WO2024108424A1 - 电池续航能力确定方法、装置和车辆 - Google Patents

电池续航能力确定方法、装置和车辆 Download PDF

Info

Publication number
WO2024108424A1
WO2024108424A1 PCT/CN2022/133717 CN2022133717W WO2024108424A1 WO 2024108424 A1 WO2024108424 A1 WO 2024108424A1 CN 2022133717 W CN2022133717 W CN 2022133717W WO 2024108424 A1 WO2024108424 A1 WO 2024108424A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
capacity
electrical parameter
available capacity
temperature information
Prior art date
Application number
PCT/CN2022/133717
Other languages
English (en)
French (fr)
Inventor
刘宏阳
魏洪贵
林文煜
杜明树
段潘婷
袁柱
李世超
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/133717 priority Critical patent/WO2024108424A1/zh
Publication of WO2024108424A1 publication Critical patent/WO2024108424A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]

Definitions

  • the present application relates to the field of battery technology, and in particular to a method, device and vehicle for determining battery life.
  • the present application provides a method, device and vehicle for determining battery life, so as to achieve the effect of accurately determining the battery life.
  • an embodiment of the present application provides a method for determining battery life, which includes:
  • the actual available capacity of the battery under the current temperature information is obtained; wherein the actual available capacity is used to indicate the battery life.
  • the actual available capacity of the battery under the current temperature information can be obtained according to the usable capacity and the pre-set correspondence between the usable capacity and the temperature, and the actual available capacity is used to indicate the battery's endurance.
  • the actual available capacity of the battery under the current temperature information can be quickly and accurately obtained. In this way, through the solution of the present application, the battery's endurance can be quickly and accurately determined.
  • the method further includes:
  • the target battery capacity required for the vehicle to travel the target journey under the current temperature information when the actual available capacity is less than the target battery capacity, that is, the actual available capacity of the battery cannot meet the battery range to complete the target journey, it can be determined that the vehicle will break down during the target journey. In this way, based on the corresponding relationship between the actual available capacity and the target battery capacity, it is possible to accurately predict whether the vehicle will break down during the target journey, thereby ensuring the normal journey of the vehicle and improving the user experience.
  • calculating the available capacity of the battery at a preset temperature based on the electrical parameter includes:
  • the available capacity of the battery at a preset temperature is obtained.
  • the change in the electrical parameters per unit time during the full charging period can be obtained, and then based on the change in the electrical parameters per unit time, the available capacity of the battery at a preset temperature can be accurately obtained.
  • the electrical parameter is a voltage-time curve; and the processing of the electrical parameter in the full charging period to obtain the electrical parameter change per unit time in the full charging period includes:
  • the voltage-time curve in the full charging period is differentiated to obtain the change of the electrical parameter per unit time in the full charging period.
  • obtaining the available capacity of the battery at a preset temperature based on the amount of change of the electrical parameter per unit time includes:
  • the available capacity of the battery at a preset temperature is obtained.
  • the second battery capacity between the highest position of the electrical parameter change and the full charging moment position is obtained. In this way, based on the first battery capacity and the second battery capacity, the usable capacity of the battery at a preset temperature can be accurately obtained.
  • obtaining the second battery capacity between the highest position of the electrical parameter change and the full charge moment position based on the electrical parameter change between the highest position of the electrical parameter change and the full charge moment position includes:
  • the electrical parameter variation between the maximum position of the electrical parameter variation and the position at the full charge moment is integrated to obtain the second battery capacity between the maximum position of the electrical parameter variation and the position at the full charge moment.
  • the second battery capacity between the highest position of the electrical parameter change and the full charge moment position can be accurately obtained.
  • the method before obtaining the target battery capacity required for traveling the target range under the current temperature information, the method further includes:
  • the target battery capacity required for driving the target range under the current temperature information is obtained.
  • the target battery capacity required for traveling the target distance under the current temperature information can be accurately obtained based on the current temperature information and the correspondence between the preset temperature information, driving distance and required capacity.
  • determining that the vehicle breaks down during the target travel process includes:
  • a breakdown warning message can be generated according to the actual available capacity and the target battery capacity, so that the user can intuitively check that the vehicle will break down during the target journey, thereby improving the user experience.
  • the current temperature information includes current temperature information of the battery and/or current ambient temperature information.
  • an embodiment of the present application provides a battery life determination device, which includes:
  • a first acquisition module is used to acquire current temperature information and electrical parameters of the vehicle's battery during a full charge period at a preset temperature
  • a first calculation module used for calculating the available capacity of the battery at a preset temperature based on the electrical parameters
  • the first determination module is used to obtain the actual available capacity of the battery under the current temperature information based on the available capacity and the preset corresponding relationship between the available capacity and the temperature; wherein the actual available capacity is used to indicate the battery life.
  • an embodiment of the present application provides a vehicle, comprising a central processing unit, wherein the central processing unit is used to implement the battery life determination method described in the first aspect above.
  • the usable capacity of the battery at the preset temperature is calculated based on the electrical parameters.
  • the actual available capacity of the battery under the current temperature information can be obtained.
  • the actual available capacity is used to indicate the battery's endurance. In this way, according to changes in the environment, the actual available capacity of the battery under the current temperature information can be quickly and accurately obtained. In this way, through the scheme of the present application, the battery's endurance can be quickly and accurately determined.
  • FIG1 is a flow chart of a method for determining battery life provided in accordance with an embodiment of the present application.
  • FIG2 is a second flow chart of a method for determining battery life provided in an embodiment of the present application.
  • FIG3 is a third flow chart of a method for determining battery life provided in an embodiment of the present application.
  • FIG4 is a voltage-time curve during a full charge period provided by an embodiment of the present application.
  • FIG5 is a diagram showing the variation of electrical parameters per unit time during a full charge period provided by an embodiment of the present application.
  • FIG6 is a fourth flow chart of a method for determining battery life provided in an embodiment of the present application.
  • FIG. 7 is a fifth flow chart of a method for determining battery life provided in an embodiment of the present application.
  • FIG8 is a sixth flow chart of a method for determining battery life provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of determining vehicle breakdown provided by an embodiment of the present application.
  • FIG10 is a seventh flow chart of a method for determining battery life provided in an embodiment of the present application.
  • FIG11 is a flowchart of a method for determining battery life according to an embodiment of the present application.
  • FIG12 is a ninth flowchart of a method for determining battery life provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the structure of a device for determining battery life provided in an embodiment of the present application.
  • the inventors have discovered that environmental factors and the impact of battery age on battery life are not taken into account when calculating battery life. As a result, the battery life determined by current solutions is not accurate enough.
  • the embodiments of the present application provide a battery life determination method, device and vehicle, by obtaining the current temperature information and the electrical parameters of the vehicle's battery during the full charging period at a preset temperature, and then calculating the battery's usable capacity at the preset temperature based on the electrical parameters.
  • the usable capacity and the preset correspondence between the usable capacity and the temperature the actual available capacity of the battery under the current temperature information can be obtained, and the actual available capacity is used to indicate the battery life.
  • the actual available capacity of the battery under the current temperature information can be obtained quickly and accurately. In this way, through the scheme of the present application, the battery life can be quickly and accurately determined.
  • FIG1 shows a flow chart of a method for determining battery life provided in an embodiment of the present application. As shown in FIG1 , the method for determining battery life may include the following steps 110 to 130 .
  • Step 110 Obtain current temperature information and electrical parameters of the vehicle's battery during a full charge period at a preset temperature.
  • the current temperature information may be the current temperature information.
  • the current temperature information may include current temperature information of the battery and/or current ambient temperature information.
  • the preset temperature here may be a preset normal temperature, for example, 15°C-25°C.
  • the electrical parameter may be a parameter used to characterize the corresponding relationship between the voltage and time of the battery, for example, may be a voltage-time curve.
  • Step 120 Calculate the available capacity of the battery at a preset temperature based on the electrical parameters.
  • the available capacity may be the amount of electricity that can be produced by the battery under a preset temperature state.
  • step 120 may specifically include steps 1201 and 1202:
  • Step 1201 Process the electrical parameters in the full charging period to obtain the electrical parameter change per unit time in the full charging period.
  • Step 1202 Based on the change in the electrical parameter per unit time, obtain the available capacity of the battery at a preset temperature.
  • the electrical parameter variation may be the variation of the electrical parameter per unit time in the full charging period obtained after processing the electrical parameter in the full charging period.
  • step 1201 may specifically include:
  • Step 1203 Differentiate the voltage-time curve during the full charging period to obtain the change of the electrical parameter per unit time during the full charging period.
  • FIG4 is a voltage-time curve obtained during the full charging period, in which the vertical axis is the electrical parameter and the horizontal axis is the time.
  • the voltage-time curve in FIG4 is differentiated to obtain the change in the electrical parameter per unit time during the full charging period shown in FIG5 .
  • the change in the electrical parameters per unit time in the full charging period can be accurately obtained.
  • step 1202 in order to accurately obtain the available capacity of the battery at a preset temperature, referring to FIG. 6 , step 1202 may specifically include steps 12021 to 12023:
  • Step 12021 Obtain the first battery capacity at the position where the electrical parameter change per unit time in the full charging period is the highest.
  • Step 12022 Based on the electrical parameter variation between the maximum position of the electrical parameter variation and the position at the full charge moment, obtain the second battery capacity between the maximum position of the electrical parameter variation and the position at the full charge moment.
  • Step 12023 Based on the first battery capacity and the second battery capacity, obtain the available capacity of the battery at a preset temperature.
  • the position where the electrical parameter variation is the highest may be the position where the electrical parameter variation is the largest, that is, the position of point A in FIG. 3 .
  • the first battery capacity may be the battery capacity at the position where the electrical parameter variation is the highest, that is, the battery capacity at point A in FIG3 , and the first battery capacity is used to represent the amount of electricity charged when the battery is charged to point A.
  • the first battery capacity may be obtained in advance based on a battery cell experiment, that is, the amount of power of the battery when it is charged to the position where the electrical parameter variation is the highest may be obtained in advance through a battery cell experiment.
  • the power of the battery when charged to the position with the highest change in electrical parameters is 60%-70% of the full charge.
  • the second battery capacity may be the amount of electricity between the position at which the electrical parameter variation is at its highest and the position at the full charge moment.
  • B in FIG5 is the position at the time of full charge
  • the second battery capacity is the power from position A to position B.
  • the second battery capacity between the highest position of the electrical parameter change and the full charging moment position is obtained, so that based on the first battery capacity and the second battery capacity, the usable capacity of the battery at a preset temperature can be accurately obtained.
  • step 12022 may specifically include step 12024:
  • Step 12024 Integrate the change in the electrical parameter between the position where the electrical parameter change is the highest and the position at the full charge moment to obtain the second battery capacity between the position where the electrical parameter change is the highest and the position at the full charge moment.
  • the electrical parameter variation between position A and position B may be integrated to obtain the second battery capacity between the position with the highest electrical parameter variation and the position at the full charge moment.
  • the second battery capacity between the highest position of the electrical parameter change and the full charge moment position can be accurately obtained.
  • Step 130 Based on the available capacity and the preset corresponding relationship between the available capacity and the temperature, obtain the actual available capacity of the battery under the current temperature information; wherein the actual available capacity is used to indicate the battery life.
  • the actual available capacity may be the actual available capacity of the battery under the current temperature information.
  • whether the vehicle will be thrown away can be analyzed based on the actual available capacity of the battery.
  • the above-mentioned method for determining battery life may further include steps 140 to 150:
  • Step 140 Obtain the target battery capacity required for the vehicle to travel the target range under the current temperature information.
  • Step 150 When the actual available capacity is less than the target battery capacity, it is determined that the vehicle breaks down during the target travel.
  • the target trip may be the trip that the vehicle is to travel. For example, if the vehicle needs to travel from location G to location H, the trip from location G to location H is the target trip.
  • the target battery capacity may be the amount of electricity required for the vehicle to travel the target distance under the current temperature information, that is, the amount of electricity required for the vehicle to travel from location G to location H.
  • the ordinate in FIG9 is the power level
  • the abscissa is the time
  • curve 91 in FIG9 is the actual available capacity of the battery under the current temperature information
  • curve 92 is the target battery capacity required for the vehicle's target travel under the current temperature information.
  • the temperature drops during the time period corresponding to box 93, and the actual available capacity of the battery decreases, which cannot meet the target battery capacity required for the vehicle's target travel, resulting in a breakdown.
  • the target battery capacity required for the vehicle to travel the target journey under the current temperature information when the actual available capacity is less than the target battery capacity, that is, the actual available capacity of the battery cannot meet the battery range to complete the target journey, it can be determined that the vehicle will break down during the target journey. In this way, based on the corresponding relationship between the actual available capacity and the target battery capacity, it is possible to accurately predict whether the vehicle will break down during the target journey, thereby ensuring the normal journey of the vehicle and improving the user experience.
  • the above-mentioned method for determining the battery life may further include step 160:
  • Step 160 Obtain a target battery capacity required for traveling a target distance under the current temperature information according to the current temperature information and the correspondence between the preset temperature information, the driving distance and the required capacity.
  • the target battery capacity required for traveling the target distance under the current temperature information can be accurately obtained based on the current temperature information and the correspondence between the preset temperature information, driving distance and required capacity.
  • step 150 may specifically include step 1501:
  • Step 1501 Generate a breakdown warning message according to the actual available capacity and the target battery capacity.
  • the breakdown warning information may be a warning information for prompting the vehicle to break down during the target trip.
  • the warning information may be displayed in text form, in the form of voice broadcast, or in a combination of the above two display modes, which is not limited here.
  • a breakdown warning message is generated based on the actual available capacity and the target battery capacity, so that the user can intuitively see that the vehicle may break down during the target journey, thereby improving the user experience.
  • the vehicle can be processed according to the outputted breakdown warning information, specifically, the battery can be replaced, the battery can be charged, or the battery can be repaired.
  • the output breakdown warning information can be used to enable after-sales personnel to repair the vehicle based on the breakdown warning information to ensure that the vehicle can complete the target journey and improve the user experience.
  • actual available capacity g(battery temperature, ambient temperature, .
  • target battery capacity f(ambient temperature, driving time, ).
  • the embodiments of the present application further provide another implementable method for determining the battery life.
  • the method for determining the battery life provided in the embodiments of the present application may include steps 201 to 206:
  • Step 201 Obtain current temperature information and electrical parameters of the vehicle's battery during a full charge period at a preset temperature.
  • Step 202 Calculate the available capacity of the battery at a preset temperature based on the electrical parameters.
  • Step 203 Based on the available capacity and the preset corresponding relationship between the available capacity and the temperature, obtain the actual available capacity of the battery under the current temperature information; wherein the actual available capacity is used to indicate the battery life.
  • Step 204 Obtain a target battery capacity required for traveling the target distance under the current temperature information according to the current temperature information and the preset correspondence between the temperature information, the driving distance and the required capacity.
  • step 204 is consistent with step 160 in the above embodiment and will not be described again.
  • Step 205 Obtain the target battery capacity required for the vehicle to travel the target distance under the current temperature information.
  • Step 206 When the actual available capacity is less than the target battery capacity, it is determined that the vehicle breaks down during the target travel.
  • steps 205 to 206 are consistent with steps 140 to 150 in the above embodiment and will not be described in detail here.
  • the battery life determination method provided in the embodiment of the present application may be executed by a battery life determination device.
  • the battery life determination device executing the battery life determination method is taken as an example to illustrate the battery life determination device provided in the embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a device for determining battery life according to an exemplary embodiment.
  • the battery life determination device 1300 may include:
  • the first acquisition module 1310 is used to acquire current temperature information and electrical parameters of the battery of the vehicle during a full charge period at a preset temperature
  • a first calculation module 1320 configured to calculate the available capacity of the battery at a preset temperature based on the electrical parameters
  • the first determination module 1330 is used to obtain the actual available capacity of the battery under the current temperature information based on the available capacity and the preset correspondence between the available capacity and the temperature; wherein the actual available capacity is used to indicate the battery life.
  • the usable capacity of the battery at the preset temperature is calculated based on the electrical parameters. According to the usable capacity and the pre-set correspondence between the usable capacity and the temperature, the actual usable capacity of the battery under the current temperature information can be obtained. The actual usable capacity is used to indicate the battery life. In this way, according to changes in the environment, the actual usable capacity of the battery under the current temperature information can be obtained quickly and accurately. In this way, through the solution of the present application, the battery life can be determined quickly and accurately.
  • the above-mentioned battery life determination device may further include:
  • a second acquisition module is used to acquire a target battery capacity required for the vehicle to travel a target distance under the current temperature information
  • the second determination module is used to determine that the vehicle will break down during the target journey when the actual available capacity is less than the target battery capacity.
  • the first calculation module 1320 may specifically include:
  • a first calculation unit configured to process the electrical parameter in a full charging period to obtain a change in the electrical parameter per unit time in the full charging period
  • the second calculation unit is used to obtain the available capacity of the battery at a preset temperature based on the change of the electrical parameter per unit time.
  • the electrical parameter is a voltage-time curve; in order to accurately obtain the change in the electrical parameter per unit time during the full charging period, the first calculation unit may be specifically used to:
  • the voltage-time curve in the full charging period is differentiated to obtain the change of the electrical parameter per unit time in the full charging period.
  • the second calculation unit in order to accurately obtain the available capacity of the battery at a preset temperature, may specifically include:
  • a first acquisition subunit is used to acquire a first battery capacity at a position where the electrical parameter change amount per unit time in the full charging period is the highest; wherein the first battery capacity is obtained in advance based on a battery cell experiment;
  • a first determining subunit configured to obtain a second battery capacity between the maximum position of the electrical parameter change and the full charge moment position based on the electrical parameter change between the maximum position of the electrical parameter change and the full charge moment position;
  • the second determining subunit is used to obtain the available capacity of the battery at a preset temperature based on the first battery capacity and the second battery capacity.
  • the first determining subunit in order to accurately obtain the second battery capacity, may be specifically used to:
  • the electrical parameter variation between the maximum position of the electrical parameter variation and the position at the full charge moment is integrated to obtain the second battery capacity between the maximum position of the electrical parameter variation and the position at the full charge moment.
  • the battery life determination device mentioned above may further include:
  • the third determination module is used to obtain the target battery capacity required for the target driving range under the current temperature information according to the current temperature information and the corresponding relationship between the preset temperature information, driving range and required capacity.
  • the second determination module may be specifically used to:
  • the current temperature information includes current temperature information of the battery and/or current ambient temperature information.
  • the battery life determination device provided in the embodiment of the present application can be used to execute the battery life determination method provided in the various method embodiments in Figures 1 to 12 above.
  • the implementation principles and technical effects are similar and will not be described here for the sake of simplicity.
  • an embodiment of the present application further provides a vehicle.
  • the vehicle includes: a central processing unit, which is used to implement the method for determining battery endurance in the above-mentioned embodiment.
  • the vehicle provided in the embodiment of the present application can be used to execute the battery life determination method provided in the various method embodiments in Figures 1 to 12 above.
  • the implementation principles and technical effects are similar and will not be repeated here for the sake of simplicity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种电池续航能力确定方法、装置和车辆。该方法包括:获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数;基于所述电参数,计算所述电池在预设温度下的可发挥容量;基于所述可发挥容量,以及预先设置的可发挥容量与温度的对应关系,得到所述电池在所述当前温度信息下的实际可用容量;其中,所述实际可用容量用于指示电池的续航能力。以实现精确确定电池的续航能力的效果。

Description

电池续航能力确定方法、装置和车辆 技术领域
本申请涉及电池技术领域,特别涉及一种电池续航能力确定方法、装置和车辆。
背景技术
随着电动汽车技术的飞速发展,人们越来越注重电池的续航能力。电池的续航能力将直接影响驾驶员对车辆状态的判断,如果对电动汽车的续航能力判断有误,则会导致汽车抛锚,无法行驶至目的地。但是目前的续航能力计算方法所确定的续航能力不够精确。
发明内容
鉴于上述问题,本申请提供一种电池续航能力确定方法、装置和车辆,以实现精确确定电池的续航能力的效果。
第一方面,本申请实施例提供了一种电池续航能力确定方法,其包括:
获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数;
基于所述电参数,计算所述电池在预设温度下的可发挥容量;
基于所述可发挥容量,以及预先设置的可发挥容量与温度的对应关系,得到所述电池在所述当前温度信息下的实际可用容量;其中,所述实际可用容量用于指示电池的续航能力。
通过本申请实施例的技术方案,通过获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数,然后基于电参数,计算电池在预设温度下的可发挥容量,根据可发挥容量,以及预先设置的可发挥容量与温度的对应关系,可得到电池在当前温度信息下的实际可用容量,该实际可用容量即用于指示电池的续航能力如此可根据环境的变化,快速精确的得到当前温度信息下电池的实际可用容量,这样通过本申请的方案,可快速精确的确定电池的续航 能力。
在一种可能的实现方式中,在所述基于所述可发挥容量,以及预先设置的可发挥容量与温度的对应关系,得到所述电池在所述当前温度信息下的实际可用容量之后,所述方法还包括:
获取在所述当前温度信息下,所述车辆行驶目标行程所需的目标电池容量;
在所述实际可用容量小于所述目标电池容量的情况下,确定车辆在所述目标行程过程中发生抛锚。
通过本申请实施例的技术方案,通过获取在当前温度信息下,车辆行驶目标行程所需的目标电池容量,在实际可用容量小于目标电池容量的情况下,即电池的实际可用容量无法满足电池行程完目标行程,可确定车辆在目标行程过程中会发生抛锚,如此可基于实际可用容量与目标电池容量的对应关系,精确预测车辆在目标行程中是否会发生抛锚,以确保车辆的正常行程,提升了用户体验。
在一种可能的实现方式中,所述基于所述电参数,计算所述电池在预设温度下的可发挥容量,包括:
对满充时段内的所述电参数进行处理,得到所述满充时段内的单位时间的电参数变化量;
基于单位时间的电参数变化量,得到所述电池在预设温度下的可发挥容量。
通过本申请实施例的技术方案,通过对满充时段内的电参数进行处理,可得到满充时段内的单位时间的电参数变化量,然后基于单位时间的电参数变化量,可精确得到电池在预设温度下的可发挥容量。
在一种可能的实现方式中,所述电参数为电压-时间曲线;所述对满充时段内的所述电参数进行处理,得到所述满充时段内的单位时间的电参数变化量,包括:
对满充时段内的所述电压-时间曲线进行微分,得到所述满充时段内的单位时间的电参数变化量。
通过本申请实施例的技术方案,通过对满充时段内的电压-时间曲线进行微分,如此可精确得到满充时段内的单位时间的电参数变化量。
在一种可能的实现方式中,所述基于单位时间的电参数变化量,得到所述电池在预设温度下的可发挥容量,包括:
获取所述满充时段内单位时间的电参数变化量中的电参数变化量最高位置处的第一电池容量;其中,所述第一电池容量预先基于电芯实验得到;
基于所述电参数变化量最高位置和满充时刻位置之间的电参数变化量,得到所述电参数变化量最高位置和满充时刻位置之间的第二电池容量;
基于所述第一电池容量和所述第二电池容量,得到所述电池在预设温度下的可发挥容量。
通过本申请实施例的技术方案,通过获取满充时段内单位时间的电参数变化量中的电参数变化量最高位置处的第一电池容量,基于电参数变化量最高位置和满充时刻位置之间的电参数变化量,得到电参数变化量最高位置和满充时刻位置之间的第二电池容量,如此可基于第一电池容量和第二电池容量,精确得到电池在预设温度下的可发挥容量。
在一种可能的实现方式中,所述基于所述电参数变化量最高位置和满充时刻位置之间的电参数变化量,得到所述电参数变化量最高位置和满充时刻位置之间的第二电池容量,包括:
对所述电参数变化量最高位置和满充时刻位置之间的电参数变化量进行积分,得到所述电参数变化量最高位置和满充时刻位置之间的第二电池容量。
通过本申请实施例的技术方案,通过对电参数变化量最高位置和满充时刻位置之间的电参数变化量进行积分,即可精确得到电参数变化量最高位置和满充时刻位置之间的第二电池容量。
在一种可能的实现方式中,在所述获取在所述当前温度信息下,行驶目标行程所需的目标电池容量之前,所述方法还包括:
根据所述当前温度信息,以及预先设置的温度信息、行驶行程和需求容量之间的对应关系,得到在所述当前温度信息下行驶目标行程所需的目标电池容量。
通过本申请实施例的技术方案,可以根据当前温度信息,以及预先设置的温度信息、行驶行程和需求容量之间的对应关系,精确得到在当前温度信息下行驶目标行程所需的目标电池容量。
在一种可能的实现方式中,所述确定车辆在所述目标行程过程中发生抛锚,包括:
根据所述实际可用容量和所述目标电池容量,生成抛锚预警信息。
通过本申请实施例的技术方案,根据实际可用容量和目标电池容量,可生成抛锚预警信息,如此可使用户直观查看到车辆在目标行程过程中会发生抛锚,提升用户体验。
在一种可能的实现方式中,所述当前温度信息包括所述电池的当前温度信息和/或当前环境温度信息。
第二方面,本申请实施例提供了一种电池续航能力确定装置,其包括:
第一获取模块,用于获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数;
第一计算模块,用于基于所述电参数,计算所述电池在预设温度下的可发挥容量;
第一确定模块,用于基于所述可发挥容量,以及预先设置的可发挥容量与温度的对应关系,得到所述电池在所述当前温度信息下的实际可用容量;其中,所述实际可用容量用于指示电池的续航能力。
第三方面,本申请实施例提供了一种车辆,该车辆包括中央处理器,所述中央处理器用于实现上述第一方面所述的电池续航能力确定方法。
在上述技术方案中,通过获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数,然后基于电参数,计算电池在预设温度下的可发挥容量,根据可发挥容量,以及预先设置的可发挥容量与温度的对应关系,可得到电池在当前温度信息下的实际可用容量,该实际可用容量即用于指示电池的续航能力如此可根据环境的变化,快速精确的得到当前温度信息下电池的实际可用容量,这样通过本申请的方案,可快速精确的确定电池的续航能力。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是本申请一实施例提供的一种电池续航能力确定方法的流程示意图之一;
图2是本申请一实施例提供的一种电池续航能力确定方法的流程示意图之二;
图3是本申请一实施例提供的一种电池续航能力确定方法的流程示意图之三;
图4是本申请一实施例提供的满充时段内的电压-时间曲线;
图5是本申请一实施例提供的满充时段内的单位时间的电参数变化量;
图6是本申请一实施例提供的一种电池续航能力确定方法的流程示意图之四;
图7是本申请一实施例提供的一种电池续航能力确定方法的流程示意图之五;
图8是本申请一实施例提供的一种电池续航能力确定方法的流程示意图之六;
图9是本申请一实施例提供的确定车辆抛锚的示意图;
图10是本申请一实施例提供的一种电池续航能力确定方法的流程示意图之七;
图11是本申请一实施例提供的一种电池续航能力确定方法的流程示意图之八;
图12是本申请一实施例提供的一种电池续航能力确定方法的流程示意图之九;
图13是本申请一实施例提供的一种电池续航能力确定装置的结构示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
需要注意的是,除非另有说明,本申请实施例使用的技术术语或者科学术语应当为本申请实施例所属领域技术人员所理解的通常意义。
此外,技术术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
发明人发现,目前在对电池的续航能力计算时,并没有考虑到环境因素,以及电池使用年限对电池续航能力的影响,如此,目前的方案确定的续航能力不够精确。
为了精确确定电池续航能力,本申请实施例提供了一种电池续航能力确定方法、装置和车辆,通过获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数,然后基于电参数,计算电池在预设温度下的可发挥容量,根据可发挥容量,以及预先设置的可发挥容量与温度的对应关系,可得到电池在当前温度信息下的实际可用容量,该实际可用容量即用于指示电池的续航能力如此可根据环境的变化,快速精确的得到当前温度信息下电池的实际可用容量,这样通过本申请的方案,可快速精确的确定电池的续航能力。
需要说明的是,本申请实施例以考虑环境因素对电池的影响,具体的可以是考虑温度对电池的影响为例来进行说明。
图1示出了本申请实施例提供的一种电池续航能力确定方法的流程示意图,如图1所示,该电池续航能力确定方法可以包括如下步骤110-步骤130。
步骤110、获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数。
其中,当前温度信息可以是当前的温度信息。
在本申请的一些实施例中,当前温度信息可以包括电池的当前温度信息 和/或当前环境温度信息。
这里的预设温度可以是预先设置的一个常温温度,例如可以是15℃-25℃。
在本申请的一些实施例中,电参数可以是用于表征电池的电压与时间的对应关系的参数,例如可以是电压-时间曲线。
步骤120、基于电参数,计算电池在预设温度下的可发挥容量。
其中,可发挥容量可以是电池在预设温度状态下可发挥出来的电量。
在本申请的一些实施例中,为了电池在预设温度下的可发挥容量,参考图2,步骤120具体可以包括步骤1201-步骤1202:
步骤1201、对满充时段内的电参数进行处理,得到满充时段内的单位时间的电参数变化量。
步骤1202、基于单位时间的电参数变化量,得到电池在预设温度下的可发挥容量。
其中,电参数变化量可以是对满充时段内的电参数进行处理后,得到的满充时段内的单位时间的电参数的变化量。
在本申请的实施例中,通过对满充时段内的电参数进行处理,可得到满充时段内的单位时间的电参数变化量,然后基于单位时间的电参数变化量,可精确得到电池在预设温度下的可发挥容量。
在本申请的一些实施例中,为了精确得到满充时段内的单位时间的电参数变化量,参考图3,步骤1201具体可以包括:
步骤1203、对满充时段内的电压-时间曲线进行微分,得到满充时段内的单位时间的电参数变化量。
在一个示例中,参考图4,图4为获取的满充时段内的电压-时间曲线,图4中纵坐标为电参数,横坐标为时间,对图4中的电压-时间曲线进行微分,得到图5所示的满充时段内的单位时间的电参数变化量。
在本申请的实施例中,通过对满充时段内的电参数进行微分,如此可精确得到满充时段内的单位时间的电参数变化量。
在本申请的一些实施例中,为了精确得到电池在预设温度下的可发挥容量,参考图6,步骤1202具体可以包括步骤12021-步骤12023:
步骤12021、获取满充时段内单位时间的电参数变化量中的电参数变化量最高位置处的第一电池容量。
步骤12022、基于电参数变化量最高位置和满充时刻位置之间的电参数变化量,得到电参数变化量最高位置和满充时刻位置之间的第二电池容量。
步骤12023、基于第一电池容量和第二电池容量,得到电池在预设温度下的可发挥容量。
其中,电参数变化量最高位置处可以是电参数变化量最大的位置处,即为图3中的A点位置。
第一电池容量可以是电参数变化量最高位置处的电池容量。即图3中的A点位置的电池容量,该第一电池容量用于表征电池充电到A位置时所充的电量。
在本申请的一些实施例中,第一电池容量可以是预先基于电芯实验得到。即可预先通过电芯实验得到电池在充电到电参数变化量最高位置处的电量为多少。
在本申请的一些实施例中,通过电芯实验可得到电池在充电到电参数变化量最高位置处的电量为满充电量的60%-70%。
第二电池容量可以是电参数变化量最高位置和满充时刻位置之间的电量。
在一个示例中,继续参考图5,图5中的B为满充时刻的位置,第二电池容量即为A位置到B位置段的电量。
在本申请的实施例中,通过获取满充时段内单位时间的电参数变化量中的电参数变化量最高位置处的第一电池容量,基于电参数变化量最高位置和满充时刻位置之间的电参数变化量,得到电参数变化量最高位置和满充时刻位置之间的第二电池容量,如此可基于第一电池容量和第二电池容量,精确得到电池在预设温度下的可发挥容量。
在本申请的一些实施例中,为了精确得到第二电池容量,参考图7,步骤12022具体可以包括步骤12024:
步骤12024、对电参数变化量最高位置和满充时刻位置之间的电参数变化量进行积分,得到电参数变化量最高位置和满充时刻位置之间的第二电池容 量。
在一个示例中,继续参考图5,可对位置A和位置B之间的电参数变化量进行积分计算,即可得到电参数变化量最高位置和满充时刻位置之间的第二电池容量。
在本申请的实施例中,通过对电参数变化量最高位置和满充时刻位置之间的电参数变化量进行积分,即可精确得到电参数变化量最高位置和满充时刻位置之间的第二电池容量。
步骤130、基于可发挥容量,以及预先设置的可发挥容量与温度的对应关系,得到电池在当前温度信息下的实际可用容量;其中,实际可用容量用于指示电池的续航能力。
其中,实际可用容量可以是电池在当前温度信息下,真实可以用的容量。
在本申请的一些实施例中,可以通过电池的实际可用容量,分析车辆是否会抛瞄。
在本申请的一些实施例中,为了提升用户体验,参考图8,在步骤130之后,上述所涉及的电池续航能力确定方法还可以包括步骤140-步骤150:
步骤140、获取在当前温度信息下,车辆行驶目标行程所需的目标电池容量。
步骤150、在实际可用容量小于目标电池容量的情况下,确定车辆在目标行程过程中发生抛锚。
其中,目标行程可以是车辆所要行驶的行程。例如车辆需要从地点G行驶到地点H,则从地点G到地点H所走的行程即为目标行程。
目标电池容量可以是在当前温度信息下,车辆行驶目标行程所需的电量。即车辆从地点G到地点H所需要消耗的电量。
在一个示例中,参考图9,图9中纵坐标为电量,横坐标为时间,图9中曲线91为当前温度信息下电池的实际可用容量,曲线92为在当前温度信息下,车辆行驶目标行程所需的目标电池容量,图9中在方框93所对应的时间段内温度下降,电池的实际可用容量降低,无法满足车辆行驶目标行程所 需的目标电池容量,出现抛锚。
在本申请的实施例中,通过获取在当前温度信息下,车辆行驶目标行程所需的目标电池容量,在实际可用容量小于目标电池容量的情况下,即电池的实际可用容量无法满足电池行程完目标行程,可确定车辆在目标行程过程中会发生抛锚,如此可基于实际可用容量与目标电池容量的对应关系,精确预测车辆在目标行程中是否会发生抛锚,以确保车辆的正常行程,提升了用户体验。
在本申请的一些实施例中,为了精确确定目标电池容量,参考图10,在步骤140之前,上述所涉及的电池续航能力确定方法还可以包括步骤160:
步骤160、根据当前温度信息,以及预先设置的温度信息、行驶行程和需求容量之间的对应关系,得到在当前温度信息下行驶目标行程所需的目标电池容量。
在本申请的实施例中,可以根据当前温度信息,以及预先设置的温度信息、行驶行程和需求容量之间的对应关系,精确得到在当前温度信息下行驶目标行程所需的目标电池容量。
在本申请的一些实施例中,为了提升用户体验,参考图11,步骤150具体可以包括步骤1501:
步骤1501、根据实际可用容量和目标电池容量,生成抛锚预警信息。
其中,抛锚预警信息可以是用于提示车辆在目标行程过程中会发生抛锚的预警信息。该预警信息可以是文字形式展示,还可以是以语音播报的形式展示,还可以是上述两种展示方式的组合,这里不做限定。
在本申请的实施例中,根据实际可用容量和目标电池容量,生成抛锚预警信息,如此可使用户直观查看到车辆在目标行程过程中会发生抛锚,提升用户体验。
在本申请的一些实施例中,可以根据输出的抛锚预警信息,对车辆进行处理,具体的可以是更换电池、对电池进行充电或对电池进行维修等。
在本申请的实施例中,可基于输出的抛锚预警信息,以使售后人员基于该抛锚预警信息,对车辆进行维修处理,以确保车辆可行驶完成目标行程,提升用户体验。
需要说明的是,上述实施例是以温度对电池的影响来进行说明的,并非是仅温度可影响电池容量,上述方案还可以应用于其他因素对电池容量的影响,例如可以是电池的使用年限、电池的出厂厂商等。
在外界影响因素为温度时,电池在当前温度信息下的实际可用容量与温度的关系可以是如下所示:实际可用容量=g(电池温度,环境温度,……)。
对应的,车辆行驶目标行程所需的目标电池容量与当前温度信息的对应关系可以如下:目标电池容量=f(环境温度,行车时长,……)。
上述两个应关系的具体实现可以灵活调整,工况参数越多(这里的工况参数可以根据需求自行设置,这里不做限定),对应关系越准确。
在本申请的一些实施例中,为了更加清晰的理解本申请的技术方案,本申请实施例还提供了电池续航能力确定方法的另一种可实现方式,参考图12,本申请实施例提供的电池续航能力确定方法可以包括步骤201-步骤206:
步骤201、获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数。
步骤202、基于电参数,计算电池在预设温度下的可发挥容量。
步骤203、基于可发挥容量,以及预先设置的可发挥容量与温度的对应关系,得到电池在当前温度信息下的实际可用容量;其中,实际可用容量用于指示电池的续航能力。
上述步骤201-步骤203与上述实施例中的步骤110-步骤130一致,在此不再赘述。
步骤204、根据当前温度信息,以及预先设置的温度信息、行驶行程和需求容量之间的对应关系,得到在当前温度信息下行驶目标行程所需的目标电池容量。
上述步骤204与上述实施例中的步骤160一致,在此不再赘述。
步骤205、获取在当前温度信息下,车辆行驶目标行程所需的目标电池容量。
步骤206、在实际可用容量小于目标电池容量的情况下,确定车辆在目标行程过程中发生抛锚。
上述步骤205-步骤206与上述实施例中的步骤140-步骤150一致,在此不再赘述。
本申请实施例提供的电池续航能力确定方法,执行主体可以为电池续航能力确定装置。本申请实施例中以电池续航能力确定装置执行电池续航能力确定方法为例,说明本申请实施例提供的电池续航能力确定装置。
图13是根据一示例性实施例示出的一种电池续航能力确定装置的结构示意图。
如图13所示,该电池续航能力确定装置1300可以包括:
第一获取模块1310,用于获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数;
第一计算模块1320,用于基于所述电参数,计算所述电池在预设温度下的可发挥容量;
第一确定模块1330,用于基于所述可发挥容量,以及预先设置的可发挥容量与温度的对应关系,得到所述电池在所述当前温度信息下的实际可用容量;其中,所述实际可用容量用于指示电池的续航能力。
在本申请的实施例中,通过获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数,然后基于电参数,计算电池在预设温度下的可发挥容量,根据可发挥容量,以及预先设置的可发挥容量与温度的对应关系,可得到电池在当前温度信息下的实际可用容量,该实际可用容量即用于指示电池的续航能力如此可根据环境的变化,快速精确的得到当前温度信息下电池的实际可用容量,这样通过本申请的方案,可快速精确的确定电池的续航能力。
在本申请的一些实施例中,为了提升用户体验,上述所涉及的电池续航能力确定装置还可以包括:
第二获取模块,用于获取在所述当前温度信息下,所述车辆行驶目标行程所需的目标电池容量;
第二确定模块,用于在所述实际可用容量小于所述目标电池容量的情况下,确定车辆在所述目标行程过程中会发生抛锚。
在本申请的一些实施例中,为了电池在预设温度下的可发挥容量,第一计 算模块1320具体可以包括:
第一计算单元,用于对满充时段内的所述电参数进行处理,得到所述满充时段内的单位时间的电参数变化量;
第二计算单元,用于基于单位时间的电参数变化量,得到所述电池在预设温度下的可发挥容量。
在本申请的一些实施例中,所述电参数为电压-时间曲线;为了精确得到满充时段内的单位时间的电参数变化量,所述第一计算单元具体可以用于:
对满充时段内的所述电压-时间曲线进行微分,得到所述满充时段内的单位时间的电参数变化量。
在本申请的一些实施例中,为了精确得到电池在预设温度下的可发挥容量,所述第二计算单元具体可以包括:
第一获取子单元,用于获取所述满充时段内单位时间的电参数变化量中的电参数变化量最高位置处的第一电池容量;其中,所述第一电池容量预先基于电芯实验得到;
第一确定子单元,用于基于所述电参数变化量最高位置和满充时刻位置之间的电参数变化量,得到所述电参数变化量最高位置和满充时刻位置之间的第二电池容量;
第二确定子单元,用于基于所述第一电池容量和所述第二电池容量,得到所述电池在预设温度下的可发挥容量。
在本申请的一些实施例中,为了精确得到第二电池容量,所述第一确定子单元具体可以用于:
对所述电参数变化量最高位置和满充时刻位置之间的电参数变化量进行积分,得到所述电参数变化量最高位置和满充时刻位置之间的第二电池容量。
在本申请的一些实施例中,为了精确确定目标电池容量,上述所涉及的电池续航能力确定装置还可以包括:
第三确定模块,用于根据所述当前温度信息,以及预先设置的温度信息、行驶行程和需求容量之间的对应关系,得到在所述当前温度信息下行驶目标行程所需的目标电池容量。
在本申请的一些实施例中,为了提升用户体验,所述第二确定模块具体可以用于:
根据所述实际可用容量和所述目标电池容量,生成抛锚预警信息。
在本申请的一些实施例中,所述当前温度信息包括所述电池的当前温度信息和/或当前环境温度信息。
本申请实施例提供的电池续航能力确定装置,可以用于执行上述图1-图12中的各方法实施例提供的电池续航能力确定方法,其实现原理和技术效果类似,为简介起见,在此不再赘述。
基于与上述电池续航能力确定方法的同一发明构思,本申请实施例还提供了一种车辆。该车辆包括:中央处理器,用于实现上述实施例中的电池续航能力确定方法。
本申请实施例提供的车辆,可以用于执行上述图1-图12中的各方法实施例提供的电池续航能力确定方法,其实现原理和技术效果类似,为简介起见,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种电池续航能力确定方法,其特征在于,所述方法包括:
    获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数;
    基于所述电参数,计算所述电池在预设温度下的可发挥容量;
    基于所述可发挥容量,以及预先设置的可发挥容量与温度的对应关系,得到所述电池在所述当前温度信息下的实际可用容量;其中,所述实际可用容量用于指示电池的续航能力。
  2. 根据权利要求1所述的方法,其特征在于,在所述基于所述可发挥容量,以及预先设置的可发挥容量与温度的对应关系,得到所述电池在所述当前温度信息下的实际可用容量之后,所述方法还包括:
    获取在所述当前温度信息下,所述车辆行驶目标行程所需的目标电池容量;
    在所述实际可用容量小于所述目标电池容量的情况下,确定车辆在所述目标行程过程中发生抛锚。
  3. 根据权利要求1所述的方法,其特征在于,所述基于所述电参数,计算所述电池在预设温度下的可发挥容量,包括:
    对满充时段内的所述电参数进行处理,得到所述满充时段内的单位时间的电参数变化量;
    基于单位时间的电参数变化量,得到所述电池在预设温度下的可发挥容量。
  4. 根据权利要求3所述的方法,其特征在于,所述电参数为电压-时间曲线;所述对满充时段内的所述电参数进行处理,得到所述满充时段内的单位时间的电参数变化量,包括:
    对满充时段内的所述电压-时间曲线进行微分,得到所述满充时段内的单位时间的电参数变化量。
  5. 根据权利要求4所述的方法,其特征在于,所述基于单位时间的电参数变化量,得到所述电池在预设温度下的可发挥容量,包括:
    获取所述满充时段内单位时间的电参数变化量中的电参数变化量最高位 置处的第一电池容量;
    基于所述电参数变化量最高位置和满充时刻位置之间的电参数变化量,得到所述电参数变化量最高位置和满充时刻位置之间的第二电池容量;
    基于所述第一电池容量和所述第二电池容量,得到所述电池在预设温度下的可发挥容量。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述电参数变化量最高位置和满充时刻位置之间的电参数变化量,得到所述电参数变化量最高位置和满充时刻位置之间的第二电池容量,包括:
    对所述电参数变化量最高位置和满充时刻位置之间的电参数变化量进行积分,得到所述电参数变化量最高位置和满充时刻位置之间的第二电池容量。
  7. 根据权利要求1所述的方法,其特征在于,在所述获取在所述当前温度信息下,行驶目标行程所需的目标电池容量之前,所述方法还包括:
    根据所述当前温度信息,以及预先设置的温度信息、行驶行程和需求容量之间的对应关系,得到在所述当前温度信息下行驶目标行程所需的目标电池容量。
  8. 根据权利要求2所述的方法,其特征在于,所述确定车辆在所述目标行程过程中发生抛锚,包括:
    根据所述实际可用容量和所述目标电池容量,生成抛锚预警信息。
  9. 根据权利要求1-8任一所述的方法,其特征在于,所述当前温度信息包括所述电池的当前温度信息和/或当前环境温度信息。
  10. 一种电池续航能力确定装置,其特征在于,所述装置包括:
    第一获取模块,用于获取当前温度信息,以及车辆的电池在预设温度下满充时段的电参数;
    第一计算模块,用于基于所述电参数,计算所述电池在预设温度下的可发挥容量;
    第一确定模块,用于基于所述可发挥容量,以及预先设置的可发挥容量与温度的对应关系,得到所述电池在所述当前温度信息下的实际可用容量;其中,所述实际可用容量用于指示电池的续航能力。
  11. 一种车辆,其特征在于,所述车辆包括:
    中央处理器,所述中央处理器用于实现上述权利要求1-9任一所述的电池续航能力确定方法。
PCT/CN2022/133717 2022-11-23 2022-11-23 电池续航能力确定方法、装置和车辆 WO2024108424A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133717 WO2024108424A1 (zh) 2022-11-23 2022-11-23 电池续航能力确定方法、装置和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133717 WO2024108424A1 (zh) 2022-11-23 2022-11-23 电池续航能力确定方法、装置和车辆

Publications (1)

Publication Number Publication Date
WO2024108424A1 true WO2024108424A1 (zh) 2024-05-30

Family

ID=91194870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133717 WO2024108424A1 (zh) 2022-11-23 2022-11-23 电池续航能力确定方法、装置和车辆

Country Status (1)

Country Link
WO (1) WO2024108424A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170621A (ja) * 2004-12-10 2006-06-29 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
CN105954686A (zh) * 2016-06-27 2016-09-21 金龙联合汽车工业(苏州)有限公司 一种固定线路电动汽车动力电池剩余电量的估算方法
CN111098753A (zh) * 2018-10-26 2020-05-05 比亚迪股份有限公司 电动车辆的续航里程估算方法和装置、电动车辆
CN113702842A (zh) * 2021-07-15 2021-11-26 恒大海拉电子(扬州)有限公司 一种纯电动汽车的续航里程估计方法
CN114407726A (zh) * 2022-01-21 2022-04-29 湖北文理学院 车辆剩余里程修正方法、装置、设备及存储介质
CN115230526A (zh) * 2022-04-28 2022-10-25 长城汽车股份有限公司 一种预估汽车剩余续航里程的方法、装置及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170621A (ja) * 2004-12-10 2006-06-29 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
CN105954686A (zh) * 2016-06-27 2016-09-21 金龙联合汽车工业(苏州)有限公司 一种固定线路电动汽车动力电池剩余电量的估算方法
CN111098753A (zh) * 2018-10-26 2020-05-05 比亚迪股份有限公司 电动车辆的续航里程估算方法和装置、电动车辆
CN113702842A (zh) * 2021-07-15 2021-11-26 恒大海拉电子(扬州)有限公司 一种纯电动汽车的续航里程估计方法
CN114407726A (zh) * 2022-01-21 2022-04-29 湖北文理学院 车辆剩余里程修正方法、装置、设备及存储介质
CN115230526A (zh) * 2022-04-28 2022-10-25 长城汽车股份有限公司 一种预估汽车剩余续航里程的方法、装置及车辆

Similar Documents

Publication Publication Date Title
CN107284241B (zh) 提供车辆的电池显示状态的服务器及设置显示状态的设备
US8054038B2 (en) System for optimizing battery pack cut-off voltage
CN103403565B (zh) 剩余寿命判定方法
US11281417B2 (en) Display device and vehicle comprising the same
KR20090105754A (ko) 배터리의 잔존용량 추정 방법
CN111091632B (zh) 一种汽车蓄电池寿命预测方法和装置
JP2018055793A (ja) 電池交換システム
US20160131719A1 (en) Battery state detection device
JP2015155859A (ja) 電池残量推定装置、電池パック、蓄電装置、電動車両および電池残量推定方法
WO2014208546A1 (ja) 電池状態検出装置
CN108128168B (zh) 一种电动汽车的平均电耗计算方法及装置
CN105277892A (zh) 通过脉冲注入辨识电池***
JP2010086901A (ja) リチウム二次電池の劣化診断装置および劣化診断方法
CN112519631A (zh) 电池控制装置、充放电***、停车场***、二次电池再利用***、电池控制方法及存储介质
WO2024108424A1 (zh) 电池续航能力确定方法、装置和车辆
KR20210156919A (ko) 차량의 배터리 관리 정보 제공 시스템 및 방법
JP6115915B2 (ja) 電池状態検出装置
JP6606153B2 (ja) 電池状態推定方法及び電池状態推定装置
CN117117345A (zh) 低压铅酸蓄电池的状态管理方法、装置、设备及存储介质
JP2021131344A (ja) 二次電池の副反応電流値の測定方法、寿命推定方法、検査方法
CN112078430A (zh) 电动车辆的续航里程估算方法、装置及电动车辆
JP2014148232A (ja) 車載用蓄電システム、情報端末
CN112305415B (zh) 一种高压接触器寿命实时监测方法及***
JP2017139054A (ja) リチウムイオン二次電池システム、および、リチウムイオン二次電池の劣化診断方法
US20210288511A1 (en) Charge and discharge control method, battery-mounted device, management system, management method, management server, and non-transitory storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966122

Country of ref document: EP

Kind code of ref document: A1