WO2024105924A1 - Manufacturing-device status confirmation system - Google Patents

Manufacturing-device status confirmation system Download PDF

Info

Publication number
WO2024105924A1
WO2024105924A1 PCT/JP2023/024789 JP2023024789W WO2024105924A1 WO 2024105924 A1 WO2024105924 A1 WO 2024105924A1 JP 2023024789 W JP2023024789 W JP 2023024789W WO 2024105924 A1 WO2024105924 A1 WO 2024105924A1
Authority
WO
WIPO (PCT)
Prior art keywords
target data
video data
inspection
video
image data
Prior art date
Application number
PCT/JP2023/024789
Other languages
French (fr)
Japanese (ja)
Inventor
英明 澤田
Original Assignee
Ckd株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ckd株式会社 filed Critical Ckd株式会社
Publication of WO2024105924A1 publication Critical patent/WO2024105924A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/02Enclosing successive articles, or quantities of material between opposed webs
    • B65B9/04Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]

Definitions

  • the present invention relates to a system for checking the occurrence of a manufacturing defect when it occurs in a manufacturing device that performs various processes on transported workpieces.
  • Some manufacturing devices manufacture various products by repeatedly performing various processes on workpieces that are transported without changing the order.
  • One example of such a manufacturing device is a blister packaging machine that transports a container film as a workpiece and repeatedly performs various processes on the container film to sequentially manufacture blister sheets as products.
  • the various processes include, for example, a process for forming pockets in the container film, a process for placing contents such as tablets in the pockets, and a process for attaching a cover film to the container film.
  • defects may occur with the workpiece itself or with the processing of the workpiece.
  • the container film before processing may have holes or stains, the pocket may be poorly formed, the contents may not be properly contained in the pocket, or the cover film may not be properly attached to the container film.
  • appropriate measures must be taken to prevent the same type of defect from occurring again.
  • an inspection device that includes an imaging means (such as a camera) for imaging the workpiece etc., and a judgment means for making a pass/fail judgment based on the image data obtained by the imaging means, where the judgment means judges whether the workpiece itself or the processing performed on the workpiece is pass/fail, and the image data used for the pass/fail judgment is stored in association with the pass/fail judgment result (see, for example, Patent Document 1, etc.).
  • This inspection device makes it possible to grasp the inspection status, and to take appropriate action if the inspection status is not appropriate.
  • a process monitoring device that includes an imaging means for imaging the workpiece itself and the processing status of the workpiece to obtain video data, a memory for storing the obtained video data, and an external input means for inputting a signal output from an inspection device (detection device) installed on the workpiece transport path as a trigger signal (see, for example, Patent Document 2, etc.).
  • an inspection device detection device
  • a trigger signal is input
  • video data stored in the memory video data going back a set time or more from the time the trigger signal was input is saved as non-overwritable video data. Therefore, if a defect occurs with the workpiece itself or the processing of the workpiece, it is thought that it will be possible to take appropriate action by using non-overwritable video data.
  • the inspection device described in Patent Document 1 only stores image data used to judge pass/fail. Therefore, while it is possible to confirm that a defect has occurred, it may not be possible to grasp the cause or timing of the defect.
  • the manufacturing device is a blister packaging machine and a defect occurs in which the contents are not contained in the pocket. In this case, it is possible to confirm the occurrence of the defect from the image data, but it may not be possible to determine at what point in the process the defect of contents not being contained in the pocket occurred. Therefore, it is not possible to grasp the cause or timing of the defect, and there is a risk that it will not be possible to take sufficient appropriate measures to prevent the defect from occurring.
  • the video data that is saved as non-overwritable is video data that dates back more than a set time from the time the trigger signal was input. Therefore, the non-overwritable video data may contain a lot of video data that is unrelated to the malfunction, in addition to the video data necessary to understand the cause of the malfunction. This makes it very difficult to find the necessary video data, and may make it difficult to take appropriate measures to prevent the malfunction from occurring.
  • the manufacturing device is a blister packaging machine
  • the distance from the imaging means to the inspection device is relatively large, and the filling speed of the contents into the pockets is very high (for example, 6,000 pieces/minute).
  • the non-overwritable video data needs to be relatively long in length to correspond to the distance from the imaging means to the inspection device, but because the filling speed is so high, the necessary video data is only a small portion of the total non-overwritable video data. This makes it very difficult to find the necessary video data.
  • non-overwritable video data is specified based on time (set time)
  • time set time
  • the present invention was made in consideration of the above circumstances, and its purpose is to provide a system for checking the status of manufacturing equipment that can more reliably and easily obtain the video data necessary to understand the cause of malfunctions, etc.
  • a manufacturing device status confirmation system for confirming the occurrence of manufacturing defects by video, which is used in a manufacturing device that repeatedly performs the same processing on a workpiece that is transported without changing the order along the transport direction, and which is used in a manufacturing device to confirm the occurrence of manufacturing defects by video,
  • a video capture means for capturing video data relating to the workpiece itself or processing of the workpiece, the video capture means being arranged along the conveying path of the workpiece and consisting of a plurality of still frame image data stored in chronological order;
  • An inspection means for determining whether or not at least one of the workpiece itself and the processing performed on the workpiece is acceptable; a target data storage means for extracting and storing predetermined target data from the video data in response to a determination of a defect by the inspection means,
  • the manufacturing equipment status checking system is characterized in that the target data storage means is configured to extract and store as the target data a predetermined range of the video data that is related to the defect judgment by the inspection means and that is located a number of frames back from the
  • the target data storage means extracts and stores predetermined target data from the video data obtained by the video capture means.
  • this target data still frame image data from the video data when a trigger occurs (when a defective judgment is made) is used as a reference, and a predetermined range of data located a number of frames back from the video capture means related to the defective judgment by the inspection means that corresponds to the amount of work transported to the inspection means is extracted as the target data.
  • target data is extracted from the video data based on the amount of work transport, not time. Therefore, video data necessary for understanding the cause and time of occurrence of a malfunction can be pinpoint extracted as target data from the video data, and the necessary video data can be obtained more reliably and easily. In addition, because the target data is extracted based on the amount of work transport, the video data necessary for understanding the cause of the malfunction, etc. can be obtained more reliably even in cases where there is a fluctuation in the work transport speed.
  • a master encoder capable of generating at least a reference number of rotations and a phase related to the transport of the workpiece
  • the moving image capturing means is configured to start capturing the moving image data in response to activation of the master encoder, and to end capturing the moving image data in response to deactivation of the master encoder
  • the manufacturing equipment status confirmation system according to the first aspect of the present invention is characterized in that it has a retroactive frame number derivation means capable of deriving the retroactive frame number based on the number of rotations and phase generated by the master encoder.
  • a master encoder that can generate at least the reference rotation speed and phase for the transport of the workpiece.
  • the video capture means starts capturing video data in accordance with the start of the master encoder, and ends capturing the video data in accordance with the stop of the master encoder. Therefore, the multiple still frame image data that constitute the video data are associated with the rotation speed and phase of the master encoder.
  • the retrospective frame number derivation means then derives the number of retrospective frames based on the number of rotations and phase generated by the master encoder. Therefore, as described above, since the video data corresponds to a plurality of still frame image data and the number of rotations and phase of the master encoder, the number of retrospective frames that matches this video data can be more accurately derived. As a result, the video data required to understand the cause of a malfunction, etc., can be obtained more reliably as target data.
  • the moving image data obtained by the moving image shooting means is stored in a predetermined ring buffer in a format in which a real-time time code indicating the time when the still frame image data was obtained is added to each still frame image data, a conversion means for converting the number of rotations and the phase generated by the master encoder into the real-time time code using a conversion table indicating a correspondence relationship between the number of rotations and the phase generated by the master encoder and the real-time time code,
  • the manufacturing equipment status checking system described in means 2 is characterized in that the target data storage means is configured to convert the rotation speed and phase generated by the master encoder into the real time time code by the conversion means, and to extract and store the target data from the video data stored in the ring buffer using the real time time code.
  • the video data is stored in a ring buffer. This makes it possible to save memory space for storing video data.
  • the video data contains information about the time when the still frame image data was obtained, it is possible to confirm when the malfunction occurred and at what speed the event that caused the malfunction occurred. This makes it possible to take more appropriate measures to prevent malfunctions from occurring.
  • the number of rotations and phase generated by the master encoder can be converted into a real-time time code. Then, this real-time time code can be used to extract target data from the video data. Therefore, it is possible to more reliably obtain the video data necessary to understand the cause of the malfunction as the target data.
  • the moving image data obtained by the moving image shooting means is stored in a predetermined ring buffer in a format in which a mechanical time code indicating the number of rotations and phase generated by the master encoder at the time when the still frame image data was obtained is added to each of the still frame image data,
  • the manufacturing equipment status checking system described in means 2 is characterized in that the target data storage means is configured to extract and store the target data from the video data stored in the ring buffer using the mechanical time code.
  • the video data is stored in a ring buffer, so that memory space for storing the video data can be saved.
  • the video capture means is provided in a plurality of positions along the conveying direction of the workpiece
  • the inspection means includes a means for determining pass/fail for a plurality of inspection items, an imaging means specifying means for specifying, from among the plurality of video imaging means, one related to the inspection item determined to be defective, using a specification table showing a correspondence relationship between the inspection item and the video imaging means related to the inspection item;
  • the manufacturing equipment status confirmation system described in means 1 characterized in that the target data storage means is configured to extract and store the target data from the video data obtained by the video shooting means identified by the shooting means identification means.
  • the imaging means identification means when a test item is judged to be defective by the imaging means identification means, it is possible to identify one or more video imaging means related to that test item. Then, the target data storage means extracts and stores the target data from one or more pieces of video data obtained by the identified one or more video imaging means. This makes it possible to more easily extract the target data.
  • multiple target data can be obtained from the multiple video data obtained by these video capture means. This makes it possible to more easily and accurately grasp the cause of the defect.
  • the technical matters related to each of the above means may be combined as appropriate.
  • the technical matters related to the above means 2 may be combined with the technical matters related to the above means 3 or 4.
  • the technical matters related to the above means 3 or 4 may be combined with the technical matters related to the above means 5.
  • FIG. 2 is a perspective view showing a PTP sheet.
  • FIG. 2 is a partially enlarged cross-sectional view of a PTP sheet.
  • FIG. 2 is a perspective view showing a PTP film.
  • FIG. 1 is a schematic diagram showing a general configuration of a PTP packaging machine and the like.
  • FIG. 2 is a block diagram showing a schematic configuration of a confirmation system, etc.
  • FIG. 2 is a block diagram showing various devices that operate based on the rotation speed and phase generated by a master encoder.
  • 4 is a graph showing the relationship between the number of rotations and the phase generated by the master encoder and time.
  • 5 is an explanatory diagram for explaining the relationship between the phase in a master encoder and the phase in a first encoder.
  • FIG. 1 is a schematic diagram showing a general configuration of a PTP packaging machine and the like.
  • FIG. 2 is a block diagram showing a schematic configuration of a confirmation system, etc.
  • FIG. 2 is a block diagram
  • FIG. 5 is an explanatory diagram for explaining the relationship between the phase in a master encoder and the phase in a second encoder.
  • FIG. 10 is an explanatory diagram for explaining the relationship between the phase in the master encoder and the phases in the third and fourth encoders;
  • FIG. FIG. 2 is a block diagram showing a schematic configuration of a control device and the like.
  • FIG. 2 is an explanatory diagram for explaining stored video data.
  • FIG. 11 is an explanatory diagram for explaining a specification table.
  • FIG. 13 is a graph showing an example of a retrospective frame number derivation formula for a first inspection device and a second camera. 13 is an explanatory diagram for explaining the transport amount of the container film from the fourth camera to the second inspection device. FIG. 13 is a graph showing an example of a retrospective frame number derivation formula for a second inspection device and a fourth camera. FIG. 11 is an explanatory diagram for explaining stored video data in another embodiment.
  • the PTP sheet 1 has a container film 3 with multiple pocket portions 2, and a cover film 4 attached to the container film 3 so as to cover the pocket portions 2.
  • the container film 3 is formed from a transparent thermoplastic resin material such as PP (polypropylene) or PVC (polyvinyl chloride).
  • the cover film 4 is composed of an opaque material (such as aluminum foil) with a sealant made of polypropylene resin or the like applied to the surface.
  • the materials of the films 3 and 4 are not limited to these, and other materials may be used.
  • the PTP sheet 1 is manufactured by punching out a strip-shaped PTP film 6 (see Figure 3) formed from a strip-shaped container film 3 and a strip-shaped cover film 4, and is formed in a roughly rectangular shape when viewed from above.
  • the PTP sheet 1 has two rows of pockets in the short direction, each row consisting of five pockets 2 arranged along the long direction. Each pocket 2 contains one tablet 5 as the "contents.” The tablets 5 may have various information printed on them.
  • the PTP packaging machine 10 corresponds to the "manufacturing device” and the "blister packaging machine.”
  • the PTP packaging machine 10 is a device that repeatedly performs the same process on the container film 3, which is the "workpiece” that is transported without changing the order along the transport direction.
  • the PTP sheet 1 with the container film 3 also corresponds to the "workpiece.”
  • a strip-shaped original sheet of container film 3 is wound into a roll.
  • the pull-out end of the rolled container film 3 is guided by a guide roll 13.
  • the container film 3 is hung on an intermittent feed roll 14 downstream of the guide roll 13.
  • the intermittent feed roll 14 transports the container film 3 intermittently.
  • a preheating device 15 and a pocket forming device 16 are disposed between the guide roll 13 and the intermittent feed roll 14 along the transport path of the container film 3. Then, after the container film 3 has been preheated by the preheating device 15 and has become relatively flexible, a number of pockets 2 are formed at predetermined positions on the container film 3 by the pocket forming device 16. The pockets 2 are formed during the intervals between transport operations of the container film 3 by the intermittent feed roll 14.
  • the container film 3 sent out from the intermittent feed roll 14 is hung in this order over the tension roll 18, guide roll 19, and film receiving roll 20.
  • the film receiving roll 20 transports the container film 3 continuously at a constant speed.
  • the tension roll 18 prevents the container film 3 from sagging due to differences in the transport operations of the intermittent feed roll 14 and the film receiving roll 20, and keeps the container film 3 in a constant state of tension.
  • a filling device 22 is disposed between the guide roll 19 and the film receiving roll 20 along the transport path of the container film 3.
  • the filling device 22 fills each pocket 2 with tablets 5, for example by opening a shutter at predetermined intervals and allowing the tablets 5 to fall freely.
  • the original web of cover film 4 formed in a strip shape is wound into a roll on the most upstream side.
  • the pull-out end of the rolled cover film 4 is guided toward the heating roll 25 by the guide roll 24.
  • the heating roll 25 can be pressed against the film receiving roll 20, and the container film 3 and cover film 4 are fed between the rolls 20, 25. Then, as the films 3, 4 pass between the rolls 20, 25 in a heated and pressed state, the cover film 4 is attached to the container film 3, and the pocket portion 2 is sealed with the cover film 4.
  • the PTP film 6 corresponds to a "blister film.”
  • the PTP film 6 sent out from the film receiving roll 20 is hung in that order on the tension roll 27 and the intermittent feed roll 28.
  • the intermittent feed roll 28 transports the PTP film 6 intermittently.
  • the tension roll 27 prevents the PTP film 6 from sagging due to differences in the transport operations of the film receiving roll 20 and the intermittent feed roll 28, and keeps the PTP film 6 in a constant tensioned state.
  • the PTP film 6 sent out from the intermittent feed roll 28 is hung in the order of tension roll 31 and intermittent feed roll 32.
  • the intermittent feed roll 32 transports the PTP film 6 intermittently.
  • the tension roll 31 prevents the PTP film 6 from sagging between the intermittent feed rolls 28 and 32.
  • a slit forming device 33 and an engraving device 34 are disposed between the intermittent feed roll 28 and the tension roll 31 along the transport path of the PTP film 6.
  • the slit forming device 33 forms a separation slit at a predetermined position on the PTP film 6.
  • the engraving device 34 applies an engraving to a predetermined position on the PTP film 6 (e.g., the tag portion). Note that the separation slit and engraving are not shown in Figure 1 etc.
  • the PTP film 6 sent out from the intermittent feed roll 32 is hung on the tension roll 35 and continuous feed roll 36 in that order downstream.
  • a sheet punching device 37 is disposed between the intermittent feed roll 32 and the tension roll 35 along the transport path of the PTP film 6.
  • the sheet punching device 37 has the function of punching out the outer edge of the PTP film 6 into PTP sheet units, in other words, the function of separating the PTP sheet 1 from the PTP film 6.
  • the PTP sheet 1 obtained by the sheet punching device 37 is transported by a conveyor 39 and temporarily stored in a finished product hopper 40. However, if a defective PTP sheet 1 is determined to be defective by at least one of the inspection devices C1, C2, C3, and C4 described below, the PTP sheet 1 determined to be defective is not sent to the finished product hopper 40, but is discharged separately by a defective sheet discharge mechanism (not shown).
  • a cutting device 42 is disposed downstream of the continuous feed roll 36.
  • the unnecessary film portion 43 that constitutes the strip-shaped remaining material portion (scrap portion) after punching by the sheet punching device 37 is guided to the tension roll 35 and the continuous feed roll 36, and then led to the cutting device 42.
  • the cutting device 42 cuts the unnecessary film portion 43 to a predetermined size.
  • the cut unnecessary film portion 43 (scrap) is stored in a scrap hopper 44 and then disposed of.
  • motors M1 to M5 for operating the intermittent feed roll 14, film receiving roll 20, intermittent feed rolls 28, 32, and conveyor 39 described above. Note that below, these may be referred to as “motors M1 to M5.”
  • the first motor M1 operates the intermittent feed roll 14 to intermittently transport the container film 3 to be processed by the preheating device 15 and pocket forming device 16.
  • the first motor M1 operates when the number of rotations generated by the master encoder EM described below is an even number (or odd number) and the phase (rotation angle) generated by the master encoder EM reaches a predetermined value (angle ⁇ ).
  • the first motor M1 operates only once each time the number of rotations of the master encoder EM increases by two. By operating the first motor M1 once, the container film 3 is transported a predetermined length (in this embodiment, the length of two PTP sheets).
  • the second motor M2 operates the film receiving roll 20 to continuously transport the container film 3 to which the cover film 4 is attached by the two rolls 20, 25 at a constant speed.
  • the number of rotations of the master encoder EM increases by one, and the second motor M2 operates once, transporting the container film 3 by a predetermined length (in this embodiment, the length of one PTP sheet).
  • the third motor M3 and the fourth motor M4 are used to intermittently transport the container film 3 to be processed by the slit forming device 33, the marking device 34, and the sheet punching device 37.
  • a predetermined value that is, each time the number of rotations of the master encoder EM increases by one
  • both motors M3 and M4 operate once, and the container film 3 is transported a predetermined length (in this embodiment, the length of one PTP sheet).
  • the fifth motor M5 operates the conveyor 39 to intermittently transport the PTP sheet 1.
  • the fifth motor M5 may also be capable of continuously transporting the PTP sheet 1.
  • a manufacturing equipment status confirmation system 50 (hereinafter simply referred to as "confirmation system 50") is applied to the PTP packaging machine 10.
  • the confirmation system 50 is intended to enable confirmation of the occurrence of defects related to the production of the PTP sheet 1 through images.
  • the confirmation system 50 has functions such as a function to determine whether the container film 3 itself and the processing of the container film 3 are good or bad, a function to obtain video data on the container film 3 and the execution status of the processing, and a function to extract and save only the necessary data from the video data.
  • the confirmation system 50 is equipped with a master motor MM, a master encoder EM, a control device 60, etc.
  • the master motor MM is composed of a servo motor or the like that rotates at a constant speed, and has a specified rotation drive unit (e.g., a motor shaft).
  • the starting and stopping of the master motor MM is controlled by the control device 60.
  • the operating speed of the master motor MM gradually increases when the PTP packaging machine 10 starts operating, becomes constant after a certain time has elapsed since the PTP packaging machine 10 started operating, and gradually decreases when the PTP packaging machine 10 stops operating, eventually becoming zero.
  • the master encoder EM generates the rotation speed and phase that are the basis for controlling the operation of each device in the PTP packaging machine 10.
  • the master encoder EM reads the rotation speed and phase related to the rotation drive unit of the master motor MM, and generates the read rotation speed and phase.
  • the generated rotation speed and phase are used as a reference for the operation timing of the motors M1 to M5 (i.e., a reference for the timing of conveying the container film 3), a reference for the timing of inspection by the inspection devices C1, C2, C3, and C4 described later, and a reference for the timing of photographing by the cameras R1, R2, R3, R4, R5, and R6 described later.
  • the master encoder EM generates the rotation speed and phase that are the basis for controlling the operation of the motors M1 to M5, the inspection devices C1, C2, C3, and C4, and the cameras R1, R2, R3, R4, R5, and R6 (see FIG. 6).
  • the rotation speed and phase generated by the master encoder EM are input to the control device 60.
  • the phase and rotation speed generated by the master encoder EM gradually increase when the PTP packaging machine 10 starts operating, increase at a constant speed after a certain time has elapsed since the PTP packaging machine 10 started operating, and gradually decrease when the PTP packaging machine 10 stops operating (see Figure 7).
  • the confirmation system 50 is equipped with a first inspection device C1, a second inspection device C2, a third inspection device C3, and a fourth inspection device C4 along the transport path of the container film 3 and the PTP sheet 1.
  • these may be referred to as "inspection devices C1 to C4.”
  • the inspection devices C1 to C4 each correspond to an "inspection means.”
  • Each of the inspection devices C1 to C4 is equipped with an irradiation device, an imaging device, and a judgment device (not shown).
  • the irradiation device irradiates the container film 3, tablets 5, PTP sheet 1, etc. with a predetermined light.
  • the imaging device captures the container film 3, etc. irradiated with light by the irradiation device.
  • the judgment device judges the quality of at least one of the container film 3 itself and the processing applied to the container film 3 based on the image data obtained by the imaging device.
  • the first inspection device C1 is provided downstream of the pocket forming device 16 and upstream of the filling device 22, corresponding to the container film 3 that is continuously conveyed (see FIG. 4). After the pocket 2 is formed and before the pocket 2 is filled with tablets 5, the first inspection device C1 inspects the container film 3 for scratches (e.g., pinholes, etc.) and dirt, and for molding defects in the pocket 2. By inspecting for scratches and dirt, it is possible to determine whether the container film 3 itself is good or bad. Furthermore, by inspecting for molding defects in the pocket 2, it is possible to determine whether the container film 3 has been properly processed by the preheating device 15 and the pocket forming device 16.
  • scratches e.g., pinholes, etc.
  • the second inspection device C2 is provided downstream of the filling device 22 and upstream of the film receiving roll 20 (see Figure 4).
  • the second inspection device C2 inspects for the inspection items of whether or not there are “missing tablets” and whether or not there are “standing tablets.”
  • Missing tablets refers to a state in which no tablets 5 are contained in the pocket portion 2.
  • Standing tablets refers to a state in which the tablets 5 filled in the pocket portion 2 are in an upright position.
  • the third inspection device C3 is provided between the film receiving roll 20 and the tension roll 27 (see Figure 4).
  • the third inspection device C3 inspects for the presence or absence of "missing tablets” and the presence or absence of "poor sealing".
  • "Poor sealing” refers to insufficient attachment of the cover film 4 to the container film 3. By inspecting for "poor sealing”, it is possible to determine whether the attachment process of the cover film 4 to the container film 3 by both rolls 20, 25 is appropriate.
  • the fourth inspection device C4 is provided corresponding to the PTP sheet 1 transported by the conveyor 39 (see Figure 4).
  • the fourth inspection device C4 inspects for the presence or absence of "punching defects".
  • "Punching defects” refer to the occurrence of defects in the punched PTP sheet 1. By inspecting for "punching defects”, it is possible to determine whether the punching process of the PTP film 6 by the sheet punching device 37 is appropriate.
  • the pass/fail judgment results from the inspection devices C1 to C4 are sent to the control device 60.
  • the timing at which the inspection devices C1 to C4 perform the inspections is controlled by the number of rotations and phase generated by the master encoder EM.
  • the verification system 50 includes a first encoder E1, a second encoder E2, a third encoder E3, a fourth encoder E4, and a fifth encoder E5.
  • encoders E1 to E5 may be referred to as "encoders E1 to E5.”
  • the first encoder E1 is used to acquire the rotation speed and phase of the first motor M1.
  • the first encoder E1 is set so that the phase of the master encoder EM advances by 720° (the rotation speed of the master encoder EM increases by 2), and each time the first motor M1 operates once and the container film 3 is intermittently transported a predetermined length (the length of two PTP sheets), the acquired phase advances by 360° and the rotation speed increases by 1 (see Figure 8).
  • the second encoder E2 is for acquiring the rotation speed and phase related to the second motor M2.
  • the second encoder E2 is set so that the phase of the master encoder EM advances by 360°, and each time the second motor M2 operates continuously and the container film 3 is transported a predetermined length (the length of one PTP sheet), the acquired phase advances by 360° and the rotation speed increases by 1 (see Figure 9). Therefore, the rotation speed and phase acquired by the second encoder E2 are proportional to the amount of container film 3 transported by the second motor M2.
  • the third encoder E3 is for acquiring the rotation speed and phase of the third motor M3.
  • the fourth encoder E4 is for acquiring the rotation speed and phase of the fourth motor M4.
  • Both encoders E3, E4 are set so that the phase of the master encoder EM advances by 360°, and each time each motor M3, M4 operates once and the container film 3 is transported a predetermined length (the length of one PTP sheet), the acquired phase advances by 360° and the rotation speed increases by 1 (see Figure 10).
  • the fifth encoder E5 is used to acquire the number of rotations and phase related to the fifth motor M5.
  • the fifth encoder E5 is set so that when the fifth motor M5 operates once and the PTP sheet 1 is transported a predetermined distance, the acquired phase advances by 360° and the number of rotations increases by 1.
  • the confirmation system 50 is equipped with a first camera R1, a second camera R2, a third camera R3, a fourth camera R4, a fifth camera R5, and a sixth camera R6 along the transport path of the container film 3.
  • these may be referred to as “cameras R1 to R6.”
  • cameras R1 to R6 are provided separately from the imaging devices of the inspection devices C1 to C4, and each corresponds to a "video capture means.”
  • Cameras R1 to R6 are used to obtain video data by photographing the container film 3 before processing, the status of processing of the container film 3, and the container film 3 and tablets 5, whose state and posture may vary depending on the success or failure of the processing.
  • the video data relates to the container film 3 itself or the processing of the container film 3, and is composed of multiple still frame image data stored in chronological order.
  • the video data obtained by cameras R1 to R6 is input to the control device 60. In this embodiment, one second of video data is composed of 60 still frame image data.
  • cameras R1 to R6 start capturing video data when the master encoder EM is started, and stop capturing video data when the master encoder EM is stopped.
  • the multiple still frame image data that make up the video data are associated with the rotation speed and phase of the master encoder EM.
  • the first camera R1 is installed upstream of the preheating device 15 (see FIG. 4).
  • the first camera R1 photographs the container film 3 itself as it is unwound from the original roll.
  • the video data obtained by the first camera R1 is used to check whether the container film 3 has any scratches or stains before it is processed.
  • the second camera R2 is provided between the preheating device 15 and the pocket forming device 16 (see Figure 4).
  • the second camera R2 is a thermo camera, and captures the container film 3 that has been preheated by the preheating device 15.
  • the video data obtained by the second camera R2 shows the temperature distribution in the container film 3, and is used to check whether the preheating process for the container film 3 was appropriate.
  • the third camera R3 is provided immediately downstream of the pocket forming device 16 (see FIG. 4).
  • the third camera R3 photographs the container film 3 on which the pocket 2 has been formed by the pocket forming device 16.
  • the video data obtained by the third camera R3 is used to check whether the pocket 2 has been formed appropriately on the container film 3.
  • the fourth camera R4 is provided at a position corresponding to the tablet 5 filling position by the filling device 22 (see FIG. 4).
  • the fourth camera R4 captures the scene of the tablet 5 being filled into the pocket portion 2, the filled tablet 5, etc.
  • the video data obtained by the fourth camera R4 is used to check whether the tablet 5 filling process into the pocket portion 2 was appropriate.
  • the fifth camera R5 is provided at a position corresponding to the attachment position of the cover film 4 to the container film 3 (see FIG. 4).
  • the fifth camera R5 captures the scene of attaching the cover film 4 to the container film 3.
  • the video data obtained by the fifth camera R5 is used to confirm whether the process of attaching the cover film 4 to the container film 3 was appropriate.
  • the sixth camera R6 is provided at a position corresponding to the punching position of the PTP film 6 by the sheet punching device 37 (see FIG. 4).
  • the sixth camera R6 captures the scene in which the PTP sheet 1 is punched out of the PTP film 6.
  • the video data obtained by the sixth camera R6 is used to check whether the punching process on the PTP film 6 was appropriate.
  • the control device 60 is responsible for controlling the operation of each device in the PTP packaging machine 10 and the confirmation system 50.
  • the control device 60 is equipped with a CPU as a calculation means, a ROM for storing various programs, a RAM for temporarily storing various data such as calculation data and input/output data, a storage medium for long-term storage of various data, an input device for inputting information (e.g., a keyboard, etc.), a display device for displaying various information (e.g., a liquid crystal display, etc.), etc.
  • control device 60 includes a motor control unit 61, a camera control unit 62, and an inspection device control unit 63.
  • the motor control unit 61 controls the operation of each of the motors M1 to M5 based on the rotation speed and phase generated by the master encoder EM. As a result, each of the motors M1 to M5 operates in the manner described above.
  • the camera control unit 62 controls the operation of each of the cameras R1 to R6 based on the number of rotations and phase generated by the master encoder EM. As a result, each of the cameras R1 to R6 starts recording video data in accordance with the start of the master encoder EM, and stops recording video data in accordance with the stop of the master encoder EM, as described above.
  • the inspection device control unit 63 controls the timing of inspection by each of the inspection devices C1 to C4 based on the number of rotations and phase generated by the master encoder EM. In this embodiment, each time the phase generated by the master encoder EM reaches a predetermined value, an inspection is performed by each of the inspection devices C1 to C4.
  • the control device 60 includes a ring buffer 64, a video storage unit 65, a camera identification unit 66, a target data storage unit 67, a conversion unit 68, and a retrospective frame number derivation unit 69.
  • the camera identification unit 66 constitutes the "imaging means identification means”
  • the target data storage unit 67 constitutes the "target data storage means”
  • the conversion unit 68 constitutes the "conversion means”
  • the retrospective frame number derivation unit 69 constitutes the "retrospective frame number derivation means”.
  • the ring buffer 64 is made up of the storage medium, and treats a certain information storage area on this storage medium as a ring.
  • the ring buffer 64 is configured so that after data has been stored in all information storage areas, it returns to the first information storage area and overwrites the data.
  • the video storage unit 65 stores the video data obtained by the cameras R1 to R6. More specifically, the video storage unit 65 stores the video data obtained by the cameras R1 to R6 in the ring buffer 64 in a format in which a real-time time code indicating the time when the still frame image data was obtained is added to each still frame image data (see FIG. 12).
  • the real-time time code is composed of the time and the frame number.
  • the still frame image data is given a data name consisting of the time and the frame number.
  • the frame number is a number between 0 and 59, and indicates the acquisition order of the 60 still frame image data that make up one second of video data.
  • the time is obtained using the clock function of the control device 60.
  • the camera identification unit 66 identifies, from among the multiple cameras R1 to R6, those related to the inspection items determined to be defective by the inspection devices C1 to C4. In this identification, the camera identification unit 66 uses an identification table (see FIG. 13) that shows the correspondence between the inspection items and the cameras R1 to R6 related to the inspection items, which has been acquired in advance.
  • the inspection item of the presence or absence of molding defects involves the second camera R2, which photographs the preheated container film 3, and the third camera R3, which photographs the container film 3 after the pocket portion 2 has been formed. Therefore, the specific table shows that the second camera R2 and the third camera R3 correspond to the inspection item of the presence or absence of molding defects in the pocket portion 2.
  • the reason why the second inspection device C2 judges the inspection item of "missing tablets” or "standing tablets” to be defective may be that some kind of malfunction occurred when the tablets 5 were filled by the filling device 22 or when the container film 3 was transported downstream of the filling device 22. Therefore, the inspection item of "missing tablets” or “standing tablets” involves the fourth camera R4, which captures the scene of filling the pocket portion 2 with tablets 5. Therefore, the specific table shows that the fourth camera R4 corresponds to the inspection item of "missing tablets” or "standing tablets”. By checking the video data obtained by the fourth camera R4, it is possible to know that a malfunction occurred at either the time when the tablets 5 were filled by the filling device 22 or when the container film 3 was transported downstream of the filling device 22.
  • the target data storage unit 67 is triggered by a defective judgment made by the inspection devices C1 to C4, and extracts and stores specified target data from the video data stored in the ring buffer 64.
  • the target data is data that is considered necessary to identify the cause and time of occurrence of a defect. Note that, although in this embodiment, the target data is video data made up of multiple still frame image data, it may also be still image data made up of one still frame image data.
  • the target data saving unit 67 uses the still frame image data from the video data when the trigger occurs as a reference, and extracts and saves as target data a "predetermined range" of data that is located a number of frames back.
  • the number of retroactive frames here indicates how many frames should be traced back from the current video data in order to extract data related to a defective judgment (target data) from the video data obtained by the cameras R1 to R6 related to the defective judgment when a defective judgment is made by the inspection devices C1 to C4.
  • the number of retroactive frames corresponds to the amount of container film 3 (including PTP sheet 1) transported from the cameras R1 to R6 related to the defective judgment by the inspection devices C1 to C4 to the inspection devices C1 to C1 that made the defective judgment.
  • the number of retroactive frames is derived by the number of retroactive frames derivation unit 69. The method for deriving the number of retroactive frames will be described later.
  • the "predetermined range” corresponds to the time length of the target data and can be changed as appropriate.
  • the predetermined range is set to the range between a position going back the number of retroactive frames and a position going back one PTP sheet (i.e., one rotation of the master encoder EM) from that position (see FIG. 14).
  • the target data storage unit 67 extracts and stores one or more target data from one or more video data acquired by the cameras R1 to R6 identified by the camera identification unit 66. Therefore, if a defect is determined in the inspection item of whether or not there is a molding defect in the pocket portion 2, one target data is extracted and stored from the video data acquired by the second camera R2, and another target data is extracted and stored from the video data acquired by the third camera R3.
  • the conversion unit 68 converts the number of rotations and phase of the master encoder EM that correspond to the specified range into a real-time time code.
  • the conversion unit 68 converts the rotation speed and phase of the master encoder EM corresponding to the specified range into a real-time time code using a conversion table (see FIG. 14) that indicates the correspondence between the rotation speed and phase generated by the master encoder EM and the real-time time code.
  • the conversion table can be obtained, for example, by acquiring the correspondence between the rotation speed and phase generated by the master encoder EM and the real-time time code while the PTP packaging machine 10 is in operation.
  • the target data storage unit 67 uses the real-time time code obtained by the conversion process to extract target data from the video data stored in the ring buffer 64. More specifically, the target data storage unit 67 extracts, from the video data, as target data, multiple still frame image data that have real-time time codes that match the real-time time codes obtained by the conversion process.
  • the target data storage unit 67 stores the extracted target data in association with the inspection results from the inspection devices C1 to C4 that triggered the extraction of the target data. For example, if the first inspection device C1 judges a defect in an inspection item such as the presence or absence of molding defects in the pocket portion 2, the inspection result and the target data are stored in association with each other. Note that the image data used in the pass/fail judgment (image data for inspection) may also be stored in association with the target data.
  • the target data is stored in an area of the storage medium that is separate from the area that constitutes the ring buffer 64. Therefore, unlike the data stored in the ring buffer 64, the target data will not be erased after a certain period of time has passed.
  • the retrospective frame number derivation unit 69 derives the retrospective frame number based on the rotation speed and phase generated by the master encoder EM and a retrospective frame number derivation formula acquired in advance. Some retrospective frame number derivation formulas indicate a fixed value, while others vary depending on the rotation speed and phase of the master encoder EM. A retrospective frame number derivation formula is provided for each combination of the inspection devices C1 to C4 and cameras R1 to R6 associated in the specific table (see FIG. 13). Therefore, there are retrospective frame number derivation formulas relating to the first inspection device C1 and first camera R1, the first inspection device C1 and second camera R2, etc.
  • the retrospective frame number derivation formula for the first inspection device C1 and the second camera R2 can be obtained as follows. That is, the container film 3 inspected by the first inspection device C1 is transported a predetermined amount (the amount of one PTP sheet) each time the master encoder EM rotates once, while the container film 3 photographed by the second camera R2 is intermittently transported by the amount of two PTP sheets when the phase of the master encoder EM reaches a predetermined value. Therefore, the transport amount L1 of the container film 3 from the second camera R2 to the first inspection device C1 varies depending on the rotation speed and phase of the master encoder EM (see Figure 15).
  • the retrospective frame number derivation formula for the second inspection device C2 and the fourth camera R4 can be obtained as follows. That is, the container film 3 inspected by the second inspection device C2 and the container film 3 photographed by the fourth camera R4 are each continuously transported at a constant speed. Therefore, the transport amount L2 of the container film 3 from the fourth camera R4 to the second inspection device C2 shows a constant value (see Figure 17).
  • the retrospective frame number derivation unit 69 derives the retrospective frame number from the retrospective frame number derivation formula using the rotation speed and phase of the master encoder EM at the time when the defective judgment was made. For example, when deriving the retrospective frame number for the first inspection device C1 and the second camera R2, the retrospective frame number for the first inspection device C1 and the second camera R2 can be obtained by substituting the rotation speed and phase of the master encoder EM when the defective judgment was made into the retrospective frame number derivation formula for the first inspection device C1 and the second camera R2.
  • the retrospective frame number derivation unit 69 may derive the retrospective frame number using a derivation table acquired in advance.
  • the derivation table indicates the correspondence between the retrospective frame number corresponding to the transport amount between the inspection devices C1-C4 and the cameras R1-R6 associated in the specific table, and the rotation speed and phase of the master encoder EM.
  • the retrospective frame number derivation unit 69 can derive the retrospective frame number based on this derivation table and the rotation speed and phase of the master encoder EM when a defect is determined.
  • the verification system 50 configured as described above operates as follows. That is, when a defective inspection is determined by the inspection devices C1 to C4, the camera identification unit 66 identifies the cameras R1 to R6 related to the inspection item that was determined to be defective. For example, when the first inspection device C1 determines that an inspection item such as the presence or absence of scratches or dirt is defective, the camera identification unit 66 identifies the cameras R1, R2, and R3.
  • the retrospective frame number derivation unit 69 also derives the number of retrospective frames. This determines the specified range in the video data [(1) in FIG. 14]. For example, if cameras R1, R2, and R3 are identified by the camera identification unit 66, a different number of retrospective frames is derived for each of these cameras R1, R2, and R3. Then, by deriving the number of retrospective frames, the specified range is determined for each of the video data obtained by cameras R1, R2, and R3.
  • the conversion unit 68 converts the number of rotations and phase of the master encoder EM corresponding to the specified range into a real-time time code [(2) in FIG. 14]. For example, if cameras R1, R2, and R3 are identified by the camera identification unit 66, three types of real-time time codes are derived corresponding to the three types of specified ranges.
  • the target data storage unit 67 stores the extracted target data in association with the inspection results, etc. By checking the stored target data, etc., the operator can learn the cause and time of the malfunction, and can take more appropriate measures to prevent the malfunction from recurring.
  • still frame image data from the video data when a trigger occurs (when a defect is determined) is used as a reference, and a specified range of data located a number of frames back from the cameras R1 to R6 related to the defect determination by the inspection devices C1 to C4 that corresponds to the transport amount of the container film 3 (including the PTP sheet 1) to the inspection devices C1 to C4 is extracted as target data.
  • the target data is extracted from the video data based on the transport amount of the container film 3, not on time. Therefore, the video data necessary to understand the cause and timing of a malfunction can be pinpointed and extracted as the target data from the video data, making it possible to obtain the necessary video data more reliably and easily. In addition, because the target data is extracted based on the transport amount of the container film 3, the video data necessary to understand the cause of a malfunction can be obtained more reliably even in cases where there is a fluctuation in the transport speed of the container film 3.
  • the video data is stored in the ring buffer 64. This makes it possible to conserve memory space for storing video data.
  • the video data contains information about the time when the still frame image data was obtained, it is possible to check when a malfunction occurred and at what speed the event that caused the malfunction occurred. This makes it possible to take more appropriate measures to prevent malfunctions from occurring.
  • the camera identification unit 66 can identify one or more cameras R1 to R6 related to that inspection item. Then, the target data storage unit 67 extracts and stores target data from one or more pieces of video data acquired by the identified one or more cameras R1 to R6. This makes it easier to extract the target data.
  • the video data obtained by cameras R1 to R6 is stored in the ring buffer 64 in a format in which, for each still frame image data, a real-time time code indicating the time when the still frame image data was obtained is attached.
  • the video data obtained by cameras R1 to R6 may be stored in the ring buffer 64 in a format in which, for each still frame image data, a mechanical time code indicating the number of rotations and phase generated by the master encoder EM when the still frame image data was obtained is attached.
  • the target data storage unit 67 may then use the mechanical time code to extract and store target data from the video data stored in the ring buffer 64.
  • the video data is stored in the ring buffer 64, which saves memory space for storing video data.
  • the target data can be extracted from the video data without using the conversion unit 68, the processing load associated with extracting the target data can be reduced.
  • the mechanical time code may also include a frame number.
  • the master encoder EM reads the rotation speed and phase of the master motor MM and generates the read rotation speed and phase.
  • the master encoder EM may read the rotation speed and phase of the second motor that drives the film receiving roll 20, for example, and generate the read rotation speed and phase. Therefore, the second encoder E2 may be configured to also function as the master encoder EM.
  • the master encoder EM may also be realized virtually in software.
  • the transport mode of the container film 3 in the above embodiment is an example, and this transport mode may be changed as appropriate. Therefore, for example, the container film 3 may be configured to be transported by a length equivalent to multiple PTP sheets by operating both motors M3 and M4 once.
  • the container film 3 may be configured to be transported in a predetermined manner without using the rotation speed and phase generated by the master encoder EM.
  • the verification system 50 is equipped with four inspection devices C1 to C4, but the number of inspection devices may be changed as appropriate.
  • the inspection items may also be changed as appropriate.
  • the second inspection device C2 may inspect the tablets 5 for damage.
  • tablets 5 are given as the “contents,” but the contents are not limited to tablets.
  • tablets include not only medicines but also tablets used for eating and drinking.
  • Tablets include plain tablets, sugar-coated tablets, film-coated tablets, enteric-coated tablets, and gelatin-coated tablets, as well as various types of capsule tablets such as hard capsules and soft capsules.
  • the shape of the tablet is not limited to a circular shape when viewed from above, but may be, for example, a polygonal shape, an elliptical shape, an oval shape, etc. when viewed from above.
  • the configuration of the PTP sheet to be manufactured is not limited to the above embodiment.
  • the arrangement and number of pocket portions 2 in each PTP sheet unit are not limited to the above embodiment.
  • the PTP film 6 is configured with a number of pocket portions 2 corresponding to one sheet arranged along its width direction, but this is not limited to this, and for example, the PTP film 6 may be configured with a number of pocket portions 2 corresponding to multiple sheets arranged along its width direction.
  • the configurations of the preheating device 15 and the pocket portion forming device 16 may be changed according to the configuration of the PTP film 6.
  • the transport amount of the container film 3 to be processed by the preheating device 15, etc. may be appropriately changed according to the configuration of the preheating device 15, etc.
  • PTP sheet 1 is given as the blister sheet, but the technical concept of the present invention may be applied to blister sheets other than PTP sheet 1.
  • the confirmation system 50 is applied to the PTP packaging machine 10, but the manufacturing equipment to which the confirmation system 50 can be applied is not limited to the PTP packaging machine 10 as long as it repeatedly performs the same processing on workpieces that are transported without changing the order along the transport direction.
  • the confirmation system 50 may be applied to a sealed pack manufacturing device (for example, the device described in JP 2021-181330 A) that repeatedly performs processes such as storing contents and attaching a lid film to a container (tray) as a "workpiece.”
  • the confirmation system 50 may be applied to a board manufacturing device (for example, the board manufacturing system described in JP 2017-15717 A) that repeatedly performs processes such as applying solder, mounting electronic components, and heating and melting the solder (reflow process) to a base board as a "workpiece.”

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • General Factory Administration (AREA)
  • Containers And Plastic Fillers For Packaging (AREA)

Abstract

Provided is a manufacturing-device status confirmation system that is capable of more reliably and more easily obtaining video data required to ascertain causes of failure occurrence, etc. A confirmation system 50 includes: cameras R1-R6 that obtain video data consisting of multiple still frame image data stored in a time-sequential manner; inspection devices C1-C4 that determine at least one of the quality of a workpiece itself and the quality of processing performed on the workpiece; and a target data storage unit 67 that identifies prescribed target data from the video data by using a poor-quality determination by the inspection devices C1-C4 as a trigger and stores said target data. The target data storage unit 67 identifies, among the video data, data in a prescribed range at a position tracked back by the number of track-back frames corresponding to the transport amount of the workpiece, with reference to still frame image data at the time of the occurrence of the trigger, and stores said data as the target data.

Description

製造装置の状況確認システムManufacturing equipment status confirmation system
 本発明は、搬送されるワークに対し各種処理を施す製造装置において、製造に係る不具合が発生したときに、その不具合の発生状況を確認するためのシステムに関する。 The present invention relates to a system for checking the occurrence of a manufacturing defect when it occurs in a manufacturing device that performs various processes on transported workpieces.
 製造装置としては、順序を変えることなく搬送されるワークに対し、各種処理を繰り返し施すことで、各種製品を製造するものがある。このような製造装置としては、例えば、ワークとしての容器フィルムを搬送しつつ、該容器フィルムに対し各種処理を繰り返し施すことで、製品としてのブリスタシートを順次製造するブリスタ包装機を挙げることができる。各種処理には、例えば、容器フィルムにポケット部を形成する処理や、ポケット部に錠剤などの内容物を収容する処理、容器フィルムに対しカバーフィルムを取着する処理などが含まれる。 Some manufacturing devices manufacture various products by repeatedly performing various processes on workpieces that are transported without changing the order. One example of such a manufacturing device is a blister packaging machine that transports a container film as a workpiece and repeatedly performs various processes on the container film to sequentially manufacture blister sheets as products. The various processes include, for example, a process for forming pockets in the container film, a process for placing contents such as tablets in the pockets, and a process for attaching a cover film to the container film.
 ところで、製品の製造中に、ワーク自体やワークに対する処理についての不具合が生じることがある。例えば、ブリスタ包装機では、処理前の容器フィルムに孔や汚れがあったり、ポケット部の成形不良が生じたり、ポケット部に対し内容物が適切な状態で収容されなかったり、容器フィルムに対するカバーフィルムの取着が不十分になったりすることがある。このような不具合が生じた場合には、同種の不具合が再度発生することを防止すべく、適切な対応をとる必要がある。 However, during product manufacturing, defects may occur with the workpiece itself or with the processing of the workpiece. For example, in a blister packaging machine, the container film before processing may have holes or stains, the pocket may be poorly formed, the contents may not be properly contained in the pocket, or the cover film may not be properly attached to the container film. When such defects occur, appropriate measures must be taken to prevent the same type of defect from occurring again.
 そこで、ワーク等を撮像する撮像手段(カメラなど)と、該撮像手段により得られた画像データに基づき良否判定を行う判定手段とを備え、該判定手段によりワーク自体やワークに対する処理についての良否を判定するとともに、良否判定に用いた画像データと、良否判定結果とを関連付けて記憶する検査装置を設けることが提案されている(例えば、特許文献1等参照)。この検査装置によれば、検査状況の把握が可能になるとともに、検査状況が適切でない場合に、適切な対応をとることが可能となる。 Therefore, it has been proposed to provide an inspection device that includes an imaging means (such as a camera) for imaging the workpiece etc., and a judgment means for making a pass/fail judgment based on the image data obtained by the imaging means, where the judgment means judges whether the workpiece itself or the processing performed on the workpiece is pass/fail, and the image data used for the pass/fail judgment is stored in association with the pass/fail judgment result (see, for example, Patent Document 1, etc.). This inspection device makes it possible to grasp the inspection status, and to take appropriate action if the inspection status is not appropriate.
 また、ワーク自体やワークに対する処理の実行状況を撮影して動画データを得る撮影手段と、得られた動画データを保存するメモリと、ワークの搬送路に設置された検査装置(検出装置)から出力された信号をトリガー信号として入力するための外部入力手段とを備えた工程監視装置を設けることも提案されている(例えば、特許文献2等参照)。この装置では、検査装置によってワークに係る不具合が検出されて、トリガー信号が入力されると、メモリに保存された動画データのうち、トリガー信号が入力された時点から設定時間以上過去に遡った動画データが、上書き不可の動画データとして保存される。従って、ワーク自体やワークに対する処理についての不具合が発生した場合には、上書き不可の動画データを利用することで、適切な対応をとることが可能になると考えられる。 It has also been proposed to provide a process monitoring device that includes an imaging means for imaging the workpiece itself and the processing status of the workpiece to obtain video data, a memory for storing the obtained video data, and an external input means for inputting a signal output from an inspection device (detection device) installed on the workpiece transport path as a trigger signal (see, for example, Patent Document 2, etc.). In this device, when a defect related to the workpiece is detected by the inspection device and a trigger signal is input, of the video data stored in the memory, video data going back a set time or more from the time the trigger signal was input is saved as non-overwritable video data. Therefore, if a defect occurs with the workpiece itself or the processing of the workpiece, it is thought that it will be possible to take appropriate action by using non-overwritable video data.
特開2006-214814号公報JP 2006-214814 A 特開2016-122319号公報JP 2016-122319 A
 しかしながら、上記特許文献1,2に記載の各装置では、不具合の発生防止のための適切な対応を十分にとることができなかったり、適切な対応をとることが難しくなったりするおそれがある。 However, with the devices described in Patent Documents 1 and 2, there is a risk that appropriate measures to prevent malfunctions may not be fully taken, or that it may become difficult to take appropriate measures.
 まず、上記特許文献1に記載の検査装置は、あくまで良否判定に用いた画像データを保存しているに過ぎない。そのため、不具合が発生したこと自体を確認することはできるが、その不具合の発生原因や発生時期を把握することができないことがある。例えば、製造装置がブリスタ包装機であり、ポケット部に内容物が収容されていないといった不具合が生じたとする。この場合、画像データからは、その不具合の発生自体を確認することはできるが、ポケット部に内容物が収容されていないという不具合がどの処理の時点で生じたのかが分からないことがある。そのため、不具合の発生原因や発生時期を把握することはできず、不具合の発生防止のための適切な対応を十分にとることができないおそれがある。 First, the inspection device described in Patent Document 1 only stores image data used to judge pass/fail. Therefore, while it is possible to confirm that a defect has occurred, it may not be possible to grasp the cause or timing of the defect. For example, suppose the manufacturing device is a blister packaging machine and a defect occurs in which the contents are not contained in the pocket. In this case, it is possible to confirm the occurrence of the defect from the image data, but it may not be possible to determine at what point in the process the defect of contents not being contained in the pocket occurred. Therefore, it is not possible to grasp the cause or timing of the defect, and there is a risk that it will not be possible to take sufficient appropriate measures to prevent the defect from occurring.
 また、上記特許文献2に記載の装置において、上書き不可の動画データとして保存されるのは、トリガー信号が入力された時点から設定時間以上過去に遡った動画データとなる。そのため、上書き不可の動画データが、不具合の発生原因を把握するために必要な動画データの他に、不具合とは無関係の多くの動画データを含むものとなり得る。そのため、必要な動画データを探し出すことが非常に難しくなり、不具合の発生防止のための適切な対応をとることが難しくなるおそれがある。 In addition, in the device described in Patent Document 2, the video data that is saved as non-overwritable is video data that dates back more than a set time from the time the trigger signal was input. Therefore, the non-overwritable video data may contain a lot of video data that is unrelated to the malfunction, in addition to the video data necessary to understand the cause of the malfunction. This makes it very difficult to find the necessary video data, and may make it difficult to take appropriate measures to prevent the malfunction from occurring.
 例えば、製造装置がブリスタ包装機であって、撮影手段から検査装置までの距離が比較的大きなものであり、また、ポケット部に対する内容物の充填速度が非常に高いもの(例えば6000個/分)であるとする。この場合、撮影手段から検査装置までの距離に対応して上書き不可の動画データを比較的長時間のものとする必要がある一方、充填速度が非常に高いから、上書き不可の動画データの全体に対し、必要な動画データはごく一部となる。そのため、必要な動画データを探し出すことが非常に難しい。 For example, suppose the manufacturing device is a blister packaging machine, the distance from the imaging means to the inspection device is relatively large, and the filling speed of the contents into the pockets is very high (for example, 6,000 pieces/minute). In this case, the non-overwritable video data needs to be relatively long in length to correspond to the distance from the imaging means to the inspection device, but because the filling speed is so high, the necessary video data is only a small portion of the total non-overwritable video data. This makes it very difficult to find the necessary video data.
 さらに、上書き不可の動画データは、時間(設定時間)に基づき特定されるから、ワークの搬送速度に変動が生じたような場合には、上書き不可の動画データの中に、必要な動画データが含まれていないといった事態が生じ得る。このような事態が生じると、不具合の発生防止のための適切な対応をとることができなくなる。 Furthermore, because the non-overwritable video data is specified based on time (set time), if there is a change in the workpiece transport speed, it may happen that the necessary video data is not included in the non-overwritable video data. If such a situation occurs, it will be impossible to take appropriate measures to prevent malfunctions.
 本発明は、上記事情に鑑みてなされたものであり、その目的は、不具合の発生原因などを把握するために必要な動画データをより確実にかつより容易に得ることができる製造装置の状況確認システムを提供することにある。 The present invention was made in consideration of the above circumstances, and its purpose is to provide a system for checking the status of manufacturing equipment that can more reliably and easily obtain the video data necessary to understand the cause of malfunctions, etc.
 以下、上記目的を解決するのに適した各手段につき、項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。 Below, each means suitable for achieving the above objective will be explained separately. In addition, the specific effects of the corresponding means will be noted as necessary.
 手段1.搬送方向に沿った順序を変えることなく搬送されるワークに対し、同一処理を繰り返し施す製造装置に用いられ、製造に係る不具合の発生状況を動画によって確認するための製造装置の状況確認システムであって、
 前記ワークの搬送経路に沿って配置され、時系列順で保存された複数の静止フレーム画像データからなる、前記ワーク自体又は前記ワークに対する処理に係る動画データを得る動画撮影手段と、
 前記ワーク自体及び前記ワークに対する処理のうちの少なくとも一方についての良否を判定する検査手段と、
 前記検査手段により不良判定されたことをトリガーとして、前記動画データの中から所定の対象データを抽出して保存する対象データ保存手段とを備え、
 前記対象データ保存手段は、前記動画データのうち、前記トリガーが発生したときの前記静止フレーム画像データを基準とし、前記検査手段による不良判定に関係する前記動画撮影手段から該検査手段に対する前記ワークの搬送量に対応する遡及フレーム数の分だけ遡った位置にある所定範囲のものを、前記対象データとして抽出して保存するように構成されていることを特徴とする製造装置の状況確認システム。
Means 1. A manufacturing device status confirmation system for confirming the occurrence of manufacturing defects by video, which is used in a manufacturing device that repeatedly performs the same processing on a workpiece that is transported without changing the order along the transport direction, and which is used in a manufacturing device to confirm the occurrence of manufacturing defects by video,
A video capture means for capturing video data relating to the workpiece itself or processing of the workpiece, the video capture means being arranged along the conveying path of the workpiece and consisting of a plurality of still frame image data stored in chronological order;
An inspection means for determining whether or not at least one of the workpiece itself and the processing performed on the workpiece is acceptable;
a target data storage means for extracting and storing predetermined target data from the video data in response to a determination of a defect by the inspection means,
The manufacturing equipment status checking system is characterized in that the target data storage means is configured to extract and store as the target data a predetermined range of the video data that is related to the defect judgment by the inspection means and that is located a number of frames back from the video shooting means corresponding to the amount of transport of the workpiece relative to the inspection means, based on the still frame image data at the time the trigger occurs.
 上記手段1によれば、対象データ保存手段は、動画撮影手段により得られた動画データの中から、所定の対象データを抽出して保存する。この対象データの抽出にあたっては、動画データのうち、トリガーが発生したとき(不良判定されたとき)の静止フレーム画像データを基準とし、検査手段による不良判定に関係する動画撮影手段から該検査手段に対するワークの搬送量に対応する遡及フレーム数の分だけ遡った位置にある所定範囲のものが、対象データとして抽出される。 According to the above-mentioned means 1, the target data storage means extracts and stores predetermined target data from the video data obtained by the video capture means. When extracting this target data, still frame image data from the video data when a trigger occurs (when a defective judgment is made) is used as a reference, and a predetermined range of data located a number of frames back from the video capture means related to the defective judgment by the inspection means that corresponds to the amount of work transported to the inspection means is extracted as the target data.
 すなわち、上記手段1によれば、時間ではなく、ワークの搬送量に基づき動画データの中から対象データが抽出される。従って、動画データの中から、対象データとして、不具合の発生原因や発生時期の把握に必要な動画データをピンポイントで抽出することができ、必要な動画データをより確実にかつより容易に得ることができる。また、ワークの搬送量に基づいて対象データを抽出するから、ワークの搬送速度に変動が生じたような場合であっても、不具合の発生原因などを把握するために必要な動画データをより確実に得ることができる。 In other words, according to the above-mentioned means 1, target data is extracted from the video data based on the amount of work transport, not time. Therefore, video data necessary for understanding the cause and time of occurrence of a malfunction can be pinpoint extracted as target data from the video data, and the necessary video data can be obtained more reliably and easily. In addition, because the target data is extracted based on the amount of work transport, the video data necessary for understanding the cause of the malfunction, etc. can be obtained more reliably even in cases where there is a fluctuation in the work transport speed.
 手段2.少なくとも前記ワークの搬送に係る基準となる回転数及び位相を生成可能なマスターエンコーダを備え、
 前記動画撮影手段は、前記マスターエンコーダの起動に合わせて前記動画データの撮影を開始するとともに、前記マスターエンコーダの停止に合わせて前記動画データの撮影を終了するように構成されており、
 前記マスターエンコーダにより生成される回転数及び位相に基づき、前記遡及フレーム数を導出可能な遡及フレーム数導出手段を有することを特徴とする手段1に記載の製造装置の状況確認システム。
Means 2. A master encoder capable of generating at least a reference number of rotations and a phase related to the transport of the workpiece is provided,
the moving image capturing means is configured to start capturing the moving image data in response to activation of the master encoder, and to end capturing the moving image data in response to deactivation of the master encoder;
The manufacturing equipment status confirmation system according to the first aspect of the present invention is characterized in that it has a retroactive frame number derivation means capable of deriving the retroactive frame number based on the number of rotations and phase generated by the master encoder.
 上記手段2によれば、少なくともワークの搬送に係る基準となる回転数及び位相を生成可能なマスターエンコーダが設けられている。また、動画撮影手段は、マスターエンコーダの起動に合わせて動画データの撮影を開始し、マスターエンコーダの停止に合わせて動画データの撮影を終了する。従って、動画データを構成する複数の静止フレーム画像データは、マスターエンコーダの回転数及び位相に対応付けられた状態となる。 According to the above-mentioned means 2, a master encoder is provided that can generate at least the reference rotation speed and phase for the transport of the workpiece. In addition, the video capture means starts capturing video data in accordance with the start of the master encoder, and ends capturing the video data in accordance with the stop of the master encoder. Therefore, the multiple still frame image data that constitute the video data are associated with the rotation speed and phase of the master encoder.
 そして、遡及フレーム数導出手段は、マスターエンコーダにより生成される回転数及び位相に基づき、遡及フレーム数を導出する。従って、上記の通り、動画データにおいて、複数の静止フレーム画像データとマスターエンコーダの回転数及び位相とが対応付けられた状態となることに合わせて、この動画データに合う遡及フレーム数をより正確に導出することができる。その結果、対象データとして、不具合の発生原因などを把握するために必要な動画データを一層確実に得ることができる。 The retrospective frame number derivation means then derives the number of retrospective frames based on the number of rotations and phase generated by the master encoder. Therefore, as described above, since the video data corresponds to a plurality of still frame image data and the number of rotations and phase of the master encoder, the number of retrospective frames that matches this video data can be more accurately derived. As a result, the video data required to understand the cause of a malfunction, etc., can be obtained more reliably as target data.
 手段3.前記動画撮影手段により得られた前記動画データは、前記静止フレーム画像データごとに、該静止フレーム画像データが得られたときの時刻を示す実時刻タイムコードを付した形式で所定のリングバッファに保存されており、
 前記マスターエンコーダにより生成される回転数及び位相と、前記実時刻タイムコードとの対応関係を示す変換テーブルを用いて、前記マスターエンコーダにより生成される回転数及び位相を、前記実時刻タイムコードに変換する変換手段を有し、
 前記対象データ保存手段は、前記変換手段によって、前記マスターエンコーダにより生成される回転数及び位相を、前記実時刻タイムコードに変換するとともに、該実時刻タイムコードを利用して、前記リングバッファに保存された前記動画データの中から前記対象データを抽出して保存するように構成されていることを特徴とする手段2に記載の製造装置の状況確認システム。
Means 3. The moving image data obtained by the moving image shooting means is stored in a predetermined ring buffer in a format in which a real-time time code indicating the time when the still frame image data was obtained is added to each still frame image data,
a conversion means for converting the number of rotations and the phase generated by the master encoder into the real-time time code using a conversion table indicating a correspondence relationship between the number of rotations and the phase generated by the master encoder and the real-time time code,
The manufacturing equipment status checking system described in means 2 is characterized in that the target data storage means is configured to convert the rotation speed and phase generated by the master encoder into the real time time code by the conversion means, and to extract and store the target data from the video data stored in the ring buffer using the real time time code.
 上記手段3によれば、動画データは、リングバッファに保存される。従って、動画データを保存するためのメモリ領域を節約することができる。また、動画データは、静止フレーム画像データが得られたときの時刻に関する情報を有するため、不具合がいつ発生したのか、不具合を生じさせた事象がどのようなスピードで生じたのかについて確認することができる。従って、不具合の発生防止のための対応をより適切にとることができる。 According to the above-mentioned means 3, the video data is stored in a ring buffer. This makes it possible to save memory space for storing video data. In addition, since the video data contains information about the time when the still frame image data was obtained, it is possible to confirm when the malfunction occurred and at what speed the event that caused the malfunction occurred. This makes it possible to take more appropriate measures to prevent malfunctions from occurring.
 また、上記手段3によれば、変換手段を用いることで、マスターエンコーダにより生成される回転数及び位相を、実時刻タイムコードに変換することができる。そして、この実時刻タイムコードを利用して、動画データの中から対象データを抽出することができる。従って、対象データとして、不具合の発生原因などを把握するために必要な動画データを一層確実に得ることができる。 Furthermore, according to the above-mentioned means 3, by using a conversion means, the number of rotations and phase generated by the master encoder can be converted into a real-time time code. Then, this real-time time code can be used to extract target data from the video data. Therefore, it is possible to more reliably obtain the video data necessary to understand the cause of the malfunction as the target data.
 手段4.前記動画撮影手段により得られた前記動画データは、前記静止フレーム画像データごとに、該静止フレーム画像データが得られたときの、前記マスターエンコーダにより生成される回転数及び位相を示す機械的タイムコードを付した形式で所定のリングバッファに保存されており、
 前記対象データ保存手段は、前記機械的タイムコードを利用して、前記リングバッファに保存された前記動画データの中から前記対象データを抽出して保存するように構成されていることを特徴とする手段2に記載の製造装置の状況確認システム。
Means 4. The moving image data obtained by the moving image shooting means is stored in a predetermined ring buffer in a format in which a mechanical time code indicating the number of rotations and phase generated by the master encoder at the time when the still frame image data was obtained is added to each of the still frame image data,
The manufacturing equipment status checking system described in means 2 is characterized in that the target data storage means is configured to extract and store the target data from the video data stored in the ring buffer using the mechanical time code.
 上記手段4によれば、動画データは、リングバッファに保存されるため、動画データを保存するためのメモリ領域を節約することができる。 According to the above-mentioned method 4, the video data is stored in a ring buffer, so that memory space for storing the video data can be saved.
 また、上記手段4によれば、変換手段を用いることなく、動画データの中から対象データを抽出することができる。従って、対象データの抽出に係る処理負担の低減を図ることができる。 Furthermore, according to the above-mentioned means 4, it is possible to extract the target data from the video data without using a conversion means. Therefore, it is possible to reduce the processing load related to the extraction of the target data.
 手段5.前記動画撮影手段は、前記ワークの搬送方向に沿って複数設けられており、
 前記検査手段には、複数の検査項目についての良否判定を行うものが含まれており、
 前記検査項目と、前記検査項目に関係する前記動画撮影手段との対応関係を示す特定テーブルを用いて、複数の前記動画撮影手段の中から、不良判定された検査項目に関係するものを特定する撮影手段特定手段を有し、
 前記対象データ保存手段は、前記撮影手段特定手段により特定された前記動画撮影手段が得た前記動画データの中から、前記対象データを抽出して保存するように構成されていることを特徴とする手段1に記載の製造装置の状況確認システム。
Means 5. The video capture means is provided in a plurality of positions along the conveying direction of the workpiece,
The inspection means includes a means for determining pass/fail for a plurality of inspection items,
an imaging means specifying means for specifying, from among the plurality of video imaging means, one related to the inspection item determined to be defective, using a specification table showing a correspondence relationship between the inspection item and the video imaging means related to the inspection item;
The manufacturing equipment status confirmation system described in means 1, characterized in that the target data storage means is configured to extract and store the target data from the video data obtained by the video shooting means identified by the shooting means identification means.
 上記手段5によれば、撮影手段特定手段によって、ある検査項目について不良判定された場合に、その検査項目に関係する1又は複数の動画撮影手段を特定することができる。そして、対象データ保存手段によって、特定された1又は複数の動画撮影手段が得た1又は複数の動画データの中から、対象データが抽出して保存される。従って、対象データの抽出をより容易に行うことが可能となる。 According to the above-mentioned means 5, when a test item is judged to be defective by the imaging means identification means, it is possible to identify one or more video imaging means related to that test item. Then, the target data storage means extracts and stores the target data from one or more pieces of video data obtained by the identified one or more video imaging means. This makes it possible to more easily extract the target data.
 また、1の検査項目に対し、複数の動画撮影手段が関係する場合には、これら動画撮影手段により得られた複数の動画データから、複数の対象データを得ることができる。従って、不具合の発生原因などをより容易にかつより正確に把握することが可能となる。 Furthermore, when multiple video capture means are involved in one inspection item, multiple target data can be obtained from the multiple video data obtained by these video capture means. This makes it possible to more easily and accurately grasp the cause of the defect.
 尚、上記各手段に係る技術事項を適宜組み合わせてもよい。例えば、上記手段2に係る技術事項に対し、上記手段3又は4に係る技術事項を組み合わせてもよい。また、例えば、上記手段3又は4に係る技術事項に対し、上記手段5に係る技術事項を組み合わせてもよい。 In addition, the technical matters related to each of the above means may be combined as appropriate. For example, the technical matters related to the above means 2 may be combined with the technical matters related to the above means 3 or 4. Also, for example, the technical matters related to the above means 3 or 4 may be combined with the technical matters related to the above means 5.
PTPシートを示す斜視図である。FIG. 2 is a perspective view showing a PTP sheet. PTPシートの部分拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view of a PTP sheet. PTPフィルムを示す斜視図である。FIG. 2 is a perspective view showing a PTP film. PTP包装機などの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a general configuration of a PTP packaging machine and the like. 確認システムなどの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a confirmation system, etc. マスターエンコーダにより生成される回転数及び位相を基準として動作する各種装置を示すブロック図である。FIG. 2 is a block diagram showing various devices that operate based on the rotation speed and phase generated by a master encoder. マスターエンコーダにより生成される回転数及び位相と時間との関係を示すグラフである。4 is a graph showing the relationship between the number of rotations and the phase generated by the master encoder and time. マスターエンコーダにおける位相と、第一エンコーダにおける位相との関係を説明するための説明図である。5 is an explanatory diagram for explaining the relationship between the phase in a master encoder and the phase in a first encoder. FIG. マスターエンコーダにおける位相と、第二エンコーダにおける位相との関係を説明するための説明図である。5 is an explanatory diagram for explaining the relationship between the phase in a master encoder and the phase in a second encoder. FIG. マスターエンコーダにおける位相と、第三、第四エンコーダにおける位相との関係を説明するための説明図である。10 is an explanatory diagram for explaining the relationship between the phase in the master encoder and the phases in the third and fourth encoders; FIG. 制御装置などの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a control device and the like. 保存された動画データを説明するための説明図である。FIG. 2 is an explanatory diagram for explaining stored video data. 特定テーブルを説明するための説明図である。FIG. 11 is an explanatory diagram for explaining a specification table. 変換テーブル等について説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a conversion table etc. 第二カメラから第一検査装置までの容器フィルムの搬送量について説明するための説明図である。13 is an explanatory diagram for explaining the transport amount of the container film from the second camera to the first inspection device. FIG. 第一検査装置及び第二カメラに係る遡及フレーム数導出式の一例を示すグラフである。13 is a graph showing an example of a retrospective frame number derivation formula for a first inspection device and a second camera. 第四カメラから第二検査装置までの容器フィルムの搬送量について説明するための説明図である。13 is an explanatory diagram for explaining the transport amount of the container film from the fourth camera to the second inspection device. FIG. 第二検査装置及び第四カメラに係る遡及フレーム数導出式の一例を示すグラフである。13 is a graph showing an example of a retrospective frame number derivation formula for a second inspection device and a fourth camera. 別の実施形態において、保存された動画データを説明するための説明図である。FIG. 11 is an explanatory diagram for explaining stored video data in another embodiment.
 以下に、一実施形態について図面を参照しつつ説明する。まず、「製品」としてのPTPシートの構成について説明する。図1,2に示すように、PTPシート1は、複数のポケット部2を備えた容器フィルム3と、ポケット部2を塞ぐようにして容器フィルム3に取着されたカバーフィルム4とを有している。 Below, one embodiment will be described with reference to the drawings. First, the configuration of the PTP sheet as a "product" will be described. As shown in Figures 1 and 2, the PTP sheet 1 has a container film 3 with multiple pocket portions 2, and a cover film 4 attached to the container film 3 so as to cover the pocket portions 2.
 本実施形態における容器フィルム3は、例えばPP(ポリプロピレン)やPVC(ポリ塩化ビニル)等の透明の熱可塑性樹脂材料により形成されている。一方、カバーフィルム4は、例えばポリプロピレン樹脂等からなるシーラントが表面に設けられた不透明材料(例えばアルミニウム箔等)により構成されている。勿論、各フィルム3,4の材料は、これらに限定されるものではなく、他の材質のものを採用してもよい。 In this embodiment, the container film 3 is formed from a transparent thermoplastic resin material such as PP (polypropylene) or PVC (polyvinyl chloride). On the other hand, the cover film 4 is composed of an opaque material (such as aluminum foil) with a sealant made of polypropylene resin or the like applied to the surface. Of course, the materials of the films 3 and 4 are not limited to these, and other materials may be used.
 PTPシート1は、帯状の容器フィルム3及び帯状のカバーフィルム4から形成された帯状のPTPフィルム6(図3参照)が打抜かれることによって製造されるものであり、平面視略矩形状に形成されている。 The PTP sheet 1 is manufactured by punching out a strip-shaped PTP film 6 (see Figure 3) formed from a strip-shaped container film 3 and a strip-shaped cover film 4, and is formed in a roughly rectangular shape when viewed from above.
 PTPシート1には、その長手方向に沿って配列された5個のポケット部2からなるポケット列が、その短手方向に2列形成されている。各ポケット部2には、「内容物」としての錠剤5が1つずつ収容されている。尚、錠剤5は、各種情報などが印刷されたものであってもよい。 The PTP sheet 1 has two rows of pockets in the short direction, each row consisting of five pockets 2 arranged along the long direction. Each pocket 2 contains one tablet 5 as the "contents." The tablets 5 may have various information printed on them.
 次に、上記PTPシート1を製造するためのPTP包装機10の概略構成について説明する。本実施形態では、PTP包装機10が「製造装置」及び「ブリスタ包装機」に相当する。PTP包装機10は、搬送方向に沿った順序を変えることなく搬送される「ワーク」としての容器フィルム3に対し同一処理を繰り返し施す装置である。尚、本実施形態では、容器フィルム3を備えたPTPシート1も「ワーク」に相当する。 Next, the schematic configuration of the PTP packaging machine 10 for manufacturing the PTP sheet 1 will be described. In this embodiment, the PTP packaging machine 10 corresponds to the "manufacturing device" and the "blister packaging machine." The PTP packaging machine 10 is a device that repeatedly performs the same process on the container film 3, which is the "workpiece" that is transported without changing the order along the transport direction. In this embodiment, the PTP sheet 1 with the container film 3 also corresponds to the "workpiece."
 図4に示すように、PTP包装機10の最上流側では、帯状の容器フィルム3の原反がロール状に巻回されている。ロール状に巻回された容器フィルム3の引出し端側は、ガイドロール13に案内されている。容器フィルム3は、ガイドロール13の下流側において間欠送りロール14に掛装されている。間欠送りロール14は、容器フィルム3を間欠的に搬送する。 As shown in FIG. 4, at the most upstream side of the PTP packaging machine 10, a strip-shaped original sheet of container film 3 is wound into a roll. The pull-out end of the rolled container film 3 is guided by a guide roll 13. The container film 3 is hung on an intermittent feed roll 14 downstream of the guide roll 13. The intermittent feed roll 14 transports the container film 3 intermittently.
 ガイドロール13と間欠送りロール14との間には、容器フィルム3の搬送経路に沿って、予熱装置15及びポケット部形成装置16が配設されている。そして、予熱装置15によって容器フィルム3が予熱されて該容器フィルム3が比較的柔軟になった状態において、ポケット部形成装置16によって容器フィルム3の所定位置に複数のポケット部2が形成される。ポケット部2の形成は、間欠送りロール14による容器フィルム3の搬送動作間のインターバルの際に行われる。 A preheating device 15 and a pocket forming device 16 are disposed between the guide roll 13 and the intermittent feed roll 14 along the transport path of the container film 3. Then, after the container film 3 has been preheated by the preheating device 15 and has become relatively flexible, a number of pockets 2 are formed at predetermined positions on the container film 3 by the pocket forming device 16. The pockets 2 are formed during the intervals between transport operations of the container film 3 by the intermittent feed roll 14.
 間欠送りロール14から送り出された容器フィルム3は、テンションロール18、ガイドロール19及びフィルム受けロール20の順に掛装されている。フィルム受けロール20は、容器フィルム3を連続的に且つ一定速度で搬送する。テンションロール18は、間欠送りロール14とフィルム受けロール20との搬送動作の相違による容器フィルム3の弛みを防止して容器フィルム3を常時緊張状態に保持する。 The container film 3 sent out from the intermittent feed roll 14 is hung in this order over the tension roll 18, guide roll 19, and film receiving roll 20. The film receiving roll 20 transports the container film 3 continuously at a constant speed. The tension roll 18 prevents the container film 3 from sagging due to differences in the transport operations of the intermittent feed roll 14 and the film receiving roll 20, and keeps the container film 3 in a constant state of tension.
 ガイドロール19とフィルム受けロール20との間には、容器フィルム3の搬送経路に沿って、充填装置22が配設されている。 A filling device 22 is disposed between the guide roll 19 and the film receiving roll 20 along the transport path of the container film 3.
 充填装置22は、例えば所定間隔毎にシャッタを開いて錠剤5を自由落下させること等により各ポケット部2に錠剤5を充填する。 The filling device 22 fills each pocket 2 with tablets 5, for example by opening a shutter at predetermined intervals and allowing the tablets 5 to fall freely.
 一方、帯状に形成されたカバーフィルム4の原反は、最上流側においてロール状に巻回されている。ロール状に巻回されたカバーフィルム4の引出し端は、ガイドロール24によって加熱ロール25の方へと案内されている。 Meanwhile, the original web of cover film 4 formed in a strip shape is wound into a roll on the most upstream side. The pull-out end of the rolled cover film 4 is guided toward the heating roll 25 by the guide roll 24.
 加熱ロール25は、前記フィルム受けロール20に圧接可能となっており、両ロール20,25間に容器フィルム3及びカバーフィルム4が送り込まれるようになっている。そして、両フィルム3,4が両ロール20,25間を加熱圧接状態で通過することで、容器フィルム3にカバーフィルム4が取着され、ポケット部2がカバーフィルム4で塞がれる。これにより、錠剤5が各ポケット部2に収容された帯状のPTPフィルム6が製造される。本実施形態において、PTPフィルム6は「ブリスタフィルム」に相当する。 The heating roll 25 can be pressed against the film receiving roll 20, and the container film 3 and cover film 4 are fed between the rolls 20, 25. Then, as the films 3, 4 pass between the rolls 20, 25 in a heated and pressed state, the cover film 4 is attached to the container film 3, and the pocket portion 2 is sealed with the cover film 4. This produces a strip-shaped PTP film 6 with tablets 5 housed in each pocket portion 2. In this embodiment, the PTP film 6 corresponds to a "blister film."
 フィルム受けロール20から送り出されたPTPフィルム6は、テンションロール27及び間欠送りロール28の順に掛装されている。間欠送りロール28は、PTPフィルム6を間欠的に搬送する。テンションロール27は、フィルム受けロール20と間欠送りロール28との搬送動作の相違によるPTPフィルム6の弛みを防止してPTPフィルム6を常時緊張状態に保持する。 The PTP film 6 sent out from the film receiving roll 20 is hung in that order on the tension roll 27 and the intermittent feed roll 28. The intermittent feed roll 28 transports the PTP film 6 intermittently. The tension roll 27 prevents the PTP film 6 from sagging due to differences in the transport operations of the film receiving roll 20 and the intermittent feed roll 28, and keeps the PTP film 6 in a constant tensioned state.
 間欠送りロール28から送り出されたPTPフィルム6は、テンションロール31及び間欠送りロール32の順に掛装されている。間欠送りロール32は、PTPフィルム6を間欠的に搬送する。テンションロール31は、前記間欠送りロール28,32間でのPTPフィルム6の弛みを防止する。 The PTP film 6 sent out from the intermittent feed roll 28 is hung in the order of tension roll 31 and intermittent feed roll 32. The intermittent feed roll 32 transports the PTP film 6 intermittently. The tension roll 31 prevents the PTP film 6 from sagging between the intermittent feed rolls 28 and 32.
 間欠送りロール28とテンションロール31との間には、PTPフィルム6の搬送経路に沿って、スリット形成装置33及び刻印装置34が配設されている。スリット形成装置33は、PTPフィルム6の所定位置に切離用スリットを形成する。刻印装置34はPTPフィルム6の所定位置(例えばタグ部)に刻印を付す。尚、図1等では、切離用スリットや刻印の図示を省略している。 A slit forming device 33 and an engraving device 34 are disposed between the intermittent feed roll 28 and the tension roll 31 along the transport path of the PTP film 6. The slit forming device 33 forms a separation slit at a predetermined position on the PTP film 6. The engraving device 34 applies an engraving to a predetermined position on the PTP film 6 (e.g., the tag portion). Note that the separation slit and engraving are not shown in Figure 1 etc.
 間欠送りロール32から送り出されたPTPフィルム6は、その下流側においてテンションロール35及び連続送りロール36の順に掛装されている。間欠送りロール32とテンションロール35との間には、PTPフィルム6の搬送経路に沿って、シート打抜装置37が配設されている。シート打抜装置37は、PTPフィルム6をPTPシート1単位にその外縁を打抜く機能、つまりPTPフィルム6からPTPシート1を切離す機能を有する。 The PTP film 6 sent out from the intermittent feed roll 32 is hung on the tension roll 35 and continuous feed roll 36 in that order downstream. A sheet punching device 37 is disposed between the intermittent feed roll 32 and the tension roll 35 along the transport path of the PTP film 6. The sheet punching device 37 has the function of punching out the outer edge of the PTP film 6 into PTP sheet units, in other words, the function of separating the PTP sheet 1 from the PTP film 6.
 シート打抜装置37によって得られたPTPシート1は、コンベア39によって搬送され、完成品用ホッパ40に一旦貯留される。但し、後述する検査装置C1,C2,C3,C4のうちの少なくとも1つによって不良判定がなされた場合、不良判定に係るPTPシート1は、完成品用ホッパ40へ送られることなく、図示しない不良シート排出機構によって別途排出される。 The PTP sheet 1 obtained by the sheet punching device 37 is transported by a conveyor 39 and temporarily stored in a finished product hopper 40. However, if a defective PTP sheet 1 is determined to be defective by at least one of the inspection devices C1, C2, C3, and C4 described below, the PTP sheet 1 determined to be defective is not sent to the finished product hopper 40, but is discharged separately by a defective sheet discharge mechanism (not shown).
 また、前記連続送りロール36の下流側には、裁断装置42が配設されている。そして、シート打抜装置37による打抜き後に帯状に残った残材部(スクラップ部)を構成する不要フィルム部43は、テンションロール35及び連続送りロール36に案内された後、裁断装置42に導かれる。裁断装置42は、不要フィルム部43を所定寸法に裁断する。裁断された不要フィルム部43(スクラップ)はスクラップ用ホッパ44に貯留された後、廃棄処理される。 A cutting device 42 is disposed downstream of the continuous feed roll 36. The unnecessary film portion 43 that constitutes the strip-shaped remaining material portion (scrap portion) after punching by the sheet punching device 37 is guided to the tension roll 35 and the continuous feed roll 36, and then led to the cutting device 42. The cutting device 42 cuts the unnecessary film portion 43 to a predetermined size. The cut unnecessary film portion 43 (scrap) is stored in a scrap hopper 44 and then disposed of.
 次いで、上述した間欠送りロール14、フィルム受けロール20、間欠送りロール28,32及びコンベア39を動作させるための第一モータM1、第二モータM2、第三モータM3、第四モータM4及び第五モータM5について説明する。尚、以下では、これらを「モータM1~M5」と表記することがある。 Next, we will explain the first motor M1, second motor M2, third motor M3, fourth motor M4, and fifth motor M5 for operating the intermittent feed roll 14, film receiving roll 20, intermittent feed rolls 28, 32, and conveyor 39 described above. Note that below, these may be referred to as "motors M1 to M5."
 第一モータM1は、間欠送りロール14を動作させることで、予熱装置15及びポケット部形成装置16による処理の対象となる容器フィルム3を間欠搬送するためのものである。本実施形態において、第一モータM1は、後述するマスターエンコーダEMによって生成される回転数が偶数(又は奇数)のときであって、マスターエンコーダEMによって生成される位相(回転角度)が所定値(角度α)となったタイミングで動作する。つまり、第一モータM1は、マスターエンコーダEMの回転数が2つ増加する度に1回だけ動作する。第一モータM1が1回動作することによって、容器フィルム3は所定長さ(本実施形態では、PTPシート1二枚分の長さ)だけ搬送される。 The first motor M1 operates the intermittent feed roll 14 to intermittently transport the container film 3 to be processed by the preheating device 15 and pocket forming device 16. In this embodiment, the first motor M1 operates when the number of rotations generated by the master encoder EM described below is an even number (or odd number) and the phase (rotation angle) generated by the master encoder EM reaches a predetermined value (angle α). In other words, the first motor M1 operates only once each time the number of rotations of the master encoder EM increases by two. By operating the first motor M1 once, the container film 3 is transported a predetermined length (in this embodiment, the length of two PTP sheets).
 第二モータM2は、フィルム受けロール20を動作させることで、前記両ロール20,25によってカバーフィルム4が取着される容器フィルム3を一定速度で連続搬送するためのものである。本実施形態では、マスターエンコーダEMの回転数が1増加し、第二モータM2が1回動作することによって、容器フィルム3が所定長さ(本実施形態では、PTPシート1一枚分)だけ搬送される。 The second motor M2 operates the film receiving roll 20 to continuously transport the container film 3 to which the cover film 4 is attached by the two rolls 20, 25 at a constant speed. In this embodiment, the number of rotations of the master encoder EM increases by one, and the second motor M2 operates once, transporting the container film 3 by a predetermined length (in this embodiment, the length of one PTP sheet).
 第三モータM3及び第四モータM4は、スリット形成装置33、刻印装置34及びシート打抜装置37による処理の対象となる容器フィルム3を間欠搬送するためのものである。本実施形態においては、マスターエンコーダEMの位相が所定値(角度α)となる度に、つまり、マスターエンコーダEMの回転数が1増加する度に、両モータM3,M4が1回動作することによって、容器フィルム3が所定長さ(本実施形態では、PTPシート1一枚分の長さ)だけ搬送される。 The third motor M3 and the fourth motor M4 are used to intermittently transport the container film 3 to be processed by the slit forming device 33, the marking device 34, and the sheet punching device 37. In this embodiment, each time the phase of the master encoder EM reaches a predetermined value (angle α), that is, each time the number of rotations of the master encoder EM increases by one, both motors M3 and M4 operate once, and the container film 3 is transported a predetermined length (in this embodiment, the length of one PTP sheet).
 第五モータM5は、コンベア39を動作させることで、PTPシート1を間欠搬送するためのものである。本実施形態においては、マスターエンコーダEMの位相が所定値(角度α)となる度に、つまり、マスターエンコーダEMの回転数が1増加する度に、第五モータM5が1回動作することによって、PTPシート1が所定距離だけ間欠搬送される。尚、第五モータM5は、PTPシート1を連続搬送可能なものであってもよい。 The fifth motor M5 operates the conveyor 39 to intermittently transport the PTP sheet 1. In this embodiment, each time the phase of the master encoder EM reaches a predetermined value (angle α), that is, each time the number of rotations of the master encoder EM increases by one, the fifth motor M5 operates once, thereby intermittently transporting the PTP sheet 1 a predetermined distance. The fifth motor M5 may also be capable of continuously transporting the PTP sheet 1.
 さらに、PTP包装機10に対しては、図5に示すように、製造装置の状況確認システム50(以下、単に「確認システム50」という)が適用されている。確認システム50は、PTPシート1の製造に係る不具合の発生状況などを画像によって確認可能とするためのものである。確認システム50は、容器フィルム3自体や容器フィルム3に対する処理についての良否を判定する機能、容器フィルム3や処理の実行状況についての動画データを得る機能、動画データの中から必要なデータのみを抽出して保存する機能などを具備している。確認システム50は、マスターモータMM、マスターエンコーダEM及び制御装置60などを備えている。 Furthermore, as shown in FIG. 5, a manufacturing equipment status confirmation system 50 (hereinafter simply referred to as "confirmation system 50") is applied to the PTP packaging machine 10. The confirmation system 50 is intended to enable confirmation of the occurrence of defects related to the production of the PTP sheet 1 through images. The confirmation system 50 has functions such as a function to determine whether the container film 3 itself and the processing of the container film 3 are good or bad, a function to obtain video data on the container film 3 and the execution status of the processing, and a function to extract and save only the necessary data from the video data. The confirmation system 50 is equipped with a master motor MM, a master encoder EM, a control device 60, etc.
 マスターモータMMは、一定速度で回転するサーボモータ等により構成されており、所定の回転駆動部(例えばモータ軸)を有している。マスターモータMMの起動及び停止は、制御装置60によって制御される。本実施形態において、マスターモータMM(回転駆動部)の動作速度は、PTP包装機10の動作開始時には徐々に増大していき、PTP包装機10の動作開始から一定時間経過後に一定となり、PTP包装機10の動作停止時には徐々に減少して、最終的に0となるようになっている。 The master motor MM is composed of a servo motor or the like that rotates at a constant speed, and has a specified rotation drive unit (e.g., a motor shaft). The starting and stopping of the master motor MM is controlled by the control device 60. In this embodiment, the operating speed of the master motor MM (rotation drive unit) gradually increases when the PTP packaging machine 10 starts operating, becomes constant after a certain time has elapsed since the PTP packaging machine 10 started operating, and gradually decreases when the PTP packaging machine 10 stops operating, eventually becoming zero.
 マスターエンコーダEMは、PTP包装機10における各装置の動作制御の基準となる回転数及び位相を生成する。本実施形態において、マスターエンコーダEMは、マスターモータMMの前記回転駆動部に係る回転数及び位相を読み取り、この読み取った回転数及び位相を生成する。生成された回転数及び位相は、モータM1~M5の動作タイミングに係る基準(つまり容器フィルム3の搬送タイミングに係る基準)、後述する検査装置C1,C2,C3,C4による検査の実行タイミングに係る基準、後述するカメラR1,R2,R3,R4,R5,R6による撮影の実行タイミングに係る基準として用いられる。つまり、マスターエンコーダEMは、モータM1~M5、検査装置C1,C2,C3,C4及びカメラR1,R2,R3,R4,R5,R6の動作制御の基準となる回転数及び位相を生成する(図6参照)。 The master encoder EM generates the rotation speed and phase that are the basis for controlling the operation of each device in the PTP packaging machine 10. In this embodiment, the master encoder EM reads the rotation speed and phase related to the rotation drive unit of the master motor MM, and generates the read rotation speed and phase. The generated rotation speed and phase are used as a reference for the operation timing of the motors M1 to M5 (i.e., a reference for the timing of conveying the container film 3), a reference for the timing of inspection by the inspection devices C1, C2, C3, and C4 described later, and a reference for the timing of photographing by the cameras R1, R2, R3, R4, R5, and R6 described later. In other words, the master encoder EM generates the rotation speed and phase that are the basis for controlling the operation of the motors M1 to M5, the inspection devices C1, C2, C3, and C4, and the cameras R1, R2, R3, R4, R5, and R6 (see FIG. 6).
 マスターエンコーダEMによって生成された回転数及び位相は、制御装置60へと入力される。本実施形態では、上記のようにマスターモータMMが動作することで、マスターエンコーダEMにより生成される位相及び回転数は、PTP包装機10の動作開始時には徐々に増大し、PTP包装機10の動作開始から一定時間経過後には一定速度で増大し、PTP包装機10の動作停止時には徐々に減少することとなる(図7参照)。 The rotation speed and phase generated by the master encoder EM are input to the control device 60. In this embodiment, by operating the master motor MM as described above, the phase and rotation speed generated by the master encoder EM gradually increase when the PTP packaging machine 10 starts operating, increase at a constant speed after a certain time has elapsed since the PTP packaging machine 10 started operating, and gradually decrease when the PTP packaging machine 10 stops operating (see Figure 7).
 次いで、制御装置60の説明に先立って、確認システム50が有するその他の装置について説明する。 Next, before explaining the control device 60, we will explain the other devices that the verification system 50 has.
 確認システム50は、容器フィルム3やPTPシート1の搬送経路に沿って、第一検査装置C1、第二検査装置C2、第三検査装置C3及び第四検査装置C4を備えている。以下では、これらを「検査装置C1~C4」と表記することがある。本実施形態において、検査装置C1~C4は、それぞれ「検査手段」に相当する。 The confirmation system 50 is equipped with a first inspection device C1, a second inspection device C2, a third inspection device C3, and a fourth inspection device C4 along the transport path of the container film 3 and the PTP sheet 1. Hereinafter, these may be referred to as "inspection devices C1 to C4." In this embodiment, the inspection devices C1 to C4 each correspond to an "inspection means."
 各検査装置C1~C4は、照射装置、撮像装置及び判定装置(それぞれ不図示)などを備えている。照射装置は、容器フィルム3や錠剤5、PTPシート1などに対し所定の光を照射する。撮像装置は、照射装置によって光の照射された容器フィルム3等を撮像する。判定装置は、撮像装置により得られた画像データに基づき、容器フィルム3自体及び容器フィルム3に対する処理のうちの少なくとも一方についての良否を判定する。 Each of the inspection devices C1 to C4 is equipped with an irradiation device, an imaging device, and a judgment device (not shown). The irradiation device irradiates the container film 3, tablets 5, PTP sheet 1, etc. with a predetermined light. The imaging device captures the container film 3, etc. irradiated with light by the irradiation device. The judgment device judges the quality of at least one of the container film 3 itself and the processing applied to the container film 3 based on the image data obtained by the imaging device.
 第一検査装置C1は、ポケット部形成装置16の下流かつ充填装置22の上流であって、連続搬送される容器フィルム3に対応して設けられている(図4参照)。第一検査装置C1は、ポケット部2の形成後であって、ポケット部2に対する錠剤5の充填前に、容器フィルム3における傷(例えば、ピンホール等)や汚れの有無という検査項目と、ポケット部2における成形不良の有無という検査項目とについての検査を行う。傷や汚れの有無についての検査を行うことで、容器フィルム3自体の良否を判定することができる。また、ポケット部2における成形不良の有無についての検査を行うことで、結果的に、予熱装置15やポケット部形成装置16による容器フィルム3に対する処理が適切に行われた否かを判定することができる。 The first inspection device C1 is provided downstream of the pocket forming device 16 and upstream of the filling device 22, corresponding to the container film 3 that is continuously conveyed (see FIG. 4). After the pocket 2 is formed and before the pocket 2 is filled with tablets 5, the first inspection device C1 inspects the container film 3 for scratches (e.g., pinholes, etc.) and dirt, and for molding defects in the pocket 2. By inspecting for scratches and dirt, it is possible to determine whether the container film 3 itself is good or bad. Furthermore, by inspecting for molding defects in the pocket 2, it is possible to determine whether the container film 3 has been properly processed by the preheating device 15 and the pocket forming device 16.
 第二検査装置C2は、充填装置22の下流かつフィルム受けロール20の上流に設けられている(図4参照)。第二検査装置C2は、「欠錠」の有無という検査項目や、「立錠」の有無という検査項目についての検査を行う。「欠錠」とは、ポケット部2に対し錠剤5が収容されていないことをいう。「立錠」とは、ポケット部2に充填された錠剤5が立った状態となっていることをいう。「欠錠」や「立錠」についての検査を行うことで、結果的に、充填装置22によるポケット部2に対する錠剤5の充填処理が適切に行われたか否かを判定することができる。 The second inspection device C2 is provided downstream of the filling device 22 and upstream of the film receiving roll 20 (see Figure 4). The second inspection device C2 inspects for the inspection items of whether or not there are "missing tablets" and whether or not there are "standing tablets." "Missing tablets" refers to a state in which no tablets 5 are contained in the pocket portion 2. "Standing tablets" refers to a state in which the tablets 5 filled in the pocket portion 2 are in an upright position. By inspecting for "missing tablets" and "standing tablets," it is possible to determine whether or not the filling device 22 has properly filled the pocket portion 2 with tablets 5.
 第三検査装置C3は、フィルム受けロール20とテンションロール27との間に設けられている(図4参照)。第三検査装置C3は、「欠錠」の有無という検査項目や、「シール不良」の有無という検査項目についての検査を行う。「シール不良」とは、容器フィルム3に対するカバーフィルム4の取着が不十分であることをいう。「シール不良」についての検査が行われることで、結果的に、両ロール20,25による、容器フィルム3に対するカバーフィルム4の取着処理が適切であるか否かを判定することができる。 The third inspection device C3 is provided between the film receiving roll 20 and the tension roll 27 (see Figure 4). The third inspection device C3 inspects for the presence or absence of "missing tablets" and the presence or absence of "poor sealing". "Poor sealing" refers to insufficient attachment of the cover film 4 to the container film 3. By inspecting for "poor sealing", it is possible to determine whether the attachment process of the cover film 4 to the container film 3 by both rolls 20, 25 is appropriate.
 第四検査装置C4は、コンベア39により搬送されるPTPシート1に対応して設けられている(図4参照)。第四検査装置C4は、「打抜き不良」の有無という検査項目についての検査を行う。「打抜き不良」とは、打抜かれたPTPシート1に不良箇所が生じていることをいう。「打抜き不良」についての検査が行われることで、シート打抜装置37によるPTPフィルム6の打抜処理が適切であるか否かを判定することができる。 The fourth inspection device C4 is provided corresponding to the PTP sheet 1 transported by the conveyor 39 (see Figure 4). The fourth inspection device C4 inspects for the presence or absence of "punching defects". "Punching defects" refer to the occurrence of defects in the punched PTP sheet 1. By inspecting for "punching defects", it is possible to determine whether the punching process of the PTP film 6 by the sheet punching device 37 is appropriate.
 尚、検査装置C1~C4による良否判定結果は、制御装置60へと送られる。また、上記の通り、検査装置C1~C4による検査の実行タイミングは、マスターエンコーダEMにより生成された回転数及び位相によって制御される。 The pass/fail judgment results from the inspection devices C1 to C4 are sent to the control device 60. As described above, the timing at which the inspection devices C1 to C4 perform the inspections is controlled by the number of rotations and phase generated by the master encoder EM.
 加えて、確認システム50は、第一エンコーダE1、第二エンコーダE2、第三エンコーダE3、第四エンコーダE4及び第五エンコーダE5を備えている。以下では、これらを「エンコーダE1~E5」と表記することがある。 In addition, the verification system 50 includes a first encoder E1, a second encoder E2, a third encoder E3, a fourth encoder E4, and a fifth encoder E5. Hereinafter, these may be referred to as "encoders E1 to E5."
 第一エンコーダE1は、第一モータM1に係る回転数及び位相を取得するためのものである。本実施形態において、第一エンコーダE1は、マスターエンコーダEMの位相が720°進み(マスターエンコーダEMの回転数が2増加し)、第一モータM1が1回動作して容器フィルム3が所定長さ(PTPシート1二枚分の長さ)だけ間欠搬送される度に、取得される位相が360°進んで、回転数が1だけ増加するように設定されている(図8参照)。 The first encoder E1 is used to acquire the rotation speed and phase of the first motor M1. In this embodiment, the first encoder E1 is set so that the phase of the master encoder EM advances by 720° (the rotation speed of the master encoder EM increases by 2), and each time the first motor M1 operates once and the container film 3 is intermittently transported a predetermined length (the length of two PTP sheets), the acquired phase advances by 360° and the rotation speed increases by 1 (see Figure 8).
 第二エンコーダE2は、第二モータM2に係る回転数及び位相を取得するためのものである。本実施形態において、第二エンコーダE2は、マスターエンコーダEMの位相が360°進み、第二モータM2が連続動作して容器フィルム3が所定長さ(PTPシート1一枚分の長さ)だけ搬送される度に、取得される位相が360°進んで、回転数が1だけ増加するように設定されている(図9参照)。従って、第二エンコーダE2により取得される回転数及び位相は、第二モータM2による容器フィルム3の搬送量と比例する。 The second encoder E2 is for acquiring the rotation speed and phase related to the second motor M2. In this embodiment, the second encoder E2 is set so that the phase of the master encoder EM advances by 360°, and each time the second motor M2 operates continuously and the container film 3 is transported a predetermined length (the length of one PTP sheet), the acquired phase advances by 360° and the rotation speed increases by 1 (see Figure 9). Therefore, the rotation speed and phase acquired by the second encoder E2 are proportional to the amount of container film 3 transported by the second motor M2.
 第三エンコーダE3は、第三モータM3に係る回転数及び位相を取得するためのものである。第四エンコーダE4は、第四モータM4に係る回転数及び位相を取得するためのものである。両エンコーダE3,E4は、マスターエンコーダEMの位相が360°進み、各モータM3,M4が1回動作して容器フィルム3が所定長さ(PTPシート1一枚分の長さ)だけ搬送される度に、取得される位相が360°進んで、回転数が1だけ増加するように設定されている(図10参照)。 The third encoder E3 is for acquiring the rotation speed and phase of the third motor M3. The fourth encoder E4 is for acquiring the rotation speed and phase of the fourth motor M4. Both encoders E3, E4 are set so that the phase of the master encoder EM advances by 360°, and each time each motor M3, M4 operates once and the container film 3 is transported a predetermined length (the length of one PTP sheet), the acquired phase advances by 360° and the rotation speed increases by 1 (see Figure 10).
 第五エンコーダE5は、第五モータM5に係る回転数及び位相を取得するためのものである。第五エンコーダE5は、第五モータM5が1回動作してPTPシート1が所定距離だけ搬送されると、取得される位相が360°進んで、回転数が1だけ増加するように設定されている。 The fifth encoder E5 is used to acquire the number of rotations and phase related to the fifth motor M5. The fifth encoder E5 is set so that when the fifth motor M5 operates once and the PTP sheet 1 is transported a predetermined distance, the acquired phase advances by 360° and the number of rotations increases by 1.
 さらに、確認システム50は、容器フィルム3の搬送経路に沿って、第一カメラR1、第二カメラR2、第三カメラR3、第四カメラR4、第五カメラR5及び第六カメラR6を備えている。以下では、これらを「カメラR1~R6」と表記することがある。本実施形態において、カメラR1~R6は、検査装置C1~C4の前記撮像装置とは別に設けられており、それぞれ「動画撮影手段」に相当する。 Furthermore, the confirmation system 50 is equipped with a first camera R1, a second camera R2, a third camera R3, a fourth camera R4, a fifth camera R5, and a sixth camera R6 along the transport path of the container film 3. Hereinafter, these may be referred to as "cameras R1 to R6." In this embodiment, cameras R1 to R6 are provided separately from the imaging devices of the inspection devices C1 to C4, and each corresponds to a "video capture means."
 カメラR1~R6は、処理前の容器フィルム3、容器フィルム3に対する処理の実行状況、該処理の良否に伴い状態や姿勢に変動が生じ得る容器フィルム3や錠剤5などを撮影することで、動画データを得るためのものである。動画データは、容器フィルム3自体又は容器フィルム3に対する処理に係るものであって、時系列順で保存された複数の静止フレーム画像データによって構成されている。カメラR1~R6により得られた動画データは、制御装置60に入力される。本実施形態において、1秒分の動画データは、60枚の静止フレーム画像データによって構成されている。 Cameras R1 to R6 are used to obtain video data by photographing the container film 3 before processing, the status of processing of the container film 3, and the container film 3 and tablets 5, whose state and posture may vary depending on the success or failure of the processing. The video data relates to the container film 3 itself or the processing of the container film 3, and is composed of multiple still frame image data stored in chronological order. The video data obtained by cameras R1 to R6 is input to the control device 60. In this embodiment, one second of video data is composed of 60 still frame image data.
 また、カメラR1~R6は、マスターエンコーダEMの起動に合わせて動画データの撮影を開始するとともに、マスターエンコーダEMの停止に合わせて動画データの撮影を終了する。これにより、動画データを構成する複数の静止フレーム画像データは、マスターエンコーダEMの回転数及び位相に対応付けられた状態となる。 In addition, cameras R1 to R6 start capturing video data when the master encoder EM is started, and stop capturing video data when the master encoder EM is stopped. As a result, the multiple still frame image data that make up the video data are associated with the rotation speed and phase of the master encoder EM.
 第一カメラR1は、予熱装置15の上流に設けられている(図4参照)。第一カメラR1は、原反から繰り出された容器フィルム3自体を撮影する。第一カメラR1により得られた動画データは、容器フィルム3に対する処理以前に、容器フィルム3に傷や汚れなどがあったか否かを確認するために利用される。 The first camera R1 is installed upstream of the preheating device 15 (see FIG. 4). The first camera R1 photographs the container film 3 itself as it is unwound from the original roll. The video data obtained by the first camera R1 is used to check whether the container film 3 has any scratches or stains before it is processed.
 第二カメラR2は、予熱装置15及びポケット部形成装置16間に設けられている(図4参照)。第二カメラR2は、サーモカメラによって構成されており、予熱装置15によって予熱処理が施された容器フィルム3を撮影する。第二カメラR2によって得られた動画データは、容器フィルム3における温度分布を示すものであり、容器フィルム3に対する予熱処理が適切であったか否かを確認するために利用される。 The second camera R2 is provided between the preheating device 15 and the pocket forming device 16 (see Figure 4). The second camera R2 is a thermo camera, and captures the container film 3 that has been preheated by the preheating device 15. The video data obtained by the second camera R2 shows the temperature distribution in the container film 3, and is used to check whether the preheating process for the container film 3 was appropriate.
 第三カメラR3は、ポケット部形成装置16の直下流に設けられている(図4参照)。第三カメラR3は、ポケット部形成装置16によってポケット部2の形成処理が施された容器フィルム3を撮影する。第三カメラR3によって得られた動画データは、容器フィルム3に対するポケット部2の形成処理が適切であったか否かを確認するために利用される。 The third camera R3 is provided immediately downstream of the pocket forming device 16 (see FIG. 4). The third camera R3 photographs the container film 3 on which the pocket 2 has been formed by the pocket forming device 16. The video data obtained by the third camera R3 is used to check whether the pocket 2 has been formed appropriately on the container film 3.
 第四カメラR4は、充填装置22による錠剤5の充填ポジションに対応して設けられている(図4参照)。第四カメラR4は、ポケット部2へと錠剤5を充填する場面や、充填された錠剤5などを撮影する。第四カメラR4によって得られた動画データは、ポケット部2に対する錠剤5の充填処理が適切であったか否かを確認するために利用される。 The fourth camera R4 is provided at a position corresponding to the tablet 5 filling position by the filling device 22 (see FIG. 4). The fourth camera R4 captures the scene of the tablet 5 being filled into the pocket portion 2, the filled tablet 5, etc. The video data obtained by the fourth camera R4 is used to check whether the tablet 5 filling process into the pocket portion 2 was appropriate.
 第五カメラR5は、容器フィルム3に対するカバーフィルム4の取着ポジションに対応して設けられている(図4参照)。第五カメラR5は、容器フィルム3に対しカバーフィルム4を取着する場面を撮影する。第五カメラR5によって得られた動画データは、容器フィルム3に対するカバーフィルム4の取着処理が適切であったか否かを確認するために利用される。 The fifth camera R5 is provided at a position corresponding to the attachment position of the cover film 4 to the container film 3 (see FIG. 4). The fifth camera R5 captures the scene of attaching the cover film 4 to the container film 3. The video data obtained by the fifth camera R5 is used to confirm whether the process of attaching the cover film 4 to the container film 3 was appropriate.
 第六カメラR6は、シート打抜装置37によるPTPフィルム6の打抜ポジションに対応して設けられている(図4参照)。第六カメラR6は、PTPフィルム6からPTPシート1を打抜く場面を撮影する。第六カメラR6によって得られた動画データは、PTPフィルム6に対する打抜処理が適切であったか否かを確認するために利用される。 The sixth camera R6 is provided at a position corresponding to the punching position of the PTP film 6 by the sheet punching device 37 (see FIG. 4). The sixth camera R6 captures the scene in which the PTP sheet 1 is punched out of the PTP film 6. The video data obtained by the sixth camera R6 is used to check whether the punching process on the PTP film 6 was appropriate.
 次いで、制御装置60について説明する。制御装置60は、PTP包装機10や確認システム50における各装置の動作制御などを担うものである。制御装置60は、演算手段としてのCPUや、各種プログラムを記憶するROM、演算データや入出力データなどの各種データを一時的に記憶するRAM、各種データを長期記憶する記憶媒体、情報の入力を行うための入力装置(例えばキーボード等)、各種情報を表示するための表示装置(例えば液晶ディスプレイ等)などを備えている。 Next, the control device 60 will be described. The control device 60 is responsible for controlling the operation of each device in the PTP packaging machine 10 and the confirmation system 50. The control device 60 is equipped with a CPU as a calculation means, a ROM for storing various programs, a RAM for temporarily storing various data such as calculation data and input/output data, a storage medium for long-term storage of various data, an input device for inputting information (e.g., a keyboard, etc.), a display device for displaying various information (e.g., a liquid crystal display, etc.), etc.
 制御装置60は、図5に示すように、モータ制御部61、カメラ制御部62及び検査装置制御部63を備えている。 As shown in FIG. 5, the control device 60 includes a motor control unit 61, a camera control unit 62, and an inspection device control unit 63.
 モータ制御部61は、マスターエンコーダEMにより生成される回転数及び位相に基づき、各モータM1~M5の動作を制御する。これにより、各モータM1~M5は、それぞれ上述の態様で動作する。 The motor control unit 61 controls the operation of each of the motors M1 to M5 based on the rotation speed and phase generated by the master encoder EM. As a result, each of the motors M1 to M5 operates in the manner described above.
 カメラ制御部62は、マスターエンコーダEMにより生成される回転数及び位相に基づき、各カメラR1~R6の動作を制御する。これにより、各カメラR1~R6は、上記の通り、マスターエンコーダEMの起動に合わせて動画データの撮影を開始するとともに、マスターエンコーダEMの停止に合わせて動画データの撮影を終了する。 The camera control unit 62 controls the operation of each of the cameras R1 to R6 based on the number of rotations and phase generated by the master encoder EM. As a result, each of the cameras R1 to R6 starts recording video data in accordance with the start of the master encoder EM, and stops recording video data in accordance with the stop of the master encoder EM, as described above.
 検査装置制御部63は、マスターエンコーダEMにより生成される回転数及び位相に基づき、各検査装置C1~C4による検査の実行タイミングを制御する。本実施形態では、マスターエンコーダEMにより生成される位相が所定値となる度に、各検査装置C1~C4による検査が実行されるようになっている。 The inspection device control unit 63 controls the timing of inspection by each of the inspection devices C1 to C4 based on the number of rotations and phase generated by the master encoder EM. In this embodiment, each time the phase generated by the master encoder EM reaches a predetermined value, an inspection is performed by each of the inspection devices C1 to C4.
 さらに、制御装置60は、図11に示すように、リングバッファ64、動画保存部65、カメラ特定部66、対象データ保存部67、変換部68及び遡及フレーム数導出部69を備えている。本実施形態では、カメラ特定部66が「撮影手段特定手段」を構成し、同様に、対象データ保存部67が「対象データ保存手段」を、変換部68が「変換手段」を、遡及フレーム数導出部69が「遡及フレーム数導出手段」を、それぞれ構成する。 Furthermore, as shown in FIG. 11, the control device 60 includes a ring buffer 64, a video storage unit 65, a camera identification unit 66, a target data storage unit 67, a conversion unit 68, and a retrospective frame number derivation unit 69. In this embodiment, the camera identification unit 66 constitutes the "imaging means identification means", and similarly, the target data storage unit 67 constitutes the "target data storage means", the conversion unit 68 constitutes the "conversion means", and the retrospective frame number derivation unit 69 constitutes the "retrospective frame number derivation means".
 リングバッファ64は、前記記憶媒体によって構成されており、この記憶媒体における一定の情報格納領域を輪のように扱うものである。リングバッファ64は、全ての情報格納領域にデータが格納された後に、先頭の情報格納領域に戻ってデータの上書きが行われるように構成されている。 The ring buffer 64 is made up of the storage medium, and treats a certain information storage area on this storage medium as a ring. The ring buffer 64 is configured so that after data has been stored in all information storage areas, it returns to the first information storage area and overwrites the data.
 動画保存部65は、カメラR1~R6により得られた動画データを保存する。より詳しくは、動画保存部65は、カメラR1~R6により得られた動画データを、静止フレーム画像データごとに、該静止フレーム画像データが得られたときの時刻を示す実時刻タイムコードを付した形式で、リングバッファ64に保存する(図12参照)。本実施形態において、実時刻タイムコードは、時刻及びフレーム番号によって構成されている。図12では、静止フレーム画像データとして、時刻とフレーム番号とからなるデータ名を記載している。本実施形態におけるフレーム番号は、0~59の数値であり、1秒分の動画データを構成する60枚の静止フレーム画像データの取得順序を示している。時刻は、制御装置60の有する時計機能を利用して取得される。 The video storage unit 65 stores the video data obtained by the cameras R1 to R6. More specifically, the video storage unit 65 stores the video data obtained by the cameras R1 to R6 in the ring buffer 64 in a format in which a real-time time code indicating the time when the still frame image data was obtained is added to each still frame image data (see FIG. 12). In this embodiment, the real-time time code is composed of the time and the frame number. In FIG. 12, the still frame image data is given a data name consisting of the time and the frame number. In this embodiment, the frame number is a number between 0 and 59, and indicates the acquisition order of the 60 still frame image data that make up one second of video data. The time is obtained using the clock function of the control device 60.
 カメラ特定部66は、複数のカメラR1~R6の中から、検査装置C1~C4によって不良判定された検査項目に関係するものを特定する。この特定にあたって、カメラ特定部66は、予め取得された、検査項目と該検査項目に関係するカメラR1~R6との対応関係を示す特定テーブル(図13参照)を用いる。 The camera identification unit 66 identifies, from among the multiple cameras R1 to R6, those related to the inspection items determined to be defective by the inspection devices C1 to C4. In this identification, the camera identification unit 66 uses an identification table (see FIG. 13) that shows the correspondence between the inspection items and the cameras R1 to R6 related to the inspection items, which has been acquired in advance.
 例えば、第一検査装置C1によって、ポケット部2における成形不良の有無という検査項目で不良判定がなされる原因としては、容器フィルム3に対する予熱処理や、ポケット部2の形成処理において何らかの不具合が発生したことが考えられる。従って、成形不良の有無という検査項目には、予熱された容器フィルム3を撮影する第二カメラR2と、ポケット部2が形成された後の容器フィルム3を撮影する第三カメラR3とが関係する。そのため、特定テーブルでは、ポケット部2における成形不良の有無という検査項目に対し、第二カメラR2及び第三カメラR3が対応している点が示される。 For example, a possible reason why the first inspection device C1 judges the presence or absence of molding defects in the pocket portion 2 to be defective is that some kind of problem occurred in the preheating process for the container film 3 or in the process of forming the pocket portion 2. Therefore, the inspection item of the presence or absence of molding defects involves the second camera R2, which photographs the preheated container film 3, and the third camera R3, which photographs the container film 3 after the pocket portion 2 has been formed. Therefore, the specific table shows that the second camera R2 and the third camera R3 correspond to the inspection item of the presence or absence of molding defects in the pocket portion 2.
 また、例えば、第二検査装置C2によって、「欠錠」や「立錠」の有無という検査項目で不良判定がなされる原因としては、充填装置22による錠剤5の充填時、又は、充填装置22よりも下流位置での容器フィルム3の搬送時に何らかの不具合が発生したことが考えられる。そのため、「欠錠」や「立錠」の有無という検査項目には、ポケット部2に対し錠剤5を充填する場面を撮影する第四カメラR4が関係する。そのため、特定テーブルでは、「欠錠」や「立錠」の有無という検査項目に対し、第四カメラR4が対応している点が示される。第四カメラR4により得られた動画データを確認することで、充填装置22による錠剤5の充填時、及び、充填装置22よりも下流位置での容器フィルム3の搬送時のいずれかのタイミングで不具合が発生したことを把握できる。 In addition, for example, the reason why the second inspection device C2 judges the inspection item of "missing tablets" or "standing tablets" to be defective may be that some kind of malfunction occurred when the tablets 5 were filled by the filling device 22 or when the container film 3 was transported downstream of the filling device 22. Therefore, the inspection item of "missing tablets" or "standing tablets" involves the fourth camera R4, which captures the scene of filling the pocket portion 2 with tablets 5. Therefore, the specific table shows that the fourth camera R4 corresponds to the inspection item of "missing tablets" or "standing tablets". By checking the video data obtained by the fourth camera R4, it is possible to know that a malfunction occurred at either the time when the tablets 5 were filled by the filling device 22 or when the container film 3 was transported downstream of the filling device 22.
 対象データ保存部67は、検査装置C1~C4により不良判定されたことをトリガーとして、リングバッファ64に記憶された動画データの中から所定の対象データを抽出して保存する。対象データは、不具合の発生原因や発生時期を特定するために必要になると考えられるデータである。尚、本実施形態において、対象データは、複数の静止フレーム画像データからなる動画データとされているが、1の静止フレーム画像データからなる静止画データであってもよい。 The target data storage unit 67 is triggered by a defective judgment made by the inspection devices C1 to C4, and extracts and stores specified target data from the video data stored in the ring buffer 64. The target data is data that is considered necessary to identify the cause and time of occurrence of a defect. Note that, although in this embodiment, the target data is video data made up of multiple still frame image data, it may also be still image data made up of one still frame image data.
 対象データの抽出・保存に当たって、対象データ保存部67は、動画データのうち、前記トリガーが発生したときの静止フレーム画像データを基準とし、遡及フレーム数の分だけ遡った位置にある“所定範囲”のものを、対象データとして抽出して保存する。 When extracting and saving the target data, the target data saving unit 67 uses the still frame image data from the video data when the trigger occurs as a reference, and extracts and saves as target data a "predetermined range" of data that is located a number of frames back.
 ここで、遡及フレーム数とは、検査装置C1~C4にて不良判定がなされた場合において、その不良判定に関係するカメラR1~R6により得られた動画データの中から、その不良判定に関係するデータ(対象データ)を抽出するために、現時点の動画データからどの程度のフレーム数を遡るべきであるのかを示すものである。遡及フレーム数は、検査装置C1~C4による不良判定に関係するカメラR1~R6から、不良判定を行った検査装置C1~C1に対する容器フィルム3(PTPシート1を含む)の搬送量に対応する。遡及フレーム数は、遡及フレーム数導出部69によって導出される。遡及フレーム数の導出手法については、後述する。 The number of retroactive frames here indicates how many frames should be traced back from the current video data in order to extract data related to a defective judgment (target data) from the video data obtained by the cameras R1 to R6 related to the defective judgment when a defective judgment is made by the inspection devices C1 to C4. The number of retroactive frames corresponds to the amount of container film 3 (including PTP sheet 1) transported from the cameras R1 to R6 related to the defective judgment by the inspection devices C1 to C4 to the inspection devices C1 to C1 that made the defective judgment. The number of retroactive frames is derived by the number of retroactive frames derivation unit 69. The method for deriving the number of retroactive frames will be described later.
 また、“所定範囲”は、対象データの時間長に対応するものであって、適宜変更することができる。本実施形態において、所定範囲は、遡及フレーム数の分だけ遡った位置と、該位置からPTPシート1一枚分(つまり、マスターエンコーダEM一回転分)だけ遡った位置との間の範囲に設定されている(図14参照)。 The "predetermined range" corresponds to the time length of the target data and can be changed as appropriate. In this embodiment, the predetermined range is set to the range between a position going back the number of retroactive frames and a position going back one PTP sheet (i.e., one rotation of the master encoder EM) from that position (see FIG. 14).
 加えて、対象データ保存部67は、カメラ特定部66により特定されたカメラR1~R6が得た1又は複数の動画データの中から、1又は複数の対象データを抽出して保存する。従って、ポケット部2における成形不良の有無という検査項目で不良判定がなされた場合、第二カメラR2が得た動画データの中から1つの対象データが抽出されて保存されるとともに、第三カメラR3が得た動画データの中からもう1つの対象データが抽出されて保存される。 In addition, the target data storage unit 67 extracts and stores one or more target data from one or more video data acquired by the cameras R1 to R6 identified by the camera identification unit 66. Therefore, if a defect is determined in the inspection item of whether or not there is a molding defect in the pocket portion 2, one target data is extracted and stored from the video data acquired by the second camera R2, and another target data is extracted and stored from the video data acquired by the third camera R3.
 さらに、対象データ保存部67は、リングバッファ64に保存された動画データから対象データを抽出するにあたり、変換部68によって、前記所定範囲に対応するマスターエンコーダEMの回転数及び位相を、実時刻タイムコードに変換する。 Furthermore, when the target data storage unit 67 extracts the target data from the video data stored in the ring buffer 64, the conversion unit 68 converts the number of rotations and phase of the master encoder EM that correspond to the specified range into a real-time time code.
 ここで、変換部68は、マスターエンコーダEMにより生成される回転数及び位相と実時刻タイムコードとの対応関係を示す変換テーブル(図14参照)を用いて、前記所定範囲に対応するマスターエンコーダEMの回転数及び位相を、実時刻タイムコードへと変換する。尚、変換テーブルは、例えば、PTP包装機10の動作中に、マスターエンコーダEMによって生成される回転数及び位相と実時刻タイムコードとの対応関係を取得することによって得ることができる。 Here, the conversion unit 68 converts the rotation speed and phase of the master encoder EM corresponding to the specified range into a real-time time code using a conversion table (see FIG. 14) that indicates the correspondence between the rotation speed and phase generated by the master encoder EM and the real-time time code. Note that the conversion table can be obtained, for example, by acquiring the correspondence between the rotation speed and phase generated by the master encoder EM and the real-time time code while the PTP packaging machine 10 is in operation.
 そして、対象データ保存部67は、変換処理により得られた実時刻タイムコードを利用して、リングバッファ64に保存された動画データの中から対象データを抽出する。より詳しくは、対象データ保存部67は、動画データの中から、変換処理により得られた実時刻タイムコードと一致する実時刻タイムコードの付された複数の静止フレーム画像データを、対象データとして抽出する。 Then, the target data storage unit 67 uses the real-time time code obtained by the conversion process to extract target data from the video data stored in the ring buffer 64. More specifically, the target data storage unit 67 extracts, from the video data, as target data, multiple still frame image data that have real-time time codes that match the real-time time codes obtained by the conversion process.
 さらに、対象データ保存部67は、抽出した対象データを、対象データの抽出のトリガーとなった検査装置C1~C4による検査結果と関連付けて保存する。例えば、第一検査装置C1によって、ポケット部2における成形不良の有無という検査項目で不良判定がなされた場合、その検査結果と対象データとが関連付けて保存される。尚、良否判定で用いた画像データ(検査用の画像データ)を、対象データと関連付けて保存してもよい。 Furthermore, the target data storage unit 67 stores the extracted target data in association with the inspection results from the inspection devices C1 to C4 that triggered the extraction of the target data. For example, if the first inspection device C1 judges a defect in an inspection item such as the presence or absence of molding defects in the pocket portion 2, the inspection result and the target data are stored in association with each other. Note that the image data used in the pass/fail judgment (image data for inspection) may also be stored in association with the target data.
 また、対象データは、前記記憶媒体におけるリングバッファ64を構成する領域とは別の領域に保存される。従って、対象データは、リングバッファ64に保存されたデータとは異なり、一定期間の経過に伴い消去されることはない。 In addition, the target data is stored in an area of the storage medium that is separate from the area that constitutes the ring buffer 64. Therefore, unlike the data stored in the ring buffer 64, the target data will not be erased after a certain period of time has passed.
 遡及フレーム数導出部69は、マスターエンコーダEMにより生成される回転数及び位相と、予め取得された遡及フレーム数導出式とに基づき、遡及フレーム数を導出する。遡及フレーム数導出式としては、一定の値を示すものや、マスターエンコーダEMの回転数や位相により変動するものがある。遡及フレーム数導出式は、前記特定テーブル(図13参照)にて対応付けられた検査装置C1~C4及びカメラR1~R6の組合せごとに設けられている。従って、遡及フレーム数導出式としては、第一検査装置C1及び第一カメラR1に係るもの、第一検査装置C1及び第二カメラR2に係るものなどがある。 The retrospective frame number derivation unit 69 derives the retrospective frame number based on the rotation speed and phase generated by the master encoder EM and a retrospective frame number derivation formula acquired in advance. Some retrospective frame number derivation formulas indicate a fixed value, while others vary depending on the rotation speed and phase of the master encoder EM. A retrospective frame number derivation formula is provided for each combination of the inspection devices C1 to C4 and cameras R1 to R6 associated in the specific table (see FIG. 13). Therefore, there are retrospective frame number derivation formulas relating to the first inspection device C1 and first camera R1, the first inspection device C1 and second camera R2, etc.
 例えば、第一検査装置C1及び第二カメラR2に係る遡及フレーム数導出式は、次のようにして取得することができる。すなわち、第一検査装置C1により検査される容器フィルム3はマスターエンコーダEMが1回転する度に所定量(PTPシート1一枚分)搬送される一方、第二カメラR2により撮影される容器フィルム3はマスターエンコーダEMの位相が所定値となったタイミングでPTPシート1二枚分だけ間欠搬送される。そのため、第二カメラR2から第一検査装置C1までの容器フィルム3の搬送量L1は、マスターエンコーダEMの回転数や位相に応じて変動するものとなる(図15参照)。 For example, the retrospective frame number derivation formula for the first inspection device C1 and the second camera R2 can be obtained as follows. That is, the container film 3 inspected by the first inspection device C1 is transported a predetermined amount (the amount of one PTP sheet) each time the master encoder EM rotates once, while the container film 3 photographed by the second camera R2 is intermittently transported by the amount of two PTP sheets when the phase of the master encoder EM reaches a predetermined value. Therefore, the transport amount L1 of the container film 3 from the second camera R2 to the first inspection device C1 varies depending on the rotation speed and phase of the master encoder EM (see Figure 15).
 従って、マスターエンコーダEMの回転数や位相に応じて変動する、搬送量L1を示す式を求めることができる。その上で、該式(搬送量L1)を、マスターエンコーダEMが1回転する度に搬送される容器フィルム3の搬送量(PTPシート1一枚分)で除算する。これにより、マスターエンコーダEMの回転数や位相により変動する、第一検査装置C1及び第二カメラR2に係る遡及フレーム数導出式(図16参照)を取得することができる。 Therefore, it is possible to obtain an equation indicating the transport amount L1, which varies depending on the rotation speed and phase of the master encoder EM. Then, this equation (transport amount L1) is divided by the transport amount (one PTP sheet) of the container film 3 transported each time the master encoder EM rotates once. This makes it possible to obtain a retrospective frame number derivation equation (see Figure 16) for the first inspection device C1 and the second camera R2, which varies depending on the rotation speed and phase of the master encoder EM.
 また、例えば、第二検査装置C2及び第四カメラR4に係る遡及フレーム数導出式は、次のようにして取得することができる。すなわち、第二検査装置C2により検査される容器フィルム3と、第四カメラR4により撮影される容器フィルム3とは、それぞれ一定速度で連続搬送される。そのため、第四カメラR4から第二検査装置C2までの容器フィルム3の搬送量L2は、一定の値を示すものとなる(図17参照)。 Furthermore, for example, the retrospective frame number derivation formula for the second inspection device C2 and the fourth camera R4 can be obtained as follows. That is, the container film 3 inspected by the second inspection device C2 and the container film 3 photographed by the fourth camera R4 are each continuously transported at a constant speed. Therefore, the transport amount L2 of the container film 3 from the fourth camera R4 to the second inspection device C2 shows a constant value (see Figure 17).
 そのため、搬送量L2を、マスターエンコーダEMが1回転する度に搬送される容器フィルム3の搬送量(PTPシート1一枚分)で除算することにより、第二検査装置C2及び第四カメラR4に係る遡及フレーム数導出式(図18参照。この場合は一定値)を取得することができる。 Therefore, by dividing the transport amount L2 by the transport amount of the container film 3 (one PTP sheet) transported each time the master encoder EM rotates once, a formula for deriving the number of retroactive frames for the second inspection device C2 and the fourth camera R4 (see Figure 18; in this case, a constant value) can be obtained.
 そして、遡及フレーム数導出部69は、不良判定がなされたタイミングにおけるマスターエンコーダEMの回転数及び位相を用いて、遡及フレーム数導出式から遡及フレーム数を導出する。例えば、第一検査装置C1及び第二カメラR2に係る遡及フレーム数を導出する場合、第一検査装置C1及び第二カメラR2に係る遡及フレーム数導出式に対し、不良判定がなされたときのマスターエンコーダEMの回転数や位相を代入することによって、第一検査装置C1及び第二カメラR2に係る遡及フレーム数を取得することができる。 Then, the retrospective frame number derivation unit 69 derives the retrospective frame number from the retrospective frame number derivation formula using the rotation speed and phase of the master encoder EM at the time when the defective judgment was made. For example, when deriving the retrospective frame number for the first inspection device C1 and the second camera R2, the retrospective frame number for the first inspection device C1 and the second camera R2 can be obtained by substituting the rotation speed and phase of the master encoder EM when the defective judgment was made into the retrospective frame number derivation formula for the first inspection device C1 and the second camera R2.
 尚、遡及フレーム数導出部69は、予め取得した導出テーブルを利用して、遡及フレーム数を導出するものであってもよい。導出テーブルは、前記特定テーブルにて対応付けられた検査装置C1~C4及びカメラR1~R6間の搬送量に対応する遡及フレーム数と、マスターエンコーダEMの回転数や位相との対応関係を示すものである。遡及フレーム数導出部69は、この導出テーブルと、不良判定がなされたときのマスターエンコーダEMの回転数や位相とに基づき、遡及フレーム数を導出することができる。 The retrospective frame number derivation unit 69 may derive the retrospective frame number using a derivation table acquired in advance. The derivation table indicates the correspondence between the retrospective frame number corresponding to the transport amount between the inspection devices C1-C4 and the cameras R1-R6 associated in the specific table, and the rotation speed and phase of the master encoder EM. The retrospective frame number derivation unit 69 can derive the retrospective frame number based on this derivation table and the rotation speed and phase of the master encoder EM when a defect is determined.
 上記のように構成された確認システム50は、次のようにして動作する。すなわち、検査装置C1~C4によって不良判定がなされると、カメラ特定部66によって、不良判定された検査項目に関係するカメラR1~R6が特定される。例えば、第一検査装置C1によって傷や汚れの有無という検査項目で不良判定がなされると、カメラ特定部66によって、カメラR1,R2,R3が特定される。 The verification system 50 configured as described above operates as follows. That is, when a defective inspection is determined by the inspection devices C1 to C4, the camera identification unit 66 identifies the cameras R1 to R6 related to the inspection item that was determined to be defective. For example, when the first inspection device C1 determines that an inspection item such as the presence or absence of scratches or dirt is defective, the camera identification unit 66 identifies the cameras R1, R2, and R3.
 また、遡及フレーム数導出部69によって、遡及フレーム数が導出される。これにより、動画データにおける前記所定範囲が定まる〔図14における(1)〕。例えば、カメラ特定部66によってカメラR1,R2,R3が特定されている場合、これらカメラR1,R2,R3ごとに、それぞれ異なる遡及フレーム数が導出される。そして、遡及フレーム数が導出されることで、カメラR1,R2,R3により得られた動画データごとに前記所定範囲が定まる。 The retrospective frame number derivation unit 69 also derives the number of retrospective frames. This determines the specified range in the video data [(1) in FIG. 14]. For example, if cameras R1, R2, and R3 are identified by the camera identification unit 66, a different number of retrospective frames is derived for each of these cameras R1, R2, and R3. Then, by deriving the number of retrospective frames, the specified range is determined for each of the video data obtained by cameras R1, R2, and R3.
 さらに、変換部68によって、前記所定範囲に対応するマスターエンコーダEMの回転数及び位相が、実時刻タイムコードへと変換される〔図14における(2)〕。例えば、カメラ特定部66によってカメラR1,R2,R3が特定されている場合、3種類の前記所定範囲に対応して、3種類の実時刻タイムコードが導出される。 Furthermore, the conversion unit 68 converts the number of rotations and phase of the master encoder EM corresponding to the specified range into a real-time time code [(2) in FIG. 14]. For example, if cameras R1, R2, and R3 are identified by the camera identification unit 66, three types of real-time time codes are derived corresponding to the three types of specified ranges.
 その上で、対象データ保存部67によって、リングバッファ64に保存された動画データの中から、変換部68による変換処理により得られた実時刻タイムコードと一致する実時刻タイムコードの付された複数の静止フレーム画像データが、対象データとして抽出される〔図14における(3)〕。例えば、カメラ特定部66によってカメラR1,R2,R3が特定されている場合、第一カメラR1,R2,R3により得られた計3つの動画データの中から計3つの対象データが抽出される。 Then, the target data storage unit 67 extracts, from the video data stored in the ring buffer 64, a number of still frame image data with real-time time codes that match the real-time time codes obtained by the conversion process by the conversion unit 68, as target data [(3) in FIG. 14]. For example, if the cameras R1, R2, and R3 are identified by the camera identification unit 66, a total of three pieces of target data are extracted from the total of three pieces of video data obtained by the first cameras R1, R2, and R3.
 そして最終的に、対象データ保存部67によって、抽出された対象データが検査結果等と関連付けて保存される。保存された対象データなどを確認することで、オペレータ等は、不具合の発生原因や発生時期を知ることができ、また、不具合の再発防止のために、より適切な対応をとることができる。 Finally, the target data storage unit 67 stores the extracted target data in association with the inspection results, etc. By checking the stored target data, etc., the operator can learn the cause and time of the malfunction, and can take more appropriate measures to prevent the malfunction from recurring.
 以上詳述したように、本実施形態によれば、動画データのうち、トリガーが発生したとき(不良判定されたとき)の静止フレーム画像データを基準とし、検査装置C1~C4による不良判定に関係するカメラR1~R6から該検査装置C1~C4に対する容器フィルム3(PTPシート1を含む)の搬送量に対応する遡及フレーム数の分だけ遡った位置にある所定範囲のものが、対象データとして抽出される。 As described above in detail, according to this embodiment, still frame image data from the video data when a trigger occurs (when a defect is determined) is used as a reference, and a specified range of data located a number of frames back from the cameras R1 to R6 related to the defect determination by the inspection devices C1 to C4 that corresponds to the transport amount of the container film 3 (including the PTP sheet 1) to the inspection devices C1 to C4 is extracted as target data.
 すなわち、時間ではなく、容器フィルム3の搬送量に基づき動画データの中から対象データが抽出される。従って、動画データの中から、対象データとして、不具合の発生原因や発生時期の把握に必要な動画データをピンポイントで抽出することができ、必要な動画データをより確実にかつより容易に得ることができる。また、容器フィルム3の搬送量に基づいて対象データを抽出するから、容器フィルム3の搬送速度に変動が生じたような場合であっても、不具合の発生原因などを把握するために必要な動画データをより確実に得ることができる。 In other words, the target data is extracted from the video data based on the transport amount of the container film 3, not on time. Therefore, the video data necessary to understand the cause and timing of a malfunction can be pinpointed and extracted as the target data from the video data, making it possible to obtain the necessary video data more reliably and easily. In addition, because the target data is extracted based on the transport amount of the container film 3, the video data necessary to understand the cause of a malfunction can be obtained more reliably even in cases where there is a fluctuation in the transport speed of the container film 3.
 また、遡及フレーム数導出部69は、マスターエンコーダEMにより生成される回転数及び位相に基づき、遡及フレーム数を導出する。従って、動画データにおいて、複数の静止フレーム画像データとマスターエンコーダの回転数及び位相とが対応付けられた状態となることに合わせて、この動画データに合う遡及フレーム数をより正確に導出することができる。その結果、対象データとして、不具合の発生原因などを把握するために必要な動画データを一層確実に得ることができる。 The retrospective frame number derivation unit 69 also derives the number of retrospective frames based on the number of rotations and phase generated by the master encoder EM. Therefore, since multiple still frame image data are associated with the number of rotations and phase of the master encoder in the video data, the number of retrospective frames that matches this video data can be derived more accurately. As a result, the video data required to understand the cause of a malfunction, etc., can be obtained more reliably as target data.
 さらに、動画データは、リングバッファ64に保存される。従って、動画データを保存するためのメモリ領域を節約することができる。加えて、動画データは、静止フレーム画像データが得られたときの時刻に関する情報を有するため、不具合がいつ発生したのか、不具合を生じさせる事象がどのようなスピードで生じたのかについて確認することができる。従って、不具合の発生防止のための対応をより適切にとることができる。 Furthermore, the video data is stored in the ring buffer 64. This makes it possible to conserve memory space for storing video data. In addition, since the video data contains information about the time when the still frame image data was obtained, it is possible to check when a malfunction occurred and at what speed the event that caused the malfunction occurred. This makes it possible to take more appropriate measures to prevent malfunctions from occurring.
 また、変換部68を用いることで、マスターエンコーダEMにより生成される回転数及び位相を、実時刻タイムコードに変換することができる。そして、この実時刻タイムコードを利用して、動画データの中から対象データを抽出することができる。従って、対象データとして、不具合の発生原因などを把握するために必要な動画データを一層確実に得ることができる。 In addition, by using the conversion unit 68, the rotation speed and phase generated by the master encoder EM can be converted into a real-time time code. This real-time time code can then be used to extract target data from the video data. This makes it possible to more reliably obtain the video data necessary to understand the cause of a malfunction, etc., as target data.
 加えて、カメラ特定部66によって、ある検査項目について不良判定された場合に、その検査項目に関係する1又は複数のカメラR1~R6を特定することができる。そして、対象データ保存部67によって、特定された1又は複数のカメラR1~R6が得た1又は複数の動画データの中から、対象データが抽出して保存される。従って、対象データの抽出をより容易に行うことが可能となる。 In addition, when a certain inspection item is judged to be defective, the camera identification unit 66 can identify one or more cameras R1 to R6 related to that inspection item. Then, the target data storage unit 67 extracts and stores target data from one or more pieces of video data acquired by the identified one or more cameras R1 to R6. This makes it easier to extract the target data.
 また、1の検査項目に対し、複数のカメラR1~R6が関係する場合には、これらカメラR1~R6により得られた複数の動画データから、複数の対象データを得ることができる。従って、不具合の発生原因などをより容易にかつより正確に把握することが可能となる。 Furthermore, when multiple cameras R1 to R6 are involved in one inspection item, multiple target data can be obtained from multiple video data captured by these cameras R1 to R6. This makes it easier and more accurate to determine the cause of a defect.
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。 Note that the present invention is not limited to the above embodiment, and may be implemented, for example, as follows. Of course, other applications and modifications not exemplified below are also possible.
 (a)上記実施形態において、カメラR1~R6により得られた動画データは、静止フレーム画像データごとに、該静止フレーム画像データが得られたときの時刻を示す実時刻タイムコードを付した形式でリングバッファ64に保存されている。これに対し、図19に示すように、カメラR1~R6により得られた動画データを、静止フレーム画像データごとに、該静止フレーム画像データが得られたときの、マスターエンコーダEMにより生成される回転数及び位相を示す機械的タイムコードを付した形式でリングバッファ64に保存するようにしてもよい。そして、対象データ保存部67は、機械的タイムコードを利用して、リングバッファ64に保存された動画データの中から対象データを抽出して保存するものであってもよい。 (a) In the above embodiment, the video data obtained by cameras R1 to R6 is stored in the ring buffer 64 in a format in which, for each still frame image data, a real-time time code indicating the time when the still frame image data was obtained is attached. In contrast, as shown in FIG. 19, the video data obtained by cameras R1 to R6 may be stored in the ring buffer 64 in a format in which, for each still frame image data, a mechanical time code indicating the number of rotations and phase generated by the master encoder EM when the still frame image data was obtained is attached. The target data storage unit 67 may then use the mechanical time code to extract and store target data from the video data stored in the ring buffer 64.
 この場合、動画データは、リングバッファ64に保存されるため、動画データを保存するためのメモリ領域を節約することができる。 In this case, the video data is stored in the ring buffer 64, which saves memory space for storing video data.
 また、変換部68を用いることなく、動画データの中から対象データを抽出することができるため、対象データの抽出に係る処理負担の低減を図ることができる。 In addition, since the target data can be extracted from the video data without using the conversion unit 68, the processing load associated with extracting the target data can be reduced.
 尚、機械的タイムコードは、フレーム番号を具備するものであってもよい。 In addition, the mechanical time code may also include a frame number.
 (b)上記実施形態において、マスターエンコーダEMは、マスターモータMMに係る回転数及び位相を読み取り、この読み取った回転数及び位相を生成するものとされている。これに対し、マスターエンコーダEMは、例えば、フィルム受けロール20を駆動させる第二モータに係る回転数及び位相を読み取り、この読み取った回転数及び位相を生成するものであってもよい。従って、第二エンコーダE2が、マスターエンコーダEMを兼ねるように構成してもよい。 (b) In the above embodiment, the master encoder EM reads the rotation speed and phase of the master motor MM and generates the read rotation speed and phase. In contrast, the master encoder EM may read the rotation speed and phase of the second motor that drives the film receiving roll 20, for example, and generate the read rotation speed and phase. Therefore, the second encoder E2 may be configured to also function as the master encoder EM.
 また、マスターエンコーダEMを、ソフトウェア上で仮想的に実現してもよい。 The master encoder EM may also be realized virtually in software.
 (c)上記実施形態における容器フィルム3の搬送態様は一例であって、この搬送態様を適宜変更してもよい。従って、例えば、両モータM3,M4が1回動作することによって、容器フィルム3がPTPシート1複数枚分の長さだけ搬送されるように構成してもよい。 (c) The transport mode of the container film 3 in the above embodiment is an example, and this transport mode may be changed as appropriate. Therefore, for example, the container film 3 may be configured to be transported by a length equivalent to multiple PTP sheets by operating both motors M3 and M4 once.
 また、マスターエンコーダEMにより生成される回転数及び位相を用いることなく、容器フィルム3が予め定められた態様で搬送されるように構成してもよい。 In addition, the container film 3 may be configured to be transported in a predetermined manner without using the rotation speed and phase generated by the master encoder EM.
 (d)上記実施形態において、確認システム50は、4つの検査装置C1~C4を備えているが、検査装置の数を適宜変更してもよい。 (d) In the above embodiment, the verification system 50 is equipped with four inspection devices C1 to C4, but the number of inspection devices may be changed as appropriate.
 また、検査項目についても適宜変更してもよい。例えば、第二検査装置C2は、錠剤5における破損の有無という検査項目についての検査を行うものであってもよい。 The inspection items may also be changed as appropriate. For example, the second inspection device C2 may inspect the tablets 5 for damage.
 (e)上記実施形態では、「内容物」として錠剤5を挙げているが、内容物は錠剤に限定されるものではない。 (e) In the above embodiment, tablets 5 are given as the "contents," but the contents are not limited to tablets.
 また、錠剤の種別や形状等については、上記実施形態に限定されるものではない。例えば錠剤には、医薬のみならず、飲食用に用いられる錠剤なども含まれる。また、錠剤には、素錠、糖衣錠、フィルムコーティング錠、腸溶錠及びゼラチン被包錠などが含まれるのは勿論のこと、硬カプセルや軟カプセルなどの各種カプセル錠なども含まれる。 Furthermore, the type and shape of the tablet are not limited to those described in the above embodiment. For example, tablets include not only medicines but also tablets used for eating and drinking. Tablets include plain tablets, sugar-coated tablets, film-coated tablets, enteric-coated tablets, and gelatin-coated tablets, as well as various types of capsule tablets such as hard capsules and soft capsules.
 さらに、錠剤の形状に関しては、平面視円形状のみならず、例えば、平面視多角形状、平面視楕円形状、平面視長円形状等であってもよい。 Furthermore, the shape of the tablet is not limited to a circular shape when viewed from above, but may be, for example, a polygonal shape, an elliptical shape, an oval shape, etc. when viewed from above.
 (f)製造されるPTPシートの構成は上記実施形態に限定されるものではない。例えばPTPシート1単位のポケット部2の配列や個数は上記実施形態に何ら限定されるものではない。 (f) The configuration of the PTP sheet to be manufactured is not limited to the above embodiment. For example, the arrangement and number of pocket portions 2 in each PTP sheet unit are not limited to the above embodiment.
 また、上記実施形態において、PTPフィルム6は、その幅方向に沿って1シート分に対応する数のポケット部2が配列された構成となっているが、これに限定されるものではなく、例えば、その幅方向に沿って複数シート分に対応する数のポケット部2が配列された構成であってもよい。勿論、PTPフィルム6の構成に合わせて、予熱装置15及びポケット部形成装置16の構成を変更してもよい。また、予熱装置15等の構成に合わせて、予熱装置15等による処理の対象となる容器フィルム3の搬送量を適宜変更してもよい。 In addition, in the above embodiment, the PTP film 6 is configured with a number of pocket portions 2 corresponding to one sheet arranged along its width direction, but this is not limited to this, and for example, the PTP film 6 may be configured with a number of pocket portions 2 corresponding to multiple sheets arranged along its width direction. Of course, the configurations of the preheating device 15 and the pocket portion forming device 16 may be changed according to the configuration of the PTP film 6. Also, the transport amount of the container film 3 to be processed by the preheating device 15, etc. may be appropriately changed according to the configuration of the preheating device 15, etc.
 さらに、上記実施形態では、ブリスタシートとしてPTPシート1を挙げているが、PTPシート1以外のブリスタシートに対し本発明の技術思想を適用してもよい。 Furthermore, in the above embodiment, PTP sheet 1 is given as the blister sheet, but the technical concept of the present invention may be applied to blister sheets other than PTP sheet 1.
 (g)上記実施形態では、PTP包装機10に対し確認システム50が適用されているが、確認システム50を適用可能な製造装置は、搬送方向に沿った順序を変えることなく搬送されるワークに対し、同一処理を繰り返し施すものであればよく、PTP包装機10に限定されるものではない。 (g) In the above embodiment, the confirmation system 50 is applied to the PTP packaging machine 10, but the manufacturing equipment to which the confirmation system 50 can be applied is not limited to the PTP packaging machine 10 as long as it repeatedly performs the same processing on workpieces that are transported without changing the order along the transport direction.
 従って、例えば、「ワーク」としての容器(トレイ)に対し、内容物を収容する処理、蓋フィルムを取着する処理などを繰り返し施す密封パックの製造装置(例えば、特開2021-181330号公報に記載の装置)に対し、確認システム50を適用してもよい。また、例えば、「ワーク」としてのベース基板に対し、半田を塗布する処理、電子部品を実装する処理及び半田を加熱溶融させる処理(リフロー処理)などを繰り返し施す基板製造装置(例えば、特開2017-15717号公報に記載の基板製造システム)に対し、確認システム50を適用してもよい。 Therefore, for example, the confirmation system 50 may be applied to a sealed pack manufacturing device (for example, the device described in JP 2021-181330 A) that repeatedly performs processes such as storing contents and attaching a lid film to a container (tray) as a "workpiece." Also, for example, the confirmation system 50 may be applied to a board manufacturing device (for example, the board manufacturing system described in JP 2017-15717 A) that repeatedly performs processes such as applying solder, mounting electronic components, and heating and melting the solder (reflow process) to a base board as a "workpiece."
 1…PTPシート(ワーク)、3…容器フィルム(ワーク)、10…PTP包装機(製造装置)、50…製造装置の状況確認システム、64…リングバッファ、66…カメラ特定部(撮影手段特定手段)、67…対象データ保存部(対象データ保存手段)、68…変換部(変換手段)、69…遡及フレーム数導出部(遡及フレーム数導出手段)、C1~C4…検査装置(検査手段)、EM…マスターエンコーダ、R1~R6…カメラ(動画撮影手段)。 1... PTP sheet (work), 3... container film (work), 10... PTP packaging machine (manufacturing device), 50... manufacturing device status confirmation system, 64... ring buffer, 66... camera identification unit (imaging means identification means), 67... target data storage unit (target data storage means), 68... conversion unit (conversion means), 69... retroactive frame number derivation unit (retroactive frame number derivation means), C1 to C4... inspection device (inspection means), EM... master encoder, R1 to R6... camera (video capture means).

Claims (5)

  1.  搬送方向に沿った順序を変えることなく搬送されるワークに対し、同一処理を繰り返し施す製造装置に用いられ、製造に係る不具合の発生状況を動画によって確認するための製造装置の状況確認システムであって、
     前記ワークの搬送経路に沿って配置され、時系列順で保存された複数の静止フレーム画像データからなる、前記ワーク自体又は前記ワークに対する処理に係る動画データを得る動画撮影手段と、
     前記ワーク自体及び前記ワークに対する処理のうちの少なくとも一方についての良否を判定する検査手段と、
     前記検査手段により不良判定されたことをトリガーとして、前記動画データの中から所定の対象データを抽出して保存する対象データ保存手段とを備え、
     前記対象データ保存手段は、前記動画データのうち、前記トリガーが発生したときの前記静止フレーム画像データを基準とし、前記検査手段による不良判定に関係する前記動画撮影手段から該検査手段に対する前記ワークの搬送量に対応する遡及フレーム数の分だけ遡った位置にある所定範囲のものを、前記対象データとして抽出して保存するように構成されていることを特徴とする製造装置の状況確認システム。
    A manufacturing device status confirmation system for confirming the occurrence of manufacturing defects by video, the system being used in a manufacturing device that repeatedly performs the same process on workpieces that are transported without changing the order along the transport direction, the system comprising:
    A video capture means for capturing video data relating to the workpiece itself or processing of the workpiece, the video capture means being arranged along the conveying path of the workpiece and consisting of a plurality of still frame image data stored in chronological order;
    An inspection means for determining whether or not at least one of the workpiece itself and the processing performed on the workpiece is acceptable;
    a target data storage means for extracting and storing predetermined target data from the video data in response to a determination of a defect by the inspection means,
    The manufacturing equipment status checking system is characterized in that the target data storage means is configured to extract and store as the target data a predetermined range of the video data that is related to the defect judgment by the inspection means and that is located a number of frames back from the video shooting means corresponding to the amount of transport of the workpiece relative to the inspection means, based on the still frame image data at the time the trigger occurs.
  2.  少なくとも前記ワークの搬送に係る基準となる回転数及び位相を生成可能なマスターエンコーダを備え、
     前記動画撮影手段は、前記マスターエンコーダの起動に合わせて前記動画データの撮影を開始するとともに、前記マスターエンコーダの停止に合わせて前記動画データの撮影を終了するように構成されており、
     前記マスターエンコーダにより生成される回転数及び位相に基づき、前記遡及フレーム数を導出可能な遡及フレーム数導出手段を有することを特徴とする請求項1に記載の製造装置の状況確認システム。
    A master encoder capable of generating at least a reference rotation speed and phase related to the transport of the workpiece,
    the moving image capturing means is configured to start capturing the moving image data in response to activation of the master encoder, and to end capturing the moving image data in response to deactivation of the master encoder;
    2. The manufacturing equipment status confirmation system according to claim 1, further comprising a retroactive frame number deriving means for deriving the retroactive frame number based on the number of rotations and phase generated by the master encoder.
  3.  前記動画撮影手段により得られた前記動画データは、前記静止フレーム画像データごとに、該静止フレーム画像データが得られたときの時刻を示す実時刻タイムコードを付した形式で所定のリングバッファに保存されており、
     前記マスターエンコーダにより生成される回転数及び位相と、前記実時刻タイムコードとの対応関係を示す変換テーブルを用いて、前記マスターエンコーダにより生成される回転数及び位相を、前記実時刻タイムコードに変換する変換手段を有し、
     前記対象データ保存手段は、前記変換手段によって、前記マスターエンコーダにより生成される回転数及び位相を、前記実時刻タイムコードに変換するとともに、該実時刻タイムコードを利用して、前記リングバッファに保存された前記動画データの中から前記対象データを抽出して保存するように構成されていることを特徴とする請求項2に記載の製造装置の状況確認システム。
    the moving image data obtained by the moving image shooting means is stored in a predetermined ring buffer in a format in which a real-time time code indicating the time when the still frame image data was obtained is added to each still frame image data;
    a conversion means for converting the number of rotations and the phase generated by the master encoder into the real-time time code using a conversion table indicating a correspondence between the number of rotations and the phase generated by the master encoder and the real-time time code,
    3. The manufacturing equipment status checking system according to claim 2, wherein the target data storage means is configured to convert the rotation speed and phase generated by the master encoder into the real-time time code by the conversion means, and to extract and store the target data from the video data stored in the ring buffer using the real-time time code.
  4.  前記動画撮影手段により得られた前記動画データは、前記静止フレーム画像データごとに、該静止フレーム画像データが得られたときの、前記マスターエンコーダにより生成される回転数及び位相を示す機械的タイムコードを付した形式で所定のリングバッファに保存されており、
     前記対象データ保存手段は、前記機械的タイムコードを利用して、前記リングバッファに保存された前記動画データの中から前記対象データを抽出して保存するように構成されていることを特徴とする請求項2に記載の製造装置の状況確認システム。
    the moving image data obtained by the moving image shooting means is stored in a predetermined ring buffer in a format in which a mechanical time code indicating the number of rotations and the phase generated by the master encoder at the time when the still frame image data was obtained is added for each still frame image data;
    3. The manufacturing equipment status checking system according to claim 2, wherein the target data storage means is configured to extract and store the target data from the video data stored in the ring buffer using the mechanical time code.
  5.  前記動画撮影手段は、前記ワークの搬送方向に沿って複数設けられており、
     前記検査手段には、複数の検査項目についての良否判定を行うものが含まれており、
     前記検査項目と、前記検査項目に関係する前記動画撮影手段との対応関係を示す特定テーブルを用いて、複数の前記動画撮影手段の中から、不良判定された検査項目に関係するものを特定する撮影手段特定手段を有し、
     前記対象データ保存手段は、前記撮影手段特定手段により特定された前記動画撮影手段が得た前記動画データの中から、前記対象データを抽出して保存するように構成されていることを特徴とする請求項1に記載の製造装置の状況確認システム。
    The video capture means is provided in a plurality of positions along a conveying direction of the workpiece,
    The inspection means includes a means for determining pass/fail for a plurality of inspection items,
    an imaging means specifying means for specifying, from among the plurality of video imaging means, one related to the inspection item determined to be defective, using a specification table showing a correspondence relationship between the inspection item and the video imaging means related to the inspection item;
    The manufacturing equipment status confirmation system according to claim 1, characterized in that the target data storage means is configured to extract and store the target data from the video data obtained by the video shooting means identified by the shooting means identification means.
PCT/JP2023/024789 2022-11-16 2023-07-04 Manufacturing-device status confirmation system WO2024105924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022183111A JP7446392B1 (en) 2022-11-16 2022-11-16 Manufacturing equipment status confirmation system
JP2022-183111 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024105924A1 true WO2024105924A1 (en) 2024-05-23

Family

ID=90105494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024789 WO2024105924A1 (en) 2022-11-16 2023-07-04 Manufacturing-device status confirmation system

Country Status (2)

Country Link
JP (1) JP7446392B1 (en)
WO (1) WO2024105924A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311124A (en) * 1996-05-22 1997-12-02 Chiyouriyou Kensa Kk Semi-automatic fluorescent magnetic particle inspection device
JP2001268509A (en) * 2000-03-17 2001-09-28 Omron Corp Image recording device and system
JP2014224763A (en) * 2013-05-16 2014-12-04 住友化学株式会社 Defect inspection system
JP2016122319A (en) * 2014-12-25 2016-07-07 因幡電機産業株式会社 Process monitoring apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239686A (en) 2000-02-25 2001-09-04 Fuji Photo Film Co Ltd Thermal printer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311124A (en) * 1996-05-22 1997-12-02 Chiyouriyou Kensa Kk Semi-automatic fluorescent magnetic particle inspection device
JP2001268509A (en) * 2000-03-17 2001-09-28 Omron Corp Image recording device and system
JP2014224763A (en) * 2013-05-16 2014-12-04 住友化学株式会社 Defect inspection system
JP2016122319A (en) * 2014-12-25 2016-07-07 因幡電機産業株式会社 Process monitoring apparatus

Also Published As

Publication number Publication date
JP2024072365A (en) 2024-05-28
JP7446392B1 (en) 2024-03-08

Similar Documents

Publication Publication Date Title
JP2007069950A (en) Ptp sheet manufacturing device
WO2018128197A1 (en) System for examining image of packaging body
JP2010235159A (en) Input device of film packaging machine
CN110036280B (en) Inspection device and PTP packaging machine
JP6229193B1 (en) Judgment method of delayed leak from filling package
JP5357203B2 (en) Tablet inspection device and PTP packaging machine
US6576390B1 (en) Method of and apparatus for manufacturing instant photographic film units
WO2024105924A1 (en) Manufacturing-device status confirmation system
KR102166287B1 (en) Apparatus for Checking Packaging Equipment Automation Machine
JP2020063994A (en) Quality confirmation system and blister packaging system
JP2020046270A (en) Packaging and inspection system
JP3983756B2 (en) Punching stage
JP2009276102A (en) Pocket shape inspecting device
JP2003291929A (en) Inspection method and apparatus for single-dose package sheet
JP4477516B2 (en) Inspection device and PTP packaging machine
TW202422256A (en) Manufacturing equipment status confirmation system
JP3186889U (en) Combined goods inspection device
JP2007196129A (en) Examination information management system
JP2023104231A (en) Blister packaging machine and manufacturing method of blister sheet
JP4929205B2 (en) Quality recording device for packaged products in packaging machines
JP6456329B2 (en) Inspection system and PTP packaging machine
JP2021128033A (en) Inspection device, packaging sheet manufacturing device and inspection method
KR20180107355A (en) Method of detecting data stamp transferring error for food packing wrapper
JP2007069949A (en) Ptp sheet manufacturing device
JP6943168B2 (en) Inspection system and inspection method