WO2024106377A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2024106377A1
WO2024106377A1 PCT/JP2023/040764 JP2023040764W WO2024106377A1 WO 2024106377 A1 WO2024106377 A1 WO 2024106377A1 JP 2023040764 W JP2023040764 W JP 2023040764W WO 2024106377 A1 WO2024106377 A1 WO 2024106377A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
equation
cmd
reaction force
motion
Prior art date
Application number
PCT/JP2023/040764
Other languages
English (en)
French (fr)
Inventor
祥馬 枝元
勉 田村
ロバート フックス
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Publication of WO2024106377A1 publication Critical patent/WO2024106377A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • This invention relates to a motor control device that drives and controls an electric motor for steering angle control.
  • Patent Document 1 discloses that the control gain (control amount) is changed according to the lateral displacement of the vehicle from the center of the driving lane, the yaw angle of the vehicle relative to the driving lane, etc. Specifically, when the yaw angle is an angle where the vehicle is heading toward the deviation side, the control gain is increased, and when the yaw angle is an angle where the vehicle is heading toward the deviation avoidance side, the control gain is decreased.
  • the objective of one embodiment of the present invention is to provide a motor control device that can provide a steering reaction force to the driver in a new way when in driving assistance mode.
  • One embodiment of the present invention provides a motor control device for driving and controlling an electric motor of a steering device, the motor control device including: a manual steering command value generation unit that generates a manual steering command value using the equation of motion of a reference model of the steering device; an integrated angle command value calculation unit that calculates an integrated angle command value by adding the manual steering command value to an automatic steering command value given in a driving assistance mode; a control unit that controls the angle of an electric motor for steering angle control based on the integrated angle command value; and a motion equation setting unit that changes the motion equation according to the time differential value of the angle deviation between the automatic steering command value and the actual steering angle.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an electric power steering system to which a motor control device according to a first embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing the electrical configuration of the motor control ECU.
  • FIG. 3 is a graph showing an example of setting the assist torque command value T asst relative to the torsion bar torque T tb .
  • FIG. 4 is a schematic diagram showing an example of a reference EPS model used in the manual steering command value generating unit.
  • FIG. 5 is a block diagram showing the configuration of the angle control unit.
  • FIG. 6 is a schematic diagram showing an example of the configuration of a physical model of an electric power steering system.
  • FIG. 7 is a block diagram showing the configuration of the disturbance torque estimating unit.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an electric power steering system to which a motor control device according to a first embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing the electrical configuration of the motor
  • FIG. 8 is a schematic diagram showing the configuration of the torque control unit.
  • FIG. 9 is a flowchart showing the procedure of the weight setting process performed by the weight setting unit in the driving assistance mode.
  • FIG. 10 is a graph showing an example of setting the first virtual load spring stiffness coefficient kr(e L ) and the second virtual load spring stiffness coefficient kg with respect to the lateral deviation e L .
  • FIG. 11 is a graph showing an example of setting the virtual load viscous damping coefficient c(e L ) relative to the lateral deviation e L .
  • FIG. 12A is a schematic diagram showing an example of the position of the vehicle when the vehicle reference position is to the right of the center of the lane, FIG.
  • FIG. 12B is a schematic diagram showing an example of the angle deviation ⁇ when the actual steering angle ⁇ and the automatic steering command value ⁇ AD,cmd are both positive in sign and the actual steering angle ⁇ is larger than the automatic steering command value ⁇ AD , cmd
  • FIG. 12C is a schematic diagram showing an example of the angle deviation ⁇ A ⁇ when the actual steering angle ⁇ has a negative sign and the automatic steering command value ⁇ AD,cmd has a positive sign.
  • FIG. 13 is a flowchart showing the procedure of the spring stiffness coefficient setting process performed by the road surface reaction force characteristic setting unit in the driving assistance mode.
  • FIG. 14 is a graph showing an example of setting the first virtual load viscous damping coefficient cr(e L ) and the second virtual load viscous damping coefficient cg with respect to the lateral deviation e L .
  • FIG. 15 is a flowchart showing the procedure of a road surface reaction force characteristic setting process performed by a road surface reaction force characteristic setting unit according to the first modified example in the driving assistance mode.
  • FIG. 16 is a flowchart showing the procedure of a viscous damping coefficient setting process performed by a road surface reaction force characteristic setting unit according to the second modified example in the driving assistance mode.
  • FIG. 17 is a flowchart showing the procedure of a road surface reaction force characteristic setting process performed by the road surface reaction force characteristic setting unit in the driving assistance mode in the third embodiment.
  • FIG. 15 is a flowchart showing the procedure of a road surface reaction force characteristic setting process performed by a road surface reaction force characteristic setting unit according to the first modified example in the driving assistance mode.
  • FIG. 16 is a flowchart showing the procedure
  • FIG. 18 is a flowchart showing the procedure of a road surface reaction force characteristic setting process performed by the road surface reaction force characteristic setting unit in the driving assistance mode in the fourth embodiment.
  • FIG. 19 is a block diagram showing a first modified example of the motor control ECU.
  • FIG. 20 is a graph showing an example of setting the target virtual spring reaction force T tb,d (e L ) relative to the lateral deviation e L .
  • FIG. 21 is a graph showing an example of setting the first virtual load spring stiffness coefficient kr and the second virtual load spring stiffness coefficient kg with respect to the lateral deviation eL .
  • FIG. 22 is a graph showing an example of setting the first virtual load viscous damping coefficient cr(e L ) and the second virtual load viscous damping coefficient cg with respect to the lateral deviation e L .
  • FIG. 23 is a schematic diagram showing an example of a reference EPS model used in the manual steering command value generating unit described in WO 2023/286169.
  • FIG. 24 is a block diagram showing the configuration of a manual steering command value generating unit in a first modified example of the motor control ECU.
  • FIG. 25A is a flowchart showing a part of the procedure of the coefficient/weight setting process performed by the equation of motion setting unit in the driving assistance mode.
  • FIG. 25B is a flowchart showing part of the procedure of the coefficient/weight setting process performed by the equation of motion setting unit in the driving assistance mode.
  • FIG. 26 is a block diagram showing the configuration of a manual steering command value generating unit in a second modified example of the motor control ECU.
  • One embodiment of the present invention provides a motor control device for driving and controlling an electric motor of a steering device, the motor control device including: a manual steering command value generation unit that generates a manual steering command value using an equation of motion of a reference model of the steering device; an integrated angle command value calculation unit that calculates an integrated angle command value by adding the manual steering command value to an automatic steering command value given in a driving assistance mode; a control unit that controls the angle of an electric motor for steering angle control based on the integrated angle command value; and a motion equation setting unit that changes the motion equation in accordance with a time differential value of the angle deviation between the automatic steering command value and an actual steering angle.
  • the equation of motion includes a road reaction force characteristic coefficient
  • the equation of motion setting unit changes the equation of motion by changing the value of at least one of the road reaction force characteristic coefficients included in the equation of motion.
  • the equation of motion setting unit is configured to change the equation of motion by switching between a first equation of motion and a second equation of motion, and in the first equation of motion, a target virtual spring reaction force corresponding to the lateral position of the vehicle reference position relative to the driving lane is used as the virtual spring reaction force, and in the second equation of motion, a virtual spring reaction force that is set using a constant virtual load spring stiffness coefficient regardless of the lateral position is used as the virtual spring reaction force.
  • the equation of motion setting unit is configured to determine whether the vehicle is heading toward the departure side or toward the departure avoidance side based on either the lateral position of the vehicle reference position with respect to the driving lane or the angular deviation, and the time differential value, and to change the equation of motion based on the determination result.
  • the equation of motion setting unit determines whether the vehicle is heading toward the departure side or toward the departure avoidance side based on either the lateral position of the vehicle reference position relative to the driving lane or the angular deviation, and the time differential value, and when the vehicle is heading toward the departure avoidance side, the value of at least one of the road reaction force characteristic coefficients included in the equation of motion is made smaller than when the vehicle is heading toward the departure side.
  • the equation of motion setting unit determines whether the vehicle is heading toward the departure side or toward the departure avoidance side based on the time differential value and either one of the lateral position of the vehicle reference position with respect to the driving lane and the angular deviation, and when the vehicle is heading toward the departure side, changes at least one of the road reaction force characteristic coefficients included in the equation of motion according to the lateral position.
  • the equation of motion setting unit uses the time differential value to determine whether the vehicle is heading toward the departure side or toward the departure avoidance side, and when the vehicle is heading toward the departure side, sets the first equation of motion as the equation of motion, and when the vehicle is heading toward the departure avoidance side, sets the second equation of motion as the equation of motion.
  • FIG. 1 is a schematic diagram showing the general configuration of an electric power steering system to which a steering device according to a first embodiment of the present invention is applied.
  • the electric power steering system 1 includes a steering wheel (handle) 2 as a steering member for steering the vehicle, a steering mechanism 4 that steers the steered wheels 3 in conjunction with the rotation of the steering wheel 2, and a steering assist mechanism 5 that assists the driver in steering.
  • the steering wheel 2 and the steering mechanism 4 are mechanically connected via a steering shaft 6 and an intermediate shaft 7.
  • the steering shaft 6 includes an input shaft 8 connected to the steering wheel 2 and an output shaft 9 connected to the intermediate shaft 7.
  • the input shaft 8 and the output shaft 9 are connected via a torsion bar 10 so as to be capable of relative rotation.
  • a torque sensor 12 is disposed near the torsion bar 10.
  • the torque sensor 12 detects a torsion bar torque Ttb applied to the steering wheel 2 based on the amount of relative rotational displacement between the input shaft 8 and the output shaft 9.
  • the torsion bar torque Ttb detected by the torque sensor 12 is detected as a positive value for torque for steering leftward and a negative value for torque for steering rightward, and the magnitude of the torsion bar torque Ttb increases as the absolute value increases.
  • the torsion bar torque Ttb is an example of the "steering torque" of the present invention.
  • the steering mechanism 4 is made up of a rack-and-pinion mechanism including a pinion shaft 13 and a rack shaft 14 as a steering shaft.
  • the steered wheels 3 are connected to each end of the rack shaft 14 via tie rods 15 and knuckle arms (not shown).
  • the pinion shaft 13 is connected to the intermediate shaft 7.
  • the pinion shaft 13 rotates in conjunction with the steering of the steering wheel 2.
  • a pinion 16 is connected to the tip of the pinion shaft 13.
  • the rack shaft 14 extends linearly in the left-right direction of the vehicle.
  • a rack 17 that meshes with the pinion 16 is formed in the middle of the rack shaft 14 in the axial direction.
  • the pinion 16 and rack 17 convert the rotation of the pinion shaft 13 into axial movement of the rack shaft 14.
  • the steered wheels 3 can be steered by moving the rack shaft 14 in the axial direction.
  • the steering assist mechanism 5 includes an electric motor 18 for generating a steering assist force (assist torque) and a reducer 19 for amplifying the output torque of the electric motor 18 and transmitting it to the steering mechanism 4.
  • the reducer 19 is made up of a worm gear mechanism including a worm gear 20 and a worm wheel 21 that meshes with the worm gear 20.
  • the reducer 19 is housed in a gear housing 22 that serves as a transmission mechanism housing.
  • the reduction ratio (gear ratio) of the reducer 19 may be represented as N.
  • the reduction ratio N is defined as the ratio ( ⁇ wg / ⁇ WW ) of the worm gear angle ⁇ wg , which is the rotation angle of the worm gear 20, to the worm wheel angle ⁇ ww , which is the rotation angle of the worm wheel 21.
  • the worm gear 20 is rotated by the electric motor 18.
  • the worm wheel 21 is connected to the output shaft 9 so that they can rotate together.
  • the worm gear 20 When the worm gear 20 is driven to rotate by the electric motor 18, the worm wheel 21 is driven to rotate, and motor torque is applied to the steering shaft 6, causing the steering shaft 6 (output shaft 9) to rotate. The rotation of the steering shaft 6 is then transmitted to the pinion shaft 13 via the intermediate shaft 7. The rotation of the pinion shaft 13 is converted into axial movement of the rack shaft 14. This causes the steered wheels 3 to be steered. In other words, by driving the worm gear 20 to rotate by the electric motor 18, steering assistance by the electric motor 18 and steering of the steered wheels 3 are possible.
  • the electric motor 18 is provided with a rotation angle sensor 23 for detecting the rotation angle of the rotor of the electric motor 18.
  • the torque applied to the output shaft 9 includes the motor torque from the electric motor 18 and a disturbance torque Tlc other than the motor torque.
  • the disturbance torque Tlc other than the motor torque includes a torsion bar torque Ttb , a road load torque (road reaction torque) Trl , a friction torque Tf , etc.
  • the torsion bar torque Ttb is a torque applied from the steering wheel 2 side to the output shaft 9 due to a force applied to the steering wheel 2 by the driver, a force generated by steering inertia, or the like.
  • the road load torque Trl is a torque applied to the output shaft 9 from the steered wheels 3 via the rack shaft 14 due to the self-aligning torque generated in the tires, forces generated by the suspension and tire/wheel alignment, frictional forces of the rack and pinion mechanism, etc.
  • the vehicle is equipped with a CCD (Charge Coupled Device) camera 25 that photographs the road ahead of the vehicle in the direction of travel, a GPS (Global Positioning System) 26 for detecting the vehicle's position, a radar 27 for detecting road shapes and obstacles, a map information memory 28 that stores map information, and a vehicle speed sensor 29.
  • CCD Charge Coupled Device
  • GPS Global Positioning System
  • the CCD camera 25, GPS 26, radar 27, map information memory 28 and vehicle speed sensor 29 are connected to a host ECU (Electronic Control Unit) 201 for driving assistance control. Based on the information obtained by the CCD camera 25, GPS 26, radar 27 and vehicle speed sensor 29, as well as map information, the host ECU 201 performs surrounding environment recognition, vehicle position estimation, route planning, etc., and determines control target values for steering and drive actuators.
  • ECU Electronic Control Unit
  • the host ECU 201 sets an automatic steering command value ⁇ AD,cmd for driving assistance.
  • the automatic steering command value ⁇ AD,cmd is a target value of the steering angle for driving the vehicle along the target driving line.
  • the driving assistance is a lane keeping assist (LKA) to prevent the vehicle from deviating from the lane.
  • the driving assistance may be a lane centering assist (LKA) that assists in steering so that the vehicle stays in the center of the lane.
  • the driving assistance may include lane keeping assist (LKA) and lane centering assist (LKA), as in the modified example of the motor control ECU described below.
  • the automatic steering command value ⁇ AD,cmd is represented by the amount of rotation (rotation angle) from the neutral position of the output shaft 9, with the amount of rotation from the neutral position in the left steering direction being represented as a positive value, and the amount of rotation from the neutral position in the right steering direction being represented as a negative value.
  • the automatic steering command value ⁇ AD,cmd is set based on, for example, the vehicle speed, the lateral deviation from the target driving line (lane center line), and the yaw deviation of the vehicle from the target driving line.
  • the process of setting such an automatic steering command value ⁇ AD,cmd is well known, and therefore a detailed description thereof will be omitted here.
  • the host ECU 201 also outputs a mode signal S mode indicating whether the driving mode is a normal mode or a driving assistance mode, and a lateral deviation e L with respect to the target driving line.
  • the lateral deviation e L is the distance from the target driving line to a reference position of the vehicle (hereinafter referred to as the "vehicle reference position").
  • the vehicle reference position is set to a predetermined position in the center of the vehicle width.
  • the lateral deviation eL is an example of the "lateral position of the vehicle reference position with respect to the driving lane" in the present invention.
  • the mode signal S mode , the automatic steering command value ⁇ AD,cmd , the lateral deviation e L and the vehicle speed V are provided to the motor control ECU 202 via an in-vehicle network.
  • the torsion bar torque T tb detected by the torque sensor 12 and the output signal of the rotation angle sensor 23 are input to the motor control ECU 202.
  • the motor control ECU 202 controls the electric motor 18 based on these input signals and information provided by the host ECU 201.
  • FIG. 2 is a block diagram showing the electrical configuration of the motor control ECU 202.
  • the motor control ECU 202 includes a microcomputer 40, a drive circuit (inverter circuit) 31 that is controlled by the microcomputer 40 and supplies power to the electric motor 18, and a current detection circuit 32 for detecting the current flowing through the electric motor 18 (hereinafter referred to as "motor current I m ").
  • the microcomputer 40 is equipped with a CPU and memory (ROM, RAM, non-volatile memory, etc.), and functions as multiple functional processing units by executing a predetermined program.
  • the multiple functional processing units include a rotation angle calculation unit 41, a reduction ratio division unit 42, a road surface reaction force characteristic setting unit 43, an assist torque command value setting unit 44, a manual steering command value generation unit 45, an integrated angle command value calculation unit 46, an angle control unit 47, a first weight multiplication unit 48, a second weight multiplication unit 49, an addition unit 50, a torque control unit (current control unit) 51, and a weight setting unit 52.
  • the rotation angle calculation unit 41 calculates the rotor rotation angle ⁇ m of the electric motor 18 based on the output signal of the rotation angle sensor 23.
  • the reduction ratio division unit 42 converts the rotor rotation angle ⁇ m into a rotation angle (actual steering angle) ⁇ of the output shaft 9 by dividing the rotor rotation angle ⁇ m by the reduction ratio N.
  • the actual steering angle ⁇ is represented by the amount of rotation (rotation angle) from the neutral position of the output shaft 9, the amount of rotation from the neutral position in the left steering direction is represented as a positive value, and the amount of rotation from the neutral position in the right steering direction is represented as a negative value.
  • the road reaction force characteristic setting unit 43 sets the virtual load spring stiffness coefficient k and the virtual load viscosity coefficient c used by the manual steering command value generating unit 45.
  • the road reaction force characteristic setting unit 43 is an example of the "motion equation setting unit" in the present invention. The operation of the road reaction force characteristic setting unit 43 will be described in detail later.
  • the assist torque command value setting unit 44 sets an assist torque command value T asst , which is a target value of the assist torque required for manual operation.
  • the assist torque command value setting unit 44 sets the assist torque command value T asst based on the vehicle speed V provided by the host ECU 201 and the torsion bar torque T tb detected by the torque sensor 12.
  • An example of setting the assist torque command value T asst relative to the torsion bar torque T tb is shown in FIG. 3.
  • the assist torque command value T asst is set to a positive value when a steering assist force for steering leftward is to be generated from the electric motor 18, and is set to a negative value when a steering assist force for steering rightward is to be generated from the electric motor 18.
  • the assist torque command value T asst is positive for a positive value of the torsion bar torque T tb , and is negative for a negative value of the torsion bar torque T tb .
  • the assist torque command value T asst is set so that its absolute value increases as the absolute value of the torsion bar torque T tb increases, and is set so that its absolute value decreases as the vehicle speed V increases.
  • the assist torque command value setting unit 44 may calculate the assist torque command value T asst by multiplying the torsion bar torque T tb by a preset constant.
  • the manual steering command value generating unit 45 is provided to set a steering angle (more precisely, a rotation angle ⁇ of the output shaft 9) corresponding to the steering wheel operation as a manual steering command value ⁇ MD,cmd when the driver operates the steering wheel 2.
  • the manual steering command value generating unit 45 generates the manual steering command value ⁇ MD,cmd using the torsion bar torque T tb detected by the torque sensor 12, the assist torque command value T asst set by the assist torque command value setting unit 44, and the virtual load spring stiffness coefficient k and the virtual load viscous damping coefficient c set by the road surface reaction force characteristic setting unit 43.
  • the manual steering command value generating unit 45 will be described later in detail.
  • the integrated angle command value calculation unit 46 adds the manual steering command value ⁇ MD,cmd to the automatic steering command value ⁇ AD,cmd set by the host ECU 201 to calculate an integrated angle command value ⁇ int,cmd .
  • the angle control unit 47 calculates an integrated motor torque command value T mint,cmd based on the integrated angle command value ⁇ int ,cmd .
  • the angle control unit 47 will be described in detail later.
  • the first weight multiplier 48 multiplies the assist torque command value T asst set by the assist torque command value setting unit 44 by a first weight W1.
  • the second weight multiplier 49 multiplies the integrated motor torque command value T mint,cmd by a second weight W2.
  • the first weight W1 and the first weight W2 are set by a weight setting unit 52.
  • the weight setting unit 52 will be described in detail later.
  • the adder 50 calculates the motor torque command value Tm,cmd for the electric motor 18 by adding the assist torque command value W1 ⁇ T asst after multiplication by the first weight (after the first weighting process) and the integrated motor torque command value W2 ⁇ T mint, cmd after multiplication by the second weight (after the second weighting process).
  • the torque control unit 51 drives the drive circuit 31 so that the motor torque of the electric motor 18 approaches the motor torque command value Tm ,cmd .
  • the manual steering command value generating unit 45 sets the manual steering command value ⁇ MD,cmd by using a reference EPS model.
  • Figure 4 is a schematic diagram showing an example of a reference EPS model used by the manual steering command value generating unit 45.
  • the reference EPS model in Fig. 4 is an example of a "reference model for a steering device" in the present disclosure.
  • This reference EPS model is a single inertia model including a lower column.
  • the lower column corresponds to the output shaft 9 and the worm wheel 21.
  • Jref is the inertia of the lower column
  • Ttb is the torsion bar torque.
  • the lower column is provided with a torsion bar torque Ttb , an assist torque N ⁇ T asst acting on the output shaft 9 from the electric motor 18, and a road load torque Trl .
  • a virtual road load torque (virtual road reaction force) Trl is expressed by the following equation (1) using a virtual load spring stiffness coefficient k, a virtual load viscous damping coefficient c, and a manual steering command value ⁇ MD,cmd .
  • J ref d 2 ⁇ MD,cmd /dt 2 T tb + N T ast - k ⁇ MD,cmd ⁇ c (d ⁇ MD, cmd / dt) ...
  • the values of the virtual load spring stiffness coefficient k and the virtual load viscous damping coefficient c are set by the road reaction force characteristic setting unit 43.
  • the virtual load spring stiffness coefficient k and the virtual load viscous damping coefficient c which are coefficients of the equation of motion of the formula (2), are an example of the "road reaction force characteristic coefficient" in the present invention.
  • the manual steering command value generating unit 45 substitutes the torsion bar torque Ttb detected by the torque sensor 12 into Ttb and the assist torque command value T asst set by the assist torque command value setting unit 44 into T asst , and calculates the manual steering command value ⁇ MD,cmd by solving the differential equation of equation (2).
  • FIG. 5 is a block diagram showing the configuration of the angle control unit 47.
  • the angle control unit 47 calculates an integrated motor torque command value T mint,cmd based on the integrated angle command value ⁇ int,cmd .
  • the angle control unit 47 includes a low pass filter (LPF) 61, a feedback control unit 62, a feedforward control unit 63, a disturbance torque estimating unit 64, a torque adding unit 65, a disturbance torque compensating unit 66, a reduction ratio dividing unit 67, and a reduction ratio multiplying unit 68.
  • LPF low pass filter
  • the reduction ratio multiplication unit 68 multiplies the motor torque command value Tm ,cmd calculated by the addition unit 50 (see FIG. 2) by the reduction ratio N of the reducer 19 to convert the motor torque command value Tm ,cmd into an output shaft torque command value N ⁇ Tm,cmd acting on the output shaft 9 (worm wheel 21).
  • the low-pass filter 61 performs low-pass filtering on the integrated angle command value ⁇ int,cmd .
  • the integrated angle command value ⁇ intL,cmd after the low-pass filtering is provided to the feedback control unit 62 and the feedforward control unit 63.
  • the feedback control unit 62 is provided to bring the steering angle estimated value ⁇ calculated by the disturbance torque estimation unit 64 closer to the integrated angle command value ⁇ intL,cmd after low-pass filter processing.
  • the feedback control unit 62 includes an angle deviation calculation unit 62A and a PD control unit 62B.
  • the PD control unit 62B performs a PD calculation (proportional differential calculation) on the angle deviation ⁇ calculated by the angle deviation calculation unit 62A to calculate a feedback control torque Tfb .
  • the feedback control torque Tfb is provided to a torque addition unit 65.
  • the feedforward control unit 63 is provided to improve the control response by compensating for a delay in response due to the inertia of the electric power steering system 1.
  • the feedforward control unit 63 includes an angular acceleration calculation unit 63A and an inertia multiplication unit 63B.
  • the angular acceleration calculation unit 63A calculates a target angular acceleration d 2 ⁇ intL,cmd /dt 2 by second-order differentiation of the integrated angle command value ⁇ intL,cmd .
  • the inertia J is obtained, for example, from a physical model (see FIG. 6 ) of the electric power steering system 1, which will be described later.
  • the feedforward control torque T ff is provided to the torque addition unit 65 as an inertia compensation value.
  • the torque addition unit 65 calculates a basic torque command value ( Tfb + Tff ) by adding the feedforward control torque Tff to the feedback control torque Tfb .
  • the disturbance torque estimating unit 64 is provided to estimate a nonlinear torque (disturbance torque: torque other than motor torque) that occurs as a disturbance in the plant (the object to be controlled by the electric motor 18).
  • the disturbance torque estimating unit 64 estimates the disturbance torque (disturbance load) T lc , the steering angle ⁇ , and the steering angle differential value (angular velocity) d ⁇ /dt based on the output shaft torque command value N ⁇ T m,cmd and the actual steering angle ⁇ .
  • the estimated values of the disturbance torque T lc , the steering angle ⁇ , and the steering angle differential value (angular velocity) d ⁇ /dt are represented by ⁇ T lc , ⁇ , and d ⁇ /dt, respectively.
  • the disturbance torque estimating unit 64 will be described in detail later.
  • the disturbance torque estimated value ⁇ Tlc calculated by the disturbance torque estimating section 64 is provided as a disturbance torque compensation value to a disturbance torque compensating section 66.
  • the steering angle estimated value ⁇ calculated by the disturbance torque estimating section 64 is provided to an angle deviation calculating section 62A.
  • the integrated steering torque command value T sint,cmd is provided to a reduction ratio division unit 67.
  • the reduction ratio division unit 67 calculates an integrated motor torque command value T mint,cmd by dividing the integrated steering torque command value T sint,cmd by the reduction ratio N.
  • This integrated motor torque command value T mint,cmd is provided to a second weight multiplication unit 49 (see FIG. 2).
  • the disturbance torque estimation unit 64 is composed of a disturbance observer that estimates the disturbance torque T lc , the steering angle ⁇ , and the angular velocity d ⁇ /dt by using, for example, a physical model 101 of the electric power steering system 1 shown in FIG.
  • This physical model 101 includes a plant (an example of a motor-driven object) 102 that includes an output shaft 9 and a worm wheel 21 fixed to the output shaft 9.
  • a torsion bar torque Ttb is applied to the plant 102 from the steering wheel 2 via the torsion bar 10, and a road load torque Trl is applied from the steered wheels 3 side.
  • an output shaft torque command value N ⁇ T m,cmd is applied to the plant 102 via the worm gear 20 , and a friction torque T f is applied due to friction between the worm wheel 21 and the worm gear 20 .
  • Tlc indicates a disturbance torque other than the motor torque applied to the plant 102.
  • the disturbance torque Tlc is shown as the sum of the torsion bar torque Ttb , the road load torque Trl , and the friction torque Tf , but in reality, the disturbance torque Tlc includes torques other than these.
  • x is a state variable vector
  • u1 is a known input vector
  • u2 is an unknown input vector
  • y is an output vector (measurement value).
  • A is a system matrix
  • B1 is a first input matrix
  • B2 is a second input matrix
  • C is an output matrix
  • D is a direct feedthrough matrix.
  • the state equation is expanded to a system including the unknown input vector u2 as one of the states.
  • the state equation of the expanded system (expanded state equation) is expressed by the following equation (5).
  • x e is a state variable vector of the extended system, and is expressed by the following formula (6).
  • a e is the system matrix of the extended system
  • B e is the known input matrix of the extended system
  • C e is the output matrix of the extended system.
  • ⁇ xe represents an estimated value of xe .
  • L is the observer gain.
  • ⁇ y represents an estimated value of y.
  • ⁇ xe is expressed by the following equation (8).
  • is an estimate of ⁇
  • ⁇ T lc is an estimate of T lc .
  • the disturbance torque estimation unit 64 calculates the state variable vector ⁇ x e based on the above equation (7).
  • FIG. 7 is a block diagram showing the configuration of the disturbance torque estimation unit 64.
  • the disturbance torque estimation unit 64 includes an input vector input unit 71, an output matrix multiplication unit 72, a first adder unit 73, a gain multiplication unit 74, an input matrix multiplication unit 75, a system matrix multiplication unit 76, a second adder unit 77, an integrator unit 78, and a state variable vector output unit 79.
  • the output shaft torque command value N ⁇ T m,cmd calculated by the reduction ratio multiplication section 68 (see FIG. 5) is given to an input vector input section 71.
  • the input vector input section 71 outputs an input vector u1 .
  • the output of the integrator 78 is the state variable vector ⁇ x e (see equation (8) above). At the start of the calculation, an initial value is given as the state variable vector ⁇ x e .
  • the initial value of the state variable vector ⁇ x e is, for example, 0.
  • the system matrix multiplication unit 76 multiplies the state variable vector ⁇ xe by the system matrix A e .
  • the output matrix multiplication unit 72 multiplies the state variable vector ⁇ xe by the output matrix C e .
  • the gain multiplier 74 multiplies the output (y - ⁇ y) of the first adder 73 by the observer gain L (see equation (7) above).
  • the input matrix multiplication unit 75 multiplies the input vector u 1 output from the input vector input unit 71 by the input matrix B e .
  • the second adder 77 adds the output (B e ⁇ u 1 ) of the input matrix multiplication unit 75, the output (A e ⁇ ⁇ x e ) of the system matrix multiplication unit 76, and the output (L(y- ⁇ y)) of the gain multiplication unit 74 to calculate a differential value d ⁇ x e /dt of the state variable vector.
  • the integrator 78 integrates the output (d ⁇ x e /dt) of the second adder 77 to calculate the state variable vector ⁇ x e .
  • the state variable vector output unit 79 calculates the disturbance torque estimate value ⁇ T lc , the steering angle estimate value ⁇ , and the angular velocity estimate value d ⁇ /dt based on the state variable vector ⁇ x e .
  • a typical disturbance observer consists of an inverse model of the plant and a low-pass filter.
  • the equation of motion of the plant is expressed by equation (3) as described above. Therefore, the inverse model of the plant is expressed by the following equation (9).
  • the inputs to a typical disturbance observer are J ⁇ d2 ⁇ / dt2 and N ⁇ Tm,cmd , and since the second-order differential value of the actual steering angle ⁇ is used, it is significantly affected by noise from the rotation angle sensor 23.
  • the extended state observer of the above-mentioned embodiment estimates the disturbance torque in an integral manner, so that it is possible to reduce the influence of noise due to differentiation.
  • a general disturbance observer consisting of an inverse model of the plant and a low-pass filter may be used as the disturbance torque estimation unit 64.
  • FIG. 8 is a schematic diagram showing the configuration of the torque control unit 51.
  • the torque control unit 51 (see Figure 2) includes a motor current command value calculation unit 81, a current deviation calculation unit 82, a PI control unit 83, and a PWM (Pulse Width Modulation) control unit 84.
  • the motor current command value calculation unit 81 calculates the motor current command value I m,cmd by dividing the motor torque command value T m,cmd calculated by the adding unit 50 (see FIG. 2) by the torque constant Kt of the electric motor 18 .
  • the PI control unit 83 performs a PI calculation (proportional integral calculation) on the current deviation ⁇ I calculated by the current deviation calculation unit 82 to generate a drive command value for guiding the motor current I m flowing through the electric motor 18 to the motor current command value I m,cmd .
  • the PWM control unit 84 generates a PWM control signal with a duty ratio corresponding to the drive command value, and supplies it to the drive circuit 31. As a result, power corresponding to the drive command value is supplied to the electric motor 18.
  • FIG. 9 is a flowchart showing the steps of the weight setting process performed by the weight setting unit 52 in the driving assistance mode.
  • the weight setting unit 52 sets the first weight W1 to 1 and the second weight W2 to 0 (step S1). As a result, the control mode of the electric motor 18 becomes the first control mode in which the electric motor 18 is driven and controlled only by the assist torque command value T asst .
  • the automatic steering command value ⁇ AD,cmd is set by the host ECU 201 , and the automatic steering command value ⁇ AD,cmd , the mode signal S mode and the lateral deviation e L are provided to the motor control ECU 202 .
  • the weight setting unit 52 determines whether the absolute value
  • the predetermined value ⁇ is a value greater than 0, and is set to a value within the range of 0.2 m to 1.75 m, for example.
  • step S2 If the absolute value
  • step S2 when it is determined that the absolute value
  • the time for gradually decreasing the first weight W1 from 1 to 0 may be, for example, about 0.1 seconds.
  • the control mode of the electric motor 18 becomes a second control mode in which the electric motor 18 is drive-controlled by the integrated motor torque command value Tmint ,cmd .
  • the electric motor 18 is controlled based on the sum of the assist torque command value W1 ⁇ T asst after multiplication by the first weight and the integrated motor torque command value w2 ⁇ T mint,cmd after multiplication by the second weight.
  • the electric motor 18 is controlled based on the integrated angle command value ⁇ int,cmd , which is the sum of the manual steering command value ⁇ MD,cmd and the automatic steering command value ⁇ AD, cmd, so that the steering reaction force based on the virtual road load torque T rl used in the calculation of the manual steering command value ⁇ MD,cmd is reflected.
  • the weight setting unit 52 determines whether or not the absolute value
  • step S4 NO
  • the weight setting unit 52 returns to step S4.
  • step S4 when it is determined that the absolute value
  • the time for gradually increasing the first weight W1 from 0 to 1 may be, for example, about 0.1 seconds.
  • the control mode of the electric motor 18 becomes the first control mode. Note that while the first weight W1 is gradually increasing (while the second weight W2 is gradually decreasing), the electric motor 18 is controlled based on the sum of the assist torque command value W1 ⁇ T asst after multiplication by the first weight and the integrated motor torque command value w2 ⁇ T mint,cmd after multiplication by the second weight.
  • the steering reaction force based on the virtual road load torque T rl used in the calculation of the manual steering command value ⁇ MD,cmd is not reflected.
  • step S5 the weight setting unit 52 returns to step S2.
  • the weight setting unit 52 sets the first weight W1 to 1 and the second weight W2 to 0. Therefore, in the normal mode, the electric motor 18 is controlled to be driven based only on the assist torque command value T asst .
  • the road surface reaction force characteristic setting unit 43 sets a virtual load spring stiffness coefficient k and a virtual load viscous damping coefficient c used in the calculation of the manual steering command value ⁇ MD,cmd .
  • the calculation of the manual steering command value ⁇ MD,cmd is performed by the manual steering command value generating unit 45 (see FIG. 2).
  • a first virtual load spring stiffness coefficient kr( eL ) and a second virtual load spring stiffness coefficient kg are prepared as the virtual load spring stiffness coefficient k used in the driving assistance mode, while only one type of virtual load viscous damping coefficient c( eL ) is prepared as the virtual load viscous damping coefficient c used in the driving assistance mode.
  • FIG. 10 is a graph showing an example of setting the first virtual load spring stiffness coefficient kr(e L ) and the second virtual load spring stiffness coefficient kg with respect to the lateral deviation e L .
  • the first virtual load spring stiffness coefficient kr( eL ) is set to a constant value k1 when the absolute value
  • k1 is a predetermined value greater than 0.
  • the first virtual load spring stiffness coefficient kr( eL ) is set according to a characteristic that increases as the absolute value
  • the first virtual load spring stiffness coefficient kr( eL ) changes linearly from k1 to k2, but it may change nonlinearly.
  • the second virtual load spring stiffness coefficient kg is set to a constant value k3 regardless of the lateral deviation eL .
  • k3 is set to a value larger than 0 and smaller than k1.
  • the value of the first virtual load spring stiffness coefficient kr(e L ) with respect to the lateral deviation e L shown in Fig. 10 is stored in the memory as a first spring stiffness coefficient map. Also, the value k3 of the second virtual load spring stiffness coefficient kg shown in Fig. 10 is stored in the memory as the second virtual load spring stiffness coefficient kg.
  • FIG. 11 is a graph showing an example of setting the virtual load viscous damping coefficient c(e L ) relative to the lateral deviation e L .
  • the virtual load viscous damping coefficient c( eL ) is set to a constant value c1 when the absolute value
  • c1 is a predetermined value greater than 0.
  • the virtual load viscous damping coefficient c( eL ) is set from c1 to c2, which is greater than c1, in accordance with a characteristic that increases as the absolute value
  • the virtual load viscous damping coefficient c( eL ) changes linearly from c1 to c2, but it may change nonlinearly.
  • the values of the virtual load viscous damping coefficient c(e L ) with respect to the lateral deviation e L shown in FIG. 11 are stored in a memory as a viscous damping coefficient map.
  • the road surface reaction force characteristic setting unit 43 sets the value of the virtual load viscous damping coefficient c based on a viscous damping coefficient map that stores the value of the virtual load viscous damping coefficient c( eL ) for the lateral deviation eL in Fig. 11 and the lateral deviation eL from the host ECU 201.
  • the road surface reaction force characteristic setting unit 43 may set a predetermined virtual load viscous damping coefficient value (fixed value) that is set in advance as the virtual load viscous damping coefficient c.
  • the road reaction force characteristic setting unit 43 executes a spring stiffness coefficient setting process to set the virtual load spring stiffness coefficient k.
  • the spring stiffness coefficient setting process will be described later.
  • the state in which the vehicle is moving toward the lane boundary (the driver is steering the vehicle so that it moves toward the lane boundary) is referred to as the "state in which the vehicle is heading toward the departure side.”
  • the state in which the vehicle is moving toward the center of the lane (the state in which the vehicle is trying to return to the center of the lane) is referred to as the "state in which the vehicle is heading toward the departure avoidance side.”
  • the road surface reaction force characteristic setting unit 43 determines that the vehicle is heading toward the departure avoidance side.
  • the road surface reaction force characteristic setting unit 43 determines that the vehicle is heading toward the departure side.
  • the reason for setting the predetermined threshold value ⁇ is to prevent frequent switching between a state in which the vehicle is heading toward the departure avoidance side and a state in which the vehicle is heading toward the departure side when the time differential value d ⁇ A /dt is within the range of the threshold value ⁇ .
  • the reason why the road surface reaction force characteristic setting unit 43 determines that the vehicle is heading toward the departure side when the time differential value d ⁇ A /dt/dt is greater than - ⁇ and less than ⁇ is that when the vehicle reference position is located near the center of the lane, and the driver is holding the steering wheel in a neutral position and the vehicle is heading even slightly toward the lane boundary, the road surface reaction force characteristic setting unit 43 determines that the vehicle is heading toward the departure side.
  • the road surface reaction force characteristic setting unit 43 may determine that the vehicle is moving toward the departure-avoidance side.
  • 12A, 12B, and 12C are schematic diagrams showing examples of the angle deviation ⁇ A between the automatic steering command value ⁇ AD,cmd and the actual steering angle ⁇ when the vehicle reference position is to the right of the center of the lane.
  • the steering angle of the large steering wheel 301 typically represents the actual steering angle ⁇
  • the steering angle of the small steering wheel 302 typically represents the automatic steering command value ⁇ AD,cmd .
  • 12A is a schematic diagram showing an example of the position of the vehicle 300 when the vehicle reference position is to the right of the lane center 313.
  • Reference numeral 311 denotes the white line of the left lane boundary
  • reference numeral 312 denotes the white line of the right lane boundary. In this case, the sign of the lateral deviation eL is negative.
  • the actual steering angle ⁇ and the automatic steering command value ⁇ AD,cmd have this relationship, for example, when the driver turns the steering wheel in the left steering direction (positive direction), the angle deviation ⁇ A becomes large and the time differential value d ⁇ A /dt becomes positive.
  • the actual steering angle ⁇ and the automatic steering command value ⁇ AD,cmd have this relationship, for example, when the driver turns the steering wheel in the left steering direction (positive direction), the angle deviation ⁇ A becomes large (approaching 0), and the time differential value d ⁇ A /dt becomes positive.
  • the road surface reaction force characteristic setting unit 43 determines that the vehicle is heading toward the departure avoidance side.
  • the road surface reaction force characteristic setting unit 43 determines that the vehicle is heading toward the departure side.
  • the reason why the road surface reaction force characteristic setting section 43 determines that the vehicle is heading toward the departure side when the time differential value d ⁇ A /dt/dt is greater than ⁇ and less than ⁇ is as described above.
  • the road surface reaction force characteristic setting unit 43 may determine that the vehicle is moving toward the departure-avoidance side.
  • FIG. 13 is a flowchart showing the steps of the spring stiffness coefficient setting process performed by the road surface reaction force characteristic setting unit 43 in the driving assistance mode.
  • the spring stiffness coefficient setting process shown in FIG. 13 is started every time the driving assistance mode is started, and is repeatedly executed at a predetermined calculation cycle until the driving assistance mode is cancelled.
  • the road surface reaction force characteristic setting unit 43 first obtains the lateral deviation eL and the automatic steering command value ⁇ AD ,cmd given by the host ECU 201, and the actual steering angle ⁇ calculated by the reduction ratio division unit 42 (step S11).
  • the road surface reaction force characteristic setting unit 43 determines whether or not the lateral deviation eL is smaller than 0 (step S12). In other words, the road surface reaction force characteristic setting unit 43 determines whether or not the sign of the lateral deviation eL is negative.
  • step S13 If the time differential value d ⁇ A /dt is equal to or larger than ⁇ (step S13: YES), the road surface reaction force characteristic setting unit 43 determines that the vehicle is moving toward the departure avoidance side, and sets the second virtual load spring stiffness coefficient kg as the virtual load spring stiffness coefficient k (step S14).Then, the processing for the current calculation cycle is terminated.
  • step S13 If it is determined in step S13 that the time differential value d ⁇ A /dt is less than ⁇ (step S13: NO), the road surface reaction force characteristic setting unit 43 determines that the vehicle is heading toward the departure side and sets the first virtual load spring stiffness coefficient kr(e L ) as the virtual load spring stiffness coefficient k (step S15).
  • the road surface reaction force characteristic setting unit 43 sets the value of the first virtual load spring stiffness coefficient kr( eL ) corresponding to the lateral deviation eL as the virtual load spring stiffness coefficient k, based on the first spring stiffness coefficient map in which the value of the first virtual load spring stiffness coefficient kr( eL ) for the lateral deviation eL in Fig. 10 is stored and the lateral deviation eL acquired in step S11. Then, the processing for the current calculation cycle is terminated.
  • step S12 If it is determined in step S12 that the lateral deviation eL is equal to or greater than 0 (step S12: NO), the road surface reaction force characteristic setting unit 43 determines whether the time differential value d ⁇ A /dt is equal to or less than ⁇ (step S16).
  • step S16 If the time differential value d ⁇ A /dt is equal to or smaller than ⁇ (step S16: YES), the road surface reaction force characteristic setting unit 43 determines that the vehicle is moving toward the departure avoidance side, and sets the second virtual load spring stiffness coefficient kg as the virtual load spring stiffness coefficient k (step S17).Then, the processing for the current calculation cycle ends.
  • step S16 If it is determined in step S16 that the time differential value d ⁇ A /dt is greater than ⁇ (step S16: NO), the road surface reaction force characteristic setting unit 43 determines that the vehicle is heading toward the departure side, and sets the first virtual load spring stiffness coefficient kr(e L ) as the virtual load spring stiffness coefficient k (step S18), and ends the processing for the current calculation cycle.
  • steps S14 and S17 if the first virtual load spring stiffness coefficient kr(e L ) was set as the virtual load spring stiffness coefficient k in the previous calculation cycle, it is preferable to gradually decrease the virtual load spring stiffness coefficient k from the previous value of the virtual load spring stiffness coefficient k to the value of the second virtual load spring stiffness coefficient kg.
  • steps S15 and S18 if the second virtual load spring stiffness coefficient kg was set as the virtual load spring stiffness coefficient k in the previous calculation cycle, it is preferable to gradually increase the virtual load spring stiffness coefficient k from the previous value of the virtual load spring stiffness coefficient k to the value of the first virtual load spring stiffness coefficient kr(e L ).
  • the first weight W1 is set to 1 and the second weight W2 is set to 0, so that the manual steering command value ⁇ MD,cmd is not reflected in the motor torque command value T m,cmd .
  • the steering reaction force based on the manual steering command value ⁇ MD,cmd is not reflected.
  • the road surface reaction force characteristic setting unit 43 is made to set the virtual load spring stiffness coefficient k and the virtual load viscous damping coefficient c.
  • the road surface reaction force characteristic setting unit 43 sets the virtual load spring stiffness coefficient k to a preset value kM , and sets the virtual load viscous damping coefficient c to a preset value cM .
  • kM may be set to k1 in Fig. 10, for example.
  • cM may be set to c1 in Fig. 11, for example.
  • the operation of the manual steering command value generating unit 45 may be stopped in normal mode.
  • the road reaction force characteristic setting unit 43 does not need to set the virtual load spring stiffness coefficient k and the virtual load viscous damping coefficient c in normal mode.
  • the first virtual load spring stiffness coefficient kr(e L ) is set as the virtual load spring stiffness coefficient k.
  • the second virtual load spring stiffness coefficient kg is set as the virtual load spring stiffness coefficient k.
  • a steering reaction force can be applied to the driver in a new way in the driving assistance mode.
  • the steering reaction force increases as the distance from the center of the lane of the vehicle reference position increases, so the vehicle can effectively avoid departure from the lane.
  • the steering reaction force is smaller than when the vehicle is heading toward the departure side, so vehicle behavior is stabilized and the sense of discomfort felt by the driver is reduced.
  • the second virtual load spring stiffness coefficient kg is preferably smaller than the first virtual load spring stiffness coefficient kr(e L ).
  • the first weight W1 is set to 1 and the second weight W2 is set to 0, so that the manual steering command value ⁇ MD,cmd is not reflected in the motor torque command value T m,cmd .
  • the steering reaction force based on the manual steering command value ⁇ MD,cmd is not reflected. Even in this way, the vehicle does not deviate from the lane because the vehicle reference position is relatively close to the center of the lane.
  • the control gain is changed based on the yaw angle of the vehicle relative to the driving lane. Since there is a delay in detecting the yaw angle relative to the driver's operation, there is a problem in that the timing for changing the control gain in response to the driver's operation is delayed.
  • a determination is made as to whether the vehicle is heading toward the departure side or toward the departure avoidance side based on a time differential value d ⁇ A /dt of the angle deviation ⁇ A ( ⁇ - ⁇ AD,cmd ) between the actual steering angle ⁇ and the automatic steering command value ⁇ AD,cmd, and the virtual load spring stiffness coefficient k is switched based on the determination result. Since this time differential value d ⁇ A /dt is unlikely to cause a delay in response to the driver's operation, the virtual load spring stiffness coefficient k can be switched quickly in response to a switch in the steering direction by the driver. This allows the driver to obtain an intuitive steering feel.
  • both the virtual load spring stiffness coefficient k and the virtual load viscous damping coefficient c are switched depending on whether it is determined that the vehicle is heading toward the departure side or the departure avoidance side.
  • a first virtual load spring stiffness coefficient kr( eL ) and a second virtual load spring stiffness coefficient kg are prepared as the virtual load spring stiffness coefficient k
  • FIG. 14 is a graph showing an example of setting the first virtual load viscous damping coefficient cr(e L ) and the second virtual load viscous damping coefficient cg with respect to the lateral deviation e L .
  • the first virtual load viscous damping coefficient cr( eL ) is set to a constant value c1 when the absolute value
  • c1 is a predetermined value greater than 0.
  • the first virtual load viscous damping coefficient cr( eL ) is set according to a characteristic that increases as the absolute value
  • the first virtual load viscous damping coefficient cr( eL ) changes linearly from c1 to c2, but it may change nonlinearly.
  • the second virtual load viscous damping coefficient cg is set to a constant value c3 regardless of the lateral deviation eL .
  • c3 is set to a value greater than 0 and less than c1.
  • the second virtual load viscous damping coefficient cg is smaller than the first virtual load viscous damping coefficient cr( eL ).
  • the second virtual load viscous damping coefficient cg may be set to a value (c4) greater than c1 in order to make the return of the steering reaction force gentler.
  • the value of the first virtual load viscous damping coefficient cr( eL ) with respect to the lateral deviation eL shown in Fig. 14 is stored in the memory as a first viscous damping coefficient map. Also, the value c3 or c4 of the second virtual load viscous damping coefficient cg shown in Fig. 14 is stored in the memory.
  • FIG. 15 is a flowchart showing the procedure for the road surface reaction force characteristic setting process performed by the road surface reaction force characteristic setting unit 43 according to the first modified example when in driving assistance mode.
  • the road surface reaction force characteristic setting process shown in FIG. 15 is started each time the driving assistance mode is started, and is repeatedly executed at a predetermined calculation cycle until the driving assistance mode is cancelled.
  • steps S14A, S15A, S17A, and S18A are different from the processes of steps S14, S15, S17, and S18 in FIG. 13, respectively.
  • the processes of the other steps S11, S12, S13, and S16 are the same as the processes of steps S11, S12, S13, and S16 in FIG. 13, respectively.
  • the road reaction force characteristic setting unit 43 sets the second virtual load spring stiffness coefficient kg as the virtual load spring stiffness coefficient k, and sets the second virtual load viscous damping coefficient cg as the virtual load viscous damping coefficient c. Then, the processing for this calculation cycle ends.
  • the road surface reaction force characteristic setting unit 43 sets the first virtual load spring stiffness coefficient kr(e L ) as the virtual load spring stiffness coefficient k, and sets the first virtual load viscous damping coefficient cr(e L ) as the virtual load viscous damping coefficient c.
  • the road surface reaction force characteristic setting unit 43 sets the value of the first virtual load spring stiffness coefficient kr corresponding to the lateral deviation eL as the virtual load spring stiffness coefficient k , based on a first spring stiffness coefficient map in which values of the first virtual load spring stiffness coefficient kr for the lateral deviation eL in FIG. 10 are stored and on the basis of the lateral deviation eL acquired in step S11.
  • the road surface reaction force characteristic setting unit 43 sets the value of the first virtual load viscous damping coefficient cr( eL ) corresponding to the lateral deviation eL in Figure 14 as the virtual load viscous damping coefficient c based on the lateral deviation eL acquired in step S11 and the first viscous damping coefficient map that stores the value of the first virtual load viscous damping coefficient cr( eL ) for the lateral deviation eL in Figure 14.
  • the operation of the road reaction force characteristic setting unit 43 in normal mode is the same as in the first embodiment described above.
  • the road surface reaction force characteristic setting unit 43 sets the value of the virtual load spring stiffness coefficient k based on, for example, a viscous damping coefficient map in which the value of the first virtual load spring stiffness coefficient kr( eL ) with respect to the lateral deviation eL in Fig. 10 is stored and the lateral deviation eL from the host ECU 201.
  • the road surface reaction force characteristic setting unit 43 may set a predetermined virtual load spring stiffness coefficient value (fixed value) that is set in advance as the virtual load spring stiffness coefficient k.
  • the virtual load viscous damping coefficient c for example, two types of damping coefficients are prepared: a first virtual load viscous damping coefficient cr( eL ) and a second virtual load viscous damping coefficient cg shown in Fig. 14.
  • the value of the first virtual load viscous damping coefficient cr( eL ) for the lateral deviation eL shown in Fig. 14 is stored in memory as a first viscous damping coefficient map.
  • the value c3 of the second virtual load viscous damping coefficient cg shown in Fig. 14 is stored in memory.
  • the road reaction force characteristic setting unit 43 executes a viscous damping coefficient setting process to set the virtual load viscous damping coefficient c.
  • FIG. 16 is a flowchart showing the steps of the viscous damping coefficient setting process performed by the road surface reaction force characteristic setting unit 43 in the driving assistance mode.
  • the viscous damping coefficient setting process shown in FIG. 16 is started each time the driving assistance mode is started, and is repeatedly executed at a predetermined calculation cycle until the driving assistance mode is cancelled.
  • steps S14B, S15B, S17B, and S18B differ from those of steps S14, S15, S17, and S18 in FIG. 13, respectively.
  • the processes of the other steps S11, S12, S13, and S16 are the same as those of steps S11, S12, S13, and S16 in FIG. 13, respectively.
  • the road reaction force characteristic setting unit 43 sets the second virtual load viscous damping coefficient cg as the virtual load viscous damping coefficient c. Then, the processing for this calculation cycle ends.
  • the road surface reaction force characteristic setting unit 43 sets the first virtual load viscous damping coefficient cr(e L ) as the virtual load viscous damping coefficient c.
  • the road surface reaction force characteristic setting unit 43 sets the value of the first virtual load viscous damping coefficient cr( eL ) corresponding to the lateral deviation eL in Figure 14 as the first virtual load viscous damping coefficient c based on the spring stiffness coefficient map that stores the value of the first virtual load viscous damping coefficient cr( eL ) for the lateral deviation eL in Figure 14 and the lateral deviation eL acquired in step S11.
  • the operation of the road reaction force characteristic setting unit 43 in normal mode is the same as in the first embodiment described above.
  • the weight setting unit 52 sets the first weight W1 and the second weight W2 based on the mode signal S mode and the lateral deviation e L.
  • the weight setting unit 52 according to the modified example sets the first weight W1 and the second weight W2 based only on the mode signal S mode .
  • the weight setting unit 52 sets the first weight W1 to 1 and the second weight W2 to 0.
  • the weight setting unit 52 sets the first weight W1 to 0 and the second weight W2 to 1.
  • the rest is the same as in the first embodiment described above.
  • the operation of the road surface reaction force characteristic setting unit 43 is the same as the operation shown in FIG. 13 of the first embodiment described above.
  • the first virtual load spring stiffness coefficient kr(e L ) is set as the virtual load spring stiffness coefficient k.
  • the second virtual load spring stiffness coefficient kg is set as the virtual load spring stiffness coefficient k.
  • the first weight W1 is set to 0 and the second weight W2 is set to 1. Therefore, even when the vehicle reference position is within ⁇ from the center of the lane in the driving assistance mode, the steering reaction force based on the manual steering command value ⁇ MD,cmd is reflected.
  • the weight setting unit 52 according to the modified example can be used as the weight setting unit 52.
  • the weight setting unit 52 sets the first weight W1 to 1 and the second weight W2 to 0.
  • the weight setting unit 52 sets the first weight W1 to 0 and the second weight W2 to 1.
  • the road surface reaction force characteristic setting unit 43 acquires the lateral deviation eL and the automatic steering command value ⁇ AD, cmd given by the host ECU 201 and the actual steering angle ⁇ calculated by the reduction ratio division unit 42 at each predetermined calculation cycle during the driving assistance mode. Next, the road surface reaction force characteristic setting unit 43 determines whether the lateral deviation eL is within the range of - ⁇ to + ⁇ . Then, the road surface reaction force characteristic setting unit 43 performs processing according to the determination result. In other words, in the second embodiment, different operations are performed when the lateral deviation eL is within the range of - ⁇ to + ⁇ and when the lateral deviation eL is outside the range of - ⁇ to + ⁇ .
  • the road surface reaction force characteristic setting unit 43 performs the process of step S12 and subsequent steps in the first embodiment shown in Fig. 13.
  • the virtual load viscous damping coefficient c used at this time the virtual load viscous damping coefficient c(eL) shown in Fig. 11 may be used, or a predetermined value (fixed value) may be used.
  • the road surface reaction force characteristic setting unit 43 sets the virtual load spring stiffness coefficient k to a predetermined value (e.g., k1 in FIG. 10) and sets the virtual load viscous damping coefficient c to a predetermined value (e.g., c1 in FIG. 11) without determining whether the vehicle is in a state heading toward the departure avoidance side or the departure side.
  • the road surface reaction force characteristic setting unit 43 may perform the following operation depending on the determination result of whether the lateral deviation eL is within the range of - ⁇ to + ⁇ during the driving assistance mode. That is, when it is determined that the lateral deviation eL is outside the range of - ⁇ to + ⁇ , the road surface reaction force characteristic setting unit 43 performs the process from step S12 in Fig. 15 described above. On the other hand, when it is determined that the lateral deviation eL is within the range of - ⁇ to + ⁇ , the road surface reaction force characteristic setting unit 43 sets the virtual load spring stiffness coefficient k and the virtual load viscous damping coefficient c to predetermined values that have been set in advance.
  • the road surface reaction force characteristic setting unit 43 may perform the following operation depending on the determination result of whether or not the lateral deviation eL is within the range of - ⁇ to + ⁇ . That is, when it is determined that the lateral deviation eL is outside the range of - ⁇ to + ⁇ , the road surface reaction force characteristic setting unit 43 performs the process from step S12 in Fig. 16 described above. On the other hand, when it is determined that the lateral deviation eL is within the range of - ⁇ to + ⁇ , the road surface reaction force characteristic setting unit 43 sets the virtual load spring stiffness coefficient k and the virtual load viscous damping coefficient c to predetermined values that have been set in advance.
  • the weight setting unit 52 sets the first weight W1 to 1 and the second weight W2 to 0.
  • the weight setting unit 52 sets the first weight W1 to 0 and the second weight W2 to 1.
  • the road surface reaction force characteristic setting unit 43 performs different operations depending on whether the lateral deviation eL is within the range of - ⁇ to + ⁇ or outside the range of - ⁇ to + ⁇ .
  • the road reaction force characteristic setting unit 43 performs the road reaction force characteristic setting process shown in FIG. 17 during the driving assistance mode.
  • FIG. 17 the same steps as in FIG. 13 are indicated with the same step numbers as in FIG. 13.
  • the road reaction force characteristic setting process shown in FIG. 17 is started every time the driving assistance mode is started, and is repeatedly executed at a predetermined calculation cycle until the driving assistance mode is cancelled.
  • the road surface reaction force characteristic setting unit 43 first obtains the lateral deviation eL and the automatic steering command value ⁇ AD ,cmd given by the host ECU 201, and the actual steering angle ⁇ calculated by the reduction ratio division unit 42 (step S11).
  • the road surface reaction force characteristic setting unit 43 determines whether the lateral deviation eL is within the range of - ⁇ eL ⁇ + ⁇ (step S21). In other words, the road surface reaction force characteristic setting unit 43 determines whether the lateral deviation eL is within the range of - ⁇ to + ⁇ .
  • step S21 NO
  • the road surface reaction force characteristic setting unit 43 proceeds to step S12. Specifically, the road surface reaction force characteristic setting unit 43 determines whether the lateral deviation eL is smaller than 0.
  • steps S12 to S18 are the same as those in steps S12 to S18 in FIG. 13, and therefore detailed description thereof will be omitted.
  • step S22 YES
  • the road surface reaction force characteristic setting unit 43 proceeds to step S13.
  • step S22 NO
  • the road surface reaction force characteristic setting unit 43 proceeds to step S16.
  • the state where the actual steering angle ⁇ and the automatic steering command value ⁇ AD,cmd are in the relationship shown in FIG. 12C (the vehicle is on the right side of the lane center, and ⁇ - ⁇ AD,cmd ⁇ 0) and the lateral deviation e L is in the range of - ⁇ e L ⁇ + ⁇ is defined as the first state.
  • the first state for example, when the driver turns the steering wheel in the left steering direction (positive direction), the angle deviation ⁇ A becomes large and the time differential value d ⁇ A /dt becomes positive. In this case, the answer is YES in step S21 of FIG.
  • step S22 the answer is YES in step S22, and when the time differential value d ⁇ A /dt exceeds the threshold value ⁇ , the answer is YES in step S13.
  • the second virtual load spring stiffness coefficient kg is set as the virtual load spring stiffness coefficient k. That is, the result is the same as the process (process of FIG. 13) when it is determined that the lateral deviation eL is outside the range of - ⁇ eL ⁇ + ⁇ .
  • the angle deviation ⁇ A becomes smaller and the time differential value d ⁇ A /dt becomes negative.
  • the answer is YES in step S21 of Fig. 17, the answer is YES in step S22, and the answer is NO in step S13.
  • the first virtual load spring stiffness coefficient kr( eL ) is set as the virtual load spring stiffness coefficient k.
  • the result is the same as the process (process of Fig. 13) when it is determined that the lateral deviation eL is outside the range of - ⁇ eL ⁇ + ⁇ .
  • the second state refers to a state in which the actual steering angle ⁇ and the automatic steering command value ⁇ AD,cmd are in the relationship shown in FIG. 12B (the vehicle is on the right side of the lane center, and ⁇ - ⁇ AD,cmd ⁇ 0) and the lateral deviation e L is in the range of - ⁇ e L ⁇ + ⁇ .
  • the second state for example, when the driver turns the steering wheel in the left steering direction (positive direction), the angle deviation ⁇ A becomes large and the time differential value d ⁇ A /dt becomes positive.
  • the answer is YES in step S21 of FIG. 17, the answer is NO in step S22, and the answer is NO in step S16.
  • the first virtual load spring stiffness coefficient kr(e L ) is set as the virtual load spring stiffness coefficient k.
  • the result is different from the process (process of FIG. 13) when it is determined that the lateral deviation e L is outside the range of - ⁇ e L ⁇ + ⁇ .
  • the lateral deviation e L is within the range of - ⁇ to + ⁇
  • ⁇ AD,cmd it is determined that the vehicle is heading toward the departure side.
  • the driver turns the wheel back too much and there is a high possibility that the vehicle will go beyond the center of the lane, it is determined that the vehicle is heading toward the departure side.
  • the result is YES in step S21 of FIG. 17 and NO in step S22, and if the time differential value d ⁇ A /dt falls below the threshold value - ⁇ , the result is YES in step S16.
  • the second virtual load spring stiffness coefficient kg is set as the virtual load spring stiffness coefficient k.
  • the result is different from the process (process of FIG. 13) when it is determined that the lateral deviation eL is outside the range of - ⁇ eL ⁇ + ⁇ .
  • the road reaction force characteristic setting unit 43 may perform the processes of steps S14A, S15A, S17A, and S18A in FIG. 15 instead of the processes of steps S14, S15, S17, and S18 in FIG. 17.
  • the road reaction force characteristic setting unit 43 may perform the processes of steps S14B, S15B, S17B, and S18B in FIG. 16 instead of the processes of steps S14, S15, S17, and S18 in FIG. 17, respectively.
  • the weight setting unit 52 sets the first weight W1 to 1 and the second weight W2 to 0.
  • the weight setting unit 52 sets the first weight W1 to 0 and the second weight W2 to 1.
  • the road reaction force characteristic setting unit 43 performs the road reaction force characteristic setting process shown in FIG. 18 during the driving assistance mode.
  • FIG. 18 the same steps as in FIG. 13 are indicated with the same step numbers as in FIG. 13.
  • the road reaction force characteristic setting process shown in FIG. 18 is started every time the driving assistance mode is started, and is repeatedly executed at a predetermined calculation cycle until the driving assistance mode is cancelled.
  • the process other than step S12 in Fig. 13 is the same as the process described in the first embodiment.
  • the virtual load viscous damping coefficient c used in the driving assistance mode may be used, or a predetermined value (fixed value) that is set in advance may be used.
  • the road reaction force characteristic setting unit 43 may perform the processes of steps S14A, S15A, S17A, and S18A in FIG. 15 instead of the processes of steps S14, S15, S17, and S18 in FIG. 18, respectively.
  • the road reaction force characteristic setting unit 43 may perform the processes of steps S14B, S15B, S17B, and S18B in FIG. 16 instead of the processes of steps S14, S15, S17, and S18 in FIG. 18, respectively.
  • Fig. 19 is a block diagram showing a first modified example of the motor control ECU, in which parts corresponding to those in Fig. 2 are denoted by the same reference numerals as in Fig. 2.
  • a motor control ECU 202A in FIG. 19 differs from the motor control ECU 202 in FIG. 2 in the following (1) and (2).
  • a motion equation setting unit 43A is provided in place of the road reaction force characteristic setting unit 43 in FIG. (2)
  • the configuration of the manual steering command value generating unit 45A is different from the configuration of the manual steering command value generating unit 45 in FIG.
  • the equation of motion setting unit 43A sets a target virtual spring reaction force T tb,d (e L ) based on the lateral deviation e L provided by the host ECU 201.
  • the equation of motion setting unit 43A also sets a virtual load spring stiffness coefficient kmd and a virtual load viscous damping coefficient cmd used by the manual steering command value generating unit 45A.
  • the equation of motion setting unit 43A also sets third to sixth weights W3 to W6 used by the manual steering command value generating unit 45A. In the driving assistance mode, the equation of motion setting unit 43A performs a coefficient/weight setting process, which will be described later.
  • the weight setting unit 52 sets the first weight W1 to 1 and the second weight W2 to 0.
  • the weight setting unit 52 sets the first weight W1 to 0 and the second weight W2 to 1.
  • the assist torque T asst set by the assist torque command value setting unit 44 is provided as the motor torque command value T m,cmd to the torque control unit 51.
  • the driving mode is the driving assistance mode
  • the integrated motor torque command value T mint,cmd calculated by the angle control unit 47 is provided as the motor torque command value T m,cmd to the torque control unit 51.
  • FIG. 20 is a graph showing an example of setting the target virtual spring reaction force T tb,d (e L ) relative to the lateral deviation e L .
  • the target virtual spring reaction force Ttb,d ( eL ) is set to increase as the lateral deviation eL increases from -Ttb ,d,s (where Ttb ,d,s >0) to Ttb ,d, s.
  • the target virtual spring reaction force Ttb,d ( eL ) changes linearly, but may change nonlinearly.
  • eL,s is set to a predetermined value that is greater than zero and less than 1/2 the width of the travel lane.
  • the target virtual spring reaction force Ttb ,d ( eL ) is set to increase as the lateral deviation eL increases from Ttb,d,s to Ttb ,d,m (where Ttb ,d,m > Ttb,d,s ).
  • the slope of the straight line representing the target virtual spring reaction force Ttb,d ( eL ) is set to be larger compared to the range of the lateral deviation eL from -eL, s to eL,s .
  • the target virtual spring reaction force Ttb,d ( eL ) changes linearly, but it may change nonlinearly.
  • the target virtual spring reaction force T tb,d (e L ) is set to T tb,d,m .
  • the target virtual spring reaction force Ttb,d ( eL ) is set to be smaller as the lateral deviation eL becomes smaller from -Ttb ,d,s to -Ttb ,d,m (where -Ttb,d,m ⁇ -Ttb ,d,s ).
  • the slope of the straight line representing the target virtual spring reaction force Ttb,d ( eL ) is set to be larger compared to the range of the lateral deviation eL from -eL, s to eL,s .
  • the target virtual spring reaction force Ttb,d ( eL ) changes linearly, but may change nonlinearly.
  • the target virtual spring reaction force T tb,d (e L ) is set to ⁇ T tb,d,m .
  • the target virtual spring reaction force T tb,d (e L ) set by the motion equation setting unit 43A is provided to the manual steering command value generating unit 45A.
  • a first virtual load spring stiffness coefficient kr and a second virtual load spring stiffness coefficient kg are prepared as the virtual load spring stiffness coefficient kmd used in the driving assistance mode.
  • FIG. 21 is a graph showing an example of setting the first virtual load spring stiffness coefficient kr and the second virtual load spring stiffness coefficient kg with respect to the lateral deviation eL .
  • the first virtual load spring stiffness coefficient kr is set only when the absolute value
  • the first virtual load spring stiffness coefficient kr is set to a constant value k1 regardless of the lateral deviation eL .
  • k1 is a predetermined value greater than 0.
  • the second virtual load spring stiffness coefficient kg is set to a constant value k3 regardless of the lateral deviation eL . k3 is set to a value greater than 0 and less than k1.
  • the value k1 of the first virtual load spring stiffness coefficient kr and the value k3 of the second virtual load spring stiffness coefficient kg shown in FIG. 21 are stored in memory.
  • a first virtual load viscous damping coefficient cr(e L ) and a second virtual load viscous damping coefficient cg are prepared as the virtual load viscous damping coefficient cmd used in the driving assistance mode.
  • FIG. 22 is a graph showing an example of setting the first virtual load viscous damping coefficient cr(e L ) and the second virtual load viscous damping coefficient cg with respect to the lateral deviation e L .
  • the first virtual load viscous damping coefficient c( eL ) is set to a constant value c1 when the absolute value
  • c1 is a predetermined value greater than 0.
  • the first virtual load viscous damping coefficient c( eL ) is set according to a characteristic that increases as the absolute value
  • the first virtual load viscous damping coefficient c( eL ) changes linearly from c1 to c2, but it may change nonlinearly.
  • the second virtual load viscous damping coefficient cg is set to a constant value c3 regardless of the lateral deviation eL .
  • c3 is set to a value larger than 0 and smaller than c1.
  • the value of the first virtual load viscous damping coefficient c(e L ) with respect to the lateral deviation e L shown in Fig. 22 is stored in a memory as a viscous damping coefficient map. Also, the value c3 of the second virtual load viscous damping coefficient cg shown in Fig. 22 is stored in a memory.
  • the manual steering command value generating unit 45A will now be described.
  • the manual steering command value generating unit of the comparative example generates the manual steering command value ⁇ MD,cmd by using the reference EPS model of Fig. 23.
  • the reference EPS model of Fig. 23 is an example of the "reference model for the steering device" of the present disclosure.
  • This reference EPS model is a single inertia model including a lower column.
  • the lower column corresponds to the output shaft 9 and the worm wheel 21.
  • this model is only an example, and an inertia model including a configuration other than the above (for example, a rack bar, etc.) may be used.
  • Jmd is the inertia of the lower column (hereinafter referred to as "column inertia")
  • ⁇ col is the rotation angle of the lower column
  • Ttb is the torsion bar torque.
  • the lower column is supplied with the torsion bar torque Ttb , the torque N ⁇ Tm acting on the output shaft 9 from the electric motor 18, and the road reaction torque (virtual reaction force) Trl .
  • the road surface reaction torque T rl is expressed by the following equation (10) using a virtual load spring stiffness coefficient kmd , which is the stiffness coefficient of the virtual spring, and a virtual load viscous damping coefficient cmd , which is the viscous damping coefficient of the virtual damper.
  • the virtual load spring stiffness coefficient k md and the virtual load viscous damping coefficient c md are obtained in advance by experiment, analysis, etc.
  • k md ⁇ col may be referred to as a virtual spring reaction force
  • c md (d ⁇ col /dt) may be referred to as a virtual damper reaction force.
  • J md ⁇ d 2 ⁇ col /dt 2 is the moment of inertia acting on the lower column.
  • the manual steering command value generating unit of the comparative example substitutes the torsion bar torque Ttb detected by the torque sensor 12 for Ttb , substitutes the assist torque command value T asst set by the assist torque command value setting unit 44 for Tm , and calculates the rotation angle ⁇ col of the lower column by solving the differential equation of equation (11). Then, the manual steering command value generating unit of the comparative example generates the obtained rotation angle ⁇ col of the lower column as the manual steering command value ⁇ MD,cmd .
  • the method of setting the manual steering command value ⁇ MD,cmd in this manner is referred to as a comparative method.
  • Equation (11) is equivalent to an equation of motion in which T m is replaced by T asst and ⁇ col is replaced by ⁇ MD,cmd .
  • the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD,cmd by utilizing the equation of motion (equation (11)) of the reference EPS model described above. Specifically, in this modification, the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD,cmd by utilizing an equation of motion obtained by modifying the equation of motion (equation (11)) of the reference EPS model described above.
  • FIG. 24 is a block diagram showing the configuration of the manual steering command value generating unit 45A.
  • Jmd is the column inertia.
  • s is a differential operator.
  • ⁇ MD,cmd is a manual steering command value, which corresponds to the rotation angle ⁇ col of the lower column in the comparison method.
  • kmd is a virtual load spring stiffness coefficient, which is set by the motion equation setting unit 43A.
  • cmd is a virtual load viscous damping coefficient, which is set by the motion equation setting unit 43A.
  • Tasst is an assist torque command value set by the assist torque command value setting unit 44.
  • the manual steering command value generating unit 45A includes a reduction ratio multiplication unit 431, an addition/subtraction unit 401, an inertia division unit 402, a first integration unit 403, a second integration unit 404, a virtual damper reaction force calculation unit 405, a first virtual spring reaction force calculation unit 406, a third weight multiplication unit 407, a second virtual spring reaction force calculation unit 408, a fifth weight multiplication unit 409, a first addition unit 410, a sixth weight multiplication unit 411, a second addition unit 412, a fourth weight multiplication unit 413, and a third addition unit 414.
  • the reduction ratio multiplication unit 431 multiplies the assist torque command value T asst by the reduction ratio N of the reducer 19 to convert the assist torque command value T asst for the rotating shaft of the electric motor 18 into an assist torque command value N ⁇ T asst for the output shaft 9.
  • the assist torque command value N ⁇ T asst for the output shaft 9 calculated by the reduction ratio multiplication unit 431 is provided to the addition and subtraction unit 401 and also to the first addition unit 410.
  • the addition/subtraction unit 401 is supplied with the torsion bar torque Ttb , the assist torque command value N ⁇ T asst for the output shaft 9 calculated by the reduction ratio multiplication unit 431, the virtual damper reaction force cmd ⁇ d ⁇ MD,cmd /dt provided by the virtual damper reaction force calculation unit 405, and the addition result X of the third addition unit 414.
  • the inertia division unit 402 calculates the second-order differential value d 2 ⁇ MD,cmd /dt 2 of the manual steering command value ⁇ MD,cmd by dividing the moment of inertia J md ⁇ d 2 ⁇ MD,cmd /dt 2 calculated by the addition and subtraction unit 401 by the column inertia J md .
  • the first integration unit 403 calculates a first-order differential value d ⁇ MD,cmd /dt of the manual steering command value ⁇ MD,cmd by integrating a second-order differential value d 2 ⁇ MD, cmd /dt 2 of the manual steering command value ⁇ MD ,cmd .
  • the second integral unit 404 calculates the manual steering command value ⁇ MD,cmd by integrating the first-order differential value d ⁇ MD,cmd /dt of the manual steering command value ⁇ MD,cmd .
  • This manual steering command value ⁇ MD,cmd is output from the manual steering command value generating unit 45A.
  • the virtual damper reaction force calculation unit 405 calculates a virtual damper reaction force c md ⁇ d ⁇ MD,cmd /dt by multiplying the first-order differential value d ⁇ MD,cmd /dt of the manual steering command value ⁇ MD,cmd calculated by the first integration unit 403 by a virtual load viscous damping coefficient c md .
  • This virtual damper reaction force c md ⁇ d ⁇ MD ,cmd /dt is fed back to the addition and subtraction unit 401.
  • the first virtual spring reaction force calculation section 406 multiplies the manual steering command value ⁇ MD,cmd calculated by the second integration section 404 by the virtual load spring stiffness coefficient kmd to calculate a first virtual spring reaction force kmd ⁇ MD,cmd .
  • the third weight multiplier 407 multiplies the first virtual spring reaction force kmd ⁇ MD ,cmd by a third weight W3.
  • a second virtual spring reaction force calculation section 408 multiplies the manual steering command value ⁇ MD,cmd calculated by the second integration section 404 by the virtual load spring stiffness coefficient kmd to calculate a second virtual spring reaction force kmd ⁇ MD,cmd .
  • a fifth weight multiplier 409 multiplies the second virtual spring reaction force kmd ⁇ MD ,cmd by a fifth weight W5.
  • the first adder 410 adds the target virtual spring reaction force T tb,d (e L ) to the assist torque command value N ⁇ T asst for the output shaft 9 calculated by the reduction ratio multiplier 431.
  • the sixth weight multiplier 411 multiplies the calculation result (T tb,d (e L ) + N ⁇ T asst ) of the first adder 410 by a sixth weight W6.
  • the second adder 412 adds the calculation result W5 ⁇ k md ⁇ MD,cmd of the fifth weight multiplier 409 and the calculation result W6 ⁇ (T tb,d (e L )+N ⁇ T asst ) of the sixth weight multiplier 411 .
  • the fourth weight multiplication unit 413 multiplies the calculation result of the second adder 412 ⁇ W5 ⁇ k md ⁇ MD,cmd + W6 ⁇ (T tb,d (e L )+N ⁇ T asst ) ⁇ by a fourth weight W4.
  • the third adder 414 adds the calculation result W3 ⁇ k md ⁇ MD,cmd of the third weight multiplier 407 and the calculation result W4 ⁇ W5 ⁇ k md ⁇ MD,cmd + W6 ⁇ (T tb,d (e L ) + N ⁇ T asst ) ⁇ of the fourth weight multiplier 413.
  • the addition result [ ⁇ W3 ⁇ k md ⁇ MD,cmd ⁇ + W4 ⁇ W5 ⁇ k md ⁇ MD,cmd + W6 ⁇ (T tb,d (e L ) + N ⁇ T asst ) ⁇ ] of the third adder 414 is fed back to the addition and subtraction unit 401 as X.
  • the third weight W3 is set to 1 and the fourth weight W4 is set to zero.
  • the third weight W3 is set to zero and the fourth weight W4 is set to 1.
  • the driving assistance mode becomes the lane centering assist mode (LCA mode)
  • the fifth weight W5 is set to 1
  • the sixth weight W6 is set to zero.
  • the driving assistance mode becomes the lane keeping assist mode (LKA mode)
  • the fifth weight W5 is set to zero
  • the sixth weight W6 is set to one.
  • the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD,cmd based on the equation of motion of the following equation (12).
  • J md ⁇ d 2 ⁇ MD,cmd /dt 2 is the moment of inertia
  • cg ⁇ d ⁇ MD,cmd /dt is the virtual damper reaction force
  • kg ⁇ MD,cmd is the virtual spring reaction force
  • the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD ,cmd by using cg ⁇ d ⁇ MD,cmd /dt as the virtual damper reaction force cmd ⁇ d ⁇ col /dt in the equation of motion of the above equation (11), and by using kg ⁇ MD,cmd as the virtual spring reaction force kmd ⁇ col in the equation of motion of the above equation (11) .
  • the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD,cmd based on the equation of motion of the following equation (13).
  • J md ⁇ d 2 ⁇ MD,cmd /dt 2 is the moment of inertia
  • cr(e L ) ⁇ d ⁇ MD,cmd is the virtual damper reaction force
  • kr ⁇ MD,cmd is the virtual spring reaction force
  • the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD , cmd by using cr(e L ) ⁇ d ⁇ MD,cmd /dt corresponding to the lateral deviation e L as the virtual damper reaction force cmd ⁇ d ⁇ col /dt in the equation of motion of the above equation (11) and by using kr ⁇ MD,cmd as the virtual spring reaction force kmd ⁇ col in the equation of motion of the above equation (11). Therefore, in the LCA mode, the virtual damper reaction force and the virtual spring reaction force can be made larger than when the vehicle is in a state heading toward the departure avoidance side.
  • the addition result X of the third adder 414 becomes Ttb,d ( eL )+N ⁇ Tasst ). Therefore, the calculation result of the addition and subtraction unit 401 becomes ( Ttb - cmd ⁇ d ⁇ MD ,cmd /dt- Ttb,d ( eL )). As will be described later, in this case, cmd is set to cr( eL ) (see FIG. 22), so the calculation result of the addition and subtraction unit 401 becomes ( Ttb -cr( eL ) ⁇ d ⁇ MD,cmd /dt- Ttb,d ( eL )).
  • the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD,cmd based on the equation of motion of the following equation (14).
  • J md ⁇ d 2 ⁇ MD,cmd /dt 2 is the moment of inertia
  • cr(e L ) ⁇ d ⁇ MD,cmd is the virtual damper reaction force
  • T tb,d (e L ) is the target virtual spring reaction force.
  • the virtual damper reaction force can be made larger than when the vehicle is moving toward the departure avoidance side. Also, in the LKA mode, a steering reaction force corresponding to the lateral deviation eL can be applied to the driver compared to the LCA mode. This makes it easier for the driver to recognize the distance from the center of the traveling lane or the distance to the lane.
  • the calculation result N ⁇ T asst of the reduction ratio multiplication unit 431 is provided to the first adder 410, but the calculation result N ⁇ T asst of the reduction ratio multiplication unit 431 does not have to be provided to the first adder 410.
  • the manual steering command value generating unit 45A calculates the manual steering command value MD, cmd based on the equation of motion in which N ⁇ T asst is added to the right side of the above equation (14).
  • 25A and 25B are flowcharts showing the steps of the coefficient/weight setting process performed by the equation of motion setting unit 43A in the driving assistance mode.
  • the coefficient/weight setting process shown in FIG. 25A and FIG. 25B is started each time the driving assistance mode is started, and is repeatedly executed at a predetermined calculation cycle until the driving assistance mode is cancelled.
  • the equation of motion setting unit 43A first obtains the lateral deviation eL and the automatic steering command value ⁇ AD ,cmd given by the host ECU 201, and the actual steering angle ⁇ calculated by the reduction ratio division unit 42 (step S31).
  • the equation of motion setting unit 43A determines whether or not the lateral deviation eL is smaller than 0 (step S32). In other words, the equation of motion setting unit 43A determines whether or not the sign of the lateral deviation eL is negative.
  • step S33 YES
  • the equation of motion setting unit 43A determines that the vehicle is moving toward the departure avoidance side (non-departure side), and proceeds to step S34.
  • step S34 the equation of motion setting unit 43A sets the third weight W3 to 1, the fourth weight W4 to 0, sets the second virtual load spring stiffness coefficient kg as the virtual load spring stiffness coefficient kmd , and sets the second virtual load viscous damping coefficient cg as the virtual load viscous damping coefficient cmd .
  • the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD ,cmd based on the above equation (12).
  • the equation of motion setting unit 43A ends the process for the current calculation cycle.
  • step S33 If it is determined in step S33 that the time differential value d ⁇ A /dt is less than ⁇ (step S33: NO), the equation of motion setting unit 43A determines that the vehicle is heading toward the departure side, and proceeds to step S35.
  • step S35 the equation of motion setting unit 43A sets the third weight W3 to 0 and the fourth weight W4 to 1. Furthermore, the equation of motion setting unit 43A sets the first virtual load viscous damping coefficient cr( eL ) as the virtual load viscous damping coefficient cmd . Specifically, the equation of motion setting unit 43A sets the value of the first virtual load viscous damping coefficient cr( eL ) corresponding to the lateral deviation eL acquired in step S31 as the virtual load viscous damping coefficient cmd , based on a viscous damping coefficient map that stores the value of the first virtual load viscous damping coefficient cr( eL ) for the lateral deviation eL in Fig. 22.
  • the equation of motion setting unit 43A determines whether or not the LCA mode condition that the lateral deviation e L is greater than ⁇ e L,s and smaller than e L,s is satisfied (step S36).
  • step S36 When the LCA mode condition is satisfied (step S36: YES), the equation of motion setting unit 43A sets the fifth weight W5 to 1, the sixth weight W6 to 0, and sets the first virtual load spring stiffness coefficient kr as the virtual load spring stiffness coefficient kmd (step S37). As a result, the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD ,cmd based on the above-mentioned equation (13). When the process of step S37 is performed, the equation of motion setting unit 43A ends the process in the current calculation cycle.
  • step S36 When it is determined in step S36 that the LCA mode condition is not satisfied (step S36: NO), the equation of motion setting unit 43A sets the fifth weight W5 to 0 and the sixth weight W6 to 1 (step S38). As a result, the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD,cmd based on the above-mentioned equation (14). When the process of step S38 is performed, the equation of motion setting unit 43A ends the process in the current calculation cycle.
  • step S32 If it is determined in step S32 that the lateral deviation e L is equal to or greater than 0 (step S32: NO), the motion equation setting unit 43A determines whether the time differential value d ⁇ A /dt is equal to or less than ⁇ (step S39).
  • step S39 YES
  • the equation of motion setting unit 43A determines that the vehicle is moving toward the departure-avoidance side, and proceeds to step S40.
  • step S40 the equation of motion setting unit 43A sets the third weight W3 to 1, the fourth weight W4 to 0, sets the second virtual load spring stiffness coefficient kg as the virtual load spring stiffness coefficient kmd , and sets the second virtual load viscous damping coefficient cg as the virtual load viscous damping coefficient cmd .
  • the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD ,cmd based on the above equation (12).
  • the equation of motion setting unit 43A ends the process for the current calculation cycle.
  • step S39 If it is determined in step S39 that the time differential value d ⁇ A /dt is greater than ⁇ (step S39: NO), the equation of motion setting unit 43A determines that the vehicle is heading toward the departure side, and proceeds to step S41.
  • step S41 the equation of motion setting unit 43A sets the third weight W3 to 0 and the fourth weight W4 to 1.
  • the equation of motion setting unit 43A further sets the first virtual load viscous damping coefficient cr(e L ) as the virtual load viscous damping coefficient cmd .
  • the equation of motion setting unit 43A determines whether or not the LCA mode condition that the lateral deviation e L is larger than ⁇ e L,s and smaller than e L,s is satisfied (step S42).
  • step S42 When the LCA mode condition is satisfied (step S42: YES), the equation of motion setting unit 43A sets the fifth weight W5 to 1, the sixth weight W6 to 0, and sets the first virtual load spring stiffness coefficient kr as the virtual load spring stiffness coefficient kmd (step S43). As a result, the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD ,cmd based on the above-mentioned equation (13). When the process of step S43 is performed, the equation of motion setting unit 43A ends the process in the current calculation cycle.
  • step S42 When it is determined in step S42 that the LCA mode condition is not satisfied (step S42: NO), the equation of motion setting unit 43A sets the fifth weight W5 to 0 and the sixth weight W6 to 1 (step S44). As a result, the manual steering command value generating unit 45A calculates the manual steering command value ⁇ MD,cmd based on the above-mentioned equation (14). When the process of step S44 is performed, the equation of motion setting unit 43A ends the process in the current calculation cycle.
  • the motion equation setting unit 43A may be configured to set the virtual load spring stiffness coefficient k md , the virtual load viscous damping coefficient c md and the target virtual spring reaction force T tb,d (e L ).
  • the equation of motion setting unit 43A may set the virtual load spring stiffness coefficient kmd to a preset value km , set the virtual load viscous damping coefficient cmd to a preset value cM , and set the target virtual spring reaction force Ttb ,d ( eL ) to a preset value Ttb ,dM .
  • kM may be set to k1 in Fig. 21, for example.
  • cM may be set to c1 in Fig. 22, for example.
  • Ttb,dM may be set to Ttb,d,s in Fig. 20, for example.
  • the operation of the manual steering command value generating unit 45A may be stopped in the normal mode.
  • the motion equation setting unit 43A does not need to set the virtual load spring stiffness coefficient k md , the virtual load viscous damping coefficient c md and the target virtual spring reaction force T tb,d (e L ) in the normal mode.
  • step S33 determines whether the time derivative d ⁇ A /dt is less than ⁇ (step S33: NO). If it is determined in step S33 that the time derivative d ⁇ A /dt is less than ⁇ (step S33: NO), as shown in dashed step S51 in FIG. 25A, the third weight W3 and the fifth weight W5 may be set to 0, the fourth weight W4 and the sixth weight W6 to 1, and the first virtual load viscous damping coefficient cr(e L ) may be set as the virtual load viscous damping coefficient cmd .
  • step S39 if it is determined in step S39 that the time derivative d ⁇ A /dt is greater than ⁇ (step S39: NO), as shown in dashed step S52 in FIG. 25B, the third weight W3 and the fifth weight W5 may be set to 0, the fourth weight W4 and the sixth weight W6 to 1, and the first virtual load viscous damping coefficient cr(e L ) may be set as the virtual load viscous damping coefficient cmd .
  • the value of the virtual load viscous damping coefficient c md is switched between a case where it is determined that the vehicle is heading toward the departure avoidance side and a case where it is determined that the vehicle is heading toward the departure side, but it is not necessary to switch between these cases.
  • the value of the virtual load viscous damping coefficient c md may be a fixed value.
  • a manual steering command value generating unit 45B to which the automatic steering command value ⁇ AD.cmd is further input may be used, as shown by a dashed line in Fig. 19.
  • the motor control ECU 202B in which the manual steering command value generating unit 45B is used instead of the manual steering command value generating unit 45A will be referred to as a second modified example of the motor control ECU.
  • FIG. 26 is a block diagram showing the configuration of the manual steering command value generating unit 45B.
  • parts corresponding to those in FIG. 19 are denoted by the same reference numerals as in FIG. 19.
  • the manual steering command value generating unit 45B includes a reduction ratio multiplication unit 431, an addition/subtraction unit 401, an inertia division unit 402, a first integration unit 403, a second integration unit 404, a first virtual damper reaction force calculation unit 405, a first virtual spring reaction force calculation unit 406, a third weight multiplication unit 407, a second virtual spring reaction force calculation unit 408, a fifth weight multiplication unit 409, a first order differentiation unit 421, a second virtual damper reaction force calculation unit 422, a second order differentiation unit 423, an inertia multiplication unit 424, a first addition unit 410, a sixth weight multiplication unit 411, a second addition unit 412, a fourth weight multiplication unit 413, and a third addition unit 414.
  • the manual steering command value generating unit 45B in FIG. 26 is configured by adding a first-order differentiation unit 421, a second virtual damper reaction force calculation unit 422, a second-order differentiation unit 423, and an inertia multiplication unit 424 to the manual steering command value generating unit 45A in FIG. 24.
  • the first-order differentiation unit 421 differentiates the automatic steering command value ⁇ AD,cmd by the first order.
  • the second virtual damper reaction force calculation unit 422 calculates a second virtual damper reaction force c md ⁇ d ⁇ AD,cmd /dt by multiplying the first-order differentiation value d ⁇ AD, cmd /dt of the automatic steering command value ⁇ AD, cmd by the virtual load viscous damping coefficient c md .
  • the second virtual damper reaction force c md ⁇ d ⁇ AD,cmd /dt is a virtual damper reaction force for the automatic steering command value ⁇ AD,cmd .
  • the virtual damper reaction force c md ⁇ d ⁇ MD,cmd /dt calculated by the first virtual damper reaction force calculation unit 405 will be referred to as the first virtual damper reaction force.
  • the second-order differentiation unit 423 differentiates the automatic steering command value ⁇ AD ,cmd by the second order.
  • the inertia multiplication unit 424 multiplies the second-order differentiation value d 2 ⁇ AD,cmd /dt 2 of the automatic steering command value ⁇ AD,cmd by the column inertia J md to calculate the moment of inertia J md ⁇ d 2 ⁇ AD,cmd /dt 2 for the automatic steering command value ⁇ AD,cmd .
  • the first adder 410 adds the moment of inertia J md ⁇ d 2 ⁇ AD ,cmd /dt 2 for the automatic steering command value ⁇ AD,cmd , the target virtual spring reaction force T tb,d (e L ) and the assist torque command value N ⁇ T asst for the output shaft 9 to the virtual damper reaction force ( second virtual damper reaction force) cmd ⁇ d ⁇ AD,cmd /dt for the automatic steering command value ⁇ AD,cmd.
  • the sixth weight multiplier 411 multiplies the calculation result of the first adder 410 (c md ⁇ d ⁇ AD,cmd /dt + J md ⁇ d 2 ⁇ AD,cmd /dt 2 + T tb,d (e L ) + N ⁇ T asst ) by a sixth weight W6.
  • the second adder 412 adds the calculation result W5 ⁇ k md ⁇ MD,cmd of the fifth weight multiplication unit 409 and the calculation result W6 ⁇ (c md ⁇ d ⁇ AD,cmd /dt + J md ⁇ d 2 ⁇ AD,cmd /dt 2 + T tb,d (e L ) + N ⁇ T asst ) of the sixth weight multiplication unit 411.
  • the fourth weight multiplication unit 413 multiplies the calculation result of the second adder 412, ⁇ W5 ⁇ k md ⁇ MD,cmd + W6 ⁇ (c md ⁇ d ⁇ AD,cmd /dt + J md ⁇ d 2 ⁇ AD,cmd /dt 2 + T tb,d (e L ) + N ⁇ T asst ) ⁇ by the fourth weight W4.
  • the third adder 414 adds the calculation result W3 ⁇ k md ⁇ MD,cmd of the third weight multiplication unit 407 and the calculation result W4 ⁇ W5 ⁇ k md ⁇ MD,cmd + W6 ⁇ (c md ⁇ d ⁇ AD,cmd /dt + J md ⁇ d 2 ⁇ AD,cmd /dt 2 + T tb,d (e L ) + N ⁇ T asst ) ⁇ of the fourth weight multiplication unit 413.
  • the addition result of the third addition unit 414 [ ⁇ W3 ⁇ k md ⁇ MD,cmd ⁇ + W4 ⁇ W5 ⁇ k md ⁇ MD,cmd + W6 ⁇ (c md ⁇ d ⁇ AD,cmd /dt + J md ⁇ d 2 ⁇ AD,cmd /dt 2 + T tb,d (e L ) + N ⁇ T asst ) ⁇ ] is fed back to the addition and subtraction unit 401 as Y.
  • equation of motion setting unit 43A performs the same processing as the coefficient/weight setting processing described using Figures 25A and 25B when in driving assistance mode.
  • the third weight W3 is set to 1 and the fourth weight W4 is set to zero.
  • the third weight W3 is set to zero and the fourth weight W4 is set to 1.
  • the driving assistance mode becomes the LCA mode
  • the fifth weight W5 is set to 1
  • the sixth weight W6 is set to zero.
  • the driving assistance mode becomes the LKA mode
  • the fifth weight W5 is set to zero
  • the sixth weight W6 is set to one.
  • the manual steering command value generating unit 45B calculates the manual steering command value ⁇ MD,cmd based on the equation of motion of the above-mentioned expression (12).
  • the manual steering command value generating unit 45B calculates the manual steering command value ⁇ md based on the equation of motion of the above-mentioned expression (13).
  • the virtual damper reaction force and virtual spring reaction force can be made larger than when the vehicle is moving toward the departure avoidance side.
  • the addition result Y of the third adder 414 becomes (c md ⁇ d ⁇ AD,cmd /dt + J md ⁇ d 2 ⁇ AD,cmd /dt 2 + T tb,d (e L ) + N ⁇ T asst ).
  • the calculation result of the addition and subtraction unit 401 becomes (T tb - c md ⁇ d ⁇ MD,cmd /dt - c md ⁇ d ⁇ AD,cmd /dt - J md ⁇ d 2 ⁇ AD,cmd /dt 2 - T tb,d (e L )).
  • c md cr(e L ) (see Figure 22) is set, so the calculation result of the addition and subtraction unit 401 is ⁇ (T tb - (cr(e L ) ⁇ d ⁇ MD,cmd /dt + cr(e L ) ⁇ d ⁇ AD,cmd /dt) - J md ⁇ d 2 ⁇ AD,cmd /dt 2 - T tb,d (e L ) ⁇ .
  • the manual steering command value generating unit 45B calculates the manual steering command value ⁇ md based on the equation of motion of the following equation (15).
  • Equation (15) ( Jmd.d2 ⁇ MD ,cmd / dt2 + Jmd.d2 ⁇ AD , cmd / dt2 ) is the moment of inertia. (cr( eL ) .d ⁇ MD ,cmd /dt+cr( eL ).d ⁇ AD ,cmd /dt) is the virtual damper reaction force. Ttb,d ( eL ) is the target virtual spring reaction force.
  • the virtual damper reaction force can be made larger than when the vehicle is moving toward the departure avoidance side. Also, in the LKA mode, a steering reaction force corresponding to the lateral deviation eL can be applied to the driver compared to the LCA mode. This makes it easier for the driver to recognize the distance from the center of the traveling lane or the distance to the lane.
  • the calculation result N ⁇ T asst of the reduction ratio multiplication unit 431 is provided to the first adder 410, but the calculation result N ⁇ T asst of the reduction ratio multiplication unit 431 does not have to be provided to the first adder 410.
  • the manual steering command value generating unit 45B calculates the manual steering command value ⁇ MD,cmd based on the equation of motion in which N ⁇ T asst is added to the right side of the above equation (15).
  • the second variant of the motor control ECU has the same effect as the first variant of the motor control ECU described above. Compared to the first variant of the motor control ECU, the second variant of the motor control ECU has the effect of reducing the sense of discomfort felt by the driver in LKA mode. This point will be explained below.
  • cr( eL ) ⁇ d ⁇ MD,cmd /dt includes an actual steering angle component cr( eL ) ⁇ d ⁇ /dt corresponding to the first-order differential of the actual steering angle ⁇ , and an automatic steering component -cr( eL ) ⁇ d ⁇ AD,cmd /dt corresponding to the first-order differential of the automatic steering command value ⁇ AD,cmd .
  • J md ⁇ d 2 ⁇ MD,cmd /dt 2 includes an actual steering angle component J md ⁇ d 2 ⁇ /dt 2 corresponding to the second-order differential of the actual steering angle ⁇ , and an automatic steering component -J md ⁇ d 2 ⁇ AD,cmd /dt 2 corresponding to the second-order differential of the automatic steering command value ⁇ AD,cmd .
  • the equation of motion of the above formula (15) includes, as a virtual damper reaction force, a virtual damper reaction force cr(e L ) ⁇ d ⁇ MD ,cmd /dt for the automatic steering command value ⁇ AD,cmd in addition to a virtual damper reaction force cr(e L ) ⁇ d ⁇ MD ,cmd /dt for the manual steering command value ⁇ MD,cmd .
  • the equation of motion of the above formula (15) includes, as a moment of inertia, a moment of inertia J md ⁇ d 2 ⁇ MD,cmd /dt 2 for the automatic steering command value ⁇ AD,cmd in addition to a moment of inertia J md ⁇ d 2 ⁇ MD ,cmd /dt 2 for the manual steering command value ⁇ MD, cmd .
  • the automatic steering component -cr( eL ) ⁇ d ⁇ AD ,cmd /dt included in cr( eL ) ⁇ d ⁇ MD ,cmd /dt is compensated, and only the actual steering angle component cr( eL ) ⁇ d ⁇ /dt for the actual steering angle ⁇ remains.
  • the automatic steering component -Jmd ⁇ d2 ⁇ AD ,cmd / dt2 included in Jmd ⁇ d2 ⁇ MD ,cmd / dt2 is compensated, and only Jmd ⁇ d2 ⁇ /dt2 for the actual steering angle ⁇ remains.
  • the weight setting unit 52 may perform weight processing similar to that shown in Fig. 9 during the driving assistance mode, except that ⁇ in steps S2 and S4 in Fig. 9 is replaced with e L,s (see Figs. 20 to 22).
  • the weight setting unit 52 sets the first weight W1 to 0 and the second weight W2 to 1.
  • the weight setting unit 52 sets the first weight W1 to 1 and the second weight W2 to 0. Therefore, even in the driving assistance mode, when the distance between the vehicle reference position and the center of the lane is equal to or less than e L,s , the electric motor 18 is controlled to be driven based on the assist torque command value T asst rather than the integrated motor torque command value T mint,cmd .
  • the weight setting unit 52 sets the first weight W1 to 1 and the second weight W2 to 0.
  • the lateral deviation eL which is the distance from the center of the lane in which the vehicle is currently traveling to the vehicle reference position
  • the distance from the boundary of the lane in which the vehicle is currently traveling (lane boundary) to the vehicle reference position may also be used as the lateral position of the vehicle.
  • the assist torque command value T asst is multiplied by the first weight W1, and the assist torque command value W1 ⁇ T asst after multiplication by the first weight is provided to the adder 50.
  • the manual torque command value corresponding to the manual steering command value ⁇ MD,cmd may be multiplied by the first weight W1, and the manual torque command value after multiplication by the first weight may be provided to the adder 50.
  • the angle control unit 47 (see FIG. 5) includes the feedforward control unit 63, but the feedforward control unit 63 may be omitted.
  • the feedback control torque Tfb calculated by the feedback control unit 62 becomes the basic target torque.
  • 1...electric power steering device 3...steered wheels, 4...steered mechanism, 18...electric motor, 43...road surface reaction force characteristic setting section, 43A...motion equation setting section, 44...assist torque command value setting section, 45, 45A, 45B...manual steering command value generating section, 46...integrated angle command value calculation section, 47...angle control section, 48...first weight multiplication section, 49...second weight multiplication section, 50...addition section, 51...torque control section, 52...weight setting section, 201...host ECU, 202, 202A, 202B...motor control ECU

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

モータ制御装置は、操舵装置のリファレンスモデルの運動方程式を利用して、手動操舵指令値を生成する手動操舵指令値生成部と、運転支援モード時に与えられる自動操舵指令値に手動操舵指令値を加算して、統合角度指令値を演算する統合角度指令値演算部と、統合角度指令値に基づいて、舵角制御用の電動モータを角度制御する制御部と、自動操舵指令値と実操舵角との角度偏差の時間微分値に応じて、運動方程式を変更する運動方程式設定部とを含む。

Description

モータ制御装置
 この発明は、舵角制御用の電動モータを駆動制御するモータ制御装置に関する。
 下記特許文献1には、走行車線中央からの自車両の横変位、走行車線に対する自車両のヨー角等に応じて、制御ゲイン(制御量)を変化させることが開示されている。具体的には、ヨー角が、車両が逸脱側に向かっている角度である場合には制御ゲインが大きくされ、ヨー角が、車両が逸脱回避側に向かっている角度である場合には制御ゲインが小さくされる。
特開2009-208602号公報 国際公開第2023/286169号公報
 この発明の一実施形態の目的は、運転支援モード時において、新規な方法で操舵反力をドライバに与えることができるモータ制御装置を提供することである。
 本発明の一実施形態は、操舵装置の電動モータを駆動制御するためのモータ制御装置であって、前記操舵装置のリファレンスモデルの運動方程式を利用して、手動操舵指令値を生成する手動操舵指令値生成部と、運転支援モード時に与えられる自動操舵指令値に前記手動操舵指令値を加算して、統合角度指令値を演算する統合角度指令値演算部と、前記統合角度指令値に基づいて、舵角制御用の電動モータを角度制御する制御部と、前記自動操舵指令値と実操舵角との角度偏差の時間微分値に応じて、前記運動方程式を変更する運動方程式設定部とを含む、モータ制御装置を提供する。
 この構成では、運転支援モード時において、新規な方法で操舵反力をドライバに与えることができる。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、本発明の第1実施形態に係るモータ制御装置が適用された電動パワーステアリングシステムの概略構成を示す模式図である。 図2は、モータ制御用ECUの電気的構成を示すブロック図である。 図3は、トーションバートルクTtbに対するアシストトルク指令値Tasstの設定例を示すグラフである。 図4は、手動操舵指令値生成部で用いられるリファレンスEPSモデルの一例を示す模式図である。 図5は、角度制御部の構成を示すブロック図である。 図6は、電動パワーステアリングシステムの物理モデルの構成例を示す模式図である。 図7は、外乱トルク推定部の構成を示すブロック図である。 図8は、トルク制御部の構成を示す模式図である。 図9は、運転支援モード時に重み設定部によって行われる重み設定処理の手順を示すフローチャートである。 図10は、横偏差eに対する第1仮想負荷ばね剛性係数kr(e)および第2仮想負荷ばね剛性係数kgの設定例を示すグラフである。 図11は、横偏差eに対する仮想負荷粘性減衰係数c(e)の設定例を示すグラフである。 図12Aは、車両基準位置が車線中央よりも右側にある場合の車両の位置の一例を示す模式図であり、図12Bは、実操舵角θおよび自動操舵指令値θAD,cmdの符号がともに正であり、実操舵角θが自動操舵指令値θAD,cmdよりも大きい場合の角度偏差Δθの一例を示す模式図であり、図12Cは、実操舵角θの符号が負であり、自動操舵指令値θAD,cmdの符号が正である場合の角度偏差ΔθA-の一例を示す模式図である。 図13は、運転支援モード時に路面反力特性設定部によって行われるばね剛性係数設定処理の手順を示すフローチャートである。 図14は、横偏差eに対する第1仮想負荷粘性減衰係数cr(e)および第2仮想負荷粘性減衰係数cgの設定例を示すグラフである。 図15は、運転支援モード時に第1変形例に係る路面反力特性設定部によって行われる路面反力特性設定処理の手順を示すフローチャートである。 図16は、運転支援モード時に第2変形例に係る路面反力特性設定部によって行われる粘性減衰係数設定処理の手順を示すフローチャートである。 図17は、第3実施形態において、運転支援モード時に路面反力特性設定部によって行われる路面反力特性設定処理の手順を示すフローチャートである。 図18は、第4実施形態において、運転支援モード時に路面反力特性設定部によって行われる路面反力特性設定処理の手順を示すフローチャートである。 図19は、モータ制御用ECUの第1変形例を示すブロック図である。 図20は、横偏差eに対する目標仮想ばね反力Ttb,d(e)の設定例を示すグラフである。 図21は、横偏差eに対する第1仮想負荷ばね剛性係数krおよび第2仮想負荷ばね剛性係数kgの設定例を示すグラフである。 図22は、横偏差eに対する第1仮想負荷粘性減衰係数cr(e)および第2仮想負荷粘性減衰係数cgの設定例を示すグラフである。 図23は、国際公開第2023/286169号に記載された手動操舵指令値生成部で用いられるリファレンスEPSモデルの一例を示す模式図である。 図24は、モータ制御用ECUの第1変形例における手動操舵指令値生成部の構成を示すブロック図である。 図25Aは、運転支援モード時に運動方程式設定部によって行われる係数/重み設定処理の手順の一部を示すフローチャートである。 図25Bは、運転支援モード時に運動方程式設定部によって行われる係数/重み設定処理の手順の一部を示すフローチャートである。 図26は、モータ制御用ECUの第2変形例における手動操舵指令値生成部の構成を示すブロック図である。
 [本発明の実施形態の説明]
 本発明の一実施形態は、操舵装置の電動モータを駆動制御するためのモータ制御装置であって、前記操舵装置のリファレンスモデルの運動方程式を利用して、手動操舵指令値を生成する手動操舵指令値生成部と、運転支援モード時に与えられる自動操舵指令値に前記手動操舵指令値を加算して、統合角度指令値を演算する統合角度指令値演算部と、前記統合角度指令値に基づいて、舵角制御用の電動モータを角度制御する制御部と、前記自動操舵指令値と実操舵角との角度偏差の時間微分値に応じて、前記運動方程式を変更する運動方程式設定部とを含む、モータ制御装置を提供する。
 この構成では、運転支援モード時において、新規な方法で操舵反力をドライバに与えることができる。
 本発明の一実施形態では、前記運動方程式は、路面反力特性係数を含んでおり、前記運動方程式設定部は、前記運動方程式に含まれる路面反力特性係数のうちの少なくとも1つの路面反力特性係数の値を変更することにより、前記運動方程式を変更する。
 本発明の一実施形態では、前記運動方程式設定部は、第1の運動方程式と第2の運動方程式とを切り替えることにより、前記運動方程式を変更するように構成されており、前記第1の運動方程式では、仮想ばね反力として、車両基準位置の走行車線に対する横位置に応じた目標仮想ばね反力が用いられ、前記第2の運動方程式では、仮想ばね反力として、前記横位置にかかわらず一定値の仮想負荷ばね剛性係数を用いて設定される仮想ばね反力が用いられる。
 本発明の一実施形態では、前記運動方程式設定部は、車両基準位置の走行車線に対する横位置および前記角度偏差のうちのいずれか一方と、前記時間微分値とに基づいて、前記車両が逸脱側に向かう状態であるか、前記車両が逸脱回避側に向かう状態であるかを判定し、その判定結果に基づいて、前記運動方程式を変更するように構成されている。
 本発明の一実施形態では、前記運動方程式設定部は、車両基準位置の走行車線に対する横位置および前記角度偏差のうちのいずれか一方と、前記時間微分値とに基づいて、前記車両が逸脱側に向かう状態であるか、前記車両が逸脱回避側に向かう状態であるかを判定し、前記車両が逸脱回避側に向かう状態では、前記車両が逸脱側に向かう状態に比べて、前記運動方程式に含まれる前記路面反力特性係数のうちの少なくとも1つの路面反力特性係数の値を小さくする。
 本発明の一実施形態では、前記運動方程式設定部は、車両基準位置の走行車線に対する横位置および前記角度偏差のうちのいずれか一方と、前記時間微分値とに基づいて、前記車両が逸脱側に向かう状態であるか、前記車両が逸脱回避側に向かう状態であるかを判定し、前記車両が逸脱側に向かう状態では、前記運動方程式に含まれる前記路面反力特性係数のうちの少なくとも1つの路面反力特性係数を、前記横位置に応じて変化させる。
 本発明の一実施形態では、前記運動方程式設定部は、前記時間微分値を用いて、前記車両が逸脱側に向かう状態であるか、前記車両が逸脱回避側に向かう状態であるかを判定し、前記車両が逸脱側に向かう状態では、前記運動方程式として前記第1の運動方程式を設定し、前記車両が逸脱回避側に向かう状態では、前記運動方程式として前記第2の運動方程式を設定する。
 [本発明の実施形態の詳細な説明]
 以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
 図1は、本発明の第1実施形態に係る操舵装置が適用された電動パワーステアリングシステムの概略構成を示す模式図である。
 電動パワーステアリングシステム1は、車両を操向するための操舵部材としてのステアリングホイール(ハンドル)2と、このステアリングホイール2の回転に連動して転舵輪3を転舵する転舵機構4と、ドライバの操舵を補助するための操舵補助機構5とを備えている。ステアリングホイール2と転舵機構4とは、ステアリングシャフト6および中間軸7を介して機械的に連結されている。
 ステアリングシャフト6は、ステアリングホイール2に連結された入力軸8と、中間軸7に連結された出力軸9とを含む。入力軸8と出力軸9とは、トーションバー10を介して相対回転可能に連結されている。
 トーションバー10の近傍には、トルクセンサ12が配置されている。トルクセンサ12は、入力軸8および出力軸9の相対回転変位量に基づいて、ステアリングホイール2に与えられたトーションバートルクTtbを検出する。この実施形態では、トルクセンサ12によって検出されるトーションバートルクTtbは、例えば、左方向への操舵のためのトルクが正の値として検出され、右方向への操舵のためのトルクが負の値として検出され、その絶対値が大きいほどトーションバートルクTtbの大きさが大きくなるものとする。トーションバートルクTtbは、本発明の「操舵トルク」の一例である。
 転舵機構4は、ピニオン軸13と、転舵軸としてのラック軸14とを含むラックアンドピニオン機構からなる。ラック軸14の各端部には、タイロッド15およびナックルアーム(図示略)を介して転舵輪3が連結されている。ピニオン軸13は、中間軸7に連結されている。ピニオン軸13は、ステアリングホイール2の操舵に連動して回転するようになっている。ピニオン軸13の先端には、ピニオン16が連結されている。
 ラック軸14は、車両の左右方向に沿って直線状に延びている。ラック軸14の軸方向の中間部には、ピニオン16に噛み合うラック17が形成されている。このピニオン16およびラック17によって、ピニオン軸13の回転がラック軸14の軸方向移動に変換される。ラック軸14を軸方向に移動させることによって、転舵輪3を転舵することができる。
 ステアリングホイール2が操舵(回転)されると、この回転が、ステアリングシャフト6および中間軸7を介して、ピニオン軸13に伝達される。そして、ピニオン軸13の回転は、ピニオン16およびラック17によって、ラック軸14の軸方向移動に変換される。これにより、転舵輪3が転舵される。
 操舵補助機構5は、操舵補助力(アシストトルク)を発生するための電動モータ18と、電動モータ18の出力トルクを増幅して転舵機構4に伝達するための減速機19とを含む。減速機19は、ウォームギヤ20と、このウォームギヤ20と噛み合うウォームホイール21とを含むウォームギヤ機構からなる。減速機19は、伝達機構ハウジングとしてのギヤハウジング22内に収容されている。
 以下において、減速機19の減速比(ギヤ比)をNで表す場合がある。減速比Nは、ウォームホイール21の回転角であるウォームホイール角θwwに対するウォームギヤ20の回転角であるウォームギヤ角θwgの比(θwg/θww)として定義される。
 ウォームギヤ20は、電動モータ18によって回転駆動される。また、ウォームホイール21は、出力軸9に一体回転可能に連結されている。
 電動モータ18によってウォームギヤ20が回転駆動されると、ウォームホイール21が回転駆動され、ステアリングシャフト6にモータトルクが付与されるとともにステアリングシャフト6(出力軸9)が回転する。そして、ステアリングシャフト6の回転は、中間軸7を介してピニオン軸13に伝達される。ピニオン軸13の回転は、ラック軸14の軸方向移動に変換される。これにより、転舵輪3が転舵される。すなわち、電動モータ18によってウォームギヤ20を回転駆動することによって、電動モータ18による操舵補助や転舵輪3の転舵が可能となる。電動モータ18には、電動モータ18のロータの回転角を検出するための回転角センサ23が設けられている。
 出力軸9(電動モータ18の駆動対象の一例)に加えられるトルクとしては、電動モータ18によるモータトルクと、モータトルク以外の外乱トルクTlcとがある。モータトルク以外の外乱トルクTlcには、トーションバートルクTtb、路面負荷トルク(路面反力トルク)Trl、摩擦トルクT等が含まれる。
 トーションバートルクTtbは、ドライバによってステアリングホイール2に加えられる力や、ステアリング慣性によって発生する力等によって、ステアリングホイール2側から出力軸9に加えられるトルクである。
 路面負荷トルクTrlは、タイヤに発生するセルフアライニングトルク、サスペンションやタイヤホイールアライメントによって発生する力、ラックアンドピニオン機構の摩擦力等によって、転舵輪3側からラック軸14を介して出力軸9に加えられるトルクである。
 車両には、車両の進行方向前方の道路を撮影するCCD(Charge Coupled Device)カメラ25、自車位置を検出するためのGPS(Global Positioning System)26、道路形状や障害物を検出するためのレーダー27、地図情報を記憶した地図情報メモリ28および車速センサ29が搭載されている。
 CCDカメラ25、GPS26、レーダー27、地図情報メモリ28および車速センサ29は、運転支援制御を行うための上位ECU(ECU:Electronic Control Unit)201に接続されている。上位ECU201は、CCDカメラ25、GPS26、レーダー27および車速センサ29によって得られる情報および地図情報を元に、周辺環境認識、自車位置推定、経路計画等を行い、操舵や駆動アクチュエータの制御目標値の決定を行う。
 この実施形態では、運転モードとして、通常モードと運転支援モードとがある。上位ECU201は、運転支援モード時には、運転支援のための自動操舵指令値θAD,cmdを設定する。自動操舵指令値θAD,cmdは、車両を目標走行ラインに沿って走行させるための操舵角の目標値である。
 この実施形態では、運転支援は、車両が車線から逸脱するのを避けるためのレーン・キーピング・アシスト(LKA)である。運転支援は、車両が走行車線の中央を走行するように操舵を支援するレーン・センタリング・アシスト(LKA)であってもよい。運転支援は、後述するモータ制御用ECUの変形例のように、レーン・キーピング・アシスト(LKA)とレーン・センタリング・アシスト(LKA)とを含んでいてもよい。
 この実施形態では、自動操舵指令値θAD,cmdは、出力軸9の中立位置からの回転量(回転角)で表され、中立位置から左操舵方向への回転量が正の値として表され、中立位置から右操舵方向への回転量が負の値として表される。自動操舵指令値θAD,cmdは、例えば、車速、目標走行ライン(車線中央ライン)に対する横偏差および目標走行ラインに対する車両のヨー偏差に基づいて、設定される。このような自動操舵指令値θAD,cmdを設定する処理は、周知であるため、ここでは詳細な説明を省略する。
 また、上位ECU201は、運転モードが通常モードであるか運転支援モードであるかを示すモード信号Smodeおよび目標走行ラインに対する横偏差eを出力する。この実施形態では、横偏差eは、目標走行ラインから車両の基準位置(以下、「車両基準位置」という。)までの距離である。車両基準位置は、車両の幅中央の所定位置に設定されている。
 この実施形態では、横偏差eは、車両基準位置が目標走行ライン上にある場合には0(e=0)となり、車両基準位置が進行方向に向かって目標走行ラインの左側にある場合には正の値(e>0)となり、車両基準位置が進行方向に向かって目標走行ラインの右側にある場合には負の値(e<0)となる。横偏差eは、本発明における「車両基準位置の走行車線に対する横位置」の一例である。
 モード信号Smode、自動操舵指令値θAD,cmd、横偏差eおよび車速Vは、車載ネットワークを介して、モータ制御用ECU202に与えられる。トルクセンサ12によって検出されるトーションバートルクTtb、回転角センサ23の出力信号は、モータ制御用ECU202に入力される。モータ制御用ECU202は、これらの入力信号および上位ECU201から与えられる情報に基づいて、電動モータ18を制御する。
 図2は、モータ制御用ECU202の電気的構成を示すブロック図である。
 以下、主として、運転モードが運転支援モードである場合の動作について説明する。
 モータ制御用ECU202は、マイクロコンピュータ40と、マイクロコンピュータ40によって制御され、電動モータ18に電力を供給する駆動回路(インバータ回路)31と、電動モータ18に流れる電流(以下、「モータ電流I」という。)を検出するための電流検出回路32とを備えている。
 マイクロコンピュータ40は、CPUおよびメモリ(ROM、RAM、不揮発性メモリなど)を備えており、所定のプログラムを実行することによって、複数の機能処理部として機能するようになっている。この複数の機能処理部には、回転角演算部41と、減速比除算部42と、路面反力特性設定部43と、アシストトルク指令値設定部44と、手動操舵指令値生成部45と、統合角度指令値演算部46と、角度制御部47と、第1重み乗算部48と、第2重み乗算部49と、加算部50と、トルク制御部(電流制御部)51と、重み設定部52とを含む。
 回転角演算部41は、回転角センサ23の出力信号に基づいて、電動モータ18のロータ回転角θを演算する。減速比除算部42は、ロータ回転角θを減速比Nで除算することにより、ロータ回転角θを出力軸9の回転角(実操舵角)θに変換する。この実施形態では、実操舵角θは、出力軸9の中立位置からの回転量(回転角)で表され、中立位置から左操舵方向への回転量が正の値として表され、中立位置から右操舵方向への回転量が負の値として表される。
 路面反力特性設定部43は、手動操舵指令値生成部45によって用いられる仮想負荷ばね剛性係数kおよび仮想負荷粘性係数cを設定する。路面反力特性設定部43は、本発明における「運動方程式設定部」の一例である。路面反力特性設定部43の動作の詳細については後述する。
 アシストトルク指令値設定部44は、手動操作に必要なアシストトルクの目標値であるアシストトルク指令値Tasstを設定する。アシストトルク指令値設定部44は、上位ECU201から与えられる車速Vおよびトルクセンサ12によって検出されるトーションバートルクTtbに基づいて、アシストトルク指令値Tasstを設定する。トーションバートルクTtbに対するアシストトルク指令値Tasstの設定例は、図3に示されている。
 アシストトルク指令値Tasstは、電動モータ18から左方向操舵のための操舵補助力を発生させるべきときには正の値とされ、電動モータ18から右方向操舵のための操舵補助力を発生させるべきときには負の値とされる。アシストトルク指令値Tasstは、トーションバートルクTtbの正の値に対しては正をとり、トーションバートルクTtbの負の値に対しては負をとる。
 アシストトルク指令値Tasstは、トーションバートルクTtbの絶対値が大きくなるほどその絶対値が大きくなるように設定されるとともに、車速Vが大きいほどその絶対値が小さくなるように設定される。
 なお、アシストトルク指令値設定部44は、トーションバートルクTtbに予め設定された定数を乗算することによって、アシストトルク指令値Tasstを演算してもよい。
 手動操舵指令値生成部45は、ドライバがステアリングホイール2を操作した場合に、当該ステアリングホイール操作に応じた操舵角(より正確には出力軸9の回転角θ)を手動操舵指令値θMD,cmdとして設定するために設けられている。手動操舵指令値生成部45は、トルクセンサ12によって検出されるトーションバートルクTtbと、アシストトルク指令値設定部44によって設定されるアシストトルク指令値Tasstと、路面反力特性設定部43によって設定される仮想負荷ばね剛性係数kおよび仮想負荷粘性減衰係数cとを用いて手動操舵指令値θMD,cmdを生成する。手動操舵指令値生成部45の詳細については、後述する。
 統合角度指令値演算部46は、上位ECU201によって設定される自動操舵指令値θAD,cmdに、手動操舵指令値θMD,cmdを加算して、統合角度指令値θint,cmdを演算する。
 角度制御部47は、統合角度指令値θint,cmdに基づいて、統合角度指令値θint,cmdに応じた統合モータトルク指令値Tmint,cmdを演算する。角度制御部47の詳細については、後述する。
 第1重み乗算部48は、アシストトルク指令値設定部44によって設定されるアシストトルク指令値Tasstに第1重みW1を乗算する。第2重み乗算部49は、統合モータトルク指令値Tmint,cmdに第2重みW2を乗算する。第1重みW1および第1重みW2は、重み設定部52によって設定される。重み設定部52の詳細については後述する。
 加算部50は、第1重み乗算後(第1重み付け処理後)のアシストトルク指令値W1・Tasstと、第2重み乗算後(第2重み付け処理後)の統合モータトルク指令値W2・Tmint,cmdとを加算することにより、電動モータ18に対するモータトルク指令値Tm,cmdを演算する。
 トルク制御部51は、電動モータ18のモータトルクがモータトルク指令値Tm,cmdに近づくように駆動回路31を駆動する。
 手動操舵指令値生成部45は、この実施形態では、リファレンスEPSモデルを用いて、手動操舵指令値θMD,cmdを設定する。
 図4は、手動操舵指令値生成部45で用いられるリファレンスEPSモデルの一例を示す模式図である。
 図4のリファレンスEPSモデルは、本開示の「操舵装置のリファレンスモデル」の一例である。このリファレンスEPSモデルは、ロアコラムを含む単一慣性モデルである。ロアコラムは、出力軸9およびウォームホイール21に対応する。図4において、Jrefは、ロアコラムの慣性であり、Ttbは、トーションバートルクである。ロアコラムには、トーションバートルクTtb、電動モータ18から出力軸9に作用するアシストトルクN・Tasstおよび路面負荷トルクTrlが与えられる。ロアコラムの回転角を手動操舵指令値θMD,cmdとすると、仮想路面負荷トルク(仮想路面反力)Trlは、仮想負荷ばね剛性係数k、仮想負荷粘性減衰係数cおよび手動操舵指令値θMD,cmdを用いて、次式(1)で表される。
 Trl=-k・θMD,cmd-c(dθMD,cmd/dt)  …(1)
 リファレンスEPSモデルの運動方程式は、次式(2)で表される。
 Jref・dθMD,cmd/dt=Ttb+N・Tasst-k・θMD,cmd
               -c(dθMD,cmd/dt)  …(2)
 仮想負荷ばね剛性係数kおよび仮想負荷粘性減衰係数cの値は、路面反力特性設定部43によって設定される。式(2)の運動方程式の係数である、仮想負荷ばね剛性係数kおよび仮想負荷粘性減衰係数cは、本発明における「路面反力特性係数」の一例である。
 手動操舵指令値生成部45は、Ttbにトルクセンサ12によって検出されるトーションバートルクTtbを代入し、Tasstにアシストトルク指令値設定部44によって設定されるアシストトルク指令値Tasstを代入して、式(2)の微分方程式を解くことにより、手動操舵指令値θMD,cmdを演算する。
 図5は、角度制御部47の構成を示すブロック図である。
 角度制御部47は、統合角度指令値θint,cmdに基づいて、統合モータトルク指令値Tmint,cmdを演算する。角度制御部47は、ローパスフィルタ(LPF)61と、フィードバック制御部62と、フィードフォワード制御部63と、外乱トルク推定部64と、トルク加算部65と、外乱トルク補償部66と、減速比除算部67と、減速比乗算部68とを含む。
 減速比乗算部68は、加算部50(図2参照)によって演算されるモータトルク指令値Tm,cmdに減速機19の減速比Nを乗算することにより、モータトルク指令値Tm,cmdを出力軸9(ウォームホイール21)に作用する出力軸トルク指令値N・Tm,cmdに換算する。
 ローパスフィルタ61は、統合角度指令値θint,cmdに対してローパスフィルタ処理を行う。ローパスフィルタ処理後の統合角度指令値θintL,cmdは、フィードバック制御部62およびフィードフォワード制御部63に与えられる。
 フィードバック制御部62は、外乱トルク推定部64によって演算される操舵角推定値^θを、ローパスフィルタ処理後の統合角度指令値θintL,cmdに近づけるために設けられている。フィードバック制御部62は、角度偏差演算部62AとPD制御部62Bとを含む。角度偏差演算部62Aは、統合角度指令値θintL,cmdと操舵角推定値^θとの偏差Δθ(=θintL,cmd-^θ)を演算する。なお、角度偏差演算部62Aは、統合角度指令値θintL,cmdと、減速比除算部42(図2参照)によって演算される実操舵角θとの偏差(θintL,cmd-θ)を、角度偏差Δθとして演算するようにしてもよい。
 PD制御部62Bは、角度偏差演算部62Aによって演算される角度偏差Δθに対してPD演算(比例微分演算)を行うことにより、フィードバック制御トルクTfbを演算する。フィードバック制御トルクTfbは、トルク加算部65に与えられる。
 フィードフォワード制御部63は、電動パワーステアリングシステム1の慣性による応答性の遅れを補償して、制御の応答性を向上させるために設けられている。フィードフォワード制御部63は、角加速度演算部63Aと慣性乗算部63Bとを含む。角加速度演算部63Aは、統合角度指令値θintL,cmdを2階微分することにより、目標角加速度dθintL,cmd/dtを演算する。
 慣性乗算部63Bは、角加速度演算部63Aによって演算された目標角加速度dθintL,cmd/dtに、電動パワーステアリングシステム1の慣性Jを乗算することにより、フィードフォワード制御トルクTff(=J・dθintL,cmd/dt)を演算する。慣性Jは、例えば、後述する電動パワーステアリングシステム1の物理モデル(図6参照)から求められる。フィードフォワード制御トルクTffは、慣性補償値として、トルク加算部65に与えられる。
 トルク加算部65は、フィードバック制御トルクTfbにフィードフォワード制御トルクTffを加算することにより、基本トルク指令値(Tfb+Tff)を演算する。
 外乱トルク推定部64は、プラント(電動モータ18の制御対象)に外乱として発生する非線形なトルク(外乱トルク:モータトルク以外のトルク)を推定するために設けられている。外乱トルク推定部64は、出力軸トルク指令値N・Tm,cmdと、実操舵角θとに基づいて、外乱トルク(外乱負荷)Tlc、操舵角θおよび操舵角微分値(角速度)dθ/dtを推定する。外乱トルクTlc、操舵角θおよび操舵角微分値(角速度)dθ/dtの推定値を、それぞれ^Tlc、^θおよびd^θ/dtで表す。外乱トルク推定部64の詳細については、後述する。
 外乱トルク推定部64によって演算された外乱トルク推定値^Tlcは、外乱トルク補償値として外乱トルク補償部66に与えられる。外乱トルク推定部64によって演算された操舵角推定値^θは、角度偏差演算部62Aに与えられる。
 外乱トルク補償部66は、基本トルク指令値(Tfb+Tff)から外乱トルク推定値^Tlcを減算することにより、統合操舵トルク指令値Tsint,cmd(=Tfb+Tff-^Tlc)を演算する。これにより、外乱トルクが補償された統合操舵トルク指令値Tsint,cmd(出力軸9に対するトルク指令値)が得られる。
 統合操舵トルク指令値Tsint,cmdは、減速比除算部67に与えられる。減速比除算部67は、統合操舵トルク指令値Tsint,cmdを減速比Nで除算することにより、統合モータトルク指令値Tmint,cmdを演算する。この統合モータトルク指令値Tmint,cmdが、第2重み乗算部49(図2参照)に与えられる。
 外乱トルク推定部64について詳しく説明する。外乱トルク推定部64は、例えば、図6に示す電動パワーステアリングシステム1の物理モデル101を使用して、外乱トルクTlc、操舵角θおよび角速度dθ/dtを推定する外乱オブザーバから構成されている。
 この物理モデル101は、出力軸9および出力軸9に固定されたウォームホイール21を含むプラント(モータ駆動対象の一例)102を含む。プラント102には、ステアリングホイール2からトーションバー10を介してトーションバートルクTtbが与えられるとともに、転舵輪3側から路面負荷トルクTrlが与えられる。
 さらに、プラント102には、ウォームギヤ20を介して出力軸トルク指令値N・Tm,cmdが与えられるとともに、ウォームホイール21とウォームギヤ20との間の摩擦によって摩擦トルクTが与えられる。
 プラント102の慣性をJとすると、物理モデル101の慣性についての運動方程式は、次式(3)で表される。
Figure JPOXMLDOC01-appb-M000001
 dθ/dtは、プラント102の角加速度である。Nは、減速機19の減速比である。Tlcは、プラント102に与えられるモータトルク以外の外乱トルクを示している。この実施形態では、外乱トルクTlcは、トーションバートルクTtbと路面負荷トルクTrlと摩擦トルクTとの和として示されているが、実際には、外乱トルクTlcはこれら以外のトルクを含んでいる。
 図6の物理モデル101に対する状態方程式は、次式(4)で表わされる。
Figure JPOXMLDOC01-appb-M000002
 前記式(4)において、xは、状態変数ベクトル、uは、既知入力ベクトル、uは、未知入力ベクトル、yは、出力ベクトル(測定値)である。また、前記式(4)において、Aは、システム行列、Bは、第1入力行列、Bは、第2入力行列、Cは、出力行列、Dは、直達行列である。
 前記状態方程式を、未知入力ベクトルuを状態の1つとして含めた系に拡張する。拡張系の状態方程式(拡張状態方程式)は、次式(5)で表される。
Figure JPOXMLDOC01-appb-M000003
 前記式(5)において、xは、拡張系の状態変数ベクトルであり、次式(6)で表される。
Figure JPOXMLDOC01-appb-M000004
 前記式(5)において、Aは、拡張系のシステム行列、Bは、拡張系の既知入力行列、Ceは、拡張系の出力行列である。
 前記式(5)の拡張状態方程式から、次式(7)の方程式で表される外乱オブザーバ(拡張状態オブザーバ)が構築される。
Figure JPOXMLDOC01-appb-M000005
 式(7)において、^xはxの推定値を表している。また、Lはオブザーバゲインである。また、^yはyの推定値を表している。^xは、次式(8)で表される。
Figure JPOXMLDOC01-appb-M000006
 式(8)において、^θはθの推定値であり、^TlcはTlcの推定値である。
 外乱トルク推定部64は、前記式(7)の方程式に基づいて状態変数ベクトル^xを演算する。
 図7は、外乱トルク推定部64の構成を示すブロック図である。
 外乱トルク推定部64は、入力ベクトル入力部71と、出力行列乗算部72と、第1加算部73と、ゲイン乗算部74と、入力行列乗算部75と、システム行列乗算部76と、第2加算部77と、積分部78と、状態変数ベクトル出力部79とを含む。
 減速比乗算部68(図5参照)によって演算される出力軸トルク指令値N・Tm,cmdは、入力ベクトル入力部71に与えられる。入力ベクトル入力部71は、入力ベクトルuを出力する。
 積分部78の出力が状態変数ベクトル^x(前記式(8)参照)となる。演算開始時には、状態変数ベクトル^xとして初期値が与えられる。状態変数ベクトル^xの初期値は、たとえば0である。
 システム行列乗算部76は、状態変数ベクトル^xにシステム行列Aを乗算する。出力行列乗算部72は、状態変数ベクトル^xに出力行列Cを乗算する。
 第1加算部73は、減速比除算部42(図2参照)によって演算された実操舵角θである出力ベクトル(測定値)yから、出力行列乗算部72の出力(C・^x)を減算する。つまり、第1加算部73は、出力ベクトルyと出力ベクトル推定値^y(=C・^x)との差(y-^y)を演算する。ゲイン乗算部74は、第1加算部73の出力(y-^y)にオブザーバゲインL(前記式(7)参照)を乗算する。
 入力行列乗算部75は、入力ベクトル入力部71から出力される入力ベクトルuに入力行列Bを乗算する。第2加算部77は、入力行列乗算部75の出力(Be・u)と、システム行列乗算部76の出力(A・^x)と、ゲイン乗算部74の出力(L(y-^y))とを加算することにより、状態変数ベクトルの微分値d^x/dtを演算する。積分部78は、第2加算部77の出力(d^x/dt)を積分することにより、状態変数ベクトル^xを演算する。状態変数ベクトル出力部79は、状態変数ベクトル^xに基づいて、外乱トルク推定値^Tlc、操舵角推定値^θおよび角速度推定値d^θ/dtを演算する。
 一般的な外乱オブザーバは、前述の拡張状態オブザーバとは異なり、プラントの逆モデルとローパスフィルタとから構成される。プラントの運動方程式は、前述のように式(3)で表される。したがって、プラントの逆モデルは、次式(9)となる。
Figure JPOXMLDOC01-appb-M000007
 一般的な外乱オブザーバへの入力は、J・dθ/dtおよびN・Tm,cmdであり、実操舵角θの2階微分値を用いるため、回転角センサ23のノイズの影響を大きく受ける。これに対して、前述の実施形態の拡張状態オブザーバでは、積分型で外乱トルクを推定するため、微分によるノイズ影響を低減できる。
 なお、外乱トルク推定部64として、プラントの逆モデルとローパスフィルタとから構成される一般的な外乱オブザーバを用いてもよい。
 図8は、トルク制御部51の構成を示す模式図である。
 トルク制御部51(図2参照)は、モータ電流指令値演算部81と、電流偏差演算部82と、PI制御部83と、PWM(Pulse Width Modulation)制御部84とを含む。
 モータ電流指令値演算部81は、加算部50(図2参照)によって演算されたモータトルク指令値Tm,cmdを電動モータ18のトルク定数Kで除算することにより、モータ電流指令値Im,cmdを演算する。
 電流偏差演算部82は、モータ電流指令値演算部81によって得られたモータ電流指令値Im,cmdと、電流検出回路32によって検出されたモータ電流Iとの偏差ΔI(=Im,cmd-I)を演算する。
 PI制御部83は、電流偏差演算部82によって演算された電流偏差ΔIに対するPI演算(比例積分演算)を行うことにより、電動モータ18に流れるモータ電流Iをモータ電流指令値Im,cmdに導くための駆動指令値を生成する。PWM制御部84は、前記駆動指令値に対応するデューティ比のPWM制御信号を生成して、駆動回路31に供給する。これにより、駆動指令値に対応した電力が電動モータ18に供給されることになる。
 図9は、運転支援モード時に重み設定部52によって行われる重み設定処理の手順を示すフローチャートである。
 運転モードが運転支援モードになると、重み設定部52は、第1重みW1を1に設定し、第2重みW2を0に設定する(ステップS1)。これにより、電動モータ18の制御モードは、アシストトルク指令値Tasstのみによって電動モータ18が駆動制御される第1制御モードとなる。
 なお、運転モードが運転支援モードになると、上位ECU201によって自動操舵指令値θAD,cmdが設定され、その自動操舵指令値θAD,cmd、モード信号Smodeおよび横偏差eがモータ制御用ECU202に与えられる。
 次に、重み設定部52は、横偏差eの絶対値|e|が所定値αよりも大きいか否かを判別する(ステップS2)。所定値αは、0よりも大きな値であり、例えば、0.2m以上1.75m以下の範囲内の値に設定される。
 横偏差eの絶対値|e|がα以下の場合には(ステップS2:NO)、つまり、車両基準位置と車線中央との距離がα以下の場合には、重み設定部52は、ステップS2に戻る。
 ステップS2において、横偏差eの絶対値|e|がαよりも大きいと判別された場合には(ステップS2:YES)、つまり、車両基準位置と車線中央との距離がαよりも大きい場合には、重み設定部52は、第1重みW1を0に設定し、第2重みW2を1に設定する(ステップS3)。この際、重み設定部52は、第1重みW1を1から0まで漸減させるとともに、第2重みW2を0から1まで漸増させることが好ましい。第1重みW1を1から0まで漸減させる時間(第2重みW2を0から1まで漸増させる時間)は、例えば0.1秒程度であってもよい。
 これにより、電動モータ18の制御モードは、統合モータトルク指令値Tmint,cmdによって電動モータ18が駆動制御される第2制御モードとなる。なお、第1重みW1が漸減されている間(第2重みW2が漸増されている間)は、第1重み乗算後のアシストトルク指令値W1・Tasstと、第2重み乗算後の統合モータトルク指令値w2・Tmint,cmdとの和に基づいて、電動モータ18が制御される。
 第2制御モード時においては、手動操舵指令値θMD,cmdと、自動操舵指令値θAD,cmdとの和である統合角度指令値θint,cmdに基づいて電動モータ18が制御されるので、手動操舵指令値θMD,cmdの演算に用いられる仮想路面負荷トルクTrlに基づく操舵反力が反映されるようになる。
 次に、重み設定部52は、横偏差eの絶対値|e|がα以下であるか否かを判別する(ステップS4)。
 横偏差eの絶対値|e|がαよりも大きい場合には(ステップS4:NO)、重み設定部52は、ステップS4に戻る。
 ステップS4において、横偏差eの絶対値|e|がα以下であると判別された場合には(ステップS4:YES)、重み設定部52は、第1重みW1を1に設定し、第2重みW2を0に設定する(ステップS5)。この際、重み設定部52は、第1重みW1を0から1まで漸増させるとともに、第2重みW2を1から0まで漸減させることが好ましい。第1重みW1を0から1まで漸増させる時間(第2重みW2を1から0まで漸減させる時間)は、例えば0.1秒程度であってもよい。
 これにより、電動モータ18の制御モードは、第1制御モードとなる。なお、第1重みW1が漸増されている間(第2重みW2が漸減されている間)は、第1重み乗算後のアシストトルク指令値W1・Tasstと、第2重み乗算後の統合モータトルク指令値w2・Tmint,cmdとの和に基づいて、電動モータ18が制御される。
 第1制御モード時においては、手動操舵指令値θMD,cmdの演算に用いられる仮想路面負荷トルクTrlに基づく操舵反力は反映されない。
 ステップS5の処理が行われると、重み設定部52は、ステップS2に戻る。
 なお、運転モードが通常モードである場合には、重み設定部52は、第1重みW1を1に設定し、第2重みW2を0に設定する。したがって、通常モード時には、アシストトルク指令値Tasstのみに基づいて、電動モータ18が駆動制御される。
 次に路面反力特性設定部43の動作について詳しく説明する。路面反力特性設定部43は、手動操舵指令値θMD,cmdの演算に用いられる仮想負荷ばね剛性係数kおよび仮想負荷粘性減衰係数cを設定する。なお、手動操舵指令値θMD,cmdの演算は、手動操舵指令値生成部45(図2参照)によって行われる。
 まず、運転モードが運転支援モードである場合の路面反力特性設定部43の動作について説明する。
 この実施形態では、運転支援モード時に使用される仮想負荷ばね剛性係数kとして、第1仮想負荷ばね剛性係数kr(e)と第2仮想負荷ばね剛性係数kgとの2種類の剛性係数が用意されている。一方、運転支援モード時に使用される仮想負荷粘性減衰係数cとしては、1種類の仮想負荷粘性減衰係数c(e)のみが用意されている。
 図10は、横偏差eに対する第1仮想負荷ばね剛性係数kr(e)および第2仮想負荷ばね剛性係数kgの設定例を示すグラフである。
 第1仮想負荷ばね剛性係数kr(e)は、横偏差eの絶対値|e|が前述のα以下のときには、一定値k1に設定されている。k1は、0よりも大きな所定値である。横偏差eの絶対値|e|がαよりも大きいときには、第1仮想負荷ばね剛性係数kr(e)は、k1からk1よりも大きいk2まで、横偏差eの絶対値|e|が大きいほど大きくなる特性にしたがって設定されている。図10では、第1仮想負荷ばね剛性係数kr(e)は、k1からk2まで線形に変化しているが、非線形に変化してもよい。
 第2仮想負荷ばね剛性係数kgは、横偏差eにかかわらず、一定値k3に設定されている。k3は、0よりも大きくかつk1よりも小さな値に設定されている。
 図10に示される横偏差eに対する第1仮想負荷ばね剛性係数kr(e)の値は、第1ばね剛性係数マップとしてメモリに記憶されている。また、図10に示される第2仮想負荷ばね剛性係数kgの値k3は、第2仮想負荷ばね剛性係数kgとしてメモリに記憶されている。
 図11は、横偏差eに対する仮想負荷粘性減衰係数c(e)の設定例を示すグラフである。
 仮想負荷粘性減衰係数c(e)は、横偏差eの絶対値|e|がα以下のときには、一定値c1に設定されている。c1は、0よりも大きな所定値である。横偏差eの絶対値|e|がαよりも大きいときには、仮想負荷粘性減衰係数c(e)は、c1からc1よりも大きいc2まで、横偏差eの絶対値|e|が大きいほど大きくなる特性にしたがって設定されている。図11では、仮想負荷粘性減衰係数c(e)は、c1からc2まで線形に変化しているが、非線形に変化してもよい。
 図11に示される横偏差eに対する仮想負荷粘性減衰係数c(e)の値は、粘性減衰係数マップとしてメモリに記憶されている。
 この実施形態では、路面反力特性設定部43は、運転支援モード時には、例えば図11の横偏差eに対する仮想負荷粘性減衰係数c(e)の値を記憶した粘性減衰係数マップと上位ECU201からの横偏差eに基づいて、仮想負荷粘性減衰係数cの値を設定する。なお、路面反力特性設定部43は、運転支援モード時において、予め設定された所定の仮想負荷粘性減衰係数値(固定値)を、仮想負荷粘性減衰係数cとして設定してもよい。
 路面反力特性設定部43は、運転支援モード時には、仮想負荷ばね剛性係数kを設定するためのばね剛性係数設定処理を実行する。ばね剛性係数設定処理については、後述する。
 運転支援モードにおいて、車両が車線境界に向かって移動している状態(車両が車線境界に向かって移動するようにドライバが操舵している状態)を、「車両が逸脱側に向かう状態」ということにする。一方、車両が車線中央に向かって移動している状態(車両が車線中央に戻ろうとしている状態)を、「車両が逸脱回避側に向かう状態」ということにする。
 路面反力特性設定部43は、横偏差eと、自動操舵指令値θAD,cmdと、実操舵角θとに基づいて、車両が逸脱側に向かう状態であるか、車両が逸脱回避側に向かう状態であるかを判定する。具体的には、この判定は、横偏差eの符号と、実操舵角θと自動操舵指令値θAD,cmdとの角度偏差Δθ(=θ-θAD,cmd)の時間微分値dΔθ/dtとに基づいて行われる。
 横偏差eの符号が負である場合、すなわち、車両基準位置が車線中央よりも右側にある場合には、時間微分値dΔθ/dtが所定の閾値β(ただしβ>0)以上であれば、路面反力特性設定部43は、車両が逸脱回避側に向かう状態であると判定する。
 横偏差eの符号が負である場合に、時間微分値dΔθ/dtがβ(ただしβ>0)以上でなければ、つまり、時間微分値dΔθ/dt/dtが、-βよりも大きくかつβ未満である場合および時間微分値dΔθ/dtが-β以下である場合には、路面反力特性設定部43は、車両が逸脱側に向かう状態であると判定する。
 所定の閾値βを設けているのは、時間微分値dΔθ/dtが閾値β以下の範囲で、車両が逸脱回避側に向かう状態と車両が逸脱側に向かう状態とが頻繁に切り替わるのを防止するためである。
 時間微分値dΔθ/dt/dtが-βよりも大きくかつβ未満である場合に、路面反力特性設定部43が、車両が逸脱側に向かう状態であると判定している理由は、車両基準位置が車線中央付近に位置している場合において、ドライバがハンドルを中立位置に保持している状態で車両が少しでも車線境界側に向かっているときに、車両が逸脱側に向かう状態であると判定させるためである。
 なお、時間微分値dΔθ/dt/dtが-βよりも大きくかつβ未満である場合に、路面反力特性設定部43が、車両が逸脱回避側に向かう状態であると判定するようにしてもよい。
 図12A、図12Bおよび図12Cは、車両基準位置が車線中央よりも右側にある場合における自動操舵指令値θAD,cmdと実操舵角θとの角度偏差Δθの例を示す模式図である。
 図12A、図12Bおよび図12Cにおいて、大きなハンドル301のハンドル角は、実操舵角θを模式的に表しており、小さなハンドル302のハンドル角は、自動操舵指令値θAD,cmdを模式的に表している。
 図12Aは、車両基準位置が車線中央313よりも右側にある場合の車両300の位置の一例を示す模式図である。なお、符号311は、左側車線境界の白線を示し、符号312は、右側側車線境界の白線を示している。この場合、横偏差eの符号は負となる。
 図12Bは、実操舵角θおよび自動操舵指令値θAD,cmdと、角度偏差Δθ(=θ-θAD,cmd)の一例を示す模式図である。実操舵角θおよび自動操舵指令値θAD,cmdがこの関係にある場合に、例えば、ドライバが左操舵方向(正の方向)にハンドルを切ると、角度偏差Δθが大きくなり、時間微分値dΔθ/dtは正となる。
 一方、実操舵角θおよび自動操舵指令値θAD,cmdがこの関係にある場合に、例えば、ドライバが右操舵方向(負の方向)にハンドルを切ると、角度偏差Δθが小さくなり、時間微分値dΔθ/dtは負となる。
 図12Cは、実操舵角θおよび自動操舵指令値θAD,cmdと、角度偏差Δθ(=θ-θAD,cmd)の一例を示す模式図である。実操舵角θおよび自動操舵指令値θAD,cmdがこの関係にある場合に、例えば、ドライバが左操舵方向(正の方向)にハンドルを切ると、角度偏差Δθが大きくなり(0に近づき)、時間微分値dΔθ/dtは正となる。
 一方、実操舵角θおよび自動操舵指令値θAD,cmdがこの関係にある場合に、例えば、ドライバが右操舵方向(負の方向)にハンドルを切ると、角度偏差Δθが小さくなり(0から遠ざかり)、時間微分値dΔθ/dtは負となる。
 横偏差eの符号が正である場合、すなわち、車両基準位置が車線中央よりも左側にある場合には、時間微分値dΔθ/dtが-β以下であれば、路面反力特性設定部43は、車両が逸脱回避側に向かう状態であると判定する。
 横偏差eの符号が正である場合に、時間微分値dΔθ/dtが-β以下でなければ、つまり、時間微分値dΔθ/dt/dtが、-βよりも大きくかつβ未満である場合および時間微分値dΔθ/dtがβ以上である場合には、路面反力特性設定部43は、車両が逸脱側に向かう状態であると判定する。
 時間微分値dΔθ/dt/dtが-βよりも大きくかつβ未満である場合に、路面反力特性設定部43が、車両が逸脱側に向かう状態であると判定している理由は、前述した通りである。
 なお、時間微分値dΔθ/dt/dtが-βよりも大きくかつβ未満である場合に、路面反力特性設定部43が、車両が逸脱回避側に向かう状態であると判定するようにしてもよい。
 図13は、運転支援モード時に路面反力特性設定部43によって行われるばね剛性係数設定処理の手順を示すフローチャートである。図13に示されるばね剛性係数設定処理は、運転支援モードが開始される毎に開始され、運転支援モードが解除されるまで、所定の演算周期毎に繰り返し実行される。
 路面反力特性設定部43は、まず、上位ECU201から与えられる横偏差eおよび自動操舵指令値θAD,cmdならびに減速比除算部42によって演算される実操舵角θを取得する(ステップS11)。
 次に、路面反力特性設定部43は、横偏差eが0よりも小さいか否かを判別する(ステップS12)。言い換えれば、路面反力特性設定部43は、横偏差eの符号が負であるか否かを判別する。
 横偏差eが0よりも小さい場合には(ステップS12:YES)、路面反力特性設定部43は、実操舵角θと自動操舵指令値θAD,cmdとの角度偏差Δθ(=θ-θAD,cmd)の時間微分値dΔθ/dtがβ以上であるか否かを判別する(ステップS13)。
 時間微分値dΔθ/dtがβ以上である場合には(ステップS13:YES)、路面反力特性設定部43は、車両が逸脱回避側に向かう状態であると判定し、第2仮想負荷ばね剛性係数kgを仮想負荷ばね剛性係数kとして設定する(ステップS14)。そして、今回の演算周期での処理を終了する。
 前記ステップS13において、時間微分値dΔθ/dtがβ未満であると判別された場合には(ステップS13:NO)、路面反力特性設定部43は、車両が逸脱側に向かう状態であると判定し、第1仮想負荷ばね剛性係数kr(e)を仮想負荷ばね剛性係数kとして設定する(ステップS15)。
 具体的には、路面反力特性設定部43は、図10の横偏差eに対する第1仮想負荷ばね剛性係数kr(e)の値を記憶した第1ばね剛性係数マップとステップS11で取得した横偏差eとに基づいて、当該横偏差eに応じた第1仮想負荷ばね剛性係数kr(e)の値を、仮想負荷ばね剛性係数kとして設定する。そして、今回の演算周期での処理を終了する。
 前記ステップS12において、横偏差eが0以上であると判別された場合には(ステップS12:NO)、路面反力特性設定部43は、時間微分値dΔθ/dtが-β以下であるか否かを判別する(ステップS16)。
 時間微分値dΔθ/dtが-β以下である場合には(ステップS16:YES)、路面反力特性設定部43は、車両が逸脱回避側に向かう状態であると判定し、第2仮想負荷ばね剛性係数kgを仮想負荷ばね剛性係数kとして設定する(ステップS17)。そして、今回の演算周期での処理を終了する。
 前記ステップS16において、時間微分値dΔθ/dtが-βよりも大きいと判別された場合には(ステップS16:NO)、路面反力特性設定部43は、車両が逸脱側に向かう状態であると判定し、第1仮想負荷ばね剛性係数kr(e)を仮想負荷ばね剛性係数kとして設定する(ステップS18)。そして、今回の演算周期での処理を終了する。
 なお、ステップS14、S17において、前回の演算周期において、第1仮想負荷ばね剛性係数kr(e)が仮想負荷ばね剛性係数kとして設定されている場合には、仮想負荷ばね剛性係数kの前回値から第2仮想負荷ばね剛性係数kgの値まで仮想負荷ばね剛性係数kを漸減させることが好ましい。
 同様に、ステップS15、S18において、前回の演算周期において、第2仮想負荷ばね剛性係数kgが仮想負荷ばね剛性係数kとして設定されている場合には、仮想負荷ばね剛性係数kの前回値から第1仮想負荷ばね剛性係数kr(e)の値まで仮想負荷ばね剛性係数kを漸増させることが好ましい。
 運転モードが通常モードである場合には、第1重みW1が1に設定され、第2重みW2が0に設定されるので、手動操舵指令値θMD,cmdは、モータトルク指令値Tm,cmdに反映されない。言い換えれば、手動操舵指令値θMD,cmdに基づく操舵反力は反映されない。しかし、この実施形態では、通常モード時においても、手動操舵指令値生成部45が手動操舵指令値θMD,cmdの演算動作を継続できるようにするために、路面反力特性設定部43に、仮想負荷ばね剛性係数kおよび仮想負荷粘性減衰係数cを設定させるようにしている。
 具体的には、運転モードが通常モードである場合には、路面反力特性設定部43は、仮想負荷ばね剛性係数kを予め設定した所定値kに設定し、仮想負荷粘性減衰係数cを予め設定した所定値cに設定する。kは、例えば、図10のk1に設定されてもよい。cは、例えば、図11のc1に設定されてもよい。
 なお、通常モード時に手動操舵指令値生成部45の動作を停止させてもよい。この場合には、路面反力特性設定部43は、通常モード時に仮想負荷ばね剛性係数kおよび仮想負荷粘性減衰係数cを設定しなくてもよい。
 以上のような構成では、運転支援モード時において、車両が逸脱側に向かう状態であると判定された場合には、第1仮想負荷ばね剛性係数kr(e)が仮想負荷ばね剛性係数kとして設定される。一方、車両が逸脱回避側に向かう状態であると判定された場合には、第2仮想負荷ばね剛性係数kgが仮想負荷ばね剛性係数kとして設定される。
 これにより、車両が逸脱側に向かう状態および車両が逸脱回避側に向かう状態それぞれに適した仮想負荷ばね剛性係数kを設定することができる。これにより、車両が逸脱側に向かう状態および車両が逸脱回避側に向かう状態それぞれに適した操舵反力を発生させることができる。つまり、この第1実施形態では、運転支援モード時において、新規な方法で操舵反力をドライバに与えることができる。
 具体的には、車両が逸脱側に向かう状態では、車両基準位置の車線中央からの距離が大きくなるほど操舵反力が大きくなるので、車両が車線を逸脱するのを効果的に回避することができる。車両が逸脱回避側に向かう状態では、車両が逸脱側に向かう状態に比べて、操舵反力が小さくなるので、車両挙動の安定化およびドライバへの違和感が低減される。
 なお、第2仮想負荷ばね剛性係数kgは、図10に示すように、第1仮想負荷ばね剛性係数kr(e)よりも小さいことが好ましい。
 ただし、この第1実施形態では、車両基準位置が車線中央からα以内にある場合には、第1重みW1が1に設定され、第2重みW2が0に設定されるので、手動操舵指令値θMD,cmdは、モータトルク指令値Tm,cmdに反映されない。言い換えれば、手動操舵指令値θMD,cmdに基づく操舵反力は反映されない。このようにしても、車両基準位置が車線中央に比較的近い位置にあるため、車両が車線を逸脱することはない。
 特許文献1に記載の技術では、走行車線に対する車両のヨー角に基づいて制御ゲインが変更される。ヨー角の検出はドライバ操作に対して遅れが生じるので、ドライバ操作に対して制御ゲインを変更するタイミングが遅くなるという問題がある。
 これに対して、この第1実施形態では、実操舵角θと自動操舵指令値θAD,cmdとの角度偏差Δθ(=θ-θAD,cmd)の時間微分値dΔθ/dtに基づいて、車両が逸脱側に向かう状態であるか車両が逸脱回避側に向かう状態であるかを判定し、その判定結果に基づいて仮想負荷ばね剛性係数kを切り替えている。この時間微分値dΔθ/dtはドライバ操作に対して遅れが生じにくいので、ドライバによる操舵方向の切り替えに対して仮想負荷ばね剛性係数kの切り替えを迅速に行うことができる。これにより、ドライバにとって直感的な操舵感が得られる。
 [路面反力特性設定部43の第1変形例の説明]
 路面反力特性設定部43の第1変形例について説明する。前述の第1実施形態では、運転支援モード時において、車両が逸脱側に向かう状態であると判定された場合と、車両が逸脱回避側に向かう状態であると判定された場合とで、仮想負荷ばね剛性係数kが切り替えられている。
 路面反力特性設定部43の第1変形例では、運転支援モード時において、車両が逸脱側に向かう状態であると判定された場合と、車両が逸脱回避側に向かう状態であると判定された場合とで、仮想負荷ばね剛性係数kおよび仮想負荷粘性減衰係数cの両方が切り替えられる。
 この場合には、仮想負荷ばね剛性係数kとして、第1仮想負荷ばね剛性係数kr(e)と第2仮想負荷ばね剛性係数kgとの2種類の剛性係数が用意されるとともに、仮想負荷粘性減衰係数cとして、第1仮想負荷粘性減衰係数cr(e)と第2仮想負荷粘性減衰係数cgとの2種類の減衰係数が用意される。
 図14は、横偏差eに対する第1仮想負荷粘性減衰係数cr(e)および第2仮想負荷粘性減衰係数cgの設定例を示すグラフである。
 第1仮想負荷粘性減衰係数cr(e)は、横偏差eの絶対値|e|がα以下のときには、一定値c1に設定されている。c1は、0よりも大きな所定値である。横偏差eの絶対値|e|がαよりも大きいときには、第1仮想負荷粘性減衰係数cr(e)は、c1からc1よりも大きいc2まで、横偏差eの絶対値|e|が大きいほど大きくなる特性にしたがって設定されている。図14では、第1仮想負荷粘性減衰係数cr(e)は、c1からc2まで線形に変化しているが、非線形に変化してもよい。
 第2仮想負荷粘性減衰係数cgは、横偏差eにかかわらず、一定値c3に設定されている。c3は、0よりも大きくかつc1よりも小さな値に設定されている。図14に示すように、第2仮想負荷粘性減衰係数cgは、第1仮想負荷粘性減衰係数cr(e)よりも小さいことが好ましい。ただし、図14に鎖線で示すように、操舵反力の戻りを緩やかにする目的で、第2仮想負荷粘性減衰係数cgは、c1よりも大きな値(c4)に設定してもよい。
 図14に示される横偏差eに対する第1仮想負荷粘性減衰係数cr(e)の値は、第1粘性減衰係数マップとしてメモリに記憶されている。また、図14に示される第2仮想負荷粘性減衰係数cgの値c3またはc4は、メモリに記憶されている。
 図15は、運転支援モード時に第1変形例に係る路面反力特性設定部43によって行われる路面反力特性設定処理の手順を示すフローチャートである。図15に示される路面反力特性設定処理は、運転支援モードが開始される毎に開始され、運転支援モードが解除されるまで、所定の演算周期毎に繰り返し実行される。
 図15において、前述の図13の各ステップに対応するステップには図13と同じステップ番号を付して示す。
 ステップS14A、S15A、S17AおよびS18Aの処理が、それぞれ図13のステップS14、S15、S17およびS18の処理と異なっている。その他のステップS11,S12,S13およびS16の処理は、それぞれ図13のステップS11,S12,S13およびS16の処理と同じである。
 ステップS14A、S17Aでは、路面反力特性設定部43は、第2仮想負荷ばね剛性係数kgを仮想負荷ばね剛性係数kとして設定するとともに、第2仮想負荷粘性減衰係数cgを仮想負荷粘性減衰係数cとして設定する。そして、今回の演算周期での処理を終了する。
 ステップS15A、S18Aでは、路面反力特性設定部43は、第1仮想負荷ばね剛性係数kr(e)を仮想負荷ばね剛性係数kとして設定するとともに第1仮想負荷粘性減衰係数cr(e)を仮想負荷粘性減衰係数cとして設定する。
 具体的には、路面反力特性設定部43は、図10の横偏差eに対する第1仮想負荷ばね剛性係数krの値を記憶した第1ばね剛性係数マップとステップS11で取得した横偏差eとに基づいて、横偏差eに応じた第1仮想負荷ばね剛性係数krの値を、仮想負荷ばね剛性係数kとして設定する。
 また、路面反力特性設定部43は、図14の横偏差eに対する第1仮想負荷粘性減衰係数cr(e)の値を記憶した第1粘性減衰係数マップとステップS11で取得した横偏差eとに基づいて、当該横偏差eに応じた第1仮想負荷粘性減衰係数cr(e)の値を、仮想負荷粘性減衰係数cとして設定する。
 通常モード時における路面反力特性設定部43の動作は、前述の第1実施形態と同様である。
 [路面反力特性設定部43の第2変形例の説明]
 路面反力特性設定部43の第2変形例について説明する。前述の路面反力特性設定部43の第1変形例では、運転支援モード時において、車両が逸脱側に向かう状態であると判定された場合と、車両が逸脱回避側に向かう状態であると判定された場合とで、仮想負荷ばね剛性係数kおよび仮想負荷粘性減衰係数cが切り替えられている。
 路面反力特性設定部43の第2変形例では、運転支援モード時において、車両が逸脱側に向かう状態であると判定された場合と、車両が逸脱回避側に向かう状態であると判定された場合とで、仮想負荷粘性減衰係数cのみが切り替えられる。
 路面反力特性設定部43は、運転支援モード時には、例えば、図10の横偏差eに対する第1仮想負荷ばね剛性係数kr(e)の値を記憶した粘性減衰係数マップと上位ECU201からの横偏差eに基づいて、仮想負荷ばね剛性係数kの値を設定する。なお、路面反力特性設定部43は、運転支援モード時において、予め設定された所定の仮想負荷ばね剛性係数値(固定値)を、仮想負荷ばね剛性係数kとして設定してもよい。
 仮想負荷粘性減衰係数cとして、例えば図14に示される第1仮想負荷粘性減衰係数cr(e)および第2仮想負荷粘性減衰係数cgの2種類の減衰係数が用意される。図14に示される横偏差eに対する第1仮想負荷粘性減衰係数cr(e)の値は、第1粘性減衰係数マップとしてメモリに記憶されている。また、図14に示される第2仮想負荷粘性減衰係数cgの値c3は、メモリに記憶されている。
 路面反力特性設定部43は、運転支援モード時には、仮想負荷粘性減衰係数cを設定するための粘性減衰係数設定処理を実行する。
 図16は、運転支援モード時に路面反力特性設定部43によって行われる粘性減衰係数設定処理の手順を示すフローチャートである。図16に示される粘性減衰係数設定処理は、運転支援モードが開始される毎に開始され、運転支援モードが解除されるまで、所定の演算周期毎に繰り返し実行される。
 図16において、前述の図13の各ステップに対応するステップには図13と同じステップ番号を付して示す。
 ステップS14B、S15B、S17BおよびS18Bの処理が、それぞれ図13のステップS14、S15、S17およびS18の処理と異なっている。その他のステップS11,S12,S13およびS16の処理は、それぞれ図13のステップS11,S12,S13およびS16の処理と同じである。
 ステップS14B、S17Bでは、路面反力特性設定部43は、第2仮想負荷粘性減衰係数cgを仮想負荷粘性減衰係数cとして設定する。そして、今回の演算周期での処理を終了する。
 ステップS15B、S18Bでは、路面反力特性設定部43は、第1仮想負荷粘性減衰係数cr(e)を仮想負荷粘性減衰係数cとして設定する。
 具体的には、路面反力特性設定部43は、図14の横偏差eに対する第1仮想負荷粘性減衰係数cr(e)の値を記憶したばね剛性係数マップとステップS11で取得した横偏差eとに基づいて、当該横偏差eに応じた第1仮想負荷粘性減衰係数cr(e)の値を、第1仮想負荷粘性減衰係数cとして設定する。
 通常モード時における路面反力特性設定部43の動作は、前述の第1実施形態と同様である。
 [重み設定部52の変形例の説明]
 重み設定部52の変形例について説明する。前述の第1実施形態(図2および図9)では、重み設定部52は、モード信号Smodeおよび横偏差eに基づいて、第1重みW1および第2重みW2を設定している。変形例に係る重み設定部52は、モード信号Smodeのみに基づいて、第1重みW1および第2重みW2を設定する。
 重み設定部52は、運転モードが通常モードの場合には、第1重みW1を1に設定し、第2重みW2を0に設定する。運転モードが運転支援モードの場合には、重み設定部52は、第1重みW1を0に設定し、第2重みW2を1に設定する。その他は、前述の第1実施形態と同様である。つまり、路面反力特性設定部43の動作は、前述の第1実施形態の図13に示される動作と同じである。
 したがって、この変形例においても、前述の第1実施形態と同様に、運転支援モード時において、車両が逸脱側に向かう状態であると判定された場合には、第1仮想負荷ばね剛性係数kr(e)が仮想負荷ばね剛性係数kとして設定される。一方、車両が逸脱回避側に向かう状態であると判定された場合には、第2仮想負荷ばね剛性係数kgが仮想負荷ばね剛性係数kとして設定される。
 この変形例では、前述の第1実施形態と異なり、運転支援モード時において、車両基準位置が車線中央からα以内にある場合にも、第1重みW1が0に設定され、第2重みW2が1に設定される。このため、運転支援モード時において、車両基準位置が車線中央からα以内にある場合にも、手動操舵指令値θMD,cmdに基づく操舵反力が反映される。
 前述の第1変形例に係る路面反力特性設定部43が路面反力特性設定部43として用いられる場合(図15参照)または前述の第2変形例に係る路面反力特性設定部43が路面反力特性設定部43として用いられる場合(図16参照)においても、変形例に係る重み設定部52を重み設定部52として用いることができる。
 [第2実施形態の説明]
 第2実施形態では、重み設定部52の動作と路面反力特性設定部43の動作とが、前述の第1実施形態と異なっている。
 第2実施形態では、前述の重み設定部52の変形例と同様に、重み設定部52は、運転モードが通常モードの場合には、第1重みW1を1に設定し、第2重みW2を0に設定する。運転モードが運転支援モードの場合には、重み設定部52は、第1重みW1を0に設定し、第2重みW2を1に設定する。
 また、第2実施形態では、路面反力特性設定部43は、運転支援モード時において、所定の演算周期毎に、上位ECU201から与えられる横偏差eおよび自動操舵指令値θAD,cmdならびに減速比除算部42によって演算される実操舵角θを取得する。次に、路面反力特性設定部43は、横偏差eがーα~+αの範囲内にあるか否かを判別する。そして、路面反力特性設定部43は、その判別結果に応じた処理を行う。言い換えれば、第2実施形態では、横偏差eがーα~+αの範囲内にある場合と、横偏差eがーα~+αの範囲外にある場合とで、異なる動作を行う。
 具体的には、横偏差eがーα~+αの範囲外にあると判別された場合には、路面反力特性設定部43は、前述の第1実施形態の図13のステップS12以降の処理を行う。この際に使用される仮想負荷粘性減衰係数cとしては、図11に示される仮想負荷粘性減衰係数c(eL)が用いられてもよいし、予め設定された所定値(固定値)が用いられてもよい。
 一方、横偏差eがーα~+αの範囲内にあると判定された場合には、路面反力特性設定部43は、車両が逸脱回避側に向かう状態であるか、車両が逸脱側に向かう状態であるかを判定することなく、仮想負荷ばね剛性係数kを予め設定された所定値(例えば、図10のk1)に設定するとともに、仮想負荷粘性減衰係数cを予め設定された所定値(例えば、図11のc1)に設定する。
 路面反力特性設定部43は、運転支援モード時において、横偏差eがーα~+αの範囲内にあるか否かの判別結果に応じて、次のような動作を行うものであってもよい。すなわち、横偏差eがーα~+αの範囲外にあると判別された場合には、路面反力特性設定部43は、前述の図15のステップS12以降の処理を行う。一方、横偏差eがーα~+αの範囲内にあると判別された場合には、路面反力特性設定部43は、仮想負荷ばね剛性係数kおよび仮想負荷粘性減衰係数cをそれぞれ予め設定された所定値に設定する。
 また、路面反力特性設定部43は、運転支援モード時において、横偏差eがーα~+αの範囲内にあるか否かの判別結果に応じて、次のような動作を行うものであってもよい。すなわち、横偏差eがーα~+αの範囲外にあると判別された場合には、路面反力特性設定部43は、前述の図16のステップS12以降の処理を行う。一方、横偏差eがーα~+αの範囲内にあると判別された場合には、路面反力特性設定部43は、仮想負荷ばね剛性係数kおよび仮想負荷粘性減衰係数cをそれぞれ予め設定された所定値に設定する。
 この第2実施形態では、横偏差eがーα~+αの範囲外では、レーンキープアシスト(LKA)が行われ、横偏差eがーα~+αの範囲内では、レーンセンタリングアシスト(LCA)制御が行われる。
 [第3実施形態の説明]
 第3実施形態では、重み設定部52の動作と路面反力特性設定部43の動作とが、前述の第1実施形態と異なっている。
 第3実施形態では、前述の重み設定部52の変形例と同様に、重み設定部52は、運転モードが通常モードの場合には、第1重みW1を1に設定し、第2重みW2を0に設定する。運転モードが運転支援モードの場合には、重み設定部52は、第1重みW1を0に設定し、第2重みW2を1に設定する。
 また、第3実施形態では、路面反力特性設定部43は、横偏差eがーα~+αの範囲内にある場合と、横偏差eがーα~+αの範囲外にある場合とで、異なる動作を行う。
 具体的には、第3実施形態においては、路面反力特性設定部43は、運転支援モード時において、図17に示される路面反力特性設定処理を行う。図17において、図13と同じステップには、図13と同じステップ番号を付して示す。図17に示される路面反力特性設定処理は、運転支援モードが開始される毎に開始され、運転支援モードが解除されるまで、所定の演算周期毎に繰り返し実行される。
 路面反力特性設定部43は、まず、上位ECU201から与えられる横偏差eおよび自動操舵指令値θAD,cmdならびに減速比除算部42によって演算される実操舵角θを取得す(ステップS11)。
 次に、路面反力特性設定部43は、横偏差eがーα≦e≦+αの範囲内であるか否かを判別する(ステップS21)。言い換えれば、路面反力特性設定部43は、横偏差eがーα~+αの範囲内にあるか否かを判別する。
 横偏差eがーα≦e≦+αの範囲外であると判別された場合には(ステップS21:NO)、路面反力特性設定部43は、ステップS12に移行する。具体的には、路面反力特性設定部43は、横偏差eが0よりも小さいか否かを判別する。ステップS12~S18の処理は、それぞれ図13のステップS12~S18の処理と同じであるので、その詳細な説明を省略する。
 ステップS21において、横偏差eがーα≦e≦+αの範囲内であると判別された場合には(ステップS21:YES)、路面反力特性設定部43は、実操舵角θと自動操舵指令値θAD,cmdとの角度偏差Δθ(=θ-θAD,cmd)が0よりも小さいか否かを判別する(ステップS22)。言い換えれば、路面反力特性設定部43は、角度偏差Δθの符号が負であるか否かを判別する。
 角度偏差Δθが0よりも小さい場合には(ステップS22:YES)、路面反力特性設定部43は、ステップS13に移行する。
 一方、角度偏差Δθが0以上である場合には(ステップS22:NO)、路面反力特性設定部43は、ステップS16に移行する。
 図17において、横偏差eがーα≦e≦+αの範囲外であると判別された場合には、図13に示される処理と同様の処理が行われる。この場合には、横偏差eと角度偏差Δθ(=θ-θAD,cmd)の時間微分値dΔθ/dtとに基づいて車両が逸脱側に向かう状態であるか、逸脱回避側向かう状態であるかかが判定される。
 しかし、横偏差eがーα≦e≦+αの範囲内であると判別された場合には、角度偏差Δθ(=θ-θAD,cmd)が0よりも小さいか否かが判別される。この点において、図17の処理は、図13に示される処理と異なる。この場合には、角度偏差Δθ(=θ-θAD,cmd)とその時間微分値dΔθ/dtとに基づいて車両が逸脱側に向かう状態であるか、逸脱回避側向かう状態であるかかが判定される。
 横偏差eがーα≦e≦+αの範囲外であると判別された場合と横偏差eがーα≦e≦+αの範囲内であると判別された場合の処理との違いについて、図12Bおよび図12Cを用いて、具体的に説明する。
 実操舵角θおよび自動操舵指令値θAD,cmdが図12Cの関係(車両が車線中央より右側にあり、θ-θAD,cmd<0である関係)にあり、かつ横偏差eがーα≦e≦+αの範囲内にある状態を第1状態ということにする。第1状態において、例えば、ドライバが左操舵方向(正の方向)にハンドルを切ると、角度偏差Δθが大きくなり、時間微分値dΔθ/dtは正となる。この場合には、図17のステップS21でYESとなり、ステップS22でYESとなり、時間微分値dΔθ/dtが閾値βを上回った場合、ステップS13でYESとなる。これにより、車両が逸脱回避側に向かう状態であると判定され、第2仮想負荷ばね剛性係数kgが仮想負荷ばね剛性係数kとして設定される。つまり、横偏差eがーα≦e≦+αの範囲外であると判別された場合の処理(図13の処理)と同じ結果となる。
 第1状態において、例えば、ドライバが右操舵方向(負の方向)にハンドルを切ると、角度偏差Δθが小さくなり、時間微分値dΔθ/dtは負となる。この場合には、図17のステップS21でYESとなり、ステップS22でYESとなり、ステップS13でNOとなる。これにより、車両が逸脱側に向かう状態であると判定され、第1仮想負荷ばね剛性係数kr(e)が仮想負荷ばね剛性係数kとして設定される。つまり、横偏差eがーα≦e≦+αの範囲外であると判別された場合の処理(図13の処理)と同じ結果となる。
 実操舵角θおよび自動操舵指令値θAD,cmdが図12Bの関係(車両が車線中央より右側にあり、θ-θAD,cmd≧0である関係)にあり、かつ横偏差eがーα≦e≦+αの範囲内にある状態を第2状態ということにする。第2状態において、例えば、ドライバが左操舵方向(正の方向)にハンドルを切ると、角度偏差Δθが大きくなり、時間微分値dΔθ/dtは正となる。この場合には、図17のステップS21でYESとなり、ステップS22でNOとなり、ステップS16でN0となる。これにより、車両が逸脱側に向かう状態であると判定され、第1仮想負荷ばね剛性係数kr(e)が仮想負荷ばね剛性係数kとして設定される。
 この場合には、横偏差eがーα≦e≦+αの範囲外であると判別された場合の処理(図13の処理)とは異なる結果となる。つまり、横偏差eがーα~+αの範囲内にある場合において、ドライバが自動操舵指令値θAD,cmdをさらに上回るような実操舵角θを与えた場合には、車両が逸脱側に向かう状態であると判定される。言い換えれば、ドライバが切り戻し過ぎて、車線中央を超える可能性が高くなる場合に、車両が逸脱側に向かう状態であると判定される
 第2状態において、例えば、ドライバが右操舵方向(負の方向)にハンドルを切ると、角度偏差Δθが小さくなり、時間微分値dΔθ/dtは負となる。この場合には、図17のステップS21でYESとなり、ステップS22でNOとなり、時間微分値dΔθ/dtが閾値-βを下回った場合、ステップS16でYESとなる。これにより、車両が逸脱回避側に向かう状態であると判定され、第2仮想負荷ばね剛性係数kgが仮想負荷ばね剛性係数kとして設定される。この場合には、横偏差eがーα≦e≦+αの範囲外であると判別された場合の処理(図13の処理)とは異なる結果となる。
 路面反力特性設定部43は、図17のステップS14、S15、S17およびS18それぞれの処理に代えて、図15のステップS14A、S15A、S17AおよびS18Aの処理を行うようにしてもよい。
 また、路面反力特性設定部43は、図17のステップS14、S15、S17およびS18それぞれの処理に代えて、図16のステップS14B、S15B、S17BおよびS18Bの処理を行うようにしてもよい。
 [第4実施形態の説明]
 第4実施形態では、重み設定部52の動作と路面反力特性設定部43の動作とが、前述の第1実施形態と異なっている。
 第4実施形態では、前述の重み設定部52の変形例と同様に、重み設定部52は、運転モードが通常モードの場合には、第1重みW1を1に設定し、第2重みW2を0に設定する。運転モードが運転支援モードの場合には、重み設定部52は、第1重みW1を0に設定し、第2重みW2を1に設定する。
 第4実施形態では、路面反力特性設定部43は、運転支援モード時において、図18に示される路面反力特性設定処理を行う。図18において、図13と同じステップには、図13と同じステップ番号を付して示す。図18に示される路面反力特性設定処理は、運転支援モードが開始される毎に開始され、運転支援モードが解除されるまで、所定の演算周期毎に繰り返し実行される。
 図18のステップS12Aが、図13のステップS12と異なっている。つまり、図18の路面反力特性設定処理では、ステップS12Aにおいて、路面反力特性設定部43は、実操舵角θと自動操舵指令値θAD,cmdとの角度偏差Δθ(=θ-θAD,cmd)が0よりも小さいか否かを判別する。そして、角度偏差Δθが0よりも小さいと判別された場合には、路面反力特性設定部43はステップS13に進み、角度偏差Δθが以上であると判別された場合には、路面反力特性設定部43はステップS16に進む。図13のステップS12以外の処理は、第1実施形態で説明した処理内容と同じである。
 なお、運転支援モード時に使用される仮想負荷粘性減衰係数cとしては、図11に示される仮想負荷粘性減衰係数c(e)が用いられてもよいし、予め設定された所定値(固定値)が用いられてもよい。
 なお、路面反力特性設定部43は、図18のステップS14、S15、S17およびS18それぞれの処理に代えて、図15のステップS14A、S15A、S17AおよびS18Aの処理を行うようにしてもよい。
 また、路面反力特性設定部43は、図18のステップS14、S15、S17およびS18それぞれの処理に代えて、図16のステップS14B、S15B、S17BおよびS18Bの処理を行うようにしてもよい。
 [モータ制御用ECUの変形例の説明]
 図19は、モータ制御用ECUの第1変形例を示すブロック図である。図19において、前述の図2の各部に対応する部分には、図2と同じ符号を付して示す。
 図19のモータ制御用ECU202Aでは、以下の(1),(2)において、図2のモータ制御用ECU202と異なっている。
(1)図2の路面反力特性設定部43に代えて、運動方程式設定部43Aが設けられている。
(2)手動操舵指令値生成部45Aの構成が、図2の手動操舵指令値生成部45の構成と異なっている。
 運動方程式設定部43Aは、上位ECU201から与えられる横偏差eに基づいて、目標仮想ばね反力Ttb,d(e)を設定する。また、運動方程式設定部43Aは、手動操舵指令値生成部45Aによって用いられる仮想負荷ばね剛性係数kmdおよび仮想負荷粘性減衰係数cmdを設定する。また、運動方程式設定部43Aは、手動操舵指令値生成部45Aによって用いられる第3~第6重みW3~W6を設定する。運動方程式設定部43Aは、運転支援モード時には、後述する係数/重み設定処理を行う。
 なお、重み設定部52は、運転モードが通常モードである場合には、第1重みW1を1に設定し、第2重みW2を0に設定するものとする。運転モードが運転支援モードである場合には、重み設定部52は、第1重みW1を0に設定し、第2重みW2を1に設定するものとする。
 したがって、運転モードが通常モードである場合には、アシストトルク指令値設定部44によって設定されたアシストトルクTasstが、モータトルク指令値Tm,cmdとしてトルク制御部51に与えられる。一方、運転モードが運転支援モードである場合には、角度制御部47によって演算される統合モータトルク指令値Tmint,cmdがモータトルク指令値Tm,cmdとしてトルク制御部51に与えられる。
 図20は、横偏差eに対する目標仮想ばね反力Ttb,d(e)の設定例を示すグラフである。
 横偏差eが-eL,s(ただし、eL,s>0)からeL,sまでの範囲では、目標仮想ばね反力Ttb,d(e)は、-Ttb,d,s(ただし、Ttb,d,s>0)からTtb,d,sまで、横偏差eが大きいほど大きくなるように設定されている。この例では、目標仮想ばね反力Ttb,d(e)は、線形的に変化しているが、非線形的に変化してもよい。この例では、eL,sは、零よりも大きくかつ、走行車線幅の1/2よりも小さい所定値に設定されている。
 横偏差eがeL,sからeL,m(ただし、eL,m>eL,s)までの範囲では、目標仮想ばね反力Ttb,d(e)は、Ttb,d,sからTtb,d,m(ただし、Ttb,d,m>Ttb,d,s)まで、横偏差eが大きいほど大きくなるように設定されている。横偏差eがeL,sからeL,mまでの範囲では、横偏差eが-eL,sからeL,sまでの範囲と比較して、目標仮想ばね反力Ttb,d(e)を表す直線の傾きが大きくなるように設定されている。この例では、目標仮想ばね反力Ttb,d(e)は、線形的に変化しているが、非線形的に変化してもよい。横偏差eがeL,mより大きい範囲では、目標仮想ばね反力Ttb,d(e)は、Ttb,d,mに設定されている。
 横偏差eが-eL,sから-eL,m(ただし、-eL,m<-eL,s)までの範囲では、目標仮想ばね反力Ttb,d(e)は、-Ttb,d,sから-Ttb,d,m(ただし、-Ttb,d,m<-Ttb,d,s)まで、横偏差eが小さいほど小さくなるように設定されている。横偏差eが-eL,sから-eL,mまでの範囲では、横偏差eが-eL,sからeL,sまでの範囲と比較して、目標仮想ばね反力Ttb,d(e)を表す直線の傾きが大きくなるように設定されている。この例では、目標仮想ばね反力Ttb,d(e)は、線形的に変化しているが、非線形的に変化してもよい。横偏差eが-eL,mより小さい範囲では、目標仮想ばね反力Ttb,d(e)は、-Ttb,d,mに設定されている。
 運動方程式設定部43Aによって設定される目標仮想ばね反力Ttb,d(e)は、手動操舵指令値生成部45Aに与えられる。
 この変形例では、運転支援モード時に使用される仮想負荷ばね剛性係数kmdとして、第1仮想負荷ばね剛性係数krと第2仮想負荷ばね剛性係数kgとの2種類の剛性係数が用意されている。
 図21は、横偏差eに対する第1仮想負荷ばね剛性係数krおよび第2仮想負荷ばね剛性係数kgの設定例を示すグラフである。
 第1仮想負荷ばね剛性係数krは、横偏差eの絶対値|e|が図20のeL,s以下の範囲にのみ設定される。第1仮想負荷ばね剛性係数krは、横偏差eにかかわらず、一定値k1に設定されている。k1は、0よりも大きな所定値である。第2仮想負荷ばね剛性係数kgは、横偏差eにかかわらず、一定値k3に設定されている。k3は、0よりも大きくかつk1よりも小さな値に設定されている。図21に示される第1仮想負荷ばね剛性係数krの値k1および第2仮想負荷ばね剛性係数kgの値k3は、メモリに記憶されている。
 この変形例では、運転支援モード時に使用される仮想負荷粘性減衰係数cmdとして、第1仮想負荷粘性減衰係数cr(e)と第2仮想負荷粘性減衰係数cgとの2種類の減衰係数が用意されている。
 図22は、横偏差eに対する第1仮想負荷粘性減衰係数cr(e)および第2仮想負荷粘性減衰係数cgの設定例を示すグラフである。
 第1仮想負荷粘性減衰係数c(e)は、横偏差eの絶対値|e|がeL,s以下のときには、一定値c1に設定されている。c1は、0よりも大きな所定値である。横偏差eの絶対値|e|がeL,sよりも大きいときには、第1仮想負荷粘性減衰係数c(e)は、c1からc1よりも大きいc2まで、横偏差eの絶対値|e|が大きいほど大きくなる特性にしたがって設定されている。図22では、第1仮想負荷粘性減衰係数c(e)は、c1からc2まで線形に変化しているが、非線形に変化してもよい。
 第2仮想負荷粘性減衰係数cgは、横偏差eにかかわらず、一定値c3に設定されている。c3は、0よりも大きくかつc1よりも小さな値に設定されている。
 図22に示される横偏差eに対する第1仮想負荷粘性減衰係数c(e)の値は、粘性減衰係数マップとしてメモリに記憶されている。また、図22に示される第2仮想負荷粘性減衰係数cgの値c3は、メモリに記憶されている。
 手動操舵指令値生成部45Aについて説明する。
 まず、特許文献2(国際公開第2023/286169号)に記載された手動操舵指令値生成部(以下、「比較例の手動操舵指令値生成部)という。)による手動操舵指令値θMD,cmdの設定方法について説明する。
 比較例の手動操舵指令値生成部は、図23のリファレンスEPSモデルを用いて、手動操舵指令値θMD,cmdを生成する。図23のリファレンスEPSモデルは、本開示の「操舵装置のリファレンスモデル」の一例である。
 このリファレンスEPSモデルは、ロアコラムを含む単一慣性モデルである。ロアコラムは、出力軸9およびウォームホイール21に対応する。ただし、このモデルは一例であり、上記以外の構成(例えばラックバーなど)を含む慣性モデルであってもよい。図23において、Jmdは、ロアコラムの慣性(以下、「コラム慣性」という。)であり、θcolはロアコラムの回転角であり、Ttbは、トーションバートルクである。ロアコラムには、トーションバートルクTtb、電動モータ18から出力軸9に作用するトルクN・Tおよび路面反力トルク(仮想反力)Trlが与えられる。
 路面反力トルクTrlは、仮想ばねの剛性係数である仮想負荷ばね剛性係数kmdおよび仮想ダンパの粘性減衰係数である仮想負荷粘性減衰係数cmdを用いて、次式(10)で表される。
Figure JPOXMLDOC01-appb-M000008
 仮想負荷ばね剛性係数kmdおよび仮想負荷粘性減衰係数cmdは、予め実験、解析等によって求められている。以下において、kmd・θcolを仮想ばね反力といい、cmd(dθcol/dt)を仮想ダンパ反力という場合がある。
 リファレンスEPSモデルの運動方程式は、次式(11)で表される。
Figure JPOXMLDOC01-appb-M000009
 式(11)において、Jmd・dθcol/dtは、ロアコラムに作用する慣性モーメントである。
 比較例の手動操舵指令値生成部は、Ttbにトルクセンサ12によって検出されるトーションバートルクTtbを代入し、Tにアシストトルク指令値設定部44によって設定されるアシストトルク指令値Tasstを代入して、式(11)の微分方程式を解くことにより、ロアコラムの回転角θcolを演算する。そして、比較例の手動操舵指令値生成部は、得られたロアコラムの回転角θcolを手動操舵指令値θMD,cmdとして生成する。このようにして、手動操舵指令値θMD,cmdを設定する方法を比較方法ということにする。
 式(11)の運動方程式は、TをTasstに置き換えるとともに、θcolをθMD,cmdに置き換えた運動方程式と等価である。
 比較方法では、仮想ばね反力として、仮想負荷ばね剛性係数kmdにロアコラムJmdの回転角θcol(手動操舵指令値θMD,cmd)を乗算した値が用いられている。このため、仮想負荷ばね剛性係数kmdとして車両基準位置の横位置に応じた値を用いたとしても、仮想ばね反力として車両基準位置の横位置に応じたトルクを設定することはできない。このため、比較方法では、協調制御モード時には、仮想ばね反力kmd・θcol(=kmd・θMD,cmd)は、成り行き任せの反力となる。
 この変形例では、手動操舵指令値生成部45Aは、前述したリファレンスEPSモデルの運動方程式(式(11))を利用して手動操舵指令値θMD,cmdを演算する。具体的には、この変形例では、手動操舵指令値生成部45Aは、前述したリファレンスEPSモデルの運動方程式(式(11))を変形した運動方程式を用いて手動操舵指令値θMD,cmdを演算する。
 図24は、手動操舵指令値生成部45Aの構成を示すブロック図である。
 図24において、Jmdは、コラム慣性である。sは、微分演算子である。θMD,cmdは、手動操舵指令値であり、比較方法のロアコラムの回転角θcolに相当する。kmdは、仮想負荷ばね剛性係数であり、運動方程式設定部43Aによって設定される。cmdは、仮想負荷粘性減衰係数であり、運動方程式設定部43Aによって設定される。Tasstは、アシストトルク指令値設定部44によって設定されるアシストトルク指令値である。
 手動操舵指令値生成部45Aは、減速比乗算部431と、加減算部401と、慣性除算部402と、第1積分部403と、第2積分部404と、仮想ダンパ反力演算部405と、第1仮想ばね反力演算部406と、第3重み乗算部407と、第2仮想ばね反力演算部408と、第5重み乗算部409と、第1加算部410と、第6重み乗算部411と、第2加算部412と、第4重み乗算部413と、第3加算部414とを含む。
 減速比乗算部431は、アシストトルク指令値Tasstに減速機19の減速比Nを乗算することにより、電動モータ18の回転軸に対するアシストトルク指令値Tasstを、出力軸9に対するアシストトルク指令値N・Tasstに変換する。減速比乗算部431によって演算された出力軸9に対するアシストトルク指令値N・Tasstは、加減算部401に与えられるとともに、第1加算部410に与えられる。
 加減算部401には、トーションバートルクTtbと、減速比乗算部431によって演算された出力軸9に対するアシストトルク指令値N・Tasstと、仮想ダンパ反力演算部405から与えられる仮想ダンパ反力cmd・dθMD,cmd/dtと、第3加算部414の加算結果Xが与えられる。
 加減算部401は、トーションバートルクTtbに出力軸9に対するアシストトルク指令値N・Tasstを加算し、その加算結果から仮想ダンパ反力θmd・dθMD,cmd/dtおよびXを減算する。これにより、加減算部401は、前記式(11)の左辺のJmd・dθcol/dtに相当する慣性モーメントJmd・dθMD,cmd/dt(=Ttb+N・Tasst-cmd・dθMD,cmd/dt-X)を演算する。
 慣性除算部402は、加減算部401によって演算された慣性モーメントJmd・dθMD,cmd/dtをコラム慣性Jmdで除算することにより、手動操舵指令値θMD,cmdの2階微分値dθMD,cmd/dtを演算する。
 第1積分部403は、手動操舵指令値θMD,cmdの2階微分値dθMD,cmd/dtを積分することにより、手動操舵指令値θMD,cmdの1階微分値dθMD,cmd/dtを演算する。
 第2積分部404は、手動操舵指令値θMD,cmdの1階微分値dθMD,cmd/dtを積分することにより、手動操舵指令値θMD,cmdを演算する。この手動操舵指令値θMD,cmdが、手動操舵指令値生成部45Aから出力される。
 仮想ダンパ反力演算部405は、第1積分部403によって演算された手動操舵指令値θMD,cmdの1階微分値dθMD,cmd/dtに仮想負荷粘性減衰係数cmdを乗算することにより、仮想ダンパ反力cmd・dθMD,cmd/dtを演算する。この仮想ダンパ反力cmd・dθMD,cmd/dtが、加減算部401にフィードバックされる。
 第1仮想ばね反力演算部406は、第2積分部404によって演算された手動操舵指令値θMD,cmdに仮想負荷ばね剛性係数kmdを乗算することにより、第1仮想ばね反力kmd・θMD,cmdを演算する。
 第3重み乗算部407は、第1仮想ばね反力kmd・θMD,cmdに第3重みW3を乗算する。
 第2仮想ばね反力演算部408は、第2積分部404によって演算された手動操舵指令値θMD,cmdに仮想負荷ばね剛性係数kmdを乗算することにより、第2仮想ばね反力kmd・θMD,cmdを演算する。
 第5重み乗算部409は、第2仮想ばね反力kmd・θMD,cmdに第5重みW5を乗算する。
 第1加算部410は、目標仮想ばね反力Ttb,d(e)に、減速比乗算部431によって演算された出力軸9に対するアシストトルク指令値N・Tasstを加算する。第6重み乗算部411は、第1加算部410の演算結果(Ttb,d(e)+N・Tasst)に第6重みW6を乗算する。
 第2加算部412は、第5重み乗算部409の演算結果W5・kmd・θMD,cmdと、第6重み乗算部411の演算結果W6・(Ttb,d(e)+N・Tasst)とを加算する。
 第4重み乗算部413は、第2加算部412の演算結果{W5・kmd・θMD,cmd+W6・(Ttb,d(e)+N・Tasst)}に第4重みW4を乗算する。
 第3加算部414は、第3重み乗算部407の演算結果W3・kmd・θMD,cmdと、第4重み乗算部413の演算結果W4・{W5・kmd・θMD,cmd+W6・(Ttb,d(e)+N・Tasst)}とを加算する。第3加算部414の加算結果[{W3・kmd・θMD,cmd}+W4・{W5・kmd・θMD,cmd+W6・(Ttb,d(e)+N・Tasst)}]がXとして、加減算部401にフィードバックされる。
 この変形例では、後述するように、車両が逸脱回避側(非逸脱側)に向かう状態である場合には、第3重みW3が1に設定され、第4重みW4が零に設定される。一方、車両が逸脱側に向かう状態である場合には、第3重みW3が零に設定され、第4重みW4が1に設定される。
 また、車両が逸脱側に向かう状態である場合において、横偏差eが-eL,sよりも大きくかつeL,sよりも小さい場合には、運転支援モードがレーン・センタリング・アシストモード(LCAモード)となり、第5重みW5が1に設定され、第6重みW6が零に設定される。
 一方、車両が逸脱側に向かう状態である場合において、横偏差eが-eL,s以下である場合またはeL,s以上である場合には、運転支援モードがレーン・キーピング・アシストモード(LKAモード)となり、第5重みW5が零に設定され、第6重みW6が1に設定される。
 車両が逸脱回避側(非逸脱側)に向かう状態である場合には、第3加算部414の加算結果Xは、kmd・θMD,cmdとなる。したがって、加減算部401の演算結果は、(Ttb+N・Tasst―cmd・dθMD,cmd/dt-kmd・θMD,cmd)となる。後述するように、この場合には、cmd=cg(図22参照),kmd=kg(図21参照)に設定されるので、加減算部401の演算結果は、(Ttb+N・Tasst―cg・dθMD,cmd/dt-kg・θMD,cmd)となる。
 この場合には、手動操舵指令値生成部45Aは、次式(12)の運動方程式に基づいて、手動操舵指令値θMD,cmdを演算する。
Figure JPOXMLDOC01-appb-M000010
 式(12)において、Jmd・dθMD,cmd/dtは慣性モーメントである。cg・dθMD,cmd/dtは仮想ダンパ反力である。kg・θMD,cmdは、仮想ばね反力である。
 つまり、車両が逸脱回避側に向かう状態である場合には、手動操舵指令値生成部45Aは、前記式(11)の運動方程式における仮想ダンパ反力cmd・dθcol/dtとしてcg・dθMD,cmd/dtを用い、前記式(11)の運動方程式における仮想ばね反力kmd・θcolとしてkg・θMD,cmdを用いて、手動操舵指令値θMD,cmdを演算する。
 車両が逸脱側に向かう状態であり、かつ、横偏差eが-eL,sよりも大きくかつeL,sよりも小さい場合には、第3加算部414の加算結果Xは、kmd・θMD,cmdとなる。したがって、加減算部401の演算結果は、(Ttb+N・Tasst―cmd・dθMD,cmd/dt-kmd・θMD,cmd)となる。後述するように、この場合には、cmd=cr(e)(図22参照),kmd=kr(図21参照)に設定されるので、加減算部401の演算結果は、(Ttb+N・Tasst―cr(e)・dθMD,cmd/dt-kr・θMD,cmd)となる。
 この場合には、手動操舵指令値生成部45Aは、次式(13)の運動方程式に基づいて、手動操舵指令値θMD,cmdを演算する。
Figure JPOXMLDOC01-appb-M000011
 式(13)において、Jmd・dθMD,cmd/dtは慣性モーメントである。cr(e)・dθMD,cmdは仮想ダンパ反力である。kr・θMD,cmdは、仮想ばね反力である。
 つまり、LCAモード時には、手動操舵指令値生成部45Aは、前記式(11)の運動方程式における仮想ダンパ反力cmd・dθcol/dtとして横偏差eに応じたcr(e)・dθMD,cmd/dtを用い、前記式(11)の運動方程式における仮想ばね反力kmd・θcolとしてkr・θMD,cmdを用いて、手動操舵指令値θMD,cmdを演算する。したがって、LCAモード時には、車両が逸脱回避側に向かう状態である場合に比べて、仮想ダンパ反力および仮想ばね反力を大きくすることができる。
 車両が逸脱側に向かう状態であり、かつ、横偏差eが-eL,s以下である場合またはeL,s以上である場合には、第3加算部414の加算結果Xは、Ttb,d(e)+N・Tasst)となる。したがって、加減算部401の演算結果は、(Ttb―cmd・dθMD,cmd/dt-Ttb,d(e))となる。後述するように、この場合には、cmd=cr(e)(図22参照)に設定されるので、加減算部401の演算結果は、(Ttb―cr(e)・dθMD,cmd/dt―Ttb,d(e))となる。
 この場合には、手動操舵指令値生成部45Aは、次式(14)の運動方程式に基づいて、手動操舵指令値θMD,cmdを演算する。
Figure JPOXMLDOC01-appb-M000012
 式(14)において、Jmd・dθMD,cmd/dtは慣性モーメントである。cr(e)・dθMD,cmdは仮想ダンパ反力である。Ttb,d(e)は、目標仮想ばね反力である。
 つまり、LKAモード時には、手動操舵指令値生成部45Aは、前記式(11)の運動方程式におけるN・T(=N・Tasst)を0とし、前記式(11)の運動方程式における仮想ダンパ反力cmd・dθcol/dtとして横偏差eに応じた仮想ダンパ反力cr(e)・dθMD,cmd/dtを用い、前記式(11)の運動方程式における仮想ばね反力kmd・θcolとして、横偏差eに応じた目標仮想ばね反力Ttb,d(e)を用いて、手動操舵指令値θMD,cmd演算する。
 したがって、LKAモード時には、車両が逸脱回避側に向かう状態である場合に比べて、仮想ダンパ反力を大きくすることができる。また、LKAモード時には、LCAモード時に比べて、横偏差eに対応した操舵反力をドライバに与えることができる。これにより、ドライバは、走行車線中央からの距離または車線までの距離を認識しやすくなる。
 なお、図24では、第1加算器410に減速比乗算部431の演算結果N・Tasstが与えられているが、第1加算器410に減速比乗算部431の演算結果N・Tasstを与えなくてもよい。この場合には、LKAモード時には、手動操舵指令値生成部45Aは、前記式(14)の右辺にN・Tasstが加算された運動方程式に基づいて、手動操舵指令値MD,cmdを演算することになる。
 図25Aおよび図25Bは、運転支援モード時に運動方程式設定部43Aによって行われる係数/重み設定処理の手順を示すフローチャートである。図25Aおよび図25Bに示される係数/重み設定処理は、運転支援モードが開始される毎に開始され、運転支援モードが解除されるまで、所定の演算周期毎に繰り返し実行される。
 運動方程式設定部43Aは、まず、上位ECU201から与えられる横偏差eおよび自動操舵指令値θAD,cmdならびに減速比除算部42によって演算される実操舵角θを取得する(ステップS31)。
 次に、運動方程式設定部43Aは、横偏差eが0よりも小さいか否かを判別する(ステップS32)。言い換えれば、運動方程式設定部43Aは、横偏差eの符号が負であるか否かを判別する。
 横偏差eが0よりも小さい場合には(ステップS32:YES)、運動方程式設定部43Aは、実操舵角θと自動操舵指令値θAD,cmdとの角度偏差Δθ(=θ-θAD,cmd)の時間微分値dΔθ/dtが所定の閾値β(ただしβ>0)以上であるか否かを判別する(ステップS33)。
 時間微分値dΔθ/dtがβ以上である場合には(ステップS33:YES)、運動方程式設定部43Aは、車両が逸脱回避側(非逸脱側)に向かう状態であると判定し、ステップS34に移行する。
 ステップS34では、運動方程式設定部43Aは、第3重みW3を1、第4重みW4を0に設定し、第2仮想負荷ばね剛性係数kgを仮想負荷ばね剛性係数kmdとして設定し、第2仮想負荷粘性減衰係数cgを仮想負荷粘性減衰係数cmdとして設定する。これにより、手動操舵指令値生成部45Aは、前記式(12)に基づいて手動操舵指令値θMD,cmdを演算する。ステップS34の処理が行われると、運動方程式設定部43Aは、今回の演算周期での処理を終了する。
 前記ステップS33において、時間微分値dΔθ/dtがβ未満であると判別された場合には(ステップS33:NO)、運動方程式設定部43Aは、車両が逸脱側に向かう状態であると判定し、ステップS35に移行する。
 ステップS35では、運動方程式設定部43Aは、第3重みW3を0、第4重みW4を1に設定する。さらに、運動方程式設定部43Aは、第1仮想負荷粘性減衰係数cr(e)を仮想負荷粘性減衰係数cmdとして設定する。具体的には、運動方程式設定部43Aは、図22の横偏差eに対する第1仮想負荷粘性減衰係数cr(e)の値を記憶した粘性減衰係数マップとステップS31で取得した横偏差eとに基づいて、当該横偏差eに応じた第1仮想負荷粘性減衰係数cr(e)の値を、仮想負荷粘性減衰係数cmdとして設定する。
 そして、運動方程式設定部43Aは、横偏差eが-eL,sよりも大きくかつeL,sよりも小さいというLCAモード条件を満たしているか否かを判別する(ステップS36)。
 LCAモード条件を満たしている場合には(ステップS36:YES)、運動方程式設定部43Aは、第5重みW5を1、第6重みW6を0に設定し、第1仮想負荷ばね剛性係数krを仮想負荷ばね剛性係数kmdとして設定する(ステップS37)。これにより、手動操舵指令値生成部45Aは、前記式(13)に基づいて手動操舵指令値θMD,cmdを演算する。ステップS37の処理が行われると、運動方程式設定部43Aは、今回の演算周期での処理を終了する。
 前記ステップS36において、LCAモード条件を満たしていないと判別された場合には(ステップS36:NO)、運動方程式設定部43Aは、第5重みW5を0、第6重みW6を1に設定する(ステップS38)。これにより、手動操舵指令値生成部45Aは、前記式(14)に基づいて手動操舵指令値θMD,cmdを演算する。ステップS38の処理が行われると、運動方程式設定部43Aは、今回の演算周期での処理を終了する。
 前記ステップS32において、横偏差eが0以上であると判別された場合には(ステップS32:NO)、運動方程式設定部43Aは、時間微分値dΔθ/dtが-β以下であるか否かを判別する(ステップS39)。
 時間微分値dΔθ/dtが-β以下である場合には(ステップS39:YES)、運動方程式設定部43Aは、車両が逸脱回避側に向かう状態であると判定し、ステップS40に移行する。
 ステップS40では、運動方程式設定部43Aは、第3重みW3を1、第4重みW4を0に設定し、第2仮想負荷ばね剛性係数kgを仮想負荷ばね剛性係数kmdとして設定し、第2仮想負荷粘性減衰係数cgを仮想負荷粘性減衰係数cmdとして設定する。これにより、手動操舵指令値生成部45Aは、前記式(12)に基づいて手動操舵指令値θMD,cmdを演算する。ステップS40の処理が行われると、運動方程式設定部43Aは、今回の演算周期での処理を終了する。
 前記ステップS39において、時間微分値dΔθ/dtが-βよりも大きいと判別された場合には(ステップS39:NO)、運動方程式設定部43Aは、車両が逸脱側に向かう状態であると判定し、ステップS41に移行する。
 ステップS41では、運動方程式設定部43Aは、第3重みW3を0、第4重みW4を1に設定する。運動方程式設定部43Aは、さらに、第1仮想負荷粘性減衰係数cr(e)を仮想負荷粘性減衰係数cmdとして設定する。
 そして、運動方程式設定部43Aは、横偏差eが-eL,sよりも大きくかつeL,sよりも小さいというLCAモード条件を満たしているか否かを判別する(ステップS42)。
 LCAモード条件を満たしている場合には(ステップS42:YES)、運動方程式設定部43Aは、第5重みW5を1、第6重みW6を0に設定し、第1仮想負荷ばね剛性係数krを仮想負荷ばね剛性係数kmdとして設定する(ステップS43)。これにより、手動操舵指令値生成部45Aは、前記式(13)に基づいて手動操舵指令値θMD,cmdを演算する。ステップS43の処理が行われると、運動方程式設定部43Aは、今回の演算周期での処理を終了する。
 前記ステップS42において、LCAモード条件を満たしていないと判別された場合には(ステップS42:NO)、運動方程式設定部43Aは、第5重みW5を0、第6重みW6を1に設定する(ステップS44)。これにより、手動操舵指令値生成部45Aは、前記式(14)に基づいて手動操舵指令値θMD,cmdを演算する。ステップS44の処理が行われると、運動方程式設定部43Aは、今回の演算周期での処理を終了する。
 [係数/重み設定処理の変形例の説明]
 仮想負荷ばね剛性係数kmdが、第1仮想負荷ばね剛性係数krから第2仮想負荷ばね剛性係数kgに切り替えられる際には、第1仮想負荷ばね剛性係数krから第2仮想負荷ばね剛性係数kgまで仮想負荷ばね剛性係数kmdを漸減させることが好ましい。仮想負荷ばね剛性係数kmdが、第2仮想負荷ばね剛性係数kgから第1仮想負荷ばね剛性係数krに切り替えられる際には、第1仮想負荷ばね剛性係数krから第2仮想負荷ばね剛性係数まで仮想負荷ばね剛性係数kmdを漸増させることが好ましい。
 仮想負荷粘性減衰係数cmdが、第1仮想負荷粘性減衰係数cr(e)から第2仮想負荷粘性減衰係数cgに切り替えられる際には、第1仮想負荷粘性減衰係数cr(e)から第2仮想負荷粘性減衰係数cgまで仮想負荷粘性減衰係数cmdを漸減させることが好ましい。仮想負荷粘性減衰係数cmdが、第2仮想負荷粘性減衰係数cgから第1仮想負荷粘性減衰係数cr(e)に切り替えられる際には、第2仮想負荷粘性減衰係数cgから第1仮想負荷粘性減衰係数cr(e)まで仮想負荷粘性減衰係数cmdを漸増させることが好ましい。
 第3重みW3を1から0に切り替える場合には、第3重みW3を1から0まで漸減させることが好ましい。同様に、第3重みW3を0から1に切り替える場合には、第3重みW3を0から1まで漸増させることが好ましい。他の重みW4~W6についても同様である。
 運転モードが通常モードである場合には、第1重みW1が1に設定され、第2重みW2が0に設定されるので、手動操舵指令値θMD,cmdは、モータトルク指令値Tm,cmdに反映されない。言い換えれば、手動操舵指令値θMD,cmdに基づく操舵反力は反映されない。しかし、通常モード時においても、手動操舵指令値生成部45Aが手動操舵指令値θMD,cmdの演算動作を継続できるようにするために、運動方程式設定部43Aに、仮想負荷ばね剛性係数kmd、仮想負荷粘性減衰係数cmdおよび目標仮想ばね反力Ttb,d(e)を設定させるようにしてもよい。
 この場合、運転モードが通常モードである場合には、運動方程式設定部43Aは、仮想負荷ばね剛性係数kmdを予め設定した所定値kに設定し、仮想負荷粘性減衰係数cmdを予め設定した所定値cに設定し、目標仮想ばね反力Ttb,d(e)を予め設定した所定値Ttb,dMに設定してもよい。kは、例えば、図21のk1に設定されてもよい。cは、例えば、図22のc1に設定されてもよい。Ttb,dMは、例えば、図20のTtb,d,sに設定されてもよい。
 なお、通常モード時に手動操舵指令値生成部45Aの動作を停止させてもよい。この場合には、運動方程式設定部43Aは、通常モード時に、仮想負荷ばね剛性係数kmd、仮想負荷粘性減衰係数cmdおよび目標仮想ばね反力Ttb,d(e)を設定しなくてもよい。
 なお、ステップS33において、時間微分値dΔθ/dtがβ未満であると判別された場合には(ステップS33:NO)、図25Aに破線のステップS51で示すように、第3重みW3および第5重W5を0、第4重みW4および第6重W6を1に設定し、第1仮想負荷粘性減衰係数cr(e)を仮想負荷粘性減衰係数cmdとして設定するようにしてもよい。
 同様に、ステップS39において、時間微分値dΔθ/dtが-βより大きいと判別された場合には(ステップS39:NO)、図25Bに破線のステップS52で示すように、第3重みW3および第5重W5を0、第4重みW4および第6重W6を1に設定し、第1仮想負荷粘性減衰係数cr(e)を仮想負荷粘性減衰係数cmdとして設定するようにしてもよい。
 なお、前述の変形例では、仮想負荷粘性減衰係数cmdの値は、車両が逸脱回避側に向かう状態であると判別された場合と、車両が逸脱側に向かう状態であると判別された場合とで、切り替えられているが、これらの間で切り替えなくてもよい。具体的には、仮想負荷粘性減衰係数cmdの値は、固定値であってもよい。
 [図19の手動操舵指令値生成部の変形例の説明]
 図19の手動操舵指令値生成部45Aの代わりに、図19に破線で示すように、自動操舵指令値θAD.cmdがさらに入力される手動操舵指令値生成部45Bを用いてもよい。以下において、手動操舵指令値生成部45Aの代わり手動操舵指令値生成部45Bが用いられたモータ制御用ECU202Bを、モータ制御用ECUの第2変形例ということにする。
 図26は、手動操舵指令値生成部45Bの構成を示すブロック図である。図26において、前述の図19の各部に対応する部分には、図19と同じ符号を付して示す。
 手動操舵指令値生成部45Bは、減速比乗算部431と、加減算部401と、慣性除算部402と、第1積分部403と、第2積分部404と、第1仮想ダンパ反力演算部405と、第1仮想ばね反力演算部406と、第3重み乗算部407と、第2仮想ばね反力演算部408と、第5重み乗算部409と、1階微分部421と、第2仮想ダンパ反力演算部422と、2階微分部423と、慣性乗算部424と、第1加算部410と、第6重み乗算部411と、第2加算部412と、第4重み乗算部413と、第3加算部414とを含む。
 図26の手動操舵指令値生成部45Bでは、図24の手動操舵指令値生成部45Aに対して、1階微分部421と、第2仮想ダンパ反力演算部422と、2階微分部423と、慣性乗算部424とが追加されている。
 1階微分部421は、自動操舵指令値θAD,cmdを1階微分する。第2仮想ダンパ反力演算部422は、自動操舵指令値θAD,cmdの1階微分値dθAD,cmd/dtに仮想負荷粘性減衰係数cmdを乗算することにより、第2仮想ダンパ反力cmd・dθAD,cmd/dtを演算する。第2仮想ダンパ反力cmd・dθAD,cmd/dtは、自動操舵指令値θAD,cmdに対する仮想ダンパ反力である。以下において、第1仮想ダンパ反力演算部405によって演算される仮想ダンパ反力cmd・dθMD,cmd/dtを、第1仮想ダンパ反力ということにする。
 2階微分部423は、自動操舵指令値θAD,cmdを2階微分する。慣性乗算部424は、自動操舵指令値θAD,cmdの2階微分値dθAD,cmd/dtにコラム慣性Jmdを乗算することにより、自動操舵指令値θAD,cmdに対する慣性モーメントJmd・dθAD,cmd/dtを演算する。
 第1加算部410は、自動操舵指令値θAD,cmdに対する仮想ダンパ反力(第2仮想ダンパ反力)cmd・dθAD,cmd/dtに、自動操舵指令値θAD,cmdに対する慣性モーメントJmd・dθAD,cmd/dt、目標仮想ばね反力Ttb,d(e)および出力軸9に対するアシストトルク指令値N・Tasstを加算する。
 第6重み乗算部411は、第1加算部410の演算結果(cmd・dθAD,cmd/dt+Jmd・dθAD,cmd/dt+Ttb,d(e)+N・Tasst)に第6重みW6を乗算する。
 第2加算部412は、第5重み乗算部409の演算結果W5・kmd・θMD,cmdと、第6重み乗算部411の演算結果W6・(cmd・dθAD,cmd/dt+Jmd・dθAD,cmd/dt+Ttb,d(e)+N・Tasst)とを加算する。
 第4重み乗算部413は、第2加算部412の演算結果{W5・kmd・θMD,cmd+W6・(cmd・dθAD,cmd/dt+Jmd・dθAD,cmd/dt+Ttb,d(e)+N・Tasst)}に第4重みW4を乗算する。
 第3加算部414は、第3重み乗算部407の演算結果W3・kmd・θMD,cmdと、第4重み乗算部413の演算結果W4・{W5・kmd・θMD,cmd+W6・(cmd・dθAD,cmd/dt+Jmd・dθAD,cmd/dt+Ttb,d(e)+N・Tasst)}とを加算する。第3加算部414の加算結果[{W3・kmd・θMD,cmd}+W4・{W5・kmd・θMD,cmd+W6・(cmd・dθAD,cmd/dt+Jmd・dθAD,cmd/dt+Ttb,d(e)+N・Tasst)}]がYとして、加減算部401にフィードバックされる。
 この変形例においても、運動方程式設定部43Aは、運転支援モード時には、図25Aおよび図25Bを用いて説明した係数/重み設定処理と同じ処理を行う。
 したがって、車両が逸脱回避側(非逸脱側)に向かう状態である場合には、第3重みW3が1に設定され、第4重みW4が零に設定される。一方、車両が逸脱側に向かう状態である場合には、第3重みW3が零に設定され、第4重みW4が1に設定される。
 また、車両が逸脱側に向かう状態である場合において、横偏差eが-eL,sよりも大きくかつeL,sよりも小さい場合には、運転支援モードがLCAモードとなり、第5重みW5が1に設定され、第6重みW6が零に設定される。
 一方、車両が逸脱側に向かう状態である場合において、横偏差eが-eL,s以下である場合またはeL,s以上である場合には、運転支援モードがLKAモードとなり、第5重みW5が零に設定され、第6重みW6が1に設定される。
 車両が逸脱回避側(非逸脱側)に向かう状態である場合には、第3加算部414の加算結果Yは、kmd・θMD,cmdとなる。したがって、加減算部401の演算結果は、(Ttb+N・Tasst―cmd・dθMD,cmd/dt-kmd・θMD,cmd)となる。この場合には、cmd=cg(図22参照),kmd=kg(図21参照)に設定されるので、加減算部401の演算結果は、(Ttb+N・Tasst―cg・dθMD,cmd/dt-kg・θMD,cmd)となる。
 この場合には、手動操舵指令値生成部45Bは、前記式(12)の運動方程式に基づいて、手動操舵指令値θMD,cmdを演算する。
 車両が逸脱側に向かう状態であり、かつ、横偏差eが-eL,sよりも大きくかつeL,sよりも小さい場合には、第3加算部414の加算結果Yは、kmd・θMD,cmdとなる。したがって、加減算部401の演算結果は、(Ttb+N・Tasst―cmd・dθMD,cmd/dt-kmd・θMD,cmd)となる。この場合には、cmd=cr(e)(図22参照),kmd=kr(図21参照)に設定されるので、加減算部401の演算結果は、(Ttb+N・Tasst―cr(e)・dθMD,cmd/dt-kr・θMD,cmd)となる。
 この場合には、手動操舵指令値生成部45Bは、前記式(13)の運動方程式に基づいて、手動操舵指令値θmdを演算する。
 したがって、LCAモード時には、車両が逸脱回避側に向かう状態である場合に比べて、仮想ダンパ反力および仮想ばね反力を大きくすることができる。
 車両が逸脱側に向かう状態であり、かつ、横偏差eが-eL,s以下である場合またはeL,s以上である場合には、第3加算部414の加算結果Yは、(cmd・dθAD,cmd/dt+Jmd・dθAD,cmd/dt+Ttb,d(e)+N・Tasst)となる。したがって、加減算部401の演算結果は、(Ttb―cmd・dθMD,cmd/dt-cmd・dθAD,cmd/dt-Jmd・dθAD,cmd/dt―Ttb,d(e))となる。この場合には、cmd=cr(e)(図22参照)に設定されるので、加減算部401の演算結果は、{(Ttb―(cr(e)・dθMD,cmd/dt+cr(e)・dθAD,cmd/dt)-Jmd・dθAD,cmd/dt―Ttb,d(e)}となる。
 この場合には、手動操舵指令値生成部45Bは、次式(15)の運動方程式に基づいて、手動操舵指令値θmdを演算する。
Figure JPOXMLDOC01-appb-M000013
 式(15)において、(Jmd・dθMD,cmd/dt+Jmd・dθAD,cmd/dt)は、慣性モーメントである。(cr(e)・dθMD,cmd/dt+cr(e)・dθAD,cmd/dt)は、仮想ダンパ反力である。Ttb,d(e)は目標仮想ばね反力である。
 つまり、LKAモード時には、手動操舵指令値生成部45Bは、前記式(11)の運動方程式におけるN・T(=N・Tasst)を0とし、前記式(11)の慣性モーメントJmd・dθcol/dt、仮想ダンパ反力cmd・dθcol/dtおよび仮想ばね反力kmd・θcolとして、それぞれ、(Jmd・dθMD,cmd/dt+Jmd・dθAD,cmd/dt)、(cr(e)・dθMD,cmd/dt+cr(e)・dθAD,cmd/dt)およびTtb,d(e)を用いて、手動操舵指令値θMD,cmdを演算する。
 したがって、LKAモード時には、車両が逸脱回避側に向かう状態である場合に比べて、仮想ダンパ反力を大きくすることができる。また、LKAモード時には、LCAモード時に比べて、横偏差eに対応した操舵反力をドライバに与えることができる。これにより、ドライバは、走行車線中央からの距離または車線までの距離を認識しやすくなる。
 なお、図26では、第1加算器410に減速比乗算部431の演算結果N・Tasstが与えられているが、第1加算器410に減速比乗算部431の演算結果N・Tasstを与えなくてもよい。この場合には、LKAモード時には、手動操舵指令値生成部45Bは、前記式(15)の右辺にN・Tasstが加算された運動方程式に基づいて、手動操舵指令値θMD,cmdを演算することになる。
 モータ制御用ECUの第2変形例では、前述のモータ制御用ECUの第1変形例と同様な効果を奏する。モータ制御用ECUの第2変形例では、モータ制御用ECUの第1変形例に比べて、LKAモード時においてドライバの違和感を低減できるという効果を奏する。以下、この点について、説明する。
 図19および図5を参照して、協調操舵モード時には、実舵角θが統合角度指令値θint,cmdに追従するように、電動モータ18が制御される。実舵角θが統合角度指令値θint,cmdに完全に追従していると仮定すると、θint,cmd=θ-θAD,cmdという関係が成り立つ。
 この場合、前記式(15)内の手動操舵指令値θMD,cmdに対する仮想ダンパ反力cr(e)・dθMD,cmd/dtは、次式(16)で表される。
Figure JPOXMLDOC01-appb-M000014
 また、前記式(15)内の手動操舵指令値θMD,cmdに対する慣性モーメントJmd・dθMD,cmd/dtは、次式(17)で表される。
Figure JPOXMLDOC01-appb-M000015
 つまり、cr(e)・dθMD,cmd/dtは、実舵角θの1階微分に応じた実舵角成分cr(e)・dθ/dtと、自動操舵指令値θAD,cmdの1階微分に応じた自動操舵成分-cr(e)・dθAD,cmd/dtとを含む。同様に、Jmd・dθMD,cmd/dtは、実舵角θの2階微分に応じた実舵角成分Jmd・dθ/dtと、自動操舵指令値θAD,cmdの2階微分に応じた自動操舵成分-Jmd・dθAD,cmd/dtとを含む。
 これらの実舵角成分cr(e)・dθ/dtおよびJmd・dθ/dtは、ドライバの挙動に対応するため、ドライバは違和感を抱かない。一方、これらの自動操舵成分-cr(e)・dθAD,cmd/dtおよび-Jmd・dθAD,cmd/dtはドライバの挙動と関係がないため、ドライバが違和感を抱くおそれがある。-dθAD,cmd/dtの絶対値は、-dθAD,cmd/dtの絶対値よりも大きいため、特に、仮想ダンパ反力の自動操舵成分-cr(e)・dθAD,cmd/dtは、操舵感に悪影響を及ぼしやすい。
 モータ制御用ECUの第2変形例では、前記式(15)の運動方程式は、仮想ダンパ反力として、手動操舵指令値θMD,cmdに対する仮想ダンパ反力cr(e)・dθMD,cmd/dtに加えて自動操舵指令値θAD,cmdに対する仮想ダンパ反力cr(e)・dθAD,cmd/dtを含む。また、前記式(15)の運動方程式は、慣性モーメントとして、手動操舵指令値θMD,cmdに対する慣性モーメントJmd・dθMD,cmd/dtに加えて自動操舵指令値θAD,cmdに対する慣性モーメントJmd・dθAD,cmd/dtを含む。
 これにより、手動操舵指令値θmdに対する仮想ダンパ反力cr(e)・dθMD,cmd/dtに含まれる自動操舵成分-cr(e)・dθAD,cmd/dtを低下させることができる。同様に、手動操舵指令値θMD,cmdに対する慣性モーメントJmd・dθMD,cmd/dtに含まれる自動操舵成分-Jmd・dθAD,cmd/dtを低下させることができる。これにより、LKAモード時において、ドライバの違和感を低減できる。
 θMD,cmd=θ-θAD,cmdという関係が成り立つと仮定した場合には、式(15)の運動方程式は、次式(18)に示すようになる。
Figure JPOXMLDOC01-appb-M000016
 この場合には、cr(e)・dθMD,cmd/dtに含まれる自動操舵成分-cr(e)・dθAD,cmd/dtが補償され、実舵角θに対する実舵角成分cr(e)・dθ/dtのみが残る。また、Jmd・dθMD,cmd/dtに含まれる自動操舵成分-Jmd・dθAD,cmd/dtが補償され、実舵角θに対するJmd・dθ/dtのみが残る。
 前述の[係数/重み設定処理の変形例の説明]で説明した内容は、図19の手動操舵指令値生成部45Aの変形例である手動操舵指令値生成部45Bにおいても適用することができる。
 また、前述のモータ制御用ECUの第1変形例および第2変形例において、重み設定部52は、運転支援モード時には前述の図9と同様な重み処理を行うようにしてもよい。ただし、図9のステップS2およびS4のαは、eL,s(図20~図22参照)に置き換えられる。
 この場合には、運転支援モード時において、車両基準位置と車線中央との距離がeL,sよりも大きい場合には、重み設定部52は、第1重みW1を0に設定し、第2重みW2を1に設定する。一方、運転支援モード時において、車両基準位置と車線中央との距離がeL,s以下である場合には、重み設定部52は、第1重みW1を1に設定し、第2重みW2を0に設定する。したがって、運転支援モード時であっても、車両基準位置と車線中央との距離がeL,s以下である場合には、統合モータトルク指令値Tmint,cmdではなく、アシストトルク指令値Tasstに基づいて電動モータ18が駆動制御される。
 なお、第1重みW1を1から0に切り替える場合には、第1重みW1を1から0まで漸減させることが好ましい。同様に、第1重みW1を0から1に切り替える場合には、第1重みW1を0から1まで漸減させることが好ましい。第2重みW2についても同様である。
 なお、運転モードが通常モードである場合には、重み設定部52は、第1重みW1を1に設定し、第2重みW2を0に設定する。
 以上、この発明の第1~第4実施形態、重み設定部の変形例およびモータ制御用ECUの変形例について説明したが、この発明はさらに他の形態で実施することもできる。
 前述の第1~第4実施形態およびモータ制御用ECUの変形例では、車両横位置としては、車両が現在走行している車線の中央から、車両基準位置までの距離である横偏差eが用いられている。しかし、車両が現在走行している車線の境界(車線境界)から車両基準位置までの距離を車両横位置として用いてもよい。
 前述の第1~第4実施形態およびモータ制御用ECUの変形例では、アシストトルク指令値Tasstに第1重みW1が乗算され、第1重み乗算後のアシストトルク指令値W1・Tasstが加算部50に与えられている。しかし、これに代えて、手動操舵指令値θMD,cmdに応じた手動トルク指令値に第1重みW1を乗算し、第1重み乗算後の手動トルク指令値を加算部50に与えるようにしてもよい。
 また、前述の第1~第4実施形態およびモータ制御用ECUの変形例では、角度制御部47(図5参照)は、フィードフォワード制御部63を備えているが、フィードフォワード制御部63を省略してもよい。この場合には、フィードバック制御部62によって演算されるフィードバック制御トルクTfbが基本目標トルクとなる。
 前述の第1~第4実施形態およびモータ制御用ECUの変形例では、この発明をコラムタイプEPSに適用した場合の例を示したが、この発明は、コラムタイプ以外のEPSにも適用することができる。また、この発明は、ステアバイワイヤシステムにも適用することができる。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
 この出願は、2022年11月14日に日本国特許庁に提出された特願2022-181888号に対応しており、それらの出願の全開示はここに引用により組み込まれるものとする。
 1…電動パワーステアリング装置、3…転舵輪、4…転舵機構、18…電動モータ、43…路面反力特性設定部、43A…運動方程式設定部、44…アシストトルク指令値設定部、45,45A,45B…手動操舵指令値生成部、46…統合角度指令値演算部、47…角度制御部、48…第1重み乗算部、49…第2重み乗算部、50…加算部、51…トルク制御部、52…重み設定部、201…上位ECU、202,202A,202B…モータ制御用ECU

Claims (7)

  1.  操舵装置の電動モータを駆動制御するためのモータ制御装置であって、
     前記操舵装置のリファレンスモデルの運動方程式を利用して、手動操舵指令値を生成する手動操舵指令値生成部と、
     運転支援モード時に与えられる自動操舵指令値に前記手動操舵指令値を加算して、統合角度指令値を演算する統合角度指令値演算部と、
     前記統合角度指令値に基づいて、舵角制御用の電動モータを角度制御する制御部と、
     前記自動操舵指令値と実操舵角との角度偏差の時間微分値に応じて、前記運動方程式を変更する運動方程式設定部とを含む、モータ制御装置。
  2.  前記運動方程式は、路面反力特性係数を含んでおり、
     前記運動方程式設定部は、前記運動方程式に含まれる路面反力特性係数のうちの少なくとも1つの路面反力特性係数の値を変更することにより、前記運動方程式を変更する、請求項1に記載のモータ制御装置。
  3.  前記運動方程式設定部は、第1の運動方程式と第2の運動方程式とを切り替えることにより、前記運動方程式を変更するように構成されており、
     前記第1の運動方程式では、仮想ばね反力として、車両基準位置の走行車線に対する横位置に応じた目標仮想ばね反力が用いられ、
     前記第2の運動方程式では、仮想ばね反力として、前記横位置にかかわらず一定値の仮想負荷ばね剛性係数を用いて設定される仮想ばね反力が用いられる、請求項1に記載のモータ制御装置。
  4.  前記運動方程式設定部は、車両基準位置の走行車線に対する横位置および前記角度偏差のうちのいずれか一方と、前記時間微分値とに基づいて、前記車両が逸脱側に向かう状態であるか、前記車両が逸脱回避側に向かう状態であるかを判定し、その判定結果に基づいて、前記運動方程式を変更するように構成されている、請求項1~3のいずれか一項に記載のモータ制御装置。
  5.  前記運動方程式設定部は、車両基準位置の走行車線に対する横位置および前記角度偏差のうちのいずれか一方と、前記時間微分値とに基づいて、前記車両が逸脱側に向かう状態であるか、前記車両が逸脱回避側に向かう状態であるかを判定し、前記車両が逸脱回避側に向かう状態では、前記車両が逸脱側に向かう状態に比べて、前記運動方程式に含まれる前記路面反力特性係数のうちの少なくとも1つの路面反力特性係数の値を小さくする、請求項2に記載のモータ制御装置。
  6.  前記運動方程式設定部は、車両基準位置の走行車線に対する横位置および前記角度偏差のうちのいずれか一方と、前記時間微分値とに基づいて、前記車両が逸脱側に向かう状態であるか、前記車両が逸脱回避側に向かう状態であるかを判定し、前記車両が逸脱側に向かう状態では、前記運動方程式に含まれる前記路面反力特性係数のうちの少なくとも1つの路面反力特性係数を、前記横位置に応じて変化させる、請求項2に記載のモータ制御装置。
  7.  前記運動方程式設定部は、前記時間微分値を用いて、前記車両が逸脱側に向かう状態であるか、前記車両が逸脱回避側に向かう状態であるかを判定し、前記車両が逸脱側に向かう状態では、前記運動方程式として前記第1の運動方程式を設定し、前記車両が逸脱回避側に向かう状態では、前記運動方程式として前記第2の運動方程式を設定する、請求項3に記載のモータ制御装置。
PCT/JP2023/040764 2022-11-14 2023-11-13 モータ制御装置 WO2024106377A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-181888 2022-11-14
JP2022181888 2022-11-14

Publications (1)

Publication Number Publication Date
WO2024106377A1 true WO2024106377A1 (ja) 2024-05-23

Family

ID=91084419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040764 WO2024106377A1 (ja) 2022-11-14 2023-11-13 モータ制御装置

Country Status (1)

Country Link
WO (1) WO2024106377A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003016600A (ja) * 2001-06-12 2003-01-17 Hyundai Motor Co Ltd 自動車の車線離脱防止システム及びその制御方法
JP2006175957A (ja) * 2004-12-21 2006-07-06 Nissan Motor Co Ltd 車線逸脱防止装置
WO2009110151A1 (ja) * 2008-03-04 2009-09-11 日産自動車株式会社 車線維持支援装置及び車線維持支援方法
JP2019194059A (ja) * 2018-04-27 2019-11-07 株式会社ジェイテクト モータ制御装置
JP2020019346A (ja) * 2018-07-31 2020-02-06 株式会社ジェイテクト モータ制御装置
JP2023048867A (ja) * 2021-09-28 2023-04-07 株式会社ジェイテクト モータ制御装置
WO2023100369A1 (ja) * 2021-12-03 2023-06-08 株式会社ジェイテクト モータ制御装置
WO2023144895A1 (ja) * 2022-01-25 2023-08-03 株式会社ジェイテクト モータ制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003016600A (ja) * 2001-06-12 2003-01-17 Hyundai Motor Co Ltd 自動車の車線離脱防止システム及びその制御方法
JP2006175957A (ja) * 2004-12-21 2006-07-06 Nissan Motor Co Ltd 車線逸脱防止装置
WO2009110151A1 (ja) * 2008-03-04 2009-09-11 日産自動車株式会社 車線維持支援装置及び車線維持支援方法
JP2019194059A (ja) * 2018-04-27 2019-11-07 株式会社ジェイテクト モータ制御装置
JP2020019346A (ja) * 2018-07-31 2020-02-06 株式会社ジェイテクト モータ制御装置
JP2023048867A (ja) * 2021-09-28 2023-04-07 株式会社ジェイテクト モータ制御装置
WO2023100369A1 (ja) * 2021-12-03 2023-06-08 株式会社ジェイテクト モータ制御装置
WO2023144895A1 (ja) * 2022-01-25 2023-08-03 株式会社ジェイテクト モータ制御装置

Similar Documents

Publication Publication Date Title
JP7236037B2 (ja) 車両用操舵装置
EP3608203B1 (en) Motor control apparatus
JP7194326B2 (ja) モータ制御装置
JP7129004B2 (ja) モータ制御装置
JP4779495B2 (ja) 車両用操舵装置
US11685430B2 (en) Motor control device
EP3626580B1 (en) Motor control device and motor control method
JP7256958B2 (ja) 電動パワーステアリング装置
US11745792B2 (en) Steering device
WO2023144895A1 (ja) モータ制御装置
WO2023100369A1 (ja) モータ制御装置
WO2024106377A1 (ja) モータ制御装置
JP2023048867A (ja) モータ制御装置
WO2023079765A1 (ja) モータ制御装置
WO2023084646A1 (ja) 操舵装置
WO2023062748A1 (ja) モータ制御装置
EP4372980A1 (en) Motor control device
WO2023139808A1 (ja) モータ制御装置
WO2023079764A1 (ja) モータ制御装置
JP2023069907A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891524

Country of ref document: EP

Kind code of ref document: A1