WO2024105569A1 - System for treating water, generating hydrogen and generating synthesis gas - Google Patents

System for treating water, generating hydrogen and generating synthesis gas Download PDF

Info

Publication number
WO2024105569A1
WO2024105569A1 PCT/IB2023/061495 IB2023061495W WO2024105569A1 WO 2024105569 A1 WO2024105569 A1 WO 2024105569A1 IB 2023061495 W IB2023061495 W IB 2023061495W WO 2024105569 A1 WO2024105569 A1 WO 2024105569A1
Authority
WO
WIPO (PCT)
Prior art keywords
piece
electrodes
fluid
anode
cathode
Prior art date
Application number
PCT/IB2023/061495
Other languages
Spanish (es)
French (fr)
Inventor
Fiderman Machuca Martínez
José Antonio Lara Ramos
Jennyfer DIAZ ANGULO
Original Assignee
Universidad Del Valle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Del Valle filed Critical Universidad Del Valle
Publication of WO2024105569A1 publication Critical patent/WO2024105569A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles

Definitions

  • the present invention is related to the technical field of chemical engineering, especially, with electrochemical adsorption, photocatalysis and photolysis processes for the treatment of wastewater, as well as with hydrogen and synthesis gas generation processes.
  • the disadvantages of the EM process are that it can be selective and not produce a complete oxidation, in addition the mechanisms that intervene in the oxidation of some organic compounds (for example, acetic acid and aromatic compounds) can produce polymeric intermediates that are deposited on the surface of the anode and that are difficult to oxidize (Maria et al. 2015). Also, the degradation margins of organic matter through this process are usually very low (decrease in TOC « 10%) (Indermuhle et al. 2013).
  • Indirect mediated oxidation occurs either by hydroxyl radicals or by electro-generated oxidizing substances in the solution.
  • the first is a process of heterogeneous nature and is limited by mass transfer processes because it develops mainly in the proximity of the electrode surface where the hydroxyl radical is produced; Comninellis and collaborators proposed a model of this process (Kapalka, Fóti, and Comninellis 2010).
  • Electrochemical hydrogen production has been widely investigated for decades for its energy, driven largely by the potential to reduce environmental impact, meet distributed demand, and improve public perception.
  • BDD electrodes are currently being investigated in the electrochemical reduction of CO2. Previous studies have mainly focused on microchstalline (MC) BDD electrodes.
  • a partition of the adsorbate between the fluid phase and the adsorbent can be considered. If the solid and the fluid are brought into contact for a long time, an equilibrium distribution is reached and this equilibrium can be described quantitatively.
  • the R(2) reaction shows that a large amount of energy is necessary to decompose water into two gases (02 and H2), additionally it can be seen that the volume of hydrogen is twice that of oxygen.
  • Hydrogen can be used as a fuel for transportation, as well as to generate electricity through fuel cells.
  • hydrogen has been used in a wide range of applications, including the food, metal, glass and chemical industries. Meanwhile, global industrial production of hydrogen is increasing and produces more than 50 million tons of hydrogen every year
  • photolysis comprises the emission of UV radiation and subsequent direct absorption of UV light by an organic compound followed by the corresponding chemical reaction, without any collaboration of other chemical substances.
  • the UV radiation process is carried out by solar radiation
  • the process is conditioned by environmental variables such as solar radiation on the surface of the water or its transmission through water, and by intrinsic factors of the substance such as the light absorption rate and the quantum yield of the photochemical reaction (Chu and Wong 2004; da Costa Filho et al. 2019).
  • the present invention provides a solution to the problems associated with the generation of gases in conventional electrochemical reactors for water treatment, through a system whose structural components allow the application of different advanced oxidation processes. in the same solution, generating hydrogen from water or wastewater treatment.
  • the present invention discloses a system for the treatment of wastewater that can be implemented, at the same time, of different advanced oxidation processes in the same electrochemical reactor. These processes are photolysis, electrochemical processes, such as anodic electro oxidation, adsorption-electro oxidation, photo-anodic electro oxidation, photo adsorption-anodic electro oxidation, hydrogen reduction, carbon dioxide reduction, oxygen production.
  • electrochemical processes such as anodic electro oxidation, adsorption-electro oxidation, photo-anodic electro oxidation, photo adsorption-anodic electro oxidation, hydrogen reduction, carbon dioxide reduction, oxygen production.
  • the present invention reveals a water and wastewater treatment system based on an electrochemical reactor (1) that is composed of two electrodes (anode and cathode). An adsorbent material [2] is attached to the electrodes [1], which is held by a mesh support [3].
  • the system is composed, in turn, of two UV radiation lamps [4] that irradiate the interior of the electrochemical reactor. .
  • the system features an ion exchange membrane [5], which separates two pieces;
  • the first piece [6] contains the anionic electrode inside and the second piece [7] contains the cationic electrode inside.
  • the upper part of the electronic opening and closing valve is located that allows the passage of the gas (which can be hydrogen or synthesis gas). to a storage tank.
  • the gas which can be hydrogen or synthesis gas.
  • the outlet fluid streams from [6] and [7] are joined into one, for subsequent delivery to a recirculation tank or other tank.
  • a gas purge [12] is used, which is located at the entrance to the treatment system.
  • a piece preferably made of stainless steel, that has a coupling mechanism [13] formed by a conical-shaped component that has a female thread-type connection in one of its openings and another triangular component that allows distribution in two. currents of the fluidic stream that comes from the purge.
  • the coupling [13] allows the fluidic current that leaves the device that allows gas purging to be distributed homogeneously.
  • the system of the invention allows the separation within the same reactor and the manipulation of the hydrogen by means of an electronic device from a safe distance.
  • the system has a gas trap at the entrance to retain oxygen or air that can be recirculated in the form of a bubble or dissolved.
  • the system incorporates a photo-electro-absorbent material that comes into contact with the anode, causing the latter to increase its surface area, allowing the electrons applied to the anode to also travel on the photo-electro-absorbent material. Therefore, in the anode there is a volumetric and area extension of the same (when in contact with photo-electroabsorbent material), which allows greater contact, adsorption and generation of oxidant species through photolysis, photocatalysis and electrolysis.
  • Figure 1 shows a schematic view of the system configuration with its different structural components.
  • Figure 2 Expanded view of the structural components of the system.
  • Figure 3 Shows a view of the piece (6) where the anode electrode and the UV radiation lamps are located.
  • Figure 4. View of the electrodes (1.1.) (1.2) and the structure that contains them and connects to the source of electrical energy.
  • Figure 5. Modalities of electrodes that can be used as cathodes and anodes in the system of the invention.
  • Figure 8 View of the upper part of the electrochemical reactor with the devices that allow the recovery of the gas that comes out of the part [7] of the casing and the union of the flows that come out of the parts [6] and [7] of the casing.
  • Figure 9 Shows a type of T-shaped pipe with a 90° elbow (11).
  • FIG. 1 Internal view of the coupling piece (13) with the triangular component that allows the distribution of the fluid phase that enters the reactor.
  • the present invention reveals a water and wastewater treatment system that incorporates an electrochemical reactor, adsorbent material, UV radiation and different devices with the ability to take advantage of the hydrogen that is being generated at the cathode electrode. Gas recovery is achieved through the use of an ion exchange membrane that allows electrons to pass through, but keeps the cationic and anionic electrode components separate, respectively.
  • the water and wastewater treatment system of the present invention uses different electronic devices that allow its automation and safe operation, since it allows the generation and electronic manipulation by valve and electronic devices of hydrogen or the reduction of carbon dioxide in gas. synthesis, all this, through the application and intensification of different advanced oxidation processes for the treatment of wastewater. This allows for better use of the electrical energy used for wastewater treatment, since additionally, a fuel such as hydrogen or carbon dioxide reduction would be generated.
  • the system of the present invention has the structural components described below:
  • the adsorbent material is activated carbon which, being a conductive material, allows the transport of electrons, that is, it becomes an extension of the anode, increasing the area available for electrochemical reactions not only on the surface of the anode, but at the same time in electrochemical reactions are taking place on the surface of the adsorbent material.
  • the semiconductor material (TiO2) that is part of the adsorbent material allows the conduction of electrons to a lesser extent, however, its optical properties allow the generation of an electron-hole pair that leads to the generation of oxidant species that help in the treatment. of water and wastewater.
  • the adsorbent material increases the retention time of organic contaminants within the reactor (through the adsorption process), which favors the activity of electrochemical, photocatalytic and photolysis processes.
  • the electrical, optical, adsorbent and morphological properties (granular material with the presence of micropores, mesopores and micropores) of adsorbent material increase the oxidative potential of electrochemical processes given that normally the number of anode and cathode electrodes is greater than 1.
  • Contaminants are adsorbed on the surface of the adsorbent material and then degraded and mineralized by electrochemical, photocatalysis and photolysis processes.
  • the adsorbent material (2) is composed or made up of activated carbon and titanium dioxide (TIO2) in a ratio (mass quantities) that can range from 90% weight/weight of activated carbon and 10% w/w of TIO2. This ratio can vary from 90% w/w to 50% w/w of Activated Carbon, varying the T ⁇ O2 from 10% w/w to 50% w/w. Maintaining a total percentage of 100% w/w for the sum of the added percentage by weight of Activated Carbon and T ⁇ O2.
  • a chemical and thermal treatment is used in order to achieve the adhesion of T ⁇ O2 on the surface of the Activated Carbon.
  • the treatment steps are those described below:
  • T ⁇ Ü2 solution is prepared from ultrapure water (Type I water) with the addition of Triton ⁇ O2 to ultrapure water. This solution is left under magnetic stirring for 24 hours and then sonicated for 1 hour at a frequency of 60 kiloherz. This in order to achieve a homogeneous dispersion of the TIO2 particles.
  • Impregnation of T ⁇ O2 on the Activated Carbon surface For this stage, the amount of adsorbent material that you want to introduce into the mesh support (3) must be taken into account. For example, if you want to have 900 grams of Activated Carbon 90% (w/w) in the treatment system, then 100 grams of T ⁇ O2 must be prepared to be impregnated on the Activated Carbon. In this case, 900 g of Activated Carbon are introduced into a cylindrical container. with cap; Then, 100 g of T ⁇ O2 are added. The cylinder is covered and taken to a ball grinding system to mix the T ⁇ O2 with the Carbon and the cylinder is left rotating for 48 hours with an angular speed between 2 to 20 rpm.
  • the adsorbent material which is composed of activated carbon and T ⁇ Ü2 solution is dried at room temperature for 2 hours. Then, the adsorbent material (2) is calcined in an oven, gradually raising the temperature from room temperature to 150°C temperature, at a heating rate of 1°C/min, with a residence time of three hours and from 150°C is taken up to 420° C (a speed of 2°C/min). Consequently, the process time would be 2.25 hours of permanence of the adsorbent material (2).
  • the mass of TIO2 on the Activated Carbon surface is calculated using an analytical balance.
  • the adsorbent material (2) is subjected to a flow of ultrapure or type 1 water for 2 hours in order to clean and release the T ⁇ Ü2 material that is not adequately fixed or glued.
  • the activated carbon is weighed. If the weight of the Activated Carbon plus T ⁇ O2 does not reach 100% w/w of the two materials, the process is repeated as many times as necessary, from the Impregnation of the T ⁇ O2 on the surface of Activated Carbon, until reaching 100% by weight of the two materials that make up the adsorbent material (2).
  • the anode electrodes are selected from Iridium oxide lrO2 doped with TIO2.
  • the reactor has a lighting mechanism based on UV radiation lamps [4] that irradiate the anodic and cathodic electrodes. UV radiation on the two electrodes (anode and cathode) allows their activation, causing a decrease in the potential or potential difference that must be applied to the electrochemical reactor.
  • the reactor also has an ion exchange membrane [5] that separates the anode electrodes from the cathode electrodes. All components of the electrochemical reactor are assembled in a housing made up of a piece where the anode electrodes are located [6] and a second piece where the cathode electrodes are located [7]. These two pieces are separated by the exchange membrane. ionic and an elastomeric material packaging.
  • the elastomeric material packaging allows sealing and prevents gas and water leakage through the joint of parts (6) and (7).
  • This material is composed of poly(1,1,2,2-tetrafluoroethylene) material, known in different commercial presentations as polytetrafluoroethylene (PTFE), which is not affected by corrosion and contamination, resists tearing and has adequate flexing properties. .
  • PTFE polytetrafluoroethylene
  • this elastomeric material can be in contact with heat and is not affected by exposure to UV rays or humidity.
  • the elastomeric material susceptible to implementation in the system of the present invention has the following properties, according to different commercial presentations available on the market: Maximum working temperature: 316°C; thickness: between 1.78 mm and 4 mm; maximum tensile strength: 10508 N/50 mm; maximum pressure: between 5 psi and 7 psi. This material does not present porosity and its implementation is suitable for humid and corrosive environments.
  • Each piece of the housing has a tongue-and-groove coupling that connects to an outlet tube [8].
  • the outlet tube of the piece where the cathode electrodes are located is connected to a reservoir [9] that has an electronic opening valve and closure [10],
  • the gas reservoir connected to the outlet of the cathode electrode piece allows the accumulation and proper management of the hydrogen or synthesis gases generated at the cathode.
  • the electronic purge valve located at the top of the reservoir prevents the system operator from having to be near the electrochemical reactor when hydrogen is being generated. In addition, this leads to the automation of the electrochemical reactor from a safe distance in case of any type of problems.
  • the reactor comprises a T-type pipe coupling and 90 degree elbow [11] that connects the current coming from the reservoir with the current coming from the anode electrodes.
  • the cathode electrodes are selected from iridium oxide lrÜ2 doped with TIO2. a mesh based on carbon or boron-doped diamond (BDD) and, in addition, made of stainless steel. This last option is selected in cases of particular execution modalities where a reduction in material costs is sought.
  • the system also comprises a gas purge valve device (12) connected to the reactor inlet, which is connected to the reactor by means of a coupling device (13) constructed of the same material as the reactor casing and distributes the fluid to the electrodes.
  • the reactor casing (6) (7) is manufactured from steel or acrylic material.
  • the treatment system of the invention is composed of two electrodes [1] (anode [1.1] and cathode [1.2]);
  • the anode is by definition, the electrode where the oxidation of organic compounds takes place
  • the cathode is the electrode where the reduction takes place.
  • a particulate adsorbent material [2] is attached to the anode [1.1] (composed of activated carbon and titanium dioxide) which is supported by a mesh support [3] whose material is stainless steel, with a rectangular shape that prevents the adsorbent material from is lost or detached from the anode due to mechanical effects of the fluid current that passes through the interior of the reactor.
  • Two UV radiation lamps [4] are introduced into the structure of the pieces where the anode and cathode of the electrochemical reactor are inserted. These lamps allow the illumination of the electrodes [1], anode and cathode, respectively.
  • An ion exchange membrane [5] made of polymeric material prevents contact of the components present in the fluid phases that circulate in the two pieces [6] and [7], The ion exchange membrane [5] allows the passage and migration of electrons through it and prevents the passage of gas molecules such as oxygen or other compounds towards the piece where the cathode electrode is located.
  • the ion exchange membrane (5) has a polymeric base of cellulose acetate with linear polymers of Poly(Ethylene-Anhydride Maleteo, PEAM) and dendrimers of Poly(amidoamine, PAMAN).
  • G4) Generation 4 according to different commercial presentations available on the market.
  • the ion exchange membrane has the following technical parameters:
  • Thickness between 100 microns and more or less 50 microns
  • Ion exchange capacity between 0.089meq/g and 1 month/g
  • any ion exchange membrane (5) that has thermal stability and resistance to high temperatures as physicochemical characteristics is susceptible to implementation; resistance to electrochemical oxidation, low corrosion and chemical stability.
  • a tongue and groove coupling [8] allows the fluid to exit towards the reservoir [9] where the gas accumulates, and then is taken to a storage tank; at the top of the reservoir [9] using an electronic opening and closing valve [10] to allow the gas to exit (which can be hydrogen or synthesis gas) to a tank or reservoir for storage and subsequent use as environmentally friendly fuel.
  • a T pipe and an elbow [11] preferably made of materials such as stainless steel or PVC, are used to join the currents that come out of the pieces where the electrodes [6] and [7] are located.
  • gas purge valve that reduces the gas content in the liquid stream. that enters the reactor, (gas trap), which prevents the re-entry of gases into the reactor and the decrease in the quality of the gas generated at the cathode.
  • the gas trap prevents the entry of oxygen or other gases either by recirculation or because it is dissolved in the fluid stream that is entering the reactor. This leads to an increase in the pure concentration or quality of the Hydrogen or synthesis gases that is being generated at the cathode electrode.
  • the part of the housing where the anode electrode is located [1.1 ] is the support for the electrode, the UV radiation lamp (4), the adsorbent material (2), the mesh support (3) and the ion exchange membrane (5).
  • the part that comes into contact with the ion exchange membrane (5) has holes that allow holding and pressing to prevent gas or water leakage between pieces [6] and [7].
  • Piece [6] ] has a cavity (cylindrical and rectangular) [6.3] in its structure with an opening [6.4] and with space to enter two UV radiation lamps [4.1 ] and [4.2],
  • the part of the housing where the cathode electrode [1 .2] is located is the electrode support that reduces the compounds and synthesis gas. In addition to allowing the passage of the fluid phase that transports H+ and water that are reduced to hydrogen.
  • Part [7] has the same structural characteristics of part [6]; which are described as follows: At the top it has a hole that allows the passage [7.1] and a hole with a female thread [7.2] that allows the fluid to exit the piece.
  • the electrodes [1.1] and [1.2] are attached to a rectangular structure [1.6], preferably manufactured from stainless steel or polytetrafluoroethylene (PTFE) or Teflon according to different commercial presentations available. in the market. Teflon, for example, resists high temperatures, the attack of acidic and basic substances, and does not conduct electricity.
  • the electrodes have a piece with a hole (1 .3) that allows connecting and holding the electrodes [1 .1] and [1 .2] with terminals that allow the connection of the electric power cables [1.5] and holes that They allow the electrodes to be attached to the first piece [6] and the second piece [7] of the housing.
  • the electrodes [1.1 ] and [1.2] have a hole [1.4] in the upper part that allows the electrodes to be held and at the same time allows contact with the source of electrical energy through electrical connectors [1.5],
  • the mesh support [3] is a hollow rectangular structure that allows the adsorbent material to be held and has an edge that allows its connection with the anode [1.1].
  • the mesh support is made of steel-based material. .
  • the tongue-and-groove outlet [8.3] allows connection with a tube [8.1] and then connects with a reservoir [8] that allows separating and accumulating the gas found in the fluid stream coming out of the piece [7] and in the part
  • a threaded opening [8.2] that allows passage to the electric opening and closing valve with an inlet [10.1], outlet [10.3] and an electrical connection [10.2] that allows the manipulation of the gas coming out of the piece. [7] from a distance.
  • the pieces [6] and [7] have structures that allow them to be connected and adjusted using an ion exchange membrane [5] and an elastomeric material [14].
  • This material has holes [14.1 ] that allow it to be held together the membrane [5] and the pieces [6] and [7], in addition to an opening [14.2] that allows the distribution of fluids through the pieces [6] and [7] that allows pressure to be applied between the two plates to adjust and keep the ion exchange membrane [5] stable and at the same time prevent leakage of the fluid currents between the joints of the pieces [6] and [7],
  • the supports or structures preferably of rectangular geometry, which are part of the two pieces (6) and (7) of the housing, where the electrodes are located They allow the ion exchange membrane to remain stable and secure (5). Also by pressing screws on the elastomer material between the two plates, leakage of the water or fluid being treated is prevented.
  • the anode electrode can be replaced by Boron-doped diamond electrodes, Titanium dioxide-doped iridium oxide electrodes and Carbon mesh electrodes, depending on whether you want to promote anodic oxidation, deaffection-UV activation and electron transfer. in the gas phase for synthesis gases depending on the anode electrode, respectively.
  • the cathode electrode can be replaced by Boron-doped diamond electrodes, Titanium dioxide-doped iridium oxide electrodes, Carbon and stainless steel mesh electrodes; the latter in cases where it is desired to reduce costs in the cathode material.
  • anode electrode [1.1] or as a cathode [1.2] three types of electrodes can be used, depending on the interest, which are:
  • a stainless steel electrode [1 .21] used exclusively as a cathode.
  • this electrode the installation and material costs required for the assembly of this treatment system can be reduced. It is not used as an anode, since, during the anodic oxidation processes, it could dissolve and in this way it would be an electrocoagulation process.
  • a cast piece is located in the electrochemical reactor that allows the homogeneous distribution of the fluid stream between the pieces [6] and [7].
  • This piece preferably made of stainless steel [13]
  • allows the distribution homogeneous of the current that is entering the electrochemical reactor with a triangular-shaped piece [13.3] that is located with both sides for the distribution of the fluid into two streams [13.6]
  • the general structure of the piece is conical [13.4] to allow the distribution of the fluid that is entering the reactor.
  • the structure also has a female threaded part [13.5] to screw inlet pipe to the reactor.
  • the metal piece at the entrance of the electrochemical reactor allows the homogeneous distribution or distribution of the fluid in the two pieces where the electrodes are located (anodic and cathodic).
  • outlets on the side faces located in the upper part of the pieces where the electrodes are located allow the exit of gases with high added value (such as Hydrogen or synthesis gas) in the case of the cathode outlet and that these gases do not mix with the gases or compounds that are being generated in the chamber of the anode electrode piece.
  • gases with high added value such as Hydrogen or synthesis gas
  • a T-shaped pipe [11.1 ] is used, which allows the two currents that come from [6] and [ 7] in usa alone. This in order to mix the currents and in this way oxidize or reduce the compounds that passed through the pieces [6] or [7], While an elbow with 90 degrees of inclination [11.2], preferably made of stainless steel, allows reducing the amount of pipe that It should be used for the current that leaves the piece [6] in addition to allowing the passage of the fluid without the fluid suffering many pressure losses.
  • a device that allows capturing the gas [12] is located at the entrance of the electrochemical reactor.
  • This device (12) consists of an inlet pipe [12.1] and outlet [12.2] of the fluid, while a gas escape mechanism [12.3] is used to purge the gases.
  • UV radiation lamps [4.1 ] and [4.2] allow photolysis of compounds in fluid streams; They illuminate the adsorbent material with optical properties, which allows the generation of oxidant species through heterogeneous photocatalysis.
  • the photoactive electrodes that is, they absorb UV radiation to reduce their activation energy, are irradiated by the lamps, taking advantage of this energy to reduce electrical consumption costs.
  • UV lamps with UV radiation (4) consists of both sterilizing and eliminating compounds through photolysis.
  • the UV lamps with UV radiation (4) have the following elements, susceptible to application in completely submersible environments, according to different commercial presentations available on the market: High quality tungsten metal filament for a high performance and energy saving; a quartz glass tube that contains or protects the filament for high ultraviolet ray transmission; Powerful suction cups or electrical connection adapter to freely adjust the position.
  • Body material quartz crystal plug with plug for electric current. With on/off ignition from a PCB board (not shown in the figures). Voltage: AC 110V to 240V Frequency: 50/60HZ Power: 5W/7W/9W/11W/13W (optional). Lamp body length: between 5W to 11W for lengths between 195mm and 245mm.
  • the system also includes an electrical control panel (not shown in the figures), understood as the set of electrical devices that use electrical energy to control the different mechanical and electrical functions from a PCB board, of the equipment of the control system. water treatment and generation of hydrogen and synthesis gas.
  • the electrical control panel is an integral part of any automated industrial process.
  • the control panels house several electronic devices that provide signals to direct the operation of the electrochemical reactor, specifically the electrodes (1.1, 1.2), the electronic opening and closing valve (10) and the UV lamps (4).
  • An electrical control panel includes two main categories: the panel structure and the electrical components.
  • the panel structure is composed of a metal cabinet made of aluminum or metallic steel that varies in size depending on its characteristics and applications.
  • the electrical control panel presents the following electrical components:
  • PLC Programmable logic controller
  • the system for wastewater treatment, hydrogen generation and synthesis gas generation presents the intensification of several oxidation processes.
  • electrochemical reactors for disinfection or water treatment that have a single electrode for oxidation in the anode present different efficiency problems, given that the contact area is very small for the reactions, causing high implementation costs. of process.
  • the system of the invention by presenting two electrodes, improves the efficiency of water treatment through different processes, in the same solution and space, which is known as process intensification.
  • One of the processes that can be implemented in the system of the invention is adsorption, where the aim is to retain on the surface that is in contact with the anode, for as long as possible, the contaminants that the fluid phase or water has. This is achieved through the adsorbent material.
  • the adsorbent material which is also conductive, when in direct contact with the anode, allows the passage of electrons through its structure and, in this way, it becomes part of the anode, which means that reaction reactions can be generated on it. oxidation of contaminants.
  • UV radiation on the two electrodes aims to degrade contaminants through photolysis, generating the activation of the photoactive material that is a fundamental part of the adsorbent material (2), allowing the development of processes photocatalytics on the surface of the adsorbent material.
  • the electrodes made of T ⁇ Ü2 or BDD absorb UV radiation from the lamps (4) or electrons on their surface, which helps reduce the electrical energy required for them to be activated and start electrochemical reactions.
  • the configuration of components and devices in the upper part of the electrochemical reactor allows the safe separation and recovery of hydrogen gas or synthesis gas, in addition to allowing the mixing of the currents leaving the anode electrode (1.1) and the cathode electrode (1.2). , in case they require new or additional treatment, in reactors with recirculation systems.
  • the devices located in the lower part of the treatment system allow, on the one hand, to remove any type of gas at the entrance of the electrochemical reactor, through the capture device or gas trap (12). Then, the piece located at the entrance of the electrochemical reactor, that is, the coupling device (13) that connects the gas capture device (12) with the reactor entrance, allows the homogeneous distribution of the water to be treated towards the pieces. where the anodic and cathodic electrodes are located.
  • the direct electroreduction of CO2 on metal electrodes is feasible, which, according to what is reported in the literature, can be carried out in two ways: on electrodes solid metals or on metal particles dispersed on a substrate. In these two cases it is a heterogeneous catalysis system.
  • the electrochemical reduction of CO2 is achieved by using submicrocrystalline BDD electrodes with different boron doping concentrations (0.28%, 0.11% and 0.03%). Unlike the microchstalline case, these submicrocrystalline BDD synthetic films with high sp2-bonded carbon do not show a dependence on the boron concentration in terms of the CO2 reduction activity to form formic acid (HCOOH).
  • the electrodes implemented in the different embodiments of the invention allowed an efficient reduction of CO2 close to the maximum Faradaic efficiency for HCOOH in the range of 70% to 80%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)

Abstract

The present invention relates to a system for treating water and wastewater, which is based on an electrochemical reactor formed by two electrodes (anode and cathode) that are irradiated by UV radiation lamps. The system can perform processes of electrochemical adsorption, photocatalysis and photolysis simultaneously, thereby generating hydrogen and synthesis gas from water treatment. In the system, an adsorbent material held by a mesh support is adhered to the electrodes. The system also comprises an ion-exchange membrane, which separates two pieces that form a case, the anodes and cathodes being disposed inside each piece. To remove the gases in the fluid stream that are entering the electrochemical reactor, the system includes a gas purge valve device located at the treatment entry.

Description

SISTEMA PARA EL TRATAMIENTO DE AGUAS, GENERACIÓN DE HIDRÓGENO Y GENERACIÓN DE GAS DE SÍNTESIS SYSTEM FOR WATER TREATMENT, HYDROGEN GENERATION AND SYNTHESIS GAS GENERATION
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se relaciona con el campo técnico de la ingeniería química, en especial, con procesos de adsorción electroquímica, fotocatálisis y fotolisis para el tratamiento de aguas residuales, al igual que con procesos de generación de hidrógeno y gas de síntesis. The present invention is related to the technical field of chemical engineering, especially, with electrochemical adsorption, photocatalysis and photolysis processes for the treatment of wastewater, as well as with hydrogen and synthesis gas generation processes.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La contaminación de los cuerpos de aguas con contaminantes orgánicos solubles es un tema crítico y de preocupación mundial en el marco de las recientes políticas de las agencias de protección ambiental, tales como AEMA (Agencia Europa de Medio Ambiente) y US-EPA y (United States Environmental Protection Agency, por sus siglas en inglés). Con el fin de garantizar la calidad del agua y el cuidado de los ecosistemas, existe una atención principal hacia los contaminantes emergentes, sobre todo si atacan los sistemas nerviosos, endocrinos y circulatorios (Wang et al. 2016; Ganzenko et al. 2015; Brillas and Martínez-huitle 2015). The contamination of water bodies with soluble organic pollutants is a critical issue of global concern within the framework of the recent policies of environmental protection agencies, such as EEA (European Environment Agency) and US-EPA and (United States Environmental Protection Agency, for its acronym in English). In order to guarantee water quality and the care of ecosystems, there is a main focus on emerging contaminants, especially if they attack the nervous, endocrine and circulatory systems (Wang et al. 2016; Ganzenko et al. 2015; Brillas and Martínez-huitle 2015).
El origen de los procesos electroquímicos de electrooxidación se remonta a finales del siglo XIX, con el estudio de la descomposición del Cianuro. En el proceso de electrooxidación anódica se busca lograr la oxidación total (mineralización) o la transformación del compuesto a tratar en otros compuestos menos contaminantes. La oxidación de la materia orgánica en una celda electrolítica con ánodos ocurre de dos formas: Oxidación anódica directa e indirecta (Kapalka 2010). The origin of the electrochemical processes of electrooxidation dates back to the end of the 19th century, with the study of the decomposition of Cyanide. In the anodic electrooxidation process, the aim is to achieve total oxidation (mineralization) or the transformation of the compound to be treated into other, less polluting compounds. The oxidation of organic matter in an electrolytic cell with anodes occurs in two ways: Direct and indirect anodic oxidation (Kapalka 2010).
Oxidación anódica directa, en la cual hay transferencia directa de electrones entre el compuesto orgánico a oxidar y el ánodo (Brillas and Martínez-huitle 2015). Este proceso también llamado Electro-Mineralización (EM), se realiza a potenciales inferiores de evolución de oxígeno, y teóricamente todas las sustancias orgánicas solubles en agua son susceptibles a un proceso de EM, ya que los potenciales termodinámicos de oxidación son siempre inferiores al de evolución de oxígeno en el ánodos (Kapalka, Fóti, and Comninellis 2010). Un ejemplo de EM es la oxidación anódica de ácido acético a CO2, mostrado en la siguiente ecuación:
Figure imgf000004_0001
Direct anodic oxidation, in which there is direct transfer of electrons between the organic compound to be oxidized and the anode (Brillas and Martínez-huitle 2015). This process, also called Electro-Mineralization (EM), is carried out at lower oxygen evolution potentials, and theoretically all water-soluble organic substances are susceptible to an EM process, since the thermodynamic oxidation potentials are always lower than that of evolution of oxygen in the anodes (Kapalka, Fóti, and Comninellis 2010). An example of EM is the anodic oxidation of acetic acid to CO2, shown in the following equation:
Figure imgf000004_0001
Las desventajas del proceso EM es que puede ser selectivo y no producir una oxidación completa, además los mecanismos que intervienen en la oxidación de algunos compuestos orgánicos (ejemplo serían ácido acético y los compuestos aromáticos) pueden producir intermediarios poliméhcos que se depositan sobre la superficie del ánodo y que son difíciles de oxidar (Maria et al. 2015). También, los márgenes de degradación de materia orgánica mediante este proceso suelen ser muy bajos (disminución del TOC « 10%) (Indermuhle et al. 2013). The disadvantages of the EM process are that it can be selective and not produce a complete oxidation, in addition the mechanisms that intervene in the oxidation of some organic compounds (for example, acetic acid and aromatic compounds) can produce polymeric intermediates that are deposited on the surface of the anode and that are difficult to oxidize (Maria et al. 2015). Also, the degradation margins of organic matter through this process are usually very low (decrease in TOC « 10%) (Indermuhle et al. 2013).
La oxidación indirecta mediada ocurre ya sea por radicales hidroxilos o por sustancias oxidantes electro-generadas en la solución. El primero es un proceso de naturaleza heterogénea y está limitado por los procesos de transferencia de masa debido a que se desarrolla principalmente en la proximidad de la superficie del electrodo donde se produce el radical hidroxilo; Comninellis y colaboradores, propusieron un modelo de este proceso (Kapalka, Fóti, and Comninellis 2010). Indirect mediated oxidation occurs either by hydroxyl radicals or by electro-generated oxidizing substances in the solution. The first is a process of heterogeneous nature and is limited by mass transfer processes because it develops mainly in the proximity of the electrode surface where the hydroxyl radical is produced; Comninellis and collaborators proposed a model of this process (Kapalka, Fóti, and Comninellis 2010).
Entre las diferentes especies oxidante que se pueden generar están los radicales hidroxilos que se producen en el intermediario de la evolución de oxígeno, sin embargo, una molécula orgánica que llegue a las inmediaciones de la superficie del ánodo es oxidada, debido a la fuerte reactividad del radical hidroxilo, con una vida media muy corta, y la débil interacción con la superficie de que puede tener con la superficie del ánodo, tan débil que se consideran “radicales casi-libres”. Sin embargo, durante la electrólisis la mayor actividad oxidante se le atribuye a los radicales hidroxilos (Mohan, Balasubramanian, and Basha 2007); la formación de especies oxidantes generadas electroquímicamente por concentraciones de algunos precursores en el electrolito se considera como otro tipo de electrooxidación indirecta. Estas sustancias electro-generadas mejoran la eficiencia. El precursor químico más estudiado en este campo es el ion cloruro, por la generación del potente cloro activo, sin embargo, los mecanismos de oxidación son aún más complejos ya que la oxidación puede ocurrir en la superficie del ánodo por especies oxicloradas o en la solución (Cañizares et al. 2005), gracias a la formación de especies oxidantes como el cloro, hipoclorito y ácido hipocloroso. Dentro de los contaminantes emergentes se encuentran los compuestos farmacéuticos, a este grupo pertenece la cafeína que es un psicoestimulante del sistema nervioso central usado para suprimir la somnolencia y restaurar el estado de alerta, esta es la sustancia psicoactiva legal más usada en el mundo, esto podría justificar su relativa alta concentración (TOC « 12-14) en aguas residuales domésticas (Baráo et al. 2015; Indermuhle et al. 2013). Among the different oxidant species that can be generated are hydroxyl radicals that are produced in the intermediate of the evolution of oxygen, however, an organic molecule that reaches the vicinity of the anode surface is oxidized, due to the strong reactivity of the hydroxyl radical, with a very short half-life, and the weak interaction with the surface that it can have with the surface of the anode, so weak that they are considered “almost-free radicals”. However, during electrolysis the greatest oxidant activity is attributed to hydroxyl radicals (Mohan, Balasubramanian, and Basha 2007); The formation of oxidizing species generated electrochemically by concentrations of some precursors in the electrolyte is considered as another type of indirect electrooxidation. These electro-generated substances improve efficiency. The most studied chemical precursor in this field is the chloride ion, due to the generation of the powerful active chlorine; however, the oxidation mechanisms are even more complex since oxidation can occur on the surface of the anode by oxychlorinated species or in the solution. (Cañizares et al. 2005), thanks to the formation of oxidizing species such as chlorine, hypochlorite and hypochlorous acid. Among the emerging contaminants are pharmaceutical compounds. Caffeine belongs to this group, which is a psychostimulant of the central nervous system used to suppress drowsiness and restore alertness. This is the most widely used legal psychoactive substance in the world. could justify its relatively high concentration (TOC « 12-14) in domestic wastewater (Baráo et al. 2015; Indermuhle et al. 2013).
En el siguiente esquema se presenta una representación de procesos de electro oxidación de compuestos farmacéuticos en el ánodo de BDD; usando Na2SO4 y NaCI como electrolito soporte. Tomado de referencia (Kapalka, Fóti , and Comninellis 2010). The following scheme presents a representation of electro-oxidation processes of pharmaceutical compounds at the BDD anode; using Na2SO4 and NaCl as support electrolyte. Taken from reference (Kapalka, Fóti, and Comninellis 2010).
La oxidación directa e indirecta de compuestos farmacéuticos, la EO directa por la formación de radicales hidroxilos en la superficie del ánodo, y la segunda por especies electro generadas como los iones de cloro o sulfato en solución dependiendo del electrolito soporte usado en el proceso electroquímico (Cloruro de sodio y Sulfato de sodio).
Figure imgf000005_0001
The direct and indirect oxidation of pharmaceutical compounds, the direct EO by the formation of hydroxyl radicals on the surface of the anode, and the second by electro-generated species such as chlorine or sulfate ions in solution depending on the supporting electrolyte used in the electrochemical process ( Sodium chloride and Sodium sulfate).
Figure imgf000005_0001
El uso de tecnologías electroquímicas en el tratamiento de aguas contaminadas ha demostrado ser prometedora, evidencia de esto se reporta en el trabajo de revisión elaborado por Brillas y Martínez 2015, sobre la descontaminación de aguas residuales contaminadas con colorantes sintéticos (Brillas and Martínez-huitle 2015). Actualmente se han desarrollado muchos trabajos de procesos electroquímicos de oxidación con resultados del 90 y 80% en degradación y mineralización respectivamente de polifenoles, taninos y ligninas a nivel de laboratorio (Kim et al. 2017; Moreira et al. 2015, 2013). Sin embargo, existen muy pocos ensayos a escala piloto donde se evalué la eficiencia de la corriente, ya que, al incrementar el volumen de solución, estos procesos tienden a disminuir su eficiencia y aumentar sus costos energéticos. The use of electrochemical technologies in the treatment of contaminated water has proven to be promising, evidence of this is reported in the review work prepared by Brillas and Martínez 2015, on the decontamination of wastewater contaminated with synthetic dyes (Brillas and Martínez-huitle 2015 ). Currently, many works on electrochemical oxidation processes have been developed with results of 90 and 80% in degradation and mineralization respectively of polyphenols, tannins and lignins. laboratory level (Kim et al. 2017; Moreira et al. 2015, 2013). However, there are very few pilot-scale tests where the efficiency of the current is evaluated, since, by increasing the volume of solution, these processes tend to decrease their efficiency and increase their energy costs.
Por otro lado, el diseño adecuado de electrodos para mejorar el transporte de masa, la facilidad de automatización, el uso de paneles solares y nuevos materiales anódicos, han permitido lograr altas eficiencias en el uso de corriente eléctrica y por consiguientes disminuir costos de funcionamiento (Labiadh et al. 2016). Una de estas tecnologías es la Electro-Oxidación (EO) anódica con electrodos de BDD, la cual mostro resultados de disminución aproximadamente del 60 y 68% DBO (Demanda Bioquímica de Oxigeno) y COD (Carbón Orgánico Disuelto) respectivamente de un lixiviado biológicamente pretratado (Fernandes et al. 2014), estos resultados muestran que la electrooxidación es una tecnología que puede ser de interés industrial, para el tratamiento de aguas residuales. On the other hand, the appropriate design of electrodes to improve mass transport, the ease of automation, the use of solar panels and new anode materials, have made it possible to achieve high efficiencies in the use of electric current and consequently reduce operating costs ( Labiadh et al. One of these technologies is anodic Electro-Oxidation (EO) with BDD electrodes, which showed results of reduction of approximately 60 and 68% BOD (Biochemical Oxygen Demand) and COD (Dissolved Organic Carbon) respectively of a biologically pretreated leachate. (Fernandes et al. 2014), these results show that electrooxidation is a technology that may be of industrial interest for the treatment of wastewater.
La producción electroquímica del hidrógeno ha sido ampliamente investigada durante décadas a causa de su energía, impulsada en gran medida por el potencial de reducir el impacto ambiental, satisfacer la demanda distribuida y mejorar la percepción pública. Electrochemical hydrogen production has been widely investigated for decades for its energy, driven largely by the potential to reduce environmental impact, meet distributed demand, and improve public perception.
La contaminación actual del medio ambiente ha obligado a diferentes industrias a cambiar la forma de producir y consumir energía es por esta razón que la producción de hidrógeno de forma electroquímica ha comenzado a ser de interés, estos enfoques han disfrutado de un vigor renovado en los últimos años. Algunas de las condiciones operacionales y procesos son la electrólisis a baja temperatura, electrólisis de alta temperatura y técnicas fotoelectroquímicas. Las perspectivas se dan sobre el consumo de electricidad, la emisión de dióxido de carbono, los costos de la producción de hidrógeno y el panorama competitivo en el mercado futuro de hidrógeno ha motivado diferentes investigaciones al respecto (Calvo 2013). The current pollution of the environment has forced different industries to change the way they produce and consume energy. It is for this reason that the production of hydrogen electrochemically has begun to be of interest. These approaches have enjoyed renewed vigor in recent years. years. Some of the operational conditions and processes are low temperature electrolysis, high temperature electrolysis and photoelectrochemical techniques. The perspectives given on electricity consumption, carbon dioxide emission, hydrogen production costs and the competitive landscape in the future hydrogen market have motivated different investigations in this regard (Calvo 2013).
Los electrodos de BDD, actualmente se están investigando en la reducción electroquímica de CO2. Los estudios anteriores se han centrado principalmente en electrodos BDD microchstalinos (MC). BDD electrodes are currently being investigated in the electrochemical reduction of CO2. Previous studies have mainly focused on microchstalline (MC) BDD electrodes.
No obstante, para hacer que la EO anódica con electros de BDD sea competitiva con las tecnologías convencionales, es necesario realizar más esfuerzos en la comprensión fenomenológica de los procesos implicados. A causa de esto, el desarrollo de un modelado cinético macroscópico o de máximo gradiente consistente con el proceso de electro oxidación, permitirá obtener un conocimiento más detallado del sistema químico y físico. However, to make anodic EO with BDD electrodes competitive with conventional technologies, more needs to be done. efforts in the phenomenological understanding of the processes involved. Because of this, the development of macroscopic or maximum gradient kinetic modeling consistent with the electro-oxidation process will allow obtaining a more detailed knowledge of the chemical and physical system.
Como resultado de esta necesidad en los últimos años se han presentado dos tipos de enfoques cinéticos de reacciones, desde la perspectiva de las especies modelos, se tiene primero los modelos multivahables que consideran todas las especies que se pueden presentar en el reactor, en el caso específico de electrodos de BDD, se tienen los siguientes trabajos que incluyen análisis de 3-dimenciones, anisotrópicos, tiempo y múltiples interfaces (Kodym et al. 2015), (Abdullah et al. 2016), (Hems et al. 2016) y (Díaz and Botte 2015). As a result of this need, in recent years two types of reaction kinetic approaches have been presented. From the perspective of the model species, there are first the multivahable models that consider all the species that can be present in the reactor, in the case specific to BDD electrodes, there are the following works that include 3-dimensional, anisotropic, time and multiple interface analyzes (Kodym et al. 2015), (Abdullah et al. 2016), (Hems et al. 2016) and ( Díaz and Botte 2015).
Para el caso del proceso de adsorción se puede considerarse una partición del adsorbato entre la fase fluida y el adsorbente. Si el sólido y el fluido se ponen en contacto durante mucho tiempo, se alcanza una distribución de equilibrio y este equilibrio se puede describir cuantitativamente. In the case of the adsorption process, a partition of the adsorbate between the fluid phase and the adsorbent can be considered. If the solid and the fluid are brought into contact for a long time, an equilibrium distribution is reached and this equilibrium can be described quantitatively.
La producción de hidrógeno se centra en los dispositivos electrolíticos o electrólisis, separación de compuestos mediante el uso de electricidad, que usan agua a bajas temperaturas. Por ejemplo, el agua a 1 atmósfera y 25°C (condiciones atmosféricas) requiere una cantidad considerable de energía para descomponerse en hidrógeno y oxígeno, representada por la energía libre estándar de la reacción, tal como se puede observar en la siguiente reacción (R(2)): Hydrogen production focuses on electrolytic devices or electrolysis, separation of compounds through the use of electricity, which use water at low temperatures. For example, water at 1 atmosphere and 25°C (atmospheric conditions) requires a considerable amount of energy to decompose into hydrogen and oxygen, represented by the standard free energy of the reaction, as can be seen in the following reaction (R (2)):
2tf2O(Z) - 2H2(g + O2(#) AG° = 474,4 kj/mol R(2)2tf 2 O(Z) - 2H 2 (g + O 2 (#) AG° = 474.4 kj/mol R(2)
La reacción R(2) muestra que es necesaria una gran cantidad de energía para descomponer el agua en dos gases (02 y H2), adicionalmente se puede apreciar que el volumen de hidrógeno es el doble que el de oxígeno. The R(2) reaction shows that a large amount of energy is necessary to decompose water into two gases (02 and H2), additionally it can be seen that the volume of hydrogen is twice that of oxygen.
El hidrógeno puede ser empleado como un combustible para el transporte, al igual que para generar electricidad mediante pilas de combustible. En las últimas décadas el hidrógeno se ha empleado en una amplia gama de aplicaciones, incluyendo las industrias de la alimentación, metal, vidrio y química. Entre tanto, la producción industrial a nivel mundial del hidrógeno se encuentra en aumento y produce más de 50 millones de toneladas de hidrógeno cada año
Figure imgf000008_0001
Hydrogen can be used as a fuel for transportation, as well as to generate electricity through fuel cells. In recent decades hydrogen has been used in a wide range of applications, including the food, metal, glass and chemical industries. Meanwhile, global industrial production of hydrogen is increasing and produces more than 50 million tons of hydrogen every year
Figure imgf000008_0001
Finalmente, la fotolisis comprende la emisión de radiación UV y consecutiva absorción directa de la luz UV por un compuesto orgánico seguido de la reacción química correspondiente, sin ninguna colaboración de otras sustancias químicas. Finally, photolysis comprises the emission of UV radiation and subsequent direct absorption of UV light by an organic compound followed by the corresponding chemical reaction, without any collaboration of other chemical substances.
En el caso de que el proceso de radiación UV es llevado a cabo por radiación solar el proceso viene condicionado por variables ambientales como la radiación solar en la superficie del agua o su transmisión a través del agua, y por factores intrínsecos de la sustancia como son la velocidad de absorción de la luz y el rendimiento cuántico de la reacción fotoquímica (Chu and Wong 2004; da Costa Filho et al. 2019). In the case that the UV radiation process is carried out by solar radiation, the process is conditioned by environmental variables such as solar radiation on the surface of the water or its transmission through water, and by intrinsic factors of the substance such as the light absorption rate and the quantum yield of the photochemical reaction (Chu and Wong 2004; da Costa Filho et al. 2019).
En este contexto, se observa que en la mayoría de los procesos electroquímicos se presenta la generación (evolución) de oxígeno y de hidrógeno. La evolución de oxígeno se presenta en el ánodo, mientras que el hidrógeno se genera en el cátodo. Sin embargo, en los reactores convencionales los gases que se generan se mezclan en la corriente de salida. Adicionalmente, el hidrógeno es un gas que produce fugas e ignición a baja-energía. In this context, it is observed that in most electrochemical processes the generation (evolution) of oxygen and hydrogen occurs. The evolution of oxygen occurs at the anode, while hydrogen is generated at the cathode. However, in conventional reactors the gases generated are mixed in the outlet stream. Additionally, hydrogen is a gas that produces leaks and ignition at low energy.
En la literatura de patentes se encuentran diferentes soluciones, tales como, por ejemplo, las solicitudes DE102015006706, EP3643145, EP3969141 , CN1 01734763, US20220227645, las cuales divulgan diversos métodos de tratamiento de aguas asociados a la generación de hidrógeno u oxígeno. Different solutions are found in the patent literature, such as, for example, applications DE102015006706, EP3643145, EP3969141, CN1 01734763, US20220227645, which disclose various water treatment methods associated with the generation of hydrogen or oxygen.
De acuerdo con el estado de la técnica citado, la presente invención aporta una solución a la problemática asociada a la generación de gases en reactores electroquímicos convencionales para el tratamiento de aguas, mediante un sistema cuyos componentes estructurales permiten la aplicación de diferentes procesos avanzados de oxidación en una misma solución, logrando generar hidrógeno a partir del tratamiento de aguas o agua residual. In accordance with the state of the art cited, the present invention provides a solution to the problems associated with the generation of gases in conventional electrochemical reactors for water treatment, through a system whose structural components allow the application of different advanced oxidation processes. in the same solution, generating hydrogen from water or wastewater treatment.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
En un único objeto, la presente invención revela un sistema para el tratamiento de aguas residuales susceptible de implementación, al mismo tiempo, de diferentes procesos avanzados de oxidación en un mismo reactor electroquímico. Estos procesos son fotolisis, procesos electroquímicos, tales como electro oxidación anódica, adsorción-electro oxidación, foto-electro oxidación anódica, fotoadsorción-electro oxidación anódica, reducción de hidrógeno, reducción de dióxido de carbono, producción de oxígeno. In a single object, the present invention discloses a system for the treatment of wastewater that can be implemented, at the same time, of different advanced oxidation processes in the same electrochemical reactor. These processes are photolysis, electrochemical processes, such as anodic electro oxidation, adsorption-electro oxidation, photo-anodic electro oxidation, photo adsorption-anodic electro oxidation, hydrogen reduction, carbon dioxide reduction, oxygen production.
El objeto anteriormente descrito, al igual que los objetos adicionales a que hubiere lugar, serán expuestos al detalle y con la suficiencia necesaria en el capítulo descriptivo que se divulga a continuación, el cual constituirá el fundamento del capítulo reivindicatorío. The object described above, as well as any additional objects that may arise, will be set out in detail and with the necessary sufficiency in the descriptive chapter disclosed below, which will constitute the basis of the claims chapter.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La presente invención revela un sistema de tratamiento de agua y aguas residuales basado en un reactor electroquímico (1 ) que se compone de dos electrodos (ánodo y cátodo). A los electrodos [1 ] se adhiere un material adsorbente [2] que es sujetado por un soporte mallado [3], El sistema se compone, a su vez, de dos lámparas de radiación UV [4] que irradian el interior del reactor electroquímico. The present invention reveals a water and wastewater treatment system based on an electrochemical reactor (1) that is composed of two electrodes (anode and cathode). An adsorbent material [2] is attached to the electrodes [1], which is held by a mesh support [3]. The system is composed, in turn, of two UV radiation lamps [4] that irradiate the interior of the electrochemical reactor. .
El sistema presenta una membrana de intercambio iónico [5], que separa dos piezas; la primera pieza [6] contiene en su interior el electrodo aniónico y la segunda pieza [7] contiene en su interior al electrodo catiónico. The system features an ion exchange membrane [5], which separates two pieces; The first piece [6] contains the anionic electrode inside and the second piece [7] contains the cationic electrode inside.
En la parte superior de la pieza [7] se encuentra un acople machimbrado [8] que permite la salida de la fase fluida proveniente del cátodo hacia un reservorio [9] donde se acumula el gas de alto valor como combustible o gas de síntesis (hidrógeno o monóxido de carbono). In the upper part of the piece [7] there is a tongue-and-groove coupling [8] that allows the exit of the fluid phase from the cathode towards a reservoir [9] where the high-value gas accumulates as fuel or synthesis gas ( hydrogen or carbon monoxide).
Para permitir el paso hacia un tanque de almacenamiento [10] del gas acumulado en el reservorio [9], se ubica la parte superior de válvula electrónica de apertura y cierre que permite el paso del gas (que puede ser hidrogeno o gas de síntesis) a un tanque de almacenamiento. Mediante una tubería tipo T y un tubo tipo codo [11 ] las corrientes de fluidos de salida de [6] y [7] se unen en una sola, para envió posterior a un taque de recirculación u otro depósito. Para eliminar los gases en la corriente de fluido que están ingresando al reactor electroquímico se emplea una purga de gas [12] la cual se ubica a la entrada del sistema de tratamiento. Por último, una pieza, preferiblemente, fabricada en acero inoxidable que presenta un mecanismo de acople [13] formado por un componente con forma cónica que presenta una unión tipo rosca hembra en una de sus aberturas y otro componente triangular que permite el reparto en dos corrientes de la corriente fluídica que proviene de la purga. El acople [13] permite distribuir de forma homogénea la corriente fluídica que sale del dispositivo que permite la purga de gas. To allow the passage of the gas accumulated in the reservoir [9] to a storage tank [10], the upper part of the electronic opening and closing valve is located that allows the passage of the gas (which can be hydrogen or synthesis gas). to a storage tank. Using a T-type pipe and an elbow-type pipe [11], the outlet fluid streams from [6] and [7] are joined into one, for subsequent delivery to a recirculation tank or other tank. To eliminate the gases in the fluid stream that are entering the electrochemical reactor, a gas purge [12] is used, which is located at the entrance to the treatment system. Finally, a piece, preferably made of stainless steel, that has a coupling mechanism [13] formed by a conical-shaped component that has a female thread-type connection in one of its openings and another triangular component that allows distribution in two. currents of the fluidic stream that comes from the purge. The coupling [13] allows the fluidic current that leaves the device that allows gas purging to be distributed homogeneously.
El sistema de la invención permite la separación dentro del mismo reactor y la manipulación del hidrogeno mediante un dispositivo electrónico desde una distancia segura. The system of the invention allows the separation within the same reactor and the manipulation of the hydrogen by means of an electronic device from a safe distance.
El sistema presenta la trampa de gas a la entrada para retener el oxígeno o aire que pueda recircularse en forma de burbuja o disuelto. Por otro, lado el sistema incorpora un material foto electro-absorbente que entra en contacto con el ánodo, haciendo que este último aumente su área superficial, permitiendo que los electrones aplicados sobre el ánodo también viajen sobre el material foto electro- absorbente. Por lo anterior, en el ánodo se presenta una extensión volumétrica y de área del mismo (al estar en contacto con material foto electro-absorbente), lo cual permite un mayor contacto, adsorción y generación de especies oxidantes mediante procesos de fotolisis, fotocatálisis y electrólisis. The system has a gas trap at the entrance to retain oxygen or air that can be recirculated in the form of a bubble or dissolved. On the other hand, the system incorporates a photo-electro-absorbent material that comes into contact with the anode, causing the latter to increase its surface area, allowing the electrons applied to the anode to also travel on the photo-electro-absorbent material. Therefore, in the anode there is a volumetric and area extension of the same (when in contact with photo-electroabsorbent material), which allows greater contact, adsorption and generation of oxidant species through photolysis, photocatalysis and electrolysis.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 . Muestra una vista esquemática de la configuración del sistema con sus diferentes componentes estructurales. Figure 1 . It shows a schematic view of the system configuration with its different structural components.
Figura 2. Vista expandida de los componentes estructurales del sistema.Figure 2. Expanded view of the structural components of the system.
Figura 3. Muestra una vista de la pieza (6) donde se ubica el electrodo anódico y las lámparas de radiación UV. Figure 3. Shows a view of the piece (6) where the anode electrode and the UV radiation lamps are located.
Figura 4. Vista de los electrodos (1.1.) (1.2) y de la estructura que los contienen y conectan con la fuente de energía eléctrica. Figura 5. Modalidades de electrodos que pueden ser usados como cátodos y ánodos en el sistema de la invención. Figure 4. View of the electrodes (1.1.) (1.2) and the structure that contains them and connects to the source of electrical energy. Figure 5. Modalities of electrodes that can be used as cathodes and anodes in the system of the invention.
Figura 6. Vista del Soporte mallado (3). Figure 6. View of the mesh support (3).
Figura 7. Membrana de intercambio iónico [5] y material elastómero que evita fugas de fluidos entre las piezas [6] y [7] y al mismo tiempo sirve de soporte para la Membrana de intercambio iónico [5] Figure 7. Ion exchange membrane [5] and elastomeric material that prevents fluid leaks between pieces [6] and [7] and at the same time serves as support for the ion exchange membrane [5]
Figura 8. Vista de la parte superior del reactor electroquímico con los dispositivos que permite la recuperación del gas de que sale de la pieza [7] de la carcasa y la unión de los flujos que salen de las piezas [6] y [7] de la carcasa. Figure 8. View of the upper part of the electrochemical reactor with the devices that allow the recovery of the gas that comes out of the part [7] of the casing and the union of the flows that come out of the parts [6] and [7] of the casing.
Figura 9. Muestra una modalidad de la Tubería con forma de T y codo de 90° (11 ). Figure 9. Shows a type of T-shaped pipe with a 90° elbow (11).
Figura 10. Vista externa de la pieza acople (13) con el componente con forma cónica con rosca tipo hembra en una de sus aberturas (13) que permite el reparto de la fase fluida que ingresa al reactor Figure 10. External view of the coupling piece (13) with the conical-shaped component with female thread in one of its openings (13) that allows the distribution of the fluid phase that enters the reactor
Figura 11. Vista interna de la pieza acople (13) con el componente triangular que permite el reparto de la fase fluida que ingresa al reactor. Figure 11. Internal view of the coupling piece (13) with the triangular component that allows the distribution of the fluid phase that enters the reactor.
Figura 12. Pieza (12) que elimina o reduce el contenido de gases del fluido que ingresa al reactor electroquímico. Figure 12. Piece (12) that eliminates or reduces the gas content of the fluid entering the electrochemical reactor.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención revela un sistema de tratamiento de agua y aguas residuales que incorpora un reactor electroquímico, material adsorbente, radiación UV y diferentes dispositivos con la capacidad de aprovechar el hidrógeno que se está generando en el electrodo del cátodo. La recuperación del gas se logra mediante el uso de una membrana de intercambio iónico que permite el paso de los electrones, pero mantiene separados los componentes de los electrodos catiónico y aniónico, respectivamente. The present invention reveals a water and wastewater treatment system that incorporates an electrochemical reactor, adsorbent material, UV radiation and different devices with the ability to take advantage of the hydrogen that is being generated at the cathode electrode. Gas recovery is achieved through the use of an ion exchange membrane that allows electrons to pass through, but keeps the cationic and anionic electrode components separate, respectively.
La descripción de la realización de la presente invención no pretende limitar su alcance, sino servir como un ejemplo particular de la misma. Se espera que una persona versada en la materia comprenda que las modalidades equivalentes no se apartan del espíritu y alcance de la presente invención en su forma más amplia. The description of the embodiment of the present invention is not intended to limit its scope, but rather to serve as a particular example thereof. It is expected that a person skilled in the art understands that equivalent embodiments do not depart from the spirit and scope of the present invention in its broadest form.
El sistema de tratamiento de agua y aguas residuales de la presente invención emplea diferentes dispositivos electrónicos que permite su automatización y operación segura, ya que permita la generación y manipulación electrónica mediante válvula y dispositivos electrónicos del hidrógeno o la reducción de dióxido de carbono en gas de síntesis, todo esto, mediante la aplicación e intensificación de diferentes procesos avanzados de oxidación para el tratamiento de aguas residuales. Esto permite brindar un mejor aprovechamiento a la energía eléctrica que se usa para tratamiento de aguas residuales, pues adicionalmente, se estaría generando un combustible como el hidrógeno o reducción de dióxido de carbono. The water and wastewater treatment system of the present invention uses different electronic devices that allow its automation and safe operation, since it allows the generation and electronic manipulation by valve and electronic devices of hydrogen or the reduction of carbon dioxide in gas. synthesis, all this, through the application and intensification of different advanced oxidation processes for the treatment of wastewater. This allows for better use of the electrical energy used for wastewater treatment, since additionally, a fuel such as hydrogen or carbon dioxide reduction would be generated.
El sistema de la presente invención presenta los componentes estructurales que se describen a continuación: The system of the present invention has the structural components described below:
Un reactor electroquímico basado en electrodos anódicos y catódicos [1 ]; donde el electrodo anódico presenta adherido a su superficie un material absorbente [2] conformado por Carbono C y T¡02 sujetado por un soporte tipo malla basado en acero [3], An electrochemical reactor based on anodic and cathodic electrodes [1]; where the anode electrode has an absorbent material [2] adhered to its surface made up of Carbon C and T¡02 held by a mesh-type support based on steel [3],
El material adsorbente es carbón activado que, al ser un material conductor, permite el transporte de electrones, es decir se convierte en una extensión del ánodo aumentando el área disponible para reacciones electroquímicas no solo en la superficie del ánodo, sino que al mismo tiempo en la superficie del material adsorbente se están produciendo reacciones electroquímicas. The adsorbent material is activated carbon which, being a conductive material, allows the transport of electrons, that is, it becomes an extension of the anode, increasing the area available for electrochemical reactions not only on the surface of the anode, but at the same time in electrochemical reactions are taking place on the surface of the adsorbent material.
El material semiconductor (TiO2) que hace parte del material adsorbente permite la conducción de electrones en menor medida, sin embargo, sus propiedades ópticas permiten la generación de un par electrón-hueco que con lleva a la generación de especies oxidante que ayudan en el tratamiento de agua y aguas residuales. The semiconductor material (TiO2) that is part of the adsorbent material allows the conduction of electrons to a lesser extent, however, its optical properties allow the generation of an electron-hole pair that leads to the generation of oxidant species that help in the treatment. of water and wastewater.
El material adsorbente aumenta el tiempo de retención dentro del reactor de los contaminantes orgánicos (mediante el proceso de adsorción) lo que favorece la actividad de los procesos electroquímicos, fotocatalíticos y fotolisis. Las propiedades eléctricas, ópticas, adsorbentes y morfológicas (material granular con presencia de microporos, mesoporos y microporos) de material adsorbente aumenta el potencial oxidativo de los procesos electroquímicos dado que normalmente el número de electrodos ánodo y cátodos es superior a 1 . The adsorbent material increases the retention time of organic contaminants within the reactor (through the adsorption process), which favors the activity of electrochemical, photocatalytic and photolysis processes. The electrical, optical, adsorbent and morphological properties (granular material with the presence of micropores, mesopores and micropores) of adsorbent material increase the oxidative potential of electrochemical processes given that normally the number of anode and cathode electrodes is greater than 1.
Sobre la superficie del material adsorbente se adsorben contaminantes para luego ser degradados y mineralizados por procesos electroquímicos, fotocatálisis y de fotolisis. Contaminants are adsorbed on the surface of the adsorbent material and then degraded and mineralized by electrochemical, photocatalysis and photolysis processes.
Preparación del material adsorbente Preparation of adsorbent material
El material adsorberte (2) está compuesto o conformado por Carbón activado y dióxido de titanio (TÍO2) en una relación (cantidades másicas) que puede ir de 90 % peso/peso de Carbón Activado y 10 % p/p de TÍO2. Esta relación puede variar de 90 % p/p hasta 50 % p/p de Carbón Activado, variando el T¡O2 desde el 10 % p/p hasta 50 % p/p. Manteniendo un porcentaje total del 100 % p/p para la suma del porcentaje agregado en peso de Carbón Activado y TÍO2. The adsorbent material (2) is composed or made up of activated carbon and titanium dioxide (TIO2) in a ratio (mass quantities) that can range from 90% weight/weight of activated carbon and 10% w/w of TIO2. This ratio can vary from 90% w/w to 50% w/w of Activated Carbon, varying the T¡O2 from 10% w/w to 50% w/w. Maintaining a total percentage of 100% w/w for the sum of the added percentage by weight of Activated Carbon and TÍO2.
Para la preparación del material adsorbente se emplea un tratamiento químico y térmico con el fin de lograr la adherencia del TÍO2 sobre la superficie del Carbón Activado. En la modalidad preferida de la invención las etapas de tratamiento son las que se describen a continuación: To prepare the adsorbent material, a chemical and thermal treatment is used in order to achieve the adhesion of TÍO2 on the surface of the Activated Carbon. In the preferred embodiment of the invention the treatment steps are those described below:
Preparación de solución de TÍO2: Para está etapa se prepara una solución de T¡Ü2 a partir de Agua ultrapura (agua Tipo I) con adición de Tritón X (1 gota por cada 100 mi de solución de TiO2), más 150 gramos de T¡O2 al agua ultrapura. Esta solución se deja en agitación magnética durante 24 horas y luego se sónica durante 1 hora a una frecuencia de 60 kiloherz. Esto con el fin de alcanzar una dispersión homogénea de las partículas de T¡O2. Preparation of TÍO2 solution: For this stage, a TÍÜ2 solution is prepared from ultrapure water (Type I water) with the addition of Triton ¡O2 to ultrapure water. This solution is left under magnetic stirring for 24 hours and then sonicated for 1 hour at a frequency of 60 kiloherz. This in order to achieve a homogeneous dispersion of the TIO2 particles.
Impregnación del TÍO2 sobre la superficie de Carbón Activado. Para esta etapa se debe tener en cuenta la cantidad de material adsorberte que se quiere introducir en el soporte mallado (3). Por ejemplo, si se desea tener 900 gramos de Carbón Activado 90% (p/p) en el sistema de tratamiento, entonces se deben preparar 100 gramos de TÍO2 para ser impregnados sobre el Carbón Activado. En dicho caso, se introducen los 900 g de Carbón Activado en un recipiente cilindrico con tapa; luego, se adicionan 100 g de TÍO2. Se tapa el cilindro y se lleva a un sistema de molienda de bolas para lograr el mezclado del TÍO2 con el Carbón y se deja el cilindro en rotación por 48 horas con una velocidad angular entre 2 a 20 rpm. Impregnation of TÍO2 on the Activated Carbon surface. For this stage, the amount of adsorbent material that you want to introduce into the mesh support (3) must be taken into account. For example, if you want to have 900 grams of Activated Carbon 90% (w/w) in the treatment system, then 100 grams of TÍO2 must be prepared to be impregnated on the Activated Carbon. In this case, 900 g of Activated Carbon are introduced into a cylindrical container. with cap; Then, 100 g of TÍO2 are added. The cylinder is covered and taken to a ball grinding system to mix the TÍO2 with the Carbon and the cylinder is left rotating for 48 hours with an angular speed between 2 to 20 rpm.
Síntesis del TÍO2 sobre la superficie del Carbón Activado. Primero, el material adsorberte que está compuesto por carbón activado y la solución de T¡Ü2 se seca a temperatura ambiente durante 2 horas. Luego, el material adsorbente (2) se calcina en un homo elevando gradualmente la temperatura desde una temperatura ambiente hasta 150°C de temperatura, a una velocidad de calentamiento de 1°C/min, con un tiempo de permanencia de tres horas y desde 150°C se lleva hasta 420° C (una velocidad de 2°C/min). En consecuencia, el tiempo de proceso sería de 2.25 horas de permanencia del material adsorbente (2). Synthesis of TIO2 on the surface of Activated Carbon. First, the adsorbent material which is composed of activated carbon and T¡Ü2 solution is dried at room temperature for 2 hours. Then, the adsorbent material (2) is calcined in an oven, gradually raising the temperature from room temperature to 150°C temperature, at a heating rate of 1°C/min, with a residence time of three hours and from 150°C is taken up to 420° C (a speed of 2°C/min). Consequently, the process time would be 2.25 hours of permanence of the adsorbent material (2).
La masa de TÍO2 sobre la superficie de Carbón Activado se calcula mediante una balanza analítica. Por último, el material adsorbente (2) se somete a un flujo de agua ultrapura o tipo 1 durante 2 horas con el fin de limpiar y desprender el material de T¡Ü2 que no esté fijo o pegado de forma adecuada. The mass of TIO2 on the Activated Carbon surface is calculated using an analytical balance. Finally, the adsorbent material (2) is subjected to a flow of ultrapure or type 1 water for 2 hours in order to clean and release the T¡Ü2 material that is not adequately fixed or glued.
Luego del sintetizado, el Carbón activado se pesa. Si el peso del Carbón Activado más TÍO2 no alcanza el 100 % p/p de los dos materiales, el proceso se repite cuantas veces sea necesario, desde la Impregnación del TÍO2 sobre la superficie de Carbón Activado, hasta alcanzar el 100 % en pesos de los dos materiales que componen el material adsorberte (2). After synthesis, the activated carbon is weighed. If the weight of the Activated Carbon plus TÍO2 does not reach 100% w/w of the two materials, the process is repeated as many times as necessary, from the Impregnation of the TÍO2 on the surface of Activated Carbon, until reaching 100% by weight of the two materials that make up the adsorbent material (2).
En la modalidad preferida de la invención, los electrodos anódicos se seleccionan entre Óxido de iridio lrO2 dopado con TÍO2. Una malla basada en carbono o diamante dopado con boro (BDD). In the preferred embodiment of the invention, the anode electrodes are selected from Iridium oxide lrO2 doped with TIO2. A mesh based on carbon or boron-doped diamond (BDD).
El reactor presenta un mecanismo de iluminación basado en lámparas de radiación UV [4] que irradian a los electrodos anódicos y catódicos. La radiación UV sobre los dos electrodos (ánodo y cátodo) permite la activación de estos ocasionando una disminución en el potencial o diferencia de potencial que se debe aplicar al reactor electroquímico. The reactor has a lighting mechanism based on UV radiation lamps [4] that irradiate the anodic and cathodic electrodes. UV radiation on the two electrodes (anode and cathode) allows their activation, causing a decrease in the potential or potential difference that must be applied to the electrochemical reactor.
El reactor presenta también una membrana de intercambio iónico [5] que separa los electrodos anódicos de los electrodos catódicos. Todos los componentes del reactor electroquímico se encuentran ensamblados en una carcasa conformada por una pieza donde se ubican los electrodos anódicos [6] y una segunda pieza donde se ubican los electrodos catódicos [7], Estas dos piezas se encuentran separadas por la membrana de intercambio iónico y un empaque de material elastómero. The reactor also has an ion exchange membrane [5] that separates the anode electrodes from the cathode electrodes. All components of the electrochemical reactor are assembled in a housing made up of a piece where the anode electrodes are located [6] and a second piece where the cathode electrodes are located [7]. These two pieces are separated by the exchange membrane. ionic and an elastomeric material packaging.
El empaque en material elastómero permite el sellado y evita la fuga de gas y agua por la junta de las piezas (6) y (7). Este material está compuesto por material poli(1 ,1 ,2,2-tetrafluoroetileno), conocido en diferentes presentaciones comerciales como politetrafluoroetileno (PTFE), que no se ve afectado por la corrosión y contaminación, resiste el desgarro y tiene propiedades adecuadas de flexión. The elastomeric material packaging allows sealing and prevents gas and water leakage through the joint of parts (6) and (7). This material is composed of poly(1,1,2,2-tetrafluoroethylene) material, known in different commercial presentations as polytetrafluoroethylene (PTFE), which is not affected by corrosion and contamination, resists tearing and has adequate flexing properties. .
Además, este material elastomérico puede estar en contacto con el calor y no se ve afectado por la exposición a los rayos UV o la humedad. Additionally, this elastomeric material can be in contact with heat and is not affected by exposure to UV rays or humidity.
El material elastómero susceptible de implementación en el sistema de la presente invención presenta las siguientes propiedades, de acuerdo con diferentes presentaciones comerciales disponibles en el mercado: Máxima temperatura de trabajo: 316°C; grosor: entre 1 ,78 mm y 4 mm; resistencia a la tracción máxima: 10508 N/50 mm; máxima presión: entre 5 psi y 7 psi. Este material no presenta porosidad y su implementación resulta adecuada para ambientes húmedos y corrosivos. The elastomeric material susceptible to implementation in the system of the present invention has the following properties, according to different commercial presentations available on the market: Maximum working temperature: 316°C; thickness: between 1.78 mm and 4 mm; maximum tensile strength: 10508 N/50 mm; maximum pressure: between 5 psi and 7 psi. This material does not present porosity and its implementation is suitable for humid and corrosive environments.
Cada pieza de la carcasa presenta un acople machimbrado que se conecta a un tubo de salida [8], El tubo de salida de la pieza donde se ubican los electrodos catódicos está conectado a un reservorio [9] que presenta una válvula electrónica de apertura y cierre [10], Each piece of the housing has a tongue-and-groove coupling that connects to an outlet tube [8]. The outlet tube of the piece where the cathode electrodes are located is connected to a reservoir [9] that has an electronic opening valve and closure [10],
El reservorio de gases conectado a la salida de la pieza del electrodo del cátodo permite la acumulación y manejo adecuado del hidrogeno o gases de síntesis que se genere en el cátodo. La válvula de purga electrónica ubicada en la parte superior del reservorio evita que el operario de sistema tenga que estar cerca del reactor electroquímico cuando se está generando el hidrogeno. Además, esto conlleva a la automatización del reactor electroquímico desde una distancia segura en caso de algún tipo de inconvenientes. En una modalidad particular de realización de la invención, el reactor comprende un acople de tubería tipo T y codo de 90 grados [11 ] que conecta la corriente proveniente del reservorio con la corriente proveniente de los electrodos anódicos. The gas reservoir connected to the outlet of the cathode electrode piece allows the accumulation and proper management of the hydrogen or synthesis gases generated at the cathode. The electronic purge valve located at the top of the reservoir prevents the system operator from having to be near the electrochemical reactor when hydrogen is being generated. In addition, this leads to the automation of the electrochemical reactor from a safe distance in case of any type of problems. In a particular embodiment of the invention, the reactor comprises a T-type pipe coupling and 90 degree elbow [11] that connects the current coming from the reservoir with the current coming from the anode electrodes.
En la modalidad preferida de la invención, los electrodos catódicos se seleccionan, entre Óxido de iridio lrÜ2 dopado con TÍO2. una malla basada en carbono o diamante dopado con boro (BDD) y, además, de acero inoxidable. Esta última opción se selecciona en los casos de modalidades particulares de realización donde se busque la disminución de costos de material. In the preferred embodiment of the invention, the cathode electrodes are selected from iridium oxide lrÜ2 doped with TIO2. a mesh based on carbon or boron-doped diamond (BDD) and, in addition, made of stainless steel. This last option is selected in cases of particular execution modalities where a reduction in material costs is sought.
El sistema comprende, además, un dispositivo válvula de purga de gas (12) conectado a la entrada del reactor, que se conecta con el reactor mediante un dispositivo de acople (13) construido en el mismo material de la carcasa del reactor y distribuye el fluido a los electrodos. The system also comprises a gas purge valve device (12) connected to the reactor inlet, which is connected to the reactor by means of a coupling device (13) constructed of the same material as the reactor casing and distributes the fluid to the electrodes.
En la modalidad preferida de la invención, la carcasa del reactor (6) (7) es fabricada a partir de acero o material acrílico. In the preferred embodiment of the invention, the reactor casing (6) (7) is manufactured from steel or acrylic material.
El sistema de tratamiento de la invención se compone de dos electrodos [1 ] (ánodo [1.1 ] y cátodo [1.2]); En un reactor electroquímico, el ánodo es por definición, el electrodo donde se lleva a cabo la oxidación de compuestos orgánicos, y el cátodo es el electrodo donde se lleva a cabo la reducción. En el ánodo [1.1] está adherido un material adsorbente particulado [2] (compuesto por carbón activado y dióxido de Titanio) que es soportado por un soporte mallado [3] cuyo material es acero inoxidable, con forma rectangular que evita que el material adsorbente se pierda o se desprenda del ánodo por efectos mecánicos de la corriente fluida que pasa por el interior del reactor. The treatment system of the invention is composed of two electrodes [1] (anode [1.1] and cathode [1.2]); In an electrochemical reactor, the anode is by definition, the electrode where the oxidation of organic compounds takes place, and the cathode is the electrode where the reduction takes place. A particulate adsorbent material [2] is attached to the anode [1.1] (composed of activated carbon and titanium dioxide) which is supported by a mesh support [3] whose material is stainless steel, with a rectangular shape that prevents the adsorbent material from is lost or detached from the anode due to mechanical effects of the fluid current that passes through the interior of the reactor.
Dos lámparas de radiación UV [4] se introducen dentro de la estructura de las piezas donde se introducen el ánodo y el cátodo del reactor electroquímico estas lámparas permiten la iluminación de los electrodos [1 ], ánodo y cátodo, respectivamente. Una membrana de intercambio de iónico [5] de material polimérico evita el contacto de los componentes presentes en las fases fluidas que circulan en las dos piezas [6] y [7], La membrana de intercambio iónico [5] permite el paso y migración de los electrones a través de ella y evita el paso de moléculas de gas como oxigeno u otro compuesto hacia la pieza del dónde está el electrodo del cátodo. Two UV radiation lamps [4] are introduced into the structure of the pieces where the anode and cathode of the electrochemical reactor are inserted. These lamps allow the illumination of the electrodes [1], anode and cathode, respectively. An ion exchange membrane [5] made of polymeric material prevents contact of the components present in the fluid phases that circulate in the two pieces [6] and [7], The ion exchange membrane [5] allows the passage and migration of electrons through it and prevents the passage of gas molecules such as oxygen or other compounds towards the piece where the cathode electrode is located.
En la modalidades de realización de la invención, la membrana de intercambio iónico (5) presenta una base polimérica de acetato de celulosa con polímeros lineales de Poli(Et¡len-Anhídhdo Maleteo, PEAM) y dendrímeros de Poli(amidoam¡na, PAMAN G4) Generación 4, de acuerdo con diferentes presentaciones comerciales disponibles en el mercado. In the embodiments of the invention, the ion exchange membrane (5) has a polymeric base of cellulose acetate with linear polymers of Poly(Ethylene-Anhydride Maleteo, PEAM) and dendrimers of Poly(amidoamine, PAMAN). G4) Generation 4, according to different commercial presentations available on the market.
En este mismo sentido, la membrana de intercambio iónico presenta los siguientes parámetros técnicos: In this same sense, the ion exchange membrane has the following technical parameters:
Grosor: entre 100 mieras y más o menos 50 mieras Thickness: between 100 microns and more or less 50 microns
Peso en gramos: entre 150 g/cm2 y 300 g/cm2 Weight in grams: between 150 g/cm2 and 300 g/cm2
Conductividad: entre 0,083 S/cm y 0,900 S/cm Conductivity: between 0.083 S/cm and 0.900 S/cm
Capacidad de intercambio iónico: entre 0,089meq/g y 1 mes/g Ion exchange capacity: between 0.089meq/g and 1 month/g
En el sistema de la invención, es susceptible de implementación cualquier membrana de intercambio iónico (5) que presente como características fisicoquímicas, estabilidad térmica y resistencia a altas temperaturas; resistencia a la oxidación electroquímica, baja corrosión y estabilidad química. In the system of the invention, any ion exchange membrane (5) that has thermal stability and resistance to high temperatures as physicochemical characteristics is susceptible to implementation; resistance to electrochemical oxidation, low corrosion and chemical stability.
Un acople machimbrado [8] permite la salida del fluido hacia el reservoho [9] en donde el gas se acumula, para luego ser llevado a un depósito de almacenamiento; en la parte superior del reservoho [9] mediante una válvula electrónica de apertura y cierre [10] para que permita la salida del gas (que puede ser hidrógeno o gas de síntesis) hacia un tanque o reservoho para su almacenamiento y su uso posterior como combustible amigable con el ambiente. Es empleada una tubería T y un codo [11], fabricados, preferiblemente, en materiales como acero inoxidable o PVC, para unir las corrientes que salen de las piezas donde se encuentran los electrodos [6] y [7], A tongue and groove coupling [8] allows the fluid to exit towards the reservoir [9] where the gas accumulates, and then is taken to a storage tank; at the top of the reservoir [9] using an electronic opening and closing valve [10] to allow the gas to exit (which can be hydrogen or synthesis gas) to a tank or reservoir for storage and subsequent use as environmentally friendly fuel. A T pipe and an elbow [11], preferably made of materials such as stainless steel or PVC, are used to join the currents that come out of the pieces where the electrodes [6] and [7] are located.
A la entrada del reactor electroquímico se ubica un dispositivo conocido como válvula de purga de gas que reduce el contenido de gas en la corriente líquida que ingresa al reactor, (trampa de gas), que evita el reingreso de gases al reactor y la disminución de la calidad del gas generado en el cátodo. At the entrance to the electrochemical reactor there is a device known as a gas purge valve that reduces the gas content in the liquid stream. that enters the reactor, (gas trap), which prevents the re-entry of gases into the reactor and the decrease in the quality of the gas generated at the cathode.
La trampa de gases evita el ingreso del oxígeno u otros gases ya sea por recirculación o por que se encuentre disuelto en la corriente de fluido que está entrando al reactor. Esto conlleva al aumento de la concentración pura o calidad del Hidrógeno o gases de síntesis que se está generando en el electrodo catódico. The gas trap prevents the entry of oxygen or other gases either by recirculation or because it is dissolved in the fluid stream that is entering the reactor. This leads to an increase in the pure concentration or quality of the Hydrogen or synthesis gases that is being generated at the cathode electrode.
La pieza de la carcasa en donde se ubica el electrodo anódico [1.1 ] es el soporte para el electrodo, la lámpara de radiación UV (4), el material adsorbente (2), el soporte mallado (3) y la membrana de intercambio iónico (5). Además de permitir el paso de la fase fluida que transporta los contaminantes que se quieren oxidar. En la parte superior tiene un orificio que permite el paso [6.1 ] y un orificio con rosca tipo hembra [6.2] que permite la salida del fluido de la pieza. Además, en la parte que se pone en contacto con la membrana de intercambio iónico (5) presenta unos orificios que permiten sujetar y presionar para evitar la fuga de gas o agua entre las piezas [6] y [7], La pieza [6] tiene una cavidad (cilindrica y rectangular) [6.3] en su estructura con una abertura [6.4] y con espacio para ingresar dos lámparas de radiación UV [4.1 ] y [4.2], The part of the housing where the anode electrode is located [1.1 ] is the support for the electrode, the UV radiation lamp (4), the adsorbent material (2), the mesh support (3) and the ion exchange membrane (5). In addition to allowing the passage of the fluid phase that transports the contaminants that want to be oxidized. At the top it has a hole that allows passage [6.1] and a hole with a female thread [6.2] that allows fluid to escape from the piece. Furthermore, the part that comes into contact with the ion exchange membrane (5) has holes that allow holding and pressing to prevent gas or water leakage between pieces [6] and [7]. Piece [6] ] has a cavity (cylindrical and rectangular) [6.3] in its structure with an opening [6.4] and with space to enter two UV radiation lamps [4.1 ] and [4.2],
La pieza de la carcasa en donde se ubica el electrodo catódico [1 .2] es el soporte del electrodo que reduce los compuestos y gas de síntesis. Además de permitir el paso de la fase fluida que transporta los H+ y agua que son reducido a hidrógenos. The part of the housing where the cathode electrode [1 .2] is located is the electrode support that reduces the compounds and synthesis gas. In addition to allowing the passage of the fluid phase that transports H+ and water that are reduced to hydrogen.
La pieza [7] tiene las mismas características estructurales de la pieza [6]; que se describen como sigue: En la parte superior tiene un orificio que permite el paso [7.1 ] y un orificio con rosca tipo hembra [7.2] que permite la salida del fluido de la pieza. Part [7] has the same structural characteristics of part [6]; which are described as follows: At the top it has a hole that allows the passage [7.1] and a hole with a female thread [7.2] that allows the fluid to exit the piece.
Además, en la parte que se pone en contacto con la membrana de intercambio iónico (5) se tiene unos orificios que permite sujetar y presionar para evitar la fuga de gas o agua entre las piezas [6] y [7], Furthermore, in the part that comes into contact with the ion exchange membrane (5) there are holes that allow holding and pressing to prevent gas or water leakage between the pieces [6] and [7],
Los electrodos [1.1 ] y [1.2] están sujetos a una estructura rectangular [1.6], fabricada preferiblemente a partir de acero inoxidable o politetrafluoroetileno (PTFE) o teflón de acuerdo con diferentes presentaciones comerciales disponibles en el mercado. El teflón, por ejemplo, resiste altas temperaturas, el ataque de sustancias acidas y básicas, y no conduce la electricidad. Los electrodos presentan una pieza con orificio (1 .3) que permite conectar y sujetar los electrodos [1 .1] y [1 .2] con unos bornes que permiten la conexión de los cables de energía eléctrica [1.5] y unos orificios que permiten sujetar los electrodos a la primera pieza [6] y a la segunda pieza [7] de la carcasa. Los electrodos [1.1 ] y [1.2] presientan un orificio [1.4] en la parte superior que permite sostener los electrodos y al mismo tiempo permiten el contacto con la fuente de energía eléctrica mediante conectares eléctricos [1.5], The electrodes [1.1] and [1.2] are attached to a rectangular structure [1.6], preferably manufactured from stainless steel or polytetrafluoroethylene (PTFE) or Teflon according to different commercial presentations available. in the market. Teflon, for example, resists high temperatures, the attack of acidic and basic substances, and does not conduct electricity. The electrodes have a piece with a hole (1 .3) that allows connecting and holding the electrodes [1 .1] and [1 .2] with terminals that allow the connection of the electric power cables [1.5] and holes that They allow the electrodes to be attached to the first piece [6] and the second piece [7] of the housing. The electrodes [1.1 ] and [1.2] have a hole [1.4] in the upper part that allows the electrodes to be held and at the same time allows contact with the source of electrical energy through electrical connectors [1.5],
El soporte mallado [3] es una estructura rectangular hueca que permite sostener el material adsorbente y presenta un borde que permite su conexión con el ánodo [1.1 ], En la modalidad preferida de la invención, el soporte mallado está fabricado en material basado en acero. The mesh support [3] is a hollow rectangular structure that allows the adsorbent material to be held and has an edge that allows its connection with the anode [1.1]. In the preferred embodiment of the invention, the mesh support is made of steel-based material. .
En la parte superior del reactor electroquímico se encuentra unos orificios [6.6] que permiten sujetar la estructura de los electrodos [1.1 ] y [1.2] y la salida del [1 .1 ] de ánodo. La salida machimbrada [8.3] permite conectar con un tubo [8.1 ] para luego conectarse con un reservorio [8] que permite separar y acumular el gas que se encuentre en la corriente del fluido que sale de la pieza [7] y en la parte superior se encuentra una abertura roscada [8.2] que permite el paso hacia la válvula eléctrica de apertura y cierre con una entrada [10.1 ], salida [10.3] y una conexión eléctrica [10.2] que permite la manipulación del gas que sale de la pieza [7] desde la distancia. In the upper part of the electrochemical reactor there are holes [6.6] that allow the structure of the electrodes [1.1 ] and [1.2] and the outlet of the anode [1 .1 ] to be attached. The tongue-and-groove outlet [8.3] allows connection with a tube [8.1] and then connects with a reservoir [8] that allows separating and accumulating the gas found in the fluid stream coming out of the piece [7] and in the part At the top there is a threaded opening [8.2] that allows passage to the electric opening and closing valve with an inlet [10.1], outlet [10.3] and an electrical connection [10.2] that allows the manipulation of the gas coming out of the piece. [7] from a distance.
Las piezas [6] y [7] tienen unas estructuras que permite que se conecten y ajustadas mediante un una membrana de intercambio iónico [5] y un material elastómero [14], Este material presenta orificios [14.1 ] que permite ser sujetado junto a la membrana [5] y las piezas [6] y [7], además de una abertura [14.2] que permite la distribución de fluidos por la piezas [6] y [7] que permite hacer presión entre las dos placas para ajustar y mantener estable la membrana de intercambio iónico [5] y al mismo tiempo evitar las fuga de las corrientes del fluido entre las uniones de las piezas [6] y [7], The pieces [6] and [7] have structures that allow them to be connected and adjusted using an ion exchange membrane [5] and an elastomeric material [14]. This material has holes [14.1 ] that allow it to be held together the membrane [5] and the pieces [6] and [7], in addition to an opening [14.2] that allows the distribution of fluids through the pieces [6] and [7] that allows pressure to be applied between the two plates to adjust and keep the ion exchange membrane [5] stable and at the same time prevent leakage of the fluid currents between the joints of the pieces [6] and [7],
Los soportes o estructuras, preferiblemente de geometría rectangular, que son parte de las dos piezas (6) y (7) de la carcasa, donde se ubican los electrodos permiten mantener estables y sujeta la membrana de intercambio iónico (5). También mediante la presión de tornillos sobre el material de elastómero entre las dos placas, se evita la fuga del agua o fluido objeto de tratamiento. The supports or structures, preferably of rectangular geometry, which are part of the two pieces (6) and (7) of the housing, where the electrodes are located They allow the ion exchange membrane to remain stable and secure (5). Also by pressing screws on the elastomer material between the two plates, leakage of the water or fluid being treated is prevented.
El electrodo del ánodo puede ser remplazado por electrodos de diamante dopado con Boro, electrodos de óxido de iridio dopado con dióxido de Titanio y electrodos de malla de Carbono, en función de si se quiere favorecer oxidación anódica, desafección-activación UV y transferencia de electrones en fase gaseosa para gases de síntesis en función del electrodo anódico, respectivamente. The anode electrode can be replaced by Boron-doped diamond electrodes, Titanium dioxide-doped iridium oxide electrodes and Carbon mesh electrodes, depending on whether you want to promote anodic oxidation, deaffection-UV activation and electron transfer. in the gas phase for synthesis gases depending on the anode electrode, respectively.
El electrodo del cátodo puede ser remplazado por electrodos de diamante dopado con Boro, electrodos de óxido de iridio dopado con dióxido de Titanio, electrodos de malla de Carbono y acero inoxidable; este último en los casos que se desee disminuir costos en el material del cátodo. The cathode electrode can be replaced by Boron-doped diamond electrodes, Titanium dioxide-doped iridium oxide electrodes, Carbon and stainless steel mesh electrodes; the latter in cases where it is desired to reduce costs in the cathode material.
En el caso del electrodo anódico [1.1 ] o como cátodo [1.2] se pueden emplear, dependiendo del interés, tres tipos de electrodos los cuales son: In the case of the anode electrode [1.1] or as a cathode [1.2], three types of electrodes can be used, depending on the interest, which are:
• Electrodo de diamante dopado con Boro usado como ánodo [1.11 ] o usado como cátodo [1.22] que es un electrodo con una alta estabilidad química y mecánica con una amplia ventana de potencial, es decir, que este electrodo permite la degradación de contaminantes en un espectro más amplio que otros electrodos convencionales. • Boron-doped diamond electrode used as an anode [1.11] or used as a cathode [1.22], which is an electrode with high chemical and mechanical stability with a wide potential window, that is, this electrode allows the degradation of contaminants in a broader spectrum than other conventional electrodes.
• Electrodo de óxido de iridio dopado con dióxido de titanio usado como ánodo [1.12] o usado como cátodo [1.23] este electrodo puede adsorber radiación UV (es un electrodo foto activo) y disminuir el consumo de corriente eléctrica durante la operación. Además de producir especies oxidantes que ayudan en la desinfección de aguas. • Iridium oxide electrode doped with titanium dioxide used as an anode [1.12] or used as a cathode [1.23] this electrode can adsorb UV radiation (it is a photo-active electrode) and reduce the consumption of electrical current during operation. In addition to producing oxidizing species that help in water disinfection.
• Un electrodo de malla de Carbono usado como ánodo [1.13] o usado como cátodo [1.24] este electrodo se pone en contacto con la membrana de intercambio iónico (5) y permite la transferencia eficiente de los electrones que se están produciendo por las reacciones electroquímicas en el volumen de este electrodo debido a que este permite el paso de la fase fluida por el electrodo debido a que este electrodo es poroso. Este electrodo es adecuado para trabajar con fase gaseosa, es decir, cuando se quiere tratar contaminantes en fase gaseosa. • A Carbon mesh electrode used as an anode [1.13] or used as a cathode [1.24] this electrode comes into contact with the ion exchange membrane (5) and allows the efficient transfer of the electrons that are being produced by the reactions. electrochemical in the volume of this electrode because it allows the passage of the fluid phase through the electrode because this electrode is porous. This electrode is suitable to work with the gas phase, that is, when you want to treat contaminants in the gas phase.
Por último, un electrodo de acero inoxidable [1 .21] de empleo exclusivo como cátodo. Mediante el uso de este electrodo se puede reducir los costos de instalación y de material que se requiere para el montaje de este sistema de tratamiento. No se emplea como ánodo, pues, durante los procesos de oxidación anódica, podría disolverse y de esa forma seria un proceso de electrocoagulación. Finally, a stainless steel electrode [1 .21] used exclusively as a cathode. By using this electrode, the installation and material costs required for the assembly of this treatment system can be reduced. It is not used as an anode, since, during the anodic oxidation processes, it could dissolve and in this way it would be an electrocoagulation process.
En la parte inferior del reactor electroquímico se ubica una pieza fundida en el reactor electroquímico que permite la distribución homogénea de la corriente de fluido entre las piezas [6] y [7], Esta pieza, preferiblemente de acero inoxidable [13] permite la distribución homogénea de la corriente que está entrando al reactor electroquímico, con una pieza de forma triangular [13.3] que se ubica con las dos caras para el reparto del fluido en dos corrientes [13.6], la estructura general de la pieza es cónica [13.4] para permitir el reparto del fluido que está entrando al reactor. La estructura también cuenta con una parte roscada tipo hembra [13.5] para enroscar tubería de entrada al reactor. At the bottom of the electrochemical reactor, a cast piece is located in the electrochemical reactor that allows the homogeneous distribution of the fluid stream between the pieces [6] and [7]. This piece, preferably made of stainless steel [13], allows the distribution homogeneous of the current that is entering the electrochemical reactor, with a triangular-shaped piece [13.3] that is located with both sides for the distribution of the fluid into two streams [13.6], the general structure of the piece is conical [13.4] to allow the distribution of the fluid that is entering the reactor. The structure also has a female threaded part [13.5] to screw inlet pipe to the reactor.
La pieza metálica en la entrada del rector electroquímico permite la distribución o reparto homogéneo del fluido en las dos piezas donde se encuentran los electrodos (anódico y catódico). The metal piece at the entrance of the electrochemical reactor allows the homogeneous distribution or distribution of the fluid in the two pieces where the electrodes are located (anodic and cathodic).
Las salidas en las caras laterales ubicadas en la parte superior de las piezas donde se ubican los electrodos (anódico y catódico, respectivamente), permiten la salida de los gases de alto valor agregado (tales como Hidrógeno u gas de síntesis) en el caso de la salida del cátodo y que estos gases no se mezclen con los gases o compuestos que se están generando en la recámara de la pieza del electrodo del ánodo. The outlets on the side faces located in the upper part of the pieces where the electrodes are located (anodic and cathodic, respectively), allow the exit of gases with high added value (such as Hydrogen or synthesis gas) in the case of the cathode outlet and that these gases do not mix with the gases or compounds that are being generated in the chamber of the anode electrode piece.
Parte de la pieza [13] que permite el reparto en dos corrientes de fluido que ingresa al reactor es desmontable [13.2]; este desmonte se logra gracias a las piezas roscables [13.1 ] y [13.2], Part of the piece [13] that allows the distribution of fluid entering the reactor into two streams is removable [13.2]; This disassembly is achieved thanks to the threadable parts [13.1 ] and [13.2],
Con el fin de unir la corriente que provienen del ánodo y cátodo o de las pizas [6] y [7] se utiliza una tubería en forma de T [11.1 ], que permite unir las dos corrientes que provienen de [6] y [7] en usa sola. Esto con el objeto de mezclar las corrientes y de esta forma oxidar o reducir los compuestos que nos pasaron por las piezas [6] o [7], Mientras que un codo con 90 grados de inclinación [11.2], fabricado preferiblemente de acero inoxidable, permite reducir la cantidad de tubería que se debe usar para la corriente que sale de la pieza [6] además de permitir el paso del fluido sin que el fluido sufra muchas perdidas de presión. In order to join the current that comes from the anode and cathode or from the pipes [6] and [7], a T-shaped pipe [11.1 ] is used, which allows the two currents that come from [6] and [ 7] in usa alone. This in order to mix the currents and in this way oxidize or reduce the compounds that passed through the pieces [6] or [7], While an elbow with 90 degrees of inclination [11.2], preferably made of stainless steel, allows reducing the amount of pipe that It should be used for the current that leaves the piece [6] in addition to allowing the passage of the fluid without the fluid suffering many pressure losses.
A su vez, un dispositivo que permite capturar el gas [12] se ubica a la entrada del reactor electroquímico. Este dispositivo (12) consta de una tubería de entrada [12.1 ] y salida [12.2] del fluido, mientras que para la purga de los gases se emplea un mecanismo de escape de gas [12.3], In turn, a device that allows capturing the gas [12] is located at the entrance of the electrochemical reactor. This device (12) consists of an inlet pipe [12.1] and outlet [12.2] of the fluid, while a gas escape mechanism [12.3] is used to purge the gases.
Las lámparas de radiación UV [4.1 ] y [4.2] permiten la fotolisis de los compuestos en las corrientes de fluido; iluminan el material adsorbente con propiedades ópticas lo que permite la generación de especies oxidantes mediante fotocatálisis heterogénea. Además, los electrodos fotoactivos, es decir, que absorben radiación UV para disminuir su energía de activación, son irradiados por las lámparas aprovechando esta energía para disminuir costos de consumo eléctrico. UV radiation lamps [4.1 ] and [4.2] allow photolysis of compounds in fluid streams; They illuminate the adsorbent material with optical properties, which allows the generation of oxidant species through heterogeneous photocatalysis. In addition, the photoactive electrodes, that is, they absorb UV radiation to reduce their activation energy, are irradiated by the lamps, taking advantage of this energy to reduce electrical consumption costs.
La función principal de las lámpara UV con radiación UV (4), consiste tanto en esterilizar como en la eliminación de compuestos mediante la fotolisis. The main function of UV lamps with UV radiation (4) consists of both sterilizing and eliminating compounds through photolysis.
En la modalidad preferida de la invención, las lámparas UV con radiación UV (4) presentan los siguientes elementos, susceptibles de aplicación en ambientes totalmente sumergibles, de acuerdo con diferentes presentaciones comerciales disponibles en el mercado: Filamento en metal tungsteno de alta calidad para un alto rendimiento y ahorro de energía; un tubo de cristal de cuarzo que contiene o proteja al filamento para una alta transmisión de rayos ultravioleta; ventosas o adaptador de conexión eléctrica potentes para ajustar libremente la posición. In the preferred embodiment of the invention, the UV lamps with UV radiation (4) have the following elements, susceptible to application in completely submersible environments, according to different commercial presentations available on the market: High quality tungsten metal filament for a high performance and energy saving; a quartz glass tube that contains or protects the filament for high ultraviolet ray transmission; Powerful suction cups or electrical connection adapter to freely adjust the position.
A su vez, presentan las siguientes especificaciones: Material del cuerpo: tapón de cristal de cuarzo con enchufe para la corriente eléctrica. Con encendido on/off desde un tablero PCB (no mostrado en las figuras). Voltaje: AC 110 V a 240 V Frecuencia: 50/60 HZ Potencia: 5 W/7W/9 W/11 W/13 W (opcional). Longitud del cuerpo de la lámpara: entre 5 W a 11 W para longitudes entre 195 mm y 245 mm. El sistema comprende, además, un panel de control eléctrico (no mostrado en las figuras), entendido como el conjunto de dispositivos eléctricos que utilizan la energía eléctrica para controlar las distintas funciones mecánicas y eléctrica desde un tablero PCB, de los equipos del sistema de tratamiento de aguas y generación de hidrógeno y gas de síntesis. In turn, they have the following specifications: Body material: quartz crystal plug with plug for electric current. With on/off ignition from a PCB board (not shown in the figures). Voltage: AC 110V to 240V Frequency: 50/60HZ Power: 5W/7W/9W/11W/13W (optional). Lamp body length: between 5W to 11W for lengths between 195mm and 245mm. The system also includes an electrical control panel (not shown in the figures), understood as the set of electrical devices that use electrical energy to control the different mechanical and electrical functions from a PCB board, of the equipment of the control system. water treatment and generation of hydrogen and synthesis gas.
El panel de control eléctrico es parte integral de cualquier proceso industrial automatizado. Los paneles de control albergan vahos dispositivos electrónicos que proporcionan señales para dirigir el funcionamiento del reactor electroquímico, en específico los electrodos (1.1 , 1 .2), la válvula electrónica de apertura y cierre (10) y las lámparas UV (4). Un panel de control eléctrico incluye dos categorías principales: la estructura del panel y los componentes eléctricos. La estructura del panel está compuesta de un armario metálico de aluminio o acero metálico que varía en el tamaño según sus características y aplicaciones. The electrical control panel is an integral part of any automated industrial process. The control panels house several electronic devices that provide signals to direct the operation of the electrochemical reactor, specifically the electrodes (1.1, 1.2), the electronic opening and closing valve (10) and the UV lamps (4). An electrical control panel includes two main categories: the panel structure and the electrical components. The panel structure is composed of a metal cabinet made of aluminum or metallic steel that varies in size depending on its characteristics and applications.
El panel de control eléctrico presenta los siguientes componentes eléctricos:The electrical control panel presents the following electrical components:
Disyuntor principal Main circuit breaker
Descargador de sobretensiones surge arrester
Transformador Transformer
Fuente de alimentación Power supply
Bloques de terminales Terminal blocks
Interruptor de desconexión Disconnect switch
Fusibles Fuses
Controlador lógico programadle (PLC) Programmable logic controller (PLC)
Relés y contactores Relays and contactors
Relé de sobrecarga Overload relay
Interruptores o switch de red Network switches or switches
Interfaz hombre-máquina Human-machine interface
Accionamientos de motor motor drives
Arrancadores de motor Switch de Ethernet motor starters Ethernet switch
El sistema para el tratamiento de aguas residuales, generación de hidrógeno y generación de gas de síntesis, presenta la intensificación de varios procesos de oxidación. The system for wastewater treatment, hydrogen generation and synthesis gas generation, presents the intensification of several oxidation processes.
En efecto, para el caso de producción de hidrógeno, convencionalmente se emplean dos medias celdas. En la media celda donde se encuentra el cátodo se produce el gas hidrógeno. Al producirse en una fase líquida, generalmente agua, por diferencia de densidades y propiedades fisicoquímicas, en general, el gas hidrógeno se va al tope (parte superior), siendo posible su recuperación en los reactores convencionales. Indeed, in the case of hydrogen production, two half cells are conventionally used. In the half cell where the cathode is located, hydrogen gas is produced. When produced in a liquid phase, generally water, due to the difference in densities and physicochemical properties, in general, the hydrogen gas goes to the top (top), making it possible to recover it in conventional reactors.
A su vez, los reactores electroquímicos para la desinfección o tratamiento de aguas que presentan un solo electrodo para la oxidación en el ánodo presentan diferentes problemas de eficiencia, dado que el área de contacto es muy pequeña para las reacciones, ocasionando elevados costos en la implementación del proceso. In turn, electrochemical reactors for disinfection or water treatment that have a single electrode for oxidation in the anode present different efficiency problems, given that the contact area is very small for the reactions, causing high implementation costs. of process.
Por lo anterior, el sistema de la invención, al presentar dos electrodos, mejora la eficiencia del tratamiento de las aguas mediante diferentes procesos, en una misma solución y espacio, lo que se conoce como intensificación de procesos. Therefore, the system of the invention, by presenting two electrodes, improves the efficiency of water treatment through different processes, in the same solution and space, which is known as process intensification.
Uno de los procesos susceptibles de implementación en el sistema de la invención es la adsorción, en donde se busca retener sobre la superficie que se encuentra en contacto con el ánodo, en el mayor tiempo posible, los contaminantes que tiene la fase fluida o agua. Esto se logra mediante el material adsorbente. El material adsorbente, que también es conductor, al estar en contacto directo con el ánodo, permite el paso de los electrones por su estructura y, de esta forma, se vuelve parte del ánodo, lo que significa que sobre él se pueden generar reacciones de oxidación de contaminantes. One of the processes that can be implemented in the system of the invention is adsorption, where the aim is to retain on the surface that is in contact with the anode, for as long as possible, the contaminants that the fluid phase or water has. This is achieved through the adsorbent material. The adsorbent material, which is also conductive, when in direct contact with the anode, allows the passage of electrons through its structure and, in this way, it becomes part of the anode, which means that reaction reactions can be generated on it. oxidation of contaminants.
A su vez, la radiación UV sobre los dos electrodos (ánodo y cátodo) tiene como objetivo la degradación mediante fotolisis de los contaminantes, al generarse la activación del material fotoactivo que es parte fundamental del material adsorbente (2), permitiendo el desarrollo de procesos fotocatáliticos en la superficie del material adsorbente. Por otro lado, los electrodos (ánodo o cátodo) a partir de T¡Ü2 o BDD absorben sobre su superficie la radiación UV de las lámparas (4) o electrones, lo que ayuda a disminuir la energía eléctrica requerida para que estos se activen e inicien las reacciones electroquímicas. In turn, UV radiation on the two electrodes (anode and cathode) aims to degrade contaminants through photolysis, generating the activation of the photoactive material that is a fundamental part of the adsorbent material (2), allowing the development of processes photocatalytics on the surface of the adsorbent material. On the other hand, the electrodes (anode or cathode) made of T¡Ü2 or BDD absorb UV radiation from the lamps (4) or electrons on their surface, which helps reduce the electrical energy required for them to be activated and start electrochemical reactions.
La configuración de componentes y dispositivos en la parte superior del reactor electroquímico permite la separación y recuperación segura del gas hidrógeno o gas de síntesis, además de permitir el mezclado de las corrientes que salen del electrodo anódico (1.1 ) y el electrodo catódico (1.2), en caso que requieran ser objeto de nuevo tratamiento o tratamiento adicional, en reactores con sistemas de recirculación. The configuration of components and devices in the upper part of the electrochemical reactor allows the safe separation and recovery of hydrogen gas or synthesis gas, in addition to allowing the mixing of the currents leaving the anode electrode (1.1) and the cathode electrode (1.2). , in case they require new or additional treatment, in reactors with recirculation systems.
Los dispositivos ubicados en la parte inferior del sistema de tratamiento permiten, por una parte, retirar cualquier tipo de gas a la entrada del reactor electroquímico, a través del dispositivo de captura o trampa de gas (12). Luego, la pieza ubicada en la entrada del reactor electroquímico, esto es, el dispositivo de acople (13) que conecta el dispositivo de captura de gas (12) con la entrada del reactor, permite la repartición homogénea del agua a tratar hacia las piezas donde se encuentran los electrodos anódicos y catódicos. The devices located in the lower part of the treatment system allow, on the one hand, to remove any type of gas at the entrance of the electrochemical reactor, through the capture device or gas trap (12). Then, the piece located at the entrance of the electrochemical reactor, that is, the coupling device (13) that connects the gas capture device (12) with the reactor entrance, allows the homogeneous distribution of the water to be treated towards the pieces. where the anodic and cathodic electrodes are located.
Con la implementación de las modalidades de realización del sistema objeto de la presente invención, resulta factible la directa electroreducción de CO2 sobre electrodos metálicos, la cual, de acuerdo a lo reportado en la literatura, se puede llevar a cabo mediante dos formas: sobre electrodos metálicos sólidos o sobre partículas metálicas dispersas sobre un sustrato. En estos dos casos se trata de un sistema de catálisis heterogénea. With the implementation of the embodiments of the system object of the present invention, the direct electroreduction of CO2 on metal electrodes is feasible, which, according to what is reported in the literature, can be carried out in two ways: on electrodes solid metals or on metal particles dispersed on a substrate. In these two cases it is a heterogeneous catalysis system.
Por lo anterior, entre las características más sobresalientes del sistema, se observa una vida media aceptable en aplicaciones, tolerables propiedades químicas, mecánicas y térmicas. Therefore, among the most outstanding characteristics of the system, an acceptable half-life in applications, tolerable chemical, mechanical and thermal properties are observed.
En una modalidad de realización de la invención, la reducción electroquímica de CO2 se logra mediante el empleo de electrodos BDD submicrocristalinos con diferentes concentraciones de dopaje de boro (0,28%, 0,11 % y 0,03%). A diferencia del caso microchstalino, estas películas sintéticas submicrocristalinos BDD con alto contenido de carbono unido a sp2 no muestran una dependencia de la concentración de boro en términos de la actividad de reducción de CO2 para formar ácido fórmico (HCOOH). In one embodiment of the invention, the electrochemical reduction of CO2 is achieved by using submicrocrystalline BDD electrodes with different boron doping concentrations (0.28%, 0.11% and 0.03%). Unlike the microchstalline case, these submicrocrystalline BDD synthetic films with high sp2-bonded carbon do not show a dependence on the boron concentration in terms of the CO2 reduction activity to form formic acid (HCOOH).
En todo caso, se observa que los electrodos implementados en las diferentes modalidades de realización de la invención permitieron una reducción eficiente de CO2 cercana a la máxima eficiencia de Faradaic para HCOOH en el rango de 70% a 80%. In any case, it is observed that the electrodes implemented in the different embodiments of the invention allowed an efficient reduction of CO2 close to the maximum Faradaic efficiency for HCOOH in the range of 70% to 80%.
En consecuencia, resulta factible concluir que, además, la implementación del sistema revelado en la presente descripción sugiere que el empleo de carbono con enlace sp2 puede ser adecuado para la reducción de CO2. Consequently, it is feasible to conclude that, in addition, the implementation of the system revealed in the present description suggests that the use of sp2-linked carbon may be suitable for the reduction of CO2.
Aunque la presente invención ha quedado descrita con las realizaciones preferentes mostradas, queda entendido que las modificaciones y variaciones que conserven el espíritu y el alcance de esta invención se entienden dentro del alcance de las reivindicaciones adjuntas. Although the present invention has been described with the preferred embodiments shown, it is understood that modifications and variations that preserve the spirit and scope of this invention are understood to be within the scope of the attached claims.
REFERENCIAS REFERENCES
Bar o, Valentim A R, Antonio P Ricomini-filho, Leonardo P Faverani, Altair A Del, Bel Cury, Cortino Sukotjo, Douglas R Monteiro, et al. 2015. “The Role of Nicotine, Cotinine and Caffeine on the Electrochemical Behavior and Bacterial Colonization to Cp-Ti.” Materials Science & Engineering C 56. Elsevier B.V.: 114-24. doi: 10.1016/j.msec.2O15.06.026. Bar o, Valentim A R, Antonio P Ricomini-filho, Leonardo P Faverani, Altair A Del, Bel Cury, Cortino Sukotjo, Douglas R Monteiro, et al. 2015. “The Role of Nicotine, Cotinine and Caffeine on the Electrochemical Behavior and Bacterial Colonization to Cp-Ti.” Materials Science & Engineering C 56. Elsevier B.V.: 114-24. doi: 10.1016/j.msec.2O15.06.026.
Brillas, Enríe, and Carlos A Martinez-huitle. 2015. “Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. An Updated Review.” “Applied Catalysis B, Environmental” 166-167. Elsevier B.V.: 603- 43. doi:10.1016/j.apcatb.2014.11 .016. Brillas, Enríe, and Carlos A Martinez-huitle. 2015. “Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. “An Updated Review.” “Applied Catalysis B, Environmental” 166-167. Elsevier B.V.: 603- 43. doi:10.1016/j.apcatb.2014.11 .016.
Calvo, Roque J. 2013. “Pennington Corner: Electrochemical Energy.” Interface Magazine 22 (3): 7-7. doi: 10.1149/2.002133if. Calvo, Roque J. 2013. “Pennington Corner: Electrochemical Energy.” Interface Magazine 22 (3): 7-7. doi: 10.1149/2.002133if.
Cañizares, P, J. Lobato, R. Paz, M. A. Rodrigo, and C. Sáez. 2005. “Electrochemical Oxidation of Phenolic Wastes with Boron-Doped Diamond Anodes.” Water Research 39 (12): 2687-2703. doi:10.1016/j.watres.2005.04.042. Chu, W, and C. C. Wong. 2004. “The Photocatalytic Degradation of Dicamba in TiO2 Suspensions with the Help of Hydrogen Peroxide by Different near UV Irradiations.” Water Research 38 (4): 1037-43. doi: 10.1016/j.watres.2003.10.037. Cañizares, P, J. Lobato, R. Paz, MA Rodrigo, and C. Sáez. 2005. “Electrochemical Oxidation of Phenolic Wastes with Boron-Doped Diamond Anodes.” Water Research 39 (12): 2687-2703. doi:10.1016/j.watres.2005.04.042. Chu, W, and CC Wong. 2004. “The Photocatalytic Degradation of Dicamba in TiO 2 Suspensions with the Help of Hydrogen Peroxide by Different near UV Irradiations.” Water Research 38 (4): 1037-43. doi: 10.1016/j.watres.2003.10.037.
Costa Filho, Batuira M. da, Ana L.P. Araujo, Stefan P. Pad o, Rui A.R. Boaventure, Madalena M. Dias, José Carlos B. Lopes, and Vítor J.P. Vilar. 2019. “Effect of Catalyst Coated Surface, Illumination Mechanism and Light Source in Heterogeneous TÍO2 Photocatalysis Using a Mili-Photoreactor for n-Decane Oxidation at Gas Phase.” Chemical Engineering Journal 366 (February). Elsevier: 560-68. doi: 10.1016/j.cej.2O19.02.122. Costa Filho, Batuira M. da, Ana L.P. Araujo, Stefan P. Pado, Rui A.R. Boaventure, Madalena M. Dias, José Carlos B. Lopes, and Vítor J.P. Vilar. 2019. “Effect of Catalyst Coated Surface, Illumination Mechanism and Light Source in Heterogeneous TÍO2 Photocatalysis Using a Mili-Photoreactor for n-Decane Oxidation at Gas Phase.” Chemical Engineering Journal 366 (February). Elsevier: 560-68. doi: 10.1016/j.cej.2O19.02.122.
Diaz, Luis A., and Gerardine G. Botte. 2015. “Mathematical Modeling of Ammonia Electrooxidation Kinetics in a Polycrystalline Pt Rotating Disk Electrode.” Electrochi mica Acta 179. Elsevier Ltd: 519-28. doi: 10.1016/j.electacta.2O14.12.162. Diaz, Luis A., and Gerardine G. Botte. 2015. “Mathematical Modeling of Ammonia Electrooxidation Kinetics in a Polycrystalline Pt Rotating Disk Electrode.” Electrochi mica Acta 179. Elsevier Ltd: 519-28. doi: 10.1016/j.electacta.2O14.12.162.
Fernandes, A., D. Santos, M. J. Pacheco, L. Cihaco, and A. Lopes. 2014. “Nitrogen and Organic Load Removal from Sanitary Landfill Leachates by Anodic Oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD.” Applied Catalysis B: Environmental 148-149. Elsevier B.V.: 288-94. doi: 10.1016/j.apcatb.2O13.10.060. Fernandes, A., D. Santos, M. J. Pacheco, L. Cihaco, and A. Lopes. 2014. “Nitrogen and Organic Load Removal from Sanitary Landfill Leachates by Anodic Oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD.” Applied Catalysis B: Environmental 148-149. Elsevier B.V.: 288-94. doi: 10.1016/j.apcatb.2O13.10.060.
Ganzenko, Oleksandra, Nihal Oturan, David Huguenot, Eric D Van Hullebusch, Giovanni Esposito, and Mehmet A Oturan. 2015. “Removal of Psychoactive Pharmaceutical Caffeine from Water by Electro-Fenton Process Using BDD Anode: Effects of Operating Parameters on Removal Efficiency” 156. Elsevier B.V.: 987-95. doi: 10.1016/j.seppur.2O15.09.055. Ganzenko, Oleksandra, Nihal Oturan, David Huguenot, Eric D Van Hullebusch, Giovanni Esposito, and Mehmet A Oturan. 2015. “Removal of Psychoactive Pharmaceutical Caffeine from Water by Electro-Fenton Process Using BDD Anode: Effects of Operating Parameters on Removal Efficiency” 156. Elsevier B.V.: 987-95. doi: 10.1016/j.seppur.2O15.09.055.
Goldsby, Kenneth A, and Raymund Chang. 2013. Química, Undécima Edición.Goldsby, Kenneth A, and Raymund Chang. 2013. Chemistry, Eleventh Edition.
Hems, Rachel, Charles Gauthier-Signore, Dohn Bejan, and Nigel J. Bunce. 2016. “Kinetic Models for the Oxidation of Organic Substrates at Boron-Doped Diamond Anodes.” Chemical Engineering Journal 300. Elsevier B.V.: 404- 13. doi: 10.1016/j.cej.2O16.04.141. Hems, Rachel, Charles Gauthier-Signore, Dohn Bejan, and Nigel J. Bunce. 2016. “Kinetic Models for the Oxidation of Organic Substrates at Boron-Doped Diamond Anodes.” Chemical Engineering Journal 300. Elsevier B.V.: 404- 13. doi: 10.1016/j.cej.2O16.04.141.
Indermuhle, Chloe, Maha J Martin, De Vidales, Cristina Sáez, José Robles, Pablo Cañizares, Juan F García-reyes, Antonio Molina-diaz, Christos Comninellis, and Manuel A Rodrigo. 2013. “Degradation of Caffeine by Conductive Diamond Electrochemical Oxidation.” Chemosphere 93 (9). Elsevier Ltd: 1720-25. doi: 10.1016/j.chemosphere.2013.05.047. Indermuhle, Chloe, Maha J Martin, De Vidales, Cristina Sáez, José Robles, Pablo Cañizares, Juan F García-reyes, Antonio Molina-diaz, Christos Comninellis, and Manuel A Rodrigo. 2013. “Degradation of Caffeine by Conductive Diamond Electrochemical Oxidation.” Chemosphere 93 (9). Elsevier Ltd: 1720-25. doi: 10.1016/j.chemosphere.2013.05.047.
Kapalka, Agnieszka. 2010. “Basic Principles of the Electrochemical Mineralization of Organic Pollutants for Wastewater Treatment.” doi: 10.1007/978-0-387-68318-8. Kapalka, Agnieszka. 2010. “Basic Principles of the Electrochemical Mineralization of Organic Pollutants for Wastewater Treatment.” doi:10.1007/978-0-387-68318-8.
Kapalka, Agnieszka, Gyórgy Fóti, and Christos Comninellis. 2010. “Basic Principles of the Electrochemical Mineralization of Organic Pollutants for Wastewater Treatment.” Electrochemistry for the Environment. doi: 10.1007/978-0-387-68318-8_1 . Kapalka, Agnieszka, Gyórgy Fóti, and Christos Comninellis. 2010. “Basic Principles of the Electrochemical Mineralization of Organic Pollutants for Wastewater Treatment.” Electrochemistry for the Environment. doi:10.1007/978-0-387-68318-8_1.
Kim, Eun-ju, Dasom Oh, Chung-seop Lee, Jianyu Gong, Jungwon Kim, and Yoon- seok Chang. 2017. “Manganese Oxide Nanorods as a Robust Fenton-like Catalyst at Neutral PH : Crystal Phase-Dependent Behavior.” Catalysis Today 282. Elsevier B.V.: 71-76. doi: 10.1016/j.cattod.2016.03.034. Kim, Eun-ju, Dasom Oh, Chung-seop Lee, Jianyu Gong, Jungwon Kim, and Yoon-seok Chang. 2017. “Manganese Oxide Nanorods as a Robust Fenton-like Catalyst at Neutral PH: Crystal Phase-Dependent Behavior.” Catalysis Today 282. Elsevier B.V.: 71-76. doi: 10.1016/j.cattod.2016.03.034.
Kodym, Roman, Monika Drakselová, Petr Pánek, Michal Némecek, Dalimil Snita, and Karel Bouzek. 2015. “Novel Approach to Mathematical Modeling of the Complex Electrochemical Systems with Multiple Phase Interfaces.” Electrochi mica Acta 179: 538-55. doi: 10.1016/j.electacta.2015.01 .039. Kodym, Roman, Monika Drakselová, Petr Pánek, Michal Némecek, Dalimil Snita, and Karel Bouzek. 2015. “Novel Approach to Mathematical Modeling of the Complex Electrochemical Systems with Multiple Phase Interfaces.” Electrochemical Acta 179: 538-55. doi: 10.1016/j.electacta.2015.01 .039.
Labiadh, Lazhar, Antonio Barbucci, Maha Paola Carpanese, Abdellatif Gadh, Salah Ammar, and Marco Panizza. 2016. “Comparative Depollution of Methyl Orange Aqueous Solutions by Electrochemical Incineration Using TiRuSnO2, BDD and PbO2 as High Oxidation Power Anodes.” Journal of Electroanalytical Chemistry 766. Elsevier B.V.: 94-99. doi: 10.1016/j.jelechem.2O16.01.036. Labiadh, Lazhar, Antonio Barbucci, Maha Paola Carpanese, Abdellatif Gadh, Salah Ammar, and Marco Panizza. 2016. “Comparative Depollution of Methyl Orange Aqueous Solutions by Electrochemical Incineration Using TiRuSnO2, BDD and PbO2 as High Oxidation Power Anodes.” Journal of Electroanalytical Chemistry 766. Elsevier B.V.: 94-99. doi: 10.1016/j.jelechem.2O16.01.036.
Maha, Aline, Sales Solano, Sergi García-segura, Carlos Alberto Martinez-huitle, and Enríe Brillas. 2015. “Applied Catalysis B : Environmental Degradation of Acidic Aqueous Solutions of the Diazo Dye Congo Red by Photo-Assisted Electrochemical Processes Based on Fenton’ s Reaction Chemistry.” “Applied Catalysis B, Environmentaf’ 168-169. Elsevier B.V.: 559-71. doi:10.1016/j.apcatb.2015.01 .019. Mohan, N., N. Balasubramanian, and C. Ahmed Basha. 2007. “Electrochemical Oxidation of Textile Wastewater and Its Reuse.” Journal of Hazardous Materials 147 (1-2): 644-51. doi:10.1016/j.jhazmat.2007.01.063. Maha, Aline, Sales Solano, Sergi García-segura, Carlos Alberto Martinez-huitle, and Enríe Brillas. 2015. “Applied Catalysis B: Environmental Degradation of Acidic Aqueous Solutions of the Diazo Dye Congo Red by Photo-Assisted Electrochemical Processes Based on Fenton's Reaction Chemistry.” “Applied Catalysis B, Environmentaf' 168-169. Elsevier BV: 559-71. doi:10.1016/j.apcatb.2015.01 .019. Mohan, N., N. Balasubramanian, and C. Ahmed Basha. 2007. “Electrochemical Oxidation of Textile Wastewater and Its Reuse.” Journal of Hazardous Materials 147 (1-2): 644-51. doi:10.1016/j.jhazmat.2007.01.063.
Moreira, Francisca C., Rui A R Boaventura, Enhc Brillas, and Vítor JP Vilar. 2015. “Remediation of a Winery Wastewater Combining Aerobic BiologicalMoreira, Francisca C., Rui A R Boaventura, Enhc Brillas, and Vítor JP Vilar. 2015. “Remediation of a Winery Wastewater Combining Aerobic Biological
Oxidation and Electrochemical Advanced Oxidation Processes.” Water Research 75: 95-108. doi:10.1016/j.watres.2015.02.029. “Oxidation and Electrochemical Advanced Oxidation Processes.” Water Research 75: 95-108. doi:10.1016/j.watres.2015.02.029.
Moreira, Francisca C., Sergi Garcia-Segura, Vítor J P Vilar, Rui A R Boaventura, and Enhc Brillas. 2013. “Decolorization and Mineralization of Sunset Yellow FCF Azo Dye by Anodic Oxidation, Electro-Fenton, UVA Photoelectro-Fenton and Solar Photoelectro-Fenton Processes.” Applied Catalysis B: Environmental 142-143. Elsevier B.V.: 877-90. doi: 10.1016/j.apcatb.2O13.03.023. Moreira, Francisca C., Sergi Garcia-Segura, Vítor J P Vilar, Rui A R Boaventura, and Enhc Brillas. 2013. “Decolorization and Mineralization of Sunset Yellow FCF Azo Dye by Anodic Oxidation, Electro-Fenton, UVA Photoelectro-Fenton and Solar Photoelectro-Fenton Processes.” Applied Catalysis B: Environmental 142-143. Elsevier B.V.: 877-90. doi: 10.1016/j.apcatb.2O13.03.023.
Wang, Lizhang, Bo Wu, Peng Li, Bo Zhang, N. Balasubramanian, and Yuemin Zhao. 2016. “Kinetics for Electro-Oxidation of Organic Pollutants by Using aWang, Lizhang, Bo Wu, Peng Li, Bo Zhang, N. Balasubramanian, and Yuemin Zhao. 2016. “Kinetics for Electro-Oxidation of Organic Pollutants by Using a
Packed-Bed Electrode Reactor (PBER).” Chemical Engineering Journal 284: 240-46. doi: 10.1016/j.cej.2O15.08.132. Packed-Bed Electrode Reactor (PBER).” Chemical Engineering Journal 284: 240-46. doi: 10.1016/j.cej.2O15.08.132.

Claims

REIVINDICACIONES Sistema para el tratamiento de aguas, generación de hidrógeno y generación de gas de síntesis caracterizado porque comprende: CLAIMS System for water treatment, hydrogen generation and synthesis gas generation characterized because it comprises:
Un reactor electroquímico basado en electrodos anódicos (1.1 ) y electrodos catódicos (1.2); donde el electrodo anódico (1.1 ) presenta adherido a su superficie un material adsorbente conformado por Carbón activado y T¡Ü2 (2) en una relación entre 50% a 90 % p/p de Carbón activado y 50% a 10% p/p de TÍO2, sujetado por un soporte tipo malla (3); donde los electrodos (1.1 ) (1.2) se seleccionan entre óxido de iridio IRO2 dopado con TÍO2; una malla basada en carbono; diamante dopado con boro DDB; donde el electrodo anódico (1.1 ) y el electrodo catódicoAn electrochemical reactor based on anode electrodes (1.1) and cathode electrodes (1.2); where the anode electrode (1.1) has an adsorbent material adhered to its surface made up of activated carbon and T¡Ü2 (2) in a ratio between 50% to 90% w/w of activated carbon and 50% to 10% w/w from TÍO2, held by a mesh-type support (3); where the electrodes (1.1) (1.2) are selected from iridium oxide IRO2 doped with TIO2; a carbon-based mesh; DDB boron-doped diamond; where the anode electrode (1.1) and the cathode electrode
(1.2) están sujetos a una estructura de geometría rectangular (1.6) que presenta orificios (1.3) (1.4) que conectan y sujetan los electrodos (1.1 ) y (1 .2) con la fuente de energía eléctrica mediante conectares eléctricos (1.5); donde los electrodos anódicos (1 .1 ) y los electrodos catódicos (1 .2) son irradiados por lámparas de radiación UV (4); donde los electrodos anódicos (1.1.) se encuentran separados de los electrodos catódicos (1.2) mediante una membrana de intercambio iónico (5); donde los electrodos anódicos (1 .1 .), los electrodos catódicos (1.2), las lámparas de radiación UV (4), el material adsorbente (2), el soporte tipo malla (3) y la membrana de intercambio iónico (5) se encuentran ensamblados en una carcasa conformada por una primera pieza (6) donde en su interior se ubican los electrodos anódicos (1.1 ) y una segunda pieza (7) donde en su interior se ubican los electrodos catódicos(1.2) are subject to a rectangular geometry structure (1.6) that has holes (1.3) (1.4) that connect and hold the electrodes (1.1) and (1.2) with the source of electrical energy through electrical connectors (1.5) ; where the anode electrodes (1 .1) and the cathode electrodes (1 .2) are irradiated by UV radiation lamps (4); where the anode electrodes (1.1.) are separated from the cathode electrodes (1.2) by an ion exchange membrane (5); where the anode electrodes (1.1.), the cathode electrodes (1.2), the UV radiation lamps (4), the adsorbent material (2), the mesh-type support (3) and the ion exchange membrane (5) They are assembled in a housing made up of a first piece (6) where the anode electrodes (1.1) are located inside and a second piece (7) where the cathode electrodes are located inside.
(1.2); donde la primer pieza (6) y la segunda pieza (7) de la carcasa, están sujetadas por un empaque (14) que presenta orificios (14.1 ) que sujetan a la membrana de intercambio iónico (5), la primera pieza de la carcasa (6) y la segunda pieza de la carcasa (7); donde el empaque (14) presenta una abertura (14.2) donde se distribuye el fluido a tratar por la primera pieza (6) de la carcasa y la segunda pieza (7) de la carcasa; donde cada pieza de la carcasa (6) y (7) presenta un mecanismo de acople machimbrado (8) que se conecta a un tubo de salida (11 ); donde el tubo de salida (11 ) de la segunda pieza (7) de la carcasa donde se ubican los electrodos catódicos (1 .2) está conectado a un reservorio (9) que presenta una válvula electrónica de apertura y cierre del paso de gas a un tanque de almacenamiento (10). Sistema de tratamiento de la reivindicación 1 caracterizado porque comprende un dispositivo de acople (11 ) conformado por una tubería tipo T (11.1 ) y un tubo tipo codo (11.2) que conecta la corriente del fluido proveniente del reservorio (9) con la corriente del fluido proveniente de los electrodos anódicos (1.1 ); donde la tubería en forma de T (11 .1 ), conecta las corrientes que provienen de la primera pieza (6) de la carcasa y la segunda pieza (7) de la carcasa; y el tubo tipo codo (11.2) presenta 90° de inclinación. Sistema de tratamiento de la reivindicación 1 caracterizado porque los electrodos catódicos se seleccionan, además, de acero inoxidable. Sistema de tratamiento de la reivindicación 1 caracterizado porque el empaque (14) es de material elastómero del tipo politetrafluoroetileno (PTFE). Sistema de tratamiento de la reivindicación 1 caracterizado porque comprende, además, un dispositivo de captura de gas (12) conectado a la entrada del reactor mediante un mecanismo de acople (13) que conecta el dispositivo de captura de gas (12) con la entrada del reactor y distribuye el fluido a los electrodos (1 .1 ) (1 .2). Sistema de tratamiento de la reivindicación 5 Caracterizado porque el dispositivo de captura de gas (12) consta de una tubería de entrada (12.1 ) y una tubería de salida (12.2) del fluido y un mecanismo de purga de gas (12.3). Sistema de tratamiento de la reivindicación 5 Caracterizado porque el dispositivo de acople (13) presenta una pieza de geometría triangular (13.3) para el reparto del fluido que ingresa al reactor en dos corrientes. Sistema de tratamiento de la reivindicación 1 caracterizado porque la membrana de intercambio iónico (5) presenta una base poliméhca de acetato de celulosa con polímeros lineales de Poli(Etilen-Anhídhdo Maleíco, PEAM) y dendrímeros de Poli(amidoam¡na, PAMAN G4) Generación 4. Sistema de tratamiento de la reivindicación 1 caracterizado porque la primera pieza (6) de la carcasa en donde se ubica el electrodo anódico (1.1 ) presenta en su parte superior un orificio (6.1 ) para el paso del fluido y un orificio con rosca tipo hembra (6.2) para la salida del fluido de la pieza; orificios que sujetan la membrana de intercambio iónico (5); donde la primera pieza (6) de la carcasa tiene una cavidad cilindrica y rectangular (6.3) en su estructura con una abertura (6.4). Sistema de tratamiento de las reivindicación 1 caracterizado porque la segunda pieza (7) de la carcasa en donde se ubica el electrodo catódico (1 .2) presenta en su parte superior un orificio (7.1 ) para el paso del fluido y un orificio con rosca tipo hembra (7.2) para la salida del fluido de la pieza; orificios que sujetan la membrana de intercambio iónico (5); donde la segunda pieza (7) de la carcasa tiene una cavidad cilindrica y rectangular (7.3) en su estructura con una abertura (7.4). (1.2); where the first piece (6) and the second piece (7) of the casing are held by a gasket (14) that has holes (14.1) that hold the first piece of the casing to the ion exchange membrane (5). (6) and the second piece of the casing (7); where the packaging (14) It has an opening (14.2) where the fluid to be treated is distributed through the first piece (6) of the casing and the second piece (7) of the casing; where each piece of the housing (6) and (7) has a tongue-and-groove coupling mechanism (8) that connects to an outlet tube (11); where the outlet tube (11) of the second piece (7) of the housing where the cathode electrodes (1.2) are located is connected to a reservoir (9) that has an electronic valve for opening and closing the gas passage. to a storage tank (10). Treatment system of claim 1 characterized in that it comprises a coupling device (11) made up of a T-type pipe (11.1) and an elbow-type tube (11.2) that connects the flow of fluid from the reservoir (9) with the flow of the fluid coming from the anode electrodes (1.1); where the T-shaped pipe (11.1) connects the currents coming from the first piece (6) of the casing and the second piece (7) of the casing; and the elbow type tube (11.2) has a 90° inclination. Treatment system of claim 1 characterized in that the cathode electrodes are also selected from stainless steel. Treatment system of claim 1 characterized in that the packaging (14) is made of elastomeric material of the polytetrafluoroethylene (PTFE) type. Treatment system of claim 1 characterized in that it also comprises a gas capture device (12) connected to the reactor inlet by means of a coupling mechanism (13) that connects the gas capture device (12) with the inlet. of the reactor and distributes the fluid to the electrodes (1 .1) (1 .2). Treatment system of claim 5 Characterized in that the gas capture device (12) consists of an inlet pipe (12.1) and an outlet pipe (12.2) of the fluid and a gas purge mechanism (12.3). Treatment system of claim 5 Characterized in that the coupling device (13) has a triangular geometry piece (13.3) for the distribution of the fluid entering the reactor into two streams. Treatment system of claim 1 characterized in that the ion exchange membrane (5) has a polymer base of cellulose acetate with linear polymers of Poly(Ethylene-Maleic Anhydride, PEAM) and Poly(amidoamine, PAMAN G4) dendrimers. Generation 4. Treatment system of claim 1 characterized in that the first piece (6) of the housing where the anode electrode (1.1) is located has in its upper part a hole (6.1) for the passage of the fluid and a hole with female type thread (6.2) for the fluid outlet of the piece; holes that hold the ion exchange membrane (5); where the first piece (6) of the casing has a cylindrical and rectangular cavity (6.3) in its structure with an opening (6.4). Treatment system of claim 1 characterized in that the second piece (7) of the housing where the cathode electrode (1.2) is located has in its upper part a hole (7.1) for the passage of the fluid and a threaded hole. female type (7.2) for the fluid outlet of the piece; holes that hold the ion exchange membrane (5); where the second piece (7) of the housing has a cylindrical and rectangular cavity (7.3) in its structure with an opening (7.4).
PCT/IB2023/061495 2022-11-15 2023-11-14 System for treating water, generating hydrogen and generating synthesis gas WO2024105569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2022/0016422A CO2022016422A1 (en) 2022-11-15 2022-11-15 System for water treatment, hydrogen generation and synthesis gas generation
CONC2022/0016422 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024105569A1 true WO2024105569A1 (en) 2024-05-23

Family

ID=86325438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/061495 WO2024105569A1 (en) 2022-11-15 2023-11-14 System for treating water, generating hydrogen and generating synthesis gas

Country Status (2)

Country Link
CO (1) CO2022016422A1 (en)
WO (1) WO2024105569A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244383A (en) * 2008-03-13 2008-08-20 同济大学 Process for producing absorbent charcoal loading titanium dioxide photocatalyst
WO2009007691A2 (en) * 2007-07-07 2009-01-15 Itm Power (Research) Ltd. Electrolysis of salt water
WO2010013244A2 (en) * 2008-07-29 2010-02-04 Yeda Research And Development Company Ltd. System and method for chemical potential energy production
WO2012097167A2 (en) * 2011-01-12 2012-07-19 Ceramatec, Inc. Electrochemical production of hydrogen
CN107740133A (en) * 2017-10-19 2018-02-27 杭州泰博科技有限公司 The devices and methods therefor of photocatalysis cathode electrode hydrogen production by water decomposition gas
CN110316787A (en) * 2019-07-17 2019-10-11 南京工业大学 Gas-liquid discharge synergistic composite photocatalyst water treatment device and treatment method
WO2020160672A1 (en) * 2019-02-06 2020-08-13 The University Of British Columbia Method and apparatus for producing hydroxyl radicals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009007691A2 (en) * 2007-07-07 2009-01-15 Itm Power (Research) Ltd. Electrolysis of salt water
CN101244383A (en) * 2008-03-13 2008-08-20 同济大学 Process for producing absorbent charcoal loading titanium dioxide photocatalyst
WO2010013244A2 (en) * 2008-07-29 2010-02-04 Yeda Research And Development Company Ltd. System and method for chemical potential energy production
WO2012097167A2 (en) * 2011-01-12 2012-07-19 Ceramatec, Inc. Electrochemical production of hydrogen
CN107740133A (en) * 2017-10-19 2018-02-27 杭州泰博科技有限公司 The devices and methods therefor of photocatalysis cathode electrode hydrogen production by water decomposition gas
WO2020160672A1 (en) * 2019-02-06 2020-08-13 The University Of British Columbia Method and apparatus for producing hydroxyl radicals
CN110316787A (en) * 2019-07-17 2019-10-11 南京工业大学 Gas-liquid discharge synergistic composite photocatalyst water treatment device and treatment method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CONEJO BELLO JUANA VALENTINA: "ANÁLISIS DE DOS DIFERENTES TIPOS DE MEZCLAS TiO2/CARBÓN ACTIVADO Y SU APLICACIÓN EN MÉTODOS FOTOCATALÍTICOS PARA LA REMOCIÓN DE COLORANTES.", MASTER'S THESIS, FUNDACION UNIVERSIDAD DE AMERICA, 1 January 2020 (2020-01-01), XP093173921 *
FERREIRA ANA P, OLIVEIRA RAISA C. P.; MATEUS MARIA MARGARIDA; SANTOS DIOGO M. F.: "A Review of the Use of Electrolytic Cells for Energy and Environmental Applications", ENERGIES, M D P I AG, CH, vol. 16, no. 4, CH , pages 1593, XP093173926, ISSN: 1996-1073, DOI: 10.3390/en16041593 *
KLIAUGAITĖ DAINA; YASADI KAMURAN; EUVERINK GERT-JAN; BIJMANS MARTIJN F.M.; RACYS VIKTORAS: "Electrochemical removal and recovery of humic-like substances from wastewater", SEPARATION AND PURIFICATION TECHNOLOGY, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 108, 16 February 2013 (2013-02-16), NL , pages 37 - 44, XP028527314, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2013.01.055 *
LIANG SHUYU, ALTAF NAVEED; HUANG LIANG; GAO YANSHAN; WANG QIANG: "Electrolytic cell design for electrochemical CO2 reduction", JOURNAL OF CO2 UTILIZATION, ELSEVIER, NL, vol. 35, 1 January 2020 (2020-01-01), NL , pages 90 - 105, XP093173927, ISSN: 2212-9820, DOI: 10.1016/j.jcou.2019.09.007 *

Also Published As

Publication number Publication date
CO2022016422A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
EP3452411B1 (en) A photoelectrochemical cell for wastewater treatment and method of fabricating the photoelectrochemical cell
Hussain et al. Photo-assisted electrochemical degradation of sulfamethoxazole using a Ti/Ru0. 3Ti0. 7O2 anode: Mechanistic and kinetic features of the process
Luo et al. Enhanced photoelectrocatalytic degradation of 2, 4-dichlorophenol by TiO2/Ru-IrO2 bifacial electrode
Kraft Electrochemical water disinfection: a short review
Khataee et al. Photoassisted electrochemical degradation of an azo dye using Ti/RuO2 anode and carbon nanotubes containing gas-diffusion cathode
CN107473337A (en) The apparatus and method of electro-catalysis membrane and three-diemsnional electrode coupling processing used water difficult to degradate
Mesones et al. Synergistic and antagonistic effects in the photoelectrocatalytic disinfection of water with TiO2 supported on activated carbon as a bipolar electrode in a novel 3D photoelectrochemical reactor
CN110759437B (en) Method for electrochemical-UV composite treatment of refractory organic matters
JP2011246800A (en) Membrane-electrode assembly, electrolytic cell using the same, apparatus and method for producing ozone water, disinfection method, and method for treating waste water or waste fluid
CN105236628B (en) Electrical enhanced photocatalysis degraded sewage device
US20230129237A1 (en) Water-processing electrochemical reactor
JP2010064045A (en) Hybrid type water purifying apparatus and water purifying method using the same
WO2020171238A1 (en) Water electrolysis apparatus, and sterilization/cleaning method and method for decomposing/removing harmful substance, each using water electrolysis apparatus
Zhang et al. A review of electrochemical oxidation technology for advanced treatment of medical wastewater
Vasconcelos et al. Recent advances on modified reticulated vitreous carbon for water and wastewater treatment–A mini-review
Shao et al. New architecture of a variable anode for full-time efficient electrochemical oxidation of organic wastewater with variable Cl− concentration
Bashir et al. Critical assessment of advanced oxidation processes and bio-electrochemical integrated systems for remediating emerging contaminants from wastewater
CN104803444B (en) Advanced oxidation pollution control technology and device
US20220242752A1 (en) Modular photocatalytic system
WO2024105569A1 (en) System for treating water, generating hydrogen and generating synthesis gas
Hussain et al. Electrochemical treatment of antibiotics in wastewater
CN103611533A (en) Preparation method of catalytic particles for device for composite catalytic oxidation treatment on organic wastewater
US20130277230A1 (en) Water cleaning and sanitising apparatus
CN204529374U (en) Purification treatment device
JP2001000828A (en) Decomposition method and device provided with adsorption electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890986

Country of ref document: EP

Kind code of ref document: A1