WO2024103581A1 - 一种电芯转接件、电芯堆及无模组电池包 - Google Patents

一种电芯转接件、电芯堆及无模组电池包 Download PDF

Info

Publication number
WO2024103581A1
WO2024103581A1 PCT/CN2023/081210 CN2023081210W WO2024103581A1 WO 2024103581 A1 WO2024103581 A1 WO 2024103581A1 CN 2023081210 W CN2023081210 W CN 2023081210W WO 2024103581 A1 WO2024103581 A1 WO 2024103581A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
module
adapter
box
Prior art date
Application number
PCT/CN2023/081210
Other languages
English (en)
French (fr)
Inventor
高灵雷
朋佳丽
董少锁
岑波
Original Assignee
合肥国轩高科动力能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥国轩高科动力能源有限公司 filed Critical 合肥国轩高科动力能源有限公司
Publication of WO2024103581A1 publication Critical patent/WO2024103581A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery manufacturing, and in particular to a battery cell adapter, a battery cell stack and a module-free battery pack.
  • Lithium-ion batteries have developed rapidly since the 1990s and have become an indispensable energy storage device in modern society.
  • national and regional governments have successively introduced a series of policies to support and promote the development of electric vehicles, people's ideas about electric vehicles have changed, and the electric vehicle industry has begun to heat up.
  • people's requirements for the energy density of electric vehicles are getting higher and higher, the existing battery group technology cannot meet customer requirements for the time being.
  • the above-mentioned battery cell adapter is used in manufacturing module-free battery cell stacks, namely:
  • side panels are respectively bonded at the starting end and the ending end of the stack, and the plastic parts are injection molded, and have functional structures.
  • the battery stack of the present invention has side panels bonded only at the starting end and the ending end, and the side panels are injection molded parts, without other structural parts that increase weight; at the same time, the battery stack is attached to the bottom of the inner side of the box body by heat-conducting structural adhesive, and a number of reinforcements are arranged in the box to ensure the fixation of the battery cells and the structural strength of the box body.
  • the support member can be a plate structure or a frame structure, that is, the support member is a support frame with holes formed by splicing multiple thin plate or sheet structures.
  • the support member is a frame structure, it can reduce the weight of the box on the one hand and facilitate heat dissipation on the other hand.
  • a plurality of reinforcement members are integrally formed inside the box body to enhance the strength of the box body.
  • the support member is fixedly installed on the height direction of the reinforcement member, and the reinforcement member has a certain height. If the height of the reinforcement member is H and the height of the battery cell is W, the relationship is 0.3W ⁇ H ⁇ 0.9W.
  • the bottom of the support member is designed as an inverted " ⁇ "-shaped mounting portion, which is placed on the reinforcement member and can be connected by gluing to ensure a stable connection.
  • the box is a Pack box.
  • sampling integrated component is electrically connected to the adapter via a bus, and adjacent battery cell stacks are connected to the same bus.
  • sampling integrated component is also equipped with a plurality of temperature collection components.
  • the present invention reduces the number of components in the whole package by 30% through the integrated design of the sampling integrated component electrical connection adapter, effectively improving the production efficiency; at the same time, the design of the support and the beam inside the box ensures the structural strength of the Pack.
  • the present invention has the following beneficial effects:
  • the present invention only has plastic side panels bonded to the starting and ending ends of the battery cell stack, which reduces the use of structural parts.
  • the design of the electrical connection adapter and the support member reduces the distance between adjacent battery cell stacks, so that the whole pack can hold more energy, effectively improving the integration efficiency of the battery pack and the energy density of the battery pack.
  • the setting of the reinforcement member ensures the structural strength of the module-free system.
  • the integrated design of the sampling integrated component and the electrical connection adapter of the present invention reduces the number of components in the entire package by 30%, effectively improving production efficiency, shortening the production process, and reducing production costs.
  • FIG1 is an exploded schematic diagram of an embodiment of a module-free battery pack of the present invention.
  • FIG2 is an exploded view of a battery cell stack of the present invention.
  • FIG3 is a schematic structural diagram of an embodiment of a connecting piece of the present invention.
  • FIG4 is a schematic structural diagram of another embodiment of a connecting piece of the present invention.
  • FIG5 is a schematic structural diagram of an implementation scheme of a sampling integrated component of the present invention.
  • FIG6 is a schematic diagram of a first viewing angle of a method of installing a battery cell stack on a box body according to the present invention.
  • FIG7 is a partial enlarged view of area A in FIG6 ;
  • FIG8 is a partial enlarged view of area B in FIG6 ;
  • FIG9 is a schematic diagram of a second viewing angle of a method of installing a battery cell stack on a box body according to the present invention.
  • FIG10 is a partial enlarged view of the C region in FIG9 ;
  • FIG11 is a partial enlarged view of the D area in FIG9 ;
  • FIG12 is a partial enlarged view of the E region in FIG9 ;
  • FIG13 is a partial enlarged view of the F area in FIG9 ;
  • FIG14 is a partial enlarged view of the J region in FIG9 ;
  • FIG15 is a schematic diagram of a third viewing angle of a method of installing a battery cell stack on a box body according to the present invention.
  • FIG16 is a partial enlarged view of the H region in FIG15 ;
  • FIG17 is a partial enlarged view of area I in FIG15 ;
  • FIG18 is a schematic diagram of the installation of the battery cell connector and the support member according to the present invention.
  • 100 battery cell stack; 110, battery cell; 120, adapter; 121, first connection portion; 1211, first connection surface; 1212, support surface; 122, second connection portion; 1221, second connection surface; 1222, limit surface; 123, transition portion; 130, spacer; 140, side plate; 200, box; 210, support member; 220, reinforcement member; 300, sampling integrated assembly; 310, bus bar; 320, temperature collection component; 330, circuit integrated board; 340, nickel sheet; 350, connector; 360, insulating sheet; 400, adhesive layer; 500, box cover.
  • the present embodiment is a battery cell adapter, which is made of conductive metal and includes a first connection portion 121 for electrically connecting to the sampling integrated component 300 and a second connection portion 122 for electrically connecting to the battery cell 110, wherein the first connection portion 121 and the second connection portion 122 intersect to form an "L"-shaped structure.
  • the upper and lower opposite surfaces of the first connection portion 121 are respectively the first connection surface 1211 and the support surface 1212, wherein the first connection surface 1211 is electrically connected to the sampling integrated component 300, and the support surface 1212 is used for overlapping or fixing.
  • the left and right opposite surfaces of the second connection portion 122 are the second connection surface 1221 and the limiting surface 1222, the second connection surface 1221 is electrically connected to the battery cell 110, and cooperates with the first connection surface 1211 to converge the current to the sampling integrated component 300, and the adapter 120 cooperates with the limiting surface 1222 and the support surface 1212 to limit and support the battery cell 110 in the box 200. It should be noted that by selecting one or more first connection surfaces 1211 to be connected to the same bus 310, multiple parallel and multiple series battery cells can be realized.
  • the first connection portion 121 and the second connection portion 122 are connected by a transition portion 123, and the first connection portion 121, the transition portion 123 and the second connection portion 122 are integrally formed, and the transition portion 123 is a bent structure, that is, in the longitudinal cross-sectional direction, the transition portion 123 forms a certain angle with the first connection portion 121 and the second connection portion 122, or the transition portion 123 is a bent structure, that is, the transition portion 123 is arc-shaped in the longitudinal cross-section.
  • the purpose of the transition portion 123 of both structures is to avoid direct contact with the battery cell 110. When the electric vehicle is used and hit, it is used to share the impact force, and at the same time, reduce the contact area with the battery cell and increase the battery energy density.
  • the present embodiment is a battery cell stack, which is formed by stacking a number of battery cells 110 in the thickness direction. Plastic spacers 130 are pasted between adjacent battery cells 110 to play the role of insulation and isolation, and the two ends are sealed with side plates 140.
  • the battery cell 110 of the present embodiment is an aluminum shell battery cell with poles on both sides. The poles on both sides are arranged side by side, and the poles of each battery cell 110 are respectively welded with the adapter 120 in Example 1, that is, the second connection surface 1221 of the adapter 120 is electrically connected to the pole of the battery cell 110, and the support surface 1212 and the limiting surface 1222 cooperate in the relative vertical position to fix the adapter 120 and limit it, thereby supporting the battery cell 110.
  • the battery cell of the present embodiment omits the module shell, which significantly reduces the weight and cost, improves the energy density of the battery cell, shortens the heat transfer path, and improves the efficiency.
  • a module-free battery pack of this embodiment includes a plurality of battery cell stacks 100 , a box body 200 , a plurality of sampling integrated components 300 , an adhesive layer 400 and a box cover 500 , wherein:
  • the interior of the box 200 is divided into multiple spaces as installation positions for the battery cell stack 100 by a number of support members 210.
  • the support members 210 can be insulating plates, preferably a frame structure formed by splicing thin insulating plates.
  • a support member 210 with a frame structure is shown in Figure 18.
  • the support surface 1212 of the adapter 120 is mounted or pasted and fixed on the top of the support member 210, and the limiting surface 1222 of the adapter 120 is abutted or pasted on the side of the support member 210, so that the support member 210 supports the adapter 120.
  • the support member 210 plays a role in isolating adjacent battery cell stacks 100.
  • a plurality of reinforcing members 220 are integrally formed inside the box body 200.
  • the height of the reinforcing members 220 is lower than that of the supporting members 210.
  • the supporting members 210 are fixedly mounted on the reinforcing members 220 to save the internal space of the box body 200. That is, the bottom of the supporting members 210 is designed as an inverted " ⁇ "-shaped mounting portion, which is mounted on the reinforcing members 220 and can be connected by gluing to ensure a stable connection.
  • FIG. 6 and its partially enlarged FIGS. 7 and 8, or FIG. 9 and its partially enlarged FIGS. 10 to 14, or FIG. 15 and its partially enlarged FIGS. 16 and 17 schematic diagrams of the internal structure installation of the box body 200 of the module-free battery pack of this embodiment are shown.
  • the battery cell stack 100 is the product described in Example 2, and this embodiment will not be described in detail.
  • the battery cell stack 100 of this embodiment is 8 cells, which are adhered to the installation position separated by the support member 210 at the bottom of the box 200 through the adhesive layer 400 in two rows and four columns.
  • the adhesive layer 400 is a thermally conductive structural adhesive.
  • the sampling integrated assembly 300 is installed on the top of the connection between adjacent battery stacks 100, as shown in FIG5, and includes a busbar 310, a plurality of temperature collection components 320, a circuit integrated board 330, a nickel sheet 340, a plug-in component 350, and an insulating sheet 360, wherein a plurality of busbars 310 are electrically connected to the circuit integrated board 330 through the nickel sheet 340, so that the nickel sheet 340 can receive the voltage signal of the busbar 310 and transmit it to the circuit integrated board 330.
  • Each busbar 310 is welded with any number of adapters 120, for example, a busbar 310 connects two adapters 120 on the same battery stack 100, that is, two batteries are connected in parallel, and at the same time, the busbar 310 is electrically connected to two battery stacks 100, so as to realize the connection of multiple battery stacks 100.
  • the temperature collection component 320 is arranged on the circuit integrated board 330 and attached to the surface of the battery 110 to monitor the temperature of the battery 110 and transmit it to the circuit integrated board 330.
  • the connector 350 is connected to the end of the circuit integrated board 330, and is used to receive voltage signals, temperature signals, etc.
  • the circuit integrated board 330 receives the signal from the circuit integrated board 330; generally, there are two ways to connect the connector 350 and the circuit integrated board 330: 1 When the circuit is made in the form of a wire or FFC, it is connected in the form of terminal crimping; 2 When the circuit is made in the form of a PCB or FPC, it is welded by reflow soldering.
  • the plug-in structure used in the above two forms is also different. Those skilled in the art can choose the appropriate circuit manufacturing form according to their needs. The present invention does not make a specific description.
  • the insulating sheet 360 is pasted on the bottom of the sampling integrated component 300 to separate the electrical connectors from the battery cells to achieve the effect of insulation protection and anti-scratch. At the same time, the insulating sheet 360 can also be pasted on the upper surface of the sampling integrated component 300 to protect the sampling integrated component 300.
  • the box cover 500 is fastened to the sealed box body 200 by bolts and sealing rings, and the assembled together achieves a sealing effect for the battery pack.
  • the box 200 is a pack box and can be sold separately.
  • the module-free battery pack of this embodiment has a novel design and a simple and reasonable structure, which can greatly increase the battery energy density, reduce the battery production process, and improve production efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明公开了一种电芯转接件、电芯堆及无模组电池包,属于电池制造领域。电芯转接件用于将电芯串联和/或并联至采样集成组件,包括相交的第一连接部和第二连接部,其中,第二连接部用于电连接电芯,第一连接部用于电连接采样集成组件,以形成电芯的串联/并联。电芯堆由若干个电芯堆叠形成的,每个电芯均电连接电芯转接件。无模组电池包其箱体和箱盖密封组装,箱体内部包括:电芯堆,箱体内部粘贴有若干个上述电芯堆,相邻两个电芯堆上的转接件并列排布和/或相对排布;采样集成组件,电连接转接件,并引出电池正负极。本发明结构简单,可以有效提升电池包的集成效率,提高电池包的能量密度;缩短生产流程,极大提高了生产效率,降低生产成本。

Description

一种电芯转接件、电芯堆及无模组电池包 技术领域
本发明涉及电池制造领域,具体为一种电芯转接件、电芯堆及无模组电池包。
背景技术
锂离子电池自从上世纪90年代发展迅速。已成为现代社会必不可少的储能设备。近年来,随着国家和地区政府相继出台一系列支持和促进电动汽车发展的相关政策,人们对电动汽车的思想转变,电动汽车行业开始火热起来。但是随着人们对电动汽车的能量密度要求越来越高,现有的电池成组技术暂无法满足客户要求。
例如,中国专利申请号为202010755286.X,申请公开日为2021年2月23日的专利申请文件公开了一种软包无模组化动力电池***。该电池***包括固定连接的上盖和下箱体组件,所述上盖和下箱体组件之间在上而下依次设有电池管理***、压杆组件、低压线束、软包电芯组件、高压电组件、横梁组件和液冷***,该无模组化结构,软包电芯直接集成到电池箱内。但是,其额外增加了多条钢制的压杆组件,相比传统的模组铝外壳并没有起到减重的作用;而且没有介绍其电芯组的构成,由图3及其电芯组件的描述,可以看出其电芯组件周围均包裹有防火材料,可靠性高的防火材料的密度可以达到2g/cm3,接近铝的密度2.7g/cm3,该文件虽然没有传统的模组铝外壳,但是其额外增加的材料仍然需要很多重量,且成本也没有优势;最后其软包电芯组仅用弹性压杆组件限制电芯的Z自由度,造成电芯没有任何有效的固定,其结构形式极易损坏。
中国专利申请号为201910544975.3,申请公开日为2020年7月17日的专利申请文件公开了无模组框架的电池包、车辆和储能装置。该电池包包括:电池包外壳;多个单体电池,每个单体电池均具有电池外壳、设在电池外壳内的电芯以及与所述电芯相连且伸出所述电池外壳的引出端子,多个所述单体电池排列在所述电池包外壳内。但是,其仅描述了不同尺寸电池单体在Pack包内的各种排列形式,这些电芯的排列形式在通常的电池包里都是常见的,且其部分示例中,仍然保留了传统模组的结构特征,比如端板、侧板、上下模组壳体等。
中国专利申请号为202010075473.3,申请公开日为2020年6月12日的专利申请文件公开了一种无模组的软包电池***,包括:下箱体及其匹配的上盖,下箱体内设有第一固定模块、第二固定模块、电芯模块、挡板、采集模块和控制模块;第一固定模块和第二固定模块均设有凹槽,电芯模块设置在第一固定模块的凹槽内和第二固定模块的凹槽内;挡板与电芯模块靠接;采集模块与电芯模块连接,采集电芯模块的温度信息和电压信息;控制模块与采集模块连接,接收采集模块的温度信息和电压信息。但是,其虽然去除模组金属外壳,却增 加了过多的零散部件,使***成组难度增加;而且,由于软包电芯本身刚度较弱,缺少了外壳支撑,使得Pack强度偏低;最后,软包电芯容破损,生产中破损漏液后,无法进行有效处理,导致整包报废。
因此,开发如何设计形成性能优异的无模组电池包,成为了亟需解决的技术难题。
发明内容
1.要解决的问题
针对现有无模组电池包组件过多的问题,通过设计一种电芯转接片,实现电芯串联和/或并联的目的。随之利用本发明的电芯转接片的特殊结构,组装一种电芯堆,以达到精简结构的目的。最后本发明还利用上述电芯堆,获得了一种无模组电池包,在现有电池包的基础上,提高了电池包的能量密度。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
一种电芯转接件,用于将电芯串联和/或并联至采样集成组件,包括相交的第一连接部和第二连接部,其中,第二连接部用于电连接电芯,第一连接部用于电连接采样集成组件,以形成电芯的串联/并联。
进一步地,还包括过渡部,所述过渡部于第一连接部和第二连接部连接处,并形成弯折或弯曲结构,以避免直接接触电芯,在应用至电动汽车中受到撞击时,用于分担冲击力,同时,减少接触电芯面积,增大电池能量密度。
上述电芯转接件应用于制造无模组电芯堆中,即:
一种电芯堆,由若干个电芯堆叠形成的,每个电芯均电连接上述的转接件。其中:电芯优选为两侧出极柱铝壳电芯,两侧极柱并排排布,并且分别焊接转接件。需要说明的是,电芯也可以针对中航的one-stop电池以及软包,但是对于软包配合结构会复杂的多,且软包电芯比较薄,使用上述电芯转接件连接铝排的过流会存在不足。
进一步地,相邻电芯间通过隔片粘接。隔片是具有压缩性能的片状材料,如泡棉、橡胶垫、气凝胶等;或片状的绝缘材料,如PC片、PP片等
进一步地,在堆叠的起始端与终止端分别粘接有侧板,注塑成型的塑料件,具有功能性结构。本发明的电芯堆仅在起始端与终止端分别粘接有侧板,且侧板是注塑件,没有其他增加重量的结构件;同时电芯堆通过导热结构胶粘贴在箱体内侧底部,且箱内设置了若干加强件,保证了电芯的固定及箱体的结构强度。
本发明不仅详细阐述了一种无模组电芯堆的布局形式,且详细阐述了电芯串联和/或并联的新型结构形式,此种结构形式,不但可以减少电芯集成至Pack的元件数量,减少Pack重 量,同时可以极大提高了生产效率。即:
一种无模组电池包,其箱体和箱盖密封组装,通过螺栓和密封件,组装在一起,使电池包达到密封的效果。箱体内部包括:
电芯堆,箱体内部粘贴有若干个上述的电芯堆,相邻两个电芯堆上的转接件并列排布和/或相对排布;使用导热结构胶将电芯堆粘贴在箱体内侧底部。
采样集成组件,安装在电芯堆顶部,通过电连接转接件,并引出电池正负极:
当多个电芯堆的正负极并排布置在箱体内时,各电芯堆上的转接件并列排布,通过电连接相邻电芯堆的转接件实现将各电芯堆汇流至采样集成组件,形成无模组电池;
当多个电芯堆的正负极平行布置在箱体内时,相邻电芯堆上的转接件相对排布,同样电连接各转接件至采样集成组件,形成无模组电池;值得注意的是,电芯堆优选单层布置,若是针对多层电芯堆的布置,组装时为了加强固定强度,需要在上下层之间使用母排串联,且使用螺栓锁紧。
进一步地,所述箱体内部由多个支撑件将其分割为若干个空间,用来安装电芯堆,其中,支撑件一方面用于搭接/固接转接件,其中搭接是指转接件放置于支撑件上,为了连接牢固,也可以将转接件粘贴固定在支撑件上;另一方面,支撑件对箱体有绝缘防护的作用。
此处支撑件可以是板状结构,也可以是框架结构,即支撑件由多块薄板状或片状结构拼接成的具有孔洞的支撑架。所述支撑件为框架结构时,一方面减轻箱体的重量,另一方面有利于散热。
进一步地,所述箱体内部一体成型若干个加强件,用于增强箱体强度。同时,支撑件固定安装于加强件的高度方向之上,加强件具有一定高度,若加强件的高度为H,电芯的高度为W,则其关系为0.3W≤H≤0.9W。
进一步地,支撑件的底部设计为倒“凵”状的安装部,架在加强件之上,同时可以用胶粘连接,保证连接稳固。
进一步地,箱体为Pack箱体。
进一步地,所述采样集成组件通过汇流排电连接转接件,相邻电芯堆汇接至同一个汇流排。
进一步地,所述采样集成组件还安装有若干个温度采集件。
进一步地,上述电连接均可以使用激光焊接实现。
本发明通过采样集成组件电连接转接件的集成设计,使整包部件数量减少30%,有效提升了生产效率;同时支撑件及箱体内部的梁的设计,保证了Pack的结构强度。
3.有益效果
与已有技术相比,本发明有益效果体现在:
(1)本发明仅在电芯堆起始端与终止端粘接有塑料侧板,减少了结构件的使用,且电连接转接件、支撑件的设计减少了相邻电芯堆之间的距离,使整包能够放入更多的能量,有效提升了电池包的集成效率,提高电池包的能量密度,同时加强件的设置,保证了无模组***的结构强度;
(2)本发明的采样集成组件、电连接转接件的集成设计,使整包部件数量减少30%,有效提升了生产效率,缩短生产流程,降低生产成本。
附图说明
图1为本发明无模组电池包一种实施方式的***示意图;
图2为本发明电芯堆的***图;
图3为本发明连接件一种实施方式的结构示意图;
图4为本发明连接件另一种实施方式的结构示意图;
图5为本发明采样集成组件一种实施方式的结构示意图;
图6为本发明电芯堆在箱体上一种安装方式第一个视角的示意图;
图7为图6中A区域的局部放大图;
图8为图6中B区域的局部放大图;
图9为本发明电芯堆在箱体上一种安装方式第二个视角的示意图;
图10为图9中C区域的局部放大图;
图11为图9中D区域的局部放大图;
图12为图9中E区域的局部放大图;
图13为图9中F区域的局部放大图;
图14为图9中J区域的局部放大图;
图15为本发明电芯堆在箱体上一种安装方式第三个视角的示意图;
图16为图15中H区域的局部放大图;
图17为图15中I区域的局部放大图;
图18为本发明电芯连接件与支撑件配合的安装示意图;
图中:
100、电芯堆;110、电芯;120、转接件;121、第一连接部;1211、第一连接面;1212、支撑面;122、第二连接部;1221、第二连接面;1222、限位面;123、过渡部;130、隔片;140、侧板;200、箱体;210、支撑件;220、加强件;300、采样集成组件;310、汇流排; 320、温度采集件;330、线路集成板;340、镍片;350、插接件;360、绝缘片;400、粘结层;500、箱盖。
具体实施方式
下面结合具体实施例和附图对本发明进一步进行描述。
实施例1
本实施例为一种电芯转接件,为导电金属材质,包括用于电连接采样集成组件300的第一连接部121、用于电连接电芯110的第二连接部122,其中第一连接部121和第二连接部122相交呈“L”形结构。
具体来说,如图3所示,第一连接部121上下相对面分别为第一连接面1211和支撑面1212,其中第一连接面1211电连接采样集成组件300,支撑面1212用于搭接或固定。第二连接部122左右相对面为第二连接面1221和限位面1222,第二连接面1221电连接电芯110,配合第一连接面1211将电流汇流至采样集成组件300,转接件120通过限位面1222、支撑面1212配合将电芯110限位支撑在箱体200内。需要说明的是,通过选择一个或多个第一连接面1211连接在同一个汇流排310,以实现多并多串电芯。
作为本实施例另一种电芯转接件,如图4所示,第一连接部121和第二连接部122之间通过过渡部123连接,第一连接部121、过渡部123、第二连接部122一体成型,过渡部123为弯折结构,即纵向截面方向,过渡部123与第一连接部121、第二连接部122均形成一定角度,或过渡部123为弯曲结构,即过渡部123为纵向截面呈弧形,两种结构的过渡部123其目的均是为了避免直接接触电芯110,在应用至电动汽车中受到撞击时,用于分担冲击力,同时,减少接触电芯面积,增大电池能量密度。
实施例2
本实施例为一种电芯堆,由若干个电芯110沿厚度方向堆叠形成的,相邻电芯110之间粘贴有塑料质的隔片130,起到绝缘隔离的作用,首尾两端采用侧板140封隔。如图2所示,本实施例的电芯110为两侧出极柱铝壳电芯,两侧极柱并排排布,并且每个电芯110的极柱分别焊接有实施例1中的转接件120,即转接件120的第二连接面1221电连接电芯110的极柱上,支撑面1212和限位面1222相对垂直位置配合将转接件120固定限位,进而支撑电芯110。本实施例的电芯省去了模组外壳,重量明显减轻、成本明显降低,电芯能量密度提高,热传递路径变短,效率提高。
实施例3
本实施例的一种无模组电池包,结合图1所示,包括若干个电芯堆100、箱体200、若干个采样集成组件300、粘结层400和箱盖500,其中:
箱体200的内部通过若干个支撑件210分隔为多个空间作为电芯堆100的安装位,支撑件210可以是绝缘板,优选薄绝缘板拼接而成的框架结构,一种框架结构的支撑件210如图18所示,转接件120的支撑面1212搭载或粘贴固定在支撑件210的顶部,转接件120的限位面1222抵接或粘贴在支撑件210的侧面,实现支撑件210支撑转接件120,同时支撑件210起到隔离相邻电芯堆100的作用。为了加强箱体200的机械强度,箱体200内部一体成型若干个加强件220,加强件220的高度较支撑件210低,本实施例将支撑件210固定安装于加强件220之上,以节约箱体200的内部空间,即支撑件210的底部设计为倒“凵”状的安装部,架在加强件220之上,同时可以用胶粘连接,保证连接稳固,参考图6以及其局部放大的图7和图8,或者图9以及其局部放大的图10~14,或者图15以及其局部放大的图16、图17,为本实施例无模组电池包的箱体200的内部结构安装示意图。
电芯堆100为实施例2中描述的产品,本实施例不做过多的赘述,本实施例的电芯堆100为8个、以两排四列的方式通过粘结层400粘贴在箱体200底部由支撑件210分隔的安装位中,粘结层400为导热结构胶。
采样集成组件300,安装于相邻电芯堆100连接处的顶部,如图5所示,包括汇流排310、若干个温度采集件320、线路集成板330、镍片340、插接件350、绝缘片360,其中,多个汇流排310通过镍片340电连接在线路集成板330上,使镍片340可接受汇流排310的电压信号,并传递给线路集成板330。各个汇流排310焊接任意数量的转接件120,例如一个汇流排310连接同一个电芯堆100上的两个转接件120,即为两个电芯并联,同时汇流排310又电连接了两个电芯堆100,实现多个电芯堆100的连接。温度采集件320设置在线路集成板330上,并贴在电芯110的表面以监测电芯110的温度,并传递给线路集成板330。接插件350连接在线路集成板330的端部,用于接受线路集成板330接受到的电压信号、温度信号等;一般接插件350与线路集成板330的连接方式,有2种:①当线路的制作形式是导线、FFC时,使用端子压接的形式连接;②当线路制作形式是PCB、FPC时,使用回流焊的方式焊接。以上2种形式使用的插接结构形式也不相同,本领域技术人员根据需要选择合适的线路制作形式,本发明不做具体描述。绝缘片360粘贴在采样集成组件300底部,将各电连接件与电芯隔开,达到绝缘防护、防划伤的效果,同时采样集成组件300上表面也可以粘贴绝缘片360,保护采样集成组件300。
箱盖500通过螺栓和密封圈紧固密封箱体200,组装在一起,使电池包达到密封的效果。
上述箱体200为pack箱体,可单独售卖。本实施例的无模组电池包设计新颖、结构简单合理,可大幅提升电池能量密度,减少电池成产工艺流程,提升生产效率。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (10)

  1. 一种电芯转接件,其特征在于:用于将电芯(110)串联和/或并联至采样集成组件(300),包括相交的第一连接部(121)和第二连接部(122),其中,第二连接部(122)用于电连接电芯(110),第一连接部(121)用于电连接采样集成组件(300),以形成电芯(110)的串联/并联。
  2. 根据权利要求1所述的一种电芯转接件,其特征在于:还包括过渡部(123),所述过渡部(123)于第一连接部(121)和第二连接部(122)连接处,并形成弯折或弯曲结构。
  3. 一种电芯堆,其特征在于:由若干个电芯(110)堆叠形成的,每个电芯(110)均电连接权利要求1或2所述的转接件(120)。
  4. 根据权利要求3所述的电芯堆,其特征在于:相邻电芯(110)间通过隔片(130)粘接;在堆叠的起始端与终止端分别粘接有侧板(140)。
  5. 一种无模组电池包,其箱体(200)和箱盖(500)密封组装,其特征在于:箱体(200)内部包括:
    电芯堆(100),箱体(200)内部粘贴有若干个权利要求3或4所述的电芯堆(100),相邻两个电芯堆(100)上的转接件(120)并列排布和/或相对排布;
    采样集成组件(300),电连接转接件(120),并引出电池正负极。
  6. 根据权利要求5所述的无模组电池包,其特征在于:所述箱体(200)内部由多个支撑件(210)将其分割为若干个空间,用来安装电芯堆(100),其中,支撑件(210)用于搭接/固接转接件(120)。
  7. 根据权利要求6所述的无模组电池包,其特征在于:所述支撑件(210)为框架结构。
  8. 根据权利要求6所述的无模组电池包,其特征在于:所述箱体(200)内部一体成型若干个加强件(220),用于增强箱体(200)强度。
  9. 根据权利要求5所述的无模组电池包,其特征在于:所述采样集成组件(300)通过汇流排(310)电连接转接件(120),相邻电芯堆(100)汇接至同一个汇流排(310)。
  10. 根据权利要求9所述的无模组电池包,其特征在于:所述采样集成组件(300)还安装有若干个温度采集件(320)。
PCT/CN2023/081210 2022-11-14 2023-03-14 一种电芯转接件、电芯堆及无模组电池包 WO2024103581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211421644.9 2022-11-14
CN202211421644.9A CN115663406A (zh) 2022-11-14 2022-11-14 一种电芯转接件、电芯堆及无模组电池包

Publications (1)

Publication Number Publication Date
WO2024103581A1 true WO2024103581A1 (zh) 2024-05-23

Family

ID=85021336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081210 WO2024103581A1 (zh) 2022-11-14 2023-03-14 一种电芯转接件、电芯堆及无模组电池包

Country Status (2)

Country Link
CN (1) CN115663406A (zh)
WO (1) WO2024103581A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663406A (zh) * 2022-11-14 2023-01-31 合肥国轩高科动力能源有限公司 一种电芯转接件、电芯堆及无模组电池包

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206619640U (zh) * 2017-02-21 2017-11-07 东莞新能源科技有限公司 储能设备
CN212625963U (zh) * 2020-08-31 2021-02-26 珠海冠宇动力电池有限公司 一种电芯组件及电池包
US20210408607A1 (en) * 2020-06-26 2021-12-30 Primearth Ev Energy Co., Ltd. Method for manufacturing lithium-ion rechargeable battery, lithium-ion rechargeable battery, and assembled battery of lithium-ion rechargeable batteries
CN215911502U (zh) * 2021-09-29 2022-02-25 蜂巢能源科技有限公司 电池模块及电池模组
CN114388968A (zh) * 2021-12-31 2022-04-22 上海捷新动力电池***有限公司 一种采用软包电芯的无模组电池包集成装置
CN217134519U (zh) * 2022-03-07 2022-08-05 比亚迪股份有限公司 电池模组、电池包和车辆
CN115663406A (zh) * 2022-11-14 2023-01-31 合肥国轩高科动力能源有限公司 一种电芯转接件、电芯堆及无模组电池包

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206619640U (zh) * 2017-02-21 2017-11-07 东莞新能源科技有限公司 储能设备
US20210408607A1 (en) * 2020-06-26 2021-12-30 Primearth Ev Energy Co., Ltd. Method for manufacturing lithium-ion rechargeable battery, lithium-ion rechargeable battery, and assembled battery of lithium-ion rechargeable batteries
CN212625963U (zh) * 2020-08-31 2021-02-26 珠海冠宇动力电池有限公司 一种电芯组件及电池包
CN215911502U (zh) * 2021-09-29 2022-02-25 蜂巢能源科技有限公司 电池模块及电池模组
CN114388968A (zh) * 2021-12-31 2022-04-22 上海捷新动力电池***有限公司 一种采用软包电芯的无模组电池包集成装置
CN217134519U (zh) * 2022-03-07 2022-08-05 比亚迪股份有限公司 电池模组、电池包和车辆
CN115663406A (zh) * 2022-11-14 2023-01-31 合肥国轩高科动力能源有限公司 一种电芯转接件、电芯堆及无模组电池包

Also Published As

Publication number Publication date
CN115663406A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
JP5889418B2 (ja) 信頼性が向上した電池モジュールアセンブリ及びこれを含む中大型電池パック
KR101053208B1 (ko) 용접 신뢰성이 향상된 전지모듈 및 이를 포함하는 중대형 전지팩
JP6025319B2 (ja) バッテリモジュール
CN107452933B (zh) 一种软包锂电池模组及绝缘组件及电源模块
WO2013183945A1 (ko) 안정성이 향상된 구조 및 높은 냉각 효율성을 갖는 전지모듈
CN209947879U (zh) 一种软包电池封装结构
WO2024103581A1 (zh) 一种电芯转接件、电芯堆及无模组电池包
WO2022152154A1 (zh) 方壳长电芯组及电池模组和电动汽车
CN111952523A (zh) 一种电池包
JP7062209B2 (ja) 電池モジュールおよびこれを含む電池パック
CN109742304A (zh) 一种动力电池模组及电动车
CN216720218U (zh) 二次电池
CN219937302U (zh) 电池模组采集组件及电池
WO2024016716A1 (zh) 一种用于pack电池包的安全防护装置
CN115241612B (zh) 一种电池模组及电池包
CN111370611A (zh) 一种动力电池模组
CN202395073U (zh) 电池组连接结构
CN113889708B (zh) 车辆及其电池包
CN109346630A (zh) 软包电池模组结构及动力电池
CN209571474U (zh) 一种动力电池模组及电动车
WO2024032641A1 (zh) 电池模组及电池包
JP2022545245A (ja) 電池モジュール
CN221150178U (zh) 电芯安装结构及电池包
CN214957123U (zh) 一种软包电芯模组
CN221102308U (zh) 一种软包电芯模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890027

Country of ref document: EP

Kind code of ref document: A1