WO2024103460A1 - 复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法 - Google Patents

复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法 Download PDF

Info

Publication number
WO2024103460A1
WO2024103460A1 PCT/CN2022/137481 CN2022137481W WO2024103460A1 WO 2024103460 A1 WO2024103460 A1 WO 2024103460A1 CN 2022137481 W CN2022137481 W CN 2022137481W WO 2024103460 A1 WO2024103460 A1 WO 2024103460A1
Authority
WO
WIPO (PCT)
Prior art keywords
torsion
tension
plate
loading mechanism
full
Prior art date
Application number
PCT/CN2022/137481
Other languages
English (en)
French (fr)
Inventor
赵同彬
邢明录
李春林
尹延春
刘彬
于凤海
刘文礼
张玉宝
郭伟耀
刘亚鑫
王晓皓
李龙飞
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2024103460A1 publication Critical patent/WO2024103460A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/22Investigating strength properties of solid materials by application of mechanical stress by applying steady torsional forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/23Dune restoration or creation; Cliff stabilisation

Definitions

  • the invention relates to the technical field of detection equipment, in particular to a test system and method for the anchoring performance of a full-size rock bolt under a composite load.
  • Anchor support technology is widely used in coal mines, tunnels, water conservancy and other engineering fields.
  • the anchoring method is usually to anchor anchor rods, anchor cables, etc. (hereinafter collectively referred to as “anchor rods”) in the rock mass through resin adhesives or mortar to enhance the bearing capacity of the surrounding rock.
  • anchor rods mainly bears the tensile force generated by the surrounding rock crushing and expansion between the anchor rod bonding section and the tray, the residual torsional force when installing the anchor rod, and the shear, bending and torsion loads caused by the dislocation and deflection of the surrounding rock in the later period.
  • the anchor rod is usually under the working condition of composite load.
  • the full-size anchor rod is usually anchored in concrete or rock blocks that simulate the surrounding rock.
  • the diameter of the engineering anchor rod is usually between 20-30mm, and the yield strength is generally greater than 300MPa.
  • the double parallel horizontal reaction frame includes an outer plate, an inner plate, a front load-bearing plate, a rear load-bearing plate, a support and a ground pad, the inner plate and the outer plate are arranged in parallel, an installation space is reserved between the inner plate and the outer plate, the front load-bearing plate and the rear load-bearing plate are respectively arranged at the two ends of the inner plate and the outer plate; the support is fixed on the ground pad.
  • the vertical reaction frame includes an upper bearing plate, a reaction frame light bar, a lower bearing plate and a moving track, the moving track is fixedly set on the ground pad, and the vertical reaction frame moves along the moving track; the reaction frame light bar is set below the upper bearing plate and is installed in the installation space between the inner plate and the outer plate.
  • the same-direction tension and torsion loading mechanism includes a tensile loading mechanism, a linkage mechanism, and a torsion loading mechanism.
  • a linkage mechanism is arranged between the torsion loading mechanism and the tensile loading mechanism.
  • the tensile loading mechanism includes a horizontal tension and compression cylinder, a cylinder fixing rod, a directional guide rod, a first guide plate, a spoke sensor, and an inner thread screw hole connecting plate;
  • the torsion loading mechanism includes a torsion motor, a motor fixing seat, a motor fixing frame, a first torsion transmission shaft, a torque sensor, a second torsion transmission shaft, a ball bearing, a slider, a guide rail, a fixed large plate, and a fixed plate;
  • the linkage mechanism includes a double-row cylindrical roller bearing, a second guide plate, a first pulley, a one-way thrust ball bearing, a cylindrical rotating shaft, a thrust cylindrical roller bearing, a fixed shaft, a belt, a second pulley, a linkage frame, and a connecting sleeve.
  • the horizontal tension and compression cylinder is a bidirectional loading cylinder, which is fixed to the front bearing plate of the main frame by a fixing rod;
  • the bearing plate is provided with a reserved circular hole, and the diameter of the reserved circular hole is larger than the piston diameter of the horizontal tension and compression cylinder;
  • the tail end of the piston of the horizontal tension and compression cylinder is a variable diameter threaded screw, and the spoke sensor and the variable diameter threaded screw cooperate;
  • the spoke sensor is fixedly connected to the first guide plate and the inner thread screw hole connecting plate through a long stud;
  • a drill hole is provided on the first guide plate, and the drill hole diameter is larger than the piston diameter of the horizontal tension and compression cylinder;
  • the spoke sensor senses the axial tension between the horizontal tension and compression cylinder and the fixed shaft, and the inner thread screw hole connecting plate is fixed on the threaded screw at the front end of the fixed shaft;
  • a one-way thrust bearing and a thrust cylindrical roller bearing are arranged in the inner cavity formed by the coupling between the fixed
  • first guide plate and the second guide plate are connected to the bearing plate in front of the main frame through a directional guide rod; a first pulley is installed on the outer ring of the variable-section cylindrical shaft, the torsion motor drives the second pulley to rotate, and a belt connects the first pulley and the second pulley; the rotation of the first pulley simultaneously drives the variable-section cylindrical shaft and the tension-torsion loading frame to rotate; the torsion motor is installed on the torsion motor fixing frame through a motor fixing seat, the torsion motor fixing frame is fixedly installed on the slider of the fixed large plate of the torsion loading mechanism, the slider is fitted on the guide rail of the torsion loading mechanism, and the fixed large plate is connected to the side plate of the main frame through a torque reaction plate.
  • the motor fixing seat is a hollow cylindrical structure
  • the first torsion transmission shaft passes through the motor fixing seat and is connected to the rotating shaft of the torsion motor
  • the first torsion transmission shaft and the second torsion transmission shaft are both connected to the torque sensor
  • the second torsion transmission shaft is connected to the ball bearing and the second pulley
  • the ball bearing is arranged on the slider of the fixed large plate through the bearing seat
  • the torsion motor fixing frame is fixedly connected to the first guide plate and the second guide plate through a linkage mechanism, and the upper part of the linkage mechanism is connected to the torsion loading device through a guide rail slider mechanism
  • the torsion loading mechanism moves simultaneously with the intermediate linkage mechanism and the tensile loading mechanism through the linkage mechanism.
  • the vertical shear loading mechanism includes a vertical tension and compression dynamic and static load cylinder, a cylinder fixing rod, a bladder accumulator, a cylinder connecting vessel, a vertical loading spoke sensor, a connecting disk, a loading column and a loading plate; the bladder accumulator is connected to the cylinder connecting vessel and the tension and compression dynamic and static load cylinder, and the cylinder piston of the tension and compression dynamic and static load cylinder is sequentially connected to the fixed vertical loading spoke sensor, the connecting disk, the loading column and the loading plate.
  • a method for testing the anchoring performance of a full-size rock anchor under a composite load utilizes the above-mentioned test system for the anchoring performance of a full-size rock anchor under a composite load, comprising: when conducting a full-size anchor pull-out test, installing a tension-torsion hydraulic clamp and a fixing baffle of the anchor tension-torsion hydraulic clamp, applying a tension force through a unidirectional tension-torsion loading mechanism, and testing the pulling parameters of the anchor in the rock body; when conducting a full-size anchor tension-torsion test, installing a tension-torsion hydraulic clamp and a fixing baffle of the anchor tension-torsion hydraulic clamp, applying a tension force and a torsional force through a unidirectional tension-torsion loading mechanism, and testing the tension-torsion parameters of the anchor in the rock body; when conducting a full-size anchor tension-shear-torsion test, applying a tension force and a torsional force through a unidirectional tension-torsion loading
  • a method for testing the anchoring performance of a full-size rock anchor under a composite load uses the above-mentioned testing system for the anchoring performance of a full-size rock anchor under a composite load, includes: testing the tensile, torsion, and shear individual performances of the full-size anchor or rod-shaped materials; or testing the tensile, torsion, and shear comprehensive mechanical performances of the full-size anchor or rod-shaped materials; or applying tensile, torsion, and shear coupling loads on the same crack surface of a crack-anchored rock specimen; or simulating the stress of the anchor under conditions of tunnel wall deformation and crack expansion; the anchor base specimen of the full-size anchor is a circular cross-section anchored rock specimen, and the crack-anchored rock specimen includes a plurality of anchor base specimens connected in series.
  • the test system can perform mechanical property tests on full-size prestressed anchor rods under single-section composite stress conditions under servo control. It is also suitable for single tensile, single torsion, and single shear mechanical property tests on rod-shaped components such as metal materials, non-metallic materials, and composite materials.
  • the system can effectively load large-sized anchored rock specimens and apply tensile, shear, and torsion coupling loads on the same anchor fracture surface, effectively testing the comprehensive mechanical properties of anchor components in the rock mass under a composite stress state.
  • the test system integrates the torsion loading system into the tensile loading system at the front end of the testing machine to achieve synchronous tensile and torsion loading.
  • the dynamic and static shear load system is designed to be movable, which can realize the application of shear load on the surface of any fractured rock mass.
  • the test method is to make use of the versatility of the system. It has the test functions of a general anchoring mechanics testing machine for anchoring components and small-sized anchored rock specimens. Through the reasonable design of the tensile, shear and torsion loading test system, it facilitates the installation and test of large-sized anchored rock specimens.
  • FIG1 is a schematic diagram of the structure of a test system for the anchoring performance of a full-scale rock bolt under a composite load
  • FIG4 is a rear view of the test system
  • Fig. 6 is a schematic diagram of the A-A section in Fig. 3;
  • a test system for the anchoring performance of full-size rock bolts under composite loads The system test machine is large in size and complex in structure. The test system is used to test full-size anchored rock masses. Composite loads of tension, torsion and shear can be loaded onto the rock masses, and the composite anchoring performance of various full-size anchors (including anchors, trays, nuts and other components) can be tested in a rock-driving mode.
  • the test system includes a main frame, a unidirectional tension-torsion loading mechanism and a vertical shear loading mechanism.
  • the main frame includes a double parallel horizontal reaction frame and a vertical reaction frame.
  • the vertical reaction frame is erected on the double parallel horizontal reaction frame.
  • the unidirectional tension-torsion loading mechanism and the vertical shear loading mechanism are arranged in coordination with the main frame to achieve synchronous comprehensive loading of tension, torsion and shear on the anchored rock specimen.
  • the unidirectional tension-torsion loading mechanism performs synchronous tension and torsion loading on the anchored rock mass, and the vertical shear loading mechanism applies static load or simulates dynamic load disturbance.
  • the unidirectional tension-torsion loading mechanism and the vertical shear loading mechanism are loaded independently.
  • the double parallel horizontal reaction frame includes an outer plate 1, an inner plate 2, a front bearing plate 3, a rear bearing plate 4, a support 5 and a ground pad 6.
  • the inner plate 1 and the outer plate 2 are arranged in parallel, and an installation space is reserved between the inner plate 1 and the outer plate 2. This structure is convenient for fixing, constraining and anchoring rock specimens.
  • the front bearing plate 3 and the rear bearing plate 4 are respectively arranged at the two ends of the inner plate 2 and the outer plate 1, and the support 5 is fixed on the ground pad.
  • the inner plate 2 and the outer plate 1 are composed of two sets of parallel side plates. The splicing mechanism can be easily installed and transported, avoiding the instability problem caused by the excessive horizontal length of the test machine, and facilitating the installation of anchoring rock and vertical reaction frame.
  • the vertical reaction force frame includes an upper bearing plate 7, a reaction frame light bar 8, a lower bearing plate 9 and a moving track 10. As shown in FIG5 , six reaction frame light bars 8 are provided.
  • the moving track 10 is fixedly provided on the ground pad 6.
  • a wheel set 75 is provided on the lower bearing plate 9 of the vertical reaction force frame, so that it can move along the moving track 10 and move in the front-back direction in the figure.
  • the reaction frame light bar 8 is provided below the upper bearing plate 7 and is installed in the installation space between the inner plate 1 and the outer plate 2. The cooperation mode of the vertical reaction force frame and the double parallel horizontal reaction force frame can avoid affecting the fixing of the anchored rock mass specimen and the test.
  • the length of the upper bearing plate 7 and the lower bearing plate 9 of the vertical reaction force frame along the lateral direction of the testing machine will increase, the vertical loading stiffness will decrease or the thickness of the bearing plate will increase, resulting in a heavier vertical reaction force structure, and the wheel set 75 will be difficult to support the vertical reaction force frame to move forward and backward in the double parallel horizontal frame.
  • the upper bearing plate 7 is provided with a vertical tension and compression dynamic and static oil cylinder 41, and the lower bearing plate 9 can be fixedly provided with an anchored rock double shear test fixture or other tension and compression test fixtures, as shown in Figures 10 and 14.
  • the vertical tension and compression stiffness of the vertical reaction force frame is ⁇ 2GN/m.
  • the same-direction tension-torsion loading mechanism 100 includes a tensile loading mechanism, a linkage mechanism, and a torsion loading mechanism.
  • a linkage mechanism is set between the torsion loading mechanism and the tensile loading mechanism.
  • the same-direction tension-torsion loading mechanism can simultaneously realize the tensile and torsion comprehensive loading of the anchored rock mass, and is equipped with quasi-static and rheological loading functions on the control system.
  • the setting of the linkage mechanism realizes the coordinated loading of the torsion loading mechanism and the tensile loading mechanism, and the torsion loading mechanism can move forward and backward with the piston movement of the tensile loading mechanism.
  • the linkage mechanism includes a double-row cylindrical roller bearing 18, a second guide plate 19, a first pulley 20, a one-way thrust ball bearing 21, a cylindrical rotating shaft 22, a thrust cylindrical roller bearing 23, a fixed shaft 24, a belt 25, a second pulley 26, a linkage frame 35 and a connecting sleeve 40; the above components cooperate with each other to achieve synchronous loading and measurement of tension and torsion.
  • the horizontal tension and compression cylinder 11 is a bidirectional loading cylinder, and the horizontal tension and compression cylinder 11 is fixed to the front bearing plate 3 of the main frame through a fixing rod.
  • a circular hole is reserved on the bearing plate, and the diameter of the reserved circular hole is larger than the piston diameter of the horizontal tension and compression cylinder.
  • the tail end of the piston of the horizontal tension and compression cylinder 11 is a reducing threaded screw, and the spoke sensor 16 cooperates with the reducing threaded screw.
  • the spoke sensor 16 is fixedly connected to the first guide plate 15 and the inner thread screw hole connecting plate 17 through a long stud.
  • a drill hole is provided on the first guide plate 15, and the diameter of the drill hole is larger than the piston diameter of the horizontal tension and compression cylinder.
  • the spoke sensor 16 senses the axial tension between the horizontal tension and compression cylinder and the fixed shaft, and the inner thread screw hole connecting plate 17 is fixed on the threaded screw at the front end of the fixed shaft.
  • a one-way thrust bearing 21 and a thrust cylindrical roller bearing 23 are arranged in the inner cavity formed by the coupling between the fixed axis and the variable-section cylindrical shaft 22 on the rear side of the internal thread hole connecting disk 17; a double-row cylindrical roller bearing 23 is arranged in the inner cavity formed by the variable-section cylindrical shaft 22 and the second guide plate 19, and the cylindrical shaft 22 rotates around the fixed axis.
  • the first guide plate 15 and the second guide plate 19 are connected to the bearing plate in front of the main frame through a directional guide rod.
  • a first pulley 20 is installed on the outer ring of the variable-section cylindrical shaft, and the torsion motor 27 drives the second pulley 26 to rotate.
  • the belt connects the first pulley 20 and the second pulley 26; the rotation of the first pulley 20 drives the variable-section cylindrical shaft and the tension-torsion loading frame to rotate at the same time.
  • the torsion motor is installed on the torsion motor fixing frame through the motor fixing seat, and the torsion motor fixing frame 29 is fixedly installed on the slider 36 of the fixed large plate 38 of the torsion loading mechanism.
  • the slider 36 is matched on the guide rail 37 of the torsion loading mechanism, and the fixed large plate is connected to the side plate of the main frame through the torque reaction plate.
  • the motor fixing seat 28 is a hollow cylindrical structure, and the first torsion transmission shaft 30 passes through the motor fixing seat 28 and is connected to the rotating shaft of the torsion motor 27.
  • the first torsion transmission shaft 30 and the second torsion transmission shaft 32 are both connected to the torque sensor 31, and the second torsion transmission shaft 32 is connected to the ball bearing and the second pulley 26.
  • the ball bearing is arranged on the slider 36 of the fixed large plate through the bearing seat.
  • the torsion motor fixing frame 29 is fixedly connected to the first guide plate 15 and the second guide plate 19 through a linkage mechanism, and the upper part of the linkage mechanism is connected to the torsion loading device through a guide rail slider mechanism.
  • the torsion loading mechanism moves simultaneously with the intermediate linkage mechanism and the tensile loading mechanism through the linkage mechanism.
  • the vertical shear loading mechanism 200 can realize static and dynamic load disturbance control of the anchored rock mass, and specifically includes a vertical tension and compression dynamic and static load oil cylinder 41, an oil cylinder fixing rod 43, a bladder accumulator 46, an oil cylinder connecting piece 47, a vertical loading spoke sensor 49, a connecting plate 50, a loading column 51 and a loading plate 52.
  • the bladder accumulator 46 is connected to the oil cylinder connecting piece 47 and the tension and compression dynamic and static load oil cylinder 41, and the cylinder piston 42 of the tension and compression dynamic and static load oil cylinder is connected to the fixed vertical loading spoke sensor 49, the connecting plate 50, the loading column 51 and the loading plate 52 in sequence.
  • the vertical tension and compression dynamic and static load cylinder 41 is fixed on the upper bearing plate 7 of the vertical reaction frame through the cylinder fixing rod 43 of the vertical tension and compression dynamic and static load cylinder; the piston 42 of the vertical tension and compression dynamic and static load cylinder is guided by the guide rod frame 44 on the upper part of the piston and the guide rod 45 on the lower part of the piston to prevent the piston from being damaged by eccentric loading; the bladder accumulator 46 cooperates with the vertical tension and compression dynamic and static load cylinder 41 through components such as the bladder accumulator and cylinder connecting device 47 and the bladder accumulator control valve 48 to realize dynamic load disturbance simulation loading.
  • a vertical loading spoke sensor 49, a connecting plate 50, a loading column 51, and a loading plate 52 are fixed in sequence to the lower part of the piston 42 of the vertical tension and compression dynamic and static load cylinder. Since the cross-sectional shape of the anchored rock sample 55 is circular, the loading plate 52 must be loaded through an arc-shaped loading block 53 that matches the sample, and cannot directly act on the surface of the circular cross-sectional anchored rock sample 55.
  • the circular cross-sectional anchored rock sample 55 is placed on the lower bearing plate 9 of the vertical reaction frame through a pressure pad 54.
  • the vertical shear loading mechanism 200 When conducting tests such as anchored rock (including anchor rod body) pulling, anchored rock crack opening, and fracture anchored rock tension and torsion synchronous test, the vertical shear loading mechanism 200 is not needed at this time, and the anchored rock vertical shear loading mechanism 200 can be moved to the front end of the double parallel horizontal reaction force frame of the test system to fully release the rear test space, as shown in Figures 12 and 13.
  • the anchored rock vertical shear loading mechanism 200 can be moved to the corresponding position of the double parallel horizontal reaction force frame of the test system where shearing is required, as shown in Figures 1 and 14.
  • the position of the anchored rock vertical shear loading mechanism 200 is continuously adjustable, shear loading of full-size anchored rock or anchor at any position can be achieved. It can be seen from the above arrangement that the reaction force structure of the anchored rock vertical shear loading mechanism 200 and the same-direction tension and torsion loading mechanism 100 is not fixed together, and is a relatively independent mechanism. Therefore, the mutual loading influence and test interference of the two sets of mechanisms can be avoided during testing.
  • a method for testing the anchoring performance of a full-size rock anchor under a composite load is also provided, using the above-mentioned test system for the anchoring performance of a full-size rock anchor under a composite load, including: when conducting a full-size anchor pull-out test, a tension-torsion hydraulic clamp and an anchor tension-torsion hydraulic clamp fixing baffle are installed, and a tension-torsion loading mechanism is used to apply a tension-torsion force to test the pull-out parameters of the anchor in the rock.
  • a tension-torsion hydraulic clamp and an anchor tension-torsion hydraulic clamp fixing baffle are installed, and a tension-torsion loading mechanism is used to apply a tension-torsion force and a torsional force to test the tension-torsion parameters of the anchor in the rock.
  • a tension-torsion loading mechanism is used to apply a tension-torsion loading mechanism and a torsional force to apply a vertical shear load at any axial position of the anchor body.
  • the anchor tension, shear and torsion anchor matrix specimen horizontal motion baffle 56 in FIG10 must be replaced with an anchor pull-out anchor matrix specimen baffle 58 , and a tension-torsion hydraulic clamp 60 is used instead of the connecting sleeve 40 to clamp the anchor rod body 61 for the anchor pull-out test in the rock mass.
  • a method for testing the anchoring performance of a full-size rock anchor under a composite load is also provided, using the above-mentioned test system for the anchoring performance of a full-size rock anchor under a composite load, including: testing the tensile, torsion, and shear properties of the full-size anchor or rod-shaped material. Or conducting a comprehensive mechanical performance test of tensile, torsion, and shear of the full-size anchor or rod-shaped material; or applying tensile, torsion, and shear coupling loads on the same crack surface of the fracture-anchored rock specimen. Or simulating the stress of the anchor under the conditions of deformation of the lane wall and crack expansion.
  • the anchor base specimen of the full-size anchor is a circular cross-section anchored rock specimen, and the fracture-anchored rock specimen includes multiple anchor base specimens connected in series.
  • the circular cross-section anchored rock sample 55 is a full-size sample, that is, the full-size anchor rod 61 is an engineering scale anchor rod, and the common anchor rod diameters are 20mm, 24mm, 26mm, etc., and the radial size of the anchor matrix sample 55 should ensure that the anchor matrix sample 55 cannot completely crack and fail before the anchor rod is broken by pulling, twisting, shearing or other loads in any combination. That is to say, in the case of complete failure of the anchor rod, the damage and cracking of the anchor matrix sample 55 does not reach the outermost layer of the anchor matrix sample.
  • the axial size of the anchor matrix sample 55 or its combined sample should reach the longest bonding size of the full-length anchor rod. For example, if the anchoring length of a certain engineering anchor rod is 2.4 meters, the total length of the anchor matrix sample 55 combination should not be less than 2.4 meters; in order to facilitate the processing and transportation of the sample, the 2.4-meter-long anchor matrix sample can be divided into 4 pieces and cast separately.
  • the fracture anchored rock mass sample 55 assembly is formed by anchoring several anchoring matrix samples (55-1, 55-2, 55-3, 55-4) in series through anchor rods, and the gaps between the anchoring matrix samples are used to simulate engineering fractures, and the size of the fractures can be adjusted according to the engineering problem being studied.
  • the simulated engineering fracture is in the middle of the anchored rock mass, that is, the fracture position is between the No. 2 anchoring matrix sample 55-2 and the No. 3 anchoring matrix sample 55-3.
  • anchor matrix sample No. 3 55-3 is subjected to the shear load, which constrains its forward and backward and torsional movement displacement; anchor matrix sample No. 4 55-4 needs to be fixedly constrained; at the crack position of anchor matrix sample No. 2 55-2 and anchor matrix sample No. 3 55-3, the interface between the anchor rod and the rock mass is subjected to the tension-shear-torsion composite stress.
  • the vertical shear loading mechanism 200 can move forward and backward, by changing the size of the anchor matrix sample 55 in advance or prefabricating the crack, the shear test of the rock mass with different anchoring depths can be realized.
  • the anchor matrix sample 55 needs to be cast in a tensile-shear-torsion sample mold 73 with a flange and internal longitudinal ribs.
  • the tensile-shear-torsion sample mold 73 with a flange is composed of 4 petals, which is easy to disassemble and reuse after the test.
  • a sleeve friction-reducing pad 72 is installed between the tensile-shear-torsion sample mold 73 with a flange and the arc-shaped pressure-bearing block of the anchor matrix sample No. 1 55-1 and the anchor matrix sample No.
  • the tensile-torsion loading of the anchor matrix sample No. 1 and the anchor matrix sample No. 2 is realized by fixing the connecting structure composed of the front flange, the flange connecting rod and the rear flange with the tensile-shear-torsion sample mold with a flange, wherein the front flange 66 is fixed in series with the connecting sleeve 40 installed on the anchor rock mass same-direction tensile-torsion loading test system 100.
  • Anchoring matrix specimen No. 3 55-3 is cast in the specimen anti-twist fixing sleeve mold 71.
  • An anti-skid pad tube 70 of the same thickness as the friction reducing pad 72 is installed between the specimen anti-twist fixing sleeve mold 71 and the arc-shaped pressure block to ensure that the specimens are of the same height.
  • the specimen anti-twist fixing sleeve mold 71 and the anti-skid pad tube 70 can be fixed to the arc-shaped pressure block 69 by screws, and then fixed to the lower bearing plate 9 of the vertical reaction frame to achieve the purpose of fixed constraint.
  • Anchoring matrix specimen No. 3 55-3 is constrained for forward and backward displacement by the horizontal motion baffle 56 of the anchor rod tension, shear and torsion anchoring matrix specimen and the "L"-shaped baffle 57 fixed on the inner side plate 2 of the double parallel horizontal reaction frame.
  • the test method for testing the anchoring performance of a full-scale rock bolt under a composite load using the test system also includes:
  • the full-size anchor 61 can be subjected to standard tests on the mechanical properties of the anchor rod under servo control conditions. It is also suitable for separate tensile, separate torsion, and separate shear mechanical properties tests of rod-shaped components such as metal materials, non-metal materials, and composite materials.
  • a full-size anchor 61 rod body (excluding simulated rock blocks) tension-shear-torsion synchronous coupling test can be carried out to test the comprehensive mechanical properties of the anchor rod components under complex stress conditions, as shown in Figure 14.
  • the cross-sectional shape of the anchoring matrix sample 55 may be a rectangle, as shown in FIG. 12 .
  • Anchored rock crack opening test According to the embodiments shown in Figures 6 and 12, it is recommended to use 4 cylindrical concrete blocks of ⁇ 300 ⁇ 600mm or rectangular concrete blocks of 300 ⁇ 300 ⁇ 600mm to simulate the cracked rock mass. The simulated rock blocks should not be smaller than the above size. During the test, the first, second or third concrete blocks are pulled to simulate the load on the anchor caused by the deformation of the roadway or the crack opening.
  • the rock mass or concrete block can be loaded to complete the double shear test of anchored rock mass.
  • torque can be applied to the anchored rock mass or concrete block specimen to perform torsional loading on a given cross section of the anchor rod.
  • the anchor rock shear test and the anchor rock torsion test can be coupled to simulate the complex stress state of the anchor rod in the complex tunnel and ensure that the anchor rod is subjected to the tension-shear-torsion composite mechanical action in the same section, as shown in Figure 10.
  • the provided embodiment facilitates the use of displacement sensors to monitor the deformation of each rock sample and anchor assembly, the use of strain electrical measurement and optical fiber sensors to monitor the force and deformation of the anchor rod body and tray, the use of digital speckle method to monitor the strain field on the rock surface, and the use of acoustic emission to monitor the generation and expansion of micro-fractures at the anchor interface.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法,涉及检测试验设备技术领域。该***包括主框架、同向拉扭加载机构和竖向剪切加载机构,主框架包括双平行卧式反力框架和竖向反力框架,同向拉扭加载机构和竖向剪切加载机构与主框架协同布置;同向拉扭加载机构可以对锚固岩体的拉伸、扭转同步加载,竖向剪切加载机构可以施加静态载荷还可以模拟动载扰动,同向拉扭加载机构和竖向剪切加载机构分别独立加载。利用该试验***可以进行锚杆拉拔试验、锚杆杆体拉扭试验、锚杆杆体拉扭剪切试验、锚杆及锚固岩体的测试试验,在同一锚固裂隙面上同时施加拉、剪、扭耦合载荷,有效测试岩体内锚杆构件在复合应力状态下的综合力学性能。

Description

复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法 技术领域
本发明涉及检测设备技术领域,尤其是一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法。
背景技术
锚固支护技术广泛应用于煤矿、隧道、水利等工程领域,锚固方式通常为将锚杆、锚索等(以下统称为“锚杆”)通过树脂粘结剂或砂浆锚固在岩体中,以增强围岩的承载性能。锚杆在服役过程中,主要承受来自于锚杆粘结段和托盘之间因围岩碎胀而产生的拉力、安装锚杆时残余的扭转力及后期围岩错动、偏转等引起的剪切、弯曲及扭转等载荷作用,也就是说锚杆通常处于复合载荷作用工况下。
大量工程实践及研究表明,锚杆在围岩中的受力状态将对锚固性能产生重要影响。在实验室内测试锚杆的锚固工作性能,须尽可能地还原工程现场,因此室内静载及流变试验通常将全尺寸锚杆锚固在模拟围岩的混凝土或岩块中,通过对混凝土或岩块施加拉向、扭转或剪切载荷,以模拟锚杆在真实地层中的复合受力状态。现有技术中,全尺寸锚杆支护试验设备不能科学地解决以下问题:(1)工程锚杆直径通常在20-30mm之间,屈服强度普遍大于300MPa,在实验室内对全尺寸真实锚杆进行测试,所用模拟岩体的尺寸也较大,如何有效地将复杂载荷作用在岩体上;(2)真实围岩受裂隙切割或分层影响,锚固岩体通常会沿着裂隙面张开,处在裂隙面位置的锚杆容易受拉、剪、扭复合应力影响,粘结界面在该处更容易开裂、失效。如何将复杂载荷施加于同一裂隙面的锚杆上,即如何使锚杆与岩体在单一粘结界面处产生复合应力;(3)在伺服控制锚固支护试验机设计加工中,上述两个问题往往相互制约,例如岩体扭转时,很难实现拉伸及剪切加载;岩体在剪切时,很难实现拉伸及扭转加载,如何合理的布置全尺寸锚固试验***的结构。
现有专利技术中,中国专利锚杆(索)支护结构测试及锚固***性能综合试验装置及方法(CN110274831A)、裂隙岩体离层锚固控制模拟试验装置及方法(CN110261234A)等,但为了进一步提升锚固试验机对施加载荷的控制,尤其是拉拔、扭转、剪切相互配合的科学性及操控性,更便捷、更准确地测试出多种载荷共同作用下的全尺寸岩体锚杆的锚固性能,需要实现测试复合载荷工况下的全尺寸岩体锚杆锚固性能的试验。
技术解决方案
为了方便测试多种载荷共同作用下的全尺寸岩体锚杆的锚固性能,进行复合载荷工况下的全尺寸岩体锚杆锚固性能的试验,本发明提供了一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法,具体的技术方案如下。
一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,包括主框架、同向拉扭加载机构和竖向剪切加载机构,所述主框架包括双平行卧式反力框架和竖向反力框架,竖向反力框架架设在双平行卧式反力框架上;所述同向拉扭加载机构和竖向剪切加载机构与主框架协同布置;所述同向拉扭加载机构对锚固岩体进行拉伸、扭转同步加载,所述竖向剪切加载机构施加静态载荷或模拟动载扰动,所述同向拉扭加载机构和竖向剪切加载机构分别独立加载。
优选的是,双平行卧式反力框架包括外侧板、内侧板、前承载板、后承载板、支座和地面垫板,内侧板和外侧板平行布置,内侧板和外侧板之间留设安装空间,前承载板和后承载板分别设置在内侧板、外侧板的两端;所述支座固定在地面垫板上。
优选的是,竖向反力框架包括上部承载板、反力架光杠、下部承载板和运动轨道,所述运动轨道固定设置在地面垫板上,竖向反力框架沿运动轨道移动;所述反力架光杠设置在上部承载板的下方,并配合安装在内侧板和外侧板之间的安装空间。
还优选的是,同向拉扭加载机构,包括拉伸加载机构、联动机构、扭转加载机构,所述扭转加载机构与拉伸加载机构之间设置联动机构,拉伸加载机构包括水平拉压油缸、油缸固定杆、定向导杆、第一导向板、轮辐传感器和内丝螺孔连接盘;所述扭转加载机构包括扭转电机、电机固定座、电机固定框架、第一扭转传动轴、扭矩传感器、第二扭转传动轴、滚珠轴承、滑块、导轨、固定大板和固定板;所述联动机构包括双列圆柱滚子轴承、第二导向板、第一带轮、单向推力球轴承、圆筒转轴、推力圆柱滚子轴承、定轴、皮带、第二带轮、联动框架和连接套筒。
还优选的是,水平拉压油缸为双向加载油缸,水平拉压油缸通过固定杆固定在主框架前承载板上;所述承载板预留圆孔,预留圆孔的直径大于水平拉压油缸的活塞直径;所述水平拉压油缸活塞尾端为变径螺纹丝杆,轮辐传感器和变径螺纹丝杆相配合;所述轮辐传感器通过长螺柱与第一导向板、内丝螺孔连接盘固定连接;所述第一导向板上设置有钻孔,钻孔直径大于水平拉压油缸的活塞直径;所述轮辐传感器感测水平拉压油缸与定轴之间的轴向拉力,内丝螺孔连接盘固定在定轴前端的螺纹丝杠上;所述内丝螺孔连接盘后侧通过定轴与变截面圆筒转轴相互耦合形成的内腔中布置有单向推力轴承和推力圆柱滚子轴承;变截面圆筒转轴与第二导向板形成的内腔中布置有双列圆柱滚子轴承,圆筒转轴绕定轴旋转。
还优选的是,第一导向板和第二导向板通过定向导杆与主框架前方的承载板相连接;所述变截面圆筒转轴外环上安装有第一带轮,扭转电机驱动第二带轮旋转,皮带连接第一带轮和第二带轮;第一带轮转动同时带动变截面圆筒转轴和拉扭加载框架旋转;所述扭转电机通过电机固定座安装在扭转电机固定框架上,扭转电机固定框架固定安装在扭转加载机构的固定大板的滑块上,所述滑块配合在扭转加载机构的导轨上,所述固定大板通过扭矩反力板与主框架的侧板相连接。
还优选的是,电机固定座为中空的筒状结构,第一扭转传动轴穿过电机固定座与扭转电机的转动轴相连,第一扭转传动轴、第二扭转传动轴均与扭矩传感器相连,第二扭转传动轴与滚珠轴承及第二带轮相连,所述滚珠轴承通过轴承座配置在固定大板的滑块上;所述扭转电机固定框架通过联动机构与第一导向板、第二导向板固定连接,联动机构上部通过导轨滑块机构与扭转加载装置相连;所述扭转加载机构通过联动机构与中间联动机构、拉伸加载机构同时运动。
进一步优选的是,竖向剪切加载机构包括竖向拉压动静载油缸、油缸固定杆、囊式蓄能器、油缸连通器、竖向加载轮辐传感器、连接盘、加载柱和加载板;所述囊式蓄能器与油缸连通器和拉压动静载油缸相连,拉压动静载油缸的油缸活塞依次连接固定竖向加载轮辐传感器、连接盘、加载柱和加载板。
一种复合载荷下的全尺寸岩体锚杆锚固性能试验方法,利用上述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,包括:进行全尺寸锚杆拉拔测试试验时,安装拉扭液压夹具和锚杆拉扭液压夹具固定挡板,通过同向拉扭加载机构施加拉拔力,测试岩体内锚杆的拉拔参数;进行全尺寸锚杆拉扭测试试验时,安装拉扭液压夹具和锚杆拉扭液压夹具固定挡板,通过同向拉扭加载机构施加拉拔力和扭转力,测试岩体内锚杆的拉扭参数;进行全尺寸锚杆拉剪扭测试试验时,通过同向拉扭加载机构施加拉拔力和扭转力,在锚杆杆体的轴向任意位置施加竖向剪切载荷。
一种复合载荷下的全尺寸岩体锚杆锚固性能试验方法,利用上述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,包括:进行全尺寸锚杆或杆状材料的拉伸、扭转、剪切单独性能的测试;或者进行全尺寸锚杆或杆状材料拉伸、扭转、剪切综合力学性能测试;或者在裂隙锚固岩体试样的同一裂隙面上施加拉伸、扭转、剪切耦合载荷;或者模拟巷帮变形及裂隙扩张情况下的锚杆受力;所述全尺寸锚杆的锚固基试样为圆形截面锚固岩体试样,所述裂隙锚固岩体试样包括多个串联的锚固基体试样。
有益效果
本发明提供的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法的有益效果包括:
(1)该试验***可以对全尺寸预应力锚杆,在伺服控制下进行单一截面复合受力条件下的力学性能测试,另外还适用于金属材料、非金属材料、复合材料等杆状构件的单独拉伸、单独扭转、单独剪切力学性能测试。
(2)改***可以针对大尺寸锚固岩体试件进行有效加载,可以在同一锚固裂隙面上施加拉、剪、扭耦合载荷,有效测试岩体内锚杆构件在复合应力状态下的综合力学性能。
(3)试验***通过将扭转加载***集成在试验机前端的拉伸加载***上,实现拉、扭同步加载;动静载剪切***设计为可移动形式,可实现在任意裂隙岩体表面施加剪切载荷。
(4)借助该***的多功能性进行试验的方法,其具备一般锚固力学试验机针对锚固构件及小尺寸锚固岩体试件的测试功能,又通过合理设计拉伸、剪切、扭转加载试验***,方便了大尺寸锚固岩体试样的安装及试验检测。
附图说明
图1是复合载荷下的全尺寸岩体锚杆锚固性能的试验***结构示意图;
图2是试验***的侧视图;
图3是试验***的俯视图;
图4是试验***的后视图;
图5是双平行卧式反力框架结构示意图
图6是图3中的A-A截面示意图;
图7是同向拉扭加载机构剖面示意图;
图8是同向拉扭加载机构的结构示意图;
图9是图3中的C-C截面三维轴测图;
图10是图3中的B-B截面三维轴测图;
图11是拉剪扭试验锚固岩体试样组装结构示意图;
图12是进行全尺寸锚杆拉拔试验的示意图;
图13是进行锚杆杆体拉扭试验的示意图;
图14是进行锚杆杆体拉剪扭试验的示意图;
图15是竖向反力框架的安装结构示意图;
图中:1-外侧板;2-内侧板;3-前部承载板;4-后部承载板;5-支座;6-地面垫板;7-上部承载板;8-反力架光杠;9-下部承载板;10-运动轨道;11-水平拉压油缸;12-油缸固定杆;13-活塞;14-定向导杆;15-第一导向板;16-轮辐传感器;17-内丝螺孔连接盘;18-双列圆柱滚子轴承;19-第二导向板;20-第一带轮;21-单向推力球轴承;22-圆筒转轴;23-推力圆柱滚子轴承;24-定轴;25-皮带;26-第二带轮;27-扭转电机;28-电机固定座;29-电机固定框架;30-第一扭转传动轴;31-扭矩传感器;32-第二扭转传动轴;33-滚珠轴承;34-轴承座;35-联动框架;36-滑块;37-导轨;38-固定大板;39-固定板;40-连接套筒;41-竖向拉压动静载油缸;42-竖向拉压动静载油缸的活塞;43-油缸固定杆;44-活塞上部导向杆架;45-活塞下部导向杆;46-囊式蓄能器;47-油缸连通器;48-囊式蓄能器控制阀;49-竖向加载轮辐传感器;50-连接盘;51-加载柱;52-加载板;53-弧形加载块;54-承压垫板;55-圆形截面的锚固基体试样,55-1为1号锚固基体试样、55-2为2号锚固基体试样、55-3为3号锚固基体试样、55-4为4号锚固基体试样;56-水平运动挡板;57-L形挡板;58-锚杆拉拔锚固基体试样挡板;59-锚杆拉扭液压夹具固定挡板;60-拉扭液压夹具;61-全尺寸锚杆;62-锚杆剪切上压头;63-锚杆剪切下压头;64-锚杆剪切可调距支座;65-锚杆剪切可调距支座固定板;66-前法兰盘;67-法兰盘连杆;68-后法兰盘;69-弧形承压块;70-防滑垫筒;71-试样防扭固定套筒模具;72-套筒减磨垫;73-带法兰盘的拉剪扭试样模具;74-圆环减磨垫;75-车轮组;100-同向拉扭加载机构;200-竖向剪切加载机构。
本发明的实施方式
结合图1至图15所示,对本发明提供的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法的具体实施方式进行说明。
一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,该***试验机的尺寸较大,结构较为复杂;利用该试验***对全尺寸锚固岩体进行测试,可以将拉伸、扭转及剪切复合形式的载荷加载到岩体上,以驱动岩体的模式测试各类全尺寸锚杆(含锚杆、托盘、螺母等构件)的复合锚固性能。
该试验***包括主框架、同向拉扭加载机构和竖向剪切加载机构,主框架包括双平行卧式反力框架和竖向反力框架,竖向反力框架架设在双平行卧式反力框架上。同向拉扭加载机构和竖向剪切加载机构与主框架协同布置,实现对锚固岩体试样的拉、扭转及剪切同步综合加载。同向拉扭加载机构对锚固岩体进行拉伸、扭转同步加载,竖向剪切加载机构施加静态载荷或模拟动载扰动。同向拉扭加载机构和竖向剪切加载机构分别独立加载。
双平行卧式反力框架包括外侧板1、内侧板2、前承载板3、后承载板4、支座5和地面垫板6,内侧板1和外侧板2平行布置,内侧板1和外侧板2之间留设安装空间,该结构方便于固定约束锚固岩体试样,前承载板3和后承载板4分别设置在内侧板2、外侧板1的两端,支座5固定在地面垫板上。内侧板2和外侧板1由两组相互平行的侧板拼接组成,拼接机构可以方便安装和运输,避免试验机因水平方向长度过长导致的不稳定问题,便于安装锚固岩体和竖向反力框架,分别可以包括八块双平行卧式反力框架外侧板及八块双平行卧式反力框架内侧板,侧板两两之间采用螺丝固定,根据矿用工程锚杆长度为3m计算,扣除加载机构占用的空间,每块侧板的长度约为1.5m,侧向长度不小于0.8m,构成的内部试验空间约为6*0.8m 2,其中内侧板的内表面是平整的,便于打孔固定L形挡板。另外,前承载板和水平拉压油缸配合,后承载板上可以安装拉扭液压夹具,双平行卧式反力框架的水平拉压刚度≥1GN/m。
竖向反力框架包括上部承载板7、反力架光杠8、下部承载板9和运动轨道10,如图5所示设置六个反力架光杠8,运动轨道10固定设置在地面垫板6上,竖向反力框架的下部承载板9上设置车轮组75,因此可以沿运动轨道10移动,在图中的前后方向上移动。反力架光杠8设置在上部承载板7的下方,并配合安装在内侧板1和外侧板2之间的安装空间;竖向反力框架与双平行卧式反力框架的配合方式能够避免影响锚固岩体试样的固定和试验开展;若竖向反力框架安装于双平行卧式反力框架外侧,则导致竖向反力框架上部承载板7及下部承载板9沿试验机侧向的长度增加,竖向加载刚度降低或者增加承载板厚度,导致竖向反力结构较重,车轮组75难以支撑竖向反力架在双平行卧式框架内前后移动。上部承载板7上安装竖向拉压动静载油缸41,下部承载板9上可以固定安装锚固岩体双剪试验夹具或其他拉压等试验夹具,如图10和图14所示。另外,竖向反力框架的竖向拉压刚度≥2GN/m。
同向拉扭加载机构100包括拉伸加载机构、联动机构、扭转加载机构,扭转加载机构与拉伸加载机构之间设置联动机构,同向拉扭加载机构可同时实现锚固岩体的拉伸及扭转综合加载,在控制***上配备了准静态及流变加载功能。联动机构的设置实现了扭转加载机构与拉伸加载机构的协同加载,扭转加载机构可以随着拉伸加载机构的活塞运动而前后移动。其中拉伸加载机构包括水平拉压油缸11、油缸固定杆12、定向导杆14、第一导向板15、轮辐传感器16和内丝螺孔连接盘17。扭转加载机构包括扭转电机27、电机固定座28、电机固定框架29、第一扭转传动轴30、扭矩传感器31、第二扭转传动轴32、滚珠轴承33、滑块36、导轨37、固定大板38和固定板39。联动机构包括双列圆柱滚子轴承18、第二导向板19、第一带轮20、单向推力球轴承21、圆筒转轴22、推力圆柱滚子轴承23、定轴24、皮带25、第二带轮26、联动框架35和连接套筒40;以上部件相互配合进而实现拉扭同步加载及测量。
水平拉压油缸11为双向加载油缸,水平拉压油缸11通过固定杆固定在主框架的前承载板3上。承载板预留圆孔,预留圆孔的直径大于水平拉压油缸的活塞直径。水平拉压油缸11活塞尾端为变径螺纹丝杆,轮辐传感器16和变径螺纹丝杆相配合。轮辐传感器16通过长螺柱与第一导向板15、内丝螺孔连接盘17固定连接。第一导向板15上设置有钻孔,钻孔直径大于水平拉压油缸的活塞直径。轮辐传感器16感测水平拉压油缸与定轴之间的轴向拉力,内丝螺孔连接盘17固定在定轴前端的螺纹丝杠上。内丝螺孔连接盘17后侧通过定轴与变截面圆筒转轴22相互耦合形成的内腔中布置有单向推力轴承21和推力圆柱滚子轴承23;变截面圆筒转轴22与第二导向板19形成的内腔中布置有双列圆柱滚子轴承23,圆筒转轴22绕定轴旋转。
第一导向板15和第二导向板19通过定向导杆与主框架前方的承载板相连接。变截面圆筒转轴外环上安装有第一带轮20,扭转电机27驱动第二带轮26旋转,皮带连接第一带轮20和第二带轮26;第一带轮20转动同时带动变截面圆筒转轴和拉扭加载框架旋转。扭转电机通过电机固定座安装在扭转电机固定框架上,扭转电机固定框架29固定安装在扭转加载机构的固定大板38的滑块36上。滑块36配合在扭转加载机构的导轨37上,固定大板通过扭矩反力板与主框架的侧板相连接。电机固定座28为中空的筒状结构,第一扭转传动轴30穿过电机固定座28与扭转电机27的转动轴相连,第一扭转传动轴30、第二扭转传动轴32均与扭矩传感器31相连,第二扭转传动轴32与滚珠轴承及第二带轮26相连,滚珠轴承通过轴承座配置在固定大板的滑块36上。扭转电机固定框架29通过联动机构与第一导向板15、第二导向板19固定连接,联动机构上部通过导轨滑块机构与扭转加载装置相连。扭转加载机构通过联动机构与中间联动机构、拉伸加载机构同时运动。
竖向剪切加载机构200可实现锚固岩体的静载及动载扰动控制,具体包括竖向拉压动静载油缸41、油缸固定杆43、囊式蓄能器46、油缸连通器47、竖向加载轮辐传感器49、连接盘50、加载柱51和加载板52。囊式蓄能器46与油缸连通器47和拉压动静载油缸41相连,拉压动静载油缸的油缸活塞42依次连接固定竖向加载轮辐传感器49、连接盘50、加载柱51和加载板52。竖向拉压动静载油缸41通过竖向拉压动静载油缸的油缸固定杆43固定在竖向反力框架上部承载板7上;竖向拉压动静载油缸的活塞42通过活塞上部的导向杆架44及活塞下部的导向杆45进行导向,防止活塞加载偏心损伤;囊式蓄能器46通过囊式蓄能器与油缸连通器47、囊式蓄能器控制阀48等构件与竖向拉压动静载油缸41配合实现动载扰动模拟加载。竖向拉压动静载油缸的活塞42下部依次固定有竖向加载轮辐传感器49、连接盘50、加载柱51、加载板52,由于锚固岩体试样55的截面形状为圆形,故加载板52须通过与试样相匹配的弧形加载块53进行加载,而不能直接作用于圆形截面锚固岩体试样55表面,圆形截面锚固岩体试样55通过承压垫板54安置在竖向反力架下部承载板9上。
当开展锚固岩体(含锚杆杆体)拉拔、锚固岩体裂隙张开、裂隙锚固岩体拉扭同步测试等试验时,此时不需要竖向剪切加载机构200,则可将锚固岩体竖向剪切加载机构200移动到试验***双平行卧式反力框架的最前端,充分释放后方试验空间,如图12及图13所示。当开展锚固岩体纯剪、拉剪、扭剪及拉扭剪试验时,可将锚固岩体竖向剪切加载机构200移动到试验***双平行卧式反力框架相应需要进行剪切的位置,如图1和图14所示。由于锚固岩体竖向剪切加载机构200的位置连续可调,故可实现全尺寸锚固岩体或者锚杆在任意位置的剪切加载,通过上述布置方式可以看出,锚固岩体竖向剪切加载机构200与同向拉扭加载机构100的反力结构没有固定在一起,是相对独立的机构,因此在测试时可避免两套机构的相互加载影响及测试干扰。
在此基础上,还提供一种复合载荷下的全尺寸岩体锚杆锚固性能试验方法,利用上述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,包括:进行全尺寸锚杆拉拔测试试验时,安装拉扭液压夹具和锚杆拉扭液压夹具固定挡板,通过同向拉扭加载机构施加拉拔力,测试岩体内锚杆的拉拔参数。进行全尺寸锚杆拉扭测试试验时,安装拉扭液压夹具和锚杆拉扭液压夹具固定挡板,通过同向拉扭加载机构施加拉拔力和扭转力,测试岩体内锚杆的拉扭参数。进行全尺寸锚杆拉剪扭测试试验时,通过同向拉扭加载机构施加拉拔力和扭转力,在锚杆杆体的轴向任意位置施加竖向剪切载荷。
如图12所示,若仅进行全尺寸锚杆拉拔测试试验,须将图10中锚杆拉剪扭锚固基体试样水平运动挡板56更换为锚杆拉拔锚固基体试样挡板58,并采用拉扭液压夹60具代替连接套筒40,夹持锚杆杆体61进行岩体内锚杆拔出测试。
如图13所示,若仅进行全尺寸锚杆杆体的拉-扭试验,须将锚杆拉剪扭锚固基体试样水平运动挡板56更换为锚杆拉扭液压夹具固定挡板59,并安装拉扭液压夹具60即可。通过调整后一组拉扭液压夹具60的位置,可实现不同长度锚杆的拉扭试验。
若仅进行全尺寸锚杆杆体的拉-剪-扭试验,如果竖向剪切加载机构200的加载长度不够,可再串联一个加载柱51,并在竖向反力架下部承载板9上通过锚杆剪切可调距支座固定板65固定带有锚杆剪切下压头63的锚杆剪切可调距支座64,实现锚杆杆体的轴向拉扭耦合任意位置的竖向剪切试验。
在此基础上,还提供一种复合载荷下的全尺寸岩体锚杆锚固性能试验方法,利用上述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,包括:进行全尺寸锚杆或杆状材料的拉伸、扭转、剪切单独性能的测试。或者进行全尺寸锚杆或杆状材料拉伸、扭转、剪切综合力学性能测试;或者在裂隙锚固岩体试样的同一裂隙面上施加拉伸、扭转、剪切耦合载荷。或者模拟巷帮变形及裂隙扩张情况下的锚杆受力。全尺寸锚杆的锚固基试样为圆形截面锚固岩体试样,裂隙锚固岩体试样包括多个串联的锚固基体试样。
其中,为了避免相似运算所带来的试验尺度的误差,将测试结果直接用于工程问题。圆形截面锚固岩体试样55为全尺寸试样,即全尺寸锚杆61为工程尺度锚杆,常用锚杆直径有20mm、24mm、26mm等,且锚固基体试样55的径向尺寸应保证锚杆在拉断、扭断、剪断或其他任意组合形式载荷作用下破坏之前,锚固基体试样55不能完全开裂失效,也就是说在锚杆完全失效的情况下,锚固基体试样55损伤开裂未达到锚固基体试样最外层。锚固基体试样55或其组合试样的轴向尺寸应达到全长锚杆的最长粘结尺寸,例如,某工程锚杆的锚固长度为2.4米,则锚固基体试样55组合总长度应不小于2.4米;为方便试样的加工及运输,可将2.4米长的锚固基体试样分成4块分别浇筑。
裂隙锚固岩体试样55组合件是通过锚杆将几个锚固基体试样(55-1、55-2、55-3、55-4)串联锚固在一起而形成的,锚固基体试样之间的间隙来模拟工程裂隙,裂隙大小根据所研究的工程问题可调。如图10所示,根据该实施例,所模拟的工程裂隙在锚固岩体中部,即裂隙位置处在2号锚固基体试样55-2与3号锚固基体试样55-3之间。在进行拉-剪-扭同步加载试验时,1号锚固基体试样55-1及2号锚固基体试样55-2承受拉-扭载荷作用,约束2号锚固基体试样55-2的竖向位移;3号锚固基体试样55-3承受剪切载荷作用,约束其前后及扭转运动位移;4号锚固基体试样55-4需要固定约束;在2号锚固基体试样55-2与3号锚固基体试样55-3裂隙位置处,锚杆与岩体界面承受拉-剪-扭复合应力作用。同时,由于竖向剪切加载机构200可前后移动,通过事先改变锚固基体试样55的大小或进行预制裂隙,可实现不同锚固深度裂隙锚固岩体的剪切试验。
为实现1号锚固基体试样55-1、2号锚固基体试样55-2及3号锚固基体试样的扭转加载及约束,需将锚固基体试样55浇筑在有内部纵肋的带法兰盘的拉剪扭试样模具73中。如图11所示,该带法兰盘的拉剪扭试样模具73由4瓣组成,试验后便于拆解重复使用。1号锚固基体试样55-1及2号锚固基体试样55-2的带法兰盘的拉剪扭试样模具73与弧形承压块之间安装有套筒减磨垫72,以实现扭转功能。如图6及图10所示,通过前法兰盘、法兰盘连杆、后法兰盘组成的连接结构与带法兰盘的拉剪扭试样模具固定,实现对1号锚固基体试样及2号锚固基体试样的拉扭加载,其中前法兰盘66又与安装在锚固岩体同向拉扭加载测试***100上的连接套筒40串联固定。3号锚固基体试样55-3浇筑在试样防扭固定套筒模具71中,试样防扭固定套筒模具71与弧形承压块之间安装有与减磨垫72相同厚度的防滑垫筒70,以保证试样高度相同。试样防扭固定套筒模具71、防滑垫筒70可利用螺丝固定在弧形承压块69上,进而固定在竖向反力架下部承载板9上,以达到固定约束的目的。3号锚固基体试样55-3通过锚杆拉剪扭锚固基体试样水平运动挡板56及固定在双平行卧式反力框架内侧板2上的“L”型挡板57进行前后位移约束。如图11所示,锚杆拉剪扭锚固基体试样水平运动挡板56前后均有圆环减磨垫74,以克服其与锚固基体试样55之间的摩擦。
利用上述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***进行试验的试验方法还包括:
(1)可对全尺寸锚杆61在伺服控制条件下进行锚杆杆体力学性能标准测试。同时适用于金属材料、非金属材料、复合材料等杆状构件的单独拉伸、单独扭转、单独剪切力学性能测试。
(2)可进行全尺寸锚杆61杆体(不含模拟岩块)拉-剪-扭同步耦合试验,测试锚杆构件复合受力条件下的综合力学性能,如图14所示。
(3)将锚杆一端锚固在岩块、混凝土块或钢管等材料中,在锚杆另一端进行锚杆拉拔试验,在这种情况下锚固基体试样55的截面形状可为矩形,如图12所示。
(4)锚固岩体裂隙张开试验,根据如图6及12所示的实施例,建议用4块Φ300×600mm圆柱形或300×300×600mm的矩形混凝土块体模拟裂隙岩体,模拟岩块不应小于上述尺寸。试验时通过拉拔第1、2或3块混凝土块体,来模拟巷帮变形或裂隙张开作用于锚杆的载荷。
(5)锚固岩体单独剪切试验中,可加载岩体或混凝土块体完成锚固岩体双剪试验。
(6)锚固岩体单独扭转试验中,可对锚固岩体或混凝土块体试件施加扭矩,进行锚杆给定截面上的扭转加载。
(7)在锚固裂隙岩体拉拔试验的同时,可耦合锚固岩体剪切试验及锚固岩体扭转试验,以模拟复杂巷道中锚杆复杂受力状态,且保证锚杆在同一截面受拉-剪-扭复合力学作用,如图10所示。
(8)在以上测试试验过程中,所提供的实施例便于利用位移传感器监测各岩体试样及锚杆组件变形,利用应变电测法及光纤传感器等监测锚杆杆体及托盘受力与变形,利用数字散斑方法监测岩体表面应变场,利用声发射监测锚固界面处微破裂生成与扩展规律。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,其特征在于,包括主框架、同向拉扭加载机构和竖向剪切加载机构,所述主框架包括双平行卧式反力框架和竖向反力框架,竖向反力框架架设在双平行卧式反力框架上;所述同向拉扭加载机构和竖向剪切加载机构与主框架协同布置;所述同向拉扭加载机构对锚固岩体进行拉伸、扭转同步加载,所述竖向剪切加载机构施加静态载荷或模拟动载扰动,所述同向拉扭加载机构和竖向剪切加载机构分别独立加载。
  2. 根据权利要求1所述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,其特征在于,所述双平行卧式反力框架包括外侧板、内侧板、前承载板、后承载板、支座和地面垫板,内侧板和外侧板平行布置,内侧板和外侧板之间留设安装空间,前承载板和后承载板分别设置在内侧板、外侧板的两端;所述支座固定在地面垫板上。
  3. 根据权利要求1或2所述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,其特征在于,所述竖向反力框架包括上部承载板、反力架光杠、下部承载板和运动轨道,所述运动轨道固定设置在地面垫板上,竖向反力框架沿运动轨道移动;所述反力架光杠设置在上部承载板的下方,并配合安装在内侧板和外侧板之间的安装空间。
  4. 根据权利要求1所述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,其特征在于,所述同向拉扭加载机构,包括拉伸加载机构、联动机构、扭转加载机构,所述扭转加载机构与拉伸加载机构之间设置联动机构,拉伸加载机构包括水平拉压油缸、油缸固定杆、定向导杆、第一导向板、轮辐传感器和内丝螺孔连接盘;所述扭转加载机构包括扭转电机、电机固定座、电机固定框架、第一扭转传动轴、扭矩传感器、第二扭转传动轴、滚珠轴承、滑块、导轨、固定大板和固定板;所述联动机构包括双列圆柱滚子轴承、第二导向板、第一带轮、单向推力球轴承、圆筒转轴、推力圆柱滚子轴承、定轴、皮带、第二带轮、联动框架和连接套筒。
  5. 根据权利要求4所述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,其特征在于,所述水平拉压油缸为双向加载油缸,水平拉压油缸通过固定杆固定在主框架前承载板上;所述承载板预留圆孔,预留圆孔的直径大于水平拉压油缸的活塞直径;所述水平拉压油缸活塞尾端为变径螺纹丝杆,轮辐传感器和变径螺纹丝杆相配合;所述轮辐传感器通过长螺柱与第一导向板、内丝螺孔连接盘固定连接;所述第一导向板上设置有钻孔,钻孔直径大于水平拉压油缸的活塞直径;所述轮辐传感器感测水平拉压油缸与定轴之间的轴向拉力,内丝螺孔连接盘固定在定轴前端的螺纹丝杠上;所述内丝螺孔连接盘后侧通过定轴与变截面圆筒转轴相互耦合形成的内腔中布置有单向推力轴承和推力圆柱滚子轴承;变截面圆筒转轴与第二导向板形成的内腔中布置有双列圆柱滚子轴承,圆筒转轴绕定轴旋转。
  6. 根据权利要求4所述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,其特征在于,所述第一导向板和第二导向板通过定向导杆与主框架前方的承载板相连接;所述变截面圆筒转轴外环上安装有第一带轮,扭转电机驱动第二带轮旋转,皮带连接第一带轮和第二带轮;第一带轮转动同时带动变截面圆筒转轴和拉扭加载框架旋转;所述扭转电机通过电机固定座安装在扭转电机固定框架上,扭转电机固定框架固定安装在扭转加载机构的固定大板的滑块上,所述滑块配合在扭转加载机构的导轨上,所述固定大板通过扭矩反力板与主框架的侧板相连接。
  7. 根据权利要求6所述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,其特征在于,所述电机固定座为中空的筒状结构,第一扭转传动轴穿过电机固定座与扭转电机的转动轴相连,第一扭转传动轴、第二扭转传动轴均与扭矩传感器相连,第二扭转传动轴与滚珠轴承及第二带轮相连,所述滚珠轴承通过轴承座配置在固定大板的滑块上;所述扭转电机固定框架通过联动机构与第一导向板、第二导向板固定连接,联动机构上部通过导轨滑块机构与扭转加载装置相连;所述扭转加载机构通过联动机构与中间联动机构、拉伸加载机构同时运动。
  8. 根据权利要求4所述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,其特征在于,所述竖向剪切加载机构包括竖向拉压动静载油缸、油缸固定杆、囊式蓄能器、油缸连通器、竖向加载轮辐传感器、连接盘、加载柱和加载板;所述囊式蓄能器与油缸连通器和拉压动静载油缸相连,拉压动静载油缸的油缸活塞依次连接固定竖向加载轮辐传感器、连接盘、加载柱和加载板。
  9. 一种复合载荷下的全尺寸岩体锚杆锚固性能试验方法,利用权利要求1至8任一项所述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,其特征在于,包括:
    进行全尺寸锚杆拉拔测试试验时,安装拉扭液压夹具和锚杆拉扭液压夹具固定挡板,通过同向拉扭加载机构施加拉拔力,测试岩体内锚杆的拉拔参数;
    进行全尺寸锚杆拉扭测试试验时,安装拉扭液压夹具和锚杆拉扭液压夹具固定挡板,通过同向拉扭加载机构施加拉拔力和扭转力,测试岩体内锚杆的拉扭参数;
    进行全尺寸锚杆拉剪扭测试试验时,通过同向拉扭加载机构施加拉拔力和扭转力,在锚杆杆体的轴向任意位置施加竖向剪切载荷。
  10. 一种复合载荷下的全尺寸岩体锚杆锚固性能试验方法,利用权利要求1至8任一项所述的一种复合载荷下的全尺寸岩体锚杆锚固性能的试验***,其特征在于,包括:
    进行全尺寸锚杆或杆状材料的拉伸、扭转、剪切单独性能的测试;或者进行全尺寸锚杆或杆状材料拉伸、扭转、剪切综合力学性能测试;或者在裂隙锚固岩体试样的同一裂隙面上施加拉伸、扭转、剪切耦合载荷;或者模拟巷帮变形及裂隙扩张情况下的锚杆受力;
    所述全尺寸锚杆的锚固基试样为圆形截面锚固岩体试样,所述裂隙锚固岩体试样包括多个串联的锚固基体试样。
PCT/CN2022/137481 2022-11-15 2022-12-08 复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法 WO2024103460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211420211.1A CN115711809B (zh) 2022-11-15 2022-11-15 复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法
CN202211420211.1 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024103460A1 true WO2024103460A1 (zh) 2024-05-23

Family

ID=85233045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137481 WO2024103460A1 (zh) 2022-11-15 2022-12-08 复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法

Country Status (2)

Country Link
CN (1) CN115711809B (zh)
WO (1) WO2024103460A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090874A (ja) * 2004-09-24 2006-04-06 Yokohama National Univ グラウンドアンカーの急速載荷試験装置
CN102621010A (zh) * 2012-04-13 2012-08-01 山东大学 深部围岩锚固性能多功能试验机
CN107576566A (zh) * 2017-08-04 2018-01-12 河南理工大学 一种矿山支护材料力学性能综合测试方法
JP2019045219A (ja) * 2017-08-30 2019-03-22 国立大学法人福井大学 せん断力試験装置
CN110243701A (zh) * 2019-07-05 2019-09-17 山东科技大学 一种锚固岩体扭转剪切试验装置及方法
CN110261235A (zh) * 2019-07-05 2019-09-20 山东科技大学 裂隙围岩锚固性能损伤测试装置及试验方法
CN111982691A (zh) * 2020-08-14 2020-11-24 王�琦 锚杆/锚索综合力学性能试验装置及试验方法
CN113340747A (zh) * 2021-04-14 2021-09-03 中煤科工开采研究院有限公司 锚杆剪切测试装置及方法
CN114323939A (zh) * 2021-12-20 2022-04-12 东北大学 一种锚杆静动拉剪综合实验装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051234B2 (ja) * 2007-09-07 2012-10-17 学校法人早稲田大学 医療機器の耐久試験装置及び耐久試験方法
FR3007522B1 (fr) * 2013-06-20 2015-07-03 Ecole Nationale Superieure De Mecanique Et D Aerotechnique Dispositif de sollicitations mecaniques en traction/compression et/ou torsion
CN103543069B (zh) * 2013-10-29 2015-06-10 中国科学院武汉岩土力学研究所 锚杆室内拉伸—剪切试验装置
CN203551388U (zh) * 2013-10-29 2014-04-16 中国科学院武汉岩土力学研究所 锚杆室内拉伸—剪切试验装置
CN108181191B (zh) * 2017-11-29 2020-07-07 中国矿业大学 一种钢性梁柱和混凝土梁柱多节点疲劳破坏试验装置
CN108982212B (zh) * 2018-06-05 2020-07-31 东北大学 一种复合材料轴拉压、弯曲、扭转、振动综合性能测试平台
CN110274831B (zh) * 2019-07-05 2020-07-07 山东科技大学 锚杆(索)支护结构测试及锚固***性能综合试验装置及方法
CN110542610A (zh) * 2019-08-30 2019-12-06 武汉理工大学 一种岩体拉伸、压缩、剪切及扭转一体试验装置
CN111307623B (zh) * 2020-04-20 2022-09-02 太原理工大学 一种冲击拉扭加载的实验装置
CN111855441B (zh) * 2020-09-04 2024-06-14 福州大学 恒定法向刚度条件下循环剪切试验装置及其应用方法
CN111855429B (zh) * 2020-09-04 2024-06-14 福州大学 拉压复合式加锚裂隙岩体双剪切试验装置及其应用方法
CN114563273B (zh) * 2022-04-28 2022-08-09 中国矿业大学(北京) 锚杆组合受力性能测试***及评价方法
CN114942191A (zh) * 2022-05-25 2022-08-26 东北大学 一种锚杆静力拉剪综合力学性能测试装置及测试方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090874A (ja) * 2004-09-24 2006-04-06 Yokohama National Univ グラウンドアンカーの急速載荷試験装置
CN102621010A (zh) * 2012-04-13 2012-08-01 山东大学 深部围岩锚固性能多功能试验机
CN107576566A (zh) * 2017-08-04 2018-01-12 河南理工大学 一种矿山支护材料力学性能综合测试方法
JP2019045219A (ja) * 2017-08-30 2019-03-22 国立大学法人福井大学 せん断力試験装置
CN110243701A (zh) * 2019-07-05 2019-09-17 山东科技大学 一种锚固岩体扭转剪切试验装置及方法
CN110261235A (zh) * 2019-07-05 2019-09-20 山东科技大学 裂隙围岩锚固性能损伤测试装置及试验方法
CN111982691A (zh) * 2020-08-14 2020-11-24 王�琦 锚杆/锚索综合力学性能试验装置及试验方法
CN113340747A (zh) * 2021-04-14 2021-09-03 中煤科工开采研究院有限公司 锚杆剪切测试装置及方法
CN114323939A (zh) * 2021-12-20 2022-04-12 东北大学 一种锚杆静动拉剪综合实验装置

Also Published As

Publication number Publication date
CN115711809A (zh) 2023-02-24
CN115711809B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
US10969314B2 (en) Device and method for anchor bolt (cable) supporting structure test and anchoring system performance comprehensive experiment
WO2021004015A1 (zh) 锚杆(索)支护结构测试及锚固***性能综合试验装置及方法
Grimsmo et al. An experimental study of static and dynamic behaviour of bolted end-plate joints of steel
Shi et al. Experimental and numerical studies on progressive debonding of grouted rock bolts
Wang et al. Dynamic mechanical characteristics and application of constant resistance energy-absorbing supporting material
CN110593953B (zh) 模拟岩爆条件下巷道支护***抗冲击特性测试装置及方法
CN106501014A (zh) 用于整环隧道结构的竖直加载试验装置
Cai et al. Experimental and analytical investigation into the stress performance of composite anchors for CFRP tendons
CN105510158B (zh) 锚固体动态拉伸实验装置及实验方法
CN107036915A (zh) 一种冲击荷载作用下测量frp与混凝土粘结性能的试验装置及方法
Li et al. Comparison of the shear test results of a cable bolt on three laboratory test apparatuses
Pytlik Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation
Li et al. Seismic response tests and analytical assessment of blind bolted assembly CFST frames with beam-connected SPSWs
CN114544391B (zh) 高温环境固体材料动态拉剪力学特性测试装置及测试方法
Aules et al. A novel anchorage system for strengthening slender RC columns with externally bonded CFRP composite sheets
CN104713691B (zh) 一种结构抗震性能试验的轴压比施加和试件固定装置及其试验方法
CN111855429A (zh) 拉压复合式加锚裂隙岩体双剪切试验装置及其应用方法
Li et al. Anchorage behavior of grouting sleeves under uniaxial and cyclic loading-A comparative study of the internal structure of sleeves
Wang et al. Flexural behavior of composite concrete-filled steel tube roof structure under symmetrical concentrated loads
Zhou et al. Development of a novel resilient anchor cable and its large shear deformation performance
Zeng et al. Experimental study on seismic behavior of precast concrete circular section column with grouted sleeve
Li et al. Review on blind bolted connections to concrete-filled steel tubes
WO2024103460A1 (zh) 复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法
Zhang et al. Full–scale experimental test for load–bearing behavior of the carbon fiber shell reinforced stagger–jointed shield tunnel
Ding et al. Experimental research on the mechanical behavior of segmental joints of shield tunnel reinforced with a new stainless steel corrugated plate