WO2024105897A1 - 逆電力遮断継電器及び逆電力遮断継電器における逆電力遮断方法 - Google Patents

逆電力遮断継電器及び逆電力遮断継電器における逆電力遮断方法 Download PDF

Info

Publication number
WO2024105897A1
WO2024105897A1 PCT/JP2023/007657 JP2023007657W WO2024105897A1 WO 2024105897 A1 WO2024105897 A1 WO 2024105897A1 JP 2023007657 W JP2023007657 W JP 2023007657W WO 2024105897 A1 WO2024105897 A1 WO 2024105897A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
current
reverse
value
circuit
Prior art date
Application number
PCT/JP2023/007657
Other languages
English (en)
French (fr)
Inventor
俊介 加藤
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2024105897A1 publication Critical patent/WO2024105897A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/027Details with automatic disconnection after a predetermined time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/38Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/28Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for meshed systems

Definitions

  • the present invention relates to a reverse power cutoff relay suitable for use in a power circuit using a spot network power receiving method.
  • a spot network power receiving method is known in which power is received from a power company substation through multiple lines (e.g., three 22 kV distribution lines) and the secondary side is connected in parallel to a network bus via a receiving transformer installed on each line.
  • This power receiving method allows power to be received without any problems even if one distribution line stops due to multiple line power receiving, making it possible to operate without interruption and improving the reliability of the power supply.
  • the spot network power receiving method has the features of high reliability due to constant three-line power receiving, space saving due to a simple configuration, and maintenance saving due to the functions unique to the spot network.
  • Such a spot network power receiving method is disclosed, for example, in Patent Document 1 and Patent Document 2.
  • reverse power cut-off refers to the detection of the occurrence of reverse current and cutting off the line in which the reverse current occurs when the power supplied to the network is cut off due to the cut-off of one of the multiple supply lines.
  • Amorphous transformers are transformers that use amorphous metal as the iron core, and have low iron loss at no load, and less loss than conventional transformers that use silicon steel sheets. For this reason, they have the characteristic of being able to significantly reduce standby loss (no-load loss), enabling power saving and reducing greenhouse gases (CO 2 ).
  • standby loss no-load loss
  • CO 2 greenhouse gases
  • the present invention has been made in view of the above-mentioned background, and an object of the present invention is to provide a reverse power cutoff relay that increases the detection sensitivity of reverse power while avoiding the influence of noise and the like. Another object of the present invention is to provide a reverse power cut-off relay that can determine the need for cutting off reverse power through simple software calculations using the detected direction and magnitude of reverse power. It is still another object of the present invention to provide a spot network power receiving system using a highly accurate reverse power cut-off relay.
  • a reverse power cutoff relay includes a voltage detection unit for measuring the voltage of each phase of a three-phase AC power circuit, a current detection unit for measuring the current value of each phase of the power circuit, and a calculation unit for calculating an excitation current from the voltage measurement value detected by the voltage detection unit and the current measurement value detected by the current detection unit, and for controlling a circuit breaker provided in the power circuit to cut off the power circuit when the excitation current exceeds a threshold in the reverse direction, the calculation unit detects reverse power by using two types of thresholds: (1) determining whether the direction and magnitude of the detected reverse current value are below a first threshold function formula ax+b (a and b are coefficients, and x is a variable indicating the magnitude of the current delay in the 90° direction), and (2) a second threshold (where b ⁇ c) for determining whether the absolute value of the current value is less than c.
  • the circuit breaker provided in the power circuit is used to cut off the circuit.
  • the value of the second threshold c may be less than 0.05% of the "67 settling current value", and is preferably about 0.025%.
  • the values of a and b of the function formula and the threshold c are set so that the relationship between the first threshold function formula ax+b and the magnitude of the second threshold c is satisfied such that there is a region in which the magnitude of the current value in the reverse direction is equal to or greater than the first threshold function formula ax+b and less than the second threshold c.
  • the calculation unit detects reverse power and causes the circuit breaker to trip, an alarm is displayed on the display unit.
  • the present invention can be applied to a spot network power supply system having multiple power lines from different power sources, each of which is connected in series with a network transformer, a protector fuse, and a circuit breaker, and in which the multiple power lines are commonly connected to a network bus to supply power from the network bus to a load, and the reverse power interruption relay of the present invention is provided between the network transformer and the circuit breaker in each power line.
  • the present invention even when an amorphous transformer with a small excitation current is used in a spot network power receiving system, it is now possible to accurately detect small reverse currents flowing in the reverse direction. Furthermore, in improving the detection accuracy, it has become possible to avoid an increase in the probability of malfunctions due to the influence of external noise, thereby realizing a highly reliable reverse power cut-off relay. Furthermore, it has become possible to realize a reverse power cut-off function that is easily applicable to network power receiving systems that use amorphous type transformers.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a spot network power receiving system 1 according to an embodiment of the present invention.
  • 2 is a block diagram showing a detailed configuration of a network relay 50 in FIG. 1.
  • FIG. 13 is a diagram for explaining a reverse power detection method using a network relay in a conventional example, showing a threshold value 190 in the 67 operating range.
  • FIG. 13 is a diagram for explaining a state in which a threshold 191 of the 67 operating range is lowered to 1/2 level in a reverse power detection method using a network relay of a conventional example.
  • FIG. 9 is a diagram showing a threshold value 91 for setting the 67 operating range according to the present embodiment.
  • FIG. 6 is a diagram for explaining a situation in which the back electromotive force cannot be detected well in FIG. 5 .
  • FIG. 13 is a diagram showing a threshold value 92 for setting the 67 operating range according to a modified example of the present embodiment.
  • 4 is a flowchart for explaining an operation procedure in the reverse power cutoff relay of the present embodiment.
  • FIG. 10 is a diagram showing an example of an alarm display in step 77 of FIG. 8. 1 is a diagram for explaining the principle of reverse power generation in a spot network power receiving method.
  • FIG. 13 is a diagram showing a threshold value 92 for setting the 67 operating range according to a modified example of the present embodiment.
  • 4 is a flowchart for explaining an operation procedure in the reverse power cutoff relay of the present embodiment.
  • FIG. 1 is a circuit diagram showing the schematic configuration of a spot network power receiving system 1 according to an embodiment of the present invention.
  • the spot network power receiving system 1 enables uninterrupted operation by receiving power from the same consumer or different consumers over multiple lines (three lines in Figure 1), thereby improving the reliability of the power supply.
  • This power receiving system 1 is widely used in skyscrapers in urban areas, and can handle large-capacity loads, while also achieving high reliability and space savings due to its simple configuration. Furthermore, it has the characteristic of achieving reduced maintenance through functions unique to the spot network.
  • power is supplied from a power company through three lines, namely, a first line 10 indicated as "power receiving No. 1", a second line 20 indicated as “power receiving No. 2", and a third line 30 indicated as "power receiving No. 3".
  • the first line 10, the second line 20, and the third line 30 may be supplied from the same or different power supply networks provided by the same power supplier, or may be supplied from the same or different power supply networks provided by different power suppliers, or may be a mixture of these.
  • the first line 10 to the third line 30 are, for example, 22 kV AC supplied by three-phase three-wire.
  • the three wires are not illustrated individually, but each of the lines 10 to 30 is simply illustrated as a single line.
  • the power supplied by the three lines 10 to 30 is connected to a common network bus 2 and supplied to consumers, power receiving rooms, etc. by wiring 3.
  • Various devices such as circuit breakers are provided in the path of the wiring 3, but are not illustrated here.
  • the circuit configurations of the first circuit 10, the second circuit 20, and the third circuit 30 are configured to be the same.
  • the components 11 to 19 of the first circuit 10 correspond to the components 21 to 29 of the second circuit 20 and the components 31 to 39 of the third circuit 30, respectively, and can be configured with the same components (or equivalent components). Therefore, in this specification, only the first circuit 10 will be described in detail, and descriptions of the second circuit 20 and the third circuit 30 will be omitted.
  • the part of the first circuit above the illustrated part in Figure 1 is the range of the circuit (not shown) for which the power supplier is responsible.
  • the first circuit 10 is first provided with a first VD11.
  • the first VD11 is a voltage detector.
  • a transformer 13 is provided on the load side of the first VD11 via a disconnect switch 12.
  • the transformer 13 used in the spot network power receiving method is what is called a network transformer, and it is important to select one with high impedance and overload capacity in order to suppress short circuit current and to distribute the load between the transformers equally across multiple lines (first line 10 to third line 30). It is also important to use the same transformer taps to prevent cross currents from occurring between the transformers, and to take care to prevent uneven voltages between the high-voltage lines. In this embodiment, it is preferable to use an amorphous transformer to further promote energy conservation.
  • a protector fuse 14 is provided on the secondary side of the transformer 13.
  • the protector fuse 14 prevents unnecessary cutoff at the substation on the power supply side by cutting off the fuse in the event of a short circuit accident on the network bus 2.
  • the protector fuse 14 can also be configured to be controllable by a network relay 50 or other relays, which will be described later.
  • the network relay (NWRY) 50 is a device for controlling the disconnection of the first line 10 and the network bus 2 from the viewpoint of protecting the first line 10 when various events occur.
  • One of the protective devices of the network relay 50 is a reverse power cutoff function for preventing reverse flow from other high-voltage lines in response to a power outage on the high-voltage side.
  • the reverse power cutoff relay refers to a part that has the reverse power cutoff function among the functions realized by using the network relay 50, and in the following specification, the network relay 50 will be described as being almost synonymous with the “reverse power cutoff relay”.
  • the network relay 50 is provided on the secondary side of the network transformer 13, on the line between the circuit breaker 19.
  • a reverse power interruption relay is required to prevent reverse current from other high-voltage circuits (second circuit 20, third circuit 30) during a power outage on the high-voltage side.
  • the network relay 50 is configured to function as a reverse power interruption relay.
  • the network relay 50 is a type of interruption device that satisfies the automatic reclosing characteristics and opening and closing control functions with the simplest structure, and consists of a circuit breaker section (circuit breaker 19) and a relay section (network relay 50).
  • the circuit breaker 19 and network relay 50 are connected by a control signal line 64.
  • the network relay 50 has three main functions, namely, no-voltage input characteristics, overvoltage (differential voltage) input characteristics, and reverse power interruption characteristics.
  • the upper distribution lines 1-1, 1-2, and 1-3 are each three-phase, three-wire power lines, and are supplied by three power supply paths.
  • network transformers 113, 123, and 133 and circuit breakers 119, 129, and 139 are provided between the distribution lines 1-1, 1-2, and 1-3 and the network bus 102.
  • the function required of the reverse power interruption relay is to interrupt the reverse current that flows from the network side to the transformer side when a feeder supplying the network is interrupted at a substation.
  • This function is realized by a reverse power cutoff relay (see network relay 50 in FIG. 1).
  • the reverse power cutoff relay instantly controls the switch 139 to cut off the path, for example within 0.1 seconds.
  • a circuit breaker 19 is provided on the secondary side of the transformer 13 of the first circuit 10, closer to the transformer 13 than the connection point to the network busbar 2.
  • the opening and closing of the circuit breaker 19 can be controlled by the network relay 50 using a control signal transmitted via the control signal line 64. Normally, the circuit breaker 19 is closed to pass power, but if any abnormality occurs on the first circuit 10, the circuit breaker 19 is shut off to electrically separate the connection between the first circuit 10 and the network busbar 2.
  • a signal for detecting the voltage from the first circuit 10 and a signal for detecting the current are input to the network relay 50.
  • a transformer 16 is provided to measure the voltage of the first circuit 10. The primary side of the transformer 16 is connected to the first circuit 10, and the secondary side is connected to the network relay 50.
  • a measurement current transformer 17 is provided on the network busbar 2 side of the connection point between the transformer 16 and the first circuit 10 to measure the voltage of the first circuit 10.
  • the current detector of this embodiment is composed of three current transformers 17a to 17c (described later in FIG. 2) provided on each line of the first circuit 10, and a current detection unit (described later as 55 in FIG. 2).
  • the network relay 50 is mainly formed of a calculation unit 60 having a processor 61, a voltage detection unit 51, and a current detection unit 55.
  • the network relay 50 is provided in the line 10 portion that runs from the power supply side such as a transformer 13 to the network bus 2.
  • the line 10 is a three-phase three-wire AC system with three electric wires (R phase, S phase, and T phase).
  • the network relay 50 detects the magnitude of the current flowing through the line 10, and when the current exceeds a threshold value, it controls the circuit breaker 19 to separate the line 10 from the network bus 2.
  • the basic functions of this network relay 50 are publicly known, so a detailed description will be omitted here.
  • the network relay 50 also detects reverse power, and when the primary power supply of the transformers 13, 23, 33 of one or two of the three circuits 10, 20, 30 is interrupted, it prevents a reverse current from flowing from the circuit to which power is normally supplied via the network bus 2 to the circuit to which power supply has been stopped. This current is extremely small compared to the forward power (e.g., several hundred A).
  • the network relay 50 detects a current flowing in the reverse direction, it instantly cuts off the circuit breaker 19, electrically disconnecting the circuit 10 from the network bus 2 (the so-called "67 operation"). Note that while only one circuit of the network bus 2 is shown in FIG. 1, there may be two or more circuits to make the network bus 2 redundant. In that case, the electrical connection from the first circuit 10 to all of the network buses 2 is cut off.
  • the voltage detection unit 51 monitors the direction and magnitude of the voltage on the line 10. This voltage is, for example, 400V (for low voltage), and the voltage transformed via the transformer 16 is input to the voltage detection unit 51.
  • the transformer 16 is a combination of three single-phase transformers, which steps down the voltage between the phases and outputs it to the voltage detection unit 51 via three wires 52-54.
  • the voltage detection unit 51 monitors the voltage value of the line 10 in real time, and outputs the measured value to the calculation unit 60.
  • the voltage detection unit 51 may be configured in the same way as a known network relay.
  • the current detection unit 55 detects the magnitude of the current flowing through the line 10.
  • the direction of the current can be determined by the calculation unit 60 based on the direction of the voltage.
  • current transformers 17a to 17c are provided for each of the R, S, and T phases, and their outputs are output to the current detection unit 55 via output lines 56 to 58. In this way, the current detection unit 55 measures the current value flowing through the line 10 and outputs it to the calculation unit 60.
  • the voltage detection unit 51 and the current detection unit 55 measure the voltage value and the current value at regular time intervals, and calculate the voltage measurement value and the current measurement value by using the average value and effective value.
  • the current transformers 17a to 17c and the current detection unit 55 may be configured in the same way as a known network relay. Note that an amplifier or a filter circuit that passes the fundamental signal band of 50 Hz or 60 Hz of the output signal may be provided between the current detection unit 55 and the calculation unit.
  • the calculation unit 60 includes a processor 61.
  • the type of processor 61 to be provided is arbitrary, and a microcomputer may be incorporated into the network relay 50 to form the device configuration.
  • the calculation unit 60 is provided with a memory 62.
  • the calculation unit 60 executes a program for performing reverse power monitoring and a cutoff function when reverse power is detected, which is stored in advance in the memory 62.
  • the memory 62 may take any form, and may include a non-volatile memory. A memory built into the microcomputer may also be used.
  • the circuit breaker 19 is a device for cutting off the line 10 from the network bus 2, and cuts off or connects all three-phase lines by an electrical signal sent from the calculation unit 60 via a control signal line 64.
  • Figure 3 is a diagram for explaining the operation of a known network relay (so-called AC power directional relay "67").
  • the network relay takes in current and voltage, and controls the circuit breaker 19 to interrupt when it detects power exceeding a predetermined threshold.
  • Figure 3 shows the magnitude and direction of the current excited in the line 10, with the upward direction on the vertical axis representing the direction of the current being 0°, and the direction of the reverse current flowing from the network busbar 2 to the transformer 13.
  • the downward direction of the vertical axis (direction of 180°) represents the normal power supply direction from the transformer 13 to the network busbar 2.
  • the phase of the current may lag or lead the phase of the voltage, so the lag case is displayed on the right side of the horizontal axis (lag 90°) and the lead case is displayed on the left side of the horizontal axis (lead 90°).
  • the current values will be plotted as shown by dotted lines 86 to 88.
  • the power supplied from the power source via the transformer 13 is extremely large, so the magnitude of the current pointing in the direction of approximately 180 degrees as shown by dotted lines 86 to 88 is much larger than the arrows 81, 82, and 181. In reality, it would be inappropriate to plot 86 to 88 on the scale of Figure 3, but they have been illustrated to compare the direction with 81, 82, etc.
  • the direction of the current detected by the network relay 50 is, for example, 87.
  • the current detected in the network in the interrupted circuit is, for example, current 181.
  • Current 181 corresponds to the excitation current consumed by transformer 13 when a conventional transformer that is not an amorphous type is used as transformer 13.
  • Current 181 is illustrated in the direction along the lag or lead direction, and the magnitude of current 181 is indicated by the length (absolute value) from the center point of the vertical and horizontal axes. In this way, when the calculation unit 60 of the network relay 50 detects current 181, it determines whether or not the magnitude is such that the circuit 10 should be interrupted as reverse power.
  • a threshold value 190 is set for this determination.
  • a value indicated by a linear function ax+ b1 is used as threshold value 190.
  • x is a variable indicating the position on the horizontal axis
  • a is a coefficient indicating the slope of the linear function
  • b1 is an intercept.
  • a reverse current 181 is detected by the network relay 50.
  • the tip position of the arrow of the current 181 is above the threshold 190 indicated by ax+ b1 , that is, it is included in the range where the reverse current is large (so-called "67 operating range"), so the network relay 50 controls the circuit breaker 19 to trip.
  • the dashed arrow 82 indicates the minimum power value at which reverse power can be detected, and when the reverse current is a slightly leading current, it reaches the threshold 190 at the minimum current value.
  • the minimum absolute value of the current detected as this reverse power (67 setpoint) is, for example, about 0.05% of the rated current of the transformer 13.
  • an amorphous transformer 13 In spot network power receiving systems, the use of an amorphous transformer 13 is widely practiced.
  • an amorphous transformer when used as in this embodiment, when a reverse current occurs, the current 81 consumed as excitation current in the transformer 13 is smaller than the conventional current 181 as shown in the figure, and therefore the threshold value 190 of the conventional network relay does not fall within the 67 operating range. Therefore, when an amorphous transformer is used, if the threshold value 190 is set as in the past, there is a risk that a problem will occur in which the processor 61 of the calculation unit 60 will not be able to detect a small current 81 flowing in the reverse direction, even if there is such a current.
  • the linear function indicating the threshold 191 can be defined as ax+ b2 (where x is the horizontal axis position in FIG. 3, a is a coefficient indicating the slope, and b2 is a coefficient indicating the intercept).
  • the slope a of the linear function of the threshold 191 is the same as in FIG. 3, and the intercept is set to a relationship of b1 > b2 .
  • b2 b1 /2 is set.
  • the A/D converter of the input signal of the calculation unit 60 With the A/D converter of the input signal of the calculation unit 60 currently used, it is theoretically possible to reduce the accuracy to half of the threshold 190 shown in FIG. 3. Therefore, by setting the threshold 191, the small current 81 flowing in the reverse direction is placed within the 67 operating range, and can be correctly detected as "reverse power". However, the minimum absolute value of the current detected as reverse power (set value 67) becomes too small, at 0.025% of the rated current, as indicated by arrow 82, which is undesirable as it increases the risk of malfunction due to noise, etc.
  • the minimum absolute value of the current detected as reverse power (67 setting value) is set to 0.05% of the rated current as shown by the arrow 82.
  • the magnitude of this threshold corresponds to a threshold value that is half the magnitude of the conventional threshold value for a current equal to or greater than the minimum value (67 setting value) such as the current 81.
  • the threshold 91 is set to the "67 operating range" as a range that satisfies both the requirements that it is above the linear function ax+b2 shown in FIG. 4 and that the absolute distance from the intersection line of the vertical and horizontal axes is c or more.
  • the values of a, b2 , and c are set so that there is a region that is equal to or greater than the first threshold function ax+b2 and less than the second threshold c.
  • the relationship is b2 ⁇ c.
  • Figure 6 is the same as Figure 5 except for arrows 84 and 85.
  • the current detection unit 55 detects it as the current indicated by arrow 84, which is inside the semicircle and cannot be detected. If the cable leading current 85 is sufficiently larger than the size of the arrow shown in the figure, the current indicated by arrow 84 will again be within the operating range 67 and can be detected.
  • the size of the cable leading current is governed by the length of the cable, but in reality the cable is long enough and the leading current is large enough that it rarely poses a problem.
  • Fig. 7 shows an example in which the minimum value (67 set value) of the detected current 86 shown in Fig. 4 and Fig. 5 is set to 0.025% or more of the rated current to further improve accuracy.
  • the reverse power detection procedure executed by the processor 61 of the calculation unit 60 will be described using the flowchart of FIG. 8.
  • This procedure can be realized by software, when the processor 61 executes a computer program (not shown) previously stored in the memory 62.
  • the network relay 50 starts operating when power is supplied to the line 10, and continues to operate as long as the power supply continues.
  • the control procedure of the flowchart of FIG. 8 is executed not only inside the network relay 50 provided on the first line 10, but also in the network relays 50 provided on the second line 20 and the third line 30 in the same manner in parallel.
  • the operating power of the network relay 50 can be supplied from each of the corresponding lines 10 to 30, but even if the power supply to the lines 10, 20, and 30 from the power supply source is cut off, it is configured to be able to continue operating by a battery backup (not shown) or the like.
  • the calculation unit 60 measures the voltage value of the line 10 from the output of the voltage detection unit 51 (step 71), and detects the current value flowing through the line 10 by the current detection unit 55 (step 72). At this time, the calculation unit 61 detects not only the magnitude of the current but also the phase lead and lag of the current to determine the direction of the current and determine the vector value of the current as shown by currents 81 and 82 in Fig. 5 (step 73). Next, the calculation unit 60 determines whether the absolute value of the detected current (for example, current 81 in Fig. 5) is included in the "67 operating range" in Fig. 4 by the function ax+ b2 (step 74). If it is not included in the "67 operating range" in step 74, it is determined that no reverse current is occurring and the process returns to step 71.
  • the absolute value of the detected current for example, current 81 in Fig. 5
  • step 74 it is determined whether the direction of the detected current value is +90° to 0° to -90° (i.e., the reverse direction) and whether its magnitude is equal to or greater than the threshold value C (step 75). If the absolute value is less than C, it is not included in the "67 operating range” shown in FIG. 5, so the process returns to step 71. If the absolute value is equal to or greater than C, it means that the tip position of the measured current vector is located within the "67 operating range" of FIG. 5.
  • the calculation unit 60 determines that reverse power has been detected, and operates the circuit breaker 19 to disconnect the electrical connection between the first circuit 10 and the network busbar 2, thereby interrupting the electrical circuit (step 76), and outputs an alarm on the display unit 65 to end the process (step 77).
  • an example of an alarm output will be described using FIG. 9.
  • FIG. 9(A) is a diagram showing the display unit 65 in a normal state where the network relay 50 has not detected the occurrence of reverse power.
  • a dot-matrix display screen 69 is provided in the center of the display unit 65, and three lamps 66a to 66c are provided above it to indicate the operating state. During normal operation, the ON lamp 66c is lit. Push buttons 68a to 68d are provided below the display screen 69 for the operator to operate. Under normal conditions, the display screen 69 displays the measured current value Ir in units of amperes.
  • FIG. 9(A) shows a state where no current is flowing, that is, the current value (Ir) is 0.00 A.
  • an OFF lamp 66a indicating that the network relay 50 is not operating and an ON lamp 66c indicating that it is operating normally are displayed. Between the OFF lamp 66a and the ON lamp 66c, a fault lamp 66b is provided to indicate that a fault due to reverse power has occurred on the line 10.
  • the measurement button 68a is a button for switching the content (various measurement data) displayed on the display screen 69. After pressing the measurement button 68a, the measurement data can be selected and the display screen of the display screen 69 can be switched by pressing either the left button 68b or the right button 68c.
  • the return button 68d is a button for returning the display screen 69 switched by the measurement button 68a to the original screen.
  • the display screen 69 shows the relay operation log due to the detection of reverse power (displayed as "RY log 01:”) and a number indicating which of the pre-classified numbers corresponds to the cause of the relay operation (here, "67” indicating reverse power). The date and time are displayed in the "****:****:****" section below "RY log 01:67".
  • the circuit breaker 19 cuts off the line 10 in this way, the fault lamp 66b, which indicates that a fault has occurred, flashes and the necessary information is displayed to the operator via the display screen 69.
  • a warning sound may be emitted by a sound source such as a buzzer (not shown).
  • reverse power can be detected more accurately than in the past, so even when an amorphous transformer with a small excitation current is used in a spot network power receiving system, small reverse power can be accurately detected without malfunction.
  • the present invention is not limited to the above-mentioned embodiment, and various modifications are possible within the scope of the spirit of the invention.
  • transformer 50...Network relay (reverse power cut-off relay), 51...Voltage detection unit, 52 to 54: lines, 55: current detection unit, 56 to 58: output lines, 60: calculation unit, 61: processor; 62: memory; 64: control signal line; 65: display unit; 66a...off lamp, 66b...fault lamp, 66c...operation lamp, 68a...measurement button, 68b...left button, 68c...right button, 60d...return button, 69: display screen; 81, 82: current; 91, 92: threshold; 102...network bus, 110...first line, 120...second line, 130: third line, 181: current, 190, 191: threshold

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

ノイズ等の影響を避けながら逆電力の検出感度を上昇させた逆電力遮断継電器を提供する。スポットネットワーク給電システムにおいて、ネットワークリレーは、(1)検出された逆方向の電流値の方向と大きさが、第1の閾値関数式ax+b2(a、b2は係数、xは電流遅れ90°方向の大きさを示す変数)を下回っているか否かを判定し、さらに(2)電流値の大きさの絶対値が第2の閾値c未満であるか否か(但し、b2<c)を判定することにより、2種類の閾値を用いることで逆電力の発生有無を判定する。第1の閾値及び第2の閾値の双方を超える逆電流を検出した場合、ネットワークリレーは電力回線中に設けられる遮断器を制御することで電力回線をネットワーク母線から遮断する。

Description

逆電力遮断継電器及び逆電力遮断継電器における逆電力遮断方法
 本発明は、スポットネットワーク受電方式の電力回線に用いられて好適な逆電力遮断継電器に関する。
 電力会社の変電所より、複数回線(例えば、22kV配電線を3回線)で受電し、各回線に設置された受電変圧器を介して二次側をネットワーク母線で並列接続するようにしたスポットネットワーク受電方式が知られている。この受電方式は、複数回線受電により配電線1回線が停止しても何の支障もなく受電できる方式であり、無停電運転を可能とし、電力供給の信頼性を向上させることができる。スポットネットワーク受電方式は、常用予備2回線受電やループ受電等の従来例と比較した場合に、常時3回線受電による高信頼性、シンプルな構成による省スペース化、スポットネットワーク特有の機能による省保守化という特徴を有する。このようなスポットネットワーク受電方式は、例えば、特許文献1、特許文献2に開示されている。
 スポットネットワーク受電方式を採用する際には、ネットワーク変圧器の2次側において、逆電力遮断、差電圧投入、無電圧投入、過負荷警報、電源電圧検出等の保護機能を有する遮断継電器が用いられることが一般的である。ここで、「逆電力遮断」とは、供給側の複数回線のいずれかが遮断されたことにより、ネットワークに供給される電力が遮断されると、ネットワーク側からネットワーク変圧器側へ逆電流が流れることがあるので、逆電流の発生を検出して、逆電流が発生した回線を遮断することであり、遮断継電器が有する保護機能の一つである。
特開平9-322394号公報 特開2005-130609号公報
 近年、ネットワーク変圧器としてアモルファス変圧器の利用が検討されるようになってきた。アモルファス変圧器は、鉄心としてアモルファス金属を用いた変圧器であり、無負荷時の鉄損が少なく、珪素鋼板を使用する従来の変圧器と比較して損失が少ない。このため、待機ロス(無負荷損)を大幅に抑えることができ、省電力と温暖化ガス(CO)削減を可能にするという特徴を有する。一方、アモルファス変圧器を用いる場合は、励磁電流が小さくなるために、逆電力時の励磁電流が小さくなって、逆電力の検出がしにくくなるという問題がある。
 本発明は上記背景に鑑みてなされたもので、その目的は、ノイズ等の影響を避けながら逆電力の検出感度を上昇させた逆電力遮断継電器を提供することにある。
 本発明の他の目的は、検出された逆電力の向きと大きさを用いて、簡単なソフトウェア演算にて逆電力遮断の要否の判断を行うことができる逆電力遮断継電器を提供することにある。
 本発明のさらに他の目的は、高精度の逆電力遮断継電器を用いたスポットネットワーク受電システムを提供することにある。
 本願において開示される発明のうち代表的な特徴を説明すれば次のとおりである。
 本発明の一つの特徴によれば、三相交流の電力回線の各相の電圧を測定する電圧検出部と、電力回線の各相の電流値を測定する電流検出部と、電圧検出部によって検出された電圧測定値と、電流検出部によって検出された電流測定値から励磁電流を求め、励磁電流が逆方向に閾値を超えた際に、電力回線に設けられた遮断器にて電力回線を遮断するように制御する演算部を有する逆電力遮断継電器であって、演算部は、(1)検出された逆方向の電流値の方向と大きさが、第1の閾値関数式ax+b(a、bは係数、xは電流遅れ90°方向の大きさを示す変数)を下回っているか否かを判定し、(2)電流値の大きさの絶対値がc未満であるか否かを判定する第2の閾値(但し、b<c)の2種類の閾値を用いることで逆電力を検出するようにした。逆電力遮断継電器は、第1の閾値以上及び第2の閾値以上の双方を満たす逆電流を検出した場合に、電力回線中に設けられる遮断器によって回線を遮断するようにした。第2の閾値のcの値は、「67整定電流値」の0.05%未満とすると良く、好ましくは0.025%程度とする。演算部は、電流値の判定の際に、電流値が逆方向に第1の閾値関数式を超えているか否かを判定し、超えていない場合には、第2の閾値を用いることなく“遮断を要する逆電力量なし”として電力回線の接続を維持する。一方、電流値が第1の閾値関数式を超えている場合は、逆方向への電流値の大きさが第2の閾値c未満となるか否かを判定する。第1の閾値関数式ax+bと、第2の閾値cの大きさは、電流値の逆方向への大きさが、第1の閾値関数式ax+b以上であって、第2の閾値c未満となる領域が存在するような関係を満たすように、関数式のa、bの値、閾値cの値が設定される。
 本発明の他の特徴によれば、演算部が逆電力を検出することによって遮断器を遮断させた際に、表示部にてアラーム表示を行うようにした。本発明は、異なる供給元からの複数の電力ラインを有し、電力ラインには、それぞれネットワーク変圧器と、プロテクタヒューズと、遮断器が直列に接続され、複数の電力ラインが、共通にネットワーク母線に接続されることによってネットワーク母線から負荷への電力供給が行われるスポットネットワーク給電システムに適用でき、それぞれの電力ライン内のネットワーク変圧器と遮断器の間に、本発明の逆電力遮断継電器を設けるようにした。
 本発明によれば、スポットネットワーク受電方式において励磁電流が小さいアモルファス変圧器を用いる場合であっても、逆方向に流れる小さな逆電流を精度良く検出できるようになった。また、検出精度を高めるにあたって、外来ノイズの影響による誤動作の発生確率の増大を回避できるようにしたので、信頼性が高い逆電力遮断継電器を実現できた。さらに、アモルファスタイプの変圧器を用いたネットワーク受電システムにも適用しやすい逆電力遮断機能を実現できた。
本発明の実施例に係るスポットネットワーク受電システム1の概略構成を示す回路図である。 図1のネットワークリレー50の詳細構成を示すブロック図である。 従来例のネットワークリレーを用いた逆電力検出方法を説明するための図であり、67動作域の閾値190を示す図である。 従来例のネットワークリレーを用いた逆電力検出方法において、67動作域の閾値191を1/2レベルまで下げた状態を説明するための図である。 本実施例による67動作域を設定する閾値91を示す図である。 図5において、逆起電力をうまく検出できない状況を説明するための図である。 本実施例の変形例に係る67動作域を設定する閾値92を示す図である。 本実施例の逆電力遮断継電器における動作手順を説明するためのフローチャートである。 図8のステップ77におけるアラーム表示例を示す図である。 スポットネットワーク受電方式における逆電力の発生原理を説明するための図である。
 以下、本発明の実施例を図面に基づいて説明する。以下の図において、同一の部分には同一の符号を付し、繰り返しの説明は省略する。図1は本発明の実施例に係るスポットネットワーク受電システム1の概略構成を示す回路図である。スポットネットワーク受電システム1は、供給信頼性を高めるために、同一の需要者又は異なる需要者から複数回線(図1では3回線)の受電により無停電運転を可能とし、電力供給の信頼性を向上させるものである。この受電システム1は、都市部の超高層ビル等で広く用いられ、大容量の負荷に対応できる上に、高信頼性、シンプルな構成による省スペース化を実現できる。さらに、スポットネットワーク特有の機能による省保守化を実現するという特徴を持つ。
 図1においては、電力会社から3つの回線、即ち“受電No.1”で示される第一回線10、“受電No.2”で示される第二回線20、“受電No.3”で示される第三回線30にて電力が供給される。第一回線10、第二回線20、第三回線30は同一電力供給者から提供される同一又は異なる電力供給網からの給電であっても良いし、別の電力供給者から提供される同一又は異なる電力供給網からの給電であっても良いし、それらの混在であっても良い。第一回線10~第三回線30は、例えば、三相三線にて供給される22kVの交流である。図1では三線を個別に図示するのではなく、各回線10~30ではそれぞれ1本の線にて簡略的に図示している。3つの回線10~30によって供給される電力は、共通のネットワーク母線2に接続され、配線3によって需要家、受電室等へ供給される。尚、配線3の経路中に遮断器等の種々の機器が設けられるが、ここではそれらの図示を省略している。
 第一回線10、第二回線20、第三回線30の回路構成は同一に構成される。第一回線10の構成機器11~19は、それぞれ第二回線20の構成機器21~29、第三回線30の構成機器31~39に対応し、それぞれ同じ部品(又は同等の部品)にて構成できる。よって、本明細書では第一回線10についてのみ詳細に説明し、第二回線20と第三回線30の説明は省略する。第一回線において図1の図示部分よりも上側が、電力供給者側が責任を持つ回線の範囲(図示せず)である。第一回線10には、最初に第一VD11が設けられる。第一VD11は、電圧検出器である。第一VD11の負荷側には、断路器12を介して変圧器13が設けられる。スポットネットワーク受電方式に用いられる変圧器13は、いわゆるネットワーク用変圧器と呼ばれるもので、短絡電流抑制及び変圧器間の負荷分担を複数の回線(第一回線10~第三回線30)で均等にするため、インピーダンスと過負荷耐量の大きいものを選定することが重要である。また、変圧器間の横流が生じないよう、変圧器タップは同一とするとともに、高圧回線間の電圧に不ぞろいが生じないように考慮することが重要である。本実施例では、省エネルギーを一層促進するためにアモルファス変圧器を用いることが好ましい。
 変圧器13の二次側には、プロテクタヒューズ14が設けられる。プロテクタヒューズ14は、ネットワーク母線2の短絡事故時に遮断することで、電力供給所側の変電所での不必要な遮断を防止する。プロテクタヒューズ14は、後述のネットワークリレー50又はその他の継電器で制御可能に構成することも可能である。ネットワークリレー(NWRY:Network Relay)50は、様々な事象の発生時に第一回線10の保護の観点から第一回線10とネットワーク母線2との接続を解除する制御を行うための機器である。ネットワークリレー50の保護装置の一つに、高圧側の停電に対する他の高圧回線からの逆流を防止するための逆電力遮断機能がある。本明細書における「逆電力遮断継電器」は、ネットワークリレー50を用いて実現される機能のうち逆電力遮断機能を有する部分を示すものであり、以下の明細書では、ネットワークリレー50を「逆電力遮断継電器」とほぼ同義であるとして説明する。ネットワークリレー50は、ネットワーク変圧器13の二次側であって、遮断器19との間の回線に設けられる。
 スポットネットワーク方式の保護装置としては、高圧側の停電時に、他の高圧回線(第2回線20、第3回線30)からの逆流を防止するために逆電力遮断継電器の使用が必要である。ここではネットワークリレー50が逆電力遮断継電器としての機能を有するように構成した。ネットワークリレー50は、自動再閉路特性及び開閉制御の機能を、最も簡単な構造の下に満足させるようにした一種の遮断装置で、遮断器部(遮断器19)と継電器部(ネットワークリレー50)とからなっている。遮断器19とネットワークリレー50は、制御信号線64によって接続される。ネットワークリレー50は、主に三つの機能、即ち、無電圧投入特性、過電圧(差電圧)投入特性、逆電力遮断特性を有する。
 ここで図10を用いて上述したスポットネットワーク受電方式における逆電力の発生原理を説明する。上側の配電線1-1、1-2、1-3はそれぞれ三相三線の電力線であって、3つの電力供給経路によって供給される。ここでは配電線1-1、1-2、1-3からネットワーク母線102の間に、ネットワーク変圧器113、123、133と遮断器119、129、139が設けられる。逆電力遮断継電器に求められる機能は、ネットワークに供給するフィーダが変電所で遮断されると、ネットワーク側から変圧器側へ逆電流が流れるので、その逆電流を遮断する機能である。
 ここで、何らかの要因によって、配電線1-3の矢印(1)において短絡又は地絡事故等の障害が発生した場合に、配電線1-3を有する電力会社は矢印(2)に示す遮断器4-3によって電力経路を遮断する。この結果、配電線1-3から第三回線130への電力供給は遮断される。この際、第一回線110及び第二回線120からネットワーク母線102への通電が継続している状態にあるので、矢印(3)で示す破線のように、第一回線110及び第二回線120から供給される電力が、ネットワーク母線102を経由して第三回線130を逆流して配電線1-3に流れるという現象が生じる。このような場合は、何らかの安全機能を設けて第三回線130の矢印(4)に示す遮断器139を遮断させることが必要になる。この機能を実現するのが逆電力遮断継電器(図1のネットワークリレー50参照)である。このように、矢印(3)のように逆電力が流れたことを検知すると、逆電力遮断継電器は瞬時に、例えば0.1秒以内に開閉器139にて経路を遮断するように制御する。
 再び図1に戻る。第一回線10の変圧器13の二次側であって、ネットワーク母線2への接続点よりも変圧器13側には、遮断器19が設けられる。遮断器19は、制御信号線64を介して伝送される制御信号によってその開閉がネットワークリレー50から制御可能である。通常、遮断器19は閉じた状態であって電力を通すが、第一回線10上に何らかの異常が生じた場合に、遮断することによって第一回線10とネットワーク母線2との接続を電気的に切り離す。
 ネットワークリレー50には、第一回線10からの電圧を検知するための信号と、電流を検知するための信号が入力される。第一回線10の電圧を測定するために、変圧器16が設けられる。変圧器16の一次側は第一回線10に接続され、二次側はネットワークリレー50に接続される。変圧器16と第一回線10の接続点よりもネットワーク母線2側には、第一回線10の電圧を測定するために、計測用の変流器17が設けられる。本実施例の電流検出器は、第一回線10の各線に設けられる3つの変流器17a~17c(図2で後述)と、電流検出部(図2にて55として後述)によって構成される。
 次に、図2を用いて、ネットワークリレー50及びその周辺部分の構成をさらに説明する。ネットワークリレー50は、プロセッサ61を有する演算部60と、電圧検出部51と、電流検出部55を主に有して形成される。ネットワークリレー50は、変圧器13等の電力供給側からネットワーク母線2に至る回線10部分に設けられる。回線10は、交流三相3線式であって、3本の電線(R相、S相、T相)を有する。ネットワークリレー50は、回線10に流れる電流の大きさ等の検出を行い、それらが閾値を超えた際には、遮断器19を制御することによって回線10をネットワーク母線2から切り離す。このネットワークリレー50の基本的な機能は公知であるので、ここでの詳細な説明は省略する。
 ネットワークリレー50はさらに逆電力を検出し、3つの回線10、20、30のいずれか一つ又は2つの回線のうち、変圧器13、23、33の一次側電力供給が遮断された場合に、ネットワーク母線2を介して正常に電力が供給されている回線から、電力供給が停止されている回線に対して逆方向の電流が流れることを防止する。この電流は正方向の電力(例えば、数百A)に比べると極めて小さい電力である。ネットワークリレー50は、その逆方向に流れる電流を検出した場合に瞬時に遮断器19にて遮断することによって回線10とネットワーク母線2との電気的に切り離す(いわゆる“67動作”)。尚、図1ではネットワーク母線2を1回線分だけしか図示していないが、ネットワーク母線2を冗長化するために2回線以上とする場合もあるので、その場合は、第一回線10から、すべてのネットワーク母線2への電気的な接続状態を遮断する。
 電圧検出部51は回線10の電圧の向きと大きさを監視する。この電圧は、例えば400V(低圧の場合)であるので、変圧器16を介して変圧された電圧が電圧検出部51に入力される。変圧器16は、単相トランスを3つ合わせたもので、相間の電圧を降圧して、3本の線52~54によって電圧検出部51に出力する。電圧検出部51は、回線10の電圧値をリアルタイムで監視し、測定値を演算部60に出力する。電圧検出部51の構成は、公知のネットワークリレーと同様に構成すればよい。
 電流検出部55は、回線10に流れる電流の大きさを検出する。電流の向きは、電圧の向きを基準にして演算部60にて判断できる。ここでは、R相、S相、T相の各相それぞれに変流器17a~17cが設けられ、それぞれの出力が出力線56~58によって電流検出部55に出力される。このようにして電流検出部55は、回線10に流れる電流値を測定して、演算部60に出力する。ここで電圧検出部51と電流検出部55は、一定の時間間隔で電圧値と電流値を測定し、それらの平均値や実効値を用いることによって電圧測定値と電流測定値を算出するようにすれば良い。また、変流器17a~17cの構成や、電流検出部55の構成は、公知のネットワークリレーと同様に構成すれば良い。尚、電流検出部55と演算部の間に、増幅部や、出力信号のうち50Hz又は60Hzの基本波信号帯域を通すフィルタ回路を設けても良い。
 演算部60は、プロセッサ61を含んで構成される。どのようなプロセッサ61を設けるかは任意であり、ネットワークリレー50にマイコンを組み込んで装置構成としても良い。演算部60には、メモリ62が設けられる。演算部60はメモリ62にあらかじめ格納された逆電力監視及び逆電力検出時の遮断機能を実行するためのプログラムを実行する。メモリ62の形態は任意であり、不揮発性メモリを含めるようにすると良い。マイコンに内蔵されるメモリを用いるようにしても良い。遮断器19は、回線10をネットワーク母線2から遮断するための機器であり、制御信号線64を介して演算部60から送られる電気信号によって、三相の回線全てを遮断し、または、接続する。
 次に、図3~図7を用いて本実施例における逆電力遮断手順を説明する。図3は公知のネットワークリレー(いわゆる交流電力方向継電器「67」)の動作を説明するための図である。ネットワークリレーは、電流と電圧を取り込み、所定の閾値を超えた電力を検出した際に、遮断器19を遮断するように制御する。図3は、回線10に励磁される電流の大きさと向きを示したものであり、縦軸上方向が電流の向きが0°の方向であり、ネットワーク母線2から変圧器13へ向かう逆電流の流れる方向である。縦軸の下方向への電流の向き(180°の方向)は、変圧器13からネットワーク母線2へ向かう正常時の電力供給方向である。電流の位相は電圧の位相に対して遅れる場合も、進む場合もあるので、遅れる場合を横軸右側方向(遅れ90°)に表示し、進む場合を横軸左側方向(進み90°)に表示している。
 スポットネットワーク受電方式が正常に動作して、3つの回線10~30が正常に稼働している際の電流値をプロットすると点線86~88のようになる。変圧器13を介して電力供給元から供給される電力は極めて大きいので、点線86~88で示すような約180°方向に向いた電流の大きさは、矢印81、82、181とは比べられないほど大きい。実際には図3のスケールによる図中に86~88をプロットするには不適切であるが、81、82等と方向を比較するためにあえて図示した。3つの回線10~30から正常に電力が供給されている場合には、ネットワークリレー50にて検出される電流の向きは、例えば87である。
 3つの回線10~30のうち、1回線又は2回線が遮断された場合に、遮断された回線中のネットワークにて検出される電流は、例えば電流181である。電流181は、変圧器13としてアモルファスタイプではない従来のトランスを用いた場合のトランス13が消費する励磁電流に相当する。電流181は遅れ又は進みの方向に沿った向きで図示されており、電流181の大きさは縦軸と横軸の中心点からの長さ(絶対値)で示される。このようにネットワークリレー50の演算部60は、電流181を検出したら、それが逆電力として回路10を遮断すべき大きさか否かを判定する。この判定のために閾値190が設定される。ここでは、閾値190として一次関数ax+bにて示される値を用いる。xは横軸の位置を示す変数であり、aは一次関数の傾きを示す係数であり、bは切片である。
 ネットワークリレー50にて、逆方向の電流181が検出されたとする。この場合、電流181の矢印の先端位置は、ax+bにて示される閾値190よりも上側、即ち、逆電流が大きい側に位置する範囲(いわゆる「67動作域」)に含まれるため、ネットワークリレー50が、遮断器19を遮断するように制御する。鎖線矢印82は、逆電力の検出が可能な最小の電力値であり、逆向きの電流がわずかに進み電流の場合、閾値190に最小電流値で到達する。この逆電力として検出される電流の絶対値の最小値(67整定値)は、例えば、変圧器13の定格電流の0.05%程度である。
 スポットネットワーク受電方式ではアモルファス変圧器13を用いることが広く行われている。本実施例のようにアモルファストランスを用いる場合には、逆電流発生時に、トランス13にて励磁電流として消費される電流81が図示のように従来の電流181よりも小さくなるため、従来のネットワークリレーの閾値190では67動作域に含まれなことになる。従ってアモルファストランスを用いると、従来通りの閾値190の設定では、逆方向に流れる小さい電流81が存在しても、演算部60のプロセッサ61が検出できないという問題が生じる虞があった。
 図3にて説明した電流81を検出できないという問題を解決する簡単な方法は、閾値190をより厳しくし、閾値の設定値を小さくすれば良い。この改善案を示したのが図4である。ここでは、閾値191を示す一次関数をax+b(ただし、xは図3の横軸位置、aは傾きを示す係数、bは切片を示す係数)にて定義可能とした。閾値191の一次関数の傾きaは図3と同じであり、切片をb>bの関係とした。図4の例ではb=b/2とした。現在用いられている演算部60の入力信号のA/D変換器によれば、精度的に図3で示す閾値190の半分まで小さくすることが理論上は可能である。従って、閾値191を設定することによって逆方向に流れる小さい電流81を67動作域内に入るようにして、「逆電力」として正しく検出可能になる。しかしながら、逆電力として検出される電流の絶対値の最小値(67整定値)が、矢印82に示すように定格電流の0.025%と小さくなりすぎるので、ノイズなどによる誤動作の虞が高くなってしまい、好ましくない。
 そこで本実施例では、改良した閾値91を用いることで、小さな電流81を検出可能としながら、逆電力として検出される電流の絶対値の最小値(67整定値)が、矢印82に示すように定格電流の0.05%となるようにした。この閾値の大きさは、電流81のような最小値(67整定値)以上の電流に対しては、従来の1/2の大きさの閾値に相当する。図5で明確なように、この閾値91は、図4で示した一次関数ax+bより上方、かつ、縦軸と横軸の交差線からの絶対距離がc以上、の双方の要件を満たす範囲を「67動作域」とした。特に、第1の閾値関数式ax+b以上となりつつ、第2の閾値c未満となる領域が存在するように、前記a、b、cの値が設定される。この場合、b<cの関係となる。このような閾値91により67動作域を設定することにより、電流83で示す逆電力として検出される電流の絶対値の最小値(67整定値)を、定格電流の0.05%以上を確保しつつ、ax+bで示される一次関数を併用した閾値91により境界域縦軸と交差しる付近の形状を半円状に変更することで、高精度の逆電力検出が可能となった。尚、図5の閾値91であっても、条件によってはケーブルの進み電流と合成されると検出できないという現象が生じる。この現象を示すのが図6である。
 図6は矢印84、85を除いて図5と同一の図である。例えば、AMT励磁電流81と、点線で示す進み電流85(これは電力会社側のケーブルに流れる電流で90°進んでいる)が合成されると、矢印84で示す電流として電流検出部55が検出することになり、半円の内側になってしまい検出できないためである。尚、ケーブルの進み電流85が図に示した矢印の大きさよりも十分に大きければ矢印84で示す電流が再び67動作域内に入るため検出できる。一方、ケーブルの進み電流の大きさは、ケーブルの長さに支配されるが、現実的にはケーブルは十分に長く、進み電流が十分に大きいため、問題とはなることは少ない。
 図7は、図4、図5で示した検出される電流86の最小値(67整定値)を、定格電流の0.025%以上にして精度をさらに向上させた例を示している。この閾値92は図3で示した一次関数ax+bより上方、かつ、縦軸と横軸の交差線からの距離がb(=c/2)以上、の双方の要件を満たす範囲を「67動作域」としたものである。このように一次関数ax+bで判定される67動作域に加えて、電流値の大きさによる第2の基準(縦軸と横軸の交差線からの距離がc/2以上)を併用することで、回線のいずれかが受電停止された際に、正常な他の回線から停止された回路の変圧器側へ逆流する電流を精度良く検出できるので、無駄な電力消費を抑えて省エネルギー化を図り、環境にやさしく、検出精度の高い逆電力遮断継電器(ネットワークリレー)を実現できる。
 次に図8のフローチャートを用いて演算部60のプロセッサ61が実行する逆電力検出手順を説明する。この手順は、プロセッサ61がメモリ62にあらかじめ格納されたコンピュータプログラム(図示せず)を実行することで、ソフトウェアによって実現できる。ネットワークリレー50は、回線10に電力が供給されたら動作を開始し、電力供給が続く限り継続して動作する。尚、図8のフローチャートの制御手順は、第一回線10の設けられるネットワークリレー50の内部だけでなく、第二回線20及び第三回線30に設けられるネットワークリレー50の内部でも並列して同様に実行される。ネットワークリレー50の動作電力は、対応するそれぞれの回線10~30から供給可能であるが、電力供給元から回線10、20、30への電力供給が遮断された場合であっても、図示しないバッテリバックアップ等によって継続動作が可能となるように構成される。
 最初に、演算部60は電圧検出部51の出力から回線10の電圧値を測定し(ステップ71)、電流検出部55によって回線10に流れる電流値を検出する(ステップ72)。この際、演算部61は、電流の大きさだけでなく電流の位相の進みと遅れについても検出することで、電流の向き判定をすることにより図5に示す電流81、82のように電流のベクトル値が判定される(ステップ73)。次に演算部60は、検出された電流(例えば図5の電流81)の絶対値が、図4の“67動作域”に含まれるか否かを、関数式ax+bによって判定する(ステップ74)。ステップ74で“67動作域”に含まれない場合は、逆電流が発生していないとしてステップ71に戻る。
 ステップ74で図4に示した“67動作域”に含まる場合は、検出された電流値の向きが+90°~0°~-90°の方向(つまり逆方向)であって、その大きさが閾値C以上であるかを判定する(ステップ75)。ここで絶対値がC未満の場合は、図5で示した“67動作域”には含まれないことになるので、ステップ71に戻る。ここで絶対値がC以上の場合は、測定された電流のベクトルの先端位置が、図5の“67動作域”の領域内位置することを意味するので、この場合(Yesの場合)は、演算部60は逆電力が検出されたとして遮断器19を動作させて第一回線10とネットワーク母線2との電気的な接続を解除することにより電路を遮断し(ステップ76)、表示部65にてアラーム出力をして処理を終了する(ステップ77)。次に、図9を用いてアラーム出力の一例を説明する。
 図9(A)は、ネットワークリレー50が逆電力の発生を検出していない正常時の表示部65を示す図である。表示部65の中央にはドットマトリックス式の表示画面69が設けられ、その上には動作状態を示す3つのランプ66a~66cが設けられる。通常動作時には、入ランプ66cが点灯する。表示画面69の下側には、操作者が操作するための押しボタン68a~68dが設けられる。表示画面69には、通常時には電流の計測値Irが、アンペアを単位として表示される。図9(A)の例では電流が流れていない状態、即ち、電流値(Ir)が0.00Aである状態を示している。表示画面69の上側には、ネットワークリレー50が動作していないことを示す切ランプ66aと、正常に稼働していることを示す入ランプ66cが表示される。切ランプ66aと入ランプ66cの間には、回線10にて逆電力による故障が発生したことを示す故障ランプ66bが設けられる。表示画面69の下には、計測ボタン68aと復帰ボタン68dが設けられる。計測ボタン68aは表示画面69に表示される内容(各種計測データ)を切り替えるためのボタンである。計測ボタン68aを押した後に、左ボタン68b、右ボタン68cのいずれかを押すことで計測データの選択と表示画面69の表示画面を切り替えることができる。復帰ボタン68dは、計測ボタン68aにて切り替えられた表示画面69を元の画面に戻すためのボタンである。
 図9(B)は、ネットワークリレー50が逆電力の発生を検出したことにより遮断器19を遮断した後の表示画面を表示するものである。ここでは、回線10から電力がネットワークリレー50に対して正常に供給されていないことを示す切ランプ66aが点灯し、回線10に何らかの不具合が生じたことを示す故障ランプ66bが高速で点滅する。表示画面69には、逆電力を検出したことによるリレーの動作ログ(“RYログ 01:”と表示)と、リレーが動作した原因をあらかじめ分類された番号のどれに該当するかを示したもの(ここでは、逆電力を示す“67”)が表示される。“RYログ01:67”の下側の“********:**:**”部分には日時が表示され、例えば、2022年10月01日 17時30分20秒ならば、“221001 17:30:20“のように表示される。このように遮断器19によって回線10が遮断された場合は、故障が生じた旨を示す故障ランプ66bが点滅するとともに、表示画面69を介して操作者に対して必要な情報を表示する。この表示の際、図示しないブザー等の音源によって警告音を発するように構成しても良い。
 以上説明したように、本実施例によれば、従来よりも逆電力を精度よく検出することができるので、スポットネットワーク受電方式において励磁電流が小さいアモルファス変圧器を用いる場合であっても、誤動作することなく、小さな逆電力を正確に検出できるようになった。尚、本発明は上述の実施例に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の変更が可能である。
1-1,1-2,1-3…配電線、2…ネットワーク母線、4-3…開閉器、
5,5-1,5-2,5-3…遮断器、10…第一回線、11…第一VD、
12…断路器、13…(ネットワーク)変圧器、14…プロテクタヒューズ、
16…変圧器、17,17a~17c…計測用変流器、19…遮断器、
20…第二回線、23…変圧器、30…第三回線、33…変圧器、
50…ネットワークリレー(逆電力遮断継電器)、51…電圧検出部、
52~54…線、55…電流検出部、56~58…出力線、60…演算部、
61…プロセッサ、62…メモリ、64…制御信号線、65…表示部、
66a…切ランプ、66b…故障ランプ、66c…動作ランプ、
68a…計測ボタン、68b…左ボタン、68c…右ボタン、60d…復帰ボタン、
69…表示画面、81,82…電流、91,92…閾値、
102…ネットワーク母線、110…第一回線、120…第二回線、
130…第三回線、181…電流、190,191…閾値

Claims (9)

  1.  三相交流の電力回線の各相の電圧を測定する電圧検出部と、
     前記電力回線の各相の電流値を測定する電流検出部と、
     前記電圧検出部によって検出された電圧測定値と、前記電流検出部によって検出された電流測定値から励磁電流を求め、前記励磁電流が逆方向に閾値を超えた際に前記電力回線に設けられた遮断器にて前記電力回線を遮断するように制御する演算部を有する逆電力遮断継電器であって、
     前記演算部は、
     検出された逆方向の前記電流値の方向と大きさが、第1の閾値関数式ax+b(a、bは係数、xは電流遅れ90°方向の大きさを示す変数)を下回っているか否かを判定し、前記電流値の大きさの絶対値がc未満であるか否かを判定する第2の閾値を用い(但し、b<c)、
     前記第1の閾値関数以上、及び、前記第2の閾値以上の双方を満たす場合に、前記遮断器によって前記電力回線を遮断するようにしたことを特徴とする逆電力遮断継電器。
  2.  前記cの値は、変圧器の定格電流の0.05%未満とすることを特徴とする請求項1に記載の逆電力遮断継電器。
  3.  前記演算部は、前記電流値が逆方向であって、その大きさが第1の閾値関数式を超えていない場合には、前記第2の閾値を用いることなく前記電力回線の接続を維持することを特徴とする請求項2に記載の逆電力遮断継電器。
  4.  前記電流値の逆方向への大きさが、前記第1の閾値関数式ax+b以上であって、前記第2の閾値c未満となる領域が存在するように、前記a、b、cの値が設定されることを特徴とする請求項3に記載の逆電力遮断継電器。
  5.  表示部を設け、
     前記演算部が逆電力を検出することによって前記遮断器を遮断させた際に、前記表示部にてアラーム表示を行うことを特徴とする請求項4に記載の逆電力遮断継電器。
  6.  三相交流の電力回線の各相の電圧を測定する電圧検出部と、
     前記電力回線の各相の電流値を測定する電流検出部と、
     前記電圧検出部によって検出された電圧測定値と、前記電流検出部によって検出された電流測定値から電流値を求め、前記電流値が逆方向に閾値を超えた際に前記電力回線に設けられた遮断器にて前記電力回線を遮断するように制御する演算部と、を有する逆電力遮断継電器における逆電力遮断方法であって、
     前記演算部は、
    (a)前記電流値が逆方向であって、前記電流値の方向と大きさが、所定の関数式ax+b(a、bは係数、xは電流遅れ90°方向の大きさを示す変数)を下回っているか否かを判定し、
    (b)前記関数式ax+bを下回っている際には正常と判定し、
    (c)前記関数式ax+b以上である際には、前記電流値の絶対値がc未満(但しc<b)であるか否かを判定し、
     (c1)c未満である場合は正常と判定し、
     (c2)c以上の時は逆電力が流れていると判定すると共に、前記遮断器によって前記電力回線を遮断することを特徴とする逆電力遮断方法。
  7.  前記電圧検出部と前記電流検出部は、一定の時間間隔において断続的に電圧値と電流値を測定し、それらの平均値を用いることによって前記電圧測定値と前記電流測定値を算出することを特徴とする請求項6に記載の逆電力遮断方法。
  8.  前記逆電力遮断継電器は表示部を有し、
     前記演算部は、前記電力回線が遮断されたら前記表示部に遮断された旨の表示と、その時刻を表示することを特徴とする請求項7に記載の逆電力遮断方法。
  9.  異なる供給元からの複数の電力ラインを有し、前記電力ラインには、それぞれネットワーク変圧器と、プロテクタヒューズと、遮断器が直列に接続され、
     複数の電力ラインが、共通にネットワーク母線に接続されることによって前記ネットワーク母線から負荷への電力供給が行われるスポットネットワーク給電システムにおいて、
     それぞれの前記電力ライン内の前記ネットワーク変圧器と前記遮断器の間に、請求項1から4のいずれか一項に前記逆電力遮断継電器を設けたことを特徴とするスポットネットワーク給電システム。
PCT/JP2023/007657 2022-11-16 2023-03-01 逆電力遮断継電器及び逆電力遮断継電器における逆電力遮断方法 WO2024105897A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-183745 2022-11-16
JP2022183745A JP2024072728A (ja) 2022-11-16 2022-11-16 逆電力遮断継電器及び逆電力遮断継電器における逆電力遮断方法

Publications (1)

Publication Number Publication Date
WO2024105897A1 true WO2024105897A1 (ja) 2024-05-23

Family

ID=91084143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007657 WO2024105897A1 (ja) 2022-11-16 2023-03-01 逆電力遮断継電器及び逆電力遮断継電器における逆電力遮断方法

Country Status (2)

Country Link
JP (1) JP2024072728A (ja)
WO (1) WO2024105897A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789329U (ja) * 1980-11-17 1982-06-02
JPS61189123A (ja) * 1985-02-15 1986-08-22 株式会社日立製作所 スポツトネツトワ−ク配電回路
JPH02155427A (ja) * 1988-12-05 1990-06-14 Nissin Electric Co Ltd スポツトネツトワーク受電装置の保護継電システム
JPH05111148A (ja) * 1991-10-17 1993-04-30 Meidensha Corp ネツトワーク継電装置
US20170358919A1 (en) * 2016-06-13 2017-12-14 Cooper Technologies Company Network protector control for spot network fed from feeder sources having voltage differences

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789329U (ja) * 1980-11-17 1982-06-02
JPS61189123A (ja) * 1985-02-15 1986-08-22 株式会社日立製作所 スポツトネツトワ−ク配電回路
JPH02155427A (ja) * 1988-12-05 1990-06-14 Nissin Electric Co Ltd スポツトネツトワーク受電装置の保護継電システム
JPH05111148A (ja) * 1991-10-17 1993-04-30 Meidensha Corp ネツトワーク継電装置
US20170358919A1 (en) * 2016-06-13 2017-12-14 Cooper Technologies Company Network protector control for spot network fed from feeder sources having voltage differences

Also Published As

Publication number Publication date
JP2024072728A (ja) 2024-05-28

Similar Documents

Publication Publication Date Title
CA2677330C (en) Fuse saving power distribution system fault protection
EP1939999B1 (en) Circuit protection system
US7633729B2 (en) Alternating current series arc fault detection method
JP5094062B2 (ja) 送配電系統の短絡電流減少システムおよび短絡電流減少方法
JP2018064416A (ja) 並行2回線送電線保護システム
JP2009005565A (ja) 配電線事故区間選択遮断装置および配電線事故区間選択遮断方法
JPH08126210A (ja) 商用電源連系自家用発電機の解列制御装置
WO2024105897A1 (ja) 逆電力遮断継電器及び逆電力遮断継電器における逆電力遮断方法
KR20110017573A (ko) 전기철도의 통합형 직류 보호 계전 시스템
JP5208684B2 (ja) 地絡保護継電システム
KR20030042222A (ko) 전력공급시스템의 계통 연계장치
JP4146606B2 (ja) 受配電保護システム
CN107204609B (zh) 一种接地方式自识别的配电网母线保护装置及方法
JPH04275029A (ja) 解列事故発生時の負荷遮断装置
WO2024105742A1 (ja) 遮断装置、給電システム、制御装置、整定値決定方法、及びプログラム
US20110054713A1 (en) Global trip unit
JPS6347052B2 (ja)
JPH06233459A (ja) 電力系統保護システム
JPH05122835A (ja) 電力系統における逆潮流防止装置
JP4063224B2 (ja) 過電流保護システム
KR102127471B1 (ko) 변전소 종합 ai 후비보호시스템
JPH071980B2 (ja) 配電線事故区間検出切離装置
KR200347633Y1 (ko) 고장 검출 및 선택적 자동재폐로를 위한 디지털 전력보호 감시제어장치의 하드웨어 구조
JP2023147430A (ja) 母線電圧異常検知装置、母線電圧異常検知方法
JP2023036148A (ja) 電源システム