WO2024103729A1 - 一种电池模组、储能机柜及储能*** - Google Patents

一种电池模组、储能机柜及储能*** Download PDF

Info

Publication number
WO2024103729A1
WO2024103729A1 PCT/CN2023/102167 CN2023102167W WO2024103729A1 WO 2024103729 A1 WO2024103729 A1 WO 2024103729A1 CN 2023102167 W CN2023102167 W CN 2023102167W WO 2024103729 A1 WO2024103729 A1 WO 2024103729A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
exhaust duct
energy storage
battery module
exhaust
Prior art date
Application number
PCT/CN2023/102167
Other languages
English (en)
French (fr)
Inventor
陈少镇
周建兵
刘承勇
邓小邑
陈诚
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024103729A1 publication Critical patent/WO2024103729A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular to a battery module, an energy storage cabinet and an energy storage system.
  • Energy storage systems can be used as load balancing devices and backup power supplies in data centers to power servers, supercomputers and other electronic equipment.
  • Energy storage systems can usually be set up in containers or computer rooms, which may include multiple energy storage cabinets, each of which may include multiple battery modules, and each battery module may be formed by connecting multiple battery cells.
  • the battery cells inside the energy storage cabinet generally use lithium iron phosphate, which has a certain probability of thermal runaway risk during use.
  • Current lithium battery energy storage products basically do not adopt thermal runaway diffusion prevention solutions. If one of the battery cells has thermal runaway, the heat will quickly transfer to the adjacent battery cells, inducing thermal runaway of the adjacent battery cells. Once the heat spreads, the entire battery module and even the entire energy storage cabinet will successively experience thermal runaway, seriously affecting the safety of the energy storage system.
  • the present application provides a battery module, an energy storage cabinet and an energy storage system to reduce the risk of thermal runaway spreading and improve the safety of battery module use.
  • the present application provides a battery module, which may include a chassis, a plurality of battery cells and a first exhaust duct, wherein the plurality of battery cells and the first exhaust duct are arranged in the chassis, and the chassis may be provided with a first exhaust port.
  • the battery cell may include a battery cover and an explosion-proof valve, wherein a through hole is arranged on the battery cover, and the through hole can connect the inside of the battery cell with the outside, and the explosion-proof valve covers the through hole and blocks it.
  • the first exhaust duct may be connected to the outside of the chassis through the first exhaust port, and the first exhaust duct is provided with an air inlet connected to the through hole of each battery cell, each air inlet is covered with a heat-resistant film, and the opening pressure of the heat-resistant film is less than the opening pressure of the explosion-proof valve.
  • the explosion-proof valve is opened under the pressure inside the battery cell, the pressure will inevitably open the heat-resistant film, so that the high-temperature gas inside the battery cell can smoothly enter the first exhaust duct, and be discharged to the outside of the chassis through the first exhaust duct, thereby reducing the diffusion of heat in the chassis.
  • the heat-resistant membrane can reduce the heat transferred to the normal battery cells by the high-temperature gas through the air inlet, thereby effectively reducing the risk of thermal runaway spread and improving the safety of battery module use.
  • the heat-resistant film may be bonded and fixed at the air inlet.
  • the material of the heat-resistant film may include, but is not limited to, heat-insulating materials such as glass fiber, asbestos, and rock wool.
  • thermal insulation pads may be provided between adjacent battery cells to reduce heat transfer between the battery cells and lower the risk of thermal runaway spreading within the battery module.
  • the thermal insulation mat may be, but is not limited to, fiberglass, asbestos, rock wool, aerogel felt, vacuum panel, and the like.
  • the battery module may further include an insulating bracket, which may continuously cover the battery covers of a plurality of battery cells, and the first exhaust duct may be fixed on the insulating bracket to improve its installation convenience in the chassis.
  • the insulating bracket may also include an arched portion protruding away from the battery cover, and a bottom wall is provided on the side of the arched portion facing the battery cover, the bottom wall may be provided in contact with the battery cover, and avoidance holes are provided at the positions of the through holes of each battery cell respectively.
  • the first exhaust duct may be embedded in the arched portion and the bottom wall, which not only facilitates the installation and fixation of the first exhaust duct, but also can utilize the bottom wall to electrically isolate the battery cover from the first exhaust duct, thereby improving the safety of the battery module.
  • the heat-resistant film may be specifically disposed on the inner wall of the bottom wall and cover the avoidance hole.
  • the insulating bracket may further include a first fixing portion and a second fixing portion located on both sides of the arched portion.
  • the battery cover of each battery cell is provided with a first pole and a second pole, the first fixing portion is located on the side of the first pole away from the battery cell, and the first fixing portion and the first pole of each battery cell are respectively provided with a first opening; the second fixing portion is located on the side of the second pole away from the battery cell, and the second fixing portion and the second pole of each battery cell are respectively provided with a second opening.
  • the battery module also It may include a bus bar, which is arranged on the side of the insulating bracket away from the battery cover plate, and may include multiple conductive parts, each of which can be used to electrically connect two adjacent battery cells.
  • the conductive part can be electrically connected to the first pole of one of the battery cells through a first opening, and to the second pole of the other battery cell through a second opening, so that the battery cells in the battery module can be connected in series using multiple conductive parts.
  • the first exhaust pipe may be made of galvanized steel, which has strong corrosion resistance and can thus increase the service life of the first exhaust pipe.
  • the present application also provides an energy storage cabinet, which may include a cabinet, a second exhaust duct, and a plurality of battery modules as in any possible implementation scheme of the first aspect described above, wherein the plurality of battery modules and the second exhaust duct are arranged in the cabinet.
  • the cabinet may be provided with a second exhaust port, through which the second exhaust duct may be connected to the outside of the cabinet, and the second exhaust duct may be respectively connected to the first exhaust ports of each battery module.
  • the gas may be transported to the second exhaust duct through the first exhaust port by the first exhaust duct, and further discharged to the outside of the cabinet through the second exhaust port by the second exhaust duct.
  • the high-temperature gas discharged from each battery module in the energy storage cabinet is confined in the second exhaust duct, so the heat transfer between each battery module is limited, which can effectively reduce the risk of thermal runaway diffusion inside the energy storage cabinet.
  • the second exhaust duct may be provided with connecting pipes corresponding to the first exhaust ports of each battery module, and the second exhaust duct may be connected to each first exhaust port through the corresponding connecting pipe.
  • the end of the extension pipe may be welded to the first exhaust port of the corresponding battery module.
  • the end of the extension pipe may be provided with a flange, and the flange may be connected to the chassis of the corresponding battery module by a fastener.
  • a sealing ring may be squeezed between the flange at the end of each connecting pipe and the chassis of the corresponding battery module to reduce the risk of high-temperature gas leakage at the connection.
  • the present application also provides an energy storage system, which may include a container, a third exhaust duct, and a plurality of energy storage cabinets as in any possible implementation scheme of the second aspect described above, and the plurality of energy storage cabinets and the third exhaust duct are arranged in the container.
  • the container may be provided with a third exhaust port, and the third exhaust duct may be connected to the outside of the container through the third exhaust port, and the third exhaust duct is respectively connected to the second exhaust port of each energy storage cabinet.
  • the third exhaust duct may further discharge the high-temperature gas to the outside of the container through the third exhaust port.
  • the high-temperature gas discharged from each energy storage cabinet in the container is confined in the third exhaust duct, so the heat transfer between each energy storage cabinet is limited, which can effectively reduce the risk of thermal runaway diffusion inside the container.
  • the third exhaust duct may include a main duct and multiple branch ducts, and the multiple branch ducts are arranged in a one-to-one correspondence with the multiple energy storage cabinets.
  • One end of the branch duct is connected to the second exhaust port of the energy storage cabinet, and the other end is connected to the main duct.
  • the main duct is connected to the third exhaust port.
  • FIG1 is a schematic diagram of the thermal runaway process of a battery cell
  • FIG2 is a schematic diagram of the structure of a battery module provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a cross-sectional structure of a battery cell provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of an energy storage cabinet provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of an energy storage system provided in an embodiment of the present application.
  • Energy storage systems are devices that store electrical energy through a certain medium and release the stored energy to generate electricity when needed. They can be used in data centers as load balancing devices and backup power sources to power servers, supercomputers and other electronic equipment. They can also be used as power sources in new energy vehicles to provide power for the vehicle's driving.
  • the energy storage system can usually be placed in a container or a computer room.
  • the energy storage system may include multiple energy storage cabinets, each of which may include multiple battery modules, and each battery module may be formed by multiple battery cells connected in series.
  • the battery cells inside the energy storage cabinet generally use lithium iron phosphate, which has a certain probability of thermal runaway risk during use.
  • the risk of thermal runaway refers to the overheating, fire, and explosion phenomenon caused by the rapid change of the battery's self-temperature rise rate due to the heat release chain reaction of the battery cells in the cabinet.
  • the causes of thermal runaway usually include extrusion, puncture, short circuit, overcharging, and overheating.
  • FIG 1 is a schematic diagram of the thermal runaway process of a battery cell.
  • lithium battery energy storage products basically do not adopt a thermal runaway diffusion prevention solution. If one battery cell experiences thermal runaway, the heat will quickly transfer to the adjacent battery cells, inducing thermal runaway of the adjacent battery cells. Once the heat spreads, the entire battery module and even the entire energy storage cabinet will successively experience thermal runaway, seriously affecting the safety of the energy storage system.
  • the present application provides a battery module, an energy storage cabinet and an energy storage system to reduce the risk of thermal runaway and improve the safety of the battery module.
  • the packaging structure provided in the present application is described in detail below in conjunction with the accompanying drawings.
  • FIG. 2 is a schematic diagram of the structure of a battery module provided in an embodiment of the present application.
  • the battery module 10 may include a chassis 11 and a plurality of battery cells 12, and the plurality of battery cells 12 are disposed in the chassis 11.
  • the plurality of battery cells 12 may be arranged side by side along the length direction of the chassis 11, and adjacent battery cells 12 may be spaced apart by thermal insulation pads 13 to reduce heat transfer between the battery cells 12 and reduce the risk of thermal runaway diffusion inside the battery module 10.
  • the thermal insulation pad 13 may be, but is not limited to, fiberglass, asbestos, rock wool, aerogel felt, vacuum panels, and the like.
  • FIG3 is a schematic diagram of the cross-sectional structure of a battery cell provided in an embodiment of the present application.
  • the battery cell 12 may include a battery cover 121, a battery shell 122, and a battery cell (not shown in the figure), and the battery cover 121 and the battery shell 122 may be fixedly connected to form a sealed cavity, and the battery cell is arranged in the sealed cavity.
  • a first pole 123 and a second pole 124 may be provided on the battery cover 121, wherein the first pole 123 and the second pole 124 may be a positive pole and a negative pole, respectively.
  • the first pole 123 may be electrically connected to the positive terminal of the battery cell, and the second pole 124 may be electrically connected to the negative terminal of the battery cell.
  • the battery cover 121 may be provided with a first mounting hole and a second mounting hole, and the first mounting hole and the second mounting hole respectively penetrate the battery cover 121, and the first pole 123 may be electrically connected to the positive terminal of the battery cell through the first mounting hole, and the second pole 124 may be electrically connected to the negative terminal of the battery cell through the second mounting hole.
  • the battery cover plate 121 may also be provided with a liquid injection hole, which may penetrate the battery cover plate so as to facilitate injecting the electrolyte into the interior of the battery cell through the liquid injection hole.
  • the battery module 10 may further include an insulating bracket 14 and a busbar 15.
  • the insulating bracket 14 may be disposed on the battery cover 121 of the plurality of battery cells 12, and the busbar 15 may be disposed on the side of the insulating bracket 14 away from the battery cover 121.
  • the insulating bracket 14 may include a first fixing portion 141 disposed to cover the first pole 123 of each battery cell 12, and a second fixing portion 142 disposed to cover the second pole 124 of each battery cell 12.
  • the first fixing portion 141 is provided with a first opening 1411 at a position corresponding to the first pole 123 of each battery cell 12.
  • the second fixing portion 142 is provided with a second opening 1421 at a position corresponding to the second pole 124 of each battery cell 12.
  • the bus 15 may include multiple conductive parts 151, each conductive part 151 can be used to electrically connect two adjacent battery cells 12. For the two adjacent battery cells 12, the conductive part 151 can be electrically connected to the first pole 123 of one of the battery cells 12 through the first opening 1411, and to the second pole 124 of the other battery cell 12 through the second opening 1421. In this way, the multiple conductive parts 151 can be used to connect the battery cells 12 in the battery module 10 in series.
  • the conductive portion 151 on the left side can be used to electrically connect the first pole 123 of the battery cell 12 with the second pole 124 of the previous battery cell 12
  • the conductive portion 151 on the right side can be used to electrically connect the second pole 124 of the battery cell 12 with the first pole 123 of the next battery cell 12.
  • the conductive portion 151 can be roughly in a Z-shaped structure.
  • the positive and negative terminals of the battery cell and the electrolyte will continuously react to generate gas.
  • the interior of the battery cell 12 is a sealed cavity formed by the battery shell 122 and the battery cover 121.
  • the pressure inside the battery cell 12 will continue to increase due to accumulation.
  • an explosion-proof valve 125 can also be provided on the battery cover 121.
  • the explosion-proof valve 125 When the battery cell 12 fails and the pressure inside it is greater than the opening pressure of the explosion-proof valve 125, the explosion-proof valve 125 will open to discharge the gas inside the battery cell 12 to reduce the temperature of the battery cell 12 and achieve the purpose of pressure relief, thereby preventing the battery cell 12 from further exploding or other more serious safety problems.
  • the battery cover 121 When the explosion-proof valve 125 is installed on the battery cover 121, the battery cover 121 may be provided with a through hole 1211 that connects the inside of the battery cell 12 with the outside.
  • the explosion-proof valve 125 may be welded and fixed to one side surface of the battery cover 121, and the through hole 1211 is blocked.
  • the through hole 1211 may be located between the first pole 123 and the second pole 124.
  • the explosion-proof valve 125 may be provided on the side of the battery cover 121 facing the inside of the battery cell 12, or may be provided on the side of the battery cover 121 facing away from the inside of the battery cell 12.
  • the present application does not limit this, as long as the blocking of the through hole 1211 can be achieved.
  • the embodiment shown in FIG. 3 is described by taking the explosion-proof valve 125 provided on the side of the battery cover 121 facing the inside of the battery cell 12 as an example.
  • the chassis 11 may be provided with a first exhaust port 111, and the chassis 11 may be provided with a first exhaust duct 16.
  • the first exhaust duct 16 may be connected to the outside of the chassis 11 through the first exhaust port 111, and is also connected to the through holes 1211 provided on the battery cover 121 of each battery cell 12.
  • the explosion-proof valve 125 of the battery cell 12 is opened, the high-temperature gas inside the battery cell 12 can enter the first exhaust duct 16 through the through hole 1211, and further be discharged to the outside of the chassis 11 through the first exhaust duct 16.
  • the first exhaust duct 16 can be made of galvanized steel with strong corrosion resistance to improve the service life of the first exhaust duct 16.
  • the first exhaust duct 16 may be provided with an air inlet 161 connected to the through hole 1211 of each battery cell 12, and the high-temperature gas in the battery cell 12 may enter the first exhaust duct 16 through the through hole 1211 of the battery cover 121 and the corresponding air inlet 161 in sequence.
  • each air inlet 161 of the first exhaust duct 16 may be provided with a heat-resistant film 162, and the heat-resistant film 162 may cover the air inlet 161.
  • the heat-resistant film 162 may be bonded and fixed to the air inlet 161, and the material of the heat-resistant film 162 includes but is not limited to insulating materials such as glass fiber, asbestos, and rock wool.
  • the interior of the battery cell 12 is separated from the first exhaust duct 16 by two barriers, the explosion-proof valve 125 and the heat-resistant film 162.
  • the opening pressure of the heat-resistant film 162 is less than the opening pressure of the explosion-proof valve 125. In this way, when the explosion-proof valve 125 is opened under the pressure inside the battery cell 12, the pressure will inevitably open the heat-resistant film 162, so that the gas inside the battery cell 12 can smoothly enter the first exhaust duct 16.
  • the high-temperature gas in the first exhaust duct 16 can prevent the high-temperature gas from transferring heat to the normal battery cell 12 through the air inlet 161 due to the heat insulation effect of the heat-resistant film 162 when flowing through the normal battery cell 12, thereby reducing the risk of heat diffusion in the entire battery module 10 and improving the safety of the battery module 10.
  • the first exhaust duct 16 may extend along the arrangement direction of each battery cell 12, that is, along the length direction of the chassis 11, so as to facilitate the first exhaust duct 16 to be connected with the through hole 1211 of each battery cell 12.
  • the first exhaust port 111 of the chassis 11 may be provided on a side wall of the chassis 11 facing the battery cover plate 121. In this case, the first exhaust duct 16 is located between the battery cover plate 121 and the side wall of the chassis 11, so as to facilitate the first exhaust duct 16 to be connected with the first exhaust port 111.
  • the first exhaust duct 16 can be arranged on the insulating bracket 14 to improve its installation convenience in the chassis 11.
  • the insulating bracket 14 can include an arched portion 143 protruding away from the battery cover plate 121, and the arched portion 143 can extend along the length direction of the chassis 11, and the arched portion 143 is provided with a bottom wall 144 on the side facing the battery cover plate 121, so that the arched portion 143 and the bottom wall 144 can be surrounded to form a tubular structure, and the first exhaust duct 16 can be embedded in the tubular structure.
  • the bottom wall 144 can be arranged in contact with the battery cover plate 121 of each battery cell 12, and the bottom wall 144 can be provided with avoidance holes 1441 at the positions of the through holes 1211 of each battery cell 12, so that the through holes 1211 and the first exhaust duct 16 can be connected.
  • the tubular structure formed by the arched portion 143 and the bottom wall 144 can be regarded as a two-layer structure including an inner layer and an outer layer
  • the first exhaust duct 16 is an interlayer located between the inner layer structure 1431 and the outer layer structure 1432
  • the heat-resistant film 162 can be specifically arranged on the inner wall of the bottom wall 144 and cover the avoidance hole 1441.
  • the insulating bracket 14 can be formed by covering the first exhaust pipe 16 by injection molding. This not only improves the connection reliability between the insulating bracket 14 and the first exhaust pipe 16, but also saves subsequent assembly steps, thereby helping to simplify the overall preparation process of the battery module 10.
  • FIG4 is a schematic diagram of the structure of the energy storage cabinet provided in an embodiment of the present application.
  • the energy storage cabinet 100 may include a cabinet 20 and a plurality of battery modules 10 as described in the above embodiments, and the plurality of battery modules 10 are arranged in the cabinet 20.
  • a plurality of battery modules 10 can be arranged in parallel along the height direction of the cabinet 20.
  • a second exhaust port 21 can be provided on the cabinet 20, and a second exhaust duct 30 can be provided in the cabinet 20.
  • the second exhaust duct 30 can be connected to the outside of the cabinet 20 through the second exhaust port 21, and can also be connected to the first exhaust port 111 of each battery module 10.
  • the material of the second exhaust duct 30 can also be galvanized steel.
  • the high-temperature gas can be transported from the first exhaust duct 16 to the second exhaust duct 30 through the first exhaust port 111, and further discharged from the second exhaust duct 30 to the outside of the cabinet 20 through the second exhaust port 21.
  • the high-temperature gas discharged from each battery module 10 in the energy storage cabinet 100 is confined in the second exhaust duct 30, so the heat transfer between each battery module 10 is limited, which can effectively reduce the risk of thermal runaway spreading inside the energy storage cabinet 100.
  • the second exhaust duct 30 may extend along the arrangement direction of each battery module 10, that is, along the length direction of the cabinet 20, so as to connect the second exhaust duct 30 with the first exhaust port 111 of each battery module 10.
  • the second exhaust duct 30 may be provided with a connecting pipe 31 corresponding to the first exhaust port 111 of each battery module 10 in the cabinet 20, and the connecting pipe 31 may be welded to the first exhaust port 111 of the corresponding battery module 10, so that the first exhaust port 111 is connected to the second exhaust duct 30 through the corresponding connecting pipe 31.
  • a flange may be provided at the end of the connecting pipe 31, and the flange may be connected to the chassis 11 of the corresponding battery module 10 by fasteners, so as to relatively fix the second exhaust duct 30 and each battery module 10, and realize the communication between the second exhaust duct 30 and the first exhaust port 111 of each battery module 10.
  • a sealing ring may be squeezed and provided between the flange at the end of each connecting pipe 31 and the chassis 11 of the corresponding battery module 10 to reduce the risk of high-temperature gas leakage at the connection.
  • the sealing ring may be made of a high-temperature resistant and corrosion-resistant material, such as but not limited to rubber, graphite, asbestos, and the like.
  • FIG. 5 is a schematic diagram of the structure of the energy storage system provided in an embodiment of the present application.
  • the energy storage system 1000 may include a container 200 and a plurality of energy storage cabinets 100 as described in the aforementioned embodiments, and the plurality of energy storage cabinets 100 are arranged in the container 200.
  • the plurality of energy storage cabinets 100 may be arranged in an array in the container 200, as shown in FIG. 5 , where the plurality of energy storage cabinets 100 are arranged in four rows and two columns. It should be understood that the number and arrangement of the energy storage cabinets 100 in FIG. 5 are for illustration only, and do not limit the internal structure of the energy storage system 1000.
  • the container 200 may be provided with a third exhaust port 201, and the container 200 may also be provided with a third exhaust duct 300, which may be connected to the outside of the container 200 through the third exhaust port 201, and may also be connected to the second exhaust port 21 of each energy storage cabinet 100.
  • the material of the third exhaust duct 300 may also be galvanized steel.
  • the third exhaust duct 300 may include a main duct 310 and a plurality of branch ducts 320, wherein the plurality of branch ducts 320 are arranged in one-to-one correspondence with the plurality of energy storage cabinets 100, wherein one end of the branch duct 320 is connected to the second exhaust port 21 of the energy storage cabinet 100, and the other end is connected to the main duct 310, and the main duct 310 is connected to the third exhaust port 201.
  • This design is conducive to simplifying the structure of the third exhaust duct 300 and saving the space occupied by the third exhaust duct 300 in the container 200. At this time, the high-temperature gas discharged from each energy storage cabinet 100 can be collected to the main duct 310 through the corresponding branch ducts 320, and finally discharged from the third exhaust port 201.
  • the branch pipe 320 can be welded to the second exhaust port 21 of the corresponding energy storage cabinet 100, so as to achieve the connection between the third exhaust pipe 300 and the second exhaust port 21.
  • the end of the branch pipe 320 away from the main pipe 310 can be provided with a flange, and the flange and the cabinet body of the corresponding energy storage cabinet 100 can be fastened and connected by fasteners, so as to relatively fix the third exhaust pipe 300 and each energy storage cabinet 100, and achieve the connection between the third exhaust pipe 300 and the second exhaust port 21 of each energy storage cabinet 100.
  • a sealing ring can be squeezed and provided between the flange at the end of each branch pipe 320 and the cabinet body of the corresponding energy storage cabinet 100 to reduce the risk of high-temperature gas leakage at the connection.
  • the sealing ring here can also be made of high-temperature resistant and corrosion-resistant materials such as rubber, graphite, and asbestos.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种电池模组、储能机柜及储能***,以降低热失控扩散的风险,提高电池模组的使用安全性。电池模组包括机箱、设置于机箱内的多个电池单体以及第一排气管道,其中,机箱设置有第一排气口;电池单体包括电池盖板和防爆阀,电池盖板设置有通孔,防爆阀用于封堵该通孔;第一排气管道通过第一排气口与机箱的外部连通,且第一排气管道设置有与各个电池单体的通孔连通的进气口,每个进气口处覆盖有耐热膜,耐热膜的开启压力小于防爆阀的开启压力。

Description

一种电池模组、储能机柜及储能***
相关申请的交叉引用
本申请要求在2022年11月16日提交中国专利局、申请号为202211438198.2、申请名称为“一种电池模组、储能机柜及储能***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及到一种电池模组、储能机柜及储能***。
背景技术
储能***可作为负荷平衡装置和备用电源应用于数据中心中,为服务器、超级计算机等电子设备进行供电。储能***通常可设置于集装箱或者机房内,其可包括多个储能机柜,每个储能机柜内又可包括多个电池模组,而每个电池模组又可由多个电池单体连接形成。储能机柜内部的电池单体普遍使用磷酸铁锂,其在使用过程中存在一定概率的热失控风险,而当前锂电类储能产品基本未采用防热失控扩散方案,若其中一个电池单体发生热失控,热量会很快传递到相邻的电池单体,诱发相邻的电池单体也发生热失控。热量一旦扩散,整个电池模组、甚至整个储能机柜都会相继发生热失控,严重影响储能***的使用安全性。
发明内容
本申请提供了一种电池模组、储能机柜及储能***,以降低热失控扩散的风险,提高电池模组的使用安全性。
第一方面,本申请提供了一种电池模组,该电池模组可包括机箱、多个电池单体以及第一排气管道,多个电池单体以及第一排气管道设置于机箱内,且机箱可设置有第一排气口。电池单体可包括电池盖板和防爆阀,电池盖板上设置有通孔,该通孔可将电池单体的内部与外部连通,防爆阀覆盖于该通孔并将其封堵。第一排气管道可通过第一排气口与机箱的外部连通,且第一排气管道设置有与各个电池单体的通孔连通的进气口,每个进气口处覆盖有耐热膜,且耐热膜的开启压力小于防爆阀的开启压力。这样,当防爆阀在电池单体内部的压力作用下开启后,该压力也必然会将耐热膜打开,从而使得电池单体内部的高温气体顺利进入第一排气管道内,并通过第一排气管道排至机箱的外部,减小热量在机箱内的扩散。并且,对于整个电池模组来说,即使同个电池模组内的一个或多个电池单体出现故障而向第一排气管道内排气,第一排气管道内的高温气体在流经正常的电池单体时,耐热膜可以减少高温气体通过进气口传递给正常的电池单体的热量,从而可以有效减小热失控扩散的风险,提高电池模组的使用安全性。
在一些可能的实施方案中,耐热膜可以粘接固定于进气口处。耐热膜的材质可以包括但不限于为玻璃纤维、石棉、岩棉等绝热材料。
在一些可能的实施方案中,相邻的电池单体之间可以设置有隔热垫,以减少电池单体之间的热量传递,降低电池模组内部热失控扩散的风险。
示例性地,隔热垫可以但不限于为玻璃纤维、石棉、岩棉、气凝胶毡、真空板等等。
在一些可能的实施方案中,电池模组还可以包括绝缘支架,该绝缘支架可连续覆盖于多个电池单体的电池盖板,第一排气管道可固定在绝缘支架上,以提高其在机箱内的安装便利性。
在一些可能的实施方案中,绝缘支架还可包括背向电池盖板凸起的拱起部,拱起部朝向电池盖板的一侧设置有底壁,该底壁可与电池盖板接触设置,且底壁对应各个电池单体的通孔的位置分别设置有避让孔,第一排气管道可嵌设于拱起部与底壁内,这样既方便第一排气管道的安装固定,也可以利用底壁将电池盖板与第一排气管道进行电气隔离,从而提高电池模组的使用安全性。
在一些可能的实施方案中,耐热膜具体可设置于底壁的内壁,并覆盖避让孔设置。
在一些可能的实施方案中,绝缘支架还可以包括位于拱起部两侧的第一固定部和第二固定部。每个电池单体的电池盖板设置有第一极柱和第二极柱,第一固定部位于第一极柱背离电池单体的一侧,且第一固定部与每个电池单体的第一极柱对应的位置分别设置有第一开孔;第二固定部位于第二极柱背离电池单体的一侧,且第二固定部与每个电池单体的第二极柱对应的位置分别设置有第二开孔。电池模组还 可以包括汇流排,汇流排设置于绝缘支架背离电池盖板的一侧,其可包括多个导电部,每个导电部可用于电连接相邻的两个电池单体,对于该相邻的两个电池单体,导电部可与其中一个电池单体的第一极柱通过第一开孔电连接,以及与另外一个电池单体的第二极柱通过第二开孔电连接,如此即可利用多个导电部将电池模组内的各个电池单体进行串联。
在一些可能的实施方案中,第一排气管道的材质可以为镀锌钢材。镀锌钢材具有较强的耐腐蚀性,因而可以提高第一排气管道的使用寿命。
第二方面,本申请还提供了一种储能机柜,该储能机柜可包括柜体、第二排气管道以及多个如前述第一方面任一可能的实施方案中的电池模组,多个电池模组和第二排气管道设置于柜体内。柜体可设置有第二排气口,第二排气管道可通过第二排气口与柜体的外部连通,且第二排气管道分别与各个电池模组的第一排气口连通。这样,电池模组内的电池单体将高温气体排至第一排气管道后,可由第一排气管道通过第一排气口输送向第二排气管道,进一步由第二排气管道通过第二排气口排至柜体的外部。在这个过程中,储能机柜内的各个电池模组排出的高温气体被限制在第二排气管道内,因此各个电池模组之间的热量传递有限,这样可以有效减小储能机柜内部热失控扩散的风险。
在一些可能的实施方案中,第二排气管道可设置有与各个电池模组的第一排气口分别对应的连接管,且第二排气管道可通过对应的连接管与各个第一排气口连通。示例性地,延伸管的端部可以焊接于对应的电池模组的第一排气口处。或者,延伸管的端部可设置有凸缘,凸缘与对应的电池模组的机箱可通过紧固件连接,这时,各个连接管端部的凸缘与对应的电池模组的机箱之间可以挤压设置有密封圈,以减小高温气体在连接处泄露的风险。
第三方面,本申请还提供了一种储能***,该储能***可包括集装箱、第三排气管道以及多个如前述第二方面任一可能的实施方案中的储能机柜,多个储能机柜及第三排气管道设置于集装箱内。集装箱可设置有第三排气口,第三排气管道可通过第三排气口与集装箱的外部连通,且第三排气管道分别与各个储能机柜的第二排气口连通。这样,第二排气管道通过第二排气口将高温气体输送向第三排气管道后,可进一步由第三排气管道通过第三排气口排至集装箱的外部。在这个过程中,集装箱内的各个储能机柜排出的高温气体被限制在第三排气管道内,因此各个储能机柜之间的热量传递有限,这样可以有效减小集装箱内部热失控扩散的风险。
在一些可能的实施方案中,第三排气管道可以包括主路管道和多个支路管道,多个支路管道与多个储能机柜一一对应设置,支路管道的一端与储能机柜的第二排气口连通,另一端与主路管道连通,主路管道与第三排气口连通,这种设计有利于简化第三排气管道的结构,节省第三排气管道在集装箱内的占用空间。
附图说明
图1为电池单体的热失控过程示意图;
图2为本申请实施例提供的电池模组的结构示意图;
图3为本申请实施例提供的电池单体的截面结构示意图;
图4为本申请实施例提供的储能机柜的结构示意图;
图5为本申请实施例提供的储能***的结构示意图。
附图标记:
10-电池模组;11-机箱;111-第一排气口;12-电池单体;121-电池盖板;1211-通孔;
122-电池壳;123-第一极柱;124-第二极柱;125-防爆阀;13-隔热垫;14-绝缘支架;
141-第一固定部;1411-第一开孔;142-第二固定部;1421-第二开孔;143-拱起部;
1431-内层结构;1432-外层结构;144-底壁;1441-避让孔;15-汇流排;151-导电部;
16-第一排气管道;161-进气口;162-耐热膜;
100-储能机柜;20-柜体;21-第二排气口;30-第二排气管道;31-连接管;
1000-储能***;200-集装箱;201-第三排气口;300-第三排气管道;310-主路管道;
320-支路管道。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细 描述。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请实施例中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请实施例的附图仅用于示意相对位置关系不代表真实比例。
需要说明的是,在以下描述中阐述了具体细节以便于理解本申请。但是本申请实施例能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请实施例内涵的情况下做类似推广。因此本申请不受下面公开的具体实施方式的限制。
储能***可通过一定介质存储电能,并在需要时将所存能量释放发电的设备,其可作为负荷平衡装置和备用电源应用于数据中心中,为服务器、超级计算机等电子设备进行供电,或者也可以作为动力源应用于新能源汽车中,为汽车的行驶提供动力。
以数据中心中所应用的储能***为例,储能***通常可置于集装箱或者机房内,储能***可包括多个储能机柜,每个储能机柜内又可包括多个电池模组,而每个电池模组又可由多个电池单体串联形成。储能机柜内部的电池单体普遍使用磷酸铁锂,其在使用过程中存在一定概率的热失控风险。其中,热失控风险是指机柜中的电池单体放热连锁反应引起的电池自温升速率急剧变化的过热起火、***现象,引发热失控的原因通常包括挤压、针刺、短路、过充以及过热等等。
参考图1所示,图1为电池单体的热失控过程示意图。当前,锂电类储能产品基本未采用防热失控扩散方案,若其中一个电池单体发生热失控,热量会很快传递到相邻的电池单体,诱发相邻的电池单体也发生热失控。热量一旦扩散,整个电池模组、甚至整个储能机柜都会相继发生热失控,严重影响储能***的使用安全性。
针对上述问题,本申请实施例提供了一种电池模组以及储能机柜和储能***,以降低热失控扩散的风险,提高电池模组的使用安全性。下面结合附图对本申请实施例提供的封装结构进行具体说明。
参考图2所示,图2为本申请实施例提供的电池模组的结构示意图。电池模组10可以包括机箱11以及多个电池单体12,多个电池单体12设置于机箱11内。在一些实施方式中,多个电池单体12可以沿机箱11的长度方向并列设置,相邻的电池单体12之间可通过隔热垫13间隔,以减少电池单体12之间的热量传递,降低电池模组10内部热失控扩散的风险。示例性地,隔热垫13可以但不限于为玻璃纤维、石棉、岩棉、气凝胶毡、真空板等等。
图3为本申请实施例提供的电池单体的截面结构示意图。一并参考图2和图3所示,电池单体12可以包括电池盖板121、电池壳122以及电芯(图中未示出),电池盖板121与电池壳122可以固定连接并形成密封腔体,电芯即设置于密封腔体内。电池盖板121上可设置有第一极柱123和第二极柱124,其中,第一极柱123和第二极柱124可分别为正极柱和负极柱。这时,第一极柱123可与电芯的正极端电连接,第二极柱124可与电芯的负极端电连接。在具体的实现中,电池盖板121可设置有第一安装孔和第二安装孔,第一安装孔和第二安装孔分别贯穿电池盖板121,第一极柱123可通过第一安装孔与电芯的正极端电连接,第二极柱124可通过第二安装孔与电芯的负极端电连接。另外,电池盖板121还可设置有注液孔,该注液孔可以贯穿电池盖板,以便于将电解液通过该注液孔注入至电池单体的内部。
另外,电池模组10还可以包括绝缘支架14和汇流排15,绝缘支架14可以设置于多个电池单体12的电池盖板121上,汇流排15则设置于绝缘支架14背离电池盖板121的一侧。具体实施时,绝缘支架14可包括覆盖各个电池单体12的第一极柱123设置的第一固定部141,以及覆盖各个电池单体12的第二极柱124设置的第二固定部142,第一固定部141对应各个电池单体12的第一极柱123的位置设置有第一开孔1411。第二固定部142对应各个电池单体12的第二极柱124的位置设置有第二开孔1421。汇流排15可包括多个导电部151,每个导电部151可用于将相邻的两个电池单体12进行电连接,对于该相邻的两个电池单体12,导电部151可与其中一个电池单体12的第一极柱123通过第一开孔1411电连接,以及与另外一个电池单体12的第二极柱124通过第二开孔1421电连接,如此即可利用多个导电部151将电池模组10内的各个电池单体12进行串联。
例如,对于图3中所示的电池单体12,左侧的导电部151可用于将该电池单体12的第一极柱123与前一个电池单体12的第二极柱124电连接,右侧的导电部151可用于将该电池单体12的第二极柱124与后一个电池单体12的第一极柱123电连接。这时,导电部151可大致呈Z形结构。
在电池单体12的使用过程中,由于电芯的正、负极端与电解液会不断地发生副反应而产生气体,如前所述,电池单体12内部是由电池壳122与电池盖板121所形成的密封腔体,因此随着气体的不断 积累,电池单体12内部的压力会不断增大。为了防止电池单体12因内部压力过大而出现安全问题,电池盖板121上还可以设置有防爆阀125,当电池单体12发生故障,导致其内部的压力大于防爆阀125的开启压力时,防爆阀125就会开启,从而将电池单体12内部的气体排出,以降低电池单体12的温度,并实现泄压的目的,放置电池单体12进一步发生***等更加严重的安全问题。
在将防爆阀125安装于电池盖板121时,电池盖板121可设置有将电池单体12内部与外部连通的通孔1211,防爆阀125可焊接固定于电池盖板121的一侧表面,并对该通孔1211进行封堵。示例性地,该通孔1211可位于第一极柱123与第二极柱124之间。防爆阀125可以设置于电池盖板121朝向电池单体12内部的一侧,或者也可以设置于电池盖板121背向电池单体12内部的一侧,本申请对此不做限制,只要能够实现对通孔1211的封堵即可,图3中所示的实施例以防爆阀125设置于电池盖板121朝向电池单体12内部的一侧为例进行说明。
请继续参考图2和图3,在一些实施例中,机箱11上可设置有第一排气口111,以及,机箱11内可设置有第一排气管道16,该第一排气管道16可通过第一排气口111与机箱11外部连通,同时还分别与各个电池单体12的电池盖板121上所设置的通孔1211连通。当电池单体12的防爆阀125开启后,电池单体12内部的高温气体可以通过通孔1211进入第一排气管道16内,进一步通过第一排气管道16排至机箱11的外部。示例性地,第一排气管道16可以采用耐腐蚀性较强的镀锌钢材制备而成,以提高第一排气管道16的使用寿命。
在具体的实施例中,第一排气管道16可设置有与各个电池单体12的通孔1211所连通的进气口161,电池单体12内的高温气体可依次通过电池盖板121的通孔1211和对应的进气口161进入第一排气管道16内。另外,第一排气管道16的各个进气口161处可分别设置有耐热膜162,耐热膜162可覆盖进气口161设置。示例性地,耐热膜162可以粘接固定于进气口161处,且耐热膜162的材质包括但不限于为玻璃纤维、石棉、岩棉等绝热材料。
可以看出,在本实施例中,电池单体12内部与第一排气管道16之间通过防爆阀125和耐热膜162两道屏障间隔开来,在具体的实现中,耐热膜162的开启压力小于防爆阀125的开启压力,这样,当防爆阀125在电池单体12内部的压力作用下开启后,该压力也必然会将耐热膜162打开,从而使得电池单体12内部的气体顺利进入第一排气管道16内。对于整个电池模组10来说,即使同个电池模组10内的一个或多个电池单体12出现故障而向第一排气管道16内排气,第一排气管道16内的高温气体在流经正常的电池单体12时,由于耐热膜162的隔热作用,可以防止高温气体通过进气口161将热量传递给正常的电池单体12,从而减小热量在整个电池模组10内扩散的风险,提高电池模组10的使用安全性。
在一些可能的实施例中,第一排气管道16可以沿各个电池单体12的排列方向延伸,即沿机箱11的长度方向延伸,以便于将第一排气管道16与各个电池单体12的通孔1211进行连通。以及,机箱11的第一排气口111可设置于机箱11朝向电池盖板121设置的一侧侧壁,这时,第一排气管道16位于电池盖板121与机箱11的该侧侧壁之间,从而便于将第一排气管道16与第一排气口111进行连通。
继续参考图2和图3所示,在本申请实施例中,第一排气管道16可以设置于绝缘支架14上,以提高其在机箱11内的安装便利性。在具体的实现中,绝缘支架14可以包括背向电池盖板121凸起的拱起部143,该拱起部143可沿机箱11的长度方向延伸,且拱起部143朝向电池盖板121的一侧设置有底壁144,这样,拱起部143与底壁144可以合围形成一个管状结构,第一排气管道16即可以嵌设于该管状结构内。底壁144与各个电池单体12的电池盖板121可以接触设置,且底壁144对应各个电池单体12的通孔1211的位置可分别设置有避让孔1441,以使通孔1211与第一排气管道16之间贯通。这时,拱起部143与底壁144所形成的管状结构可以看作为包括内层和外层两层结构,第一排气管道16为位于内层结构1431和外层结构1432之间的夹层,耐热膜162具体可以设置于底壁144的内壁,并覆盖避让孔1441设置。采用这种设计,既方便第一排气管道16的安装固定,也可以利用底壁144将电池盖板121与第一排气管道16进行电气隔离,从而提高电池模组10的使用安全性。
在一些可能的实施例中,绝缘支架14可以通过注塑的方式包覆第一排气管道16成型,这样不仅可以提高绝缘支架14与第一排气管道16的连接牢靠性,另外还可以省去后续的组装工序,从而有助于简化电池模组10整体的制备工艺。
图4为本申请实施例提供的储能机柜的结构示意图。一并参考图2和图4所示,储能机柜100可以包括柜体20以及多个如前述实施例中所述的电池模组10,多个电池模组10设置于柜体20内。示例性 地,多个电池模组10可以沿柜体20的高度方向并列设置。柜体20上可设置有第二排气口21,以及,柜体20内还可设置有第二排气管道30,该第二排气管道30可通过第二排气口21与柜体20外部连通,此外还分别与各个电池模组10的第一排气口111连通。示例性地,第二排气管道30的材质也可以选用镀锌钢材。
在本实施例中,电池模组10内的电池单体12将高温气体排至第一排气管道16后,可由第一排气管道16通过第一排气口111输送向第二排气管道30,进一步由第二排气管道30通过第二排气口21排至柜体20的外部。在这个过程中,储能机柜100内的各个电池模组10排出的高温气体被限制在第二排气管道30内,因此各个电池模组10之间的热量传递有限,这样可以有效减小储能机柜100内部热失控扩散的风险。
在具体的实现中,第二排气管道30可以沿各个电池模组10的排列方向延伸,也即沿柜体20的长度方向延伸,以便于将第二排气管道30与各个电池模组10的第一排气口111进行连通。另外,第二排气管道30可设置有与柜体20内的各个电池模组10的第一排气口111对应的连接管31,连接管31可以焊接于对应的电池模组10的第一排气口111处,从而使第一排气口111通过对应的连接管31与第二排气管道30连通。
或者,在另外一些实施例中,还可以在连接管31的端部设置凸缘,凸缘与对应的电池模组10的机箱11可以通过紧固件连接,从而将第二排气管道30与各个电池模组10相对固定,并实现第二排气管道30与各个电池模组10的第一排气口111的连通。这时,各个连接管31端部的凸缘与对应的电池模组10的机箱11之间可以挤压设置有密封圈,以减小高温气体在连接处泄露的风险。示例性地,密封圈可以采用耐高温、防腐蚀的材料,如包括但不限于为橡胶、石墨、石棉等等。
参考图5所示,图5为本申请实施例提供的储能***的结构示意图。该储能***1000可以包括集装箱200以及多个如前述实施例中所述的储能机柜100,多个储能机柜100设置于集装箱200内。示例性地,多个储能机柜100在集装箱200内可以阵列设置,如图5中示出了多个储能机柜100呈四行两列布置的情况。应当理解的是,图5中储能机柜100的数量以及排布方式仅作为示意,其并不对储能***1000的内部结构构成限定。
集装箱200上可设置有第三排气口201,以及,集装箱200内还可设置有第三排气管道300,该第三排气管道300可通过第三排气口201与集装箱200外部连通,此外还分别与各个储能机柜100的第二排气口21连通。示例性地,第三排气管道300的材质也可以选用镀锌钢材。采用这种设计,电池模组内的电池单体将高温气体排至第一排气管道后,可由第一排气管道通过第一排气口输送向第二排气管道,进一步由第二排气管道通过第二排气口21输送向第三排气管道300,最后由第三排气管道300通过第三排气口201排至集装箱200的外部。在这个过程中,集装箱200内的各个储能机柜100排出的高温气体被限制在第三排气管道300内,因此各个储能机柜100之间的热量传递有限,这样可以有效减小集装箱200内部热失控扩散的风险。
具体实施时,第三排气管道300可以包括主路管道310和多个支路管道320,多个支路管道320与多个储能机柜100一一对应设置,支路管道320的一端与储能机柜100的第二排气口21连通,另一端与主路管道310连通,主路管道310与第三排气口201连通,这种设计有利于简化第三排气管道300的结构,节省第三排气管道300在集装箱200内的占用空间。此时,各个储能机柜100排出的高温气体可通过各自对应的支路管道320向主路管道310汇集,最后由第三排气口201排出。
在一些实施例中,支路管道320可以焊接于对应的储能机柜100的第二排气口21处,以此实现第三排气管道300与第二排气口21的连通。或者,在另外一些实施例中,支路管道320远离主路管道310的端部可以设置有凸缘,凸缘与对应的储能机柜100的柜体可以通过紧固件紧固连接,从而将第三排气管道300与各个储能机柜100相对固定,并实现第三排气管道300与各个储能机柜100的第二排气口21的连通。这时,各个支路管道320端部的凸缘与对应的储能机柜100的柜体之间可以挤压设置有密封圈,以减小高温气体在连接处泄露的风险。类似地,此处的密封圈也可以采用橡胶、石墨、石棉等耐高温、防腐蚀的材料。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种电池模组,其特征在于,包括机箱、设置于所述机箱内的多个电池单体以及第一排气管道,其中,
    所述机箱设置有第一排气口;
    所述电池单体包括电池盖板和防爆阀,所述电池盖板设置有通孔,所述防爆阀用于封堵所述通孔;
    所述第一排气管道通过所述第一排气口与所述机箱的外部连通,且所述第一排气管道设置有与各个所述电池单体的通孔连通的进气口,每个所述进气口处覆盖有耐热膜,所述耐热膜的开启压力小于所述防爆阀的开启压力。
  2. 如权利要求1所述的电池模组,其特征在于,相邻的所述电池单体之间设置有隔热垫。
  3. 如权利要求1或2所述的电池模组,其特征在于,所述电池模组还包括绝缘支架,所述绝缘支架连续覆盖于多个所述电池单体的电池盖板,所述第一排气管道固定于所述绝缘支架。
  4. 如权利要求3所述的电池模组,其特征在于,所述绝缘支架包括背向所述电池盖板凸起的拱起部,所述拱起部朝向所述电池盖板的一侧设置有底壁,所述底壁与所述电池盖板接触设置,且所述底壁对应所述通孔的位置设置有避让孔;
    所述第一排气管道嵌设于所述拱起部与所述底壁内。
  5. 如权利要求4所述的电池模组,其特征在于,所述耐热膜设置于所述底壁的内壁,且所述耐热膜覆盖所述避让孔。
  6. 如权利要求3至5任一项所述的电池模组,其特征在于,所述绝缘支架还包括位于所述拱起部两侧的第一固定部和第二固定部;
    每个所述电池单体的电池盖板设置有第一极柱和第二极柱,所述第一固定部位于所述第一极柱背离所述电池单体的一侧,且所述第一固定部与每个所述电池单体的第一极柱对应的位置设置有第一开孔,所述第二固定部位于所述第二极柱背离所述电池单体的一侧,且所述第二固定部与每个所述电池单体的第二极柱对应的位置设置有第二开孔;
    所述电池模组还包括汇流排,所述汇流排设置于所述绝缘支架背离所述电池盖板的一侧,所述汇流排包括多个导电部,每个所述导电部用于电连接相邻的两个所述电池单体,所述导电部与其中一个所述电池单体的第一极柱通过所述第一开孔电连接,所述导电部与另一个所述电池单体的第二极柱通过所述第二开孔电连接。
  7. 如权利要求1至6任一项所述的电池模组,其特征在于,所述第一排气管道的材质为镀锌钢材。
  8. 一种储能机柜,其特征在于,包括柜体、设置于所述柜体内的第二排气管道以及多个如权利要求1至7任一项所述的电池模组,其中,
    所述柜体设置有第二排气口;
    所述第二排气管道通过所述第二排气口与所述柜体的外部连通,且所述第二排气管道分别与各个所述电池模组的第一排气口连通。
  9. 如权利要求8所述的储能机柜,其特征在于,所述第二排气管道设置有与各个所述电池模组的第一排气口分别对应的连接管,且所述第二排气管道通过对应的连接管与各个所述第一排气口连通;
    所述延伸管的端部焊接于对应的所述电池模组的第一排气口处;或者
    所述延伸管的端部设置有凸缘,所述凸缘与对应的所述电池模组的机箱通过紧固件连接。
  10. 一种储能***,其特征在于,包括集装箱设置于所述集装箱内的第三排气管道以及多个如权利要求8或9所述的储能机柜,其中,
    所述集装箱设置有第三排气口;
    所述第三排气管道通过所述第三排气口与所述集装箱的外部连通,且所述第三排气管道分别与各个所述储能机柜的第二排气口连通。
PCT/CN2023/102167 2022-11-16 2023-06-25 一种电池模组、储能机柜及储能*** WO2024103729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211438198.2A CN115911647A (zh) 2022-11-16 2022-11-16 一种电池模组、储能机柜及储能***
CN202211438198.2 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024103729A1 true WO2024103729A1 (zh) 2024-05-23

Family

ID=86473918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102167 WO2024103729A1 (zh) 2022-11-16 2023-06-25 一种电池模组、储能机柜及储能***

Country Status (2)

Country Link
CN (1) CN115911647A (zh)
WO (1) WO2024103729A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115911647A (zh) * 2022-11-16 2023-04-04 华为数字能源技术有限公司 一种电池模组、储能机柜及储能***
CN116487795B (zh) * 2023-06-25 2023-11-21 深圳市宾迪奇千科技有限公司 一种新能源储能柜及储能***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200098281A (ko) * 2019-02-12 2020-08-20 한화디펜스 주식회사 전지 시스템
CN111668422A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池模组、动力电池包和车辆
US20210218087A1 (en) * 2019-06-17 2021-07-15 Lg Chem, Ltd. Battery module including cooling member, and battery pack and energy storage system including the same
CN215527822U (zh) * 2021-09-08 2022-01-14 远景动力技术(江苏)有限公司 电池模组
CN215680882U (zh) * 2021-06-16 2022-01-28 厦门海辰新能源科技有限公司 一种电池包
WO2022042385A1 (zh) * 2020-08-28 2022-03-03 深圳市璞厉科技有限公司 一种电池组
CN115911647A (zh) * 2022-11-16 2023-04-04 华为数字能源技术有限公司 一种电池模组、储能机柜及储能***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200098281A (ko) * 2019-02-12 2020-08-20 한화디펜스 주식회사 전지 시스템
CN111668422A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池模组、动力电池包和车辆
US20210218087A1 (en) * 2019-06-17 2021-07-15 Lg Chem, Ltd. Battery module including cooling member, and battery pack and energy storage system including the same
WO2022042385A1 (zh) * 2020-08-28 2022-03-03 深圳市璞厉科技有限公司 一种电池组
CN215680882U (zh) * 2021-06-16 2022-01-28 厦门海辰新能源科技有限公司 一种电池包
CN215527822U (zh) * 2021-09-08 2022-01-14 远景动力技术(江苏)有限公司 电池模组
CN115911647A (zh) * 2022-11-16 2023-04-04 华为数字能源技术有限公司 一种电池模组、储能机柜及储能***

Also Published As

Publication number Publication date
CN115911647A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2024103729A1 (zh) 一种电池模组、储能机柜及储能***
WO2018105878A1 (en) Battery system
CN112736324A (zh) 一种带液冷的软包电池***
WO2010044553A2 (ko) 냉각 효율성이 향상된 전지모듈 어셈블리
WO2011145830A2 (ko) 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
CN204809357U (zh) 电池组热管理组件
CN213026259U (zh) 一种蓄能电池模组、电池蓄能***及车辆
WO2022037143A1 (zh) 一种电池以及用电设备
CN210040418U (zh) 一种燃料电池电堆模块流体分配结构
WO2014081651A1 (en) A fuel cell system hot box insulation
WO2023125086A1 (zh) 电池模组、电池包和储能***
WO2023072224A1 (zh) 圆柱电芯模组
WO2023206828A1 (zh) 电池箱箱体结构、电芯和电池包
WO2019245128A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
CN210607385U (zh) 电池包及车辆
JP7275168B2 (ja) バッテリーモジュール
WO2022262844A1 (zh) 一种极柱连接结构、电池及叠片式大容量锂电池
CN116345017A (zh) 动力电池***及新能源汽车
CN212209701U (zh) 一种防热扩散的液冷板和液冷***
CN114709551B (zh) 一种电池设备及其制备方法
CN115692900A (zh) 大容量电池
CN105932186B (zh) 一种电池箱
EP3637537B1 (en) Bypass tube for a cooling circuit of a vehicle battery pack
CN116799428B (zh) 具有防止热扩散功能的液冷电池模组
CN219610561U (zh) 电池箱及电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890171

Country of ref document: EP

Kind code of ref document: A1