WO2024101356A1 - Glass - Google Patents

Glass Download PDF

Info

Publication number
WO2024101356A1
WO2024101356A1 PCT/JP2023/040065 JP2023040065W WO2024101356A1 WO 2024101356 A1 WO2024101356 A1 WO 2024101356A1 JP 2023040065 W JP2023040065 W JP 2023040065W WO 2024101356 A1 WO2024101356 A1 WO 2024101356A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
temperature
content
less
thermal expansion
Prior art date
Application number
PCT/JP2023/040065
Other languages
French (fr)
Japanese (ja)
Inventor
都 武田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2024101356A1 publication Critical patent/WO2024101356A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to glass, and in particular to glass suitable for use as a glass substrate in semiconductor packages.
  • glass substrates there is a demand for them to be made thinner in order to miniaturize devices, and thinner glass substrates (for example, glass substrates with a thickness of 0.7 mm or less) are beginning to be adopted.
  • low-alkali glass is usually used for this glass substrate to prevent alkali ions from diffusing into the semiconductor film during the heat treatment process (see Patent Document 1).
  • the glass substrate and the semiconductor chip are directly attached.
  • the glass substrate and aluminum nitride are bonded.
  • the difference in the thermal expansion coefficients between them will cause the glass substrate to warp.
  • the thinner the glass substrate the more likely it is that the glass substrate will warp.
  • the glass substrate may be required to have an average thermal expansion coefficient of 40 ⁇ 10 ⁇ 7 to 60 ⁇ 10 ⁇ 7 /°C in the temperature range of 30 to 380°C.
  • the thermal expansion coefficient of the glass substrate is reduced to 60 ⁇ 10 ⁇ 7 /° C. or less, surface defects of the glass substrate are likely to occur. That is, when the glass composition is designed to reduce the thermal expansion coefficient of the glass substrate, the high-temperature viscosity of the molten glass increases and the moldability decreases, so that surface defects such as bubbles and devitrification bumps are likely to occur.
  • the Young's modulus of the glass substrate is low, the rigidity of the resulting laminate is likely to decrease after the Si chip is attached to the glass substrate. Furthermore, when an adhesive is spin-coated onto the glass substrate, the glass substrate is likely to become misaligned.
  • the present invention was made in consideration of the above circumstances, and its technical objective is to provide glass that has a specified thermal expansion coefficient and also has a high Young's modulus and resistance to devitrification.
  • the glass of embodiment 1 is characterized in that the glass composition contains, in mole percent, SiO 2 40-80%, Al 2 O 3 0-25%, B 2 O 3 0.1-25%, Li 2 O + Na 2 O + K 2 O 0-5%, MgO 0-19.2%, CaO 0-19.2%, SrO 0-4.8%, BaO 0-4.8%, MgO + CaO 17.9-19.2%, SrO + BaO 0-4.8%, and the molar ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is 5.4-7.6.
  • Li 2 O + Na 2 O + K 2 O refers to the total amount of Li 2 O, Na 2 O, and K 2 O.
  • MgO+CaO and SrO+ BaO respectively indicate the total amounts of MgO and CaO, and SrO and BaO .
  • ( SiO2 + Al2O3 )/ B2O3 indicates the value obtained by dividing the total amount of SiO2 and Al2O3 by the content of B2O3 .
  • the glass of embodiment 2 is the same as embodiment 1, but preferably contains, in mole percent, SiO 2 45-67.1%, Al 2 O 3 7-15%, B 2 O 3 8-14%, Li 2 O + Na 2 O + K 2 O 0-5%, MgO 0-12%, CaO 6-19%, SrO 0-3%, BaO 0-4%, MgO + CaO 17.9-19.2%, and SrO + BaO 0-4.5%, and the molar ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is 6-7.6.
  • the glass of Aspect 3, in Aspect 1 or Aspect 2 preferably has an average thermal expansion coefficient of 40 ⁇ 10 ⁇ 7 to 60 ⁇ 10 ⁇ 7 /° C. in a temperature range of 30 to 380° C.
  • the "average thermal expansion coefficient in a temperature range of 30 to 380° C.” can be measured with a dilatometer.
  • the glass of embodiment 4, in any one of embodiments 1 to 3, preferably has a transmittance of 5% or more at 254 nm, including reflection loss, converted to a thickness of 1 mm.
  • the "transmittance” includes the reflection loss of the outer surface, and is different from the transmittance excluding the reflection loss of the outer surface (internal transmittance).
  • the glass of embodiment 5 is preferably any one of embodiments 1 to 4, and has a Young's modulus of 70 GPa or more.
  • Young's modulus refers to a value measured by the bending resonance method.
  • the glass of embodiment 6 is preferably any one of embodiments 1 to 5, and has a liquidus viscosity of 10 4.0 dPa ⁇ s or more.
  • the "liquidus viscosity” is the viscosity at the liquidus temperature, and can be measured by a platinum ball pulling method.
  • the "liquidus temperature” can be calculated by placing the glass powder that passes through a standard sieve of 30 mesh (500 ⁇ m) and remains on a 50 mesh (300 ⁇ m) in a platinum boat, and then holding it in a temperature gradient furnace for 24 hours to measure the temperature at which crystals precipitate.
  • the liquidus viscosity is an index of moldability, and the higher the liquidus viscosity, the better the moldability.
  • the glass of Aspect 7 is preferably any one of Aspects 1 to 6, in which the temperature at a high-temperature viscosity of 10 2.5 dPa ⁇ s is less than 1600° C.
  • the “temperature at 10 2.5 dPa ⁇ s” can be measured by a platinum sphere pull-up method.
  • the temperature at 10 2.5 dPa ⁇ s corresponds to the melting temperature, and the lower this temperature is, the more improved the melting property is.
  • the present invention makes it possible to provide glass that has a prescribed thermal expansion coefficient and also has a high Young's modulus and resistance to devitrification.
  • the glass of the present invention is characterized in that the glass composition contains, in mole percent, SiO 2 40-80%, Al 2 O 3 0-25%, B 2 O 3 0.1-25%, Li 2 O + Na 2 O + K 2 O 0-5%, MgO 0-19.2%, CaO 0-19.2%, SrO 0-4.8%, BaO 0-4.8%, MgO + CaO 17.9-19.2%, SrO + BaO 0-4.8%, and the molar ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is 5.4-7.6.
  • the reasons for limiting the content of each component as described above are as follows. In the description of the content of each component, the % indication represents mol % unless otherwise specified. In addition, unless otherwise specified, the numerical ranges indicated in this specification using "to" mean ranges that include the numerical values before and after "to" as the minimum and maximum values, respectively.
  • SiO 2 is the main component that forms the skeleton of glass. If the content of SiO 2 is too low, vitrification becomes difficult and the Young's modulus and acid resistance tend to decrease. However, if the content of SiO 2 is too high, the high-temperature viscosity increases, meltability and moldability tend to decrease, and devitrified crystals such as cristobalite tend to precipitate, and the liquidus temperature tends to increase. Therefore, the content of SiO 2 is preferably 40 to 80%, 45 to 70%, 45 to 68%, 45 to 67.1%, 50 to 67.1%, 52 to 65%, and particularly preferably 53 to 62%. In addition, when meltability is prioritized, the upper limit of the content of SiO 2 is preferably 64% or less, 62% or less, and particularly preferably 61% or less.
  • Al 2 O 3 is a component that forms a glass skeleton and increases the Young's modulus. However, if the content of Al 2 O 3 is too high, crystals such as mullite are precipitated, and the liquidus viscosity is likely to decrease. Therefore, the content of Al 2 O 3 is preferably 0 to 25%, 3 to 20%, 5 to 18%, and particularly preferably 7 to 15%. In addition, when priority is given to meltability and moldability, the upper limit of the content of Al 2 O 3 is preferably 12% or less, and particularly preferably 11% or less.
  • B 2 O 3 is a component that enhances melting property and devitrification resistance. However, if the content of B 2 O 3 is too high, the Young's modulus is likely to decrease. Therefore, the content of B 2 O 3 is preferably 0.1 to 25%, 0.5 to 23%, 1 to 21%, 3 to 20%, 5 to 18%, 6 to 16%, 7 to 15%, and particularly preferably 8 to 14%.
  • the molar ratio (SiO 2 +Al 2 O 3 )/B 2 O 3 is preferably 5.4 to 7.6, more preferably 5.6 to 7.6, and particularly preferably 6 to 7.6. If the molar ratio (SiO 2 +Al 2 O 3 )/B 2 O 3 is outside the above range, it becomes difficult to maintain high levels of Young's modulus, devitrification resistance, and melting property when the average thermal expansion coefficient in the temperature range of 30 to 380° C. is in the range of 40 ⁇ 10 ⁇ 7 to 60 ⁇ 10 ⁇ 7 /° C.
  • Alkali metal oxides (Li 2 O, Na 2 O, and K 2 O) are components that enhance melting property. However, if the content of alkali metal oxides is too high, the thermal expansion coefficient increases significantly, and the average thermal expansion coefficient in the temperature range of 30 to 380° C. is likely to exceed 60 ⁇ 10 ⁇ 7 /° C. Therefore, the content of Li 2 O + Na 2 O + K 2 O is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0 to 1%, 0 to less than 1%, 0 to 0.5%, and particularly preferably 0 to less than 0.1%.
  • Li 2 O is a component that enhances melting property. However, if the content of Li 2 O is too high, the thermal expansion coefficient increases significantly, and the average thermal expansion coefficient in the temperature range of 30 to 380° C. is likely to exceed 60 ⁇ 10 ⁇ 7 /° C. Therefore, the content of Li 2 O is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0 to 1%, 0 to 0.5%, and particularly preferably 0 to less than 0.1%.
  • Na 2 O is a component that enhances meltability.
  • the content of Na 2 O is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0 to 1%, or 0 to 0.5%, and particularly preferably 0 to less than 0.1%.
  • the lower limit of Na 2 O is preferably 0.001% or more, and particularly preferably 0.005% or more.
  • K 2 O is a component that enhances melting property.
  • the content of K 2 O is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0 to 1%, 0 to 0.5%, and particularly preferably 0 to less than 0.1%.
  • MgO is a component that increases the coefficient of thermal expansion. It also reduces high-temperature viscosity and increases melting properties, and among alkaline earth metal oxides, it is a component that significantly increases Young's modulus. However, as the MgO content increases, devitrification resistance tends to decrease. Therefore, the MgO content is preferably 0-19.2%, 0-19%, 0-18%, 0-16%, 0-15%, 0-12%, 0.5-10%, 1-9%, 1-8%, 1-5%, 1-4%, and especially preferably 1-3%.
  • CaO is a component that reduces high-temperature viscosity and significantly increases melting properties without lowering the strain point. It also increases Young's modulus and thermal expansion coefficient. However, if the CaO content is too high, crystals such as anorthite will precipitate, making it easier for the liquidus viscosity to decrease. Therefore, the CaO content is preferably 0-19.2%, 1-19.2%, 3-19.2%, 5-19.2%, 6-19.1%, and especially preferably 6-19%.
  • the Young's modulus, devitrification resistance, and melting property can be maintained at a high level when the average thermal expansion coefficient in the temperature range of 30 to 380 ° C. is in the range of 40 ⁇ 10 -7 to 60 ⁇ 10 -7 / ° C.
  • the total amount of MgO and CaO is too small, it is difficult to obtain the above effects.
  • the content of MgO and CaO is too large, the thermal expansion coefficient increases significantly, and the average thermal expansion coefficient in the temperature range of 30 to 380 ° C. tends to exceed 60 ⁇ 10 -7 / ° C.
  • the devitrification resistance tends to decrease. Therefore, the content of MgO + CaO is preferably 17.9 to 19.2%, 17.9 to 19.1%, 17.9 to 19%, 17.9 to 18.9%, and particularly preferably 18 to 18.8%.
  • SrO is a component that increases devitrification resistance and the thermal expansion coefficient, and also reduces high-temperature viscosity and improves melting properties. However, if the SrO content is too high, the glass composition loses balance and devitrification resistance is likely to decrease. Therefore, the SrO content is preferably 0-4.8%, 0-4%, 0-3%, 0-2%, and particularly preferably less than 0-1%.
  • BaO is a component that improves resistance to devitrification and improves the formability of glass. It also has the effect of increasing the thermal expansion coefficient. However, if the BaO content is too high, the balance of the glass composition is lost and devitrification resistance is likely to decrease. Therefore, the BaO content is preferably 0-4.8%, 0-4.6%, 0-4.4%, or 0-4.2%, and particularly preferably 0-4%. If improving devitrification resistance is prioritized, the lower limit range of BaO is preferably 0.1% or more, 1% or more, 2% or more, and particularly preferably 3% or more.
  • the Young's modulus, devitrification resistance, and melting property can be maintained at a high level when the average thermal expansion coefficient in the temperature range of 30 to 380 ° C. is in the range of 40 ⁇ 10 -7 to 60 ⁇ 10 -7 / ° C.
  • the total amount of SrO and BaO is too small, it is difficult to obtain the above effects.
  • the content of SrO and BaO is too large, the thermal expansion coefficient increases significantly, and the average thermal expansion coefficient in the temperature range of 30 to 380 ° C. is likely to exceed 60 ⁇ 10 -7 / ° C.
  • the glass composition is unbalanced and the devitrification resistance is likely to decrease. Therefore, the content of SrO + BaO is preferably 0 to 4.8%, 0 to 4.5%, 1 to 4.5%, 1.3 to 4.5%, 1.5 to 4.5%, 2 to 4.5%, and particularly preferably 3 to 4.3%.
  • the content of other components other than the above components is preferably 15% or less in total, 10% or less, and particularly preferably 5% or less.
  • ZnO is a component that reduces high-temperature viscosity and significantly improves meltability and formability, and also improves weather resistance. However, if the ZnO content is too high, the glass becomes more susceptible to devitrification. Therefore, the ZnO content is preferably 0-3%, 0-2%, or 0-1%, and particularly preferably 0-0.1%.
  • Fe 2 O 3 is a component that can be introduced as an impurity component or a fining agent component. However, if the content of Fe 2 O 3 is too high, the ultraviolet transmittance decreases, making it difficult to apply to ultraviolet LED packages, etc. Therefore, the content of Fe 2 O 3 is preferably 0 to 0.05%, 0 to 0.03%, 0 to 0.02%, and particularly preferably 0.0001 to 0.01%.
  • “Fe 2 O 3 " in the present invention includes divalent iron oxide and trivalent iron oxide, and divalent iron oxide is converted to Fe 2 O 3 and handled. Other oxides are also handled in the same manner, based on the oxides listed.
  • SnO2 is a component that has a good clarifying effect in the high temperature range and also reduces high temperature viscosity.
  • the content of SnO2 is preferably 0-2%, 0.001-1%, 0.01-0.9%, and particularly preferably 0.05-0.7%. If the content of SnO2 is too high, devitrified crystals of SnO2 tend to precipitate. If the content of SnO2 is too low, it becomes difficult to enjoy the above effects.
  • As 2 O 3 and Sb 2 O 3 are effective as fining agents, but from an environmental point of view, it is preferable to reduce these components as much as possible.
  • the respective contents of As 2 O 3 and Sb 2 O 3 are preferably 1% or less, 0.5% or less, 0.1% or less, and particularly preferably 0.05% or less.
  • SO3 is a component that has a clarifying effect.
  • the content of SO3 is preferably 0 to 1%, 0 to 0.5%, 0 to 0.1%, and particularly preferably 0 to 0.01%. If the content of SO3 is too high, SO2 reboil tends to occur.
  • metal powders such as F, C, Al, and Si may be incorporated as fining agents up to about 1% each.
  • CeO2 and the like may also be incorporated up to about 1%, but attention must be paid to the decrease in ultraviolet transmittance.
  • Cl is a component that promotes the melting of glass.
  • the Cl content is preferably 3% or less, 1% or less, 0.5% or less, and particularly preferably 0.1% or less.
  • P 2 O 5 is a component that can suppress the precipitation of devitrification crystals. However, if a large amount of P 2 O 5 is introduced, the glass becomes more likely to undergo phase separation. Therefore, the content of P 2 O 5 is preferably 0 to 15%, 0 to 10%, 0 to 5%, 0 to 2.5%, 0 to 1.5%, 0 to 0.5%, and particularly preferably 0 to 0.3%.
  • TiO2 is a component that reduces high-temperature viscosity and increases melting property, and also suppresses solarization. However, if a large amount of TiO2 is introduced, the glass becomes colored and the transmittance tends to decrease. Therefore, the content of TiO2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, and particularly preferably 0 to 0.02%.
  • ZrO2 is a component that improves chemical resistance and Young's modulus. However, if a large amount of ZrO2 is introduced, the glass becomes easily devitrified, and since the introduced raw material is difficult to melt, there is a risk that unmelted crystalline foreign matter will be mixed into the glass. Therefore, the content of ZrO2 is preferably 0 to 10%, 0 to 7%, 0 to 5%, 0 to 3%, 0 to 1%, and particularly preferably 0 to 0.1%.
  • Y2O3 , Nb2O5 , and La2O3 have the function of increasing the strain point, Young 's modulus , etc.
  • the content of each of these components is preferably 5% or less, particularly 1% or less. If the content is more than 1%, there is a risk that the raw material cost and product cost will rise.
  • MoO3 is a component that can be introduced as an impurity or a phase separation suppressing component. Mo is also a component that can be contained in the electrodes in the melting process, and MoO3 is dissolved by electric melting heating and is incorporated into the molten glass. However, if a large amount of MoO3 is introduced, the transmittance tends to decrease. Therefore, the content of MoO3 is preferably 0 to 0.01%, 0 to 0.007%, 0 to 0.006%, and particularly preferably 0 to 0.002%.
  • the glass of the present invention preferably has the following glass properties:
  • the average thermal expansion coefficient in the temperature range of 30 to 380° C. is preferably 40 ⁇ 10 ⁇ 7 to 60 ⁇ 10 ⁇ 7 /° C., 42 ⁇ 10 ⁇ 7 to 58 ⁇ 10 ⁇ 7 /° C., 45 ⁇ 10 ⁇ 7 to 56 ⁇ 10 ⁇ 7 /° C., and particularly preferably 47 ⁇ 10 ⁇ 7 to 55 ⁇ 10 ⁇ 7 /° C. If the average thermal expansion coefficient in the temperature range of 30 to 380° C. is outside the above range, it becomes difficult to match the thermal expansion coefficient of the semiconductor chip, and dimensional changes (particularly warpage) of the glass substrate are likely to occur.
  • the transmittance at 254 nm, calculated as a thickness of 1 mm is preferably 5% or more, 10% or more, 20% or more, 25% or more, and particularly preferably 30% or more. If the transmittance at 254 nm, calculated as a thickness of 1 mm, is too low, it becomes difficult to apply to cover glass of an ultraviolet LED package, etc. There is no particular upper limit to the transmittance at 254 nm, calculated as a thickness of 1 mm, but it may be, for example, 99.9% or less, 99% or less, 98% or less, and particularly 95% or less.
  • the Young's modulus is preferably 70 GPa or more, 73 GPa or more, 75 GPa or more, and particularly preferably 77 GPa or more. If the Young's modulus is too low, the rigidity of the resulting laminate is likely to decrease after the Si chip is attached to the glass substrate. In addition, when an adhesive is spin-coated onto the glass substrate, the glass substrate is likely to become misaligned. There is no particular upper limit to the Young's modulus, but it may be, for example, 100 GPa or less, particularly 99 GPa or less.
  • the liquidus viscosity is preferably 10 4.0 dPa ⁇ s or more, 10 4.6 dPa ⁇ s or more, and particularly preferably 10 4.7 dPa ⁇ s or more. In this way, devitrified crystals are less likely to precipitate during forming, making it easier to form a glass substrate by the down-draw method, particularly the overflow down-draw method.
  • the upper limit of the liquidus viscosity is not particularly limited, but may be, for example, 10 8.0 dPa ⁇ s or less.
  • the temperature at a high-temperature viscosity of 10 2.5 dPa ⁇ s is preferably less than 1600°C, 1550°C or less, 1520°C or less, 1500°C or less, 1480°C or less, 1450°C or less, and particularly preferably 1400°C or less.
  • the lower limit of the temperature at a high-temperature viscosity of 10 2.5 dPa ⁇ s is not particularly limited, but may be, for example, 1000°C or more, particularly 1050°C or more.
  • the temperature at which the slope of the thermal expansion curve of the glass changes is treated as the glass transition point.
  • the glass transition point is preferably 600°C or higher, and particularly preferably 650°C or higher. If the glass transition point is too low, the glass will flow too much, making it difficult to mold into the desired shape. Furthermore, if the glass transition point is too low, the glass will be prone to deformation when used at high temperatures. There is no particular upper limit to the glass transition point, but it may be 800°C or lower, and particularly 750°C or lower.
  • the temperature at which the slope of the thermal expansion curve of the glass changes at temperatures above the glass transition point is treated as the yield point.
  • the yield point is preferably 700°C or higher, and particularly preferably 720°C or higher. If the yield point is too low, the glass will flow too much, making it difficult to mold into the desired shape. In addition, the glass will be prone to deformation when used at high temperatures. There is no particular upper limit to the yield point, but it may be 800°C or lower, and particularly 750°C or lower.
  • the strain point is preferably 590°C or higher, 610°C or higher, and particularly preferably 630°C or higher. If the strain point is too low, unintended deformation of the glass is likely to occur when a functional film is formed on the glass surface at high temperatures. There is no particular upper limit to the strain point, but it may be, for example, 800°C or lower, particularly 750°C or lower.
  • the annealing point (the temperature at which the viscosity of the glass is about 10 13 dPa ⁇ s) is preferably 600° C. or higher, and particularly preferably 650° C. or higher. If the annealing point is too low, the glass is likely to break when molded. If the annealing point is too low, the glass is likely to shrink over time, and adverse effects such as poor dimensional accuracy are likely to occur.
  • the upper limit of the annealing point is not particularly limited, but may be 750° C. or lower, particularly 700° C. or lower.
  • the softening point (the temperature at which the viscosity of the glass is about 10 7.6 dPa ⁇ s) is preferably 800° C. or higher, and particularly preferably 830° C. or higher. If the softening point is too low, the glass is likely to deform when used at high temperatures. There is no particular upper limit to the softening point, but it may be 950° C. or lower, and particularly 900° C. or lower.
  • the density is preferably 3.0 g/ cm3 or less, particularly preferably 2.8 g/ cm3 or less. If the density is too high, the weight per unit area becomes large, making handling difficult.
  • the lower limit of the density is not particularly limited, but may be, for example, 2.0 g/ cm3 or more, particularly 2.2 g/ cm3 or more.
  • the liquidus temperature is preferably 1200°C or less, and particularly preferably 1180°C or less. This makes it easier to prevent the occurrence of devitrification crystals during glass production, which leads to a decrease in productivity.
  • the lower limit of the liquidus temperature is not particularly limited, but may be 900°C or more, particularly 950°C or more.
  • the liquidus temperature is an index of devitrification resistance, and the lower the liquidus temperature, the better the devitrification resistance.
  • the liquidus temperature TL is the temperature at which crystals precipitate after the glass powder that passes through a standard sieve 30 mesh (500 ⁇ m) and remains on the 50 mesh (300 ⁇ m) is placed in a platinum boat and held in a temperature gradient furnace for 24 hours, and then measured by microscopic observation.
  • the liquidus viscosity log ⁇ is the viscosity of the glass at the liquidus temperature TL, measured by the platinum ball pull-up method.
  • the glass of the present invention preferably has a functional film formed on the glass surface, such as an anti-reflection film, a reflective film, a high-pass filter, a low-pass filter, a band-pass filter, etc. It is also preferable to form a silica film or the like on the glass surface in order to further improve weather resistance.
  • a functional film formed on the glass surface such as an anti-reflection film, a reflective film, a high-pass filter, a low-pass filter, a band-pass filter, etc. It is also preferable to form a silica film or the like on the glass surface in order to further improve weather resistance.
  • the glass of the present invention preferably has a lens structure formed on the glass surface.
  • a lens structure such as a concave lens, convex lens, Fresnel lens, or lens array, on the glass surface, it becomes possible to focus and scatter light.
  • the glass of the present invention preferably has a prism structure formed on the glass surface. Forming a prism structure on the glass surface makes it possible to refract light.
  • the glass of the present invention can be used for semiconductor packages.
  • an adhesive layer is formed on the surface of the glass.
  • the adhesive layer can be made of an organic substance, an inorganic substance, or a mixture thereof.
  • an ultraviolet-curing adhesive or a gold-tin solder can be used.
  • Inorganic fillers can be added to the ultraviolet-curing adhesive to increase the strength of the adhesive layer.
  • the shape of the glass of the present invention is not particularly limited, and can be, for example, a flat plate (i.e., a glass substrate), a curved plate, a straight tube, a curved tube, a rod, a sphere, a container, a block, etc.
  • the thickness of the glass of the present invention is preferably 0.1 to 3 mm, 0.2 to 1 mm, or 0.3 to 0.6 mm. If the thickness is too large, it becomes difficult to reduce the weight of the glass. On the other hand, if the thickness is too small, the strength of the glass is easily reduced.
  • the glass of the present invention can be produced, for example, by blending various glass raw materials to obtain a glass batch, melting the glass batch, clarifying and homogenizing the resulting molten glass, and forming it into a desired shape.
  • a reducing agent as a part of the glass raw material.
  • Fe3 + contained in the glass is reduced, the transmittance in the deep ultraviolet region is improved, and it becomes easy to apply it to the cover glass of the ultraviolet LED package.
  • materials such as wood powder, carbon powder, metallic aluminum, metallic silicon, and aluminum fluoride can be used, among which metallic silicon and aluminum fluoride are preferable.
  • the amount of metal silicon added is preferably 0.001 to 3 mass%, 0.005 to 2 mass%, 0.01 to 1 mass%, 0.1 to 0.8 mass%, 0.15 to 0.5 mass%, and particularly preferably 0.2 to 0.3 mass% based on the total mass of the glass batch. If the amount of metal silicon added is too small, Fe3 + contained in the glass is not reduced, and the transmittance in the deep ultraviolet region is likely to decrease. On the other hand, if the amount of metal silicon added is too large, the glass tends to be colored brown.
  • the amount of aluminum fluoride (AlF 3 ) added is preferably 0.01 to 2 mass %, 0.05 to 1.5 mass %, or 0.3 to 1.5 mass % in terms of F relative to the total mass of the glass batch. On the other hand, if the amount of aluminum fluoride added is too large, there is a risk that F gas will remain in the glass as bubbles.
  • Tables 1 to 3 show examples of the present invention (samples No. 1 to 25) and a comparative example (sample No. 26).
  • a glass batch prepared by mixing glass raw materials to obtain the glass composition shown in the table was placed in a platinum crucible and melted at 1400 to 1700°C for 3 to 24 hours.
  • the mixture was stirred and homogenized using a platinum stirrer.
  • the molten glass was poured onto a carbon plate and formed into a plate shape, and then slowly cooled from a temperature about 20°C higher than the annealing point to room temperature at a rate of 3°C/min.
  • the density ⁇ For each of the obtained samples, the density ⁇ , average coefficient of thermal expansion in the temperature range of 30 to 380°C CTE 30-380 , Young's modulus E, glass transition temperature Tg, yield point Tf, strain point Ps, annealing point Ta, softening point Ts, temperature at high temperature viscosity of 10 4.0 dPa ⁇ s, temperature at high temperature viscosity of 10 3.0 dPa ⁇ s, temperature at high temperature viscosity of 10 2.5 dPa ⁇ s, temperature at high temperature viscosity of 10 2.0 dPa ⁇ s, liquidus temperature TL, liquidus viscosity log ⁇ , and transmittance T254 at 254 nm, converted into a thickness of 1 mm.
  • the density ⁇ is a value measured using the well-known Archimedes method.
  • the average coefficient of thermal expansion in the temperature range of 30 to 380° C., CTE 30-380 , the glass transition point Tg, and the yield point Tf are values measured by a dilatometer.
  • Young's modulus E is a value measured using the resonance method.
  • strain point Ps, annealing point Ta, and softening point Ts are values measured based on the method of ASTM C336.
  • the temperatures at high temperature viscosities of 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s and 10 2.0 dPa ⁇ s are values measured by a platinum ball pull-up method.
  • the liquidus temperature TL is the temperature at which crystals precipitate, measured by placing glass powder that passes through a standard sieve of 30 mesh (500 ⁇ m) and remains on a 50 mesh (300 ⁇ m) sieve in a platinum boat and holding it in a temperature gradient furnace for 24 hours.
  • the liquidus viscosity log ⁇ is the viscosity of the glass at the liquidus temperature TL, measured by the platinum ball pull-up method.
  • the transmittance T254 at 254 nm, calculated as a thickness of 1 mm, is a value including reflection loss measured using a double-beam spectrophotometer.
  • the measurement samples used had both sides optically polished (mirror) surfaces. When the surface roughness Ra of the glass surface of these measurement samples was measured using an AFM, it was 0.5 to 1.0 nm over a measurement area of 5 ⁇ m x 5 ⁇ m.
  • samples No. 1 to 25 have a predetermined thermal expansion coefficient (here, the average thermal expansion coefficient in the temperature range of 30 to 380°C is 40 x 10 -7 to 60 x 10 -7 /°C), a liquidus temperature TL is low at 1168°C or less, and devitrification resistance is high.
  • Young's modulus E is high at 81 GPa or more.
  • the transmittance T254 at 254 nm, converted to a thickness of 1 mm is high at 19% or more. Therefore, samples No. 1 to 25 are considered to be suitable as glass for glass substrates such as semiconductor packages having the above thermal expansion coefficient.
  • sample No. 26 did not obtain the desired thermal expansion coefficient.
  • the liquidus temperature TL is higher than 1331°C, and devitrification resistance is low.
  • the molten glass was poured out and formed into a flat plate shape, but when producing on an industrial scale, it is preferable to form it into a flat plate shape using the overflow downdraw method or the like, and use it with both surfaces unpolished. Also, when forming it into a tube shape, it is preferable to form it into a tube shape using the downdraw method or the Danner method, etc.
  • the glass of the present invention is suitable for use as, for example, a semiconductor package, an ultraviolet LED package, a light receiving element sealing package, an ultraviolet light emitting lamp, a photomultiplier tube, a liquid crystal display, an organic EL display, a glass substrate for information recording media, a glass tube, and the like.
  • the glass of the present invention can also be used for optical applications such as lenses and prisms.
  • the glass of the present invention can also be used as a semiconductor support substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is a glass having a specific thermal expansion coefficient, a high Young's modulus, and strong devitrification resistance. This glass has a glass composition, by molar%, of 40 to 80% SiO2, 0 to 25% Al2O3, 0.1 to 25% B2O3, 0 to 5% Li2O+Na2O+K2O, 0 to 19.2% MgO, 0 to 19.2% CaO, 0 to 4.8% SrO, 0 to 4.8% BaO, 17.9 to 19.2% MgO+CaO, and 0 to 4.8% SrO+BaO. The molar ratio of (SiO2+Al2O3)/B2O3 is 5.4 to 7.6.

Description

ガラスGlass
 本発明はガラスに関し、特に半導体パッケージに用いるガラス基板に好適なガラスに関する。 The present invention relates to glass, and in particular to glass suitable for use as a glass substrate in semiconductor packages.
 近年、CSP等のイメージセンサーは、小型化、薄型化、軽量化が進んでいる。従来、これらのセンサー部は樹脂のパッケージで保護されていたが、近年、更なる小型化等を進めるために、Siチップ上にガラス基板を貼り付けて保護する方式が採用されつつある。 In recent years, image sensors such as CSPs have become smaller, thinner, and lighter. Traditionally, these sensors were protected by a resin package, but in recent years, in order to achieve further miniaturization, a method of protecting the Si chip by attaching a glass substrate to it is being adopted.
 このガラス基板についても、デバイスの小型化等を図るために、更なる薄肉化が求められており、薄肉のガラス基板(例えば、板厚0.7mm以下のガラス基板)が採用されつつある。 As for glass substrates, there is a demand for them to be made thinner in order to miniaturize devices, and thinner glass substrates (for example, glass substrates with a thickness of 0.7 mm or less) are beginning to be adopted.
 更に、このガラス基板には、熱処理工程でアルカリイオンが半導体膜中に拡散する事態を防止するため、通常、低アルカリガラスが用いられる(特許文献1参照)。 Furthermore, low-alkali glass is usually used for this glass substrate to prevent alkali ions from diffusing into the semiconductor film during the heat treatment process (see Patent Document 1).
特開2006-344927号公報JP 2006-344927 A
 上述の通り、CSP等の用途の場合、ガラス基板と半導体チップが直接貼り付けられる。また紫外線発光ダイオード等の用途の場合、ガラス基板と窒化アルミニウムが接合される。しかし、ガラス基板と半導体チップ、窒化アルミニウムとの熱膨張係数が不整合であると、両者の熱膨張係数差によって、ガラス基板に反りが発生してしまう。特に、ガラス基板の板厚が小さい程、ガラス基板に反りが発生し易くなる。このため、ガラス基板には、30~380℃の温度範囲における平均熱膨張係数が40×10-7~60×10-7/℃であることが要求される場合がある。 As described above, in the case of applications such as CSP, the glass substrate and the semiconductor chip are directly attached. In the case of applications such as ultraviolet light emitting diodes, the glass substrate and aluminum nitride are bonded. However, if the thermal expansion coefficients of the glass substrate, the semiconductor chip, and the aluminum nitride are not consistent, the difference in the thermal expansion coefficients between them will cause the glass substrate to warp. In particular, the thinner the glass substrate, the more likely it is that the glass substrate will warp. For this reason, the glass substrate may be required to have an average thermal expansion coefficient of 40×10 −7 to 60×10 −7 /°C in the temperature range of 30 to 380°C.
 しかし、ガラス基板の熱膨張係数を60×10-7/℃以下まで低下させると、ガラス基板の表面欠陥が発生し易くなる。すなわち、ガラス基板の熱膨張係数を低下させるためにガラス組成を設計すると、溶融ガラスの高温粘性が高くなり、また成形性が低下するため、発泡、失透ブツ等の表面欠陥が発生し易くなる。 However, if the thermal expansion coefficient of the glass substrate is reduced to 60×10 −7 /° C. or less, surface defects of the glass substrate are likely to occur. That is, when the glass composition is designed to reduce the thermal expansion coefficient of the glass substrate, the high-temperature viscosity of the molten glass increases and the moldability decreases, so that surface defects such as bubbles and devitrification bumps are likely to occur.
 また、CSP等の用途の場合、ガラス基板のヤング率が低いと、ガラス基板上にSiチップを貼り付けた後に、得られる積層体の剛性が低下し易くなる。またガラス基板上に接着剤をスピンコートする場合に、ガラス基板が位置ズレし易くなる。 Furthermore, in applications such as CSP, if the Young's modulus of the glass substrate is low, the rigidity of the resulting laminate is likely to decrease after the Si chip is attached to the glass substrate. Furthermore, when an adhesive is spin-coated onto the glass substrate, the glass substrate is likely to become misaligned.
 本発明は、上記事情に鑑みなされたものであり、その技術的課題は、所定の熱膨張係数を有し、しかもヤング率と耐失透性が高いガラスを提供することである。 The present invention was made in consideration of the above circumstances, and its technical objective is to provide glass that has a specified thermal expansion coefficient and also has a high Young's modulus and resistance to devitrification.
 本発明者は、種々の実験を繰り返した結果、ガラスのガラス組成範囲を厳密に規制、特にMgOとCaOの合量の含有範囲を厳密に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。 As a result of repeated experiments, the inventors discovered that the above technical problems could be solved by strictly regulating the glass composition range of the glass, in particular the range of the combined content of MgO and CaO, and proposed this invention.
 すなわち、態様1のガラスは、ガラス組成として、モル%で、SiO 40~80%、Al 0~25%、B 0.1~25%、LiO+NaO+KO 0~5%、MgO 0~19.2%、CaO 0~19.2%、SrO 0~4.8%、BaO 0~4.8%、MgO+CaO 17.9~19.2%、SrO+BaO 0~4.8%を含有し、モル比(SiO+Al)/Bが5.4~7.6であることを特徴とする。ここで、「LiO+NaO+KO」は、LiO、NaO及びKOの合量を指す。「MgO+CaO」と「SrO+BaO」はそれぞれMgOとCaO、SrOとBaOの合量を指す。「(SiO+Al)/B」はSiOとAlの合量をBの含有量で除した値を指す。 That is, the glass of embodiment 1 is characterized in that the glass composition contains, in mole percent, SiO 2 40-80%, Al 2 O 3 0-25%, B 2 O 3 0.1-25%, Li 2 O + Na 2 O + K 2 O 0-5%, MgO 0-19.2%, CaO 0-19.2%, SrO 0-4.8%, BaO 0-4.8%, MgO + CaO 17.9-19.2%, SrO + BaO 0-4.8%, and the molar ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is 5.4-7.6. Here, "Li 2 O + Na 2 O + K 2 O" refers to the total amount of Li 2 O, Na 2 O, and K 2 O. "MgO+CaO" and "SrO+ BaO " respectively indicate the total amounts of MgO and CaO, and SrO and BaO . "( SiO2 + Al2O3 )/ B2O3 " indicates the value obtained by dividing the total amount of SiO2 and Al2O3 by the content of B2O3 .
 態様2のガラスは、態様1において、ガラス組成として、モル%で、SiO 45~67.1%、Al 7~15%、B 8~14%、LiO+NaO+KO 0~5%、MgO 0~12%、CaO 6~19%、SrO 0~3%、BaO 0~4%、MgO+CaO 17.9~19.2%、SrO+BaO 0~4.5%を含有し、モル比(SiO+Al)/Bが6~7.6であることが好ましい。 The glass of embodiment 2 is the same as embodiment 1, but preferably contains, in mole percent, SiO 2 45-67.1%, Al 2 O 3 7-15%, B 2 O 3 8-14%, Li 2 O + Na 2 O + K 2 O 0-5%, MgO 0-12%, CaO 6-19%, SrO 0-3%, BaO 0-4%, MgO + CaO 17.9-19.2%, and SrO + BaO 0-4.5%, and the molar ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is 6-7.6.
 態様3のガラスは、態様1又は態様2において、30~380℃の温度範囲における平均熱膨張係数が40×10-7~60×10-7/℃であることが好ましい。ここで、「30~380℃の温度範囲における平均熱膨張係数」は、ディラトメーターで測定可能である。 The glass of Aspect 3, in Aspect 1 or Aspect 2, preferably has an average thermal expansion coefficient of 40×10 −7 to 60×10 −7 /° C. in a temperature range of 30 to 380° C. Here, the "average thermal expansion coefficient in a temperature range of 30 to 380° C." can be measured with a dilatometer.
 態様4のガラスは、態様1から態様3のいずれか一つの態様において、厚み1mm換算、254nmにおける反射損失を含む透過率が5%以上であることが好ましい。本発明における「透過率」は、外表面の反射損失を含むものであり、外表面の反射損失を除いた透過率(内部透過率)とは異なる。 The glass of embodiment 4, in any one of embodiments 1 to 3, preferably has a transmittance of 5% or more at 254 nm, including reflection loss, converted to a thickness of 1 mm. In the present invention, the "transmittance" includes the reflection loss of the outer surface, and is different from the transmittance excluding the reflection loss of the outer surface (internal transmittance).
 態様5のガラスは、態様1から態様4のいずれか一つの態様において、ヤング率が70GPa以上であることが好ましい。ここで、「ヤング率」は、曲げ共振法により測定した値を指す。 The glass of embodiment 5 is preferably any one of embodiments 1 to 4, and has a Young's modulus of 70 GPa or more. Here, "Young's modulus" refers to a value measured by the bending resonance method.
 態様6のガラスは、態様1から態様5のいずれか一つの態様において、液相粘度が104.0dPa・s以上であることが好ましい。ここで、「液相粘度」は、液相温度における粘度であり、白金球引き上げ法で測定可能である。「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶が析出する温度を測定することにより算出可能である。なお、液相粘度は、成形性の指標であり、液相粘度が高い程、成形性が向上する。 The glass of embodiment 6 is preferably any one of embodiments 1 to 5, and has a liquidus viscosity of 10 4.0 dPa·s or more. Here, the "liquidus viscosity" is the viscosity at the liquidus temperature, and can be measured by a platinum ball pulling method. The "liquidus temperature" can be calculated by placing the glass powder that passes through a standard sieve of 30 mesh (500 μm) and remains on a 50 mesh (300 μm) in a platinum boat, and then holding it in a temperature gradient furnace for 24 hours to measure the temperature at which crystals precipitate. The liquidus viscosity is an index of moldability, and the higher the liquidus viscosity, the better the moldability.
 態様7のガラスは、態様1から態様6のいずれか一つの態様において、高温粘度102.5dPa・sにおける温度が1600℃未満であることが好ましい。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。なお、102.5dPa・sにおける温度は、溶融温度に相当し、この温度が低い程、溶融性が向上する。 The glass of Aspect 7 is preferably any one of Aspects 1 to 6, in which the temperature at a high-temperature viscosity of 10 2.5 dPa·s is less than 1600° C. Here, the “temperature at 10 2.5 dPa·s” can be measured by a platinum sphere pull-up method. The temperature at 10 2.5 dPa·s corresponds to the melting temperature, and the lower this temperature is, the more improved the melting property is.
 本発明によれば、所定の熱膨張係数を有し、しかもヤング率と耐失透性が高いガラスを提供することができる。 The present invention makes it possible to provide glass that has a prescribed thermal expansion coefficient and also has a high Young's modulus and resistance to devitrification.
 本発明のガラスは、ガラス組成として、モル%で、SiO 40~80%、Al 0~25%、B 0.1~25%、LiO+NaO+KO 0~5%、MgO 0~19.2%、CaO 0~19.2%、SrO 0~4.8%、BaO 0~4.8%、MgO+CaO 17.9~19.2%、SrO+BaO 0~4.8%を含有し、モル比(SiO+Al)/Bが5.4~7.6であることを特徴とする。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、モル%を表す。また、別段の記載がない限り、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載の数値を最小値及び最大値としてそれぞれ含む範囲を意味する。 The glass of the present invention is characterized in that the glass composition contains, in mole percent, SiO 2 40-80%, Al 2 O 3 0-25%, B 2 O 3 0.1-25%, Li 2 O + Na 2 O + K 2 O 0-5%, MgO 0-19.2%, CaO 0-19.2%, SrO 0-4.8%, BaO 0-4.8%, MgO + CaO 17.9-19.2%, SrO + BaO 0-4.8%, and the molar ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is 5.4-7.6. The reasons for limiting the content of each component as described above are as follows. In the description of the content of each component, the % indication represents mol % unless otherwise specified. In addition, unless otherwise specified, the numerical ranges indicated in this specification using "to" mean ranges that include the numerical values before and after "to" as the minimum and maximum values, respectively.
 SiOは、ガラスの骨格を形成する主成分である。SiOの含有量が少な過ぎると、ガラス化が困難になると共に、ヤング率、耐酸性が低下し易くなる。しかし、SiOの含有量が多過ぎると、高温粘度が高くなり、溶融性や成形性が低下し易くなることに加えて、クリストバライト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。よって、SiOの含有量は、好ましくは40~80%、45~70%、45~68%、45~67.1%、50~67.1%、52~65%、特に好ましくは53~62%である。なお、溶融性を優先する場合、SiOの含有量の上限は64%以下、62%以下、特に61%以下であることが好ましい。 SiO 2 is the main component that forms the skeleton of glass. If the content of SiO 2 is too low, vitrification becomes difficult and the Young's modulus and acid resistance tend to decrease. However, if the content of SiO 2 is too high, the high-temperature viscosity increases, meltability and moldability tend to decrease, and devitrified crystals such as cristobalite tend to precipitate, and the liquidus temperature tends to increase. Therefore, the content of SiO 2 is preferably 40 to 80%, 45 to 70%, 45 to 68%, 45 to 67.1%, 50 to 67.1%, 52 to 65%, and particularly preferably 53 to 62%. In addition, when meltability is prioritized, the upper limit of the content of SiO 2 is preferably 64% or less, 62% or less, and particularly preferably 61% or less.
 Alは、ガラス骨格を形成して、ヤング率を高める成分である。しかし、Alの含有量が多過ぎると、ムライト等の結晶が析出し、液相粘度が低下し易くなる。よって、Alの含有量は、好ましくは0~25%、3~20%、5~18%、特に好ましくは7~15%である。なお、溶融性や成形性を優先する場合、Alの含有量の上限は12%以下、特に11%以下であることが好ましい。 Al 2 O 3 is a component that forms a glass skeleton and increases the Young's modulus. However, if the content of Al 2 O 3 is too high, crystals such as mullite are precipitated, and the liquidus viscosity is likely to decrease. Therefore, the content of Al 2 O 3 is preferably 0 to 25%, 3 to 20%, 5 to 18%, and particularly preferably 7 to 15%. In addition, when priority is given to meltability and moldability, the upper limit of the content of Al 2 O 3 is preferably 12% or less, and particularly preferably 11% or less.
 Bは、溶融性や耐失透性を高める成分である。しかし、Bの含有量が多過ぎると、ヤング率が低下し易くなる。よって、Bの含有量は、好ましくは0.1~25%、0.5~23%、1~21%、3~20%、5~18%、6~16%、7~15%、特に好ましくは8~14%である。 B 2 O 3 is a component that enhances melting property and devitrification resistance. However, if the content of B 2 O 3 is too high, the Young's modulus is likely to decrease. Therefore, the content of B 2 O 3 is preferably 0.1 to 25%, 0.5 to 23%, 1 to 21%, 3 to 20%, 5 to 18%, 6 to 16%, 7 to 15%, and particularly preferably 8 to 14%.
 モル比(SiO+Al)/Bは、好ましくは5.4~7.6、5.6~7.6、特に好ましくは6~7.6である。モル比(SiO+Al)/Bが上記範囲外になると、30~380℃の温度範囲における平均熱膨張係数が40×10-7~60×10-7/℃の範囲において、ヤング率、耐失透性、溶融性を高いレベルで維持することが困難になる。 The molar ratio (SiO 2 +Al 2 O 3 )/B 2 O 3 is preferably 5.4 to 7.6, more preferably 5.6 to 7.6, and particularly preferably 6 to 7.6. If the molar ratio (SiO 2 +Al 2 O 3 )/B 2 O 3 is outside the above range, it becomes difficult to maintain high levels of Young's modulus, devitrification resistance, and melting property when the average thermal expansion coefficient in the temperature range of 30 to 380° C. is in the range of 40×10 −7 to 60×10 −7 /° C.
 アルカリ金属酸化物(LiO、NaO及びKO)は、溶融性を高める成分である。しかし、アルカリ金属酸化物の含有量が多過ぎると、熱膨張係数が大幅に上昇して、30~380℃の温度範囲における平均熱膨張係数が60×10-7/℃超になり易くなる。よって、LiO+NaO+KOの含有量は、好ましくは0~5%、0~4%、0~3%、0~2%、0~1%、0~1%未満、0~0.5%、特に好ましくは0~0.1%未満である。 Alkali metal oxides (Li 2 O, Na 2 O, and K 2 O) are components that enhance melting property. However, if the content of alkali metal oxides is too high, the thermal expansion coefficient increases significantly, and the average thermal expansion coefficient in the temperature range of 30 to 380° C. is likely to exceed 60×10 −7 /° C. Therefore, the content of Li 2 O + Na 2 O + K 2 O is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0 to 1%, 0 to less than 1%, 0 to 0.5%, and particularly preferably 0 to less than 0.1%.
 LiOは、溶融性を高める成分である。しかし、LiOの含有量が多過ぎると、熱膨張係数が大幅に上昇して、30~380℃の温度範囲における平均熱膨張係数が60×10-7/℃超になり易くなる。よって、LiOの含有量は、好ましくは0~5%、0~4%、0~3%、0~2%、0~1%、0~0.5%、特に好ましくは0~0.1%未満である。 Li 2 O is a component that enhances melting property. However, if the content of Li 2 O is too high, the thermal expansion coefficient increases significantly, and the average thermal expansion coefficient in the temperature range of 30 to 380° C. is likely to exceed 60×10 −7 /° C. Therefore, the content of Li 2 O is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0 to 1%, 0 to 0.5%, and particularly preferably 0 to less than 0.1%.
 NaOは、溶融性を高める成分である。しかし、NaOの含有量が多過ぎると、熱膨張係数が大幅に上昇して、30~380℃の温度範囲における平均熱膨張係数が60×10-7/℃超になり易くなる。よって、NaOの含有量は、好ましくは0~5%、0~4%、0~3%、0~2%、0~1%、0~0.5%、特に好ましくは0~0.1%未満である。なお、溶融性を特に優先する場合、NaOの下限範囲は0.001%以上、特に0.005%以上であることが好ましい。 Na 2 O is a component that enhances meltability. However, if the content of Na 2 O is too high, the thermal expansion coefficient increases significantly, and the average thermal expansion coefficient in the temperature range of 30 to 380° C. is likely to exceed 60×10 −7 /° C. Therefore, the content of Na 2 O is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0 to 1%, or 0 to 0.5%, and particularly preferably 0 to less than 0.1%. When meltability is particularly prioritized, the lower limit of Na 2 O is preferably 0.001% or more, and particularly preferably 0.005% or more.
 KOは、溶融性を高める成分である。しかし、KOの含有量が多過ぎると、熱膨張係数が大幅に上昇して、30~380℃の温度範囲における平均熱膨張係数が60×10-7/℃超になり易くなる。よって、KOの含有量は、好ましくは0~5%、0~4%、0~3%、0~2%、0~1%、0~0.5%、特に好ましくは0~0.1%未満である。 K 2 O is a component that enhances melting property. However, if the content of K 2 O is too high, the thermal expansion coefficient increases significantly, and the average thermal expansion coefficient in the temperature range of 30 to 380° C. is likely to exceed 60×10 −7 /° C. Therefore, the content of K 2 O is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0 to 1%, 0 to 0.5%, and particularly preferably 0 to less than 0.1%.
 MgOは、熱膨張係数を高める成分である。また高温粘性を下げて、溶融性を高める成分であり、アルカリ土類金属酸化物の中では、ヤング率を顕著に高める成分である。しかし、MgOの含有量が多くなると、耐失透性が低下し易くなる。よって、MgOの含有量は、好ましくは0~19.2%、0~19%、0~18%、0~16%、0~15%、0~12%、0.5~10%、1~9%、1~8%、1~5%、1~4%、特に好ましくは1~3%である。 MgO is a component that increases the coefficient of thermal expansion. It also reduces high-temperature viscosity and increases melting properties, and among alkaline earth metal oxides, it is a component that significantly increases Young's modulus. However, as the MgO content increases, devitrification resistance tends to decrease. Therefore, the MgO content is preferably 0-19.2%, 0-19%, 0-18%, 0-16%, 0-15%, 0-12%, 0.5-10%, 1-9%, 1-8%, 1-5%, 1-4%, and especially preferably 1-3%.
 CaOは、歪点を低下させずに、高温粘性を下げて、溶融性を顕著に高める成分である。またヤング率や熱膨張係数を高める成分である。しかし、CaOの含有量が多過ぎると、アノーサイト等の結晶が析出し、液相粘度を低下させ易くなる。よって、CaOの含有量は、好ましくは0~19.2%、1~19.2%、3~19.2%、5~19.2%、6~19.1%、特に好ましくは6~19%である。 CaO is a component that reduces high-temperature viscosity and significantly increases melting properties without lowering the strain point. It also increases Young's modulus and thermal expansion coefficient. However, if the CaO content is too high, crystals such as anorthite will precipitate, making it easier for the liquidus viscosity to decrease. Therefore, the CaO content is preferably 0-19.2%, 1-19.2%, 3-19.2%, 5-19.2%, 6-19.1%, and especially preferably 6-19%.
 MgOとCaOの合量を調節することにより、30~380℃の温度範囲における平均熱膨張係数が40×10-7~60×10-7/℃の範囲において、ヤング率、耐失透性、溶融性を高いレベルで維持することができる。しかし、MgOとCaOの合量が少なすぎると、上記効果が得づらくなる。MgOとCaOの含有量が多過ぎると、熱膨張係数が大幅に上昇して、30~380℃の温度範囲における平均熱膨張係数が60×10-7/℃超になり易くなる。また、耐失透性が低下し易くなる。よって、MgO+CaOの含有量は、好ましくは17.9~19.2%、17.9~19.1%、17.9~19%、17.9~18.9%、特に好ましくは18~18.8%である。 By adjusting the total amount of MgO and CaO, the Young's modulus, devitrification resistance, and melting property can be maintained at a high level when the average thermal expansion coefficient in the temperature range of 30 to 380 ° C. is in the range of 40 × 10 -7 to 60 × 10 -7 / ° C. However, if the total amount of MgO and CaO is too small, it is difficult to obtain the above effects. If the content of MgO and CaO is too large, the thermal expansion coefficient increases significantly, and the average thermal expansion coefficient in the temperature range of 30 to 380 ° C. tends to exceed 60 × 10 -7 / ° C. In addition, the devitrification resistance tends to decrease. Therefore, the content of MgO + CaO is preferably 17.9 to 19.2%, 17.9 to 19.1%, 17.9 to 19%, 17.9 to 18.9%, and particularly preferably 18 to 18.8%.
 SrOは、耐失透性や熱膨張係数を高める成分であり、高温粘度を下げて溶融性を高める成分である。しかし、SrOの含有量が多過ぎると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。よって、SrOの含有量は、好ましくは0~4.8%、0~4%、0~3%、0~2%、特に好ましくは0~1%未満である。 SrO is a component that increases devitrification resistance and the thermal expansion coefficient, and also reduces high-temperature viscosity and improves melting properties. However, if the SrO content is too high, the glass composition loses balance and devitrification resistance is likely to decrease. Therefore, the SrO content is preferably 0-4.8%, 0-4%, 0-3%, 0-2%, and particularly preferably less than 0-1%.
 BaOは、耐失透性を高め、ガラスの成形性を向上させる成分である。また、熱膨張係数を高める効果もある。しかし、BaOの含有量が多過ぎると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。よって、BaOの含有量は、好ましくは0~4.8%、0~4.6%、0~4.4%、0~4.2%、特に好ましくは0~4%である。なお、耐失透性の向上を優先する場合、BaOの下限範囲は0.1%以上、1%以上、2%以上、特に3%以上であることが好ましい。 BaO is a component that improves resistance to devitrification and improves the formability of glass. It also has the effect of increasing the thermal expansion coefficient. However, if the BaO content is too high, the balance of the glass composition is lost and devitrification resistance is likely to decrease. Therefore, the BaO content is preferably 0-4.8%, 0-4.6%, 0-4.4%, or 0-4.2%, and particularly preferably 0-4%. If improving devitrification resistance is prioritized, the lower limit range of BaO is preferably 0.1% or more, 1% or more, 2% or more, and particularly preferably 3% or more.
 SrOとBaOの合量を調節することにより、30~380℃の温度範囲における平均熱膨張係数が40×10-7~60×10-7/℃の範囲において、ヤング率、耐失透性、溶融性を高いレベルで維持することができる。しかし、SrOとBaOの合量が少なすぎると、上記効果が得づらくなる。SrOとBaOの含有量が多過ぎると、熱膨張係数が大幅に上昇して、30~380℃の温度範囲における平均熱膨張係数が60×10-7/℃超になり易くなる。また、ガラス組成のバランスを欠いて耐失透性が低下し易くなる。よって、SrO+BaOの含有量は、好ましくは0~4.8%、0~4.5%、1~4.5%、1.3~4.5%、1.5~4.5%、2~4.5%、特に好ましくは3~4.3%である。 By adjusting the total amount of SrO and BaO, the Young's modulus, devitrification resistance, and melting property can be maintained at a high level when the average thermal expansion coefficient in the temperature range of 30 to 380 ° C. is in the range of 40 × 10 -7 to 60 × 10 -7 / ° C. However, if the total amount of SrO and BaO is too small, it is difficult to obtain the above effects. If the content of SrO and BaO is too large, the thermal expansion coefficient increases significantly, and the average thermal expansion coefficient in the temperature range of 30 to 380 ° C. is likely to exceed 60 × 10 -7 / ° C. In addition, the glass composition is unbalanced and the devitrification resistance is likely to decrease. Therefore, the content of SrO + BaO is preferably 0 to 4.8%, 0 to 4.5%, 1 to 4.5%, 1.3 to 4.5%, 1.5 to 4.5%, 2 to 4.5%, and particularly preferably 3 to 4.3%.
 上記成分以外にも、任意成分として、他の成分を導入してもよい。なお、上記成分以外の他の成分の含有量は、本発明の効果を的確に享受する観点から、合量で15%以下、10%以下、特に5%以下が好ましい。 In addition to the above components, other components may be introduced as optional components. From the viewpoint of accurately enjoying the effects of the present invention, the content of other components other than the above components is preferably 15% or less in total, 10% or less, and particularly preferably 5% or less.
 ZnOは、高温粘性を下げて、溶融性や成形性を顕著に高める成分であり、また耐候性を高める成分である。しかし、ZnOの含有量が多過ぎると、ガラスが失透し易くなる。よって、ZnOの含有量は、好ましくは0~3%、0~2%、0~1%、特に好ましくは0~0.1%である。 ZnO is a component that reduces high-temperature viscosity and significantly improves meltability and formability, and also improves weather resistance. However, if the ZnO content is too high, the glass becomes more susceptible to devitrification. Therefore, the ZnO content is preferably 0-3%, 0-2%, or 0-1%, and particularly preferably 0-0.1%.
 Feは、不純物成分、或いは清澄剤成分として導入し得る成分である。しかし、Feの含有量が多過ぎると、紫外線透過率が低下して、紫外LEDパッケージ等に適用し難くなる。よって、Feの含有量は、好ましくは0~0.05%、0~0.03%、0~0.02%、特に好ましくは0.0001~0.01%である。なお、本発明でいう「Fe」は、2価の酸化鉄と3価の酸化鉄を含み、2価の酸化鉄は、Feに換算して、取り扱うものとする。他の酸化物についても、同様にして、表記の酸化物を基準にして取り扱うものとする。 Fe 2 O 3 is a component that can be introduced as an impurity component or a fining agent component. However, if the content of Fe 2 O 3 is too high, the ultraviolet transmittance decreases, making it difficult to apply to ultraviolet LED packages, etc. Therefore, the content of Fe 2 O 3 is preferably 0 to 0.05%, 0 to 0.03%, 0 to 0.02%, and particularly preferably 0.0001 to 0.01%. In addition, "Fe 2 O 3 " in the present invention includes divalent iron oxide and trivalent iron oxide, and divalent iron oxide is converted to Fe 2 O 3 and handled. Other oxides are also handled in the same manner, based on the oxides listed.
 SnOは、高温域で良好な清澄作用を有する成分であり、また高温粘性を低下させる成分である。SnOの含有量は、好ましくは0~2%、0.001~1%、0.01~0.9%、特に好ましくは0.05~0.7%である。SnOの含有量が多過ぎると、SnOの失透結晶が析出し易くなる。SnOの含有量が少な過ぎると、上記効果を享受し難くなる。 SnO2 is a component that has a good clarifying effect in the high temperature range and also reduces high temperature viscosity. The content of SnO2 is preferably 0-2%, 0.001-1%, 0.01-0.9%, and particularly preferably 0.05-0.7%. If the content of SnO2 is too high, devitrified crystals of SnO2 tend to precipitate. If the content of SnO2 is too low, it becomes difficult to enjoy the above effects.
 清澄剤として、As、Sbが有効に作用するが、環境的観点で言えば、これら成分を極力低減することが好ましい。As、Sbのそれぞれの含有量は、好ましくは1%以下、0.5%以下、0.1%以下、特に好ましくは0.05%以下である。 As 2 O 3 and Sb 2 O 3 are effective as fining agents, but from an environmental point of view, it is preferable to reduce these components as much as possible. The respective contents of As 2 O 3 and Sb 2 O 3 are preferably 1% or less, 0.5% or less, 0.1% or less, and particularly preferably 0.05% or less.
 SOは、清澄作用を有する成分である。SOの含有量は、好ましくは0~1%、0~0.5%、0~0.1%、特に好ましくは0~0.01%である。SOの含有量が多過ぎると、SOリボイルが発生し易くなる。 SO3 is a component that has a clarifying effect. The content of SO3 is preferably 0 to 1%, 0 to 0.5%, 0 to 0.1%, and particularly preferably 0 to 0.01%. If the content of SO3 is too high, SO2 reboil tends to occur.
 更に、ガラス特性が損なわれない限り、清澄剤として、F、C、或いはAl、Si等の金属粉末を各々1%程度まで導入してもよい。また、CeO等も1%程度まで導入し得るが、紫外線透過率の低下に留意する必要がある。 Furthermore, as long as the glass properties are not impaired, metal powders such as F, C, Al, and Si may be incorporated as fining agents up to about 1% each. CeO2 and the like may also be incorporated up to about 1%, but attention must be paid to the decrease in ultraviolet transmittance.
 Clは、ガラスの溶融を促進する成分である。ガラス組成中にClを導入すれば、溶融温度の低温化、清澄作用の促進を図ることができ、結果として、溶融コストの低廉化、ガラス製造窯の長寿命化を達成し易くなる。しかし、Clの含有量が多過ぎると、ガラス製造窯周囲の金属部品を腐食させる虞がある。よって、Clの含有量は、好ましくは3%以下、1%以下、0.5%以下、特に好ましくは0.1%以下である。 Cl is a component that promotes the melting of glass. By introducing Cl into the glass composition, it is possible to lower the melting temperature and promote the clarification process, which in turn makes it easier to achieve lower melting costs and longer life for glass manufacturing kilns. However, if the Cl content is too high, there is a risk of corrosion of metal parts around the glass manufacturing kiln. Therefore, the Cl content is preferably 3% or less, 1% or less, 0.5% or less, and particularly preferably 0.1% or less.
 Pは、失透結晶の析出を抑制し得る成分である。但し、Pを多量に導入すると、ガラスが分相し易くなる。よって、Pの含有量は、好ましくは0~15%、0~10%、0~5%、0~2.5%、0~1.5%、0~0.5%、特に好ましくは0~0.3%である。 P 2 O 5 is a component that can suppress the precipitation of devitrification crystals. However, if a large amount of P 2 O 5 is introduced, the glass becomes more likely to undergo phase separation. Therefore, the content of P 2 O 5 is preferably 0 to 15%, 0 to 10%, 0 to 5%, 0 to 2.5%, 0 to 1.5%, 0 to 0.5%, and particularly preferably 0 to 0.3%.
 TiOは、高温粘性を下げて、溶融性を高める成分であると共に、ソラリゼーションを抑制する成分である。しかし、TiOを多量に導入すると、ガラスが着色して、透過率が低下し易くなる。よって、TiOの含有量は、好ましくは0~5%、0~3%、0~1%、特に好ましくは0~0.02%である。 TiO2 is a component that reduces high-temperature viscosity and increases melting property, and also suppresses solarization. However, if a large amount of TiO2 is introduced, the glass becomes colored and the transmittance tends to decrease. Therefore, the content of TiO2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, and particularly preferably 0 to 0.02%.
 ZrOは、耐薬品性やヤング率を改善する成分である。しかし、ZrOを多量に導入すると、ガラスが失透し易くなり、また導入原料が難熔解性であるため、未熔解の結晶性異物がガラス中に混入する虞がある。よって、ZrOの含有量は、好ましくは0~10%、0~7%、0~5%、0~3%、0~1%、特に好ましくは0~0.1%である。 ZrO2 is a component that improves chemical resistance and Young's modulus. However, if a large amount of ZrO2 is introduced, the glass becomes easily devitrified, and since the introduced raw material is difficult to melt, there is a risk that unmelted crystalline foreign matter will be mixed into the glass. Therefore, the content of ZrO2 is preferably 0 to 10%, 0 to 7%, 0 to 5%, 0 to 3%, 0 to 1%, and particularly preferably 0 to 0.1%.
 Y、Nb、Laには、歪点、ヤング率等を高める働きがある。しかし、これらの成分の含有量は各々5%以下、特に1%以下であることが好ましい。含有量が1%より多いと、原料コスト、製品コストが高騰する虞がある。 Y2O3 , Nb2O5 , and La2O3 have the function of increasing the strain point, Young 's modulus , etc. However, the content of each of these components is preferably 5% or less, particularly 1% or less. If the content is more than 1%, there is a risk that the raw material cost and product cost will rise.
 MoOは、不純物、或いは分相抑制成分として導入し得る成分である。またMoは、溶融工程における電極に含まれ得る成分であり、電気溶融加熱によりMoOが溶出し、溶融ガラス中に取り込まれる。しかし、MoOが多量に導入されると、透過率が低下し易くなる。よって、MoOの含有量は、好ましくは0~0.01%、0~0.007%、0~0.006%、特に好ましくは0~0.002%である。 MoO3 is a component that can be introduced as an impurity or a phase separation suppressing component. Mo is also a component that can be contained in the electrodes in the melting process, and MoO3 is dissolved by electric melting heating and is incorporated into the molten glass. However, if a large amount of MoO3 is introduced, the transmittance tends to decrease. Therefore, the content of MoO3 is preferably 0 to 0.01%, 0 to 0.007%, 0 to 0.006%, and particularly preferably 0 to 0.002%.
 本発明のガラスは、以下のガラス特性を有することが好ましい。 The glass of the present invention preferably has the following glass properties:
 30~380℃の温度範囲における平均熱膨張係数は、好ましくは40×10-7~60×10-7/℃、42×10-7~58×10-7/℃、45×10-7~56×10-7/℃、特に好ましくは47×10-7~55×10-7/℃である。30~380℃の温度範囲における平均熱膨張係数が上記範囲外になると、半導体チップの熱膨張係数に整合し難くなり、ガラス基板の寸法変化(特に反り変形)が生じ易くなる。 The average thermal expansion coefficient in the temperature range of 30 to 380° C. is preferably 40×10 −7 to 60×10 −7 /° C., 42×10 −7 to 58×10 −7 /° C., 45×10 −7 to 56×10 −7 /° C., and particularly preferably 47×10 −7 to 55×10 −7 /° C. If the average thermal expansion coefficient in the temperature range of 30 to 380° C. is outside the above range, it becomes difficult to match the thermal expansion coefficient of the semiconductor chip, and dimensional changes (particularly warpage) of the glass substrate are likely to occur.
 厚み1mm換算、254nmにおける透過率は、好ましくは5%以上、10%以上、20%以上、25%以上、特に好ましくは30%以上である。厚み1mm換算、254nmにおける透過率が低過ぎると、紫外LEDパッケージのカバーガラス等に適用し難くなる。厚み1mm換算、254nmにおける透過率の上限は特に限定されないが、例えば99.9%以下、99%以下、98%以下、特に95%以下としてもよい。 The transmittance at 254 nm, calculated as a thickness of 1 mm, is preferably 5% or more, 10% or more, 20% or more, 25% or more, and particularly preferably 30% or more. If the transmittance at 254 nm, calculated as a thickness of 1 mm, is too low, it becomes difficult to apply to cover glass of an ultraviolet LED package, etc. There is no particular upper limit to the transmittance at 254 nm, calculated as a thickness of 1 mm, but it may be, for example, 99.9% or less, 99% or less, 98% or less, and particularly 95% or less.
 ヤング率は、好ましくは70GPa以上、73GPa以上、75GPa以上、特に好ましくは77GPa以上である。ヤング率が低過ぎると、ガラス基板上にSiチップを貼り付けた後に、得られる積層体の剛性が低下し易くなる。またガラス基板上に接着剤をスピンコートする場合に、ガラス基板が位置ズレし易くなる。ヤング率の上限は特に限定されないが、例えば100GPa以下、特に99GPa以下としてもよい。 The Young's modulus is preferably 70 GPa or more, 73 GPa or more, 75 GPa or more, and particularly preferably 77 GPa or more. If the Young's modulus is too low, the rigidity of the resulting laminate is likely to decrease after the Si chip is attached to the glass substrate. In addition, when an adhesive is spin-coated onto the glass substrate, the glass substrate is likely to become misaligned. There is no particular upper limit to the Young's modulus, but it may be, for example, 100 GPa or less, particularly 99 GPa or less.
 液相粘度は、好ましくは104.0dPa・s以上、104.6dPa・s以上、特に好ましくは104.7dPa・s以上である。このようにすれば、成形時に失透結晶が析出し難くなるため、ダウンドロー法、特にオーバーフローダウンドロー法でガラス基板を成形し易くなる。液相粘度の上限は特に限定されないが、例えば108.0dPa・s以下としてもよい。 The liquidus viscosity is preferably 10 4.0 dPa·s or more, 10 4.6 dPa·s or more, and particularly preferably 10 4.7 dPa·s or more. In this way, devitrified crystals are less likely to precipitate during forming, making it easier to form a glass substrate by the down-draw method, particularly the overflow down-draw method. The upper limit of the liquidus viscosity is not particularly limited, but may be, for example, 10 8.0 dPa·s or less.
 高温粘度102.5dPa・sにおける温度は、好ましくは1600℃未満、1550℃以下、1520℃以下、1500℃以下、1480℃以下、1450℃以下、特に好ましくは1400℃以下である。高温粘度102.5dPa・sにおける温度が高くなると、溶融性が低下して、ガラス基板の製造コストが高騰する。高温粘度102.5dPa・sにおける温度の下限は特に限定されないが、例えば1000℃以上、特に1050℃以上としてもよい。 The temperature at a high-temperature viscosity of 10 2.5 dPa·s is preferably less than 1600°C, 1550°C or less, 1520°C or less, 1500°C or less, 1480°C or less, 1450°C or less, and particularly preferably 1400°C or less. When the temperature at a high-temperature viscosity of 10 2.5 dPa·s becomes high, the melting property decreases, and the manufacturing cost of the glass substrate increases. The lower limit of the temperature at a high-temperature viscosity of 10 2.5 dPa·s is not particularly limited, but may be, for example, 1000°C or more, particularly 1050°C or more.
 本発明では、ガラスの熱膨張曲線の傾きが変化する温度をガラス転移点として取り扱う。ガラス転移点は、好ましくは600℃以上、特に好ましくは650℃以上である。ガラス転移点が低すぎると、ガラスが流動しすぎてしまい、所望の形状に成形することが難しくなる。また、ガラス転移点が低すぎると、高温使用時にガラスが変形しやすくなる。ガラス転移点の上限は特に限定されないが、800℃以下、特に750℃以下としてもよい。 In the present invention, the temperature at which the slope of the thermal expansion curve of the glass changes is treated as the glass transition point. The glass transition point is preferably 600°C or higher, and particularly preferably 650°C or higher. If the glass transition point is too low, the glass will flow too much, making it difficult to mold into the desired shape. Furthermore, if the glass transition point is too low, the glass will be prone to deformation when used at high temperatures. There is no particular upper limit to the glass transition point, but it may be 800°C or lower, and particularly 750°C or lower.
 本発明では、ガラス転移点以上の温度において、ガラスの熱膨張曲線の傾きが変化する温度を屈伏点として取り扱う。屈伏点は、好ましくは700℃以上、特に好ましくは720℃以上である。屈伏点が低すぎると、ガラスが流動しすぎてしまい、所望の形状に成形することが難しくなる。また、高温使用時にガラスが変形しやすくなる。屈伏点の上限は特に限定されないが、800℃以下、特に750℃以下としてもよい。 In the present invention, the temperature at which the slope of the thermal expansion curve of the glass changes at temperatures above the glass transition point is treated as the yield point. The yield point is preferably 700°C or higher, and particularly preferably 720°C or higher. If the yield point is too low, the glass will flow too much, making it difficult to mold into the desired shape. In addition, the glass will be prone to deformation when used at high temperatures. There is no particular upper limit to the yield point, but it may be 800°C or lower, and particularly 750°C or lower.
 歪点は、好ましくは590℃以上、610℃以上、特に好ましくは630℃以上である。歪点が低過ぎると、ガラス表面に機能性膜を高温で成膜する際に、ガラスに意図しない変形が生じ易くなる。歪点の上限は特に限定されないが、例えば800℃以下、特に750℃以下としてもよい。 The strain point is preferably 590°C or higher, 610°C or higher, and particularly preferably 630°C or higher. If the strain point is too low, unintended deformation of the glass is likely to occur when a functional film is formed on the glass surface at high temperatures. There is no particular upper limit to the strain point, but it may be, for example, 800°C or lower, particularly 750°C or lower.
 徐冷点(ガラスの粘度が約1013dPa・sに相当する温度)は、好ましくは600℃以上、特に好ましくは650℃以上である。徐冷点が低すぎると、ガラスを成形した際に割れやすくなる。また、徐冷点が低すぎると、ガラスが経年収縮しやすくなり、寸法正確性が悪くなる等の悪影響が生じやすくなる。徐冷点の上限は特に限定されないが、750℃以下、特に700℃以下としてもよい。 The annealing point (the temperature at which the viscosity of the glass is about 10 13 dPa·s) is preferably 600° C. or higher, and particularly preferably 650° C. or higher. If the annealing point is too low, the glass is likely to break when molded. If the annealing point is too low, the glass is likely to shrink over time, and adverse effects such as poor dimensional accuracy are likely to occur. The upper limit of the annealing point is not particularly limited, but may be 750° C. or lower, particularly 700° C. or lower.
 軟化点(ガラスの粘度が約107.6dPa・sに相当する温度)は、好ましくは800℃以上、特に好ましくは830℃以上である。軟化点が低すぎると、高温使用時にガラスが変形しやすくなる。軟化点の上限は特に限定されないが、950℃以下、特に900℃以下としてもよい。 The softening point (the temperature at which the viscosity of the glass is about 10 7.6 dPa·s) is preferably 800° C. or higher, and particularly preferably 830° C. or higher. If the softening point is too low, the glass is likely to deform when used at high temperatures. There is no particular upper limit to the softening point, but it may be 950° C. or lower, and particularly 900° C. or lower.
 密度は、好ましくは3.0g/cm以下、特に好ましくは2.8g/cm以下である。密度が大きすぎると単位面積当たりの重量が大きくなり、取り扱いが困難になる。密度の下限は特に限定されないが、例えば2.0g/cm以上、特に2.2g/cm以上としてもよい。 The density is preferably 3.0 g/ cm3 or less, particularly preferably 2.8 g/ cm3 or less. If the density is too high, the weight per unit area becomes large, making handling difficult. The lower limit of the density is not particularly limited, but may be, for example, 2.0 g/ cm3 or more, particularly 2.2 g/ cm3 or more.
 液相温度は、好ましくは1200℃以下、特に好ましくは1180℃以下である。このようにすれば、ガラス製造時に失透結晶が発生して、生産性低下する事態を防止し易くなる。液相温度の下限は特に限定されないが、900℃以上、特に950℃以上としてもよい。なお、液相温度は耐失透性の指標であり、液相温度が低い程、耐失透性に優れる。また、液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を顕微鏡観察にて測定した値である。液相粘度logηは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値である。 The liquidus temperature is preferably 1200°C or less, and particularly preferably 1180°C or less. This makes it easier to prevent the occurrence of devitrification crystals during glass production, which leads to a decrease in productivity. The lower limit of the liquidus temperature is not particularly limited, but may be 900°C or more, particularly 950°C or more. The liquidus temperature is an index of devitrification resistance, and the lower the liquidus temperature, the better the devitrification resistance. The liquidus temperature TL is the temperature at which crystals precipitate after the glass powder that passes through a standard sieve 30 mesh (500 μm) and remains on the 50 mesh (300 μm) is placed in a platinum boat and held in a temperature gradient furnace for 24 hours, and then measured by microscopic observation. The liquidus viscosity log η is the viscosity of the glass at the liquidus temperature TL, measured by the platinum ball pull-up method.
 本発明のガラスは、ガラス表面に機能性膜が形成されていることが好ましく、例えば反射防止膜、反射膜、ハイパスフィルター、ローパスフィルター、バンドパスフィルター等が形成されていることが好ましい。また耐候性を更に高める目的で、ガラス表面にシリカ膜等を形成することも好ましい。 The glass of the present invention preferably has a functional film formed on the glass surface, such as an anti-reflection film, a reflective film, a high-pass filter, a low-pass filter, a band-pass filter, etc. It is also preferable to form a silica film or the like on the glass surface in order to further improve weather resistance.
 本発明のガラスは、ガラス表面にレンズ構造が形成されていることも好ましい。ガラス表面にレンズ構造、例えば凹レンズ、凸レンズ、フレネルレンズ、レンズアレイ等を形成すると、光を集光、散乱させることが可能になる。 The glass of the present invention preferably has a lens structure formed on the glass surface. By forming a lens structure, such as a concave lens, convex lens, Fresnel lens, or lens array, on the glass surface, it becomes possible to focus and scatter light.
 本発明のガラスは、ガラス表面にプリズム構造が形成されていることも好ましい。ガラス表面にプリズム構造を形成すると、光を屈折させることが可能になる。 The glass of the present invention preferably has a prism structure formed on the glass surface. Forming a prism structure on the glass surface makes it possible to refract light.
 本発明のガラスは、半導体パッケージに用いることができる。この場合、ガラス表面に接着層が形成されていることが好ましい。接着層としては、有機物質、無機物質、又はそれらの混合物等が使用可能である。例えば、紫外線硬化型接着剤、金-スズ系はんだ等が使用可能である。なお、接着層の強度を高めるために、紫外線硬化型接着剤中に無機フィラーを添加してもよい。 The glass of the present invention can be used for semiconductor packages. In this case, it is preferable that an adhesive layer is formed on the surface of the glass. The adhesive layer can be made of an organic substance, an inorganic substance, or a mixture thereof. For example, an ultraviolet-curing adhesive or a gold-tin solder can be used. Inorganic fillers can be added to the ultraviolet-curing adhesive to increase the strength of the adhesive layer.
 本発明のガラスの形状は特に限定されず、例えば、平板状(つまりガラス基板)、曲板状、直管状、曲管状、棒状、球状、容器状、ブロック状等とすることができる。 The shape of the glass of the present invention is not particularly limited, and can be, for example, a flat plate (i.e., a glass substrate), a curved plate, a straight tube, a curved tube, a rod, a sphere, a container, a block, etc.
 本発明のガラスにおいて、厚みは、好ましくは0.1~3mm、0.2~1mm、0.3~0.6mmである。厚みが大きくなると、ガラスの軽量化が困難になる。一方、厚みが小さくなると、ガラスの強度が低下し易くなる。 The thickness of the glass of the present invention is preferably 0.1 to 3 mm, 0.2 to 1 mm, or 0.3 to 0.6 mm. If the thickness is too large, it becomes difficult to reduce the weight of the glass. On the other hand, if the thickness is too small, the strength of the glass is easily reduced.
 本発明のガラスは、例えば、各種ガラス原料を調合して、ガラスバッチを得た上で、このガラスバッチを溶融し、得られた溶融ガラスを清澄、均質化し、所定形状に成形することで作製することができる。 The glass of the present invention can be produced, for example, by blending various glass raw materials to obtain a glass batch, melting the glass batch, clarifying and homogenizing the resulting molten glass, and forming it into a desired shape.
 ガラス原料の一部として、還元剤を用いることが好ましい。このようにすれば、ガラス中に含まれるFe3+が還元されて、深紫外域での透過率が向上して、紫外LEDパッケージのカバーガラスに適用し易くなる。還元剤として、木粉、カーボン粉末、金属アルミニウム、金属シリコン、フッ化アルミニウム等の材料が使用可能であるが、その中でも金属シリコン、フッ化アルミニウムが好ましい。 It is preferable to use a reducing agent as a part of the glass raw material. In this way, Fe3 + contained in the glass is reduced, the transmittance in the deep ultraviolet region is improved, and it becomes easy to apply it to the cover glass of the ultraviolet LED package. As the reducing agent, materials such as wood powder, carbon powder, metallic aluminum, metallic silicon, and aluminum fluoride can be used, among which metallic silicon and aluminum fluoride are preferable.
 金属シリコンの添加量は、ガラスバッチの全質量に対して0.001~3質量%、0.005~2質量%、0.01~1質量%、0.1~0.8質量%、0.15~0.5質量%、特に0.2~0.3質量%が好ましい。金属シリコンの添加量が少な過ぎると、ガラス中に含まれるFe3+が還元されず、深紫外域での透過率が低下し易くなる。一方、金属シリコンの添加量が多過ぎると、ガラスが茶色に着色する傾向がある。 The amount of metal silicon added is preferably 0.001 to 3 mass%, 0.005 to 2 mass%, 0.01 to 1 mass%, 0.1 to 0.8 mass%, 0.15 to 0.5 mass%, and particularly preferably 0.2 to 0.3 mass% based on the total mass of the glass batch. If the amount of metal silicon added is too small, Fe3 + contained in the glass is not reduced, and the transmittance in the deep ultraviolet region is likely to decrease. On the other hand, if the amount of metal silicon added is too large, the glass tends to be colored brown.
 フッ化アルミニウム(AlF)の添加量は、ガラスバッチの全質量に対して、F換算で0.01~2質量%、0.05~1.5質量%、0.3~1.5質量%が好ましい。一方、フッ化アルミニウムの添加量が多過ぎると、Fガスがガラス中に泡として残存する虞がある。 The amount of aluminum fluoride (AlF 3 ) added is preferably 0.01 to 2 mass %, 0.05 to 1.5 mass %, or 0.3 to 1.5 mass % in terms of F relative to the total mass of the glass batch. On the other hand, if the amount of aluminum fluoride added is too large, there is a risk that F gas will remain in the glass as bubbles.
 以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 The present invention will be described below based on examples. Note that the following examples are merely illustrative. The present invention is not limited to the following examples in any way.
 表1~3は、本発明の実施例(試料No.1~25)及び比較例(試料No.26)を示している。 Tables 1 to 3 show examples of the present invention (samples No. 1 to 25) and a comparative example (sample No. 26).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 はじめに、表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れ、1400~1700℃で3~24時間溶融した。ガラスバッチの溶解に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出し、板状に成形した後、徐冷点より20℃程度高い温度から、3℃/分で常温まで徐冷した。得られた各試料について、密度ρ、30~380℃の温度範囲における平均熱膨張係数CTE30-380、ヤング率E、ガラス転移点Tg、屈服点Tf、歪点Ps、徐冷点Ta、軟化点Ts、高温粘度104.0dPa・sにおける温度、高温粘度103.0dPa・sにおける温度、高温粘度102.5dPa・sにおける温度、高温粘度102.0dPa・sにおける温度、液相温度TL、液相粘度logη及び厚み1mm換算、254nmにおける透過率T254を評価した。 First, a glass batch prepared by mixing glass raw materials to obtain the glass composition shown in the table was placed in a platinum crucible and melted at 1400 to 1700°C for 3 to 24 hours. When melting the glass batch, the mixture was stirred and homogenized using a platinum stirrer. Next, the molten glass was poured onto a carbon plate and formed into a plate shape, and then slowly cooled from a temperature about 20°C higher than the annealing point to room temperature at a rate of 3°C/min. For each of the obtained samples, the density ρ, average coefficient of thermal expansion in the temperature range of 30 to 380°C CTE 30-380 , Young's modulus E, glass transition temperature Tg, yield point Tf, strain point Ps, annealing point Ta, softening point Ts, temperature at high temperature viscosity of 10 4.0 dPa·s, temperature at high temperature viscosity of 10 3.0 dPa·s, temperature at high temperature viscosity of 10 2.5 dPa·s, temperature at high temperature viscosity of 10 2.0 dPa·s, liquidus temperature TL, liquidus viscosity log η, and transmittance T254 at 254 nm, converted into a thickness of 1 mm.
 密度ρは、周知のアルキメデス法によって測定した値である。 The density ρ is a value measured using the well-known Archimedes method.
 30~380℃の温度範囲における平均熱膨張係数CTE30-380、ガラス転移点Tg、屈伏点Tfは、ディラトメーターで測定した値である。 The average coefficient of thermal expansion in the temperature range of 30 to 380° C., CTE 30-380 , the glass transition point Tg, and the yield point Tf are values measured by a dilatometer.
 ヤング率Eは、共振法により測定した値である。 Young's modulus E is a value measured using the resonance method.
 歪点Ps、徐冷点Ta、軟化点Tsは、ASTM C336の方法に基づいて測定した値である。 The strain point Ps, annealing point Ta, and softening point Ts are values measured based on the method of ASTM C336.
 高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・s及び102.0dPa・sにおける温度は、白金球引き上げ法で測定した値である。 The temperatures at high temperature viscosities of 10 4.0 dPa·s, 10 3.0 dPa·s, 10 2.5 dPa·s and 10 2.0 dPa·s are values measured by a platinum ball pull-up method.
 液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を顕微鏡観察にて測定した値である。液相粘度logηは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値である。 The liquidus temperature TL is the temperature at which crystals precipitate, measured by placing glass powder that passes through a standard sieve of 30 mesh (500 μm) and remains on a 50 mesh (300 μm) sieve in a platinum boat and holding it in a temperature gradient furnace for 24 hours. The liquidus viscosity log η is the viscosity of the glass at the liquidus temperature TL, measured by the platinum ball pull-up method.
 厚み1mm換算、254nmにおける透過率T254は、ダブルビーム型分光光度計を用いて測定した反射損失を含む値である。測定試料として、両面を光学研磨面(鏡面)に研磨したものを使用した。なお、AFMにより、これらの測定試料のガラス表面の表面粗さRaを測定したところ、測定領域5μm×5μmで0.5~1.0nmであった。 The transmittance T254 at 254 nm, calculated as a thickness of 1 mm, is a value including reflection loss measured using a double-beam spectrophotometer. The measurement samples used had both sides optically polished (mirror) surfaces. When the surface roughness Ra of the glass surface of these measurement samples was measured using an AFM, it was 0.5 to 1.0 nm over a measurement area of 5 μm x 5 μm.
 表中から明らかなように、試料No.1~25は、熱膨張係数が所定の値(ここでは30~380℃の温度範囲における平均熱膨張係数が40ラ10-7~60ラ10-7/℃)であり、液相温度TLが1168℃以下と低く耐失透性が高かった。また、ヤング率Eが81GPa以上と高くなった。さらに、厚み1mm換算、254nmにおける透過率T254が19%以上と高くなった。よって、試料No.1~25は、上記熱膨張係数を有する半導体パッケージなどのガラス基板用ガラスとして好適であると考えられる。一方、試料No.26は、目的とする熱膨張係数が得られなかった。また、液相温度TLが1331℃より高く、耐失透性が低くなった。 As is clear from the table, samples No. 1 to 25 have a predetermined thermal expansion coefficient (here, the average thermal expansion coefficient in the temperature range of 30 to 380°C is 40 x 10 -7 to 60 x 10 -7 /°C), a liquidus temperature TL is low at 1168°C or less, and devitrification resistance is high. In addition, Young's modulus E is high at 81 GPa or more. Furthermore, the transmittance T254 at 254 nm, converted to a thickness of 1 mm, is high at 19% or more. Therefore, samples No. 1 to 25 are considered to be suitable as glass for glass substrates such as semiconductor packages having the above thermal expansion coefficient. On the other hand, sample No. 26 did not obtain the desired thermal expansion coefficient. In addition, the liquidus temperature TL is higher than 1331°C, and devitrification resistance is low.
 なお、上記実施例では、溶融ガラスを流し出して平板形状に成形したが、工業的規模で生産する場合には、オーバーフローダウンドロー法等で平板形状に成形し、両表面が未研磨の状態で使用に供することが好ましい。また、管状に形成する場合は、ダウンドロー法やダンナー法等で管状に成形することが好ましい。 In the above examples, the molten glass was poured out and formed into a flat plate shape, but when producing on an industrial scale, it is preferable to form it into a flat plate shape using the overflow downdraw method or the like, and use it with both surfaces unpolished. Also, when forming it into a tube shape, it is preferable to form it into a tube shape using the downdraw method or the Danner method, etc.
 本発明のガラスは、例えば、半導体パッケージ、紫外LEDパッケージ、受光素子封止パッケージ、紫外光発光ランプ、光電子増倍管、液晶ディスプレイ、有機ELディスプレイ、情報記録媒体に用いるガラス基板、ガラス管等として好適である。また、本発明のガラスは、レンズ、プリズム等の光学用途にも適用可能である。また、本発明のガラスは、半導体支持用基板にも適用可能である。 The glass of the present invention is suitable for use as, for example, a semiconductor package, an ultraviolet LED package, a light receiving element sealing package, an ultraviolet light emitting lamp, a photomultiplier tube, a liquid crystal display, an organic EL display, a glass substrate for information recording media, a glass tube, and the like. The glass of the present invention can also be used for optical applications such as lenses and prisms. The glass of the present invention can also be used as a semiconductor support substrate.

Claims (7)

  1.  ガラス組成として、モル%で、SiO 40~80%、Al 0~25%、B 0.1~25%、LiO+NaO+KO 0~5%、MgO 0~19.2%、CaO 0~19.2%、SrO 0~4.8%、BaO 0~4.8%、MgO+CaO 17.9~19.2%、SrO+BaO 0~4.8%を含有し、モル比(SiO+Al)/Bが5.4~7.6である、ガラス。 The glass has a glass composition, in mole percent, of SiO 2 40-80%, Al 2 O 3 0-25%, B 2 O 3 0.1-25%, Li 2 O + Na 2 O + K 2 O 0-5%, MgO 0-19.2%, CaO 0-19.2%, SrO 0-4.8%, BaO 0-4.8%, MgO + CaO 17.9-19.2%, and SrO + BaO 0-4.8%, and has a molar ratio of (SiO 2 + Al 2 O 3 )/B 2 O 3 of 5.4-7.6.
  2.  ガラス組成として、モル%で、SiO 45~67.1%、Al 7~15%、B 8~14%、LiO+NaO+KO 0~5%、MgO 0~12%、CaO 6~19%、SrO 0~3%、BaO 0~4%、MgO+CaO 17.9~19.2%、SrO+BaO 0~4.5%を含有し、モル比(SiO+Al)/Bが6~7.6である、請求項1に記載のガラス。 The glass according to claim 1, comprising, as a glass composition, in mole percent, 45-67.1% SiO 2 , 7-15% Al 2 O 3 , 8-14% B 2 O 3 , 0-5% Li 2 O + Na 2 O + K 2 O , 0-12% MgO, 6-19% CaO, 0-3% SrO, 0-4% BaO, 17.9-19.2% MgO + CaO, and 0-4.5% SrO + BaO, and having a mole ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 of 6-7.6.
  3.  30~380℃の温度範囲における平均熱膨張係数が40×10-7~60×10-7/℃である、請求項1又は2に記載のガラス。 3. The glass according to claim 1, having an average thermal expansion coefficient of 40×10 -7 to 60×10 -7 /°C in the temperature range of 30 to 380°C.
  4.  厚み1mm換算、254nmにおける反射損失を含む透過率が5%以上である、請求項1又は2に記載のガラス。 The glass according to claim 1 or 2, which has a transmittance including reflection loss at 254 nm, calculated as 1 mm thickness, of 5% or more.
  5.  ヤング率が70GPa以上である、請求項1又は2に記載のガラス。 The glass according to claim 1 or 2, having a Young's modulus of 70 GPa or more.
  6.  液相粘度が104.0dPa・s以上である、請求項1又は2に記載のガラス。 3. The glass according to claim 1, having a liquidus viscosity of 10 4.0 dPa·s or more.
  7.  高温粘度102.5dPa・sにおける温度が1600℃未満である、請求項1又は2に記載のガラス。 3. The glass of claim 1, having a temperature at a high temperature viscosity of 10 2.5 dPa·s of less than 1600°C.
PCT/JP2023/040065 2022-11-09 2023-11-07 Glass WO2024101356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022179315 2022-11-09
JP2022-179315 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024101356A1 true WO2024101356A1 (en) 2024-05-16

Family

ID=91032460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040065 WO2024101356A1 (en) 2022-11-09 2023-11-07 Glass

Country Status (1)

Country Link
WO (1) WO2024101356A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008112978A1 (en) * 2007-03-15 2008-09-18 Ocv Intellectual Capital Llc Low viscosity e-glass composition enabling the use of platinum and rhodium free bushings
WO2012160704A1 (en) * 2011-05-26 2012-11-29 新電元工業株式会社 Glass composition for semiconductor junction protection, production method for semiconductor device, and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008112978A1 (en) * 2007-03-15 2008-09-18 Ocv Intellectual Capital Llc Low viscosity e-glass composition enabling the use of platinum and rhodium free bushings
WO2012160704A1 (en) * 2011-05-26 2012-11-29 新電元工業株式会社 Glass composition for semiconductor junction protection, production method for semiconductor device, and semiconductor device

Similar Documents

Publication Publication Date Title
JP6604405B2 (en) UV transmitting glass
JP7512893B2 (en) Optical Glass and Optical Components
JP5557168B2 (en) Method for producing tempered glass substrate and tempered glass substrate
JP5589252B2 (en) Tempered glass substrate
CN108840563B (en) Alkali-free glass
JP4789059B2 (en) Alkali-free glass substrate
JP5874304B2 (en) Alkali-free glass
CN101439930B (en) Optical glass for precise compression molding
WO2008044694A1 (en) Reinforced glass substrate
JP7486446B2 (en) Glass
JP2010241676A (en) Alkali-free glass
JP2011037660A (en) Optical glass, lens preform and optical element
WO2016194861A1 (en) Glass
WO2021070707A1 (en) Ultraviolet transmission glass
CN111977969B (en) Optical glass, glass preform, optical element and optical instrument
JP2006327925A (en) Optical glass
JP5823658B2 (en) Optical glass, preform, and optical element
JP2024045688A (en) Glass
WO2021090631A1 (en) Ultraviolet transmission glass
JP2010105897A (en) Optical glass, optical element, and optical apparatus
WO2024101356A1 (en) Glass
JP7389400B2 (en) Alkali-free glass plate
JP2023031228A (en) glass
TW202411174A (en) Strengthened glass plate, strengthened glass plate production method, and glass plate to be strengthened
TW202104119A (en) Display compositions containing phosphorous and low ionic field strength modifiers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888703

Country of ref document: EP

Kind code of ref document: A1