WO2021004015A1 - 锚杆(索)支护结构测试及锚固***性能综合试验装置及方法 - Google Patents

锚杆(索)支护结构测试及锚固***性能综合试验装置及方法 Download PDF

Info

Publication number
WO2021004015A1
WO2021004015A1 PCT/CN2019/126547 CN2019126547W WO2021004015A1 WO 2021004015 A1 WO2021004015 A1 WO 2021004015A1 CN 2019126547 W CN2019126547 W CN 2019126547W WO 2021004015 A1 WO2021004015 A1 WO 2021004015A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
test
anchor
bolt
anchor rod
Prior art date
Application number
PCT/CN2019/126547
Other languages
English (en)
French (fr)
Inventor
赵同彬
李春林
邢明录
谭云亮
赵晨
王志
李小亮
于凤海
贾敬龙
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to US16/976,163 priority Critical patent/US10969314B2/en
Publication of WO2021004015A1 publication Critical patent/WO2021004015A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/22Investigating strength properties of solid materials by application of mechanical stress by applying steady torsional forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0021Torsional
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0053Cutting or drilling tools

Definitions

  • the invention relates to the technical field of bolt testing, and in particular provides a comprehensive test device for bolt (cable) supporting structure testing and anchoring system performance, and a test method using the device.
  • anchoring and support technology is widely used in deep roadway and large-span underground cavern support, dam foundation and abutment reinforcement, rock and soil slope reinforcement, deep foundation pit support, water delivery and traffic tunnels and other engineering fields .
  • the scientific support plan can effectively guarantee the safety of project construction and production, on the other hand, it can reduce the cost to obtain the maximum economic benefit.
  • Tests and engineering studies have shown that the essential function of bolts is to effectively reinforce the surrounding rock, prevent new open cracks in the surrounding rock and slow down the expansion of the cracks, prevent large separation and slippage of the structural surface, and maximize the maintenance of the surrounding rock Integrity to avoid harmful deformation.
  • High-performance bolt support can transfer the load distribution of the rock and soil, improve the stress state of the surrounding rock bearing structure within the support range, and inhibit the tensile failure caused by the weak interlayer.
  • the anchor rod (cable) combined with the anchor net support can restrain the deformation of the surrounding rock, adjust the stress distribution of the surrounding rock, and prevent the loose fall of the partially broken coal and rock mass.
  • bolt (cable) and other support applications are affected by a series of factors, such as geological structure, mine mining, structural pressure, anchoring technology, support parameters, material properties, etc., although the current support design has certain specifications And reference, but still mainly rely on engineering experience to determine the support parameters of the anchorage system, resulting in its poor application effect.
  • the reason is that the structural understanding of the surrounding rock is insufficient, and the mechanism of the anchorage system and the surrounding rock lacks a systematic understanding.
  • the properties of surrounding rock surrounding the roadway and the stress environment have an important influence on the anchoring support performance and the evolution of anchoring force damage.
  • the surrounding rock of the roadway undergoes significant deformation and failure under the redistributed stress environment of “force on five sides and one face to void”. Structural features.
  • the shallow surrounding rock within a certain range close to the empty surface of the roadway has a high degree of stress concentration, poor stability, and cannot achieve long-term self-stability.
  • the deep surrounding rock outside this range has better overall stability, strong bearing capacity, and stress Higher and dynamically adjusted with the deformation of the roadway. Under these conditions, anchoring and supporting is carried out. Under different surrounding rock properties and stress environments, the anchoring shallow and deep surrounding rock interacts with the supporting system for a long time. The mechanism and mode of action are complicated, especially the deep soft rock is in latent plastic or even plasticity. In the state, the evolution of deformation and damage and support damage will be more complicated.
  • the mechanism of bolt reinforcement and control of surrounding rock under certain geological conditions has not been clarified, and theoretical research is limited by the existing experimental simulation methods.
  • the cost of testing large specimens on site is too costly.
  • the existing indoor anchoring performance testing devices are generally designed for the drawing research of rock-like materials or concrete-filled steel tube anchor specimens, through the pull-out force test or the bearing performance of the anchoring specimens The test evaluates the anchoring effect.
  • the test conditions cannot directly simulate the on-site geological environment of the bolt support, and the stress distribution, surrounding rock properties and scale effect are not considered. Therefore, it is necessary to conduct a more systematic and refined test research. Carry out the development and research of innovative anchoring test equipment.
  • the test system should have versatility.
  • the present invention provides an anchor rod (cable) supporting structure test and anchor system performance comprehensive test device and method.
  • the specific technical solution is as follows.
  • a comprehensive test device for bolt support structure testing and anchoring system performance including frame, loading mechanism, test mechanism and test piece.
  • the frame includes a base and an operating table.
  • the loading mechanism includes a loading frame, an anchor chuck, and a bearing plate. , Pull out the hollow cylinder and multiple loading cylinders, the loading frame is set on the through groove of the base, the end of the loading frame is provided with an anchor rod chuck, the side of the loading frame is provided with a loading cylinder, and the loading cylinder acts on the pressure plate
  • the drawing hollow cylinder is set at one end of the loading frame opposite to the bolt chuck;
  • the testing mechanism includes a stress and displacement sensor, an acoustic emission probe, a torsion motor and a bolt drill, the torsion motor and bolt drill are both set in operation On the platform, the stress and displacement sensors are set on the bearing plate, and the acoustic emission probe is set on the loading frame;
  • the test piece includes a test anchor rod, one end of the test anchor rod is fixed on the
  • the upper surface of the base is provided with a through groove, the depth of the through groove is greater than the exposed length of the loading cylinder after installation;
  • the operating table is arranged opposite to the base, and the upper surface of the operating table is provided with a sliding rail, and the sliding block and the sliding rail cooperate along When the sliding rail moves, the upper surface of the sliding block is also provided with a sliding groove, and the bolt drill and the torsion motor are respectively moved along the sliding groove or fixed on the sliding groove, and pulleys are also arranged on both sides of the sliding groove.
  • the loading frame includes one or more than one biaxial frame, and two sets of vertically correspondingly distributed loading cylinders are provided on the biaxial frame, and the load is applied in a plane determined by the biaxial frame; the anchor rod chuck is fixed
  • the biaxial frame is also provided with an axial hollow loading cylinder along the axial direction of the test anchor; the four corners of the biaxial frame are connected by pillars and nuts.
  • the bearing plate includes a shear bearing plate and a flat bearing plate. The loading end is connected with a shear bearing plate or a flat bearing plate.
  • an acoustic emission probe installation slot is arranged on the inner side of the loading frame, and displacement and stress sensors are arranged on the bearing plate; the bolting rig is provided with torque, power and jacking force monitoring devices, and the drilling side of the bolting rig is also A drill cuttings collection device is provided.
  • test piece also includes a rock test piece, a steel belt, an anchor net and a tray; the rock test piece is placed in the space enclosed by the flat bearing plate, and the shear bearing plate is interlocked with the test anchor rod.
  • drawing hollow cylinder is arranged on the door panel, the door panel is hinged with the connecting bracket, and the connecting bracket is also provided with anchor net fixing holes and steel belt fixing holes; the loading end of the drawing hollow cylinder is provided with a hollow bearing plate, The anchor net is pressed on the hollow bearing plate, and the steel belt and the tray are pressed on the anchor net in turn.
  • An anchor rod detection method using the above-mentioned anchor rod supporting structure test and anchoring system performance comprehensive test device, the steps include: firstly, one end of the test anchor rod is fixed on the anchor rod chuck, and the other end is passed through a nut and The pallet is fixed on the hollow bearing plate; then the hollow cylinder is pulled to load axially, and the force and deformation of the anchor rod during the loading process are recorded.
  • An anchor rod detection method using the above-mentioned anchor rod supporting structure testing and anchoring system performance comprehensive test device, the steps include: first, fixing one end of the test anchor rod on the anchor rod chuck, and opening the drawing hollow cylinder Install and fix the torsion motor on the operating platform where the door is located; then fix the other end of the test bolt on the torsion motor of the operating platform; then apply a load to the bolt through the torsion motor, and record the torque, speed and anchor during the loading process Deformation of the rod.
  • An anchor rod detection method using the above-mentioned anchor rod supporting structure test and anchoring system performance comprehensive test device, the steps include: firstly, connect the shear bearing plate to the loading end of the loading cylinder, and test one end of the anchor rod Fix it on the anchor rod chuck, adjust the position of the shear bearing plate through the loading cylinder to make it engage with the test anchor rod; then fix the other end of the test anchor rod on the hollow bearing plate through the nut and the tray; The loading cylinder loads and records the force and deformation of the anchor rod during the loading process.
  • a method for testing the combined supporting performance of bolts and nets, using the above-mentioned comprehensive testing device for the testing of bolt supporting structures and the performance of anchoring systems, and the steps include:
  • Step A The loading end of the loading cylinder is connected to the plane pressure plate, the rock specimen is sent to the loading space between the plane pressure plates, and the loading cylinder and the axial hollow loading cylinder are adjusted to clamp the rock specimen;
  • Step B Open the door panel where the hollow cylinder is drawn, install and fix the bolter on the console, adjust the loading cylinder and the axial hollow loading cylinder to load separately to simulate the actual ground stress;
  • Step C Start the bolting machine, drill holes relative to the middle hole of the bolt chuck along the axial direction of the rock specimen, and record the torque, rotation speed, power, jacking force, drilling speed and rock of the bolting machine during the drilling process The deformation of the test piece;
  • Step D Exit the drill rod after the drilling is completed, close and pull the door plate where the hollow cylinder is located, and ram the test anchor rod and anchoring agent into the drill hole at the same time;
  • Step E After the anchoring agent is solidified, apply pre-tightening force to the anchor rod, and install the steel belt, anchor net and tray;
  • Step F Load the surrounding rock by adjusting the loading cylinder to simulate the force and deformation of the anchor rod during the disturbance; or by drawing the hollow cylinder to test the supporting capacity of the anchor rod, anchor net and steel belt combined support; meanwhile record the loading The stress and deformation of steel belts, anchor nets, trays, anchor rods and rock specimens during the process.
  • the anchor rod (cable) supporting structure testing and anchoring system performance comprehensive test device provided by the present invention can simulate actual ground stress conditions through the loading mechanism, and use the drawing hollow cylinder of the testing mechanism to apply tension and torsion to the anchor rod
  • the motor provides torsion and the bolting machine simulates the drilling process of bolt drilling.
  • the real anchoring situation is restored by testing bolts, anchor nets, steel belts and pallets, so that the combined anchoring performance of bolt anchor nets can be tested.
  • the device also realizes a number of bolt performance tests through the cooperation of various mechanisms, and can also simulate and restore real ground stress conditions, bolt installation conditions and joint support conditions.
  • the biaxial frame of the device is set up
  • the loading cylinder can realize the two-dimensional plane loading of the rock specimen, and each loading cylinder can be loaded separately and cooperated to better simulate the real ground stress conditions; the axial hollow loading cylinder can realize the axial loading perpendicular to the two-dimensional plane , To simulate the surrounding rock force along the direction of the bolt.
  • the paired setting of the loading cylinders can work together to correct the eccentricity of the rock specimen, and it can also keep the bolt borehole at the axis of the testing machine during the test; load in five directions, thereby realizing the "five-sided” test piece Load the simulation of “one face to empty”, you can observe the surrounding rock drilling response process under stress environment, and carry out the test of indoor comprehensive test of anchoring system performance.
  • the base can ensure the stability of the device during the process of simulating ground stress and bolt force;
  • the operating table corresponds to the base, and is equipped with a torsion motor and a bolt drill. , Can realize the torsion test of the bolt, and simulate the drilling of the bolt hole and the process of the bolt; the shear bearing plate or the plane bearing plate can be replaced to better play the overall function of the test device, and through the shear Cut the bearing plate to test the shear resistance of the bolt.
  • bolt detection tests can be performed, including bolt pull-out test, bolt shear test, and bolt torsion test.
  • the test machine can be used to repeat the test with this method, and The test operation is simple; in addition, the device can completely simulate the in-situ stress environment of the surrounding rock, and accurately simulate the drilling and installation of bolt holes. After installation, the anchor net and steel belt are combined, and the device can continue to test the Supporting performance of joint support.
  • the device and method also have the advantages of flexible operation and control, and the test fits the actual project.
  • Figure 1 is a schematic diagram of the structure of a comprehensive test device for bolt (cable) supporting structure testing and anchoring system performance;
  • Figure 2 is a schematic front view of the test device
  • Figure 3 is a schematic side view of the structure of the test device
  • Figure 4 is another side view of the structure of the test device
  • Figure 5 is a schematic top view of the test device
  • Figure 6 is a schematic diagram of the structure of the anchor rod pull test principle
  • Figure 7 is a schematic diagram of the principle structure of the bolt torsion test
  • Figure 8 is a schematic diagram of the structure of the bolt shear test principle
  • Figure 9 is a schematic diagram of the installation structure of the roof bolter
  • Figure 10 is a schematic diagram of the test of the bolt and anchor net combined supporting structure
  • Figure 11 is a schematic diagram of the test of the bolt and anchor net combined supporting structure from another angle
  • Figure 12 is a schematic diagram of the combined structure of the test piece of the bolt and anchor net combined supporting structure
  • Figure 13 is a schematic diagram of the installation structure of the connecting bracket and drawing the hollow cylinder
  • Figure 14 is a schematic diagram of the structure of the bolt chuck
  • the invention provides an anchor (cable) supporting structure test and an anchor system performance comprehensive test device and method for specific implementations as follows.
  • the structure of the anchor rod (cable) supporting structure test and the anchor system performance comprehensive test device includes the frame 1, the loading mechanism 2, the test mechanism 3 and the test piece 4.
  • the frame 1 includes the base The base 11 and the console 12
  • the loading mechanism 2 includes a loading frame 21, a bolt chuck 22, a bearing plate 23, a drawing hollow cylinder 31 and a plurality of loading cylinders 24,
  • the test mechanism 3 includes a torsion motor 32, a bolt drill 33,
  • the test piece 4 includes anchoring components such as test bolt 41, rock test piece 42, steel belt 43, anchor net 44, and tray 45.
  • the device can simulate the actual ground stress conditions through the loading mechanism 2, using the drawing hollow cylinder 31 of the testing mechanism 3 to apply tension to the test bolt 41, the torsion motor 32 to provide torque, and the bolt drill 33 to simulate the drilling of bolt holes.
  • the real anchoring condition is restored by testing the anchor rod 41, the anchor net 44, the steel belt 43 and the tray 45, so that the combined anchoring performance of the anchor rod and anchor net can be tested.
  • the device realizes a number of bolt performance tests through the cooperation of various mechanisms, and can also simulate and restore real ground stress conditions, bolt installation conditions and joint support conditions.
  • the frame includes a base 11 and an operating table 12.
  • the base 11 is used to fix various components of the loading mechanism 2.
  • the operating table 12 mainly assists the work of the torsion motor 32 and the roof bolter 33.
  • the upper surface of the base 11 may be provided with a through groove 111.
  • the depth of the through groove 111 is greater than the exposed length of the loading cylinder 24 after installation, so as to ensure the installation of the loading cylinder 24 and the loading frame 21.
  • the loading frame 21 can be fixed to the through hole of the base. Slot 111 on.
  • the operating table 12 is arranged opposite to the base 11. Specifically, the height of the operating table 12 is suitable for the work of the torsion motor 32 and the roof bolter 33 to facilitate cooperation.
  • a slide rail 121 is provided on the upper surface of the operating table 12.
  • the slide rail 122 cooperates with the slide rail 121 and moves along the slide rail.
  • the torsion motor 32 on the slide block and the bolt drill 33 and the base 11 can be adjusted by the slide slide 122.
  • the distance of test piece 4 is convenient for operation.
  • the upper surface of the sliding block 122 is also provided with a chute 123.
  • the bolter 33 and the torsion motor 32 respectively move along the chute 123 or are fixed on the chute 123.
  • Both sides of the chute 123 are also provided with pulleys 124, which can reduce The influence of friction on the installation of the test piece.
  • the loading mechanism 2 includes a loading frame 21, an anchor rod chuck 22, a pressure-bearing plate 23, and a plurality of loading cylinders 24. As shown in FIGS. 5 and 10 to 11, the loading frame 21 is arranged on the through groove 111 of the base. For fixing the loading cylinder 24, the end of the loading frame 21 is provided with an anchor rod chuck 22 for limiting and fixing the test anchor 41.
  • the loading frame 21 has a square shape, and a loading cylinder 24 is arranged on the side of the loading frame 21, and the loading cylinder 24 acts on the pressure bearing plate 23.
  • the loading frame 21 includes one or more than one biaxial frame 211, and the complex ground stress environment can be effectively simulated when loaded by multiple biaxial frames 211.
  • the biaxial frame 211 is provided with two sets of vertically correspondingly distributed loading cylinders 24, and loads are applied in a two-dimensional plane defined by the biaxial frame 211.
  • an axial hollow loading cylinder 25 is also provided along the axial direction of the test anchor rod. 25
  • the rock test piece 42 is placed side-loaded along the axis.
  • the four corners of the biaxial frame 211 are connected by pillars 26 and nuts 27, the pillars 26 pass through the biaxial frame 211, and both ends can be fixed by nuts 27.
  • the loading cylinder 24 on the biaxial frame 211 can realize the two-dimensional plane loading of the rock specimen, and each loading cylinder is loaded separately, and the synergistic effect can better simulate the real ground stress conditions; the axial hollow loading cylinder 25 can achieve vertical With the axial loading of the two-dimensional plane, the force of surrounding rock along the direction of the bolt is simulated.
  • the axial hollow loading cylinder is the rear loading cylinder.
  • the rear loading cylinder and the cylinder on the biaxial frame can achieve five Non-uniformly distributed loading; loading in five directions realizes the simulation of "five-sided loading, one facing empty" of the test piece, which can observe the response process of surrounding rock drilling under stress environment, and conduct comprehensive indoor testing of anchoring system performance test.
  • the bearing plate 23 includes a shear bearing plate 231 and a plane bearing plate 232, and the loading end of the loading cylinder 24 is connected with the shear bearing plate or the plane bearing plate.
  • the rock test piece 42 is placed in the space enclosed by the flat bearing plate 232, and the shear bearing plate 231 is interlocked with the test anchor 41.
  • the shear bearing plate 231 or the plane bearing plate 232 can better perform the overall function of the test device by replacement, and the shear bearing plate 231 can be used to test the shear resistance of the anchor rod.
  • the testing mechanism 3 includes a drawing hollow cylinder 31, a torsion motor 32, and a bolt drill 33.
  • the drawing hollow cylinder 31 is arranged at one end of the loading frame 21 opposite to the bolt chuck 22, specifically the drawing hollow cylinder 31 and the bolt chuck.
  • the disc 22 is arranged coaxially, the torsion motor 32 and the bolt drill 33 are both arranged on the operating table 12, and the working axis of the torsion motor 32 is also coincident with the bolt chuck 22.
  • the drawing hollow cylinder 31 is arranged on the door panel 28, the door panel 28 is hinged with the connecting bracket 29, and the connecting bracket 29 is fixed at the end of the pillar 26.
  • the connecting bracket 29 is also provided with anchor net fixing holes and steel belts. Fixing holes.
  • the loading end of the drawing hollow cylinder 31 is provided with a hollow bearing plate 34, and the hollow bearing plate 34 is provided with a through hole corresponding to the drawing hollow cylinder 31.
  • the test piece 4 includes a test anchor 41, one end of the test anchor is fixed on the side of the loading frame, specifically anchored to the rock test piece in the loading frame by an anchor chuck holder, and the other end passes through the drawing hollow cylinder.
  • the test piece also includes rock test piece 42, steel belt 43, anchor net 44 and tray 45.
  • the anchor net 44 is pressed on the hollow bearing plate 34, and the steel belt 43 and the tray 45 are pressed on the anchor net 44 in turn. Without the steel belt, only the anchor net 44 and the tray 45 are provided.
  • An anchor rod detection method as shown in Figure 6, using the above-mentioned anchor rod supporting structure test and anchoring system performance comprehensive test device, the steps include: firstly, one end of the test anchor rod is fixed on the anchor rod chuck , The other end is fixed on the hollow bearing plate by a nut and a tray; then the hollow cylinder is pulled to load axially, and the force and deformation of the anchor rod during the loading process are recorded. The detection can be repeated with this device.
  • An anchor rod detection method as shown in Figure 7, using the above-mentioned anchor rod supporting structure testing and anchoring system performance comprehensive test device, the steps include: firstly, one end of the test anchor rod is fixed on the anchor rod chuck , Open the door panel where the hollow cylinder is drawn, install and fix the torsion motor on the console; then fix the other end of the test bolt on the torsion motor of the console; then use the torsion motor to apply load to the bolt and record the loading process The torque and speed and the deformation of the anchor rod. The detection can be repeated with this device.
  • An anchor rod detection method as shown in Figure 8, using the above-mentioned anchor rod supporting structure test and anchoring system performance comprehensive test device, the steps include: first, connecting a shear bearing plate to the loading end of the loading cylinder, Fix one end of the test bolt on the bolt chuck, adjust the position of the shear bearing plate through the loading cylinder to make it engage with the test bolt; then fix the other end of the test bolt on the hollow bearing through the nut and the tray. The pressure plate; and then use the loading cylinder to load and record the force and deformation of the anchor rod during the loading process. The detection can be repeated with this device.
  • the above-mentioned bolt detection and bolt-anchor net combined supporting performance test device performs a number of bolt detection tests, including bolt pull test, bolt shear test, and bolt torsion
  • bolt and anchor net combined support test the test machine can be repeated with the above method, and the test using the device has the advantages of simple operation and reliable test results.
  • the structure includes a frame 1, a loading mechanism 2, a testing mechanism 3, and a test piece 4.
  • the frame 1 includes a base 11, an operating table 12, and a loading mechanism 2.
  • testing mechanism 3 includes torsion motor 32 and bolt drill 33, as well as stress and displacement sensors, acoustic emission probes
  • the test piece 4 includes a test bolt 41, a rock test piece 42, a steel belt 43, an anchor net 44 and a tray 45.
  • the frame includes a base 11 and an operating table 12.
  • the base 11 is used to fix various components of the loading mechanism 2.
  • the operating table 12 mainly assists the work of the torsion motor 32 and the roof bolter 33.
  • the upper surface of the base 11 is provided with a through groove 111.
  • the depth of the through groove 111 is greater than the exposed length of the loading cylinder 24 after installation.
  • the loading frame 21 can be fixed on the through groove 111 of the base.
  • the operating table 12 is arranged opposite to the base 11. Specifically, the height of the operating table 12 is suitable for the work of the torsion motor 32 and the roof bolter 33, thereby facilitating cooperation.
  • a slide rail 121 is provided on the upper surface of the operating table 12.
  • the slide rail 122 cooperates with the slide rail 121 and moves along the slide rail.
  • the sliding slide 122 can adjust the bolt drill 33 on the slide and the test piece 4 on the base 11. Distance, and convenient operation.
  • the upper surface of the sliding block 122 is also provided with a chute 123.
  • the bolter 33 and the torsion motor 32 respectively move along the chute 123 or are fixed on the chute 123.
  • Both sides of the chute 123 are also provided with pulleys 124, which can reduce The influence of friction on the installation of the test piece.
  • the loading mechanism 2 includes a loading frame 21, an anchor rod chuck 22, a pressure-bearing plate 23, and a plurality of loading cylinders 24.
  • the loading frame 21 is arranged on the through groove 111 of the base for fixing the loading cylinder 24 and the end of the loading frame 21
  • a bolt chuck 22 is provided on the part for limiting and fixing the test bolt 41.
  • the loading frame 21 is square.
  • the sides of the loading frame 21 are provided with loading cylinders 24, and the loading cylinders 24 act on the pressure-bearing plate 23; the loading frame 21, the base 12 and the pillars 26 need to be made of materials with high rigidity.
  • the loading frame 21 includes three biaxial frames 211, and the complex ground stress environment can be effectively simulated when the three biaxial frames 211 are used for loading.
  • Two sets of vertically correspondingly distributed loading cylinders 24 are provided on the dual-axis frame 211. Loads are applied in a two-dimensional plane defined by the dual-axis frame 211. The adjacent dual-axis frames 211 are arranged in parallel. The loading cylinders 24 use large-stroke cylinders. . In addition, in the axial direction perpendicular to the two-dimensional plane, specifically on the biaxial frame 211 fixed by the anchor chuck 22, an axial hollow loading cylinder 25 is also provided along the axial direction of the test anchor rod. The oil cylinder 25 places side loading on the rock specimen 42 along the axis to simulate the ground stress along the bolt direction, which can also simulate the state where the surrounding rock faces the empty when the bolt hole is drilled.
  • a blocking clamp can be set on the empty side of the loading frame to ensure the stability of the rock specimen during the loading process.
  • the four corners of the biaxial frame 211 are connected by pillars 26 and nuts 27, the pillars 26 pass through the biaxial frame 211, and both ends can be fixed by nuts 27.
  • the bearing plate 23 is specifically a single plane bearing plate 232, the loading end of each loading cylinder 24 is connected to the plane bearing plate, and the space enclosed by the plane bearing plate 232 is used for placing the rock specimen 42. Stress and displacement sensors are provided on the surface of the above-mentioned plane pressure-bearing plate and the pillars to monitor displacement and stress changes during the test.
  • the drawing hollow cylinder 31 is arranged at one end of the loading frame 21 opposite to the anchor rod chuck 22.
  • the anchor rod chuck is a short cylindrical four-jaw chuck, specifically the drawing hollow oil cylinder 31 and the anchor rod chuck 22 is arranged coaxially, the bolt drill 33 is arranged on the operating platform 12, and its working axis is also coincident with the bolt chuck 22.
  • the drawing hollow cylinder can also be replaced with an impact loading cylinder, which can simulate the force of the anchor rod or the anchor rod anchor net under the impact load.
  • the drawing hollow cylinder 31 is arranged on the door panel 28.
  • the door panel 28 is hinged with the connecting bracket 29.
  • the door panel 28 can be opened and closed through the hinged position to facilitate the installation of the test piece.
  • the other side of the door panel can be locked and fixed on
  • the connecting bracket 29 is fixed at the end of the pillar 26, and the connecting bracket 29 is also provided with anchor net fixing holes and steel belt fixing holes for fixing the anchor net and the steel belt.
  • the loading end of the drawing hollow cylinder 31 is provided with a hollow bearing plate 34, and the hollow bearing plate 34 is provided with a through hole corresponding to the drawing hollow cylinder 31.
  • the testing mechanism 3 includes a torsion motor 32 and a bolt drill 33, as well as stress and displacement sensors, acoustic emission probes and other monitoring devices.
  • Each of the above-mentioned loading cylinders 24, drawing hollow cylinders 31, and axial hollow loading cylinders 25 are provided with high Accurate displacement and stress sensors, and can realize servo loading.
  • an acoustic emission probe installation slot is also provided on the inner side of the loading frame for placing the acoustic emission probe.
  • the bearing plate is equipped with displacement and stress sensors, and multiple sets of displacement and stress sensors coordinately monitor the deformation and loading of the specimen.
  • the bolting rig is equipped with torque, power and jacking force monitoring devices, and the drilling side of the bolting rig is also provided with a cuttings collection device to monitor the work of the bolting rig and the drilling response data of the bolt in real time.
  • the test piece 4 includes a test anchor 41, one end of the test anchor 41 is fixed by an anchor chuck 22 or directly anchored in the rock test piece, and the other end passes through the drawing hollow cylinder 31.
  • the test piece 4 also includes a rock test piece 42, a steel belt 43, an anchor net 44 and a tray 45.
  • the rock test piece 42 is a rectangular parallelepiped test piece, and its size is compatible with the space enclosed by the plane bearing plate 232.
  • the steel belt 43 and the pallet 45 are sequentially pressed on the anchor net 44, or the anchor net 44 and the pallet 45 may not be provided with the steel belt.
  • test device can be used to simulate the drilling process of bolt drilling, and the specific steps include:
  • the loading end of the loading cylinder is connected with the plane pressure plate, the rock specimen is sent to the loading space between the plane pressure plates, the loading cylinder and the axial hollow loading cylinder are adjusted to clamp the rock specimen; then the hollow cylinder is opened and drawn Install and fix the bolting rig on the door panel where it is located, adjust the loading cylinder and the axial hollow loading cylinder to load separately to simulate the actual ground stress; then start the bolting rig, relative to the bolt chuck along the axial direction of the rock specimen The middle hole is drilled to record the torque, rotation speed, drilling speed and deformation of the rock specimen during the drilling process.
  • displacement sensors can also be equipped with acoustic emission probes, which can accurately simulate the changes in surrounding rock during bolt drilling and record test data, providing theoretical basis for bolt drilling and drilling.
  • the rock specimen is loaded in 5 directions, and one face is empty, so the real stress state of the surrounding rock of the roadway is well simulated.
  • An anchor rod and anchor net combined supporting performance test method as shown in Figures 10 to 12, using the above-mentioned anchor rod supporting structure test and anchor system performance comprehensive test device, the steps include:
  • Step A The loading end of the loading cylinder is installed and connected with the plane pressure bearing plate, the rock specimen is sent to the loading space between the plane pressure plates, and the loading cylinder and the axial hollow loading cylinder are adjusted to clamp the rock specimen.
  • Step B Open the door panel where the hollow cylinder is drawn, install and fix the bolter on the console, adjust the loading cylinder and the axial hollow loading cylinder to load separately to simulate the actual ground stress.
  • Step C Start the bolting machine, drill holes in the axial direction of the rock specimen relative to the middle hole of the bolt chuck, and record the torque, rotation speed, drilling speed and deformation of the rock specimen during the drilling process .
  • Step D Exit the drill rod after the drilling is completed, close and pull the door plate where the hollow cylinder is located, fix it, and ram the test anchor rod and the anchoring agent into the drill hole at the same time.
  • Step E After the anchoring agent is solidified, apply pre-tightening force to the anchor rod, and install the steel belt, anchor net and tray.
  • Step F Simulate the force and deformation of the anchor rod during the disturbance of the surrounding rock by adjusting the loading cylinder, and truly restore the force of the anchor rod and anchor net structure after the surrounding rock is subjected to secondary disturbance; or load by drawing the hollow cylinder
  • Example 1 Combining Example 1 and Example 2, it can be seen that using this test device, a variety of bolt detection tests can be carried out, including bolt pull test, bolt shear test, and bolt torsion test. The test can be repeated, and the test operation is simple.
  • the test device may be used to perform other tests not mentioned, but a variety of tests are carried out on the basis of the structure of the test device.
  • the device can completely simulate the in-situ stress environment of the surrounding rock and accurately The drilling and installation of the simulated bolt borehole, after installation, combined with the anchor net and steel belt, continue to test the supporting performance of the combined support through the device.
  • the device and method as a whole also have the advantages of flexible operation and control, the test fits the actual project, and the simulated real working condition environment test results are more accurate.
  • the separation layer loading cylinder is set between the biaxial frames, as shown in Figure 15, the separation layer anchoring control of the rock mass is simulated by the separation layer loading cylinder, and the separation mechanism and characteristics, as well as the support mechanism of the bolt are studied. And supporting capacity methods.
  • the improvement of the structure of the testing machine includes that a separation jack 5 is arranged between the biaxial frames 211, the upper part of the biaxial frame 211 slides along the pillars, and the biaxial frame 211 can slide along the through groove 111 on the base.
  • the test steps include: First make a simulated test piece of similar material, or take the rock from the site to make a simulated test piece, smooth the surface of the simulated test piece, and match the size of the simulated test piece with the size of the space enclosed by the bearing plate, and put the test piece into the bearing plate enclosure Then, the loading cylinder and the axial hollow loading cylinder are simultaneously loaded on the simulated test piece to simulate the actual roadway ground stress, and the bolt drill is drilled on the simulated test piece through the bolt drill; then the bolt and anchoring agent At the same time, it is introduced into the borehole.
  • the anchor rod is fixed by the anchor rod tray and the nut and the pre-tightening force is applied to complete the anchoring to obtain the anchor rod-anchored rock specimen; finally the separation jack is slowly loaded and the rock during the loading process The stress, displacement and damage of the specimen.
  • the torsion test of the anchored rock mass is realized by improving the pressure-bearing plate, as shown in FIG. 16.
  • the improvement of the pressure-bearing plate 23 specifically includes the provision of a connecting plate 233, a loading plate 234 and a connecting shaft 235.
  • a connecting shaft 235 is arranged between the connecting plate 233 and the loading plate 234.
  • the connecting shaft 235 is semi-circular with the connecting plate. The connecting groove is engaged, the connecting plate 233 is connected with the pressure head of the loading cylinder 24, and the test piece is loaded through the loading plate during loading, thereby realizing eccentric loading.
  • the test steps specifically include: first make a simulated test piece of similar materials, or take the rock on site to make a simulated test piece, smooth the surface of the simulated test piece, match the size of the simulated test piece with the size of the space enclosed by the bearing plate, and put it in the bearing The loading space enclosed by the plate; then the bolt drill is used to drill the bolt on the test piece, and the bolt and anchoring agent are introduced into the hole at the same time.
  • the anchor rod is fixed by the anchor tray and the nut Pre-tightening force is applied to complete the anchoring, and the rock test piece anchored by the anchor rod is obtained; then the torsion bearing plate is installed on the biaxial frame loaded with torsion force, and the torsion bearing plate is staggered and loaded in the same direction as clockwise or counterclockwise; Finally, the stress, displacement and damage changes of the rock specimen during the torsional loading process are recorded continuously until the rock specimen fails.
  • the bolt (cable) supporting structure test and the anchor system performance comprehensive test device provided in the above embodiment can perform the test of the bolt or cable and the comprehensive performance test of the anchor system.
  • the test also includes the shear test of the anchored rock mass. .
  • the testing machine used for this test has at least three biaxial frames 211.
  • the shear test steps of anchored rock mass include: first make a simulated test piece of similar material, or take the rock on site to make a simulated test piece, and smooth the surface of the simulated test piece. , The size of the simulated test piece matches the size of the space enclosed by the bearing plate, put the test piece into the loading space enclosed by the bearing plate; then the loading cylinder and the axial hollow loading cylinder simultaneously load the simulated test piece to simulate the actual roadway
  • the anchor rod drill rig drills the anchor rod on the simulated test piece; then the anchor rod and anchoring agent are introduced into the borehole at the same time.
  • the anchor rod After the anchoring agent is solidified, the anchor rod is fixed by the anchor rod tray and the nut and the pre-tightening force is applied. After the anchoring is completed, the rock specimen is obtained by anchoring the rock bolt; finally, the loading cylinder on the two-axis frame in the middle part is loaded downward; the loading cylinder on the two-axis frame on both sides of the middle two-axis frame is loaded upward, and the anchor rod is sheared.
  • Rock specimens continuous loading to the failure of the rock specimens to record the stress, displacement and damage changes of the rock specimens during the shear loading process.
  • the parts not mentioned in the present invention can be realized by adopting or learning from existing technologies.
  • test method using this testing machine is described in this application, the possibility of using this testing machine for other tests is not ruled out.
  • the test method in this application is only for more convenient description and explanation. The essence of the invention, interpreting them as any additional limitation is contrary to the spirit of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种锚杆支护结构测试及锚固***性能综合试验装置及方法,装置包括机架(1)、加载机构(2)、测试机构(3)和试件(4),机架(1)包括基座(11)和操作台(12);加载机构(2)包括加载框架(21)、锚杆卡盘(22)、承压板(23)和拉拔空心油缸(31);测试机构(3)包括应力和位移传感器、声发射探头,试件(4)包括测试锚杆(41)、岩石试件(4)和锚网(44),加载机构(2)和拉拔空心油缸(31)设置在基座(11)上方,扭转电机(32)和锚杆钻机(33)设置在操作台(12)上,其中岩体试件(4)放置在承压板(23)之间,测试锚杆(41)一端通过锚杆卡盘(22)固定或锚固在岩体试件(42)中,另一端穿过拉拔空心油缸(31)。该装置及方法不仅可以测试锚杆及锚固构件的力学性能,还可以通过在五个方向上加载试件,进行围岩钻进响应或锚固***性能综合试验。

Description

锚杆(索)支护结构测试及锚固***性能综合试验装置及方法 技术领域
本发明涉及锚杆测试技术领域,尤其是提供了一种锚杆(索)支护结构测试及锚固***性能综合试验装置,以及利用该装置进行试验的方法。
背景技术
现阶段,锚固支护技术被广泛应用于深部巷道及大跨度地下洞室支护、水坝的坝基和坝肩加固、岩土边坡加固、深基坑支护以及输水和交通隧洞等工程领域,科学的支护方案一方面可有力保障工程施工及生产的安全性,一方面可降低成本以获取最大经济效益。试验和工程研究表明,锚杆的本质作用在于能够有效地加固围岩,阻止围岩新增张开裂隙及减缓裂隙扩展,防止结构面出现较大离层与滑动,最大限度地保持围岩的完整性,避免有害变形出现。高性能锚杆支护可以转移岩土体的载荷分布,改善支护范围内围岩承载结构的应力状态,抑制软弱夹层导致的拉伸破坏。锚杆(索)联合锚网支护可以约束围岩变形,调节围岩应力的分布,防止局部破碎煤岩体的松散坠落。
由于锚杆(索)等支护应用面临一系列因素的影响,诸如地质构造、矿山采动、构造压力、锚固工艺、支护参数、材料性能等等,目前的支护设计虽有一定的规范和参考,但还是主要依靠工程经验确定锚固体系支护参数,以致其应用效果较差,究其原因就是对围岩的结构性认识不足,对于锚固体系与围岩的作用机理缺乏***的认识。在以上诸多影响因素中,巷道周边围岩性质及应力环境对锚固支护性能及锚固力损伤演化有重要影响。天然岩体受开挖扰动后,伴随着应力释放、裂隙的萌生甚至离层,巷道围岩在重分布的“五面受力、一面临空”的应力环境下,其变形破坏呈现出显著的结构性特点。靠近巷道临空面一定范围内的浅层围岩应力集中程度较高,稳定性较差,无法实现长期自稳,在此范围以外的深层围岩整体稳定性较好,承载能力较强,应力较高且随着巷道变形动态调整。在此条件下进行锚固支护,不同围岩性质、应力环境下锚固浅层 及深层围岩与支护体系长期相互作用,其机理及作用方式复杂,尤其是深部软岩在处于潜塑性甚至塑性状态时,其变形破坏及支护损伤演化规律将更为复杂。
目前,针对锚杆支护力学作用机理的研究现状,在特定地质条件下锚杆加固控制围岩的机理尚未清晰化,理论研究受限于现有的试验模拟方法。在现场进行大试件试验成本代价太高,现有室内锚杆锚固性能检测装置一般设计为针对类岩石材料或钢管混凝土锚固试件的拉拔研究,通过拉拔力检测或锚固试件承载性能测试评价锚固效果,试验条件无法直接模拟出锚杆支护的现场地质环境,未考虑应力分布、围岩性状及尺度效应等问题,因此要想进行更***化、精细化的试验研究,有必要进行创新锚固试验装置的开发和研制。同时,考虑到大量常规锚固构件力学性能测试及围岩试件承载性能测试的需求,试验***应具有多功能性。
发明概述
技术问题
问题的解决方案
技术解决方案
为了实现对锚杆各项性能的综合测试,并模拟现场锚杆锚网联合支护进行测试,本发明提供了一种锚杆(索)支护结构测试及锚固***性能综合试验装置及方法,具体的技术方案如下。
锚杆支护结构测试及锚固***性能综合试验装置,包括机架、加载机构、测试机构和试件,机架包括基座和操作台,加载机构包括加载框架、锚杆卡盘、承压板、拉拔空心油缸和多个加载油缸,加载框架设置在基座的通槽上,加载框架的端部设置有锚杆卡盘,加载框架的侧面设置有加载油缸,加载油缸作用在承压板上;拉拔空心油缸设置在加载框架的一端与锚杆卡盘相对;测试机构包括应力和位移传感器、声发射探头、扭转电机和锚杆钻机,所述扭转电机和锚杆钻机均设置在操作台上,应力和位移传感器设置在承压板上,声发射探头设置在加载框架上;试件包括测试锚杆,测试锚杆的一端固定在加载框架侧,测试锚杆另一端穿过拉拔空心油缸。
优选的是,基座上表面设置有通槽,通槽的深度大于加载油缸安装后的外露长度;操作台与基座相对布置,操作台上表面设置有滑轨,滑块与滑轨配合沿滑轨运动,滑块上表面还设置有滑槽,锚杆钻机和扭转电机分别沿滑槽移动或固定在滑槽上,所述滑槽的两侧还设置有滑轮。
优选的是,加载框架包括1个或多于1个的双轴框架,双轴框架上设置有两组垂直对应分布加载油缸,在双轴框架确定的平面内施加载荷;锚杆卡盘固定的双轴框架上沿测试锚杆的轴向还设置有轴向空心加载油缸;双轴框架的四角位置通过支柱和螺母连接,承压板包括剪切承压板和平面承压板,加载油缸的加载端与剪切承压板或平面承压板相连。
优选的是,加载框架内侧设置有声发射探头安装槽,承压板上均设置有位移和应力传感器;所述锚杆钻机设置有扭矩、功率和顶推力监测装置,锚杆钻机的钻进侧还设置有钻屑收集装置。
进一步优选的是,试件还包括岩石试件、钢带、锚网和托盘;平面承压板围成的空间放置岩石试件,剪切承压板与测试锚杆交错卡合。
进一步优选的是,拉拔空心油缸设置在门板上,门板与连接支架铰接,连接支架上还设置有锚网固定孔和钢带固定孔;拉拔空心油缸的加载端设置有空心承压板,锚网压设在空心承压板上,钢带和托盘依次压设在锚网上。
一种锚杆检测方法,利用上述的一种锚杆支护结构测试及锚固***性能综合试验装置,步骤包括:首先,将测试锚杆的一端固定在锚杆卡盘上,另一端通过螺母和托盘固定在空心承压板上;然后通过拉拔空心油缸轴向加载,并记录加载过程中锚杆的受力和变形。
一种锚杆检测方法,利用上述的一种锚杆支护结构测试及锚固***性能综合试验装置,步骤包括:首先,将测试锚杆的一端固定在锚杆卡盘上,打开拉拔空心油缸所在的门板,操作台上安装并固定扭转电机;然后将测试锚杆的另一端固定在操作台的扭转电机上;再通过扭转电机对锚杆施加载荷,记录加载过程中的扭矩和转速以及锚杆的变形。
一种锚杆检测方法,利用上述的一种锚杆支护结构测试及锚固***性能综合试验装置,步骤包括:首先,在加载油缸的加载端连接剪切承压板,将测试锚杆 的一端固定在锚杆卡盘上,通过加载油缸调整剪切承压板的位置使其与测试锚杆卡合;然后将测试锚杆的另一端通过螺母和托盘固定在空心承压板上;再通过加载油缸加载记录加载过程中锚杆的受力和变形。
一种锚杆锚网联合支护性能测试方法,利用上述的一种锚杆支护结构测试及锚固***性能综合试验装置,步骤包括:
步骤A.加载油缸的加载端安装连接平面承压板,将岩石试件送至平面承压板之间的加载空间,调整加载油缸和轴向空心加载油缸夹紧岩石试件;
步骤B.打开拉拔空心油缸所在的门板,操作台上安装并固定锚杆钻机,调整加载油缸和轴向空心加载油缸分别加载从而模拟实际地应力;
步骤C.启动锚杆钻机,沿岩石试件的轴向相对于锚杆卡盘的中间孔钻孔,记录钻进过程中锚杆钻机的扭矩、转速、功率、顶推力、钻进速度以及岩石试件的变形情况;
步骤D.钻孔完成后退出钻杆,闭合拉拔空心油缸所在的门板,将测试锚杆和锚固剂同时捣入钻孔中;
步骤E.待锚固剂凝固后,对锚杆施加预紧力,并安装钢带、锚网和托盘;
步骤F.通过调整加载油缸加载模拟围岩受到扰动过程中锚杆的受力变形情况;或者通过拉拔空心油缸加载测试锚杆、锚网和钢带联合支护的支护能力;同时记录加载过程中钢带、锚网、托盘、锚杆及岩石试件的受力和变形。
发明的有益效果
有益效果
本发明的有益效果包括:
(1)本发明提供的锚杆(索)支护结构测试及锚固***性能综合试验装置,通过加载机构可以模拟实际的地应力条件,利用测试机构的拉拔空心油缸对锚杆施加拉力、扭转电机提供扭力以及锚杆钻机模拟锚杆钻孔的钻设过程,通过测试锚杆、锚网、钢带和托盘还原真实的锚固情况,从而可以对锚杆锚网联合锚固的性能进行测试。该装置还通过各个机构的配合实现了多项锚杆性能的测试,并且还可以模拟还原真实的地应力条件、锚杆安装条件和联合支护条件。
(2)为研究不同围岩环境下锚杆(索)等锚固构件的锚固性能、承载力、锚 固力损伤演化规律、影响因素等,明确锚杆锚固机理,该装置的双轴框架上通过设置加载油缸可以实现对岩石试件的二维平面加载,并且各个加载油缸分别加载、协同作用可以更好的模拟真实地应力条件;轴向空心加载油缸可以实现垂直与该二维平面的轴向加载,模拟沿锚杆方向上的围岩受力情况。加载油缸成对的设置可以共同作用校正岩石试件的偏心,也可以让锚杆钻孔在试验中保持在试验机的轴心位置;在五个方向上加载,从而实现了试件“五面加载一面临空”的模拟,可以观测应力环境下围岩钻进响应过程,并进行锚固***性能室内综合测试的试验。
(3)由于装置整体受力较大,在模拟地应力及锚杆受力过程中基座可以起到保证装置稳定的功能;操作台与基座相对应,并且配置有扭转电机和锚杆钻机,可以实现锚杆的扭转试验,并模拟锚杆钻孔的钻设以及锚杆的过程;剪切承压板或平面承压板通过更换可以更好的发挥试验装置整体的功能,并通过剪切承压板做锚杆的抗剪切性能测试。
(4)利用该试验装置,可以进行多种锚杆检测试验,包括锚杆拉拔试验、锚杆抗剪切试验,以及锚杆的扭转试验,利用该方法试验机可以重复进行该试验,并且试验操作简便;另外,利用该装置可以完整的模拟围岩所受地应力环境,并精准的模拟锚杆钻孔的钻设及安装,安装后联合锚网和钢带,通过该装置继续测试该联合支护的支护性能。该装置及方法还具有操作控制灵活,试验贴合工程实际等优点。
对附图的简要说明
附图说明
图1是锚杆(索)支护结构测试及锚固***性能综合试验装置结构示意图;
图2是试验装置的正视结构示意图;
图3是试验装置的侧视结构示意图;
图4是试验装置的另一侧视结构示意图;
图5是试验装置的俯视结构示意图;
图6是锚杆拉拔试验原理结构示意图;
图7是锚杆扭转试验原理结构示意图;
图8是锚杆剪切试验原理结构示意图;
图9是锚杆钻机安装结构示意图;
图10是锚杆锚网联合支护结构测试示意图;
图11是另一角度的锚杆锚网联合支护结构测试示意图;
图12是锚杆锚网联合支护结构试件组合结构示意图;
图13是连接支架及拉拔空心油缸的安装结构示意图;
图14是锚杆卡盘结构示意图;
图15是实施例3中的改进结构示意图;
图16是实施例4中的改进结构示意图。
图中:1-机架;11-基座;111-通槽;12-操作台;121-滑轨;122-滑块;123-滑槽;124-滑轮;2-加载机构;21-加载框架;211-双轴框架;22-锚杆卡盘;23-承压板;231-剪切承压板;232-平面承压板;233-连接板;234-加载板;235-连轴;24-加载油缸;25-轴向空心加载油缸;26-支柱;27-螺母;28-门板;29-连接支架;3-测试机构;31-拉拔空心油缸;32-扭转电机;33-锚杆钻机;34-空心承压板;4-试件;41-测试锚杆;42-岩石试件;43-钢带;44-锚网;45-托盘;5-离层千斤顶。
发明实施例
本发明的实施方式
结合图1至图16所示,本发明提供的一种锚杆(索)支护结构测试及锚固***性能综合试验装置及方法具体实施方式如下。
由于锚杆锚网联合支护的机理复杂,特别是锚固失效的案例中,大部分是由于复杂的地应力条件导致的锚杆锚网联合支护或锚杆支护失效,现有的试验设备一般是对锚杆的某项性能进行测试,为了对锚杆以及锚杆锚网联合支护机理及地应力变化导致的失效情况进行研究,解决不同的锚杆性能测试需要使用多个试验设备,并且无法模拟还原真实的锚杆受力情况等问题,设计了一种锚杆(索)支护结构测试及锚固***性能综合试验装置,以及使用该装置进行试验的方法,从而为研究不同围岩环境锚固性能、承载力、锚固力损伤演化规律、影响因素,探索锚杆、锚索锚固机理提供方便。另外本文以锚杆为例,但是锚杆 和锚索的试验装置及方法可以通过简单的常规变换即可。
实施例1
锚杆(索)支护结构测试及锚固***性能综合试验装置的结构包括机架1、加载机构2、测试机构3和试件4,如图1至图5所示,其机架1包括基座11和操作台12,加载机构2包括加载框架21、锚杆卡盘22、承压板23、拉拔空心油缸31和多个加载油缸24,测试机构3包括扭转电机32锚杆钻机33,以及声发射探头、应力和位移传感器等监测装置,试件4包括测试锚杆41、岩石试件42、钢带43、锚网44和托盘45等锚固构件。该装置通过加载机构2可以模拟实际的地应力条件,利用测试机构3的拉拔空心油缸31对测试锚杆41施加拉力、扭转电机32提供扭力以及锚杆钻机33模拟锚杆钻孔的钻设过程,通过测试锚杆41、锚网44、钢带43和托盘45还原真实的锚固情况,从而可以对锚杆锚网联合锚固的性能进行测试。该装置通过各个机构的配合实现了多项锚杆性能的测试,并且还可以模拟还原真实的地应力条件、锚杆安装条件和联合支护条件。
其中机架包括基座11和操作台12,基座11用于固定加载机构2的各个部件,操作台12主要是辅助扭转电机32和锚杆钻机33工作。基座11的上表面可以设置有通槽111,通槽111的深度大于加载油缸24安装后的外露长度,从而保证加载油缸24和加载框架21的安装,加载框架21可以固定在基座的通槽111上。如图9所示,操作台12与基座11相对布置,具体是操作台12的高度适合扭转电机32和锚杆钻机33的工作,从而方便配合。在操作台12上表面设置有滑轨121,滑块122与滑轨121配合并沿滑轨运动,通过滑动滑块122可以调整滑块上的扭转电机32及锚杆钻机33与基座11上试件4的距离,进而方便操作。滑块122上表面还设置有滑槽123,锚杆钻机33和扭转电机32分别沿滑槽123移动或固定在滑槽123上,滑槽123的两侧还设置有滑轮124,从而可以减小摩擦力对试件安装的影响。
加载机构2包括加载框架21、锚杆卡盘22、承压板23和多个加载油缸24,如图5、图10至图11所示,加载框架21设置在基座的通槽111上,用于固定加载油缸24,加载框架21的端部设置有锚杆卡盘22,用于限位固定测试锚杆41。加载框架21呈方形,加载框架21的侧面均设置有加载油缸24,加载油缸24作用在承压板23上。其中加载框架21包括1个或多于1个的双轴框架211,通过多个双轴框架211 进行加载时可以有效的模拟复杂的地应力环境。双轴框架211上设置有两组垂直对应分布加载油缸24,在双轴框架211确定的二维平面内施加载荷。另外在垂直于该二维平面的轴向上,具体是在锚杆卡盘22固定的双轴框架211上沿测试锚杆的轴向还设置有轴向空心加载油缸25,轴向空心加载油缸25沿轴对岩石试件42放置侧加载。双轴框架211的四角位置通过支柱26和螺母27连接,支柱26穿过双轴框架211,两端可以通过螺母27固定。双轴框架211上通过设置加载油缸24可以实现对岩石试件的二维平面加载,并且各个加载油缸分别加载、协同作用可以更好的模拟真实地应力条件;轴向空心加载油缸25可以实现垂直与该二维平面的轴向加载,模拟沿锚杆方向上的围岩受力情况,轴向空心加载油缸即后置加载油缸,通过该后置加载油缸和双轴框架上的油缸可以实现五面非均布加载;在五个方向上加载,实现了试件“五面加载,一面临空”的模拟,可以观测应力环境下围岩钻进响应过程,并进行锚固***性能室内综合测试的试验。其承压板23包括剪切承压板231和平面承压板232,加载油缸24的加载端与剪切承压板或平面承压板相连。平面承压板232围成的空间放置岩石试件42,剪切承压板231与测试锚杆41交错卡合。剪切承压板231或平面承压板232通过更换可以更好的发挥试验装置整体的功能,并且通过剪切承压板231可以做锚杆的抗剪切性能测试。
测试机构3包括拉拔空心油缸31、扭转电机32和锚杆钻机33,拉拔空心油缸31设置在加载框架21的一端与锚杆卡盘22相对,具体是拉拔空心油缸31和锚杆卡盘22同轴布置,扭转电机32和锚杆钻机33均设置在操作台12上,其工作的轴线也与锚杆卡盘22重合。如图13所示,拉拔空心油缸31设置在门板28上,门板28与连接支架29铰接,连接支架29固定在支柱26的端部,连接支架29上还设置有锚网固定孔和钢带固定孔。拉拔空心油缸31的加载端设置有空心承压板34,空心承压板34上设置有与拉拔空心油缸31对应的通孔。
试件4包括测试锚杆41,测试锚杆的一端固定在加载框架侧,具体是通过锚杆卡盘固定者锚固在加载框架内的岩石试件上,另一端穿过拉拔空心油缸。试件还包括岩石试件42、钢带43、锚网44和托盘45,锚网44压设在空心承压板34上,钢带43和托盘45依次压设在锚网44上,也可以不设置钢带仅设置锚网44和托 盘45。
一种锚杆检测方法,如图6所示,利用上述的一种锚杆支护结构测试及锚固***性能综合试验装置,步骤包括:首先,将测试锚杆的一端固定在锚杆卡盘上,另一端通过螺母和托盘固定在空心承压板上;然后通过拉拔空心油缸轴向加载,并记录加载过程中锚杆的受力和变形,利用该装置可以重复该检测。
一种锚杆检测方法,如图7所示,利用上述的一种锚杆支护结构测试及锚固***性能综合试验装置,步骤包括:首先,将测试锚杆的一端固定在锚杆卡盘上,打开拉拔空心油缸所在的门板,操作台上安装并固定扭转电机;然后将测试锚杆的另一端固定在操作台的扭转电机上;再通过扭转电机对锚杆施加载荷,记录加载过程中的扭矩和转速以及锚杆的变形。利用该装置可以重复该检测。
一种锚杆检测方法,如图8所示,利用上述的一种锚杆支护结构测试及锚固***性能综合试验装置,步骤包括:首先,在加载油缸的加载端连接剪切承压板,将测试锚杆的一端固定在锚杆卡盘上,通过加载油缸调整剪切承压板的位置使其与测试锚杆卡合;然后将测试锚杆的另一端通过螺母和托盘固定在空心承压板上;再通过加载油缸加载记录加载过程中锚杆的受力和变形。利用该装置可以重复该检测。
结合图6至图8所示,上述锚杆检测和锚杆锚网联合支护性能测试装置进行多项锚杆检测试验,包括锚杆拉拔试验、锚杆抗剪切试验,锚杆的扭转试验,锚杆锚网联合支护试验,利用上述方法试验机可以重复进行该试验,并且利用该装置进行试验具有操作简便,试验结果可靠等优点。
实施例2
一种锚杆支护结构测试及锚固***性能综合试验装置的结构包括机架1、加载机构2、测试机构3和试件4,其机架1包括基座11和操作台12,加载机构2包括加载框架21、锚杆卡盘22、承压板23、拉拔空心油缸31和12个加载油缸24,测试机构3包括扭转电机32和锚杆钻机33,以及应力和位移传感器、声发射探头等监测装置,试件4包括测试锚杆41、岩石试件42、钢带43、锚网44和托盘45。
其中机架包括基座11和操作台12,基座11用于固定加载机构2的各个部件,操作台12主要是辅助扭转电机32和锚杆钻机33工作。基座11的上表面设置有通槽1 11,通槽111的深度大于加载油缸24安装后的外露长度,加载框架21可以固定在基座的通槽111上。操作台12与基座11相对布置,具体是操作台12的高度适合扭转电机32和锚杆钻机33的工作,从而方便配合。在操作台12上表面设置有滑轨121,滑块122与滑轨121配合并沿滑轨运动,通过滑动滑块122可以调整滑块上的锚杆钻机33与基座11上试件4的距离,进而方便操作。滑块122上表面还设置有滑槽123,锚杆钻机33和扭转电机32分别沿滑槽123移动或固定在滑槽123上,滑槽123的两侧还设置有滑轮124,从而可以减小摩擦力对试件安装的影响。
加载机构2包括加载框架21、锚杆卡盘22、承压板23和多个加载油缸24,加载框架21设置在基座的通槽111上,用于固定加载油缸24,加载框架21的端部设置有锚杆卡盘22,用于限位固定测试锚杆41。加载框架21呈方形,加载框架21的侧面均设置有加载油缸24,加载油缸24作用在承压板23上;加载框架21和底座12以及支柱26需要使用大刚度的材料制作。其中加载框架21包括3个的双轴框架211,通过3个双轴框架211进行加载时可以有效的模拟复杂的地应力环境。双轴框架211上设置有两组垂直对应分布加载油缸24,在双轴框架211确定的二维平面内施加载荷,相邻的双轴框架211之间平行布置,加载油缸24使用大行程的油缸。另外,在垂直于该二维平面的轴向上,具体是在锚杆卡盘22固定的双轴框架211上沿测试锚杆的轴向还设置有轴向空心加载油缸25,轴向空心加载油缸25沿轴对岩石试件42放置侧加载,模拟沿锚杆方向的地应力,这样还可以模拟锚杆孔钻设时围岩一面临空的状态。加载框架的临空一侧可以设置阻挡夹,保证岩石试件在加载过程中的稳定。双轴框架211的四角位置通过支柱26和螺母27连接,支柱26穿过双轴框架211,两端可以通过螺母27固定。其承压板23具体是单个的平面承压板232,每个加载油缸24的加载端与平面承压板相连分别,平面承压板232围成的空间用于放置岩石试件42。上述的平面承压板表面以及支柱上均设置有应力和位移传感器,用于监测试验过程中的位移和应力变化。
拉拔空心油缸31设置在加载框架21的一端与锚杆卡盘22相对,如图14所示,锚杆卡盘为短圆柱四爪卡盘,具体是拉拔空心油缸31和锚杆卡盘22同轴布置,锚杆钻机33设置在操作台12上,其工作的轴线也与锚杆卡盘22重合。拉拔空心油缸也可以更换为冲击加载油缸,从而可以模拟冲击载荷情况下的锚杆或锚杆锚 网受力。如图13所示,拉拔空心油缸31设置在门板28上,门板28与连接支架29铰接,门板28可以通过铰接位置开合,从而方便安装试件,门板的另一侧可以锁紧固定在连接支架29上,连接支架29固定在支柱26的端部,连接支架29上还设置有锚网固定孔和钢带固定孔,用于固定锚网和钢带。拉拔空心油缸31的加载端设置有空心承压板34,空心承压板34上设置有与拉拔空心油缸31对应的通孔。
测试机构3包括扭转电机32和锚杆钻机33,以及应力和位移传感器、声发射探头等监测装置,上述的各个加载油缸24和拉拔空心油缸31以及轴向空心加载油缸25内均设置有高精度的位移和应力传感器,并且可以实现伺服加载。另外,在加载框架内侧还设置有声发射探头安装槽,用于安放声发射探头,承压板上均设置有位移和应力传感器,多组位移和应力传感器协同监测试件的变形和加载情况。锚杆钻机设置有扭矩、功率和顶推力监测装置,锚杆钻机的钻进侧还设置有钻屑收集装置,对锚杆钻机的工作及锚杆的钻进响应的数据进行实时监测。
试件4包括测试锚杆41,测试锚杆41的一侧通过锚杆卡盘22固定或者直接锚固在岩石试件中,另一端穿过拉拔空心油缸31。试件4还包括岩石试件42、钢带43、锚网44和托盘45,岩石试件42为长方体试件,其尺寸和平面承压板232围成的空间相适应,锚网44压设在空心承压板34上,钢带43和托盘45依次压设在锚网44上,也可以不设置钢带仅设置锚网44和托盘45。
利用上述试验装置可以模拟锚杆钻孔的钻设过程,具体步骤包括:
首先加载油缸的加载端安装连接平面承压板,将岩石试件送至平面承压板之间的加载空间,调整加载油缸和轴向空心加载油缸夹紧岩石试件;然后打开拉拔空心油缸所在的门板,操作台上安装并固定锚杆钻机,调整加载油缸和轴向空心加载油缸分别加载从而模拟实际地应力;再启动锚杆钻机,沿岩石试件的轴向相对于锚杆卡盘的中间孔钻孔,记录钻进过程中锚杆钻机的扭矩、转速、钻进速度以及岩石试件的变形情况,在该过程中保持对实际地应力的模拟,并在岩石试件内设置应力和位移传感器,还可以设置声发射探头,可以对锚杆钻设过程中围岩的变化情况进行精准的模拟并记录试验数据,为锚杆钻孔钻设提供 理论依据。该试验过程中由于岩石试件是受到5个方向的加载,并且有一面临空,因此很好的模拟了巷道围岩的真实应力状态。
一种锚杆锚网联合支护性能测试方法,如图10至图12所示,利用上述的一种锚杆支护结构测试及锚固***性能综合试验装置,步骤包括:
步骤A.加载油缸的加载端安装连接平面承压板,将岩石试件送至平面承压板之间的加载空间,调整加载油缸和轴向空心加载油缸夹紧岩石试件。
步骤B.打开拉拔空心油缸所在的门板,操作台上安装并固定锚杆钻机,调整加载油缸和轴向空心加载油缸分别加载从而模拟实际地应力。
步骤C.启动锚杆钻机,沿岩石试件的轴向相对于锚杆卡盘的中间孔钻孔,记录钻进过程中锚杆钻机的扭矩、转速、钻进速度以及岩石试件的变形情况。
步骤D.钻孔完成后退出钻杆,闭合拉拔空心油缸所在的门板,并将其固定,将测试锚杆和锚固剂同时捣入钻孔中。
步骤E.待锚固剂凝固后,对锚杆施加预紧力,并安装钢带、锚网和托盘。
步骤F.通过调整加载油缸加载模拟围岩受到扰动过程中锚杆的受力变形情况,真实的还原锚固围岩受到二次扰动后锚杆锚网结构的受力;或者通过拉拔空心油缸加载测试锚杆、锚网和钢带联合支护的支护能力,拉拔空心油缸加载模拟还原锚杆承载力的增大的情况;若拉拔空心油缸换用冲击加载油缸还能模拟动载对该支护结构的影响,同时记录上述的加载过程中钢带、锚网、托盘、锚杆及岩石试件的受力和变形,对试验数据进行分析,为锚杆锚网联合支护研究提供依据。
结合实施例1和实施例2可知,利用该试验装置,可以进行多种锚杆检测试验,包括锚杆拉拔试验、锚杆抗剪切试验,以及锚杆的扭转试验,利用该方法试验机可以重复进行该试验,并且试验操作简便。利用该试验装置,或可以进行其它未述及的试验,但在本试验装置结构的基础上进行的多种试验均,另外,利用该装置可以完整的模拟围岩所受地应力环境,并精准的模拟锚杆钻孔的钻设及安装,安装后联合锚网和钢带,通过该装置继续测试该联合支护的支护性能。还有该装置及方法整体上还具有操作控制灵活的优点,试验贴合工程实际,模拟真实的工况环境试验结果更加准确等优点。
实施例3
本实施例通过对双轴框架之间设置离层加载油缸,如图15所示,通过离层加载油缸模拟岩体的离层锚固控制,研究离层机理及特征、以及锚杆的支护机理及支护能力方法。
试验机结构的改进包括,双轴框架211之间设置有离层千斤顶5,双轴框架211的上部沿支柱滑动,双轴框架211可以沿基座上的通槽111滑动,该试验步骤包括:首先制作相似材料的模拟试件,或取现场岩石制作模拟试件,将模拟试件表面打磨平整,模拟试件尺寸与承压板围成的空间尺寸匹配,将试件放入承压板围成的加载空间内;然后加载油缸和轴向空心加载油缸同时向模拟试件加载,模拟实际巷道地应力,通过锚杆钻机在模拟试件上打锚杆钻孔;再将锚杆和锚固剂同时导入钻孔内,待锚固剂凝固后,通过锚杆托盘和螺母固定锚杆并施加预紧力,完成锚固,得到锚杆锚固岩石试件;最后离层千斤顶缓慢加载,记录加载过程中岩石试件的应力、位移和损伤情况。
实施例4
本实施例通过改进承压板,如图16所示,从而实现锚固岩体的扭转试验。
承压板23的改进具体包括,设置连接板233、加载板234和连轴235,在连接板233和加载板234之间设置有连轴235,连轴235呈半圆形与连接板上的连接槽卡合,连接板233与加载油缸24的压头相连,加载时通过加载板向试件加载,从而实现偏心加载。试验步骤具体包括:首先制作相似材料的模拟试件,或取现场岩石制作模拟试件,将模拟试件表面打磨平整,模拟试件尺寸与承压板围成的空间尺寸匹配,放入承压板围成的加载空间;然后通过锚杆钻机从在试件上打锚杆钻孔,将锚杆和锚固剂同时导入钻孔内,待锚固剂凝固后,通过锚杆托盘和螺母固定锚杆并施加预紧力,完成锚固,得到锚杆锚固的岩石试件;再在加载扭转力的双轴框架安装有扭转承压板,扭转承压板交错加载,方向同为顺时针或逆时针;最后持续加载至岩石试件破坏记录扭转加载过程中岩石试件的应力、位移和损伤变化情况。
实施例5
在上述实施例提供的锚杆(索)支护结构测试及锚固***性能综合试验装置, 可以进行锚杆或锚索的测试及锚固***的综合性能试验,试验还包括锚固岩体的剪切试验。
进行该试验的试验机至少具有3个双轴框架211,锚固岩体的剪切试验步骤包括:首先制作相似材料的模拟试件,或取现场岩石制作模拟试件,将模拟试件表面打磨平整,模拟试件尺寸与承压板围成的空间尺寸匹配,将试件放入承压板围成的加载空间;然后加载油缸和轴向空心加载油缸同时向模拟试件加载,模拟实际巷道地应力,锚杆钻机在模拟试件上打锚杆钻孔;再将锚杆和锚固剂同时导入钻孔内,待锚固剂凝固后,通过锚杆托盘和螺母固定锚杆并施加预紧力,完成锚固,得到锚杆锚固岩石试件;最后中部的1个双轴框架上的加载油缸沿向下加载;中部双轴框架两侧的双轴框架上的加载油缸向上加载,剪切锚杆锚固岩石试件;持续加载至岩石试件破坏记录剪切加载过程中岩石试件的应力、位移和损伤变化情况。
本发明中未述及的部分采用或借鉴已有技术即可实现。
另外本申请中虽然对使用该试验机的进行试验的方法进行了描述,但不排除使用该试验机进行其它试验的可能性,本申请中的试验方法仅仅是为了更为方便的描述和解释本发明的本质,把他们解释成任何一种附加的限制都是与本发明精神向违背的。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 一种锚杆支护结构测试及锚固***性能综合试验装置,包括机架、加载机构、测试机构和试件,机架包括基座和操作台,其特征在于,
    所述加载机构包括加载框架、锚杆卡盘、承压板、拉拔空心油缸和多个加载油缸,所述加载框架设置在基座的通槽上,加载框架的端部设置有锚杆卡盘,所述加载框架的侧面设置有加载油缸,加载油缸作用在承压板上;所述拉拔空心油缸设置在加载框架的一端与锚杆卡盘相对;
    所述测试机构包括应力和位移传感器、声发射探头、扭转电机和锚杆钻机,所述扭转电机和锚杆钻机均设置在操作台上,所述应力和位移传感器设置在承压板上,声发射探头设置在加载框架上;
    所述试件包括测试锚杆,测试锚杆的一端固定在加载框架侧,测试锚杆另一端穿过拉拔空心油缸。
  2. 根据权利要求1所述的一种锚杆支护结构测试及锚固***性能综合试验装置,其特征在于,所述基座上表面设置有通槽,通槽的深度大于加载油缸安装后的外露长度;所述操作台与基座相对布置,操作台上表面设置有滑轨,滑块与滑轨配合沿滑轨运动,滑块上表面还设置有滑槽,锚杆钻机和扭转电机分别沿滑槽移动或固定在滑槽上,所述滑槽的两侧还设置有滑轮。
  3. 根据权利要求1所述的一种锚杆支护结构测试及锚固***性能综合试验装置,其特征在于,所述加载框架包括1个或多于1个的双轴框架,双轴框架上设置有两组垂直对应分布加载油缸,在双轴框架确定的平面内施加载荷;所述锚杆卡盘固定的双轴框架上沿测试锚杆的轴向还设置有轴向空心加载油缸;所述双轴框架的四角位置通过支柱和螺母连接,所述承压板包括剪切承压板和平面承压板,加载油缸的加载端与剪切承压板或平面承压板相连。
  4. 根据权利要求1所述的一种锚杆支护结构测试及锚固***性能综合试验装置,其特征在于,所述加载框架内侧设置有声发射探头安装槽,所述承压板上均设置有位移和应力传感器;所述锚杆钻机设置有扭矩、功率和顶推力监测装置,锚杆钻机的钻进侧还设置有钻屑收集装置。
  5. 根据权利要求4所述的一种锚杆支护结构测试及锚固***性能综合试验装置,其特征在于,所述试件还包括岩石试件、钢带、锚网和托盘;所述平面承压板围成的空间放置岩石试件,所述剪切承压板与测试锚杆交错卡合。
  6. 根据权利要求5所述的一种锚杆支护结构测试及锚固***性能综合试验装置,其特征在于,所述拉拔空心油缸设置在门板上,门板与连接支架铰接,连接支架上还设置有锚网固定孔和钢带固定孔;拉拔空心油缸的加载端设置有空心承压板,锚网压设在空心承压板上,钢带和托盘依次压设在锚网上。
  7. 一种锚杆检测方法,利用权利要求1至6任一项所述的一种锚杆支护结构测试及锚固***性能综合试验装置,其特征在于,步骤包括:首先,将测试锚杆的一端固定在锚杆卡盘上,另一端通过螺母和托盘固定在空心承压板上;然后通过拉拔空心油缸轴向加载,并记录加载过程中锚杆的受力和变形。
  8. 一种锚杆检测方法,利用权利要求1至6任一项所述的一种锚杆支护结构测试及锚固***性能综合试验装置,其特征在于,步骤包括:首先,将测试锚杆的一端固定在锚杆卡盘上,打开拉拔空心油缸所在的门板,操作台上安装并固定扭转电机;然后将测试锚杆的另一端固定在操作台的扭转电机上;再通过扭转电机对锚杆施加载荷,记录加载过程中的扭矩和转速以及锚杆的变形。
  9. 一种锚杆检测方法,利用权利要求1至6任一项所述的一种锚杆支护结构测试及锚固***性能综合试验装置,其特征在于,步骤包括:首先,在加载油缸的加载端连接剪切承压板,将测试锚杆的 一端固定在锚杆卡盘上,通过加载油缸调整剪切承压板的位置使其与测试锚杆卡合;然后将测试锚杆的另一端通过螺母和托盘固定在空心承压板上;再通过加载油缸加载记录加载过程中锚杆的受力和变形。
  10. 一种锚杆锚网联合支护性能测试方法,利用权利要求1至6任一项所述的一种锚杆支护结构测试及锚固***性能综合试验装置,其特征在于,步骤包括:
    步骤A.加载油缸的加载端安装连接平面承压板,将岩石试件送至平面承压板之间的加载空间,调整加载油缸和轴向空心加载油缸夹紧岩石试件;
    步骤B.打开拉拔空心油缸所在的门板,操作台上安装并固定锚杆钻机,调整加载油缸和轴向空心加载油缸分别加载从而模拟实际地应力;
    步骤C.启动锚杆钻机,沿岩石试件的轴向相对于锚杆卡盘的中间孔钻孔,记录钻进过程中锚杆钻机的扭矩、转速、功率、顶推力、钻进速度以及岩石试件的变形情况;
    步骤D.钻孔完成后退出钻杆,闭合拉拔空心油缸所在的门板,将测试锚杆和锚固剂同时捣入钻孔中;
    步骤E.待锚固剂凝固后,对锚杆施加预紧力,并安装钢带、锚网和托盘;
    步骤F.通过调整加载油缸加载模拟围岩受到扰动过程中锚杆的受力变形情况;或者通过拉拔空心油缸加载测试锚杆、锚网和钢带联合支护的支护能力;同时记录加载过程中钢带、锚网、托盘、锚杆及岩石试件的受力和变形。
PCT/CN2019/126547 2019-07-05 2019-12-19 锚杆(索)支护结构测试及锚固***性能综合试验装置及方法 WO2021004015A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/976,163 US10969314B2 (en) 2019-07-05 2019-12-19 Device and method for anchor bolt (cable) supporting structure test and anchoring system performance comprehensive experiment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910601543.1 2019-07-05
CN201910601543.1A CN110274831B (zh) 2019-07-05 2019-07-05 锚杆(索)支护结构测试及锚固***性能综合试验装置及方法

Publications (1)

Publication Number Publication Date
WO2021004015A1 true WO2021004015A1 (zh) 2021-01-14

Family

ID=67962921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126547 WO2021004015A1 (zh) 2019-07-05 2019-12-19 锚杆(索)支护结构测试及锚固***性能综合试验装置及方法

Country Status (2)

Country Link
CN (1) CN110274831B (zh)
WO (1) WO2021004015A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358494A (zh) * 2021-06-07 2021-09-07 西安建筑科技大学 一种竹木材料拉-剪试验装置
CN113358495A (zh) * 2021-06-07 2021-09-07 西安建筑科技大学 一种竹木材料压-剪试验装置
CN113390722A (zh) * 2021-06-23 2021-09-14 济南恒瑞金试验机有限公司 边坡柔性防护网抗拉强度试验机及试验方法
CN113916667A (zh) * 2021-10-11 2022-01-11 辽宁工业大学 模拟动载下隧/巷道新装锚杆体力学响应试验装置及方法
CN114032932A (zh) * 2021-12-15 2022-02-11 中煤科工重庆设计研究院(集团)有限公司 混合支挡结构的施工方法
CN114088553A (zh) * 2021-11-02 2022-02-25 中铁大桥局集团有限公司 一种大吨位拉索试验装置
CN114323939A (zh) * 2021-12-20 2022-04-12 东北大学 一种锚杆静动拉剪综合实验装置
CN114383947A (zh) * 2022-03-23 2022-04-22 中国矿业大学(北京) 多功能锚固体系动静耦合性能测试***
CN114414403A (zh) * 2022-01-26 2022-04-29 中国矿业大学 一种实现采动应力梯度下岩石剪切的实验装置及方法
CN114441286A (zh) * 2021-12-10 2022-05-06 天津大学 基坑模型试验中精确控制锚杆轴力缓慢失效的装置
CN114486231A (zh) * 2022-04-07 2022-05-13 中国矿业大学(北京) 地下工程支护体系长期动力学性能评价方法及***
CN114544392A (zh) * 2022-01-26 2022-05-27 中国矿业大学(北京) 一种动静组合加载锚杆锚索剪切试验***
CN114814255A (zh) * 2022-06-23 2022-07-29 济南鑫光试验机制造有限公司 一种全自动试验机及自动上下料方法
CN114894514A (zh) * 2022-05-20 2022-08-12 西南交通大学 拱形隧道主动支护承载结构模型试验***及试验方法
CN114935491A (zh) * 2022-04-20 2022-08-23 中国科学院武汉岩土力学研究所 一种适用于收缩/扩张变形的指扣型加载装置
CN116148058A (zh) * 2023-01-04 2023-05-23 山东科技大学 一种基于先卸-后锚的岩体真三轴室内试验测试方法
CN117470666A (zh) * 2023-12-28 2024-01-30 河北宏乾矿山支护装备有限公司 一种锚杆锚索拉拔试验机及试验方法
CN118072602A (zh) * 2024-04-22 2024-05-24 中国矿业大学(北京) 地下工程智能掘支物理模拟试验***与方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10969314B2 (en) 2019-07-05 2021-04-06 Shandong University Of Science And Technology Device and method for anchor bolt (cable) supporting structure test and anchoring system performance comprehensive experiment
CN110274831B (zh) * 2019-07-05 2020-07-07 山东科技大学 锚杆(索)支护结构测试及锚固***性能综合试验装置及方法
CN110793851B (zh) * 2019-09-30 2021-08-20 中国矿业大学 一种矿用钢带承载能力测试装置及测试方法
CN110646294B (zh) * 2019-10-16 2021-07-16 东北大学 模拟水岸边坡岩石单侧浸水弱化的岩石力学试验设备及其使用方法
CN110747912B (zh) * 2019-10-29 2021-05-04 中国石油大学(华东) 一种预应力锚杆锚固力损失与边坡时效变形耦合作用的模型试验装置
CN111595682B (zh) * 2020-04-09 2023-10-31 中国平煤神马控股集团有限公司 大尺度复杂围岩条件锚注一体耦合作用试验***及方法
CN111811850B (zh) * 2020-06-28 2022-01-18 盾构及掘进技术国家重点实验室 一种锚杆索***协同承载性能测试装置及方法
CN111638119B (zh) * 2020-07-23 2021-06-25 兰州理工大学 一种土遗址锚固***浆-土界面应变测试方法
CN112903450B (zh) * 2021-01-22 2022-07-29 辽宁工程技术大学 一种模块化的锚杆锚索力学性能测试***及其测试方法
CN112857984B (zh) * 2021-01-26 2022-09-23 郑州大学 用于frp杆材试件端部锚固的固定装置及方法
CN113252469B (zh) * 2021-04-13 2022-07-12 河海大学 Npr锚索剪切破坏模拟实验装置及实验方法
CN113216938B (zh) * 2021-06-23 2022-05-13 中煤科工集团重庆研究院有限公司 一种煤矿用钻杆动态综合性能试验装置
CN113216937B (zh) * 2021-06-23 2022-05-20 中煤科工集团重庆研究院有限公司 一种煤矿用钻杆动态综合性能试验方法及装置
CN113984550A (zh) * 2021-12-30 2022-01-28 中国矿业大学(北京) 锚杆拉拔剪切测试装置
CN114000866B (zh) * 2022-01-04 2022-07-15 中国矿业大学(北京) 岩体结构特征随钻测试装置及方法
CN114320156B (zh) * 2022-03-04 2022-06-24 中国科学院地质与地球物理研究所 旋转导向钻井深部模拟试验***及方法
CN114563273B (zh) * 2022-04-28 2022-08-09 中国矿业大学(北京) 锚杆组合受力性能测试***及评价方法
CN114858582B (zh) * 2022-07-05 2022-09-20 中国矿业大学(北京) 地下工程复合受力材料综合试验装置
CN115406821B (zh) * 2022-09-09 2024-05-10 中国矿业大学 一种锚杆原位腐蚀试验平台
CN115326601B (zh) * 2022-10-14 2023-02-03 中国矿业大学(北京) 锚网耦合支护岩体动力冲击试验与评价方法
CN115711809B (zh) * 2022-11-15 2023-08-18 山东科技大学 复合载荷下的全尺寸岩体锚杆锚固性能的试验***及方法
CN115931568B (zh) * 2023-01-04 2024-05-17 山东科技大学 基于“先卸-后锚-再扰”的岩体真三轴试验***及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507330A (zh) * 2011-11-15 2012-06-20 煤炭科学研究总院 一种矿用锚杆整体拉拔试验装置
CN102621010A (zh) * 2012-04-13 2012-08-01 山东大学 深部围岩锚固性能多功能试验机
CN102636397A (zh) * 2012-04-19 2012-08-15 山西潞安环保能源开发股份有限公司 锚杆综合力学性能的快速测试装置及方法
CN104075943A (zh) * 2014-06-30 2014-10-01 天地科技股份有限公司 一种用于测试锚杆综合力学性能的试验台及测试方法
CN104089831A (zh) * 2014-06-30 2014-10-08 天地科技股份有限公司 一种用于测试锚杆剪切载荷的试验台及测试方法
US20150059489A1 (en) * 2012-03-31 2015-03-05 China University Of Mining & Technology (Beijing) Large deformation tensile testing system
CN109115632A (zh) * 2018-09-30 2019-01-01 河南理工大学 锚固体综合剪切实验装置及其实验方法
CN110274831A (zh) * 2019-07-05 2019-09-24 山东科技大学 锚杆(索)支护结构测试及锚固***性能综合试验装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398901B (zh) * 2013-08-08 2015-04-29 中国科学院武汉岩土力学研究所 一种锚杆室内拉拔试验装置
CN204008300U (zh) * 2014-06-30 2014-12-10 天地科技股份有限公司 一种用于测试锚杆综合力学性能的试验台
CN104406841B (zh) * 2014-11-26 2016-11-23 中国人民解放军空军工程大学 一种变尺寸真三轴多功能试验***
CN106018100B (zh) * 2016-07-06 2019-03-01 山东大学 一种多功能真三轴岩石钻探测试***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507330A (zh) * 2011-11-15 2012-06-20 煤炭科学研究总院 一种矿用锚杆整体拉拔试验装置
US20150059489A1 (en) * 2012-03-31 2015-03-05 China University Of Mining & Technology (Beijing) Large deformation tensile testing system
CN102621010A (zh) * 2012-04-13 2012-08-01 山东大学 深部围岩锚固性能多功能试验机
CN102636397A (zh) * 2012-04-19 2012-08-15 山西潞安环保能源开发股份有限公司 锚杆综合力学性能的快速测试装置及方法
CN104075943A (zh) * 2014-06-30 2014-10-01 天地科技股份有限公司 一种用于测试锚杆综合力学性能的试验台及测试方法
CN104089831A (zh) * 2014-06-30 2014-10-08 天地科技股份有限公司 一种用于测试锚杆剪切载荷的试验台及测试方法
CN109115632A (zh) * 2018-09-30 2019-01-01 河南理工大学 锚固体综合剪切实验装置及其实验方法
CN110274831A (zh) * 2019-07-05 2019-09-24 山东科技大学 锚杆(索)支护结构测试及锚固***性能综合试验装置及方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358495B (zh) * 2021-06-07 2023-06-30 西安建筑科技大学 一种竹木材料压-剪试验装置
CN113358495A (zh) * 2021-06-07 2021-09-07 西安建筑科技大学 一种竹木材料压-剪试验装置
CN113358494A (zh) * 2021-06-07 2021-09-07 西安建筑科技大学 一种竹木材料拉-剪试验装置
CN113358494B (zh) * 2021-06-07 2023-06-30 西安建筑科技大学 一种竹木材料拉-剪试验装置
CN113390722A (zh) * 2021-06-23 2021-09-14 济南恒瑞金试验机有限公司 边坡柔性防护网抗拉强度试验机及试验方法
CN113916667A (zh) * 2021-10-11 2022-01-11 辽宁工业大学 模拟动载下隧/巷道新装锚杆体力学响应试验装置及方法
CN113916667B (zh) * 2021-10-11 2024-03-29 辽宁工业大学 模拟动载下隧/巷道新装锚杆体力学响应试验装置及方法
CN114088553A (zh) * 2021-11-02 2022-02-25 中铁大桥局集团有限公司 一种大吨位拉索试验装置
CN114441286A (zh) * 2021-12-10 2022-05-06 天津大学 基坑模型试验中精确控制锚杆轴力缓慢失效的装置
CN114032932A (zh) * 2021-12-15 2022-02-11 中煤科工重庆设计研究院(集团)有限公司 混合支挡结构的施工方法
CN114323939A (zh) * 2021-12-20 2022-04-12 东北大学 一种锚杆静动拉剪综合实验装置
CN114414403B (zh) * 2022-01-26 2023-11-28 中国矿业大学 一种实现采动应力梯度下岩石剪切的实验装置及方法
CN114544392A (zh) * 2022-01-26 2022-05-27 中国矿业大学(北京) 一种动静组合加载锚杆锚索剪切试验***
CN114544392B (zh) * 2022-01-26 2023-11-03 中国矿业大学(北京) 一种动静组合加载锚杆锚索剪切试验***
CN114414403A (zh) * 2022-01-26 2022-04-29 中国矿业大学 一种实现采动应力梯度下岩石剪切的实验装置及方法
CN114383947A (zh) * 2022-03-23 2022-04-22 中国矿业大学(北京) 多功能锚固体系动静耦合性能测试***
CN114486231A (zh) * 2022-04-07 2022-05-13 中国矿业大学(北京) 地下工程支护体系长期动力学性能评价方法及***
CN114486231B (zh) * 2022-04-07 2022-08-09 中国矿业大学(北京) 地下工程支护体系长期动力学性能评价方法及***
CN114935491A (zh) * 2022-04-20 2022-08-23 中国科学院武汉岩土力学研究所 一种适用于收缩/扩张变形的指扣型加载装置
CN114894514A (zh) * 2022-05-20 2022-08-12 西南交通大学 拱形隧道主动支护承载结构模型试验***及试验方法
CN114814255B (zh) * 2022-06-23 2022-11-08 济南鑫光试验机制造有限公司 一种全自动试验机及自动上下料方法
CN114814255A (zh) * 2022-06-23 2022-07-29 济南鑫光试验机制造有限公司 一种全自动试验机及自动上下料方法
CN116148058A (zh) * 2023-01-04 2023-05-23 山东科技大学 一种基于先卸-后锚的岩体真三轴室内试验测试方法
CN116148058B (zh) * 2023-01-04 2024-01-30 山东科技大学 一种基于先卸-后锚的岩体真三轴室内试验测试方法
CN117470666A (zh) * 2023-12-28 2024-01-30 河北宏乾矿山支护装备有限公司 一种锚杆锚索拉拔试验机及试验方法
CN117470666B (zh) * 2023-12-28 2024-03-29 河北宏乾矿山支护装备有限公司 一种锚杆锚索拉拔试验机及试验方法
CN118072602A (zh) * 2024-04-22 2024-05-24 中国矿业大学(北京) 地下工程智能掘支物理模拟试验***与方法

Also Published As

Publication number Publication date
CN110274831B (zh) 2020-07-07
CN110274831A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2021004015A1 (zh) 锚杆(索)支护结构测试及锚固***性能综合试验装置及方法
US10969314B2 (en) Device and method for anchor bolt (cable) supporting structure test and anchoring system performance comprehensive experiment
CN210322612U (zh) 锚杆支护及锚固结构性能综合试验测试设备
WO2020010854A1 (zh) 一种岩石冲击加载-卸围压力学试验***及其使用方法
EP3712589A1 (en) Test apparatus and method for key roof block collapse in bidirectional static-dynamic loading
Hadjigeorgiou et al. A critical assessment of dynamic rock reinforcement and support testing facilities
CN103543069B (zh) 锚杆室内拉伸—剪切试验装置
CN110243701B (zh) 一种锚固岩体扭转剪切试验装置及方法
CN111175121B (zh) 巷道围岩钻孔卸压相似模拟试验***及使用方法
Shen et al. Rock fracturing mechanisms around underground openings
CN110486007B (zh) 煤矿随钻围岩力学参数原位测试装置及方法
CN112461670B (zh) 一种模拟井下巷道掘进和打钻作业的静动加载实验机及方法
US20230393027A1 (en) True three-dimensional physical simulation system for influence of fault movement on tunnel operation and test method
CN110261234B (zh) 裂隙岩体离层锚固控制模拟试验装置及方法
CN110261235A (zh) 裂隙围岩锚固性能损伤测试装置及试验方法
CN106644708A (zh) 一种岩石类材料拉剪和双轴拉压试验装置及其使用方法
CN110082227A (zh) 模拟动载荷刀柱式残采区煤柱群稳定的试验仪及其方法
CN112146996A (zh) 法向扰动诱发岩体剪切断裂的实验装置
CN108051306B (zh) 一种岩体离层错位对锚索破断影响的试验装置
He et al. Experiments on rock burst and its control
CN210136143U (zh) 一种锚固岩体扭转剪切试验装置
CN111289349B (zh) 一种恒压伺服地应力加载隧道抗错断试验装置
CN116399725B (zh) 锚索动态力学性能测试方法及其测试***
Player et al. An Examination of Dynamic Test Facilities'
CN114894636A (zh) 复杂工况下锚杆/索剪切性能测试装置及操作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936618

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19936618

Country of ref document: EP

Kind code of ref document: A1