WO2024103324A1 - 一种异氰酸酯组合物、改性组合物和聚氨酯弹性体 - Google Patents

一种异氰酸酯组合物、改性组合物和聚氨酯弹性体 Download PDF

Info

Publication number
WO2024103324A1
WO2024103324A1 PCT/CN2022/132424 CN2022132424W WO2024103324A1 WO 2024103324 A1 WO2024103324 A1 WO 2024103324A1 CN 2022132424 W CN2022132424 W CN 2022132424W WO 2024103324 A1 WO2024103324 A1 WO 2024103324A1
Authority
WO
WIPO (PCT)
Prior art keywords
isocyanate
composition
group
isocyanate composition
polyurethane elastomer
Prior art date
Application number
PCT/CN2022/132424
Other languages
English (en)
French (fr)
Inventor
朱付林
尚永华
李建峰
何伟
吴谦
王勤隆
姜腾飞
***
贾峥瑞
黎源
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Priority to PCT/CN2022/132424 priority Critical patent/WO2024103324A1/zh
Publication of WO2024103324A1 publication Critical patent/WO2024103324A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates

Definitions

  • Embodiments of the present application relate to the field of isocyanate technology, for example, an isocyanate composition, a modified composition and a polyurethane elastomer.
  • Polyurethane elastomer has the characteristics of high elasticity, high strength, wide hardness range, good wear resistance, etc., and is used in the automotive industry, machinery industry, medical industry, transportation, sporting goods, electronics industry, chemical industry, coal and other industries.
  • Polyurethane elastomer can be divided into TDI (toluene diisocyanate) type, MDI (diphenylmethane diisocyanate) type, PPDI (phenylene diisocyanate) type, NDI (naphthalene diisocyanate) type, CHDI (cyclohexane diisocyanate) type, etc. according to the different isocyanates used, with TDI and MDI being the most common.
  • CN113354788A discloses a polyurethane elastomer with good heat resistance and anti-slip properties, the raw materials include: 60-65% polyester polyol, 30-33% diisocyanate, 1-9.5% mixed chain extension crosslinking agent, and the diisocyanate includes a combination of dimethyl diphenyl diisocyanate, p-phenylene diisocyanate and 1,5-naphthalene diisocyanate.
  • CN104017166A discloses a method for preparing a high-temperature resistant thermoplastic polyurethane elastomer, and the steps are: adding an antioxidant, a catalyst and a molten polyester polyol into a reaction kettle, and heating and dehydrating the mixture under reduced pressure to form a component A; heating and melting a diisocyanate to form a component B; mixing the molten triol and the molten diol uniformly, and dehydrating the mixture under reduced pressure and heating to form a component C; adding the components A, B and C into a twin-screw extruder at the same time, and obtaining a high-temperature resistant thermoplastic polyurethane elastomer through a stepwise polymerization reaction; the diisocyanate is a mixture of 70-100% by mass of trans-1,4-CHDI and 0-30% by mass of cis-1,4-CHDI.
  • CN104817683A discloses a polyurethane elastomer with good mechanical properties and fatigue resistance.
  • the raw materials include component A and component B.
  • component A includes: 100 parts of macromolecular diol, 5-20 parts of NDI, 10-30 parts of p-phenylene diisocyanate or 10-50 parts of 3,3'-dimethyl-4,4'-biphenyl diisocyanate (TODI);
  • component B includes: 0-100 parts of macromolecular diol, 8-30 parts of chain extender, and 0.02-0.5 parts of catalyst; the weight ratio of component A to component B is 100:(8-30).
  • NDI, PPDI and CHDI have higher melting points and are high-melting-point isocyanates.
  • NDI and PPDI have aromatic structures and have a large steric effect, which makes the synthesized polyurethane elastomers have high hardness, good resilience, good heat resistance, excellent dynamic performance, good wear resistance, etc. They are suitable for high dynamic load scenarios and are highly favored isocyanate raw materials for the preparation of new polyurethane elastomers.
  • the embodiments of the present application provide an isocyanate composition, a modified composition and a polyurethane elastomer.
  • the isocyanate composition can effectively inhibit the color increase of the polyurethane elastomer under hot and humid conditions through the design of effective factors, significantly improve the stability and weather resistance of the polyurethane elastomer, and improve the mechanical properties of the polyurethane elastomer.
  • an embodiment of the present application provides an isocyanate composition, wherein the effectiveness factor of the isocyanate composition is 3.80-5.30.
  • E is the effective factor
  • A is the mass content of chlorine in the isocyanate composition
  • B is the mass content of chloroisocyanate in the isocyanate composition
  • M Cl is the relative atomic mass of chlorine, which is about 35.5;
  • MB is the relative molecular mass of the chloroisocyanate.
  • the effective factor E of the isocyanate composition provided in the present application is 3.80-5.30, for example, it can be 3.90, 4.00, 4.10, 4.30, 4.50, 4.70, 4.90, 5.00, 5.10 or 5.20, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, the present application no longer exhaustively lists the specific point values included in the said range.
  • the isocyanate composition includes a combination of isocyanate and a chlorine-containing substance, so it is named "isocyanate composition";
  • the chlorine-containing substance includes a combination of a chlorinated isocyanate and a substance corresponding to an effective factor.
  • the present application makes the isocyanate composition include a specific content and a specific type of chlorine-containing substance, so that it has excellent reactivity and can be used for the preparation of high-performance polyurethane products.
  • the isocyanate composition is used in polyurethane products, especially polyurethane elastomers, which can significantly improve the stability and weather resistance of polyurethane elastomers, inhibit color number growth and yellowing under hot and humid conditions, and improve the tensile strength and tear strength of polyurethane elastomers, so that the polyurethane elastomer has excellent comprehensive performance in terms of weather resistance, stability, mechanical properties and appearance.
  • the isocyanate is a diisocyanate, and more preferably includes any one or a combination of at least two of naphthalene diisocyanate (NDI), phenylene diisocyanate (PPDI), cyclohexane diisocyanate (CHDI), diphenylmethane diisocyanate (MDI), and toluene diisocyanate (TDI).
  • NDI naphthalene diisocyanate
  • PPDI phenylene diisocyanate
  • CHDI cyclohexane diisocyanate
  • MDI diphenylmethane diisocyanate
  • TDI toluene diisocyanate
  • the isocyanates listed include all their isomers.
  • NDI naphthalene diisocyanate
  • PPDI phenylene diisocyanate
  • CHDI cyclohexane diisocyanate
  • MDI diphenylmethane diisocyanate
  • TDI toluene diisocyanate
  • the naphthalene diisocyanate is 1,5-naphthalene diisocyanate
  • the phenylene diisocyanate is 1,4-phenylene diisocyanate (p-phenylene diisocyanate, );
  • the cyclohexane diisocyanate is 1,4-cyclohexane diisocyanate
  • the diphenylmethane diisocyanate is 4,4'-diphenylmethane diisocyanate
  • the toluene diisocyanate is 2,4-toluene diisocyanate and/or 2,6-toluene diisocyanate
  • the mass percentage of isocyanate in the isocyanate composition is ⁇ 97%, for example, 97.5%, 98%, 98.5%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, 99.92%, 99.95%, 99.98%, 99.99%, etc., further preferably ⁇ 99%, more preferably >99%.
  • the chlorinated isocyanate is a compound in which one NCO group in isocyanate is replaced by chlorine.
  • the chloroisocyanate comprises (Preferred Chloronaphthyl isocyanate CNI, isocyanate is NDI), (chlorophenyl isocyanate CPPI, isocyanate is PPDI), (chlorocyclohexyl isocyanate CCHI, isocyanate is CHDI), (Preferred Chlorodiphenylmethane isocyanate, isocyanate is MDI), (Preferred Chlorotoluene isocyanate, isocyanate is TDI) any one or a combination of at least two.
  • connection site is at any position on the ring structure that can form a bond.
  • the mass content (B value) of chloroisocyanate in the isocyanate composition is 5-2000ppm, for example, it can be 10ppm, 20ppm, 30ppm, 50ppm, 80ppm, 100ppm, 300ppm, 500ppm, 700ppm, 900ppm, 1000ppm, 1100ppm, 1300ppm, 1500ppm, 1700ppm or 1900ppm, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, this application no longer exhaustively lists the specific point values included in the range, and 10-1500ppm is further preferred.
  • ppm means parts per million, and 1 ppm means one part per million; the same expressions used below have the same meaning.
  • the substance corresponding to the effective factor includes any one or a combination of at least two of the following compounds:
  • R is a divalent group obtained by removing the NCO group in isocyanate.
  • the R is selected from (isocyanate is NDI), (isocyanate is PPDI), (isocyanate is CHDI), (isocyanate is MDI), (Preferred The isocyanate is any one or a combination of at least two of TDI; wherein the wavy line represents the connection site of the group.
  • the mass content (A value) of chlorine in the isocyanate composition is 1-1000ppm, for example, it can be 2ppm, 5ppm, 8ppm, 10ppm, 30ppm, 50ppm, 80ppm, 100ppm, 150ppm, 200ppm, 250ppm, 300ppm, 350ppm, 400ppm, 450ppm, 500ppm, 550ppm, 600ppm, 650ppm, 700ppm, 750ppm, 800ppm, 850ppm, 900ppm or 950ppm, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, this application no longer exhaustively lists the specific point values included in the range, and 5-500ppm is further preferred.
  • A is the mass content of chlorine in the isocyanate composition, preferably obtained by X-ray fluorescence spectrometry (XRF) testing.
  • B is the mass content of chloroisocyanate in the isocyanate composition, which is obtained by chromatography-mass spectrometry, preferably by gas chromatography-mass spectrometry (GCMS).
  • GCMS gas chromatography-mass spectrometry
  • the present application has found in the research that the characterization method of chlorine content in isocyanate known in the related art is difficult to accurately control the performance of isocyanate, and thus cannot effectively control the performance of polyurethane products/polyurethane elastomers, especially yellowing resistance, stability and appearance.
  • the test method for total chlorine content in standard GB/T 12009.1-1989 is the oxygen bottle combustion method, which converts all chlorine (including bromine) in isocyanate into inorganic chlorine (including bromine) and then uses silver nitrate titration to characterize all chlorine content in isocyanate, and includes the bromine content in isocyanate.
  • Standard GB/T 12009.2-2016 determines the content of hydrolyzed chlorine, specifically the chlorine released after isocyanate reacts with alcohol and water. It is the more active chlorine in isocyanate, and also includes the more active bromine. Some monochloroisocyanates can also hydrolyze a part.
  • the chlorine (and part of the bromine) content measured by GB/T 12009.1-1989 or GB/T 12009.2-2016 cannot accurately indicate the component information of isocyanate, and therefore cannot effectively control the performance of isocyanate, polyurethane products, especially polyurethane elastomers.
  • A is the total chlorine content (excluding bromine) obtained by XRF testing
  • B is the chlorinated isocyanate content obtained by chromatography-mass spectrometry testing.
  • the A value and the B value are obtained by accurate qualitative and quantitative analysis methods, so that the effective factor E accurately characterizes the polychlorinated substances and part of the hydrolyzed chlorine (excluding the hydrolyzed chlorine of monochloroisocyanate) in the isocyanate composition, corresponding to a more refined and clear chlorine content.
  • This part of the chlorine content plays a key role in the activity of the isocyanate and the performance of the polyurethane product (such as a polyurethane elastomer), thereby achieving the performance regulation of the isocyanate composition, and then improving the performance of the polyurethane elastomer prepared thereby, especially having a significant improvement effect on weather resistance, stability, mechanical properties and appearance.
  • the polyurethane product such as a polyurethane elastomer
  • the substances corresponding to the chloroisocyanate and the effective factor may be produced as by-products in the preparation process of the isocyanate, or may be artificially added to obtain the required content.
  • an embodiment of the present application provides a method for preparing the isocyanate composition as described in the first aspect, the preparation method comprising: reacting an amine compound with phosgene to obtain the isocyanate composition.
  • the preparation method comprises the following steps:
  • the removal treatment includes a phosgene removal treatment and/or a solvent removal treatment
  • step (3) Separating and refining the crude product obtained in step (2) in sequence to obtain the isocyanate composition.
  • the effective factor E of the isocyanate composition can also be adjusted by adding chloroisocyanate and/or a substance corresponding to the effective factor to the isocyanate.
  • the separation in step (3) obtains a heavy component and an intermediate; the mixture of the intermediate and the heavy component is refined to obtain the isocyanate composition; and the weight percentage of the heavy component in the mixture is 1-10%.
  • the component to be refined is a mixture of the intermediate product and a heavy component, and the mass percentage of the heavy component in the mixture is 1-10%, for example, it can be 2%, 3%, 4%, 5%, 6%, 7%, 8% or 9%, and specific point values between the above point values. Due to space limitations and for the sake of brevity, the present application no longer exhaustively lists the specific point values included in the range, and 2-10% is further preferred.
  • the separated heavy component can be directly mixed with the intermediate product to obtain a mixture; or, the separated heavy component is a primary heavy component, and the primary heavy component is separated again to obtain a heavy component recovery material and a residual heavy component; the heavy component recovery material is mixed with the intermediate product to obtain the mixture; the mass percentage of the heavy component recovery material in the mixture is 1-10%.
  • the preparation method of the isocyanate composition comprises: mixing the isocyanate obtained by the carbamate cleavage method with the heavy component recovery material to obtain the isocyanate composition.
  • the mass percentage of the heavy component recovery material in the isocyanate composition is 1-10% (e.g., 2%, 3%, 4%, 5%, 6%, 7%, 8% or 9%, etc.), and more preferably 1-5%.
  • the preparation method of the isocyanate composition is a phosgenation method, that is, an amine compound reacts with phosgene to generate an isocyanate;
  • the amine compound includes a diamine and/or a diamine salt (for example, a diamine hydrochloride obtained by reacting a diamine with HCl).
  • the method for reacting the amine compound with phosgene illustratively includes the following three categories: a method for reacting diamine with phosgene in the gas phase, also known as a gas phase phosgenation method; a method for reacting diamine with phosgene in the liquid phase, also known as a liquid phase phosgenation method or a hot and cold two-stage phosgenation method; a method for reacting a diamine salt (such as diamine hydrochloride) with phosgene in a solvent, also known as a diamine hydrochloride phosgenation method.
  • the present application further prefers a hot and cold two-stage phosgenation method.
  • the amine compound in step (1) is a diamine
  • the reaction method in step (1) is a cold-hot two-stage phosgenation method.
  • step (1) specifically comprises: mixing a diamine with a solvent to obtain an amine solution; introducing phosgene into the amine solution to react and obtain a reaction product, namely a reaction solution containing diisocyanate.
  • the solvent is an organic solvent, illustratively including but not limited to: aromatic hydrocarbons such as benzene, toluene, and xylene, aliphatic hydrocarbons such as octane and decane, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and ethylcyclohexane, halogenated aromatic hydrocarbons such as chlorotoluene, chlorobenzene, dichlorobenzene, dibromobenzene, and trichlorobenzene, nitrogen-containing compounds such as nitrobenzene, N,N-dimethylformamide, N,N-dimethylacetamide, and N,N'-dimethylimidazolidinone, ethers such as dibutyl ether, ethylene glycol dimethyl ether, and ethylene glycol diethyl ether, ketones such as heptanone, diisobutyl ketone,
  • the solvent comprises halogenated aromatic hydrocarbons, more preferably chlorobenzene and/or dichlorobenzene.
  • the mass percentage of diamine in the amine solution is 1-50wt.%, for example, it can be 2wt.%, 5wt.%, 8wt.%, 10wt.%, 12wt.%, 15wt.%, 18wt.%, 20wt.%, 22wt.%, 25wt.%, 28wt.%, 30wt.%, 35wt.%, 40wt.%, 45wt.% or 48wt.%, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, this application no longer exhaustively lists the specific point values included in the range, and 5-40wt.% is further preferred.
  • the molar ratio of phosgene to amine compound (diamine) in step (1) is (3-50):1, for example, it can be 4:1, 5:1, 8:1, 10:1, 12:1, 15:1, 18:1, 20:1, 22:1, 25:1, 28:1, 30:1, 32:1, 35:1, 38:1, 40:1, 42:1, 45:1 or 48:1, more preferably (4-40):1, and even more preferably (4-30):1.
  • the reaction in step (1) comprises a cold reaction and a hot reaction carried out sequentially.
  • the temperature of the cold reaction is -10°C to 80°C, for example, it can be -5°C, 0°C, 5°C, 10°C, 15°C, 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C or 75°C, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, this application no longer exhaustively lists the specific point values included in the range, and 0-70°C is further preferred.
  • the cold reaction time is 1-20 h, for example, it can be 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, 12 h, 13 h, 14 h, 15 h, 16 h, 17 h, 18 h or 19 h, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, this application no longer exhaustively lists the specific point values included in the range, and 2-15 h is further preferred.
  • the temperature of the thermal reaction is 70-150°C, for example, it can be 75°C, 80°C, 85°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C or 145°C, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, this application no longer exhaustively lists the specific point values included in the range, and 80-130°C is further preferred.
  • the thermal reaction time is 1-20 h, for example, it can be 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, 12 h, 13 h, 14 h, 15 h, 16 h, 17 h, 18 h or 19 h, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, this application no longer exhaustively lists the specific point values included in the range, and 2-15 h is further preferred.
  • reaction in step (1) is carried out under normal pressure or pressurized conditions.
  • the pressure (gauge pressure) of the reaction in step (1) is 0-0.6 MPa G, for example, it may be 0.0005 MPa G, 0.001 MPa G, 0.003 MPa G, 0.01 MPa G, 0.02 MPa G, 0.03 MPa G, 0.05 MPa G, 0.07 MPa G, 0.09 MPa G, 0.1 MPa G, 0.2 MPa G, 0.3 MPa G, 0.4 MPa G or 0.5 MPa G, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, this application no longer exhaustively lists the specific point values included in the range, and 0.005-0.4 MPa G is further preferred, and 0.01-0.2 MPa G is even more preferred.
  • the reaction (isocyanate formation process) in step (1) is a batch process or a continuous process, preferably a continuous process.
  • the continuous process is that the slurry (amine solution) in the stirring tank is continuously transported from the stirring tank to a reaction tank different from the stirring tank, the diamine and phosgene are reacted in the reaction tank, and the obtained reaction product (reaction liquid containing diisocyanate) is continuously taken out from the reaction tank.
  • the application does not specifically limit the number of reactors in the continuous process, and illustratively, it can be 2, 3, 4, 5 or more.
  • the reaction product obtained in step (1) may be subjected to a removal step (a desolvation step and/or a phosgene removal step) and a separation and purification step as necessary.
  • a removal step a desolvation step and/or a phosgene removal step
  • the dephosgene treatment in step (2) is carried out in a dephosgene tower.
  • the desolventizing treatment in step (2) is carried out in a desolventizing tower.
  • the separation in step (3) separates the intermediate product (light component) from the heavy component to achieve the removal of the heavy component;
  • the separation device illustratively includes but is not limited to: a short-path evaporator, a distillation tower, and a short-path evaporator is more preferably used.
  • the operating pressure of the short-path evaporator is 0.05-4 kPa, for example, it may be 0.08 kPa, 0.1 kPa, 0.3 kPa, 0.5 kPa, 0.8 kPa, 1 kPa, 1.2 kPa, 1.5 kPa, 1.8 kPa, 2 kPa, 2.2 kPa, 2.5 kPa, 2.8 kPa, 3 kPa, 3.2 kPa, 3.5 kPa or 3.8 kPa, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, this application no longer exhaustively lists the specific point values included in the range, and it is further preferably 0.1-2.5 kPa.
  • the separated heavy component contains chlorine-containing substances with relatively rich types and high contents.
  • the mass percentage of the heavy component (heavy component recycling material) in the mixture is 1-10%, and more preferably 2-10%, so that the effective factor of the isocyanate composition is 3.80-5.30. If the amount of the heavy component (heavy component recycling material) added is too little, the effective factor is too high, and the reaction rate of the isocyanate composition when used to prepare the polyurethane elastomer is too fast, resulting in uneven polymerization, which deteriorates the mechanical properties of the polyurethane elastomer, and reduces the tensile strength and tear strength; if the amount of the heavy component (heavy component recycling material) added is too high, the effective factor is too low, and the isocyanate composition contains more impurities, which deteriorates the weather resistance of the polyurethane elastomer, especially under hot and humid conditions, there is obvious yellowing phenomenon.
  • the heavy component mixed with the intermediate product can be directly back-mixed into the intermediate product, or can be recycled and separated by a heavy component removal device to obtain a heavy component recovery material, which is then mixed into the intermediate product.
  • the refining method is an industrial separation technology known in the art, illustratively including but not limited to: distillation, rectification, crystallization, etc.
  • the refining method is distillation.
  • the distillation is carried out in a distillation tower, and the distillation tower preferably comprises a plate distillation tower or a packed distillation tower.
  • the number of theoretical plates of the distillation tower is 2-40, for example, it can be 3, 5, 8, 10, 12, 15, 18, 20, 22, 25, 28, 30, 32, 35 or 38, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, this application no longer exhaustively lists the specific point values included in the range, and it is further preferably 5-20.
  • the top pressure of the distillation tower is 0.1-4 kPa, for example, it can be 0.2 kPa, 0.5 kPa, 0.8 kPa, 1 kPa, 1.2 kPa, 1.5 kPa, 1.8 kPa, 2 kPa, 2.2 kPa, 2.5 kPa, 2.8 kPa, 3 kPa, 3.2 kPa, 3.5 kPa or 3.8 kPa, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, this application no longer exhaustively lists the specific point values included in the range, and it is further preferably 0.15-2.5 kPa.
  • the top reflux ratio of the distillation tower is 0.01-40, for example, it can be 0.05, 0.1, 0.5, 1, 3, 5, 8, 10, 12, 15, 18, 20, 22, 25, 28, 30, 32, 35 or 38, as well as specific point values between the above point values. Due to space limitations and for the sake of brevity, this application no longer exhaustively lists the specific point values included in the range, and it is further preferably 0.1-20.
  • the method for preparing the isocyanate composition comprises the following steps:
  • Phosgenation step mixing a diamine with a solvent to obtain an amine solution; introducing phosgene into the amine solution to react and obtain a reaction product; the reaction includes a cold reaction and a hot reaction performed in sequence, and the temperature of the cold reaction is less than the temperature of the hot reaction;
  • Step (2) Removal process: the reaction product obtained in step (1) is subjected to a removal treatment to obtain a crude product; the removal treatment includes a phosgene removal treatment and/or a solvent removal treatment;
  • step (3b) a heavy component recovery step: mixing the intermediate product obtained in step (3a) with the heavy component to obtain a mixture; the weight percentage of the heavy component in the mixture is 1-10%; or, performing a secondary separation on the heavy component obtained in step (3a) to obtain a heavy component recovery material and a residual heavy component; mixing the heavy component recovery material with the intermediate product to obtain a mixture; the weight percentage of the heavy component recovery material in the mixture is 1-10%;
  • Step (3c) Purification step: Purifying the mixture obtained in step (3b) to obtain the isocyanate composition.
  • the process diagram of the preparation method is shown in Figure 1, including a phosgenation step 10, a removal step 20, a separation step 30, a heavy component recovery step 40, and a refining step 50.
  • the phosgenation step can be implemented in an intermittent manner or a continuous manner, and the continuous manner is carried out continuously in an autoclave.
  • the effective factor of the isocyanate composition is adjusted by appropriately adjusting the mixing ratio of the heavy component and the intermediate, the supply ratio of phosgene, the reaction temperature, the reaction pressure, the average residence time, the reflux ratio of the distillation tower, etc., and the effective factor is mainly controlled by the ratio of the heavy component to the intermediate.
  • Phosgenation process adopting a kettle reaction, three kettles or four kettles continuously, the amine solution containing NDA (naphthalenediamine) is continuously transported to the phosgenation reactor, and phosgene is continuously introduced into the top of each of the cold reaction kettle, the hot reaction kettle, and the hot reaction kettle in the above-mentioned proportion by inserting a tube; then, while the interior of the cold reaction kettle is maintained at the above-mentioned cold reaction temperature and reaction pressure, the amine solution and phosgene are stirred and mixed; thereby, NDA and phosgene (phosgene) are cold-reacted to obtain a cold reaction phosgenated liquid;
  • NDA naphthalenediamine
  • the cold reaction photochemical liquid is continuously transported to the top of the hot reaction kettle; that is, while the amine solution and phosgene are continuously supplied to the cold reaction kettle, the cold reaction photochemical liquid is continuously taken out from the cold reaction kettle and transported to the hot reaction kettle;
  • the interior of the first thermal reaction kettle is maintained at the temperature and reaction pressure of the thermal reaction, and the reactants and phosgene are stirred and mixed in the first thermal reaction kettle to carry out a phosgenation reaction; similarly, the second thermal reaction kettle is also input with the reactants while carrying out a phosgenation reaction;
  • the phosgenation step is continuously performed to obtain a reaction liquid containing NDI.
  • a phosgene removal tower and a solvent removal tower are used to continuously transport the reaction liquid to the middle of the phosgene removal tower. Phosgene and hydrogen chloride are removed from the reaction liquid through the phosgene removal tower; then the solvent is removed from the reaction liquid through the solvent removal tower to obtain crude NDI.
  • an NDI composition including NDI, CNI, and substances corresponding to effective factors can be continuously produced.
  • an embodiment of the present application provides a modified composition of isocyanate, wherein the modified composition is obtained by modifying the isocyanate composition as described in the first aspect; the modified composition comprises any one or a combination of at least two of the groups (a)-(i): (a) isocyanurate group, (b) uretdione group, (c) biuret group, (d) carbamate group, (e) urea group, (f) iminooxadiazinedione group, (g) allophanate group, (h) uretonimine group, and (i) carbodiimide group.
  • the modified composition comprises any one or a combination of at least two of the groups (a)-(i): (a) isocyanurate group, (b) uretdione group, (c) biuret group, (d) carbamate group, (e) urea group, (f) iminooxadiazinedione group, (g) allophanate group,
  • a person skilled in the art can modify the aforementioned isocyanate composition by a known method as needed to obtain the modified composition; the modified composition is suitably used as a raw material for an isocyanate-based polymer such as a polyisocyanate component and a substance containing an active hydrogen group as a polyurethane resin.
  • an isocyanate-based polymer such as a polyisocyanate component and a substance containing an active hydrogen group as a polyurethane resin.
  • the modified composition containing the group (a) isocyanurate group is a trimer of isocyanate, which can be obtained, for example, by reacting an isocyanate composition in the presence of a known isocyanurate catalyst to isocyanurate the isocyanate therein.
  • the modified composition containing the group (b) uretdione group can be obtained by heating the isocyanate composition at 90-200° C. or reacting it in the presence of a known uretdione catalyst to uretdione the isocyanate (eg, dimerize it).
  • the modified composition containing the group (c) biuret group can be obtained by reacting an isocyanate composition with, for example, water, a tertiary alcohol (e.g., tert-butyl alcohol), a secondary amine (e.g., dimethylamine, diethylamine, etc.), etc., and then further reacting the composition in the presence of a known biuret catalyst.
  • a tertiary alcohol e.g., tert-butyl alcohol
  • a secondary amine e.g., dimethylamine, diethylamine, etc.
  • the modified composition containing the group (d) urethane group can be obtained by reacting an isocyanate composition with a polyol (eg, trimethylolpropane).
  • a polyol eg, trimethylolpropane
  • the modified composition containing the group (e) urea group can be obtained by reacting an isocyanate composition with water, polyamine (described later), or the like.
  • the modified composition containing the group (f) iminooxadiazinedione group is an asymmetric trimer of isocyanate, and can be obtained by reacting an isocyanate composition in the presence of a known iminooxadiazinedione catalyst to subject the isocyanate to iminooxadiazinedione (eg, trimerization).
  • the modified composition containing the group (g) allophanate group can be obtained by reacting an isocyanate composition with an alcohol and then further reacting them in the presence of a known allophanation catalyst.
  • the modified composition containing the group (i) carbodiimide group can be obtained by reacting an isocyanate composition in the presence of a known carbodiimidization catalyst.
  • modified composition may contain at least one of the above groups (a) to (i), or may contain at least two of them.
  • Such a modified composition may be produced by appropriately using the above reactions in combination.
  • the modified composition may be used alone or in combination of two or more.
  • an embodiment of the present application provides an isocyanate-based polymer, which is formed by the reaction of an isocyanate substance with a substance containing an active hydrogen group; the isocyanate substance includes at least one of the isocyanate composition described in the first aspect and the modified composition described in the third aspect.
  • the active hydrogen group includes any one of hydroxyl, amino, and thiol, or a combination of at least two of them.
  • the substance containing active hydrogen groups includes any one of polyols, polyamines, and polythiols, or a combination of at least two of them.
  • the substance containing active hydrogen groups is a polyol, and the isocyanate-based polymer is a polyurethane; the substance containing active hydrogen groups is a polyamine, and the isocyanate-based polymer is a polyurea; the substance containing active hydrogen groups is a polythiol, and the isocyanate-based polymer is a polythiourethane.
  • an embodiment of the present application provides a polyurethane elastomer, wherein raw materials for preparing the polyurethane elastomer include isocyanate substances and polyols; the isocyanate substances include the isocyanate composition described in the first aspect and/or the modified composition described in the third aspect.
  • the polyol is a high molecular weight polyol.
  • the preparation raw material further comprises a chain extender.
  • the chain extender comprises a low molecular weight polyol and/or a low molecular weight polyamine.
  • the polyurethane elastomer can be thermoplastic polyurethane elastomer (TPU), thermosetting polyurethane elastomer (TSU), rollable polyurethane elastomer, etc.
  • Polyurethane elastomer includes a soft segment formed by the reaction of isocyanate substances and polyols (high molecular weight polyols), and a hard segment formed by the reaction of isocyanate substances and chain extenders (low molecular weight polyols and/or low molecular weight polyamines).
  • Polyurethane elastomer can be manufactured by the reaction of isocyanate substances, high molecular weight polyols (substances containing active hydrogen groups), low molecular weight polyols and/or low molecular weight polyamines (substances containing active hydrogen groups). That is, isocyanate substances (the isocyanate composition and/or modified composition), polyols (high molecular weight polyols), chain extenders (low molecular weight polyols and/or low molecular weight polyamines) are the raw materials for the preparation of the polyurethane elastomer.
  • the isocyanate substance includes the isocyanate composition and/or the modified composition, the effective factor of the isocyanate composition is 3.80-5.30, and the modified composition is obtained by modifying the isocyanate composition with an effective factor of 3.80-5.30.
  • the present application can effectively inhibit the discoloration of the polyurethane elastomer, improve the tensile strength and tear strength of the polyurethane elastomer, and make the polyurethane elastomer show excellent comprehensive performance in terms of discoloration resistance, weather resistance, stability and mechanical properties through the design and control of the effective factor.
  • the polyol is a high molecular weight polyol, illustratively including but not limited to: any one or a combination of at least two of polyester polyol, polycarbonate polyol, polyether polyol, and polyester polyol is further preferred.
  • the polyester polyol includes polycaprolactone polyol and/or adipic acid polyester polyol (polyester polyol with adipic acid as the polyacid), and adipic acid polyester polyol is more preferred.
  • the polyether polyol comprises polytetramethylene ether glycol.
  • the chain extender comprises a low molecular weight polyol and/or a low molecular weight polyamine, and more preferably a low molecular weight polyol.
  • the low molecular weight polyol includes ethylene glycol and/or 1,4-butanediol, and more preferably 1,4-butanediol.
  • the polyurethane elastomer can be prepared by known methods such as a one shot method or a prepolymer method.
  • isocyanate substances polyisocyanate components, isocyanate compositions and/or modified compositions
  • polyols high molecular weight polyols
  • chain extenders low molecular weight polyols and/or low molecular weight polyamines
  • an isocyanate substance (polyisocyanate component, isocyanate composition and/or modified composition) is reacted with a polyol (high molecular weight polyol) to synthesize a prepolymer having an isocyanate group at the molecular end; then, the prepolymer is reacted with a chain extender (low molecular weight polyol and/or low molecular weight polyamine) to obtain the polyurethane elastomer.
  • a polyol high molecular weight polyol
  • a chain extender low molecular weight polyol and/or low molecular weight polyamine
  • a known urethanization catalyst such as amines, organometallic compounds (such as organotin compounds, preferably dibutyltin dichloride, tin octoate, etc.) can be added to the preparation raw materials as needed.
  • organometallic compounds such as organotin compounds, preferably dibutyltin dichloride, tin octoate, etc.
  • plasticizers for example, plasticizers, anti-blocking agents, heat stabilizers, light stabilizers, ultraviolet absorbers, NOx yellowing inhibitors, antioxidants, mold release agents, pigments, dyes, lubricants, nucleating agents, fillers, anti-hydrolysis agents, etc. can be added to the polyurethane elastomer in appropriate proportions.
  • the polyurethane elastomer has excellent discoloration resistance and weather resistance, and also excellent mechanical properties (tensile strength and tear strength).
  • the color difference ⁇ b of the polyurethane elastomer after 240 hours of wet heat aging test under xenon lamp irradiation is ⁇ 3.0.
  • ⁇ b can be 2.95, 2.9, 2.85, 2.8, 2.75, 2.7, 2.65, 2.6, 2.55, 2.5, 2.45, 2.4, 2.35, 2.3, 2.25, 2.2, 2.15, 2.1, 2.05, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, etc., and is more preferably ⁇ 3.0.
  • the tensile strength of the polyurethane elastomer prepared with the NDI composition is greater than 41 MPa, and can reach 41.3-42.5 MPa; the tear strength is greater than 64 kN/m, and can reach 64.1-65.2 kN/m.
  • the tensile strength of the polyurethane elastomer prepared with the PPDI composition is greater than 44 MPa, and can reach 44.3-45.7 MPa; the tear strength is greater than 119 kN/m, and can reach 119.6-121.6 kN/m.
  • the tensile strength of the polyurethane elastomer prepared with the CHDI composition is greater than 35 MPa, and can reach 35.1-36.1 MPa; the tear strength is greater than or equal to 59 kN/m, and is 59.0-60.1 kN/m.
  • the isocyanate composition provided in the embodiment of the present application has excellent reactivity through the design and control of effective factors, and can be used for the preparation of high-performance polyurethane products.
  • the isocyanate composition can effectively improve the stability of polyurethane products, especially can significantly improve the color change resistance and weather resistance of polyurethane elastomers, inhibit the color number growth and yellowing under hot and humid conditions, make the color difference ⁇ b of polyurethane elastomers after 240h of hot and humid aging test under xenon lamp irradiation less than 3.0, and improve the tensile strength and tear strength of polyurethane elastomers, so that the polyurethane elastomer has excellent comprehensive performance in terms of weather resistance and mechanical strength.
  • FIG1 is a schematic flow diagram of a method for preparing an isocyanate composition in a specific embodiment of the present application
  • 10 is a phosgenation step
  • 20 is a removal step
  • 30 is a separation step
  • 40 is a heavy component recovery step
  • 50 is a refining step.
  • Carrier gas Helium
  • Carrier gas flow rate 1mL/min (constant flow rate)
  • SIM selected ion scanning mode selected ions 202/168 for NDI, 152/118 for PPDI, 158/124 for CHDI
  • Chromatographically pure CCl4 standard is used as Cl source, ethyl acetate is used as diluent, and X-rays generated by X-ray tube excite Cl element in the sample to produce characteristic X-ray fluorescence.
  • the intensity of characteristic X-ray fluorescence is linearly related to element concentration.
  • a standard curve is drawn, and the extrapolated value is the Cl content in the sample.
  • Carrier gas flow rate 1mL/min (constant flow rate)
  • FIG1 An NDI composition and a preparation method thereof, wherein the effective factor E of the NDI composition is 5.30, and the flow diagram of the preparation method thereof is shown in FIG1 , which specifically comprises the following steps:
  • Phosgenation process 800 parts by mass of chlorobenzene are charged into a cold reactor, the temperature in the cold reactor is adjusted to 20°C, and the pressure (gauge pressure) is adjusted to 0.04 MPaG.
  • a chlorobenzene solution of 1,5-NDA (1,5-naphthalenediamine) with a concentration of 10.0 wt.% is continuously charged into the cold reactor at a rate of 500 parts by mass/h, and phosgene is continuously introduced into the reactor at a rate of 626 parts by mass/h.
  • the temperature of the cold reaction is 20°C, and the time is 2.5 hours to obtain a cold reaction photochemical liquid;
  • the cold reaction photochemical liquid was taken out from the cold reactor and transported to the hot reactor, and phosgene was introduced into the hot reactor at a rate of 1 part by mass/h.
  • the temperature in the hot reactor was maintained at 110°C, and the pressure (gauge pressure) was adjusted to 0.2 MPa G.
  • a thermal reaction was carried out at a temperature of 110°C for 4 hours, thereby allowing 1,5-NDA to react with phosgene to generate 1,5-NDI, and preparing a reaction product containing 1,5-NDI.
  • the reaction product obtained in the phosgenation step was continuously transferred to a phosgenation removal tower and a solvent removal tower, and subjected to phosgenation treatment and solvent removal treatment, respectively, thereby preparing 130 parts by mass of a crude NDI product.
  • the crude product obtained in the removal process is continuously conveyed to the short-path evaporator to obtain 117.2 parts by mass of an intermediate product from which the heavy components are removed and 12.8 parts by mass of a primary heavy component.
  • Heavies recovery process The primary heavies are continuously transported to the secondary short-path evaporator to obtain 2.39 parts by mass of heavies recovery material and 10.4 parts by mass of residual heavies. Next, the intermediate product at a rate of 117.2 parts by mass/h is mixed with the heavies recovery material at a rate of 2.39 parts by mass/h to obtain 119.6 parts by mass/h of the mixture, i.e., the mass percentage of the heavies recovery material in the mixture is 2%.
  • Purification process continuously conveying the aforementioned mixture to a distillation tower, the distillation tower is filled with a filler equivalent to 5 theoretical plates, and then in the distillation tower, light components are removed from the top of the tower, and the NDI composition is extracted from the tower to obtain the target product;
  • distillation conditions in the distillation tower are as follows:
  • the NDI composition is obtained, wherein the mass content of NDI is greater than 99%, the mass content of chlorine (A value) is 7.6 ppm, the mass content of chloroisocyanate CNI (B value) is 15 ppm, and the effectiveness factor E is 5.30.
  • phosgene molar ratio indicates the molar amount of the phosgene in the phosgenation process based on 1,5-NDA as 1 mol
  • heavy component recovery material ratio indicates the mass percentage of the heavy component (recovery material) in the mixture in the heavy component recovery process.
  • phosgene molar ratio indicates the molar amount of phosgene in the phosgenation process based on 1,4-diaminobenzene as 1 mol
  • “heavy component recovery material ratio” indicates the mass percentage of the heavy component (recovery material) in the mixture in the heavy component recovery process.
  • phosgene molar ratio indicates the molar amount of the phosgene in the phosgenation process based on 1,4-diaminocyclohexane as 1 mol
  • “heavy component recovery material ratio” indicates the mass percentage of the heavy component (recovery material) in the mixture in the heavy component recovery process.
  • NDI was prepared by the method in Example 1 of the related technology CN110256296A as Comparative Example 7. This example is a thermal cracking method for preparing NDI.
  • the product does not contain chlorine, and thus does not contain effective factors.
  • the heavy component recovery material in Example 1 was added to the product at a ratio of 4% (i.e., the mass percentage of the heavy component in the obtained mixture was 4%) to obtain Example 16.
  • Example 17 the method in Example 1 of CN110256296A was adopted, and the raw material NDA was replaced by PPDA. Other conditions were the same, and PPDI was prepared as Comparative Example 8; the heavy component recovery material in Example 6 was added to the product at a ratio of 4% (that is, the mass percentage of the heavy component in the obtained mixture was 4%), to obtain Example 17.
  • Example 1 The method in Example 1 of CN110256296A was adopted, and the raw material NDA was replaced by CHDA. Other conditions were the same, and CHDI was prepared as Comparative Example 9; the heavy component recovery material in Example 11 was added to the product at a ratio of 4% (that is, the mass percentage of the heavy component in the obtained mixture was 4%), to obtain Example 18.
  • a polyurethane elastomer specifically a thermoplastic polyurethane elastomer (TPU), whose preparation raw materials include isocyanate substances (polyisocyanate components), high molecular weight polyols, and chain extenders (low molecular weight polyols);
  • the isocyanate substances are the isocyanate compositions provided in Examples 1-15 and Comparative Examples 1-6, respectively, the high molecular weight polyol is adipic acid-based polyester polyol (manufactured by Mitsui Chemicals, TAKELAC U-2024, with a number average molecular weight of 2000), and the chain extender is 1,4-butanediol (Inokane reagent);
  • the preparation raw materials also include a catalyst (tin octoate) and a heat-resistant stabilizer (purchased from Ciba Specialty Chemicals, IRGANOX 245).
  • the preparation method of the polyurethane elastomer is as follows:
  • step (3) The mixed solution obtained in step (2) was poured into a stainless steel dish whose temperature was adjusted to 150° C. in advance, and reacted at 150° C. for 1 hour, and then reacted at 100° C. for 23 hours to obtain an elastomer.
  • step (3) The elastomer obtained in step (3) is removed from the dish and cured at a constant temperature and humidity condition of 23° C. and 55% relative humidity for 7 days to obtain the polyurethane elastomer.
  • the polyurethane elastomer to be tested (raw material, the mixed solution obtained in step (2) in the application example) was subjected to injection molding using an injection molding machine (model: NEX-140, Taifu Machinery) at a screw speed of 100 rpm, a barrel temperature of 150-235° C., a mold temperature of 20° C., an injection time of 10 s, an injection speed of 60 mm/s, and a cooling time of 45 s to obtain a sheet;
  • an injection molding machine model: NEX-140, Taifu Machinery
  • the obtained sheet (thickness of 2 mm) was cured for 7 days to obtain a polyurethane elastomer sheet for testing, and the following performance tests were specifically performed:
  • the b value (b1, initial value) of the polyurethane elastomer sheet is measured using a color pigment meter; then a xenon lamp irradiation test is performed, the polyurethane elastomer sheet is placed in a super xenon lamp climate test chamber (Weibang Instruments), and placed for 240 hours under the conditions of temperature 89°C, relative humidity 50%, and xenon lamp irradiance 100W/ m2 (irradiation wavelength 300-400nm), then the sheet is taken out and the b value (b2) of the sheet is tested using the same method as above.
  • Tear strength The tear strength of the elastomer is tested according to the method in GB/T 529-2008;
  • the present application controls the effective factor of the isocyanate composition within the range of 3.80-5.30, so that the polyurethane elastomer prepared based on the isocyanate composition has excellent stability and weather resistance, and the color difference ⁇ b after 240h of wet heat aging treatment under xenon lamp irradiation is less than 3.0, as low as 2.53-2.95, inhibiting the color number growth and yellowing under wet heat conditions, and improving the tensile strength and tear strength of the polyurethane elastomer.
  • the tensile strength of the polyurethane elastomer prepared with the NDI composition is The tensile strength is 41.3-42.5MPa, and the tear strength is 64.1-65.2kN/m; the tensile strength of the polyurethane elastomer prepared with the PPDI composition is 44.3-45.7MPa, and the tear strength is 119.6-121.6kN/m; the tensile strength of the polyurethane elastomer prepared with the CHDI composition is 35.1-36.1MPa, and the tear strength is 59.0-60.1kN/m, so that the polyurethane elastomer maintains excellent appearance, weather resistance, mechanical properties and other comprehensive product performance. It can be seen that the isocyanate composition provided in the present application has a better application prospect in polyurethane elastomers.
  • the present application uses the above-mentioned embodiments to illustrate the isocyanate composition, modified composition and polyurethane elastomer of the present application, but the present application is not limited to the above-mentioned process steps, that is, it does not mean that the present application must rely on the above-mentioned process steps to be implemented.
  • Those skilled in the art should understand that any improvement to the present application, equivalent replacement of the raw materials selected in the present application, addition of auxiliary components, selection of specific methods, etc., all fall within the scope of protection and disclosure of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本文公布一种异氰酸酯组合物、改性组合物和聚氨酯弹性体,所述异氰酸酯组合物的有效因子为3.80-5.30,通过有效因子的设计和控制,使其具有优良的反应活性,能够用于高性能聚氨酯制品的制备。所述异氰酸酯组合物能够改善聚氨酯制品的稳定性,尤其能够显著提升聚氨酯弹性体的耐变色性能和耐候性,抑制湿热条件下的色号增长和黄变,提高聚氨酯弹性体拉伸强度和撕裂强度,使聚氨酯弹性体在耐候性、稳定性和机械性能等方面具有优异的综合表现。

Description

一种异氰酸酯组合物、改性组合物和聚氨酯弹性体 技术领域
本申请实施例涉及异氰酸酯技术领域,例如一种异氰酸酯组合物、改性组合物和聚氨酯弹性体。
背景技术
聚氨酯弹性体(PUR)具有高弹性、高强度、硬度范围宽、耐磨性好等特点,被应用于汽车工业、机械工业、医疗产业、交通运输、体育用品、电子产业、化工、煤炭等行业。聚氨酯弹性体按照所用异氰酸酯的不同可分为TDI(甲苯二异氰酸酯)型、MDI(二苯基甲烷二异氰酸酯)型、PPDI(苯二异氰酸酯)型、NDI(萘二异氰酸酯)型、CHDI(环己烷二异氰酸酯)型等,以TDI型和MDI型最为常见。
随着聚氨酯弹性体应用范围的拓展,常用的TDI型PUR和MDI型PUR已不能满足使用需求,人们开发出了新的聚氨酯弹性体,以期获得弹性体性能的提升。例如CN113354788A公开了一种具有良好的耐热性和抗滑性的聚氨酯弹性体,原料包括:聚酯多元醇60-65%,二异氰酸酯30-33%,混合扩链交联剂1-9.5%,所述二异氰酸酯包括二甲基联苯二异氰酸酯、对苯二异氰酸酯和1,5-萘二异氰酸酯的组合。CN104017166A公开了一种耐高温热塑性聚氨酯弹性体的制备方法,其步骤为:将抗氧剂、催化剂和熔融的聚酯多元醇加入反应釜,加热、减压条件下脱水后形成A组份;将二异氰酸酯加热熔融形成B组份;将熔融的三元醇与熔融的二元醇混合均匀,在减压、加热条件下脱水形成C组份;将A组份、B组份、C组份同时加入双螺杆挤出机中,经逐步聚合反应得到耐高温热塑性聚氨酯弹性体;所述二异氰酸酯是由质量百分含量为70-100%的反式1,4-CHDI与质量百分含量为0-30%的顺式1,4-CHDI组成的混合物。CN104817683A公开了一种具有良好的力学性能和耐疲劳性的聚氨酯弹性体,其原料包括A组分和B组分,以重量份计,A组分为:100份大分子二元醇,5-20份NDI,10-30份对苯二异氰酸酯或10-50份3,3'-二甲基-4,4'-联苯二异氰酸酯(TODI);B组分为:0-100份大分子二元醇,8-30份扩链剂,0.02-0.5份催化剂;A组分与B组分的重量比为100:(8-30)。
与常用的MDI和TDI相比,NDI、PPDI和CHDI的熔点更高,属于高熔点异氰酸酯,且NDI、PPDI具有芳香族结构,有较大的位阻效应,因而使合成的聚氨酯弹性体具有硬度高、回弹性好、耐热性佳、动态性能优异、耐磨性好等特点,可适用于高动态负荷场景,是制备新型聚氨酯弹性体中备受青睐的异氰酸酯原料。然而,尽管NDI、PPDI、CHDI具有各种优点,但其也存在不可忽视的缺点:由于NCO基团的高反应性,可能在聚氨酯的生产中引起不必要的色号增长,即发生明显黄变,耐候性不佳,从而严重影响了聚氨酯弹性体的外观和产品质量。
因此,本领域亟待开发性能更优异的异氰酸酯原料,以实现聚氨酯弹性体的耐候性和外观等性能的提升。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种异氰酸酯组合物、改性组合物和聚氨酯弹性体,所述异氰酸酯组合物通过有效因子的设计,能够有效抑制聚氨酯弹性体在湿热条件下的色号增长,显著提高聚氨酯弹性体的稳定性和耐候性,并改善聚氨酯弹性体的机械性能。
第一方面,本申请实施例提供一种异氰酸酯组合物,所述异氰酸酯组合物的有效因子为3.80-5.30。
所述有效因子的计算公式如式I所示:
Figure PCTCN2022132424-appb-000001
式I中,E为有效因子;
式I中,A为所述异氰酸酯组合物中氯的质量含量;
式I中,B为所述异氰酸酯组合物中氯代异氰酸酯的质量含量;
式I中,M Cl为氯的相对原子质量,约为35.5;
式I中,M B为所述氯代异氰酸酯的相对分子质量。
本申请提供的异氰酸酯组合物的有效因子E为3.80-5.30,例如可以为3.90、4.00、4.10、4.30、4.50、4.70、4.90、5.00、5.10或5.20,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
本申请中,所述异氰酸酯组合物包括异氰酸酯和含氯物质的组合,故将其命名为“异氰酸酯组合物”;所述含氯物质包括氯代异氰酸酯和有效因子对应的物质的组合。本申请通过有效因子的设计和控制,使所述异氰酸酯组合物包括特定含量、特定种类的含氯物质,使其具有优良的反应活性,能够用于高性能聚氨酯制品的制备。特别地,所述异氰酸酯组合物用于聚氨酯制品、尤其是聚氨酯弹性体中,能够显著提升聚氨酯弹性体的稳定性和耐候性,抑制湿热条件下的色号增长和黄变,提高聚氨酯弹性体拉伸强度和撕裂强度,使聚氨酯弹性体在耐候性、稳定性、机械性能和外观等方面具有优异的综合表现。
优选地,所述异氰酸酯为二异氰酸酯,进一步优选包括萘二异氰酸酯(NDI)、苯二异氰酸酯(PPDI)、环己烷二异氰酸酯(CHDI)、二苯基甲烷二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI)中的任意一种或至少两种的组合。
本申请中,如无特殊说明,列举的异氰酸酯包括其所有的异构体,例如,所述萘二异氰酸酯(NDI)为
Figure PCTCN2022132424-appb-000002
所述苯二异氰酸酯(PPDI)为
Figure PCTCN2022132424-appb-000003
所述环己烷二异氰酸酯(CHDI)为
Figure PCTCN2022132424-appb-000004
所述二苯基甲烷二异氰酸酯(MDI) 为
Figure PCTCN2022132424-appb-000005
所述甲苯二异氰酸酯(TDI)为
Figure PCTCN2022132424-appb-000006
优选
Figure PCTCN2022132424-appb-000007
优选地,所述萘二异氰酸酯为1,5-萘二异氰酸酯
Figure PCTCN2022132424-appb-000008
所述苯二异氰酸酯为1,4-苯二异氰酸酯(对苯二异氰酸酯,
Figure PCTCN2022132424-appb-000009
);所述环己烷二异氰酸酯为1,4-环己烷二异氰酸酯
Figure PCTCN2022132424-appb-000010
所述二苯基甲烷二异氰酸酯为4,4'-二苯基甲烷二异氰酸酯
Figure PCTCN2022132424-appb-000011
所述甲苯二异氰酸酯为2,4-甲苯二异氰酸酯
Figure PCTCN2022132424-appb-000012
和/或2,6-甲苯二异氰酸酯
Figure PCTCN2022132424-appb-000013
优选地,所述异氰酸酯组合物中异氰酸酯的质量百分含量≥97%,例如为97.5%、98%、98.5%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%、99.92%、99.95%、99.98%、99.99%等,进一步优选≥99%,更优选>99%。
优选地,所述氯代异氰酸酯为异氰酸酯中的一个NCO基团被氯替代得到的化合物。
优选地,所述氯代异氰酸酯包括
Figure PCTCN2022132424-appb-000014
(优选
Figure PCTCN2022132424-appb-000015
氯代萘基异氰酸酯CNI,异氰酸酯为NDI)、
Figure PCTCN2022132424-appb-000016
(氯代苯基异氰酸酯CPPI,异氰酸酯为PPDI)、
Figure PCTCN2022132424-appb-000017
(氯代环己基异氰酸酯CCHI,异氰酸酯为CHDI)、
Figure PCTCN2022132424-appb-000018
(优选
Figure PCTCN2022132424-appb-000019
氯代二苯基甲烷异氰酸酯,异氰酸酯为MDI)、
Figure PCTCN2022132424-appb-000020
(优选
Figure PCTCN2022132424-appb-000021
氯代甲苯异氰酸酯,异氰酸酯为TDI)中的任意一种或至少两种的组合。
本文中,“—”划过的环结构的表达方式,表示连接位点于该环结构上任意能够成键的位置。
优选地,所述异氰酸酯组合物中氯代异氰酸酯的质量含量(B值)为5-2000ppm,例如可以为10ppm、20ppm、30ppm、50ppm、80ppm、100ppm、300ppm、500ppm、700ppm、900ppm、1000ppm、1100ppm、1300ppm、1500ppm、1700ppm或1900ppm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选10-1500ppm。
本申请中,“ppm”为百万分比率,1ppm表示百万分之一;下文涉及相同的表述时,均具有相同的含义。
优选地,所述有效因子对应的物质包括如下化合物中的任意一种或至少两种的组合:
Figure PCTCN2022132424-appb-000022
其中,R为异氰酸酯中的NCO基团被去除得到的二价基团。
优选地,所述R选自
Figure PCTCN2022132424-appb-000023
(异氰酸酯为NDI)、
Figure PCTCN2022132424-appb-000024
(异氰酸酯为PPDI)、
Figure PCTCN2022132424-appb-000025
(异氰酸酯为CHDI)、
Figure PCTCN2022132424-appb-000026
(异氰酸酯为MDI)、
Figure PCTCN2022132424-appb-000027
(优选
Figure PCTCN2022132424-appb-000028
异氰酸酯为TDI)中的任意一种或至少两种的组合;其中,波浪线代表基团的连接位点。
优选地,所述异氰酸酯组合物中氯的质量含量(A值)为1-1000ppm,例如可以为2ppm、5ppm、8ppm、10ppm、30ppm、50ppm、80ppm、100ppm、150ppm、200ppm、250ppm、300ppm、350ppm、400ppm、450ppm、500ppm、550ppm、600ppm、650ppm、700ppm、750ppm、800ppm、850ppm、900ppm或950ppm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选5-500ppm。
本申请中,计算有效因子的式I中,A为所述异氰酸酯组合物中氯的质量含量,优选通过X射线荧光光谱分析(XRF)测试得到。
优选地,计算有效因子的式I中,B为所述异氰酸酯组合物中氯代异氰酸酯的质量含量,通过色谱-质谱法测试得到,优选通过气相色谱-质谱法(GCMS)测试得到。
本申请在研究中发现,相关技术已知的异氰酸酯中氯含量的表征方法难以精准控制异氰酸酯的性能,从而无法对聚氨酯制品/聚氨酯弹性体的性能、尤其是耐黄变性、稳定性和外观等进行有效控制。具体地,标准GB/T 12009.1-1989中总氯含量的测试方法为氧瓶燃烧法,将异氰酸酯中所有氯(还包括溴)转化为无机氯(还包括溴)后再采用硝酸银滴定,表征的是异氰酸酯中所有的氯含量,而且包括了异氰酸酯中溴的含量。标准GB/T 12009.2-2016测定水解氯的含量,具体为异氰酸酯与醇和水反应后释放出来的氯,是异氰酸酯中活性较高的氯,也包括活性较高的溴,部分单氯代异氰酸酯也能水解一部分。以GB/T 12009.1-1989或GB/T 12009.2-2016测定的氯(还包括一部分溴)含量并不能精确表示出异氰酸酯的组分信息,也就不能对异氰酸酯、聚氨酯制品、尤其是聚氨酯弹性体的性能进行有效控制。
作为本申请的优选技术方案,所述有效因子E的计算中,A为XRF测试得到总氯含量(不含溴),B为采用色谱-质谱法测试得到的氯代异氰酸酯含量,A值和B值以精确的定性和定量分析方法测试得到,从而使所述有效因子E精确表征了异氰酸酯组合物中多氯代物以及部分的水解氯(不包含单氯代异氰酸酯的水解氯),对应更加精细、明确的氯含量,该部分氯含量对异氰酸酯的活性以及聚氨酯产品(例如聚氨酯弹性体)的性能具有关键作用,从而实现了对异氰酸酯组合物的性能调控,进而改善了通过其制备的聚氨酯弹性体的性能,尤其对耐候性、稳定性、机械性能和外观具有明显的提升效果。
需要说明的是,本申请中,所述氯代异氰酸酯、有效因子对应的物质,可以在异氰酸酯的制备过程中作为副产物而产生,也可以人为添加以获得所要求的含量。
第二方面,本申请实施例提供一种如第一方面所述的异氰酸酯组合物的制备方法,所述制备方法包括:胺类化合物与光气进行反应,得到所述异氰酸酯组合物。
优选地,所述制备方法包括如下步骤:
(1)胺类化合物与光气进行反应,得到反应产物;
(2)对步骤(1)得到的反应产物进行脱除处理,得到粗品;所述脱除处理包括脱光气处理和/或脱溶剂处理;
(3)将步骤(2)得到的粗品依次进行分离和精制,得到所述异氰酸酯组合物。
需要说明的是,当采用二胺与光气进行异氰酸酯化反应时,可以通过优选如下参数来获得特定的有效因子。也可通过将氯代异氰酸酯和/或有效因子对应的物质添加至异氰酸酯中,来调节所述异氰酸酯组合物的有效因子E。
优选地,步骤(3)所述分离得到重组分和中间品;将所述中间品和重组分的混合物进行精制,得到所述异氰酸酯组合物;所述混合物中重组分的质量百分含量为1-10%。
作为本申请的优选技术方案,进行精制的组分为所述中间品和重组分的混合物,所述混 合物中重组分的质量百分含量为1-10%,例如可以为2%、3%、4%、5%、6%、7%、8%或9%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选2-10%。
优选地,所述分离得到的重组分可直接与中间品混合,得到混合物;或,所述分离得到的重组分为一级重组分,所述一级重组分再次分离得到重组分回收料和残余重组分;所述重组分回收料与中间品混合,得到所述混合物;所述混合物中重组分回收料的质量百分含量为1-10%。
在另一优选技术方案中,所述异氰酸酯组合物的制备方法包括:将氨基甲酸酯裂解法得到的异氰酸酯与所述重组分回收料混合,得到所述异氰酸酯组合物。优选地,所述异氰酸酯组合物中重组分回收料的质量百分含量为1-10%(例如2%、3%、4%、5%、6%、7%、8%或9%等),进一步优选1-5%。
作为本申请的优选技术方案,所述异氰酸酯组合物的制备方法为光气化法,即胺类化合物与光气进行反应,生成异氰酸酯;所述胺类化合物包括二胺和/或二胺盐(例如二胺与HCl反应得到的二胺盐酸盐)。
优选地,所述胺类化合物与光气进行反应的方法示例性地包括如下三类:二胺与光气在气相中反应的方法,又称气相光气化法;二胺与光气在液相中反应的方法,又称液相光气化法或冷热二阶段光气化法;二胺盐(例如二胺盐酸盐)与光气在溶剂中反应的方法,又称二胺盐酸盐的光气化法,本申请进一步优选冷热二阶段光气化法。
优选地,步骤(1)所述胺类化合物为二胺,步骤(1)所述反应的方法为冷热二阶段光气化法。
优选地,步骤(1)具体包括:将二胺与溶剂混合,得到胺溶液;向所述胺溶液中通入光气,进行反应,得到反应产物,即含有二异氰酸酯的反应液。
优选地,所述溶剂为有机溶剂,示例性地包括但不限于:例如苯、甲苯、二甲苯等芳香族烃类,例如辛烷、癸烷等脂肪族烃类,例如环己烷、甲基环己烷、乙基环己烷等脂环族烃类,例如氯甲苯、氯苯、二氯苯、二溴苯、三氯苯等卤代芳香族烃类,例如硝基苯、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N'-二甲基咪唑啉酮等含氮化合物类,例如二丁基醚、乙二醇二甲基醚、乙二醇二乙基醚等醚类,例如庚酮、二异丁基酮、甲基异丁基酮、甲基乙基酮等酮类,例如乙酸乙酯、乙酸丁酯、乙酸戊酯、乙酸乙氧基乙酯等脂肪酸酯类,例如水杨酸甲酯、邻苯二甲酸二甲酯、邻苯二甲酸二丁酯、苯甲酸甲酯等芳香族羧酸酯类等;所述溶剂可以单独使用,或者为至少两种的组合。
优选地,所述溶剂包括卤代芳香族烃类,进一步优选氯苯和/或二氯苯。
优选地,所述胺溶液中二胺的质量百分含量为1-50wt.%,例如可以为2wt.%、5wt.%、8wt.%、10wt.%、12wt.%、15wt.%、18wt.%、20wt.%、22wt.%、25wt.%、28wt.%、30wt.%、35wt.%、40wt.%、45wt.%或48wt.%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选5-40wt.%。
优选地,步骤(1)所述光气与胺类化合物(二胺)的摩尔比为(3-50):1,例如可以为4:1、5:1、8:1、10:1、12:1、15:1、18:1、20:1、22:1、25:1、28:1、30:1、32:1、35:1、38:1、40:1、42:1、45:1或48:1等,进一步优选(4-40):1,更进一步优选(4-30):1。
优选地,步骤(1)所述反应包括依次进行的冷反应和热反应。
优选地,所述冷反应的温度为-10℃至80℃,例如可以为-5℃、0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃或75℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选0-70℃。
优选地,所述冷反应的时间为1-20h,例如可以为2h、3h、4h、5h、6h、7h、8h、9h、10h、11h、12h、13h、14h、15h、16h、17h、18h或19h,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选2-15h。
优选地,所述热反应的温度为70-150℃,例如可以为75℃、80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃、130℃、135℃、140℃或145℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选80-130℃。
优选地,所述热反应的时间为1-20h,例如可以为2h、3h、4h、5h、6h、7h、8h、9h、10h、11h、12h、13h、14h、15h、16h、17h、18h或19h,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选2-15h。
优选地,步骤(1)所述反应在常压或加压的条件下进行。
优选地,步骤(1)所述反应的压力(表压)为0-0.6MPa G,例如可以为0.0005MPa G、0.001MPa G、0.003MPa G、0.01MPa G、0.02MPa G、0.03MP a G、0.05MPa G、0.07MPa G、0.09MPa G、0.1MPa G、0.2MPa G、0.3MPa G、0.4MPa G或0.5MPa G,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选0.005-0.4MPa G,更进一步优选0.01-0.2MPa G。
优选地,步骤(1)所述反应(异氰酸酯化工序)为间歇工序或连续工序,优选连续工序。
其中,所述连续工序即为在搅拌槽中的浆料(胺溶液)从搅拌槽连续地输送至与搅拌槽不同的反应槽中,在反应槽中使二胺与光气反应,并且,将得到的反应产物(含有二异氰酸酯的反应液)连续地从反应槽中取出。本申请对于连续工序的反应釜个数不做具体限定,示例性地,可以为2个、3个、4个、5个或更多。
根据需要,可以对步骤(1)得到的反应产物实施脱除工序(脱溶剂工序和/或脱光气工序)和分离精制工序。
优选地,步骤(2)所述脱光气处理在脱光气塔中进行。
优选地,步骤(2)所述脱溶剂处理在脱溶剂塔中进行。
优选地,步骤(3)所述分离将中间品(轻组分)和重组分进行分离,实现重组分的脱除;所述分离的装置示例性地包括但不限于:短程蒸发器、蒸馏塔,进一步优选短程蒸发器。
优选地,所述短程蒸发器的操作压力为0.05-4kPa,例如可以为0.08kPa、0.1kPa、0.3kPa、0.5kPa、0.8kPa、1kPa、1.2kPa、1.5kPa、1.8kPa、2kPa、2.2kPa、2.5kPa、2.8kPa、3kPa、3.2kPa、3.5kPa或3.8kPa,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选为0.1-2.5kPa。
作为本申请的优选技术方案,所述分离得到的重组分中包含种类比较丰富、含量较高的含氯物质,通过将分离得到的重组分或重组分再次分离得到的重组分回收料以一定的比例掺入分离得到的中间品(轻组分)中,再将其进行精制,能够有效调控产物中的含氯物质的种类和含量,使所述异氰酸酯组合物的有效因子为3.80-5.30。
优选地,所述混合物(参与精制的物料)中重组分(重组分回收料)的质量百分含量为1-10%,进一步优选2-10%,使所述异氰酸酯组合物的有效因子为3.80-5.30。如果重组分(重组分回收料)的掺入量过少,则有效因子偏高,所述异氰酸酯组合物用于制备聚氨酯弹性体时反应速率过快,导致聚合不均匀,使聚氨酯弹性体的机械性能变差,拉伸强度和撕裂强度降低;如果重组分(重组分回收料)的掺入量过高,导致有效因子过低,所述异氰酸酯组合物中含有较多的杂质,使聚氨酯弹性体的耐候性变差、尤其是湿热条件下存在明显的黄变现象。
优选地,与中间品混合的所述重组分可通过直接回掺入中间品,或可经过脱重组分设备循环分离后得到重组分回收料,再将其掺入中间品中。
优选地,所述精制的方法为本领域已知的工业分离技术,示例性地包括但不限于:蒸馏、精馏、晶析等。
优选地,所述精制的方法为精馏。
优选地,所述精馏在精馏塔中进行,所述精馏塔优选包括板式精馏塔或填充式精馏塔。
优选地,所述精馏塔的理论塔板数为2-40,例如可以为3、5、8、10、12、15、18、20、22、25、28、30、32、35或38,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选为5-20。
优选地,所述精馏塔的塔顶压力为0.1-4kPa,例如可以为0.2kPa、0.5kPa、0.8kPa、1kPa、1.2kPa、1.5kPa、1.8kPa、2kPa、2.2kPa、2.5kPa、2.8kPa、3kPa、3.2kPa、3.5kPa或3.8kPa,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选为0.15-2.5kPa。
优选地,所述精馏塔的塔顶回流比为0.01-40,例如可以为0.05、0.1、0.5、1、3、5、8、10、12、15、18、20、22、25、28、30、32、35或38,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值,进一步优选为0.1-20。
在本申请的一个优选技术方案中,所述异氰酸酯组合物的制备方法包括如下步骤:
(1)光气化工序:将二胺与溶剂混合,得到胺溶液;向所述胺溶液中通入光气进行反应,得到反应产物;所述反应包括依次进行的冷反应和热反应,所述冷反应的温度<所述热反应的温度;
(2)脱除工序:对步骤(1)得到的反应产物进行脱除处理,得到粗品;所述脱除处理包括脱光气处理和/或脱溶剂处理;
(3a)分离工序:将步骤(2)得到的粗品进行分离,得到重组分和中间品(轻组分);
(3b)重组分回收工序:将步骤(3a)得到的中间品和重组分混合,得到混合物;所述混合物中重组分的质量百分含量为1-10%;或,将步骤(3a)得到的重组分进行二次分离,得到重组分回收料和残余重组分;将所述重组分回收料与中间品混合,得到混合物;所述混合物中重组分回收料的质量百分含量为1-10%;
(3c)精制工序:将步骤(3b)得到的混合物进行精制,得到所述异氰酸酯组合物。
示例性地,所述制备方法的流程示意图如图1所示,包括光气化工序10,脱除工序20,分离工序30,重组分回收工序40,精制工序50。其中,光气化工序可通过间歇方式或连续方式实施,连续方式通过釜式连续进行。通过适当调节重组分与中间品的混合比例、光气的供给比例、反应温度、反应压力、平均滞留时间、精馏塔的回流比等来调节异氰酸酯组合物的有效因子,主要通过重组分与中间品的比例实现有效因子的控制。
具体地,以NDI组合物为例,其制备方法如下:
(1)光气化工序:采用釜式反应,三釜或四釜连续,将包含NDA(萘二胺)的胺溶液连续地输送至光气化反应釜,以上述的比例,冷反应一釜、热反应一釜、热反应二釜的各自的顶部以***管的方式连续地通入光气;而后,一边将冷反应一釜的内部维持为上述冷反应的温度和反应压力,一边将胺溶液与光气搅拌混合;由此,NDA与光气(碳酰氯)进行冷反应,得到冷反应光化液;
而后,向热反应一釜的顶部连续地输送上述冷反应光化液;即,一边向冷反应一釜连续地供给胺溶液和光气,一边将冷反应光化液从冷反应一釜中连续地取出,输送至热反应一釜;
接下来,将热反应一釜的内部维持为上述热反应的温度和反应压力,在热反应一釜中将反应物质及光气搅拌混合并进行光气化反应;同理地,热反应二釜也是一边输入反应物质,一边进行光气化反应;
由此,连续地实施光气化工序,得到包含NDI的反应液。
(2)脱除工序:采用脱光气塔和脱溶剂塔进行,向脱光气塔的塔中部位连续地输送上述反应液。通过脱光气塔,将反应液进行光气和氯化氢等脱除;然后通过脱溶剂塔将反应液中溶剂脱除,得到NDI粗品。
(3a)分离工序:采用短程蒸发器将上述NDI粗品进行分离,脱除重组分,得到中间品和一级重组分。
(3b)重组分回收工序:一级重组分经过短程蒸发器进行回收,得到重组分回收料和残余重组分,可单次或循环进行回收;重组分回收料与中间品混合得到的混合物进入精制工序; 所述混合物中重组分回收料的质量百分含量为1-10%。
(3c)精制工序:向精馏塔的塔中连续地输送上述混合物;而后,在前述精馏的条件(塔底温度、塔顶温度、塔顶压力、塔底回流比、塔顶回流比、停留时间)下,将低沸物从中间品中馏去,从塔中部偏下采出NDI组合物。
由此,可连续地制造包括NDI、CNI以及有效因子对应的物质的NDI组合物。
第三方面,本申请实施例提供一种异氰酸酯的改性组合物,所述改性组合物通过如第一方面所述的异氰酸酯组合物改性得到;所述改性组合物包含基团(a)-(i)中的任意一种或至少两种的组合:(a)异氰脲酸酯基,(b)脲二酮基,(c)缩二脲基,(d)氨基甲酸酯基,(e)脲基,(f)亚氨基噁二嗪二酮基,(g)脲基甲酸酯基,(h)脲酮亚胺基,(i)碳二亚胺基。
本领域技术人员可以根据需要利用已知的方法对前述异氰酸酯组合物进行改性,得到所述改性组合物;所述改性组合物作为多异氰酸酯成分与含活性氢基团的物质作为聚氨酯树脂等异氰酸酯基聚合物的原料而被合适地利用。
具体地,包含所述基团(a)异氰脲酸酯基的改性组合物即为异氰酸酯的三聚物,示例性地,其可通过在已知的异氰脲酸酯化催化剂的存在下使异氰酸酯组合物反应、使其中的异氰酸酯进行异氰脲酸酯化而得到。
包含所述基团(b)脲二酮基的改性组合物可通过于90-200℃的温度下对异氰酸酯组合物进行加热的方法、或在已知的脲二酮化催化剂的存在下使其发生反应、使异氰酸酯进行脲二酮化(例如二聚化)而得到。
包含所述基团(c)缩二脲基的改性组合物可通过在使异氰酸酯组合物与例如水、叔醇(例如叔丁醇等)、仲胺(例如二甲基胺、二乙基胺等)等反应后在已知的缩二脲化催化剂的存在下进一步使其反应而得到。
包含所述基团(d)氨基甲酸酯基的改性组合物可通过异氰酸酯组合物与多元醇(例如三羟甲基丙烷等)的反应而得到。
包含所述基团(e)脲基的改性组合物可通过异氰酸酯组合物与水、多胺(后述)等的反应而得到。
包含所述基团(f)亚氨基噁二嗪二酮基的改性组合物即为异氰酸酯的非对称性三聚体,可通过在已知的亚氨基噁二嗪二酮化催化剂的存在下使异氰酸酯组合物反应、使异氰酸酯进行亚氨基噁二嗪二酮化(例如三聚化)而得到。
包含所述基团(g)脲基甲酸酯基的改性组合物可通过在使异氰酸酯组合物与醇反应后、在已知的脲基甲酸酯化催化剂的存在下进一步使其反应而得到。
包含所述基团(h)脲酮亚胺基的改性组合物可通过在已知的碳二亚胺化催化剂的存在下使异氰酸酯组合物反应形成碳二亚胺基后、向该碳二亚胺基加成异氰酸酯而得到。
包含所述基团(i)碳二亚胺基的改性组合物可通过在已知的碳二亚胺化催化剂的存在下使异氰酸酯组合物反应而得到。
需要说明的是,所述改性组合物包含上述基团(a)-(i)中的至少1种即可,也可含有 至少2种。这样的改性组合物可通过适当地并用上述的反应而生成。另外,所述改性组合物可以单独使用或并用2种以上。
第四方面,本申请实施例提供一种异氰酸酯基聚合物,所述异氰酸酯基聚合物通过异氰酸酯类物质与含活性氢基团的物质反应而成;所述异氰酸酯类物质包括如第一方面所述的异氰酸酯组合物、如第三方面所述的改性组合物中的至少一种。
优选地,所述活性氢基团包括羟基、氨基、巯基中的任意一种或至少两种的组合。
优选地,所述含活性氢基团的物质包括多元醇、多元胺、多硫醇中的任意一种或至少两种的组合。
其中,所述含活性氢基团的物质为多元醇,所述异氰酸酯基聚合物为聚氨酯;所述含活性氢基团的物质为多元胺,所述异氰酸酯基聚合物为聚脲;所述含活性氢基团的物质为多硫醇,所述异氰酸酯基聚合物为聚硫氨酯。
第五方面,本申请实施例提供一种聚氨酯弹性体,所述聚氨酯弹性体的制备原料包括异氰酸酯类物质和多元醇;所述异氰酸酯类物质包括如第一方面所述的异氰酸酯组合物和/或如第三方面所述的改性组合物。
优选地,所述多元醇为高分子量多元醇。
优选地,所述制备原料还包括扩链剂。
优选地,所述扩链剂包括低分子量多元醇和/或低分子量多元胺。
本申请中,所述聚氨酯弹性体(PUR)可以为热塑性聚氨酯弹性体(TPU)、热固性聚氨酯弹性体(TSU)、可轧型聚氨酯弹性体等。聚氨酯弹性体包含通过异氰酸酯类物质与多元醇(高分子量多元醇)的反应而形成的软链段,以及通过异氰酸酯类物质与扩链剂(低分子量多元醇和/或低分子量多元胺)的反应而形成的硬链段。聚氨酯弹性体可通过异氰酸酯类物质、高分子量多元醇(含活性氢基团的物质)、低分子量多元醇和/或低分子量多元胺(含活性氢基团的物质)的反应来制造。即,异氰酸酯类物质(所述异氰酸酯组合物和/或改性组合物)、多元醇(高分子量多元醇)、扩链剂(低分子量多元醇和/或低分子量多元胺)为所述聚氨酯弹性体的制备原料。
本申请中,所述异氰酸酯类物质包括所述异氰酸酯组合物和/或改性组合物,所述异氰酸酯组合物的有效因子为3.80-5.30,所述改性组合物通过有效因子为3.80-5.30的所述异氰酸酯组合物改性得到。本申请通过有效因子的设计和控制,能够有效抑制聚氨酯弹性体的变色,提高聚氨酯弹性体的拉伸强度和撕裂强度,使所述聚氨酯弹性体在耐变色性、耐候性、稳定性和机械性能等方面表现出优异的综合性能。
优选地,所述多元醇为高分子量多元醇,示例性地包括但不限于:聚酯多元醇、聚碳酸酯多元醇、聚醚多元醇中的任意一种或至少两种的组合,进一步优选聚酯多元醇。
优选地,所述聚酯多元醇包括聚己内酯多元醇和/或己二酸系聚酯多元醇(以己二酸作为多元酸的聚酯多元醇),进一步优选己二酸系聚酯多元醇。
优选地,所述聚醚多元醇包括聚四亚甲基醚二醇。
优选地,所述扩链剂包括低分子量多元醇和/或低分子量多元胺,进一步优选低分子量多元醇。
优选地,所述低分子量多元醇包括乙二醇和/或1,4-丁二醇,进一步优选1,4-丁二醇。
本申请中,所述聚氨酯弹性体可通过一次完成(one shot)法或预聚物法等已知的方法制备得到。
对于一次完成法,例如,使异氰酸酯类物质(多异氰酸酯成分,异氰酸酯组合物和/或改性组合物)、多元醇(高分子量多元醇)、扩链剂(低分子量多元醇和/或低分子量多元胺)一次地进行反应,得到所述聚氨酯弹性体。
对于预聚物法,例如,首先,使异氰酸酯类物质(多异氰酸酯成分,异氰酸酯组合物和/或改性组合物)与多元醇(高分子量多元醇)反应,合成在分子末端具有异氰酸酯基的预聚物;然后,使所述预聚物与扩链剂(低分子量多元醇和/或低分子量多元胺)反应,得到所述聚氨酯弹性体。
需要说明的是,关于聚氨酯弹性体的制备方法,可采用本领域已知的聚合方法,例如本体聚合、溶液聚合等。
另外,聚氨酯弹性体的制备中国,根据需要,可将例如胺类、有机金属化合物(例如有机锡系化合物,优选二丁基二氯化锡、辛酸锡等)等已知的氨基甲酸酯化催化剂添加至制备原料中。
以及,根据需要,可以以适当的比例在聚氨酯弹性体中配合增塑剂、防结块剂、耐热稳定剂、耐光稳定剂、紫外线吸收剂、NOx黄变防止剂、抗氧化剂、脱模剂、颜料、染料、润滑剂、成核剂、填料、防水解剂等。
作为本申请的优选技术方案,所述聚氨酯弹性体耐变色性和耐候性优异,而且机械物性(拉伸强度和撕裂强度)优异。
特别地,所述聚氨酯弹性体在氙灯照射下的湿热老化试验240h后的色差Δb≤3.0,例如Δb可以为2.95、2.9、2.85、2.8、2.75、2.7、2.65、2.6、2.55、2.5、2.45、2.4、2.35、2.3、2.25、2.2、2.15、2.1、2.05、2.0、1.9、1.8、1.7、1.6、1.5等,进一步优选<3.0。
优选地,以NDI组合物制备的聚氨酯弹性体的拉伸强度>41MPa,可达41.3-42.5MPa;撕裂强度>64kN/m,可达64.1-65.2kN/m。
优选地,以PPDI组合物制备的聚氨酯弹性体的拉伸强度>44MPa,可达44.3-45.7MPa;撕裂强度>119kN/m,可达119.6-121.6kN/m。
优选地,以CHDI组合物制备的聚氨酯弹性体的拉伸强度>35MPa,可达35.1-36.1MPa;撕裂强度≥59kN/m,为59.0-60.1kN/m。
相对于相关技术,本申请实施例具有以下有益效果:
本申请实施例提供的异氰酸酯组合物中,通过有效因子的设计和控制,使其具有优良的反应活性,能够用于高性能聚氨酯制品的制备。所述异氰酸酯组合物能够有效改善聚氨酯制品的稳定性,尤其能够显著提升聚氨酯弹性体的耐变色性能和耐候性,抑制湿热条件下的色 号增长和黄变,使聚氨酯弹性体在氙灯照射下的湿热老化试验240h后的色差Δb<3.0,并提高了聚氨酯弹性体的拉伸强度和撕裂强度,使所述聚氨酯弹性体在耐候性和机械强度等方面具有优异的综合表现。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为为本申请一个具体实施方式中所述异氰酸酯组合物的制备方法的流程示意图;
其中,10-光气化工序,20-脱除工序,30-分离工序,40-重组分回收工序,50-精制工序。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
本申请中组分和性能的测试方法如下:
1、异氰酸酯组合物中氯代异氰酸酯的质量含量(B值)的测定:GCMS测试
在下述的条件下利用气相色谱-质谱法进行分析,本文中的含量为归一化含量。
分析仪器:Agilent 5977B GCMS
色谱柱:DB-5色谱柱,规格为30m×0.25mm×0.25μm
柱箱温度:50℃保持2min,以5mL/min的速度升温至80℃,再以15mL/min的速度升温至280℃,保持10min
分离比:不分流
进样口温度:280℃
检测温度:300℃
载气:氦气
载气流量:1mL/min(恒定流量)
进样量:1μL
检测方法:SIM选择离子扫描模式(对于NDI选择离子202/168,对于PPDI选择离子152/118,对于CHDI选择离子158/124)
2、异氰酸酯组合物中氯的质量含量(A值)的测定:XRF测试
仪器:能量色散型X射线荧光光谱(ED-XRF),型号:MERAK-LE II;
方法:标准加入法
原理及操作:色谱纯的CCl 4标准品为Cl源,乙酸乙酯为稀释剂,通过X射线光管产生的X射线激发样品中Cl元素,产生特征X射线荧光,特征X射线荧光强度与元素浓度呈线性关系,绘制标准曲线,外推值即为样品中Cl元素含量。
3、异氰酸酯组合物中异氰酸酯的质量百分含量的测定:气相色谱测试
在下述的条件下利用气相色谱进行分析,本文中的含量为归一化含量。
分析仪器:Agilent 7890B GC
色谱柱:DB-5色谱柱,规格为30m×0.25mm×0.25μm
柱箱温度:60℃保持1min,以10℃/min的速度升温至280℃,保持5min
分离比:30:1
进样口温度:280℃
检测温度:320℃
载气:氮气
载气流量:1mL/min(恒定流量)
进样量:1μL
检测器:FID
本申请以下具体实施方式中,如无特别说明,“份”及“%”是以质量为基准。
实施例1
一种NDI组合物及其制备方法,所述NDI组合物的有效因子E为5.30,其制备方法的流程示意图如图1所示,具体包括如下步骤:
光气化工序:将800质量份氯苯装入冷反应釜中,将冷反应釜内的温度调节为20℃,将压力(表压)调节为0.04MPaG。以500质量份/h的速率向冷反应釜连续地装入1,5-NDA(1,5-萘二胺)浓度为10.0wt.%的胺的氯苯溶液,以626质量份/h的速率向釜中连续地通入光气,冷反应的温度为20℃,时间为2.5h,得到冷反应光化液;
将冷反应光化液从冷反应釜中取出并输送至热反应釜,并向热反应釜中以质量份/h的速率通入光气,维持热反应釜内的温度为110℃,将压力(表压)调节为0.2MPa G,进行热反应,温度为110℃,时间为4h,由此,使1,5-NDA与光气反应,生成1,5-NDI,制备包含1,5-NDI的反应产物。
脱除工序:将光气化工序得到的反应产物向脱光气塔和脱溶剂塔中连续地输送,分别进行脱光气处理和脱溶剂处理,由此,制备得到NDI的粗品130质量份。
分离工序:将脱除工序得到的粗品连续向短程蒸发器输送,得到脱除重组分的中间品117.2质量份和一级重组分12.8质量份。
重组分回收工序:一级重组分连续向二级短程蒸发器输送,得到重组分回收料2.39质量份和残余重组分10.4质量份。接下来,以速率为117.2质量份/h的中间品与速率为2.39质量份/h的重组分回收料进行混合得到119.6质量份/h混合物,即所述混合物中重组分回收料的质量百分含量为2%。
精制工序:向精馏塔中连续地输送前述混合物,对于精馏塔而言,填充有相当于理论塔板数为5的填充物,然后在精馏塔中,从塔顶脱除轻组分,从塔中采出NDI组合物,得到目标产物;
精馏塔中的精馏条件如下所示:
塔底温度:130-140℃
塔顶温度:120-130℃
塔顶压力:0-50PaA
停留时间:2-4h
塔顶回流比:4
由此,得到所述NDI组合物,其中NDI的质量含量>99%,氯的质量含量(A值)为7.6ppm,氯代异氰酸酯CNI的质量含量(B值)为15ppm,有效因子E为5.30。
实施例2-5,比较例1-2
一种NDI组合物及其制备方法,所述NDI组合物的有效因子E分别如表1所示,其制备方法的流程与实施例1相同,区别仅在于部分工艺参数不同,具体示于表1中(表1中未示出的工艺/参数与实施例1完全相同)。表1中,“光气摩尔比”表示光气化工序中以1,5-NDA为1mol计,所述光气的摩尔量;“重组分回收料比例”表示重组分回收工序中,所述混合物中重组分(回收料)的质量百分含量。
表1
Figure PCTCN2022132424-appb-000029
Figure PCTCN2022132424-appb-000030
实施例6-10,比较例3-4
一种PPDI组合物及其制备方法,所述PPDI组合物的有效因子E分别如表2所示,其制备方法的流程与实施例1相同,区别仅在于部分工艺参数不同,具体示于表2中(表2中未示出的工艺/参数与实施例1完全相同)。表2中,“光气摩尔比”表示光气化工序中以1,4-二氨基苯为1mol计,所述光气的摩尔量;“重组分回收料比例”表示重组分回收工序中,所述混合物中重组分(回收料)的质量百分含量。
表2
Figure PCTCN2022132424-appb-000031
Figure PCTCN2022132424-appb-000032
实施例11-15,比较例5-6
一种CHDI组合物及其制备方法,所述PPDI组合物的有效因子E分别如表3所示,其制备方法的流程与实施例1相同,区别仅在于部分工艺参数不同,具体示于表3中(表3中未示出的工艺/参数与实施例1完全相同)。表3中,“光气摩尔比”表示光气化工序中以1,4-二氨基环己烷为1mol计,所述光气的摩尔量;“重组分回收料比例”表示重组分回收工序中,所述混合物中重组分(回收料)的质量百分含量。
表3
Figure PCTCN2022132424-appb-000033
Figure PCTCN2022132424-appb-000034
实施例16-18以及比较例7-9
采用相关技术CN110256296A的实施例1中的方法制备NDI作为比较例7,此实施例为热裂解法制备NDI,产品中不含氯,也就不含有效因子;将实施例1中的重组分回收料以4%的比例添加至该产品中(即得到的混合物中重组分的质量百分含量为4%),得到实施例16。
类似地,采用CN110256296A的实施例1中的方法,将原料NDA替换为PPDA,其他条件一致,制备PPDI作为比较例8;将实施例6中的重组分回收料以4%的比例添加至该产品中(即得到的混合物中重组分的质量百分含量为4%),得到实施例17。
采用CN110256296A的实施例1中的方法,将原料NDA替换为CHDA,其他条件一致,制备CHDI作为比较例9;将实施例11中的重组分回收料以4%的比例添加至该产品中(即得到的混合物中重组分的质量百分含量为4%),得到实施例18。
应用例
一种聚氨酯弹性体,具体为热塑性聚氨酯弹性体(TPU),其制备原料包括异氰酸酯类物质(多异氰酸酯成分)、高分子量多元醇、扩链剂(低分子量多元醇);所述异氰酸酯类物质分别为实施例1-15、比较例1-6提供的异氰酸酯组合物,所述高分子量多元醇为己二酸系聚酯多元醇(三井化学公司制,TAKELAC U-2024,数均分子量为2000),所述扩链剂为1,4-丁二醇(伊诺凯试剂);此外,所述制备原料还包括催化剂(辛酸锡)和耐热稳定剂(购自Ciba Specialty Chemicals,IRGANOX 245)。
所述聚氨酯弹性体的制备方法如下:
(1)向装有搅拌器、温度计、回流管和氮供给线路的四颈烧瓶中,装入NDI组合物221质量份(对于PPDI组合物的质量为168质量份,对于CHDI组合物的质量为175质量份)和己二酸系聚酯多元醇531.2质量份,在氮气气氛下,于80℃进行反应,直至NCO基含量为 9.1wt.%,得到分子末端具有异氰酸酯基的预聚物。
(2)将耐热稳定剂3.9质量份和利用己二酸二异壬酯(西亚试剂)将催化剂辛酸锡稀释成4wt.%而得到的溶液0.07质量份添加至步骤(1)得到的预聚物中,使用机械搅拌器(德国IKA,RW20),在600rpm的转速下进行约1min搅拌混合,然后向体系中加入已预先调节至80℃的1,4-丁二醇131.9质量份,充分搅拌约2min,直至混合均匀,得到混合液;
(3)将步骤(2)得到的混合液流入至已预先将温度调节为150℃的不锈钢制的盘中,于150℃反应1h,然后于100℃反应23h,得到弹性体。
(4)将步骤(3)得到的弹性体从盘中取下,在室温23℃、相对湿度55%的恒温恒湿条件下养护7天,得到所述聚氨酯弹性体。
聚氨酯弹性体的性能评价:
使用注射成型机(型号:NEX-140,台富机械)将待测的聚氨酯弹性体(原材料,应用例中步骤(2)得到的的混合液)在螺杆转速100rpm、料筒温度150-235℃的设定下,在模具温度20℃、注射时间10s、注射速度60mm/s、冷却时间45s的条件下实施注射成型,得到片材;
在23℃、相对湿度55%的恒温恒湿条件下,将得到的片材(厚度为2mm)养护7天,得到用于测试的聚氨酯弹性体片材,并具体进行如下性能测试:
(1)首先利用色彩色素计测定聚氨酯弹性体片材的b值(b1,初始值);然后实施氙灯照射试验,将聚氨酯弹性体片材置于超级氙灯气候试验箱(威邦仪器)中,在温度89℃、相对湿度50%、氙灯辐照度100W/m 2(照射波长为300-400nm)的条件下放置240h,然后将片材取出,用上述相同的方法测试片材的b值(b2)。计算氙灯照射下的湿热老化试验240h后的聚氨酯弹性体的色差Δb,Δb=∣b2-b1∣;
(2)拉伸强度:弹性体的拉伸强度按照GB/T 528-2009中的方法进行测试;
(3)撕裂强度:弹性体的撕裂强度按照GB/T 529-2008中的方法进行测试;
前述测试结果如表4、表5和表6所示。
表4
Figure PCTCN2022132424-appb-000035
Figure PCTCN2022132424-appb-000036
表5
Figure PCTCN2022132424-appb-000037
表6
Figure PCTCN2022132424-appb-000038
Figure PCTCN2022132424-appb-000039
结合以上的性能测试数据可知,本申请通过将异氰酸酯组合物的有效因子控制在3.80-5.30范围内,使基于所述异氰酸酯组合物制备得到的聚氨酯弹性体具有优异的稳定性和耐候性,氙灯照射下的湿热老化处理240h后的色差Δb<3.0,低至2.53-2.95,抑制湿热条件下的色号增长和黄变,提高聚氨酯弹性体拉伸强度和撕裂强度,其中,以NDI组合物制备的聚氨酯弹性体的拉伸强度为41.3-42.5MPa,撕裂强度为64.1-65.2kN/m;以PPDI组合物制备的聚氨酯弹性体的拉伸强度为44.3-45.7MPa,撕裂强度为119.6-121.6kN/m;以CHDI组合物制备的聚氨酯弹性体的拉伸强度为35.1-36.1MPa,撕裂强度为59.0-60.1kN/m,使聚氨酯弹性体保持优异的外观、耐候性、机械性能等综合产品性能。由此可见,本申请提供的异氰酸酯组合物在聚氨酯弹性体中具有更佳的应用前景。
申请人声明,本申请通过上述实施例来说明本申请的异氰酸酯组合物、改性组合物和聚氨酯弹性体,但本申请并不局限于上述工艺步骤,即不意味着本申请必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种异氰酸酯组合物,其中,所述异氰酸酯组合物的有效因子为3.80-5.30;
    所述有效因子的计算公式如式I所示:
    Figure PCTCN2022132424-appb-100001
    其中,E为有效因子;
    A为所述异氰酸酯组合物中氯的质量含量;
    B为所述异氰酸酯组合物中氯代异氰酸酯的质量含量;
    M Cl为氯的相对原子质量;
    M B为所述氯代异氰酸酯的相对分子质量。
  2. 根据权利要求1所述的异氰酸酯组合物,其中,所述异氰酸酯为二异氰酸酯。
  3. 根据权利要求2所述的异氰酸酯组合物,其中,包括萘二异氰酸酯、苯二异氰酸酯、环己烷二异氰酸酯、甲苯二异氰酸酯、二苯基甲烷二异氰酸酯中的任意一种或至少两种的组合。
  4. 根据权利要求1-3任一项所述的异氰酸酯组合物,其中,所述异氰酸酯组合物中异氰酸酯的质量百分含量≥97%。
  5. 根据权利要求1-4任一项所述的异氰酸酯组合物,其中,所述氯代异氰酸酯为异氰酸酯中的一个NCO基团被氯替代得到的化合物;
    优选地,所述氯代异氰酸酯包括
    Figure PCTCN2022132424-appb-100002
    Figure PCTCN2022132424-appb-100003
    中的任意一种或至少两种的组合。
  6. 根据权利要求1-5任一项所述的异氰酸酯组合物,其中,所述有效因子对应的物质包括如下化合物中的任意一种或至少两种的组合:
    Figure PCTCN2022132424-appb-100004
    其中,R为异氰酸酯中的NCO基团被去除得到的二价基团;
    优选地,所述R选自
    Figure PCTCN2022132424-appb-100005
    Figure PCTCN2022132424-appb-100006
    中的任意一种或至少两种的组合;其中,波浪线代表基团的连接位点。
  7. 根据权利要求1-6任一项所述的异氰酸酯组合物,其中,所述A通过X射线荧光光谱分析测试得到;
    优选地,所述B通过色谱-质谱法测试得到,进一步优选通过气相色谱-质谱法测试得到。
  8. 一种如权利要求1-7任一项所述的异氰酸酯组合物的制备方法,其包括:胺类化合物与光气进行反应,得到所述异氰酸酯组合物。
  9. 根据权利要求8所述的制备方法,其包括如下步骤:
    (1)胺类化合物与光气进行反应,得到反应产物;
    (2)对步骤(1)得到的反应产物进行脱除处理,得到粗品;所述脱除处理包括脱光气处理和/或脱溶剂处理;
    (3)将步骤(2)得到的粗品依次进行分离和精制,得到所述异氰酸酯组合物。
  10. 根据权利要求8所述的制备方法,其中,步骤(3)所述分离得到重组分和中间品;将所述中间品和重组分的混合物进行精制,得到所述异氰酸酯组合物;所述混合物中重组分的质量百分含量为1-10%。
  11. 根据权利要求10所述的制备方法,其中,所述精制的方法为精馏。
  12. 一种异氰酸酯的改性组合物,其中,所述改性组合物通过如权利要求1-7任一项所述的异氰酸酯组合物改性得到;
    所述改性组合物包含基团(a)-(i)中的任意一种或至少两种的组合:(a)异氰脲酸酯基,(b)脲二酮基,(c)缩二脲基,(d)氨基甲酸酯基,(e)脲基,(f)亚氨基噁二嗪二酮基,(g)脲基甲酸酯基,(h)脲酮亚胺基,(i)碳二亚胺基。
  13. 一种异氰酸酯基聚合物,其中,所述异氰酸酯基聚合物通过异氰酸酯类物质与含活性氢基团的物质反应而成;所述异氰酸酯类物质包括如权利要求1-7任一项所述的异氰酸酯组合物、如权利要求12所述的改性组合物中的至少一种。
  14. 一种聚氨酯弹性体,其中,所述聚氨酯弹性体的制备原料包括异氰酸酯类物质和多元醇;所述异氰酸酯类物质包括如权利要求1-7任一项所述的异氰酸酯组合物和/或如权利要求12所述的改性组合物。
  15. 根据权利要求14所述的聚氨酯弹性体,其中,所述制备原料还包括扩链剂;
    优选地,所述扩链剂包括低分子量多元醇和/或低分子量多元胺。
PCT/CN2022/132424 2022-11-17 2022-11-17 一种异氰酸酯组合物、改性组合物和聚氨酯弹性体 WO2024103324A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132424 WO2024103324A1 (zh) 2022-11-17 2022-11-17 一种异氰酸酯组合物、改性组合物和聚氨酯弹性体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132424 WO2024103324A1 (zh) 2022-11-17 2022-11-17 一种异氰酸酯组合物、改性组合物和聚氨酯弹性体

Publications (1)

Publication Number Publication Date
WO2024103324A1 true WO2024103324A1 (zh) 2024-05-23

Family

ID=91083564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132424 WO2024103324A1 (zh) 2022-11-17 2022-11-17 一种异氰酸酯组合物、改性组合物和聚氨酯弹性体

Country Status (1)

Country Link
WO (1) WO2024103324A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250363A (zh) * 2013-06-28 2014-12-31 旭化成化学株式会社 多异氰酸酯组合物
CN109153637A (zh) * 2017-04-10 2019-01-04 三井化学株式会社 苯二甲撑二异氰酸酯组合物、苯二甲撑二异氰酸酯改性物组合物、二液型树脂原料及树脂
CN114920668A (zh) * 2022-05-13 2022-08-19 万华化学集团股份有限公司 一种制备低氯代杂质异氰酸酯的方法
EP4089071A1 (en) * 2021-01-28 2022-11-16 Mitsui Chemicals, Inc. Xylylene diisocyanate composition, modified xylylene diisocyanate composition, polymerizable composition, resin, molded body, optical element, and lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250363A (zh) * 2013-06-28 2014-12-31 旭化成化学株式会社 多异氰酸酯组合物
CN109153637A (zh) * 2017-04-10 2019-01-04 三井化学株式会社 苯二甲撑二异氰酸酯组合物、苯二甲撑二异氰酸酯改性物组合物、二液型树脂原料及树脂
EP4089071A1 (en) * 2021-01-28 2022-11-16 Mitsui Chemicals, Inc. Xylylene diisocyanate composition, modified xylylene diisocyanate composition, polymerizable composition, resin, molded body, optical element, and lens
CN114920668A (zh) * 2022-05-13 2022-08-19 万华化学集团股份有限公司 一种制备低氯代杂质异氰酸酯的方法

Similar Documents

Publication Publication Date Title
KR101970115B1 (ko) 자일릴렌 다이아이소사이아네이트 조성물, 자일릴렌 다이아이소사이아네이트 변성체 조성물, 이액형 수지 원료 및 수지
EP2370400B1 (en) Process for manufacturing isocyanates
CN110982038B (zh) 一种聚氨酯树脂及其制备方法
JP4938007B2 (ja) ジフェニルメタン系ポリイソシアネートの製造法
CN106554293B (zh) 一种制备无色或浅色多异氰酸酯的方法
US7038002B2 (en) Production of mixtures of diisocyanates and polyisocyanates from the diphenylmethane series with high contents of 4,4′-methylenediphenyl diisocyanate and 2,4′-methylenediphenyl diisocyanate
JP2006348030A (ja) 4,4′−ジフェニルメタンジイソシアネートの製造方法
KR20160013156A (ko) 트랜스-비스(아미노메틸)사이클로헥세인의 제조 방법, 비스(아이소사이아네이토메틸)사이클로헥세인의 제조 방법, 비스(아이소사이아네이토메틸)사이클로헥세인, 폴리아이소사이아네이트 조성물 및 폴리우레테인 수지
KR20180022844A (ko) 화학 반응을 위한 염화수소를 제공하는 방법
US3373182A (en) Purification of isocyanates by reduction of the hydrolyzable chlorine and acid content
CN112592457B (zh) 一种多异氰酸酯组合物及其制备方法和应用
WO2024103324A1 (zh) 一种异氰酸酯组合物、改性组合物和聚氨酯弹性体
JP2009522419A (ja) 液状の貯蔵安定性カルボジイミド基および/またはウレトンイミン基含有有機イソシアネートの製造方法
JPS5826337B2 (ja) イソシアネ−ト組成物の製法
CN115746251A (zh) 一种异氰酸酯组合物、改性组合物和聚氨酯弹性体
JP2021506902A (ja) イソシアヌレート基を含有するイソシアネート混合物の製造方法
KR20070084595A (ko) 폴리이소시아네이트의 제조 방법
KR20230079440A (ko) 폴리이소시아네이트 조성물, 이의 제조 방법 및 응용
WO2024103323A1 (zh) 一种异氰酸酯组合物及其制备方法和应用
CN117924657A (zh) 一种苯二异氰酸酯组合物、其制备方法及其应用
JP2021195347A (ja) ポリイソシアネート組成物および変性体組成物
KR20230011290A (ko) 이소시아네이트를 연속적으로 제조하기 위한 플랜트를 작동시키는 방법
CN118184543A (zh) 一种浅色异氰酸酯及其制备方法和应用
CN109415211A (zh) 制备异氰酸酯和/或聚碳酸酯的方法