092697 W CN 2023092697W WO 2024108910 A1 WO2024108910 A1 WO 2024108910A1
Authority
WO
WIPO (PCT)
Prior art keywords
igct
command value
current command
converter
time period
Prior art date
Application number
PCT/CN2023/092697
Other languages
English (en)
French (fr)
Inventor
庄富帅
庄园
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Publication of WO2024108910A1 publication Critical patent/WO2024108910A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present application relates to the technical field, and in particular to an IGCT converter, a power supply system and an overcurrent protection method.
  • the integrated gate-commutated thyristor has the characteristic of not being able to be turned off when there is overcurrent, and when the current is large, the turn-off voltage spike is large, which can easily cause damage to the device.
  • the general operating frequency of IGCT is low. If the IGCT switches frequently, there will be switching losses in the IGCT. Moreover, if the switching is performed under large current conditions, the repeated actions will cause heat accumulation, which will put pressure on heat dissipation.
  • the present application provides an IGCT converter, a power supply system and an overcurrent protection method, which can quickly suppress the rise of current when the current is overcurrent and protect the IGCT device.
  • the present application provides an IGCT converter, comprising: a power circuit, a current detection circuit and a controller;
  • the power circuit includes an IGCT device
  • a current detection circuit used for detecting the output current of the IGCT converter
  • the controller is used to block the IGCT device in the power circuit for a first time period and reduce the current command value when the output current is greater than the protection threshold. After the first time period is reached, the blocking is released. When the output current is greater than the protection threshold again after the blocking is released, the blocking is performed again and the current command value is reduced again.
  • the controller is further configured to, when the number of wave sealing times is greater than a first set number Nt, seal the IGCT device in the power circuit again for a second time period, the second time period being greater than the first time period.
  • the controller is also used to reduce the current command value after the IGCT device in the power circuit is sealed for a second time period, and the amplitude by which the current command value is reduced is greater than the first amplitude, and the first amplitude is the maximum amplitude by which the current command value is reduced when the number of sealing times is less than or equal to the first set number Nt.
  • the controller is specifically used for reducing the current command value by an equal amount each time when the number of wave sealing times is less than or equal to the first set number Nt.
  • the controller is specifically used to control the current command value to be gradually reduced according to a ramp each time when the number of wave sealing times is less than or equal to a first set number Nt.
  • the controller is further used to control the protection threshold to be gradually reduced as the number of wave blocking times increases.
  • the controller is further used to control the IGCT converter to shut down when the number of wave blocking times is greater than a second set number Mt, and the second set number Mt is greater than the first set number Nt.
  • the present application also provides a power supply system, the power supply system comprising the IGCT converter described above;
  • the output end of the IGCT converter is used to connect to the power grid.
  • the present application also provides an overcurrent protection method for an IGCT converter, wherein the IGCT converter comprises: a current detection circuit and a power circuit; the power circuit comprises an IGCT device; the current detection circuit detects the output current of the IGCT converter;
  • the method includes:
  • the IGCT device in the power circuit is blocked for a first period of time and the current command value is reduced;
  • the method further comprises: when the number of times of wave sealing is greater than the first set number of times Nt, sealing the IGCT device in the power circuit again for a second time period, and the second time period is greater than the first time period.
  • it also includes: after the IGCT device in the power circuit is sealed for the second time period, the current command value is reduced, and the amplitude of the current command value being reduced is greater than the first amplitude, and the first amplitude is the maximum amplitude of the current command value being reduced when the number of sealing times is less than or equal to the first set number Nt.
  • reducing the current command value specifically includes: when the number of wave sealing times is less than or equal to the first set number Nt, the current command value is reduced by an equal amplitude each time;
  • control current command value is gradually reduced according to the ramp each time.
  • the method further comprises: controlling the protection threshold to be gradually reduced as the number of wave blocking times increases.
  • the method further comprises: when the wave blocking number is greater than a second set number Mt, controlling the IGCT converter to shut down, and the second set number Mt is greater than the first set number Nt.
  • the IGCT converter provided by the present application when the output current is greater than the protection threshold, blocks the IGCT device in the power circuit for the first time period and reduces the current command value. After the first time period is reached, the blocking is released. When the output current is greater than the protection threshold after the blocking is released, the blocking is performed again, and the current command value is reduced again. Since the switching frequency of the IGCT device is low, controlling its switch too frequently can easily cause heat accumulation and increased losses. Therefore, the present application can block the wave according to the output current size and reduce the current command value. When the output current is greater than the protection threshold again, the blocking is performed again, and the current command value is further reduced.
  • the IGCT device When an overcurrent occurs in the IGCT converter, the IGCT device is not controlled to block the wave at one time, nor is the current command value unchanged, but the current command value is gradually reduced, so that the output current can be reduced more rapidly, thereby controlling the output current to not flow as quickly as possible, and protecting the IGCT device in a timely and effective manner.
  • FIG1 is a circuit diagram of a three-phase three-level IGCT converter provided in an embodiment of the present application.
  • FIG2 is a circuit diagram of another three-phase three-level IGCT converter provided in an embodiment of the present application.
  • FIG3 is a circuit diagram of a single-phase three-level IGCT converter provided in an embodiment of the present application.
  • FIG4 is a circuit diagram of another single-phase three-level IGCT converter provided in an embodiment of the present application.
  • FIG5 is a circuit diagram of a three-phase two-level IGCT converter provided in an embodiment of the present application.
  • FIG6 is a circuit diagram of a single-phase two-level IGCT converter provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of an IGCT converter provided in an embodiment of the present application.
  • FIG8 is a flow chart of an IGCT converter overcurrent protection method
  • FIG9 is a schematic diagram of a power supply system provided in an embodiment of the present application.
  • FIG. 10 is a flow chart of another IGCT converter overcurrent protection method provided in an embodiment of the present application.
  • the embodiments of the present application do not specifically limit the working scenarios of the IGCT converter.
  • it can be applied to the field of pumped storage or the field of wind power generation.
  • the embodiments of the present application do not specifically limit the specific topology of the IGCT converter, for example, it can be a two-level converter, a three-level converter, a three-phase converter, or a single-phase converter.
  • the following introduces several specific topologies of the IGCT converter in conjunction with the accompanying drawings.
  • FIG1 is a circuit diagram of a three-phase three-level IGCT converter provided in an embodiment of the present application.
  • the IGCT converter shown in Figure 1 is a three-phase converter, and its output is three-phase alternating current, i.e., phase A AC PhA, phase B AC PhB, and phase C AC PhC.
  • FIG1 shows a midpoint clamped three-level circuit, that is, the input midpoint NP of each phase is connected to the midpoint NP of the clamping switch tube of the bridge arm to form a voltage clamp.
  • FIG. 2 is a circuit diagram of another three-phase three-level IGCT converter provided in an embodiment of the present application.
  • FIG. 1 is a clamping switch tube
  • FIG. 2 is a clamping diode
  • FIG. 3 is a circuit diagram of a single-phase three-level IGCT converter provided in an embodiment of the present application.
  • FIG. 3 is a single-phase three-level IGCT converter.
  • FIG. 4 is a circuit diagram of another single-phase three-level IGCT converter provided in an embodiment of the present application.
  • FIG. 4 is a single-phase three-level IGCT converter.
  • FIG5 is a circuit diagram of a three-phase two-level IGCT converter provided in an embodiment of the present application.
  • the IGCT converter shown in Figure 5 is a three-phase converter, and its output is three-phase alternating current, i.e., phase A AC PhA, phase B AC PhB, and phase C AC PhC.
  • FIG. 5 is two-level, while FIG. 1 is three-level.
  • FIG. 6 is a circuit diagram of a single-phase two-level IGCT converter provided in an embodiment of the present application.
  • FIG. 6 is a single-phase two-level IGCT converter.
  • FIG. 7 is a schematic diagram of an IGCT converter provided in an embodiment of the present application.
  • the IGCT converter 1000 provided in this embodiment includes: a power circuit 101 , a current detection circuit 102 and a controller 103 .
  • the power circuit 101 includes an IGCT device.
  • the IGCT device needs the controller 103 to send a driving signal before it can perform a switching action, that is, sending a wave refers to sending a driving signal, and blocking a wave refers to blocking the driving signal and stopping controlling the action of the IGCT device.
  • the current detection circuit 102 is used to detect the output current of the IGCT converter.
  • the controller 103 is used to block the IGCT device in the power circuit 101 for a first time period and reduce the current command value when the output current is greater than the protection threshold. After the first time period is reached, the blocking is released. When the output current is greater than the protection threshold again after the blocking is released, the blocking is performed again and the current command value is reduced again.
  • the output power control of IGCT converters is generally based on output current control, that is, given a current command value, the controller of the IGCT converter uses a control algorithm to make the actual output current follow the current command value.
  • output current control that is, given a current command value
  • the controller of the IGCT converter uses a control algorithm to make the actual output current follow the current command value.
  • the technical solution provided by the embodiment of the present application due to the low switching frequency of the IGCT device, controls its switch too frequently, which easily causes heat accumulation and increased losses. Therefore, the present application can perform wave blocking according to the output current size and reduce the current command value. When the output current is greater than the protection threshold, the wave is blocked again and the current command value is further reduced. When an overcurrent occurs in the IGCT converter, the IGCT device is not controlled to block the wave at one time, nor is the current command value unchanged, but the current command value is gradually reduced, so that the output current can be reduced more rapidly, thereby controlling the output current to not flow as quickly as possible, and protecting the IGCT device in a timely and effective manner.
  • the technical solution provided in the embodiment of the present application can be cyclically controlled if the output current continues to overcurrent after the current command value is reduced, without specifically limiting the number of cycles.
  • the number of cycles can be set, and graded control can be performed according to the number of cycles.
  • the controller is also used to seal the IGCT device in the power circuit again for a second time period when the number of sealing times is greater than the first set number Nt, and the second time period is greater than the first time period.
  • the current command value can be reduced to a greater extent.
  • the controller is also used to reduce the current command value after the IGCT device in the power circuit is sealed for a second time period.
  • the amplitude by which the current command value is reduced is greater than the first amplitude.
  • the first amplitude is the maximum amplitude by which the current command value is reduced when the number of sealing times is less than or equal to the first set number Nt.
  • the embodiment of the present application does not specifically limit the amplitude of each reduction of the current command value when the number of wave blocking times is less than or equal to the first set number Nt.
  • the amplitude of each reduction may be equal, or the amplitude of each reduction may be gradually reduced. For example, if Nt is 5, the current command value will be reduced by 2% after each wave blocking. Or, the current command value will be reduced by 2% for the first wave blocking, 3% for the second wave blocking, 4% for the third wave blocking, and 5% for the fourth wave blocking.
  • the technical solution provided in the embodiment of the present application can reduce the current command value each time by directly reducing it at one time, or gradually reducing it according to a slope, for example, 2%, reducing it by 2% at one time, or reducing it by 0.5% each time according to a slope ratio of 0.25.
  • the controller is specifically used to control the current command value to be gradually reduced according to a slope each time when the number of wave envelopes is less than or equal to the first set number of times Nt.
  • the embodiment of the present application does not specifically limit whether the protection threshold value changes.
  • the protection threshold value may not change to a fixed value during the entire overcurrent protection process.
  • the protection process may be shortened by lowering the protection threshold value after overcurrent and wave blocking. That is, the controller is also used to control the protection threshold value to be gradually lowered as the number of wave blocking times increases.
  • the controller is also used to control the IGCT converter to shut down when the number of wave blocking times is greater than the second set number Mt, and the second set number Mt is greater than the first set number Nt.
  • FIG8 is a flow chart of an IGCT converter overcurrent protection method.
  • S803 Execute the second time period TL blocking, TL is greater than T.
  • the blocking times are increased by 1, and the blocking is released after TL is reached, and the current command value is reduced to b% of the previous current command value, where b is greater than a, and both a and b are numbers greater than zero and less than 100.
  • the above embodiment is only introduced by taking the case where the number of wave blocking times is divided into two levels as an example, and more levels can also be divided.
  • the reduction range of the current command value is reduced together with the level of the number of wave blocking times.
  • the IGCT converter provided in this embodiment can quickly reduce the output current by gradually controlling the closing and opening of the wave and reducing the current command value when an overcurrent fault occurs. This can effectively reduce the risk of damage to the IGCT device and ensure that the IGCT converter safely passes through the unstable stage.
  • the controller can control the output current to follow the current command value.
  • an embodiment of the present application further provides a power supply system, which is described in detail with reference to the accompanying drawings below.
  • the power supply system provided in this embodiment includes the IGCT converter introduced in any one of the above embodiments;
  • the output end of the IGCT converter is used to connect to the power grid.
  • the embodiment of the present application does not specifically limit the voltage level of the power grid, for example, the voltage level is from several kilovolts to more than ten kilovolts, for example, it is applied in the field of wind power generation or pumped storage.
  • the IGCT converter can quickly and safely survive an overcurrent fault, the safe operation of the power supply system can be guaranteed.
  • FIG. 9 is a schematic diagram of a power supply system provided in an embodiment of the present application.
  • each phase can include multiple converter bridge arm circuits shown in Figure 6 connected in series, as shown in Figure 9.
  • the AC output ends are AC PhA, AC PhB and AC PhC respectively.
  • an embodiment of the present application further provides a power supply system, which is described in detail with reference to the accompanying drawings below.
  • FIG. 9 is a flow chart of an overcurrent protection method for an IGCT converter provided in an embodiment of the present application.
  • the IGCT converter comprises: a current detection circuit and a power circuit; the power circuit comprises an IGCT device; the current detection circuit detects the output current of the IGCT converter;
  • the method includes:
  • the technical solution provided by the embodiment of the present application is that due to the low switching frequency of the IGCT device, controlling its switch too frequently can easily cause heat accumulation and increased losses. Therefore, the present application can perform wave blocking according to the output current size and reduce the current command value. When the output current is greater than the protection threshold, the wave blocking is performed again and the current command value is further reduced. When an overcurrent occurs in the IGCT converter, the IGCT device is not controlled to block the wave at one time, nor is the current command value unchanged, but the current command value is gradually reduced, so that the output current can be reduced more rapidly, thereby controlling the output current to not flow as quickly as possible, and protecting the IGCT device in a timely and effective manner.
  • the IGCT device in the power circuit is again blocked for a second time period, and the second time period is greater than the first time period.
  • the current command value is reduced, and the amplitude of the current command value reduction is greater than the first amplitude.
  • the first amplitude is the maximum amplitude of the current command value reduction when the number of sealing times is less than or equal to the first set number Nt.
  • the method provided in this embodiment reduces the current command value, specifically including:
  • control current command value is gradually reduced according to the ramp each time.
  • the method provided in this embodiment further includes: controlling the protection threshold to be gradually reduced as the number of wave blocking times increases.
  • the method provided in this embodiment further includes: when the wave blocking number is greater than a second set number Mt, controlling the IGCT converter to shut down, and the second set number Mt is greater than the first set number Nt.
  • the overcurrent protection method for the IGCT converter provided in this embodiment can quickly reduce the output current by gradually controlling the closing and opening of the wave and reducing the current command value when an overcurrent fault occurs, which can Effectively reduce the damage risk of IGCT devices and ensure that the IGCT converter safely passes through the unstable stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请公开了一种IGCT变流器、电源***及过流保护方法,变流器包括:功率电路、电流检测电路和控制器;功率电路包括IGCT器件;电流检测电路,用于检测IGCT变流器的输出电流;控制器,用于在输出电流大于保护阈值时,对功率电路中的IGCT器件封波第一时间段,并降低电流指令值,第一时间段到达后,解除封波,解除封波后输出电流又大于保护阈值时,再次封波,再次降低电流指令值。由于IGCT器件的开关频率较低,过于频繁地控制其开关,容易引发热量堆积,而且损耗加重。在IGCT变流器发生过流时,逐渐降低电流指令值,使输出电流更迅速地下降,尽快地控制输出电流不过流,有效进行保护。

Description

一种IGCT变流器、电源***及过流保护方法
本申请要求于2022年11月24日提交中国国家知识产权局的申请号为202211483156.0、申请名称为“一种IGCT变流器、电源***及过流保护方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及技术领域,具体涉及一种IGCT变流器、电源***及过流保护方法。
背景技术
集成门极换流晶闸管(IGCT,Integrated Gate-Commutated Thyristor),具有过流不能关断的特性,且在电流较大时,关断电压尖峰较大,容易对器件造成损坏风险。
另外,IGCT一般的工作频率较低,如果IGCT频繁进行开关动作,则IGCT存在开关损耗,而且如果在电流较大的情形下进行开关,反复动作将造成热量堆积,给散热带来压力。
发明内容
有鉴于此,本申请提供一种IGCT变流器、电源***及过流保护方法,能够在电流过流时,迅速抑制电流的上升,保护IGCT器件。
本申请提供一种IGCT变流器,包括:功率电路、电流检测电路和控制器;
功率电路包括IGCT器件;
电流检测电路,用于检测IGCT变流器的输出电流;
控制器,用于在输出电流大于保护阈值时,对功率电路中的IGCT器件封波第一时间段,并降低电流指令值,第一时间段到达后,解除封波,解除封波后输出电流又大于保护阈值时,再次封波,再次降低电流指令值。
优选地,控制器,还用于当封波次数大于第一设定次数Nt,对功率电路中的IGCT器件再次封波第二时间段,第二时间段大于第一时间段。
优选地,控制器,还用于对功率电路中的IGCT器件封波第二时间段后,降低电流指令值,电流指令值被降低的幅度大于第一幅度,第一幅度为封波次数小于等于第一设定次数Nt时电流指令值被降低的幅度最大值。
优选地,控制器,具体用于封波次数小于等于第一设定次数Nt时,电流指令值每次被降低的幅度相等。
优选地,控制器,具体用于封波次数小于等于第一设定次数Nt时,控制电流指令值每次按照斜坡逐渐被降低。
优选地,控制器,还用于控制保护阈值随着封波次数的增加而被逐渐降低。
优选地,控制器,还用于在封波次数大于第二设定次数Mt时,控制IGCT变流器停机,第二设定次数Mt大于第一设定次数Nt。
本申请还提供一种电源***,电源***包括以上介绍的IGCT变流器;
IGCT变流器的输出端用于连接电网。
本申请还提供一种IGCT变流器的过流保护方法,IGCT变流器包括:电流检测电路和功率电路;功率电路包括IGCT器件;电流检测电路检测IGCT变流器的输出电流;
该方法包括:
在输出电流大于保护阈值时,对功率电路中的IGCT器件封波第一时间段,并降低电流指令值;
第一时间段到达后,解除封波;
解除封波后输出电流又大于保护阈值时,再次封波,再次降低电流指令值。
优选地,还包括:当封波次数大于第一设定次数Nt,对功率电路中的IGCT器件再次封波第二时间段,第二时间段大于第一时间段。
优选地,还包括:对功率电路中的IGCT器件封波第二时间段后,降低电流指令值,电流指令值被降低的幅度大于第一幅度,第一幅度为封波次数小于等于第一设定次数Nt时电流指令值被降低的幅度最大值。
优选地,降低电流指令值,具体包括:封波次数小于等于第一设定次数Nt时,电流指令值每次被降低的幅度相等;
封波次数小于等于第一设定次数Nt时,控制电流指令值每次按照斜坡逐渐被降低。
优选地,还包括:控制保护阈值随着封波次数的增加而被逐渐降低。
优选地,还包括:在封波次数大于第二设定次数Mt时,控制IGCT变流器停机,第二设定次数Mt大于第一设定次数Nt。
由此可见,本申请具有如下有益效果:
本申请提供的IGCT变流器,当输出电流大于保护阈值时,对功率电路中的IGCT器件封波第一时间段,并降低电流指令值,第一时间段到达后,解除封波,解除封波后输出电流又大于保护阈值时,再次封波,再次降低电流指令值。由于IGCT器件的开关频率较低,过于频繁地控制其开关,容易引发热量堆积,而且损耗加重。因此,本申请可以根据输出电流大小进行封波,并降低电流指令值,当输出电流又大于保护阈值时,再次封波,继续降低电流指令值。在IGCT变流器发生过流时,并不是一次性控制IGCT器件封波,也不是不变电流指令值,而是逐渐降低电流指令值,这样可以使输出电流更迅速地下降,从而尽快地控制输出电流不过流,及时有效地对IGCT器件进行保护。
附图说明
图1为本申请实施例提供的一种三相三电平IGCT变流器的电路图;
图2为本申请实施例提供的另一种三相三电平IGCT变流器的电路图;
图3为本申请实施例提供的一种单相三电平IGCT变流器的电路图;
图4为本申请实施例提供的另一种单相三电平IGCT变流器的电路图;
图5为本申请实施例提供的一种三相两电平IGCT变流器的电路图;
图6为本申请实施例提供的一种单相两电平IGCT变流器的电路图;
图7为本申请实施例提供的一种IGCT变流器的示意图;
图8为一种IGCT变流器过流保护方法的流程图;
图9为本申请实施例提供的一种电源***的示意图;
图10为本申请实施例提供的另一种IGCT变流器过流保护方法的流程图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请实施例作进一步详细的说明。
本申请实施例具体不限定IGCT变流器的工作场景,例如,可以应用于抽水蓄能领域,也可以应用于风力发电领域。
本申请实施例也不具体限定IGCT变流器的具体拓扑,例如可以为两电平变流器,也可以为三电平变流器,可以为三相变流器,也可以为单相变流器。下面结合附图介绍几种具体的IGCT变流器的拓扑。
参见图1,该图为本申请实施例提供的一种三相三电平IGCT变流器的电路图。
图1所示的IGCT变流器为三相变流器,输出为三相交流电,即A相位AC PhA,B相位AC PhB,C相位AC PhC。
图1所示的为中点钳位三电平,即每相的输入中点NP与桥臂的钳位开关管中点NP连接在一起,形成电压钳位。
参见图2,该图为本申请实施例提供的另一种三相三电平IGCT变流器的电路图。
图2与图1的区别是,图1为钳位开关管,图2中为钳位二极管。
参见图3,该图为本申请实施例提供的一种单相三电平IGCT变流器的电路图。
图3与图1的区别是,图3为单相三电平IGCT变流器。
参见图4,该图为本申请实施例提供的另一种单相三电平IGCT变流器的电路图。
图4与图2的区别是,图4为单相三电平IGCT变流器。
参见图5,该图为本申请实施例提供的一种三相两电平IGCT变流器的电路图。
图5所示的IGCT变流器为三相变流器,输出为三相交流电,即A相位AC PhA,B相位AC PhB,C相位AC PhC。
图5与图1的区别是,图5为两电平,图1为三电平。
参见图6,该图为本申请实施例提供的一种单相两电平IGCT变流器的电路图。
图6与图5的区别是,图6为单相两电平的IGCT变流器。
下面结合附图详细介绍本申请实施例提供的一种IGCT变流器的工作原理。
参见图7,该图为本申请实施例提供的一种IGCT变流器的示意图。
本实施例提供的IGCT变流器1000,包括:功率电路101、电流检测电路102和控制器103。
功率电路101包括IGCT器件。
应该理解,IGCT器件需要控制器103发送驱动信号才可以进行开关动作,即发波是指发送驱动信号,封波是指封锁驱动信号,停止控制IGCT器件动作。
电流检测电路102,用于检测IGCT变流器的输出电流。
控制器103,用于在输出电流大于保护阈值时,对功率电路101中的IGCT器件封波第一时间段,并降低电流指令值,第一时间段到达后,解除封波,解除封波后输出电流又大于保护阈值时,再次封波,再次降低电流指令值。
IGCT变流器在实际工作中,对于IGCT变流器的输出功率控制,一般以输出电流控制为主,即给定一个电流指令值,IGCT变流器的控制器采用控制算法,使实际输出电流跟随电流指令值。当发生过流故障时,整个***需要一定响应时间,这段时间内存在不稳定状态,在不稳定状态时间内,如果采用较大的电流指令值,也会加剧IGCT器件的应力损坏风险。
因此,本申请实施例提供的技术方案,由于IGCT器件的开关频率较低,过于频繁地控制其开关,容易引发热量堆积,而且损耗加重。因此,本申请可以根据输出电流大小进行封波,并降低电流指令值,当输出电流又大于保护阈值时,再次封波,继续降低电流指令值。在IGCT变流器发生过流时,并不是一次性控制IGCT器件封波,也不是不变电流指令值,而是逐渐降低电流指令值,这样可以使输出电流更迅速地下降,从而尽快地控制输出电流不过流,及时有效地对IGCT器件进行保护。
本申请实施例提供的技术方案,如果降低电流指令值后,输出电流继续过流,则可以循环控制,不具体限定循环的次数,例如为了快速降低输出电流,可以设置循环次数,根据循环次数进行分级控制,例如,一种可能的实现方式,控制器,还用于当封波次数大于第一设定次数Nt,对功率电路中的IGCT器件再次封波第二时间段,第二时间段大于第一时间段。
另外,为了实现快速降低输出电流,还可以更大幅度降低电流指令值,例如控制器,还用于对功率电路中的IGCT器件封波第二时间段后,降低电流指令值,电流指令值被降低的幅度大于第一幅度,第一幅度为封波次数小于等于第一设定次数Nt时电流指令值被降低的幅度最大值。
本申请实施例不具体限定封波次数小于等于第一设定次数Nt时,每次降低电流指令值的幅度,可以每次降低的幅度相等,也可以每次降低的幅度越来 越大。例如Nt为5,每次封波后,电流指令值都降低2%。或者,第一次封波,电流指令值降低2%,第二次封波,电流指令值降低3%,第三次封波,电流指令值降低4%,第四次封波,电流指令值降低5%。
另外,本申请实施例提供的技术方案,每次降低电流指令值,可以一次性直接降低,也可以按照斜坡逐渐降低,例如2%,一次性降低2%,也可以按照斜坡比例0.25,即每次降低0.5%。控制器,具体用于所述封波次数小于等于所述第一设定次数Nt时,控制所述电流指令值每次按照斜坡逐渐被降低。
本申请实施例不具体限定保护阈值是否发生变化,例如可以整个过流保护过程中,保护阈值不变为固定值。另外,也可以缩短保护过程,在发生过流,封波后降低保护阈值。即控制器,还用于控制保护阈值随着封波次数的增加而被逐渐降低。
如果封波次数很多,IGCT变流器仍然过流,为了保护IGCT器件以及***,需要停机,即控制器,还用于在封波次数大于第二设定次数Mt时,控制IGCT变流器停机,第二设定次数Mt大于第一设定次数Nt。
下面结合附图介绍一种具体的实现方式。
参见图8,该图为一种IGCT变流器过流保护方法的流程图。
S801:输出电流大于保护阈值,执行一次封波,并维持第一时间段T;降低电流指令值为原始电流指令值的a%。
S802:当T时间达到后,解除封波,即开波。如果输出电流再次大于保护阈值,则返回S801;并封波次数1,判断封波次数N是否大于第一设定次数Nt,如果是,则执行S803;
S803:执行第二时间段TL封波,TL大于T。封波次数加1,TL达到后解除封波,降低电流指令值为上次电流指令值的b%。b大于a,a和b均为大于零小于100的数。
S804:如果输出电流再次大于保护阈值,则返回S803。
S805:如果封波次数大于第二设定次数Mt,Mt大于Nt,则控制IGCT变流器停机。
若IGCT变流器正常运行时间超过预设时长TN,则判断IGCT变流器已离开过流故障,所有计数器清零。
以上实施例仅是以封波次数划分为两级为例进行的介绍,也可以划分更多级。另外,电流指令值的降低幅度是与封波次数级别一起降低的。
本实施例提供的IGCT变流器,可以在发生过流故障时,通过逐渐控制封波开波,并降低电流指令值,可以快速使输出电流下降,能够有效降低IGCT器件的损坏风险,并保证IGCT变流器安全度过不稳定阶段。
另外,在正常工作时,即IGCT变流器的输出电流没有超出保护阈值,则控制器控制输出电流跟随电流指令值即可。
基于以上实施例提供的一种IGCT变流器,本申请实施例还提供一种电源***,下面介绍附图进行详细介绍。
本实施例提供的电源***,包括以上任意一个实施例介绍的IGCT变流器;
IGCT变流器的输出端用于连接电网。
本申请实施例不具体限定电网的电压等级,例如为几千伏至十几千伏的电压等级。例如应用于风力发电或者抽水蓄能领域。
由于该IGCT变流器能够较快安全地度过过流故障,因此,可以保证电源***的安全运行。
参见图9,该图为本申请实施例提供的一种电源***的示意图。
下面以三相两电平的电源***为例进行介绍,由于电网的电压较高,因此,需要电源***中IGCT变流器的输出电压也较高,因此,每相可以包括图6所示的多个变流桥臂电路串联在一起,如图9所示,交流输出端分别为AC PhA、AC PhB和AC PhC。
基于以上实施例提供的一种IGCT变流器及电源***,本申请实施例还提供一种电源***,下面介绍附图进行详细介绍。
参见图9,该图为本申请实施例提供的一种IGCT变流器的过流保护方法的流程图。
本实施例提供的IGCT变流器的过流保护方法,IGCT变流器包括:电流检测电路和功率电路;功率电路包括IGCT器件;电流检测电路检测IGCT变流器的输出电流;
该方法包括:
S901:在输出电流大于保护阈值时,对功率电路中的IGCT器件封波第一 时间段,并降低电流指令值;
S902:第一时间段到达后,解除封波;
S903:解除封波后输出电流又大于保护阈值时,再次封波,再次降低电流指令值。
本申请实施例提供的技术方案,由于IGCT器件的开关频率较低,过于频繁地控制其开关,容易引发热量堆积,而且损耗加重。因此,本申请可以根据输出电流大小进行封波,并降低电流指令值,当输出电流又大于保护阈值时,再次封波,继续降低电流指令值。在IGCT变流器发生过流时,并不是一次性控制IGCT器件封波,也不是不变电流指令值,而是逐渐降低电流指令值,这样可以使输出电流更迅速地下降,从而尽快地控制输出电流不过流,及时有效地对IGCT器件进行保护。
本实施例提供的方法,还包括:
当封波次数大于第一设定次数Nt,对功率电路中的IGCT器件再次封波第二时间段,第二时间段大于第一时间段。
本实施例提供的方法,还包括:
对功率电路中的IGCT器件封波第二时间段后,降低电流指令值,电流指令值被降低的幅度大于第一幅度,第一幅度为封波次数小于等于第一设定次数Nt时电流指令值被降低的幅度最大值。
本实施例提供的方法,降低电流指令值,具体包括:
封波次数小于等于第一设定次数Nt时,电流指令值每次被降低的幅度相等;
封波次数小于等于第一设定次数Nt时,控制电流指令值每次按照斜坡逐渐被降低。
本实施例提供的方法,还包括:控制保护阈值随着封波次数的增加而被逐渐降低。
本实施例提供的方法,还包括:在封波次数大于第二设定次数Mt时,控制IGCT变流器停机,第二设定次数Mt大于第一设定次数Nt。
本实施例提供的IGCT变流器的过流保护方法,可以在发生过流故障时,通过逐渐控制封波开波,并降低电流指令值,可以快速使输出电流下降,能够 有效降低IGCT器件的损坏风险,并保证IGCT变流器安全度过不稳定阶段。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的***或装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种IGCT变流器,其特征在于,包括:功率电路、电流检测电路和控制器;
    所述功率电路包括IGCT器件;
    所述电流检测电路,用于检测所述IGCT变流器的输出电流;
    所述控制器,用于在所述输出电流大于保护阈值时,对所述功率电路中的IGCT器件封波第一时间段,并降低电流指令值,所述第一时间段到达后,解除封波,解除封波后所述输出电流又大于所述保护阈值时,再次封波,再次降低所述电流指令值。
  2. 根据权利要求1所述的IGCT变流器,其特征在于,所述控制器,还用于当封波次数大于第一设定次数Nt,对所述功率电路中的IGCT器件再次封波第二时间段,所述第二时间段大于所述第一时间段。
  3. 根据权利要求2所述的IGCT变流器,其特征在于,所述控制器,还用于对所述功率电路中的IGCT器件封波所述第二时间段后,降低所述电流指令值,所述电流指令值被降低的幅度大于第一幅度,所述第一幅度为封波次数小于等于所述第一设定次数Nt时所述电流指令值被降低的幅度最大值。
  4. 根据权利要求2或3所述的IGCT变流器,其特征在于,所述控制器,具体用于所述封波次数小于等于所述第一设定次数Nt时,所述电流指令值每次被降低的幅度相等。
  5. 根据权利要求2或3所述的IGCT变流器,其特征在于,所述控制器,具体用于所述封波次数小于等于所述第一设定次数Nt时,控制所述电流指令值每次按照斜坡逐渐被降低。
  6. 根据权利要求1-5任一项所述的IGCT变流器,其特征在于,所述控制器,还用于控制所述保护阈值随着封波次数的增加而被逐渐降低。
  7. 根据权利要求2-6任一项所述的IGCT变流器,其特征在于,所述控制器,还用于在封波次数大于第二设定次数Mt时,控制所述IGCT变流器停机,所述第二设定次数Mt大于所述第一设定次数Nt。
  8. 一种电源***,其特征在于,所述电源***包括权利要求1-7任一项所述的IGCT变流器;
    所述IGCT变流器的输出端用于连接电网。
  9. 一种IGCT变流器的过流保护方法,其特征在于,所述IGCT变流器包括:电流检测电路和功率电路;所述功率电路包括IGCT器件;所述电流检测电路检测所述IGCT变流器的输出电流;
    该方法包括:
    在所述输出电流大于保护阈值时,对所述功率电路中的IGCT器件封波第一时间段,并降低电流指令值;
    所述第一时间段到达后,解除封波;
    解除封波后所述输出电流又大于所述保护阈值时,再次封波,再次降低所述电流指令值。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    当封波次数大于第一设定次数Nt,对所述功率电路中的IGCT器件再次封波第二时间段,所述第二时间段大于所述第一时间段。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    对所述功率电路中的IGCT器件封波所述第二时间段后,降低所述电流指令值,所述电流指令值被降低的幅度大于第一幅度,所述第一幅度为封波次数小于等于所述第一设定次数Nt时所述电流指令值被降低的幅度最大值。
  12. 根据权利要求10或11所述的方法,其特征在于,所述降低所述电流指令值,具体包括:
    所述封波次数小于等于所述第一设定次数Nt时,所述电流指令值每次被降低的幅度相等;
    所述封波次数小于等于所述第一设定次数Nt时,控制所述电流指令值每次按照斜坡逐渐被降低。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,还包括:控制所述保护阈值随着封波次数的增加而被逐渐降低。
  14. 根据权利要求9-12任一项所述的方法,其特征在于,还包括:在封波次数大于第二设定次数Mt时,控制所述IGCT变流器停机,所述第二设定次数Mt大于所述第一设定次数Nt。
PCT/CN2023/092697 2022-11-24 2023-05-08 一种igct变流器、电源***及过流保护方法 WO2024108910A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211483156.0 2022-11-24
CN202211483156.0A CN115940611A (zh) 2022-11-24 2022-11-24 一种igct变流器、电源***及过流保护方法

Publications (1)

Publication Number Publication Date
WO2024108910A1 true WO2024108910A1 (zh) 2024-05-30

Family

ID=86649854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092697 WO2024108910A1 (zh) 2022-11-24 2023-05-08 一种igct变流器、电源***及过流保护方法

Country Status (2)

Country Link
CN (1) CN115940611A (zh)
WO (1) WO2024108910A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115940611A (zh) * 2022-11-24 2023-04-07 阳光电源股份有限公司 一种igct变流器、电源***及过流保护方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377659A (zh) * 2013-08-16 2015-02-25 力博特公司 封波-解封波方法和装置、解封波方法和装置及逆变电路
CN111244983A (zh) * 2020-01-10 2020-06-05 合肥阳光新能源科技有限公司 储能***及储能***控制方法
CN114421796A (zh) * 2021-12-31 2022-04-29 深圳市禾望科技有限公司 一种i型三电平拓扑的过流封波控制方法
CN114447889A (zh) * 2022-04-11 2022-05-06 浙江日风电气股份有限公司 一种并网逆变器的保护方法、装置以及介质
CN217010692U (zh) * 2021-12-09 2022-07-19 广东友电新能源科技有限公司 Igbt逐波限流驱动电路及多电平逆变拓扑的驱动装置
WO2022193804A1 (zh) * 2021-03-18 2022-09-22 阳光电源股份有限公司 一种光伏快速关断***及其控制方法
CN115940611A (zh) * 2022-11-24 2023-04-07 阳光电源股份有限公司 一种igct变流器、电源***及过流保护方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377659A (zh) * 2013-08-16 2015-02-25 力博特公司 封波-解封波方法和装置、解封波方法和装置及逆变电路
CN111244983A (zh) * 2020-01-10 2020-06-05 合肥阳光新能源科技有限公司 储能***及储能***控制方法
WO2022193804A1 (zh) * 2021-03-18 2022-09-22 阳光电源股份有限公司 一种光伏快速关断***及其控制方法
CN217010692U (zh) * 2021-12-09 2022-07-19 广东友电新能源科技有限公司 Igbt逐波限流驱动电路及多电平逆变拓扑的驱动装置
CN114421796A (zh) * 2021-12-31 2022-04-29 深圳市禾望科技有限公司 一种i型三电平拓扑的过流封波控制方法
CN114447889A (zh) * 2022-04-11 2022-05-06 浙江日风电气股份有限公司 一种并网逆变器的保护方法、装置以及介质
CN115940611A (zh) * 2022-11-24 2023-04-07 阳光电源股份有限公司 一种igct变流器、电源***及过流保护方法

Also Published As

Publication number Publication date
CN115940611A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2024108910A1 (zh) 一种igct变流器、电源***及过流保护方法
KR101215551B1 (ko) 스위칭 전원용 제어 회로
JP2018538677A (ja) 電流を遮断する装置、システム及び方法
JP2010154595A (ja) 電力変換装置
CN108847835B (zh) 一种功率器件驱动保护电路及其控制方法
CN103311903A (zh) 一种开关装置及其发电***
US11211790B2 (en) T-type DC circuit breaker and method for controlling the same
EP4289036A1 (en) Inrush current limiting transformer energization apparatuses, methods, systems and technique
Zhang et al. Voltage balancing optimization of series-connected IGBTs in solid-state breaker by using driving signal adjustment technique
KR101635805B1 (ko) Hvdc 시스템의 dc 차단 장치 및 방법
JP2018195565A (ja) 直流遮断装置
GB2545236A (en) A method of controlling an inverter
JP3160414B2 (ja) 変換装置
TW201315074A (zh) 功率開關串聯電路及其控制方法
JP6258806B2 (ja) 系統連系用電力変換装置
CN104303405B (zh) 用于功率变换器的栅极驱动器
JP2004180390A (ja) 交流/交流直接変換形電力変換装置
TWI842806B (zh) 直流脈衝電源裝置及電源裝置之磁性飽和重置方法
WO2023047556A1 (ja) 直流遮断器
CN217606021U (zh) 逆变桥功率管硬开关快速检测电路
JP7151911B1 (ja) 電力変換装置
CN220874434U (zh) 逆变器的控制***和逆变器
WO2023056944A1 (zh) 固态断路器及其控制方法
Zhou et al. Lifetime Extension for Solid-State Circuit Breakers in Motor Control Center Applications
CN114629131A (zh) 一种模块化直串式换流链、换流器及控制方法