WO2024103578A1 - 具有金属氧化物微纳米片的防晒产品及其制备方法 - Google Patents

具有金属氧化物微纳米片的防晒产品及其制备方法 Download PDF

Info

Publication number
WO2024103578A1
WO2024103578A1 PCT/CN2023/080882 CN2023080882W WO2024103578A1 WO 2024103578 A1 WO2024103578 A1 WO 2024103578A1 CN 2023080882 W CN2023080882 W CN 2023080882W WO 2024103578 A1 WO2024103578 A1 WO 2024103578A1
Authority
WO
WIPO (PCT)
Prior art keywords
sunscreen product
micro
metal oxide
emulsifier
nano sheets
Prior art date
Application number
PCT/CN2023/080882
Other languages
English (en)
French (fr)
Inventor
丘陵
成会明
杨若凝
周煜
丁宝福
Original Assignee
清华大学深圳国际研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳国际研究生院 filed Critical 清华大学深圳国际研究生院
Publication of WO2024103578A1 publication Critical patent/WO2024103578A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/31Hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present application relates to the technical field of sunscreen, and in particular to a sunscreen product having metal oxide micro-nano sheets and a preparation method thereof.
  • titanium dioxide is recognized as one of the commonly used physical sunscreen materials. Titanium dioxide in sunscreen achieves sun protection through reflection, scattering and absorption. Traditional titanium dioxide as a sunscreen, as a colorant itself, also has problems such as whitening and unnatural skin surface during use, which does not meet the public's aesthetic appeal. At the same time, titanium dioxide nanoparticles with a size of hundreds of nanometers can easily penetrate the stratum corneum of the skin and reach the body, which to a certain extent undermines the biological safety of the human body.
  • the present application provides a sunscreen product having metal oxide micro-nano sheets and a preparation method thereof.
  • the present application provides a sunscreen product having metal oxide micro-nano sheets, wherein the sunscreen product comprises an aqueous phase matrix, a first emulsifier and an oil matrix, wherein the aqueous phase matrix comprises metal oxide micro-nano sheets and water.
  • the metal oxide micro-nano sheets include at least one of titanium oxide micro-nano sheets or zinc oxide micro-nano sheets.
  • the titanium oxide-containing micro-nano sheets have a chemical formula of Ti (1-x) O (2-2x) , 0 ⁇ x ⁇ 1.
  • the titanium oxide-containing micro-nanosheets have a chemical formula of MaTi (1-xa) O (2-2x) , 0 ⁇ x ⁇ 1, wherein M is a metal element in the same period as Ti.
  • the chemical formula of the zinc oxide-containing micro-nano sheets is ZnO.
  • the chemical formula of the zinc oxide-containing micro-nanosheets is N b Zn (1-b) O, wherein N is a metal element in the same period as Zn.
  • the metal oxide micro-nano flakes account for 0.1 to 40 wt%.
  • the first emulsifier includes at least one of cetearyl glucoside, methyl glucose sesquistearate or alkyl glucoside, and the number of carbon atoms in the alkyl glucoside is 14-22.
  • the first emulsifier is added in an amount of 0.5-15 wt % of the oil base.
  • the oil base includes at least one of liquid paraffin, caprylic/capric glyceride, jojoba oil, and shea butter.
  • the preparation method further comprises: before adding the titanium oxide dispersion to the mixed solution, adding a second emulsifier to the titanium oxide dispersion, the first emulsifier comprises an oil phase emulsifier, and the second emulsifier is a water phase emulsifier.
  • the metal oxide micro-nanosheets have a nanometer or micrometer layer thickness and a corresponding size of several micrometers to tens of micrometers, so that the metal oxide micro-nanosheets have a high specific surface area, so that under the same volume percentage concentration conditions, the optical transparency of the micro-nanosheets in the visible light region is much higher than that of titanium dioxide (or zinc oxide) nanoparticles, thereby improving the optical transparency of the sunscreen product in the visible light region, improving the phenomenon of whitening of the skin surface after application, and improving the natural skin color index.
  • the large lateral size and high specific surface area of the metal oxide micro-nanosheets enable the sunscreen product to be evenly applied to the skin surface, and it is difficult to penetrate the skin stratum corneum with a gap of hundreds of nanometers, thereby reducing the penetration rate of the sunscreen product into the skin. This improves the biological safety of sunscreen products, making metal oxide micro-nanosheets have broad application prospects in the fields of cosmetics and sunscreen.
  • FIG. 1 is an atomic force microscope image of titanium oxide micro-nano sheets in a titanium oxide dispersion in Example 1 of the present application.
  • FIG. 2 is an atomic force microscope image of titanium oxide micro-nano sheets in the titanium oxide dispersion in Example 3 of the present application.
  • FIG. 3 is a schematic diagram of the Tyndall effect of the titanium oxide dispersion in Example 2 and the spherical titanium dioxide dispersion in Comparative Example 1 of the present application.
  • (A) is a scanning electron microscope image of the titanium oxide micro-nanosheets in the titanium oxide dispersion in Example 3 of the present application;
  • (B) is a distribution energy spectrum of the Ti element in (A);
  • (C) is a distribution energy spectrum of the Fe element in (A);
  • (D) is a distribution energy spectrum of the O element in (A).
  • FIG5 is a transmittance spectrum of each of the titanium oxide dispersions in Example 2, Example 3 and Comparative Example 1 of the present application in the ultraviolet visible light (280-700 nm) band.
  • FIG. 6 is a comparison chart of the permeabilities of the titanium oxide dispersions in Example 2 of the present application and Comparative Examples 1 to 3 under the same concentration in a Franz diffusion cell test.
  • FIG. 7 is a comparison diagram of the permeability of the titanium oxide dispersions in Example 3 of the present application and Comparative Example 2 under the same concentration in a Franz diffusion cell test.
  • FIG. 8A and FIG. 8B are scanning electron microscope images of the titanium oxide-containing micro-nano sheets prepared in Example 4 at different magnifications.
  • FIG. 9A and FIG. 9B are scanning electron microscope images of the titanium oxide-containing micro-nano sheets prepared in Example 5 at different magnifications.
  • FIG. 10A and FIG. 10B are scanning electron microscope images of the titanium oxide-containing micro-nano sheets prepared in Example 6 at different magnifications.
  • FIG. 11 is a transmittance spectrum of each of the titanium oxide dispersions in Examples 4 to 6 and Comparative Example 1 of the present application in the ultraviolet visible light (280-700 nm) band.
  • micro-nano sheets refer to sheets with a thickness in the nanometer or micrometer range.
  • the present application provides a method for preparing a sunscreen product having metal oxide micro-nano sheets, comprising the following steps:
  • metal oxide dispersion a metal oxide dispersion, a first emulsifier and an oil matrix
  • the metal oxide dispersion comprises metal oxide micro-nano sheets and water
  • the metal oxide micro-nano sheets comprise at least one of titanium oxide micro-nano sheets or zinc oxide micro-nano sheets.
  • the method for preparing metal oxide micro-nano sheets further comprises a sintering-exfoliation method, a hydrothermal method, a sealed tube sintering method or a chemical vapor deposition method.
  • the metal oxide micro-nano sheet is a titanium oxide micro-nano sheet
  • the metal oxide dispersion is a titanium oxide dispersion.
  • the chemical formula of the titanium oxide micro-nano sheet is Ti (1-x) O (2-2x) , 0 ⁇ x ⁇ 1.
  • the titanium oxide micro-nano sheet is described by taking the sintering-stripping method as an example, and the preparation method of the titanium oxide dispersion includes the following steps:
  • S111 Provide titanium dioxide, lithium carbonate and potassium carbonate.
  • lithium carbonate and potassium carbonate act on titanium dioxide to obtain a first sintered product with a layered structure, and the first sintered product is an oxide formed by lithium titanium potassium.
  • the sintering temperature may be 600°C, 800°C, 1000°C, 1100°C or 1800°C.
  • the time can be 15h, 20h, 22h, 24h or 28h.
  • an acid solution is added to remove lithium and potassium in the first sintered product, and excess acid solution is removed by deionized water.
  • the acidic solution is at least one of hydrochloric acid, dilute nitric acid, acetic acid or dilute sulfuric acid.
  • the concentration of the acidic solution is 0.5 to 1 mol/L, and the acidic solution treatment time is 24 to 30 hours.
  • the first matrix material is mixed with water and subjected to ultrasonic treatment to obtain the titanium oxide dispersion, wherein the chemical formula of the titanium oxide micro-nano sheets obtained is Ti (1-x) O (2-2x) , 0 ⁇ x ⁇ 1.
  • the matrix material and water are mixed and subjected to ultrasonic oscillation treatment to peel off the matrix material layers to obtain titanium oxide-containing micro-nano sheets.
  • the ultrasonic oscillation treatment time is 1-6 hours.
  • the first matrix material and water may be mixed and exfoliated by ball milling, sand milling, mechanical exfoliation, mechanical stirring, high-speed shearing, high-pressure homogenization, or microfluidization.
  • the matrix material before the matrix material is mixed with water, the matrix material is further subjected to a pre-intercalation treatment, wherein the pre-intercalation treatment comprises: adding an organic alkali solution to the matrix material, stirring, and washing.
  • the organic alkali solution comprises an organic alkali and water.
  • the organic alkali comprises at least one of tetrabutylammonium hydroxide, tetrapropylammonium hydroxide, or trimethylethylammonium hydroxide.
  • the organic alkali solution contains large organic cations, the organic cations will be inserted between the sheets of the layered matrix material, thereby expanding the spacing between the layers in the matrix material, making it easier to peel off the nanosheets.
  • the matrix material is washed with deionized water multiple times to remove the organic alkali.
  • the concentration of the organic base solution is 0.5 to 1 mol/L, and the treatment time of the organic base solution is 1.5 to 2 hours.
  • the concentration of the metal oxide dispersion is 0.1-5 g/L, such as 0.1 g/L, 0.5 g/L, 1 g/L or 5 g/L.
  • the concentration here refers to the mass ratio of the metal oxide micro-nano sheets in 1 L of solvent water.
  • the diameter of the metal oxide micro-nanosheets is 0.2-1 ⁇ m, such as 0.2 ⁇ m, 0.5 ⁇ m, 0.8 ⁇ m or 1 ⁇ m.
  • the chemical formula of the titanium oxide-containing micro-nanosheet is MaTi (1-xa) O (2-2x) , 0 ⁇ x ⁇ 1, M is a metal element in the same period as Ti, such as K, Ca, Sc, V, Gr, Ga, Ge, Cr, Fe, Ni, Mn, Cu,
  • the preparation method of the titanium oxide dispersion containing at least one of metal elements such as Zn or Co comprises the following steps:
  • the second matrix material is mixed with water and subjected to ultrasonic treatment to obtain the titanium oxide dispersion.
  • step S123 lithium carbonate, potassium carbonate, titanium dioxide and M 2 O 3 react together at high temperature, and metal M replaces part of Ti to obtain a sintered product with a layered structure.
  • M is iron
  • the sintered product is an oxide formed by lithium titanium potassium iron.
  • the chemical formula of the titanium-containing oxide micro-nanosheet is Ma Ti (1-xa) O (2-2x) , 0 ⁇ x ⁇ 1.
  • the metal oxide micro-nano sheet is a zinc oxide micro-nano sheet
  • the metal oxide dispersion is a zinc oxide dispersion.
  • the chemical formula of the zinc oxide micro-nano sheet is ZnO.
  • the preparation method of the zinc oxide dispersion comprises the following steps:
  • step S133 Place the mixed solution of step S132 into a polytetrafluoroethylene-lined high-pressure reactor, with a reaction temperature of 130-250° C. and a reaction time of 24h-28h to obtain a reaction product.
  • step S134 Separate the reaction product of step S133 to obtain a precipitate, wash the precipitate with deionized water, treat it with sodium citrate, wash it, and dry it to obtain zinc oxide nanosheets.
  • the chemical formula of the zinc oxide-containing micro-nanosheet is N b Zn (1-b) O, wherein N is a metal element in the same period as Zn, such as K, Ca, Sc, V, Gr, Ga, Ge, Cr, Fe, Ni, Mn, Cu, Ti or at least one of the metal elements such as Co.
  • the preparation method of the zinc oxide dispersion comprises the following steps:
  • the salt solution may be copper acetate, iron acetate, cobalt acetate, or the like.
  • step S143 Place the mixed solution obtained in step S142 into a polytetrafluoroethylene-lined high-pressure reactor, with a reaction temperature of 130-250° C. and a reaction time of 24h-28h to obtain a reaction product.
  • step S144 Separate the reaction product of step S143 to obtain a precipitate, wash the precipitate with deionized water, treat it with sodium citrate, wash it, and dry it to obtain zinc oxide-containing micro-nano sheets.
  • the first emulsifier and the oil matrix are mixed evenly, and the heating treatment not only dissolves the first emulsifier, but also improves the emulsification efficiency of the first emulsifier.
  • the oil matrix includes at least one of liquid paraffin, caprylic/capric glyceride, jojoba oil, and shea butter.
  • the first emulsifier includes at least one of cetearyl glucoside, methyl glucoside sesquistearate (PEG-20), or an alkyl glucoside, wherein the number of carbon atoms in the alkyl glucoside is 14 to 22.
  • the heating temperature is 60-80° C., and the heating time is 15-40 min.
  • the sunscreen product is an oil-in-water emulsion
  • the metal oxide nanosheets are dispersed in water
  • the first emulsifier is formed at the junction of the metal oxide dispersion and the oil matrix
  • the metal oxide nanosheets also play a role in stabilizing the emulsion in water.
  • the first emulsifier is an oil-phase emulsifier.
  • the oil-phase emulsifier has a better emulsification effect on the metal oxide dispersion and the oil matrix.
  • metal oxide micro-nano sheets are introduced into the application system of sunscreen products.
  • the high specific surface area of the nanosheets makes the optical transparency of the nanosheets in the visible light region much higher than that of titanium dioxide nanoparticles under the same volume percentage concentration conditions, which improves the optical transparency of sunscreen products in the visible light region and improves the phenomenon of whitening on the skin surface after application.
  • experiments have shown that it also has good ultraviolet light shielding properties.
  • the large lateral size and high specific surface area of the metal oxide micro-nanosheets enable the sunscreen products to be evenly applied to the skin surface, and it is difficult to penetrate the skin stratum corneum with a gap of hundreds of nanometers, reducing the penetration rate of sunscreen products into the skin, thereby improving the high biological safety of sunscreen products and the natural skin color index.
  • a second emulsifier is added to the metal oxide dispersion to reduce the tension between the metal oxide micro-nano sheets and water, thereby improving the stability of the metal oxide micro-nano sheet dispersion.
  • the second emulsifier includes at least one of the emulsifiers sodium stearoyl glutamate, sodium lauroyl glutamate, or sodium cocoyl glutamate.
  • the first emulsifier and the second emulsifier are mixed and act together on the metal oxide dispersion and the oil matrix.
  • the first emulsifier and the second emulsifier are distributed at the junction of the metal oxide dispersion and the oil matrix.
  • the metal oxide nanosheets are dispersed in water to form an aqueous phase matrix.
  • the continuous phase oil matrix is coated on the aqueous phase matrix to form a stable oil-in-water emulsion.
  • the metal oxide dispersion and the second emulsifier are mixed, they are further heated at a temperature of 60 to 80° C. for a heating time of 15 to 40 minutes. At this heating temperature and time, the emulsification effect of the second emulsifier is improved, and the stability of the metal oxide dispersion is further improved. In this step, during the heating process, since water evaporates, deionized water needs to be added to ensure that the concentration of the metal oxide dispersion remains unchanged.
  • the mixed and heated metal oxide dispersion and the mixed solution are further placed in a homogenizer for homogenization to improve the uniformity of the obtained sunscreen product, and the sunscreen product is obtained after naturally cooling to room temperature.
  • the sunscreen product forms an oil-in-water emulsion, so that the water phase of the metal oxide micro-nano sheets is coated with the oil matrix, making the metal oxide micro-nano sheets in the water phase of the sunscreen product more uniform and stable.
  • the homogenizer operates at a speed of 10000-12000 r/min, and the homogenization time is 1 to 2 min.
  • the oil base accounts for 20-50 wt%, such as 20 wt%, 30 wt%, 40 wt% or 50 wt%.
  • the first emulsifier is added in an amount of 0.5-15 wt% of the oil base.
  • the first emulsifier may account for 1 wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt%, 8 wt%, 10 wt% or 15 wt% of the oil base.
  • the metal oxide dispersion accounts for 50-80wt%, such as 50wt%, 60wt%, 70wt% or 80wt%.
  • the amount of the second emulsifier added accounts for 0.1-10wt% of the metal oxide dispersion, and the second emulsifier emulsifies the metal oxide dispersion within the above range, such as 0.1wt%, 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 8wt% or 10wt%.
  • the metal oxide micro-nano flakes account for 0.1 to 40 wt%, such as 0.1 wt%, 0.5 wt%, 4 wt%, 10 wt%, 25 wt% or 40 wt%.
  • the metal oxide micro-nano flakes have good dispersibility and stability when the proportion is less than 40 wt%.
  • the metal oxide micro-nano flakes account for 0.1 to 25 wt%.
  • the sunscreen product can be made into any one of a sunscreen spray, a sunscreen cream, or a sunscreen lotion.
  • the present application also provides a sunscreen product having metal oxide micro-nano flakes, the sunscreen product comprising an aqueous phase matrix, a first emulsifier and an oil matrix, the aqueous phase matrix comprising metal oxide micro-nano flakes and water.
  • the sunscreen product may be a water-in-oil emulsion.
  • the metal oxide micro-nano sheets have a nanometer or micrometer thickness and a corresponding size of several micrometers to tens of micrometers, the metal oxide micro-nano sheets have a high specific surface area, so that under the same volume percentage concentration conditions, the optical transparency of the nanosheets in the visible light region is much higher than that of titanium dioxide nanoparticles, thereby improving the optical transparency of the sunscreen product in the visible light region, improving the whitening phenomenon of the skin surface after application, and improving the natural skin color index.
  • the large lateral size and high specific surface area of the metal oxide micro-nano sheets enable the sunscreen product to be evenly applied to the skin surface, and it is difficult to penetrate the skin stratum corneum with a gap of hundreds of nanometers, reducing the penetration rate of the sunscreen product into the skin, thereby improving the biological safety of the sunscreen product, so that the metal oxide micro-nano sheets have broad application prospects in the fields of cosmetics and sunscreen.
  • Titanium dioxide, lithium carbonate and potassium carbonate are provided as raw materials, wherein the molar ratio of lithium carbonate:potassium carbonate:titanium dioxide is 1:3:12. Titanium dioxide, lithium carbonate and potassium carbonate are mixed to obtain a mixture. The mixture is sintered at 1000° C. in an air atmosphere for 15-24 hours, and after natural cooling, a sintered product K 0.8 Ti 1.7 Li 0.27 O 4 is obtained.
  • tetrabutylammonium hydroxide 1 mol/L tetrabutylammonium hydroxide was added to the parent material and stirred for 2 h.
  • the parent material treated with tetrabutylammonium hydroxide was mixed with water and subjected to ultrasonic treatment and vibration for 1 h, and the concentration of the titanium oxide dispersion was adjusted to 1.5 g/L.
  • the mixed aqueous phase mixed dispersion and the oil phase mixed dispersion were then transferred to a homogenizer for homogenization at a speed of 10000 r/min and a homogenization time of 1 min.
  • the temperature was lowered to room temperature to obtain a sunscreen product, in which the content of titanium oxide micro-nano flakes was 7.5 wt%.
  • Example 2 The difference between Example 2 and Example 1 is that in the process of preparing the sunscreen product, 27 mL of the titanium oxide dispersion and 0.5 g of the emulsifier sodium stearoyl glutamate are heated and mixed at 80° C. under magnetic stirring conditions to obtain an aqueous phase mixed dispersion.
  • the content of the titanium oxide micro-nano flakes is 4.0 wt%.
  • the remaining steps are the same as those of Example 1.
  • Example 3 The difference between Example 3 and Example 2 is that the steps of preparing the titanium oxide dispersion are:
  • Titanium dioxide, lithium carbonate, potassium carbonate, and iron oxide raw materials are provided, wherein the molar ratio of lithium carbonate: potassium carbonate: titanium dioxide is 1:3:12, and the molar ratio of titanium dioxide: iron oxide is 0.3. Titanium dioxide, lithium carbonate, potassium carbonate, and iron oxide are mixed to obtain a mixture. The mixture is sintered at 1000° C. in an air atmosphere for 20 hours, and after natural cooling, a sintered product K 0.8 Ti 1.2 Fe 0.4 Li 0.27 O 4 is obtained.
  • Example 4 The difference between Example 4 and Example 1 is that, in the preparation of the titanium oxide dispersion, ultrasonic vibration is not performed after the parent material and water are mixed, and the remaining steps are the same as those of Example 1.
  • Example 5 The difference between Example 5 and Example 1 is that in the preparation of the titanium oxide dispersion, the parent material and water are mixed and ultrasonically shaken for 2 hours, and the remaining steps are the same as those of Example 1.
  • Example 6 The difference between Example 6 and Example 1 is that in the preparation of the titanium oxide dispersion, the parent material and water are mixed and ultrasonically shaken for 4 hours, and the remaining steps are the same as those of Example 1.
  • Example 2 The difference between Comparative Example 1 and Example 2 is that the "titanium oxide dispersion" in Example 2 is replaced by spherical titanium dioxide with a particle size of 30 nm, and the remaining steps are the same as those of Example 2.
  • Comparative Example 2 The difference between Comparative Example 2 and Comparative Example 1 is that the particle size of the spherical titanium dioxide is 50 nm, and the remaining steps are the same as those of Comparative Example 1.
  • Comparative Example 3 The difference between Comparative Example 3 and Comparative Example 1 is that the particle size of the spherical titanium dioxide is 80 nm, and the remaining steps are the same as those of Comparative Example 1.
  • Atomic force microscopy was used to test the morphology of the titanium oxide in the titanium oxide dispersion prepared in Example 1 and Example 3. Referring to Figures 1 and 2, nanosheets appeared in both Figures 1 and 2, indicating that nanosheets were generated in the titanium oxide dispersion in Example 1 and Example 3.
  • bottle (A) in Figure 3 is the dispersion containing titanium oxide nanosheets prepared in Example 2, and bottle (B) is the spherical titanium dioxide in Comparative Example 1 at the same concentration.
  • bottle (A) has better light transmittance, which means that compared with spherical titanium dioxide, the light transmittance of the titanium oxide nanosheets is excellent. It also means that the dispersion in this application is a relatively stable colloid.
  • FIG. 4 the titanium oxide micro-nano sheets in the titanium oxide dispersion prepared in Example 3 were tested using an EDS spectrometer.
  • (A) is a scanning electron microscope image of the titanium oxide micro-nano sheets prepared in Example 3. It can be seen from FIG. 4 (B) and FIG. 4 (D) that the titanium element and the oxygen element are uniformly distributed.
  • FIG. 4 (C) the iron element is uniformly distributed, indicating that the iron element is doped in the titanium oxide micro-nano sheets.
  • Example 3 The titanium oxide in the titanium oxide dispersion prepared in Example 2, Example 3 and Comparative Example 1 was tested in the ultraviolet visible light (280-700 nm) band using an ultraviolet spectrophotometer.
  • the titanium oxide dispersion in Example 1 and Example 2 had the same concentration.
  • Comparative Example 1 Compared with Comparative Example 1, in the ultraviolet visible light (280-700nm) band, Comparative Example 1 mainly uses the reflection scattering method for shielding, which will block both ultraviolet and visible light. However, Example 2 and Example 3 use the characteristic absorption peak of titanium oxide micro-nanosheets to ensure a certain ultraviolet and visible light. Shielding performance, and in the ultraviolet band range of (280-400nm), Example 2 and Example 3 have very good light transmittance, which shows that compared with Comparative Example 1, the reflection scattering of Example 2 and Example 3 is very weak.
  • the light transmittance of the titanium oxide-containing micro-nano sheet in Example 2 and Implementation 3 is greater than that of Comparative Example 1, which shows that the titanium oxide-containing micro-nano sheet has a high visible light transmittance, making the skin color natural index high.
  • the concentration of the titanium oxide dispersion in Example 1 and Example 2 is the same, and the titanium oxide-containing micro-nano sheet in Example 1 also has a high visible light transmittance.
  • the present application also uses a Franz diffusion cell to test the permeability of the titanium oxide dispersion prepared in Example 2, Example 3 and Comparative Examples 1 to 3 at equal concentrations.
  • Franz diffusion cell is used to test transdermal absorption.
  • the skin such as a skin-like membrane, model: SKBM02560Start-M Membrane
  • the inner surface of the skin is immersed in the isotonic solution.
  • Constant temperature circulating water maintains the constant temperature working state of the diffusion cell, and constant speed magnetic stirring ensures the uniform distribution of the isotonic solution.
  • the transdermal absorption test was performed using a Franz diffusion cell.
  • the concentration of the sample to be tested is 1.0g/L
  • the test is carried out at 32°C and RH55%, and the penetration time is 24h.
  • the lower layer of solution is taken, and the penetration concentration is calibrated using a UV-visible spectrophotometer.
  • the blank sample is deionized water.
  • the permeation content in Comparative Examples 1 to 3 is higher than that in Example 2, which indicates that compared with spherical titanium dioxide, the titanium oxide-containing micro-nano sheet can well reduce permeation, thereby reducing permeation into the stratum corneum of the skin.
  • the permeation amount of the titanium oxide-containing micro-nano sheet in Example 3 is significantly smaller, which further indicates that the titanium oxide-containing micro-nano sheet can reduce permeation into the stratum corneum of the skin. This indicates that the titanium oxide-containing micro-nano sheet provided in the present application has the advantage of low skin permeability, thereby improving the biological safety of sunscreen products.
  • the present application also conducts scanning electron microscope tests on the titanium oxide micro-nano sheets prepared in Examples 4 to 6.
  • Figures 8A and 8B are electron microscope images of the titanium oxide micro-nano sheets in Example 4 at different magnifications. It can be seen from Figure 8A that a sheet structure with a micron sheet diameter is obtained, and combined with Figure 8B, it can be seen that the thickness of the titanium oxide micro-nano sheet is in the micron range, indicating that a titanium oxide sheet structure with a micron thickness is obtained.
  • FIGS 9A and 9B are electron microscope images of titanium oxide micro-nano sheets in Example 5 at different magnifications. From Figure 9B, it can be seen that the thickness of the titanium oxide micro-nano sheets is in the nanometer range, indicating that Nano-thick titanium-containing oxide sheet structure.
  • FIGS 10A and 10B are electron microscope images of titanium oxide micro-nano sheets in Example 6 at different magnifications. It can be seen from Figure 10B that the thickness of the titanium oxide micro-nano sheets is in the nanometer range, indicating that a titanium oxide sheet structure with a nanometer thickness is obtained. It can also be seen from Figures 8 to 10 above that under the same conditions, as the ultrasonic oscillation time increases, the thickness of the titanium oxide micro-nano sheets obtained by peeling becomes thinner and thinner.
  • the present application also uses an ultraviolet spectrophotometer to test the transmittance of the titanium oxide dispersions in each of Examples 4 to 6 and Comparative Example 1 in the ultraviolet visible light (280-700nm) band.
  • Examples 4 to 6 can not only guarantee a certain ultraviolet shielding performance, but also have very good transmittance in the ultraviolet band (280-400nm), which shows that compared with Comparative Example 1, the reflection scattering of Examples 4 to 6 is very weak.
  • the transmittance of the titanium oxide micro-nano sheets of Examples 4 to 6 is greater than that of Comparative Example 1, which shows that the titanium oxide micro-nano sheets have high visible light transmittance.
  • the steps of preparing sunscreen products with zinc oxide micro-nano sheets and titanium oxide micro-nano sheets are exactly the same. Since zinc oxide and titanium oxide are both physical sunscreens, the characteristic absorption peak of visible light transmission/ultraviolet absorption of titanium oxide is about 350nm, and the characteristic absorption peak of zinc oxide is about 370nm, both of which have visible light transmission ability, and have no characteristic absorption peak in visible light, the reflection and scattering of the prepared zinc oxide micro-nano sheets and titanium oxide micro-nano sheets are reduced, and the zinc oxide micro-nano sheets and titanium oxide micro-nano sheets have high visible light transmittance.
  • the zinc oxide micro-nano sheets and titanium oxide micro-nano sheets are both ceramic materials, and the properties of their micro-nano sheet structures are similar, and the zinc oxide micro-nano sheets in sunscreen products also have similar effects, and can also form oil-in-water emulsions, and also have low skin permeability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

一种具有金属氧化物微纳米片的防晒产品及其制备方法,所述防晒产品包括水相基质、第一乳化剂和油类基质,所述水相基质包括金属氧化物微纳米片和水,所述金属氧化物微纳米片包括含钛氧化物微纳米片或含锌氧化物微纳米片中的至少一种。该防晒产品能够提高防晒产品的可见光区的光学透明度,改善涂抹后皮肤表面泛白的现象;还能够降低防晒产品渗透到皮肤内的渗透率,从而提升防晒产品的生物安全性。

Description

具有金属氧化物微纳米片的防晒产品及其制备方法 技术领域
本申请涉及防晒霜的技术领域,尤其涉及一种具有金属氧化物微纳米片的防晒产品及其制备方法。
背景技术
目前,二氧化钛是公认的常用物理防晒剂材料之一,防晒剂中二氧化钛通过反射、散射、吸收的方式达到防晒的作用。传统二氧化钛作为防晒剂,本身作为着色剂在使用过程中也存在皮肤表面泛白、不自然等不符合大众审美诉求的问题。同时,采用百纳米尺寸级别的二氧化钛纳米颗粒易于穿透皮肤角质层达到体内,一定程度上破坏了人体的生物安全性。
发明内容
有鉴于此,本申请提供一种具有金属氧化物微纳米片的防晒产品及其制备方法。
为实现上述目的,本申请提供了一种具有金属氧化物微纳米片的防晒产品,所述防晒产品包括水相基质、第一乳化剂和油类基质,所述水相基质包括金属氧化物微纳米片和水。
在一些实施方式中,所述金属氧化物微纳米片包括含钛氧化物微纳米片或含锌氧化物微纳米片中的至少一种。
在一些实施方式中,所述含钛氧化物微纳米片的化学式为Ti(1-x)O(2-2x),0≤x<1。
在一些实施方式中,所述含钛氧化物微纳米片的化学式为MaTi(1-x-a)O(2-2x),0≤x<1,其中,M为与Ti同周期的金属元素。
在一些实施方式中,所述含锌氧化物微纳米片的化学式为ZnO。
在一些实施方式中,所述含锌氧化物微纳米片的化学式为NbZn(1-b)O,其中,N为与Zn同周期的金属元素。
在一些实施方式中,在所述防晒产品中,所述金属氧化物微纳米片的占比为0.1~40 wt%。
在一些实施方式中,所述第一乳化剂包括鲸蜡硬脂基葡糖苷、甲基葡糖倍半硬脂酸酯或烷基葡糖苷中的至少一种,所述烷基葡糖苷中碳原子的个数为14~22。
在一些实施方式中,在所述防晒产品中,所述第一乳化剂的加入量占所述油类基质的0.5-15wt%。
在一些实施方式中,所述防晒产品还包括第二乳化剂,所述第二乳化剂包括硬脂酰谷氨酸钠、月桂酰基谷氨酸钠或椰油酰谷氨酸钠中的至少一种,所述第二乳化剂的加入量占所述水相基质的0.1-10wt%。
在一些实施方式中,所述油类基质包括液体石蜡、辛酸/癸酸甘油酯、霍霍巴油、乳木果油中的至少一种。
本申请还提供了一种防晒产品的制备方法,所述制备方法包括:混合油类基质和第一乳化剂,加热,得到混合液;将金属氧化物分散液加入所述混合液,加热,得到防晒产品,所述金属氧化物分散液包括含钛氧化物微纳米片和水,所述金属氧化物微纳米片包括含钛氧化物微纳米片或含锌氧化物微纳米片中的至少一种。
在一些实施方式中,所述制备方法还包括:在含钛氧化物分散液加入所述混合液之前,所述含钛氧化物分散液中还加入有第二乳化剂,所述第一乳化剂包括油相乳化剂,所述第二乳化剂为水相乳化剂。
在一些实施方式中,所述制备方法还包括制备所述含钛氧化物微纳米片的方法,所述方法包括:采用烧结-剥离法、水热法、封管烧结法或化学气相沉积法中的一种。
本申请中,通过将金属氧化物纳米片掺杂到防晒产品中,由于金属氧化物微纳米片因具有纳米或微米层厚度,具有相应的几微米到几十微米的尺寸,从而使得金属氧化物微纳米片具有高的比表面积,使得在相同体积百分比浓度条件下,微纳米片在可见光区的光学透明度远高于二氧化钛(或氧化锌)纳米颗粒,提高防晒产品的可见光区的光学透明度,改善涂抹后皮肤表面泛白的现象,提高了肤色自然指数。同时,在涂抹防晒产品的过程中,金属氧化物微纳米片的横向尺寸大和高的比表面积的特点使得防晒产品能够均匀涂抹于皮肤表面,并难于穿透百纳米间隙的皮肤角质层,降低了防晒产品渗透到皮肤内的渗透率, 从而提升防晒产品的生物安全性,使得金属氧化物微纳米片在化妆品及防晒领域有着广阔的应用前景。
附图说明
图1为本申请实施例一中含钛氧化物分散液中含钛氧化物微纳米片的原子力显微镜图。
图2为本申请实施例三中含钛氧化物分散液中含钛氧化物微纳米片的原子力显微镜图。
图3为本申请中实施例二中含钛氧化物分散液和对比例一的球状二氧化钛分散液的丁达尔效应示意图。
图4中,(A)为本申请实施例三中含钛氧化物分散液中含钛氧化物微纳米片的扫描电镜图;(B)为(A)中Ti元素的分布能谱图;(C)为(A)中Fe元素的分布能谱图;(D)为(A)中O元素的分布能谱图。
图5为本申请实施例二、实施例三和对比例一中各自的含钛氧化物分散液在紫外可见光(280-700nm)波段的透射率谱图。
图6为本申请实施例二和对比例一至三中含钛氧化物分散液在等浓度下Franz扩散池测试的渗透性对比图。
图7为本申请实施例三和对比例二中含钛氧化物分散液在等浓度下Franz扩散池测试的渗透性对比图。
图8A和图8B分别为实施例四制备的含钛氧化物微纳米片不同倍率下的扫描电镜图。
图9A和图9B分别为实施例五制备的含钛氧化物微纳米片不同倍率下的扫描电镜图。
图10A和图10B分别为实施例六制备的含钛氧化物微纳米片不同倍率下的扫描电镜图。
图11为本申请实施例四至六及对比例一中各自的含钛氧化物分散液在紫外可见光(280-700nm)波段的透射率谱图。
具体实施方式
下面详细描述本发明的实施例。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
本申请中,需要说明的是,微纳米片是指片层厚度在纳米或微米范围内。
本申请提供一种具有金属氧化物微纳米片的防晒产品的制备方法,包括以下步骤:
S100.提供金属氧化物分散液、第一乳化剂和油类基质,金属氧化物分散液包括金属氧化物微纳米片和水,金属氧化物微纳米片包括含钛氧化物微纳米片或含锌氧化物微纳米片中的至少一种。
在一些实施例中,制备金属氧化物微纳米片的方法还包括烧结-剥离法、水热法、封管烧结法或化学气相沉积法中的一种。
在一些实施例中,金属氧化物微纳米片为含钛氧化物微纳米片,金属氧化物分散液为含钛氧化物分散液。含钛氧化物微纳米片的化学式为Ti(1-x)O(2-2x),0≤x<1。含钛氧化物微纳米片以烧结-剥离法为例展开进行说明,含钛氧化物分散液的制备方法包括以下步骤:
S111.提供二氧化钛、碳酸锂和碳酸钾。
S112.混合二氧化钛、碳酸锂和碳酸钾,得到第一混合物,其中,碳酸锂:碳酸钾:二氧化钛的摩尔比为1:3:(12-13)。
S113.在空气氛围,温度为600-1800℃下烧结第一混合物,烧结时间为15-28h,得到第一烧结产物。
在此步骤中,在高温下,碳酸锂和碳酸钾作用于二氧化钛,得到层状结构的第一烧结产物,第一烧结产物为锂钛钾形成的氧化物。
在一些实施例中,烧结温度可以为600℃、800℃、1000℃、1100℃或1800℃,烧结 时间可以为15h、20h、22h、24h或28h。
S114.在所述第一烧结产物中加入酸性溶液,洗涤,得到第一母体材料。
在此步骤中,酸性溶液的加入,以除去第一烧结产物中锂和钾,并通过去离子水除去多余的酸性溶液。
在一些实施例中,酸性溶液为盐酸、稀硝酸、乙酸或稀硫酸中的至少一种。酸性溶液的浓度为0.5~1mol/L,酸性溶液处理时间为24~30h。
S115.所述第一母体材料与水混合并进行超声处理,得到所述含钛氧化物分散液,其中,得到所述含钛氧化物微纳米片的化学式为Ti(1-x)O(2-2x),0≤x<1。
通过对母体材料和水混合并进行超声震荡处理,使得母体材料的片层剥离,得到含钛氧化物微纳米片。在一些实施例中,超声震荡处理时间为1-6h。
在一些实施例中,第一母体材料与水混合也可以采用球磨、砂磨、机械剥离、机械搅拌、高速剪切、高压均质、或微射流进行剥离。
在一些实施例中,在所述母体材料与水混合前,所述母体材料还经过预插层处理,所述预插层处理包括:在所述母体材料中加入有机碱溶液,搅拌,洗涤。有机碱溶液包括有机碱和水。有机碱包括四丁基氢氧化铵、四丙基氢氧化铵或三甲基乙基氢氧化铵中的至少一种。
由于有机碱溶液中含有大基团有机阳离子,有机阳离子会插接于层状母体材料的片层之间,进而扩大母体材料中层与层的间距,便于后续剥离得到纳米片。在所述母体材料经过有机碱溶液处理后,采用去离子水多次洗涤母体材料,以除去有机碱。
在一些实施例中,有机碱溶液的浓度为0.5~1mol/L,有机碱溶液处理时间为1.5~2h。
在一些实施例中,所述金属氧化物分散液的浓度为0.1~5g/L,如0.1g/L、0.5g/L、1g/L或5g/L。在此处浓度是指在1L的溶剂水中金属氧化物微纳米片的质量占比。
在一些实施例中,金属氧化物微纳米片的片径为0.2~1μm,如0.2μm、0.5μm、0.8μm或1μm。
在一些实施例中,含钛氧化物微纳米片的化学式为MaTi(1-x-a)O(2-2x),0≤x<1,M为与Ti同周期的金属元素,比如M为K、Ca、Sc、V、Gr、Ga、Ge、Cr、Fe、Ni、Mn、Cu、 Zn或Co等金属元素中的至少一种,含钛氧化物分散液的制备方法包括以下步骤:
S121.提供二氧化钛、碳酸锂、碳酸钾和M2O3
S122.混合二氧化钛、碳酸锂、碳酸钾和M2O3,得到第二混合物;
S123.在空气氛围,温度为600-1800℃下烧结所述第二混合物,烧结时间为15-28h,得到第二烧结产物;
S124.在所述第二烧结产物中加入酸性溶液,洗涤,得到第二母体材料;
S125.所述第二母体材料与水混合并进行超声处理,得到所述含钛氧化物分散液。
上述步骤S121至S125与步骤S111至S115的不同之处在于,步骤S122的混合物中还加入有M2O3。其中,二氧化钛:M2O3的摩尔比为(0.1~0.4):1。在步骤S123中,在高温下,碳酸锂、碳酸钾、二氧化钛和M2O3共同反应,金属M会取代部分Ti,得到层状结构的烧结产物,如M为铁时,烧结产物为锂钛钾铁形成的氧化物。其余与步骤S113-S115的步骤相同,得到所述含钛氧化物分散液,含钛氧化物微纳米片的化学式为MaTi(1-x-a)O(2-2x),0≤x<1。
在一些实施例中,金属氧化物微纳米片为含锌氧化物微纳米片,金属氧化物分散液为含锌氧化物分散液。含锌氧化物微纳米片的化学式为ZnO。含锌氧化物分散液的制备方法包括以下步骤:
S131.提供醋酸锌和氢氧化钠。
S132.在醋酸锌中加水,溶解,得到醋酸锌溶液,在醋酸锌溶液中加入氢氧化钠,调整溶液pH为13。
S133.将步骤S132的混合液放入聚四氟乙烯内衬的高压反应釜中,反应温度为130~250℃,反应时间为24h-28h,得到反应产物。
S134.将步骤S133的反应产物进行分离,得到沉淀物,用去离子水洗涤沉淀物,并采用柠檬酸钠进行处理,洗涤,干燥,得到氧化锌纳米片。
S135.将氧化锌纳米片与水混合,得到含锌氧化物分散液。
在一些实施例中,所述含锌氧化物微纳米片的化学式为NbZn(1-b)O,其中,N为与Zn同周期的金属元素,比如N为K、Ca、Sc、V、Gr、Ga、Ge、Cr、Fe、Ni、Mn、Cu、Ti 或Co的至少一种等金属元素中的至少一种。含锌氧化物分散液的制备方法包括以下步骤:
S141.提供醋酸锌、盐溶液和氢氧化钠。
在一些实施例中,盐溶液可以为醋酸铜、醋酸铁或醋酸钴等。
S142.在醋酸锌中加水,溶解,得到醋酸锌溶液,在醋酸锌溶液中加入溶液和氢氧化钠,调整溶液pH为13,其中,醋酸锌:盐的摩尔比为(0.1~0.4):1。
S143.将步骤S142得到的混合液放入聚四氟乙烯内衬的高压反应釜中,反应温度为130~250℃,反应时间为24h-28h,得到反应产物。
S144.将步骤S143的反应产物进行分离,得到沉淀物,用去离子水洗涤沉淀物,并采用柠檬酸钠进行处理,洗涤,干燥,得到含锌氧化物微纳米片。
S145.将氧化锌纳米片与水混合,得到含锌氧化物分散液。
S200.将第一乳化剂和油类基质混合,加热,得到混合液。
在此步骤中,第一乳化剂和油类基质混合均匀,加热处理不仅使得第一乳化剂溶解,更提高第一乳化剂的乳化油效率。在一些实施例中,油类基质包括液体石蜡、辛酸/癸酸甘油酯、霍霍巴油、乳木果油中的至少一种。第一乳化剂包括鲸蜡硬脂基葡糖苷、甲基葡糖倍半硬脂酸酯(PEG-20)或烷基葡糖苷中的至少一种,所述烷基葡糖苷中碳原子的个数为14~22。
在一些实施例中,加热温度为60~80℃,加热时间为15-40min。
S300.将所述金属氧化物分散液加入混合液,加热,得到具有金属氧化物微纳米片的防晒产品。
当金属氧化物分散液加入混合液后,在第一乳化剂的作用下,金属氧化物分散液和油类基质成为乳状液。防晒产品为油包水乳状液,金属氧化物纳米片分散在水,第一乳化剂形成于金属氧化物分散液和油类基质的交界处,金属氧化物纳米片在水中还起到稳定乳状液的作用。
在一些实施例中,第一乳化剂为油相乳化剂,相较于水相乳化剂,油相乳化剂对金属氧化物分散液和油类基质的乳化效果更佳。
本申请中,将金属氧化物微纳米片引入到防晒产品的应用体系中,利用金属氧化物微 纳米片自身的高比表面积,使得在相同体积百分比浓度条件下,纳米片在可见光区的光学透明度远高于二氧化钛纳米颗粒,提高防晒产品的可见光区的光学透明度,改善涂抹后皮肤表面泛白的现象。而且经过实验证明其还具有良好的紫外光的屏蔽性。同时,在涂抹防晒产品的过程中,金属氧化物微纳米片的横向尺寸大和高的比表面积使得防晒产品能够均匀涂抹于皮肤表面,并难于穿透百纳米间隙的皮肤角质层,降低了防晒产品渗透到皮肤内的渗透率,从而提高了防晒产品的生物安全性高和肤色自然指数。
在一些实施例中,在所述金属氧化物分散液加入所述混合液前,所述金属氧化物分散液中还加入有第二乳化剂。第二乳化剂的加入,以降低金属氧化物微纳米片和水之间的张力,进而提高金属氧化物微纳米片分散液的稳定性。
在一些实施例中,所述第二乳化剂包括乳化剂硬脂酰谷氨酸钠、月桂酰基谷氨酸钠或椰油酰谷氨酸钠中的至少一种。
本申请中,第一乳化剂和第二乳化剂混合后共同作用于金属氧化物分散液和油类基质,第一乳化剂和第二乳化剂分布于金属氧化物分散液和油类基质两相交界处,金属氧化物纳米片分散在水中,形成水相基质,连续相油类基质包覆于水相基质上,形成稳定的油包水乳液。
在一些实施例中,金属氧化物分散液和第二乳化剂混合后,还进行加热处理,加热温度为60~80℃,加热时间为15-40min。在此加热温度和时间下,提高第二乳化剂的乳化效果,进一步提高金属氧化物分散液的稳定性。在本步骤中,在加热过程中,由于水会蒸发,还需要补充去离子水,以保证金属氧化物分散液的浓度不变。
在一些实施例中,在得到防晒产品前,混合加热后的金属氧化物分散液和混合液还放置于均质机中均质,以提高得到防晒产品的均匀性,等自然冷却至常温就得到防晒产品。防晒产品形成油包水乳状液,使得金属氧化物微纳米片的水相被油类基质包覆,使得防晒产品中水相的金属氧化物微纳米片更加均匀稳定。
在一些实施例中,均质机运行速度为10000-12000r/min,均质时间为1~2min。
在一些实施例中,在防晒产品中,油类基质的占比为20~50wt%,如,油类基质的占比为20wt%、30wt%、40wt%或50wt%。第一乳化剂的加入量占油类基质的0.5-15wt%。 如,第一乳化剂占油类基质的占比可为1wt%、2wt%、3wt%、4wt%、5wt%、8wt%、10wt%或15wt%。
在一些实施例中,在防晒产品中,金属氧化物分散液的占比为50~80wt%,如,金属氧化物分散液的占比为50wt%、60wt%、70wt%或80wt%。第二乳化剂的加入量占金属氧化物分散液的0.1~10wt%,第二乳化剂在上述范围内使得金属氧化物分散液被乳化。比如0.1wt%、1wt%、2wt%、3wt%、4wt%、5wt%、8wt%或10wt%。
在防晒产品中,金属氧化物微纳米片的占比为0.1~40wt%,如0.1wt%、0.5wt%、4wt%、10wt%、25wt%或40wt%。金属氧化物微纳米片占比在小于40wt%下具有良好的分散性和稳定性。在一些实施例中,金属氧化物微纳米片的占比为0.1~25wt%。
在一些实施例中,防晒产品可以制成防晒喷雾、防晒霜或防晒膏中的任一种。
本申请还提供一种具有金属氧化物微纳米片的防晒产品,所述防晒产品包括水相基质、第一乳化剂和油类基质,所述水相基质包括金属氧化物微纳米片和水。所述防晒产品可以为油包水乳液。
本申请中,通过将金属氧化物微纳米片掺杂到防晒产品中,由于金属氧化物微纳米片因具有纳米或微米厚度,具有相应的几微米到几十微米的尺寸,从而使得金属氧化物微纳米片具有高的比表面积,使得在相同体积百分比浓度条件下,纳米片在可见光区的光学透明度远高于二氧化钛纳米颗粒,提高防晒产品的可见光区的光学透明度,改善涂抹后皮肤表面泛白的现象,提高肤色自然指数。同时,在涂抹防晒产品的过程中,金属氧化物微纳米片的横向尺寸大和高的比表面积使得防晒产品能够均匀涂抹于皮肤表面,并难于穿透百纳米间隙的皮肤角质层,降低了防晒产品渗透到皮肤内的渗透率,从而提升防晒产品的生物安全性,使得金属氧化物微纳米片在化妆品及防晒领域有着广阔的应用前景。
下面将结合实施例对本发明的方案进行解释。本领域技术人员将会理解,下面示例仅用于解释本发明,而不能理解为对本发明的限制。除另有交待,以下实施例中涉及的未特别交待的试剂、软件及仪器,都是常规市售产品或者开源的。
实施例一
1)制备含钛氧化物分散液:
提供二氧化钛、碳酸锂、碳酸钾原料,其中,碳酸锂:碳酸钾:二氧化钛的摩尔比为1:3:12。混合二氧化钛、碳酸锂和碳酸钾,得到混合物。在空气氛围中,1000℃烧结混合物,烧结时间为15-24h,自然冷却后,得到烧结产物K0.8Ti1.7Li0.27O4
在烧结产物中加入1mol/L稀盐酸,在磁力搅拌的条件下搅拌24h,然后用500mL去离子水洗涤3次,得到母体材料。
在母体材料中加入1mol/L四丁基氢氧化铵,搅拌2h。将四丁基氢氧化铵处理过的母体材料与水混合并进行超声处理震荡1h,并调整含钛氧化物分散液浓度至1.5g/L。
2)制备防晒产品:
提供1.5g/L含钛氧化物分散液、乳木果油、硬脂酰谷氨酸钠、鲸蜡硬脂基葡糖苷。
在磁力搅拌条件下,80℃加热混合50mL含钛氧化物分散液和0.5g乳化剂硬脂酰谷氨酸钠,得到水相混合分散液。在磁力搅拌条件下,80℃加热混合20g辛酸/癸酸甘油酯和0.8g乳化剂鲸蜡硬脂基葡糖苷,得到油相混合分散液。在80℃加热条件下,将水相混合分散液加入油相混合分散液中,并补充水至100g。然后将混合后的水相混合分散液和油相混合分散液转移至均质机均质,运行速度为10000r/min,均质时间为1min。降温至常温,得到防晒产品,在防晒产品中,含钛氧化物微纳米片含量为7.5wt%。
实施例二
实施例二与实施例一的不同之处在于,制备防晒产品的过程中,在磁力搅拌条件下,80℃加热混合27mL含钛氧化物分散液和0.5g乳化剂硬脂酰谷氨酸钠,得到水相混合分散液。在防晒产品中,含钛氧化物微纳米片含量为4.0wt%。其余步骤与实施例一的步骤相同。
实施例三
实施例三与实施例二的不同之处在于,制备含钛氧化物分散液的步骤:
提供二氧化钛、碳酸锂、碳酸钾、氧化铁原料,其中,碳酸锂:碳酸钾:二氧化钛的摩尔比为1:3:12,二氧化钛:氧化铁的摩尔比为0.3。混合二氧化钛、碳酸锂、碳酸钾和氧化铁,得到混合物。在空气氛围中,1000℃烧结混合物,烧结时间为20h,自然冷却后,得到烧结产物K0.8Ti1.2Fe0.4Li0.27O4
实施例四
实施例四与实施例一的不同之处在于,在制备含钛氧化物分散液中,母体材料和水混合后并未进行超声震荡,其余步骤与实施例一的步骤相同。
实施例五
实施例五与实施例一的不同之处在于,在制备含钛氧化物分散液中,母体材料和水混合后并进行超声震荡时间为2h,其余步骤与实施例一的步骤相同。
实施例六
实施例六与实施例一的不同之处在于,在制备含钛氧化物分散液中,母体材料和水混合后并进行超声震荡时间为4h,其余步骤与实施例一的步骤相同。
对比例一
对比例一与实施例二的不同之处在于,将实施例二中“含钛氧化物分散液”替换为粒径为30nm的球状二氧化钛,其余步骤与实施例二的步骤相同。
对比例二
对比例二与对比例一的不同之处在于,球状二氧化钛的粒径为50nm,其余步骤与对比例一的步骤相同。
对比例三
对比例三与对比例一的不同之处在于,球状二氧化钛的粒径为80nm,其余步骤与对比例一的步骤相同。
表1实施例一至六和对比例一至三中防晒产品的制备条件

采用原子力显微镜测试实施例一和实施例三制备的含钛氧化物分散液中含钛氧化物进行形貌测试。参阅图1和图2,在图1和图2中均出现纳米片,这表明实施例一和实施例三中的含钛氧化物分散液中生成了纳米片。
参见图3,图3中(A)瓶为实施例二制备的含氧化钛纳米片分散液,(B)瓶为同浓度下对比例一中的球状二氧化钛。从上述图中可以看出,(A)瓶的透光性较好,这说明相较于球状二氧化钛,含氧化钛纳米片的透光性极好。同时也说明本申请中分散液是较为稳定的胶体。
参阅图4,采用EDS能谱仪对实施例三制备的含钛氧化物分散液中含钛氧化物微纳米片进行测试。图4中,(A)为实施例三制备的含钛氧化物微纳米片的扫描电镜图。从图4中的(B)和图4中的(D)分别看出钛元素和氧元素均匀分布。图4中的(C)中铁元素均匀分布,表明铁元素掺杂于含钛氧化物微纳米片中。
采用紫外分光光度计对实施例二、实施例三和对比例一中制备的含钛氧化物分散液中含钛氧化物进行紫外可见光(280-700nm)波段测试。实施例一和实施例二中含钛氧化物分散液浓度相同。
参见图5并结合表1,在图5中明显看出,相较于对比例一,在紫外可见光(280-700nm)波段范围内,对比例一主要采用的是反射散射的方法进行屏蔽,会同时挡住紫外和可见光,然而实施例二和实施例三采用含钛氧化物微纳米片特征吸收峰不仅能够保证一定的紫外 屏蔽性能,且在(280-400nm)紫外波段范围内,实施例二和实施例三具有很好的透光率,这说明相较于对比例一,实施例二和实施例三的反射散射很弱。同时,在可见光(400-700nm)波段范围内,实施例二和实施三中的含钛氧化物微纳米片的透光率大于对比例一,这说明含钛氧化物微纳米片具有高的可见光透过率,使得肤色自然指数高。实施例一和实施例二中含钛氧化物分散液浓度相同,实施例一中含钛氧化物微纳米片也具有高的可见光透过率。
本申请还采用弗朗兹(Franz)扩散池测试等浓度下实施例二、实施例三和对比例一至三中制备的含钛氧化物分散液的渗透性。弗朗兹扩散池测试透皮吸收采用Franz扩散池,将皮肤(如仿肤膜,型号:SKBM02560Start-M Membrane)夹在扩散池盖(供给体)与扩散池(接受体)之间,皮肤的内表面沉浸在等渗溶液中,恒温循环水保持扩散池的恒温工作状态,恒速磁力搅拌确保等渗溶液的均匀分布。使用Franz扩散池进行透皮吸收试验。在待测样浓度(防晒产品)1.0g/L的条件下,采用32℃,RH55%进行测试,渗透时间24h,渗透完毕后取下层溶液,采用紫外-可见光分光光度计标定渗透浓度,空白样本为去离子水。
参见图6和图7,从图6和图7可以看出,在相同的条件下,对比例一至三中的渗透含量均高于实施例二的渗透含量,这说明相较于球状的二氧化钛,含钛氧化物微纳米片能够很好地减少渗透,进而减少对皮肤角质层的渗透。同样,在图7中,相较于对比例二的渗透量,实施例三中含钛氧化物微纳米片的渗透量明显较小,这进一步说明含钛氧化物微纳米片能够减少对皮肤角质层的渗透。这说明本申请提供的含钛氧化物微纳米片具有低皮肤渗透性的优点,提高了防晒产品的生物安全性。
本申请还对实施例四至六制备含钛氧化物微纳米片进行扫描电子显微镜测试。参阅图8A和图8B,图8A和图8B分别是实施例四中含钛氧化物微纳米片不同放大倍数的电镜图。从图8A中看出得到了微米片径大小的片结构,并结合图8B可以看出含钛氧化物微纳米片的厚度在微米范围内,说明得到了微米厚度的含钛氧化物片结构。
参阅图9A和图9B,图9A和图9B分别是实施例五中含钛氧化物微纳米片不同放大倍数的电镜图。从图9B可以看出含钛氧化物微纳米片的厚度在纳米范围内,说明得到了 纳米厚度的含钛氧化物片结构。
参阅图10A和图10B,图10A和图10B分别是实施例六中含钛氧化物微纳米片不同放大倍数的电镜图。从图10B可以看出含钛氧化物微纳米片的厚度在纳米范围内,说明得到了纳米厚度的含钛氧化物片结构。从上述图8至图10也可以看出,在相同的条件下,随着超声震荡时间的增加,剥离得到的含钛氧化物微纳米片的厚度越来越薄。
本申请还采用紫外分光光度计对实施例四至六和对比例一中各自的含钛氧化物分散液在紫外可见光(280-700nm)波段的透射率进行测试。参阅图11,从图中可以看出,同样地,实施例四至六不仅能够保证一定的紫外屏蔽性能,且在(280-400nm)紫外波段范围内,实施例四至六具有很好的透光率,这说明相较于对比例一,实施例四至六的反射散射很弱。同时,在可见光(400-700nm)波段范围内,实施例四至六的含钛氧化物微纳米片的透光率大于对比例一,这说明含钛氧化物微纳米片具有高的可见光透过率。而且随着含钛氧化物微纳米片超声震荡处理时间的增加,含钛氧化物微纳米片的厚度越薄,则含钛氧化物微纳米片的透光率越高,肤色自然指数越高。
在本申请中,含锌氧化物微纳米片制备防晒产品与含钛氧化物微纳米片制备防晒产品的步骤完全相同。由于氧化锌和氧化钛均是物理防晒剂,氧化钛的可见光透过/紫外吸收的特征吸收峰为350nm左右,氧化锌的特征吸收峰为370nm左右,两者均具有可见光透过能力,且无在可见光的特征吸收峰,制备得到含锌氧化物微纳米片和含钛氧化物微纳米片的反射散射降低,含锌氧化物微纳米片和含钛氧化物微纳米片均具有高的可见光透过率。另外,含锌氧化物微纳米片和含钛氧化物微纳米片均是陶瓷材料,其微纳米片结构的性质相似,具有在防晒产品中含锌氧化物微纳米片也具有相似的效果,也可形成油包水乳液,也具有低皮肤渗透率。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。

Claims (14)

  1. 一种具有金属氧化物微纳米片的防晒产品,其特征在于,所述防晒产品包括水相基质、第一乳化剂和油类基质,所述水相基质包括金属氧化物微纳米片和水。
  2. 如权利要求1所述的防晒产品,其特征在于,所述金属氧化物微纳米片包括含钛氧化物微纳米片或含锌氧化物微纳米片中的至少一种。
  3. 如权利要求2所述的防晒产品,其特征在于,所述含钛氧化物微纳米片的化学式为Ti(1-x)O(2-2x),0≤x<1。
  4. 如权利要求2所述的防晒产品,其特征在于,所述含钛氧化物微纳米片的化学式为MaTi(1-x-a)O(2-2x),0≤x<1,其中,M为与Ti同周期的金属元素。
  5. 如权利要求2所述的防晒产品,其特征在于,所述含锌氧化物微纳米片的化学式为ZnO。
  6. 如权利要求2所述的防晒产品,其特征在于,所述含锌氧化物微纳米片的化学式为NbZn(1-b)O,其中,N为与Zn同周期的金属元素。
  7. 如权利要求1所述的防晒产品,其特征在于,在所述防晒产品中,所述金属氧化物微纳米片的占比为0.1~40wt%。
  8. 如权利要求1所述的防晒产品,其特征在于,所述第一乳化剂包括鲸蜡硬脂基葡糖苷、甲基葡糖倍半硬脂酸酯或烷基葡糖苷中的至少一种,所述烷基葡糖苷中碳原子的个数为14~22。
  9. 如权利要求1所述的防晒产品,其特征在于,在所述防晒产品中,所述第一乳化剂的加入量占所述油类基质的0.5-15wt%。
  10. 如权利要求1所述的防晒产品,其特征在于,所述防晒产品还包括第二乳化剂,所述第二乳化剂包括硬脂酰谷氨酸钠、月桂酰基谷氨酸钠或椰油酰谷氨酸钠中的至少一种,所述第二乳化剂的加入量占所述水相基质的0.1-10wt%。
  11. 如权利要求1所述的防晒产品,其特征在于,所述油类基质包括液体石蜡、辛酸/癸酸甘油酯、霍霍巴油、乳木果油中的至少一种。
  12. 一种防晒产品的制备方法,其特征在于,包括:
    混合油类基质和第一乳化剂,加热,得到混合液;
    将金属氧化物分散液加入所述混合液,加热,得到防晒产品,所述金属氧化物分散液包括金属氧化物微纳米片和水,所述金属氧化物微纳米片包括含钛氧化物微纳米片或含锌氧化物微纳米片中的至少一种。
  13. 如权利要求12所述的防晒产品的制备方法,其特征在于,所述制备方法还包括:
    在金属氧化物分散液加入所述混合液之前,所述金属氧化物分散液中还加入有第二乳化剂,所述第一乳化剂包括油相乳化剂,所述第二乳化剂为水相乳化剂。
  14. 如权利要求12所述的防晒产品的制备方法,其特征在于,所述制备方法还包括制备所述金属氧化物微纳米片的方法,所述方法包括:
    采用烧结-剥离法、水热法、封管烧结法或化学气相沉积法中的一种。
PCT/CN2023/080882 2022-11-15 2023-03-10 具有金属氧化物微纳米片的防晒产品及其制备方法 WO2024103578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211430995.6A CN115721580A (zh) 2022-11-15 2022-11-15 具有金属氧化物微纳米片的防晒产品及其制备方法
CN202211430995.6 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024103578A1 true WO2024103578A1 (zh) 2024-05-23

Family

ID=85295964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080882 WO2024103578A1 (zh) 2022-11-15 2023-03-10 具有金属氧化物微纳米片的防晒产品及其制备方法

Country Status (2)

Country Link
CN (1) CN115721580A (zh)
WO (1) WO2024103578A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060194057A1 (en) * 2003-07-21 2006-08-31 Frank Pfluecker Silicon dioxide-coated nanoparticulate uv protectant
KR20130089433A (ko) * 2012-02-02 2013-08-12 한국콜마주식회사 티타니아 나노쉬트를 포함하는 자외선 차단용 화장료 조성물 및 그 제조방법
CN106038360A (zh) * 2016-04-26 2016-10-26 曾新民 一种含纳米石墨烯的复方防晒乳霜的制备方法
CN107669499A (zh) * 2017-11-21 2018-02-09 郑生华 一种婴儿物理防晒乳及制备方法
CN108128798A (zh) * 2017-12-22 2018-06-08 江南大学 一种片状纳米氧化锌防晒剂的简易制备方法
CN115252510A (zh) * 2022-09-29 2022-11-01 广东粤港澳大湾区黄埔材料研究院 一种防晒组合物及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003099944A1 (fr) * 2002-05-24 2003-12-04 Nippon Sheet Glass Company, Limited Particules ecailleuses et produit cosmetique comprenant ces particules, composition de revetement, composition de resine et composition d'encre
JP2011184274A (ja) * 2010-03-11 2011-09-22 National Institute For Materials Science 薄片状チタン酸化物を配合した有機溶媒分散体及びその製造方法並びにそれを用いたチタン酸化物薄膜及びその製造方法
KR20220105686A (ko) * 2021-01-20 2022-07-28 금오공과대학교 산학협력단 산화아연 및 이산화티타늄 복합체를 포함하는 항균제의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060194057A1 (en) * 2003-07-21 2006-08-31 Frank Pfluecker Silicon dioxide-coated nanoparticulate uv protectant
KR20130089433A (ko) * 2012-02-02 2013-08-12 한국콜마주식회사 티타니아 나노쉬트를 포함하는 자외선 차단용 화장료 조성물 및 그 제조방법
CN106038360A (zh) * 2016-04-26 2016-10-26 曾新民 一种含纳米石墨烯的复方防晒乳霜的制备方法
CN107669499A (zh) * 2017-11-21 2018-02-09 郑生华 一种婴儿物理防晒乳及制备方法
CN108128798A (zh) * 2017-12-22 2018-06-08 江南大学 一种片状纳米氧化锌防晒剂的简易制备方法
CN115252510A (zh) * 2022-09-29 2022-11-01 广东粤港澳大湾区黄埔材料研究院 一种防晒组合物及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOUKURA, HIROKO; HIGASHI, KIYOSI; SUZUKI, TOSHIYUKI; IMOKAWA, GENJI: "Efficacy of Opaque Photoprotective Agents in UVA Range", JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS OF JAPAN (JOURNAL OF SCCJ) - NIHONKESHOHIN GIJUTSUSHAKAI KAISHI, NIHON KESHOHIN GIJUTSUSHAKAI, TOKYO, JP, vol. 28, no. 3, 31 December 1994 (1994-12-31), JP , pages 254 - 261, XP009555162, ISSN: 0387-5253, DOI: 10.5107/sccj.28.254 *
RAJENDRAN KALIMUTHU, GAJENDIRAN MANI; KIM SUNGJUN; KIM KYOBUM; BALASUBRAMANIAN SENGOTTUVELAN: "Synthesis and characterization of biocompatible zinc oxide nanorod doped-titanium dioxide nanosheet", JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, THE KOREAN SOCIETY OF INDUSTRIAL AND ENGINEERING CHEMISTRY, KOREA, vol. 57, 1 January 2018 (2018-01-01), KOREA , pages 387 - 395, XP093170652, ISSN: 1226-086X, DOI: 10.1016/j.jiec.2017.08.047 *

Also Published As

Publication number Publication date
CN115721580A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
CN106623967B (zh) 一种黑磷-金属纳米复合材料及其合成方法和应用
DE102011109806B4 (de) Sonochemische Synthese von Titan enthaltenden Oxiden
CN106670501B (zh) 一种石墨烯-金属基复合粉体的制备方法
CN106345459A (zh) 一种复合微球的制备方法
CN105127441B (zh) 一种铂纳米微晶分散体系的制备方法
WO2018036078A1 (zh) 一种含有配位子键结的金纳米团簇的溶液的制备方法
JP2007217258A (ja) ナノ炭素粒子分散液及びその製造方法とコア・シェル型ナノ炭素粒子及びその製造方法
WO2022016741A1 (zh) 一种尺寸可调的金纳米粒子的制备方法
Gupta et al. Mini submersible pump assisted sonochemical reactors: Large-scale synthesis of zinc oxide nanoparticles and nanoleaves for antibacterial and anti-counterfeiting applications
CN110240125B (zh) 一种空心硒化锌纳米晶、其制备方法与应用
CN110200821A (zh) 一种基于石墨烯量子点的l-薄荷醇缓释材料及其制备方法
CN105478747A (zh) 对近红外光具有显著可调吸收性能的梭形金纳米粒子及其制备方法
JP5767620B2 (ja) 酸化ジルコニウムナノ粒子とそのヒドロゾルおよび酸化ジルコニウムナノ粒子を製造するための組成物と方法
WO2024103578A1 (zh) 具有金属氧化物微纳米片的防晒产品及其制备方法
Singh et al. Chemo-bio synthesis of silver nanoparticles
Jassim et al. The potential of green-synthesized copper oxide nanoparticles from coffee aqueous extract to inhibit testosterone hormones
CN106423129A (zh) 一种水热法制备石墨烯负载二氧化钛的方法
CN108637269A (zh) 一种具有五重孪晶结构的金纳米双棱锥及其制备方法
CN106112006B (zh) 一种金纳米粒子水溶液及其制备方法和应用
CN106006710B (zh) 一种β‑NaYF4:Yb/Tm@ZnO核壳纳米颗粒及其制备方法
CN110589896A (zh) 一种水相纳米氧化铁颗粒的绿色高效制备方法
CN109365800B (zh) 一种金纳米三角板-二氧化钛核壳纳米复合体、其制备方法及应用
CN115517979B (zh) 一种基于窄分布AEO3-AEO9反相微乳液制备“ZnO@SiO2”纳米颗粒的方法
CN113679621B (zh) 一种抗水防晒乳液及其制备方法
Hathout et al. Determination of pesticide residues in agricultural soil samples collected from Sinai and Ismailia Governorates, Egypt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890024

Country of ref document: EP

Kind code of ref document: A1