WO2024100832A1 - 熱源システム - Google Patents

熱源システム Download PDF

Info

Publication number
WO2024100832A1
WO2024100832A1 PCT/JP2022/041865 JP2022041865W WO2024100832A1 WO 2024100832 A1 WO2024100832 A1 WO 2024100832A1 JP 2022041865 W JP2022041865 W JP 2022041865W WO 2024100832 A1 WO2024100832 A1 WO 2024100832A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
heat exchanger
pump
medium
Prior art date
Application number
PCT/JP2022/041865
Other languages
English (en)
French (fr)
Inventor
智典 小島
大亮 松▲崎▼
圭 岡本
洋貴 佐藤
寛也 石原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/041865 priority Critical patent/WO2024100832A1/ja
Publication of WO2024100832A1 publication Critical patent/WO2024100832A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps

Definitions

  • This disclosure relates to a heat source system having a heat medium circuit.
  • Patent Document 1 discloses a heat source system in which multiple heat source units are connected in parallel to a heat medium circuit.
  • each of the multiple heat source machines is connected to a supply water header pipe and a return water header pipe via water piping.
  • Each of the multiple heat source machines is provided with a refrigeration cycle circuit in which a refrigerant circulates.
  • the refrigeration cycle circuit is provided with a load side heat exchanger that exchanges heat between the refrigerant and water flowing through the water piping.
  • a flow rate adjustment pump is provided on the water piping connected to each of the multiple heat source machines.
  • Each of the multiple flow rate adjustment pumps circulates water from the return water header pipe to the load side heat exchanger via the water piping, and then sends it to the supply water header pipe.
  • the water that has exchanged heat with the refrigerant in each of the multiple load side heat exchangers circulates through the load device via the supply water header pipe, and then returns to the return water header pipe.
  • HFC refrigerants such as R410A or R404A are the mainstream refrigerants used in refrigeration cycle circuits.
  • GWP Global Warming Potential
  • the load side heat exchanger installed in the heat source unit of a conventional heat source system may have different piping specifications for the old model corresponding to the refrigerant currently in use and the new model corresponding to the refrigerant to be replaced.
  • the head loss of the load side heat exchanger of the old model may differ from the head loss of the load side heat exchanger of the new model.
  • the present disclosure has been made to solve the problems described above, and provides a heat source system that can stabilize the temperature of the fluid supplied to the load even if multiple heat medium heat exchangers connected in parallel have different head losses.
  • the heat source system includes a first heat medium heat exchanger connected in series to a load and exchanging heat between a refrigerant and a heat medium, a second heat medium heat exchanger connected in parallel to the first heat medium heat exchanger to the load and exchanging heat between the refrigerant and the heat medium, a first heat source unit connected to the first heat medium heat exchanger and including a refrigerant circuit through which the refrigerant circulates, a second heat source unit connected to the second heat medium heat exchanger and including a refrigerant circuit through which the refrigerant circulates, a first pump connected in series to the first heat medium heat exchanger and circulating the heat medium in a heat medium circuit including the first heat medium heat exchanger and the load, and a second pump connected in series to the second heat medium heat exchanger and including the second heat medium heat exchanger and the
  • the system includes a second pump that circulates the heat medium in a heat medium circuit including a load, and a controller that controls the operating frequencies of the first pump and the second pump.
  • the controller includes an internal resistance calculation means that calculates an internal resistance, which is a head loss of each of the first heat medium heat exchanger and the second heat medium heat exchanger, an external resistance calculation means that calculates a first external resistance using the internal resistance of the first heat medium heat exchanger and calculates a second external resistance using the internal resistance of the second heat medium heat exchanger, and a pump control means that controls the operating frequency of the second pump so that the second external resistance approaches the first external resistance based on the operating frequency of the first pump.
  • an internal resistance calculation means that calculates an internal resistance, which is a head loss of each of the first heat medium heat exchanger and the second heat medium heat exchanger
  • an external resistance calculation means that calculates a first external resistance using the internal resistance of the first heat medium heat exchanger and calculates a second external resistance using the internal resistance of the second heat medium heat exchanger
  • a pump control means that controls the operating frequency of the second pump so that the second external resistance approaches the first external resistance based on the operating frequency of the first pump.
  • the internal resistance of each of the first heat medium heat exchanger and the second heat medium heat exchanger is calculated for the heat medium circulating through the heat medium circuit, and the external resistance of each heat medium heat exchanger is calculated based on the internal resistance of each heat medium heat exchanger. Then, based on the difference in the external resistance of each heat medium heat exchanger, the operating frequency of the second pump is set so as to reduce the flow rate difference between these heat medium heat exchangers. Since the flow rate difference between the heat medium circulating through the first heat medium heat exchanger and the heat medium circulating through the second heat medium heat exchanger is reduced, the temperature difference between the heat medium circulating through the first heat medium heat exchanger and the heat medium circulating through the second heat medium heat exchanger is suppressed. As a result, the temperature stability of the heat medium supplied to the load side device via the heat medium circuit is improved.
  • FIG. 1 is a block diagram showing a configuration example of a heat source system according to a first embodiment.
  • FIG. 2 is a functional block diagram showing a configuration example of a controller of the heat source system according to the first embodiment.
  • 1 is a graph showing the relationship between flow rate and head loss for a number of types of heat transfer media.
  • 2 is a graph showing an example of a total head of the first pump shown in FIG. 1 .
  • 1 is a graph showing an example of external resistance of an old model and a new model.
  • 3 is a hardware configuration diagram showing an example of the configuration of a controller shown in FIG. 2 .
  • 3 is a hardware configuration diagram showing another example of the configuration of the controller shown in FIG. 2.
  • 4 is a flowchart showing an operation procedure of the heat source system according to the first embodiment.
  • FIG. 9 is a flowchart showing the operation procedure of steps S14 and S15 shown in FIG. 8 .
  • 1 is a graph showing an example of external resistance of an old model and a new model when the heat medium is water.
  • 1 is a graph showing an example of external resistance of an old model and a new model when the heat medium is brine.
  • FIG. 11 is a block diagram showing a configuration example of a heat source system according to a first modified example.
  • FIG. 11 is a functional block diagram showing a configuration example of a controller of a heat source system according to a second embodiment.
  • 14 is a diagram showing an example of a first table stored in the storage unit shown in FIG. 13 .
  • FIG. 14 is a diagram showing an example of a second table stored in the storage unit shown in FIG. 13 .
  • FIG. 10 is a flowchart showing the operation of step S14 shown in FIG. 8 in the second embodiment.
  • Embodiment 1 The configuration of the heat source system according to the first embodiment will be described.
  • Fig. 1 is a block diagram showing a configuration example of the heat source system according to the first embodiment. First, the overall configuration of the heat source system 1 will be described with reference to Fig. 1.
  • the heat source system 1 has a first heat source unit 3a and a second heat source unit 3b, a first heat medium heat exchanger 2a and a second heat medium heat exchanger 2b, a first pump 4a and a second pump 4b, and a controller 5.
  • the first heat medium heat exchanger 2a and the second heat medium heat exchanger 2b are heat exchangers that exchange heat between a refrigerant and a heat medium.
  • the first heat medium heat exchanger 2a and the second heat medium heat exchanger 2b are, for example, plate-type or double-tube-type heat exchangers.
  • the heat exchange efficiency of the second heat medium heat exchanger 2b is greater than that of the first heat medium heat exchanger 2a, and the head loss of the second heat medium heat exchanger 2b is less than that of the first heat medium heat exchanger 2a.
  • the heat transfer area of the second heat medium heat exchanger 2b is greater than that of the first heat medium heat exchanger 2a.
  • the first heat medium heat exchanger 2a is referred to as an old model heat medium heat exchanger
  • the second heat medium heat exchanger 2b is referred to as a new model heat medium heat exchanger.
  • the first heat source unit 3a and the second heat source unit 3b have the same cold heat generation capacity, but the cold heat generation capacity of the first heat source unit 3a and the heat generation capacity of the second heat source unit 3b may be different.
  • the capacity of the first pump 4a and the capacity of the second pump 4b are equal.
  • the first pump 4a and the second pump 4b are connected to the controller 5 via a signal line (not shown).
  • the load device 43 that uses the cold generated by the heat source system 1 is connected to the heat medium piping 53.
  • One end of the heat medium piping 53 is connected to the return fluid header pipe 42, and the other end of the heat medium piping 53 is connected to the forward fluid header pipe 41.
  • the heat medium piping 51 is connected to the forward fluid header pipe 41.
  • the heat medium piping 52 is connected to the return fluid header pipe 42.
  • the forward fluid header pipe 41 and the return fluid header pipe 42 are connected by a bypass piping 54.
  • the heat medium pipe 52 branches into heat medium pipe 7a and heat medium pipe 7b at branch point 44.
  • Heat medium pipe 7a and heat medium pipe 7b join at junction 45 and are connected to heat medium pipe 51.
  • a first pump 4a and a first heat medium heat exchanger 2a are connected in series to the heat medium pipe 7a.
  • a second pump 4b and a second heat medium heat exchanger 2b are connected in series to the heat medium pipe 7b.
  • the first pump 4a, the first heat medium heat exchanger 2a, and the load device 43 are connected by heat medium pipes 7a, 51, 52, and 53 to form a heat medium circuit 6 in which the heat medium circulates.
  • the first pump 4a is built into the heat medium circuit 6 including the first heat medium heat exchanger 2a.
  • the second pump 4b, the second heat medium heat exchanger 2b, and the load device 43 are connected by heat medium pipes 7b, 51, 52, and 53 to form a heat medium circuit 6 in which the heat medium circulates.
  • the second pump 4b is built into the heat medium circuit 6 including the second heat medium heat exchanger 2b.
  • the heat medium is, for example, water or brine.
  • Brine is a liquid containing a freezing point depressant such as ethylene glycol or propylene glycol.
  • the first pump 4a and the first heat medium heat exchanger 2a, and the second pump 4b and the second heat medium heat exchanger 2b are connected in parallel in the heat medium circuit 6.
  • the flow direction of the heat medium circulating in the heat medium circuit 6 is indicated by dashed arrows.
  • the heat source system 1 is a system in which old model heat medium heat exchangers and new model heat medium heat exchangers are mixed in the heat medium circuit 6.
  • a first outlet temperature sensor 8a is provided at the outlet of the first heat medium heat exchanger 2a to detect the outlet temperature Tb, which is the temperature of the heat medium flowing out from the first heat medium heat exchanger 2a.
  • a second outlet temperature sensor 8b is provided at the outlet of the second heat medium heat exchanger 2b to detect the outlet temperature Tb, which is the temperature of the heat medium flowing out from the second heat medium heat exchanger 2b.
  • the first outlet temperature sensor 8a and the second outlet temperature sensor 8b are connected to the controller 5 via a signal line (not shown).
  • the first heat source unit 3a has a compressor 11a, a heat source side heat exchanger 12a, an expansion valve 13a, and a fan 14a.
  • the compressor 11a, the heat source side heat exchanger 12a, the expansion valve 13a, and the first heat medium heat exchanger 2a are connected by a refrigerant pipe 15a to form a refrigerant circuit 10a.
  • the compressor 11a, the expansion valve 13a, and the fan 14a are connected to the controller 5 via a signal line (not shown).
  • the flow direction of the refrigerant circulating through the refrigerant circuit 10a is indicated by a dashed arrow.
  • the second heat source unit 3b has a compressor 11b, a heat source side heat exchanger 12b, an expansion valve 13b, and a fan 14b.
  • the compressor 11b, the heat source side heat exchanger 12b, the expansion valve 13b, and the second heat medium heat exchanger 2b are connected by a refrigerant pipe 15b to form a refrigerant circuit 10b.
  • the compressor 11b, the expansion valve 13b, and the fan 14b are connected to the controller 5 via a signal line (not shown).
  • the flow direction of the refrigerant circulating through the refrigerant circuit 10b is indicated by a dashed arrow.
  • the compressor 11a draws in low-temperature and low-pressure refrigerant, compresses the drawn refrigerant, and discharges it.
  • the compressor 11a is an inverter compressor whose capacity can be adjusted by changing the operating frequency.
  • the heat source side heat exchanger 12a is a heat exchanger that exchanges heat between air and refrigerant.
  • the heat source side heat exchanger 12a functions as a condenser in the refrigerant circuit 10a.
  • the heat source side heat exchanger 12a is, for example, a fin-and-tube type heat exchanger having a heat transfer tube and multiple heat dissipation fins.
  • the expansion valve 13a reduces the pressure of the liquid refrigerant flowing in from the heat source side heat exchanger 12a and expands it.
  • the expansion valve 13a is, for example, an electronic expansion valve.
  • the fan 14a draws in air and supplies the drawn air to the heat source side heat exchanger 12a.
  • the fan 14a is, for example, a propeller fan.
  • the second heat source unit 3b has a similar configuration to the first heat source unit 3a, so a detailed description of it will be omitted.
  • FIG. 2 is a functional block diagram showing an example of the configuration of the controller of the heat source system according to the first embodiment.
  • the controller 5 is, for example, a microcomputer.
  • the controller 5 has a refrigeration cycle control means 21, a storage means 22, and a heat medium circuit control means 30.
  • the heat medium circuit control means 30 has an internal resistance calculation means 31, an external resistance calculation means 32, and a pump control means 33.
  • An input means 20 is connected to the controller 5 for inputting values of physical properties such as the density and kinetic viscosity of the heat medium.
  • the input means 20 is, for example, a remote controller (not shown) that is connected for communication with the controller 5, or an information processing terminal (not shown) such as a smartphone that is carried and operated by the worker who installs the heat source system 1.
  • the information acquired or generated by the refrigeration cycle control means 21 may be stored in the storage means 22.
  • the heat medium circuit control means 30 may read out the information acquired or generated by the refrigeration cycle control means 21 from the storage means 22.
  • FIG. 2 shows a schematic diagram in which the storage means 22 provides the stored information to the internal resistance calculation means 31 among the means of the heat medium circuit control means 30, but the information may be provided to the external resistance calculation means 32 and the pump control means 33 via the internal resistance calculation means 31.
  • the input means 20 is connected to the controller 5 so that the operator can input the physical property values of the heat medium, but the input means 20 does not have to be used.
  • a control board (not shown) mounted on the first heat source unit 3a or the second heat source unit 3b is provided with a switch (DIP switch, rotary switch, etc.) for inputting the physical property values of the heat medium
  • the operator may input the physical property values of the heat medium to the controller 5 by switching the switch on the control board.
  • the method of inputting the physical property values of the heat medium used in the heat medium circuit 6 to the controller 5 is not limited to the method using the input means 20 and the method by switching a switch provided on the control board (not shown).
  • the refrigeration cycle control means 21 controls the operating frequency of the compressors 11a and 11b, the opening of the expansion valves 13a and 13b, and the rotation frequency of the fans 14a and 14b so that the outflow temperature Tb received from each of the first outflow temperature sensor 8a and the second outflow temperature sensor 8b falls within a predetermined range based on the set temperature of the load device 43.
  • the storage means 22 stores information related to head loss for each of the first heat medium heat exchanger 2a and the second heat medium heat exchanger 2b when the heat medium is water.
  • the information related to head loss is information on the pipe specifications of the heat medium heat exchangers.
  • the information on the pipe specifications is information such as the length and diameter of the piping in the heat medium heat exchanger.
  • the storage means 22 also stores a calculation formula for determining the head loss of the heat medium from the kinetic viscosity and specific gravity of the heat medium.
  • the calculation formula is, for example, the Darcy-Weisbach formula or the Brasilius formula.
  • the head loss in the case of water may be calculated using an approximation formula created in advance based on test values.
  • the storage means 22 stores information on the total head of the first pump 4a and the second pump 4b. In the first embodiment, the first pump 4a and the second pump 4b have the same performance, so it is sufficient for the storage means 22 to store information on the total head of either one of the pumps. Usually, the total head of a pump is described in the pump specifications.
  • the internal resistance calculation means 31 uses the density and kinetic viscosity and the information on the pipe specifications stored in the memory means 22 to calculate the internal resistance, which is the head loss of each of the first heat medium heat exchanger 2a and the second heat medium heat exchanger 2b, as follows.
  • the internal resistance calculation means 31 calculates the head loss of the heat medium using the kinetic viscosity of the heat medium, the specific gravity of the heat medium relative to water, and equations (1) to (4).
  • Equation (1) is the Darcy-Weisbach equation. Referring to equation (1), it can be seen that the head loss changes depending on the physical properties of the heat medium.
  • ⁇ P on the left side of equation (1) is the pressure loss [kPa], which corresponds to the head loss.
  • L is the length of the piping in the heat medium heat exchanger [m]
  • D is the diameter of the piping [m].
  • is the density of the heat medium [kg/l]
  • u is the flow velocity of the heat medium [m/s].
  • Re in formula (2) is calculated by formula (3).
  • u is the flow velocity [m/s]
  • L is the length of the pipe [m]
  • is the kinetic viscosity of the heat medium [m 2 /s].
  • the head loss ratio ⁇ is expressed by equation (4).
  • the subscript B means brine
  • w means water.
  • serves as a correction coefficient for calculating the head loss according to the type of heat transfer medium for the head loss shown in equation (1).
  • the internal resistance calculation means 31 calculates the internal resistance, which is the head loss of each heat medium heat exchanger of the new model and the old model, corresponding to the type of heat medium by multiplying the head loss ratio ⁇ calculated using equation (4) by the head loss calculated using equation (1).
  • 1.
  • FIG. 3 is a graph showing the relationship between the flow rate and the head loss for a plurality of types of heat transfer media.
  • the vertical axis of FIG. 3 is the head loss [kPa], and the horizontal axis is the flow rate [m 3 /h] of the heat transfer media circuit.
  • Wg shows the case of water with a kinetic viscosity of 1.79 [mm 2 /s] and a specific gravity of 1.00.
  • Bg1 shows the case of brine with a kinetic viscosity of 35.6 [mm 2 /s] and a specific gravity of 1.06.
  • Bg2 shows the case of brine (55 wt%) with a kinetic viscosity of 13.7 [mm 2 /s] and a specific gravity of 1.08.
  • Bg3 shows the case of brine (40 wt%) with a kinetic viscosity of 5.56 [mm 2 /s] and a specific gravity of 1.05. From FIG. 3, it can be seen that the head loss differs even at the same flow rate depending on the physical properties of the heat transfer media.
  • the storage means 22 stores information on the graph of Wg shown in FIG. 3 for each of the old and new model heat medium heat exchangers.
  • the external resistance calculation means 32 reads information on the total head of the first pump 4a or the second pump 4b from the storage means 22.
  • the capacity of the first pump 4a and the second pump 4b is the same, so the case of the first pump 4a will be described.
  • Figure 4 is a graph showing an example of the total head of the first pump shown in Figure 1.
  • the total head shown in Fig. 4 is for a pump capacity of 5.5 [kW] and a pump operation frequency F1 of 50 [Hz].
  • the vertical axis of Fig. 4 is the total head [m]
  • the horizontal axis is the flow rate [m 3 /h] of the heat medium circuit.
  • the external resistance calculation means 32 converts the unit of the total head from [m] to [kPa]. Specifically, the external resistance calculation means 32 performs the conversion using the formula (total head [m] ⁇ gravitational acceleration [m/s 2 ] ⁇ brine specific gravity).
  • the brine specific gravity is the specific gravity of the brine relative to water. When the heat medium is water, this value is 1.0.
  • Fig. 5 is a graph showing an example of the external resistance of each of the old model and the new model.
  • the vertical axis of Fig. 5 is the external resistance [kPa], and the horizontal axis is the flow rate [ m3 /h] of the heat medium circuit.
  • the solid line shows the external resistance of the heat medium heat exchanger of the new model.
  • the dashed line shows the external resistance of the heat medium heat exchanger of the old model. It can be seen from Fig. 5 that the external resistance of the new model is different from that of the old model.
  • the pump control means 33 uses the operating frequency F1 of the first pump 4a as a reference to determine the operating frequency F2 of the second pump 4b at which the external resistance of the new model approaches that of the old model.
  • the pump control means 33 controls the second pump 4b to operate at the determined operating frequency F2.
  • the total head of the pump changes depending on the operating frequency of the pump. Since the external resistance calculated by changing the total head also changes with the total head, the pump control means 33 executes control to change the operating frequency F2 of the second pump 4b so that the external resistance of the new model approaches that of the old model when the operating frequency F1 of the first pump 4a changes. For example, in the case of the graph shown in FIG.
  • the pump control means 33 controls to reduce the operating frequency F2 of the second pump 4b so that the solid line indicating the external resistance of the new model overlaps with the dashed line indicating the external resistance of the old model, relative to the flow rate at the current operating frequency F1 of the first pump 4a.
  • FIG. 6 is a hardware configuration diagram showing an example of the configuration of the controller shown in FIG. 2.
  • the controller 5 shown in FIG. 2 is configured with a processing circuit 90 as shown in FIG. 6.
  • Each function of the refrigeration cycle control means 21, memory means 22, internal resistance calculation means 31, external resistance calculation means 32, and pump control means 33 shown in FIG. 2 is realized by the processing circuit 90.
  • the processing circuit 90 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these.
  • Each of the functions of the refrigeration cycle control means 21, the storage means 22, the internal resistance calculation means 31, the external resistance calculation means 32, and the pump control means 33 may be realized by a separate processing circuit 90.
  • the functions of the refrigeration cycle control means 21, the storage means 22, the internal resistance calculation means 31, the external resistance calculation means 32, and the pump control means 33 may be realized by a single processing circuit 90.
  • FIG. 7 is a hardware configuration diagram showing another example of the configuration of the controller shown in FIG. 2.
  • the controller 5 shown in FIG. 2 is composed of a processor 91 such as a CPU (Central Processing Unit) and a memory 92, as shown in FIG. 7.
  • the functions of the refrigeration cycle control means 21, the storage means 22, the internal resistance calculation means 31, the external resistance calculation means 32, and the pump control means 33 are realized by the processor 91 and the memory 92.
  • FIG. 7 shows that the processor 91 and the memory 92 are connected to each other so as to be able to communicate with each other via a bus 93.
  • the functions of the refrigeration cycle control means 21, memory means 22, internal resistance calculation means 31, external resistance calculation means 32 and pump control means 33 are realized by software, firmware or a combination of software and firmware.
  • the software and firmware are written as programs and stored in the memory 92.
  • the processor 91 realizes the functions of each means by reading and executing the programs stored in the memory 92.
  • non-volatile semiconductor memory such as ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM), and EEPROM (Electrically Erasable and Programmable ROM) may be used as the memory 92.
  • Volatile semiconductor memory such as RAM (Random Access Memory) may also be used as the memory 92.
  • removable recording media such as magnetic disks, flexible disks, optical disks, CDs (Compact Discs), MDs (Mini Discs), and DVDs (Digital Versatile Discs) may also be used as the memory 92.
  • the first pump 4a and the second pump 4b have the same performance, but the performance may be different.
  • the storage means 22 stores information on the total head of each of the first pump 4a and the second pump 4b.
  • FIG. 8 is a flowchart showing the operation procedure of the heat source system according to the embodiment 1.
  • FIG. 9 is a flowchart showing the operation procedure of steps S14 and S15 shown in FIG. 8.
  • the input means 20 will be described as an information processing terminal (not shown) carried by the worker who installs the heat source system 1.
  • the information processing terminal (not shown) is, for example, a tablet such as a PDA (Personal Digital Assistant) equipped with a display.
  • PDA Personal Digital Assistant
  • the operator connects an information processing terminal (not shown) to the controller 5 via a cable.
  • the heat medium circuit control means 30 causes the information processing terminal (not shown) to display a message asking the operator whether the pump is built-in or not.
  • the heat medium circuit control means 30 ends the process.
  • step S11 If a response is input in the determination process of step S11 that the pump is built-in (Yes in step S11), the heat medium circuit control means 30 displays a message on the information processing terminal (not shown) asking the operator whether the heat medium heat exchangers are a mixture of new and old models (step S12). If a response is input via the information processing terminal (not shown) that the heat medium heat exchangers are not a mixture of new and old models (No in step S12), the heat medium circuit control means 30 ends the process.
  • step S12 when a response is input via the information processing terminal (not shown) that a new model heat medium heat exchanger and an old model heat medium heat exchanger are mixed (if Yes in step S12), the heat medium circuit control means 30 judges whether or not the physical properties of the brine have been input (step S13).
  • the method of inputting the physical property values of the heat medium used in the heat medium circuit 6 to the controller 5 is not limited to the method using the input means 20.
  • the operator may switch the switch on the control board to input the physical property values of the heat medium to the controller 5.
  • the method of inputting the physical property values of the heat medium used in the heat medium circuit 6 to the controller 5 is not limited to the method using the input means 20 and the method by switching the switch provided on the control board (not shown).
  • step S13 if the physical properties of the brine are input via an information processing terminal (not shown) (if Yes in step S13), the heat medium circuit control means 30 controls the operating frequency F2 of the second pump 4b in response to the physical properties of the brine so that the flow rate of the new model approaches the flow rate of the old model (step S14).
  • step S13 if the physical properties of the brine are not input via the information processing terminal (not shown) (if No in step S13), the heat medium circuit control means 30 controls the operating frequency F2 of the second pump 4b in response to the physical properties of water so that the flow rate of the new model approaches the flow rate of the old model (step S15).
  • steps S14 and S15 shown in FIG. 8 will be described in detail with reference to FIG. 9.
  • the process of step S14 will be specifically described in the case where the heat medium is brine.
  • the internal resistance calculation means 31 calculates the internal resistance of each of the first heat medium heat exchanger 2a and the second heat medium heat exchanger 2b based on the density and kinetic viscosity of the heat medium and the information on the pipe specifications (step S101). Specifically, the internal resistance calculation means 31 calculates the internal resistance of each of the first heat medium heat exchanger 2a and the second heat medium heat exchanger 2b using the values of the density and kinetic viscosity of the heat medium, the information on the pipe specifications of each of the first heat medium heat exchanger 2a and the second heat medium heat exchanger 2b, and formulas (1) to (4).
  • the external resistance calculation means 32 calculates the external resistance of the first heat medium heat exchanger 2a and the external resistance of the second heat medium heat exchanger 2b from the internal resistance calculated in step S101 and the total head of the pump (step S102). Specifically, the external resistance calculation means 32 calculates the first external resistance, which is the external resistance of the first heat medium heat exchanger 2a, by subtracting the internal resistance of the first heat medium heat exchanger 2a from the total head of the pump. In addition, the external resistance calculation means 32 calculates the second external resistance, which is the external resistance of the second heat medium heat exchanger 2b, by subtracting the internal resistance of the second heat medium heat exchanger 2b from the total head of the pump.
  • the pump control means 33 determines the operating frequency F2 of the second pump 4b at which the second external resistance approaches the first external resistance, based on the operating frequency F1 of the first pump 4a (step S103). Then, the pump control means 33 controls the second pump 4b to operate at the operating frequency F2 determined in step S103 (step S104).
  • step S15 the internal resistance calculation means 31 does not need to calculate equation (4) in the process of step S101. Also, when the heat medium is water, information on the physical properties does not need to be input. This is because the storage means 22 stores information on head loss based on the case where the heat medium is water.
  • FIG. 10 is a graph showing an example of the external resistance of the old model and the new model when the heat medium is water.
  • FIG. 11 is a graph showing an example of the external resistance of the old model and the new model when the heat medium is brine.
  • the brine shown in this graph is a brine with a concentration of a freezing point depressant such as ethylene glycol or propylene glycol of 70 wt %.
  • the vertical axis of FIG. 10 and FIG. 11 is the external resistance [kPa], and the horizontal axis is the flow rate [m 3 /h] of the heat medium circuit.
  • the solid line shows the external resistance of the heat medium heat exchanger of the new model.
  • FIG. 10 and FIG. 11 show the case where the pump capacity is 2.2 kW, 3.7 kW, and 5.5 kW, and the operating frequency of each of the first pump 4a and the second pump 4b is 50 Hz.
  • the heat source system 1 of the present embodiment 1 includes a first heat medium heat exchanger 2a and a second heat medium heat exchanger 2b, a first heat source unit 3a and a second heat source unit 3b, a first pump 4a that circulates the heat medium to a heat medium circuit 6 including the first heat medium heat exchanger 2a and a load, a second pump 4b that circulates the heat medium to the heat medium circuit 6 including the second heat medium heat exchanger 2b and a load, and a controller 5 that controls the operating frequency of the first pump 4a and the second pump 4b.
  • the controller 5 includes a storage means 22, an internal resistance calculation means 31, an external resistance calculation means 32, and a pump control means 33.
  • the internal resistance calculation means 31 calculates the internal resistance, which is the head loss of each of the first heat medium heat exchanger 2a and the second heat medium heat exchanger 2b.
  • the external resistance calculation means 32 calculates the first external resistance using the internal resistance of the first heat medium heat exchanger 2a, and calculates the second external resistance using the internal resistance of the second heat medium heat exchanger 2b.
  • the pump control means 33 controls the operating frequency F2 of the second pump 4b based on the operating frequency F1 of the first pump 4a so that the second external resistance approaches the first external resistance.
  • the internal resistance of each of the first heat medium heat exchanger 2a of the old model and the second heat medium heat exchanger 2b of the new model is calculated for the heat medium flowing through the heat medium circuit 6, and the external resistance of the new model and the old model is calculated based on the internal resistance of each heat medium heat exchanger. Then, based on the difference in the external resistance of each of the heat medium heat exchangers of the new model and the old model, the operating frequency F2 of the second pump 4b on the new model side is set so that the flow rate difference between the new model and the old model is reduced.
  • the operating frequency F2 of the second pump 4b on the new model side is set so as to reduce the difference in flow rate between the new model and the old model based on the difference in the external resistance of the heat medium heat exchangers of the new model and the old model, which is calculated using the kinetic viscosity and density of water.
  • the operating frequency F2 of the second pump 4b on the new model side is set so as to reduce the difference in flow rate between the new model and the old model based on the difference in the external resistance of the heat medium heat exchangers of the new model and the old model, which is calculated using the kinetic viscosity and density of brine.
  • the operating frequency F2 of the second pump 4b is set to a value smaller than the operating frequency F1 of the first pump 4a so as to reduce the flow rate difference between the first heat medium heat exchanger 2a and the second heat medium heat exchanger 2b. Therefore, it is possible to prevent the second pump 4b from being operated unnecessarily, and to reduce the power consumption of the second pump 4b.
  • the worker who installs the heat source system 1 only needs to input the physical properties of the heat medium used in the heat medium circuit 6 into the controller 5 at the location where the heat source system 1 is installed. This saves the worker the trouble of measuring the flow rate of the heat medium flowing through the heat medium pipe 7a and the flow rate of the heat medium flowing through the heat medium pipe 7b, and fine-tuning the operating frequency F2 of the second pump 4b so that there is no difference between these flow rates.
  • FIG. 12 is a block diagram showing a configuration example of a heat source system according to the first modified example.
  • the heat source system 1a has first heat source units 3a-1 to 3a-4, second heat source units 3b-1 to 3b-4, first heat medium heat exchangers 2a-1 and 2a-2, second heat medium heat exchangers 2b-1 and 2b-2, a first pump 4a, and a second pump 4b.
  • the flow direction of the heat medium is indicated by a dashed arrow.
  • each of the first heat source units 3a-1 to 3a-4 has the same configuration.
  • the second heat source units 3b-1 to 3b-4 only the configuration of the second heat source unit 3b-1 is shown in FIG. 12, but each of the second heat source units 3b-1 to 3b-4 has the same configuration.
  • the first heat medium heat exchangers 2a-1 and 2a-2 which are heat medium heat exchangers of the old model, have the same configuration.
  • the second heat medium heat exchangers 2b-1 and 2b-2 which are heat medium heat exchangers of the new model, have the same configuration.
  • the cold heat generation capacity of the first heat source units 3a-1 to 3a-4 is different from the cold heat generation capacity of the second heat source units 3b-1 to 3b-4.
  • the cold heat generation capacity of each of the second heat source units 3b-1 to 3b-4 is greater than the cold heat generation capacity of each of the first heat source units 3a-1 to 3a-4.
  • the second heat source units 3b-1 to 3b-4 are referred to as new model heat source units
  • the first heat source units 3a-1 to 3a-4 are referred to as old model heat source units.
  • the heat medium pipe 7a branches into heat medium branch pipes 7a-1 and 7a-2 on the fluid downstream side of the first pump 4a, and the heat medium branch pipes 7a-1 and 7a-2 merge into the heat medium pipe 7a.
  • the first heat medium heat exchanger 2a-1 is connected to the heat medium branch pipe 7a-1.
  • the first heat source units 3a-1 and 3a-2 are connected to the first heat medium heat exchanger 2a-1.
  • the first heat source units 3a-1 and 3a-2 supply cold heat to the first heat medium heat exchanger 2a-1.
  • the first heat medium heat exchanger 2a-2 is connected to the heat medium branch pipe 7a-2.
  • the first heat source units 3a-3 and 3a-4 are connected to the first heat medium heat exchanger 2a-2.
  • the first heat source units 3a-3 and 3a-4 supply cold heat to the first heat medium heat exchanger 2a-2.
  • the heat medium pipe 7b branches into heat medium branch pipes 7b-1 and 7b-2 on the fluid downstream side of the second pump 4b, and the heat medium branch pipes 7b-1 and 7b-2 merge into the heat medium pipe 7b.
  • the second heat medium heat exchanger 2b-1 is connected to the heat medium branch pipe 7b-1.
  • the second heat source units 3b-1 and 3b-2 are connected to the second heat medium heat exchanger 2b-1.
  • the second heat source units 3b-1 and 3b-2 supply cold heat to the second heat medium heat exchanger 2b-1.
  • the second heat medium heat exchanger 2b-2 is connected to the heat medium branch pipe 7b-2.
  • the second heat source units 3b-3 and 3b-4 are connected to the second heat medium heat exchanger 2b-2.
  • the second heat source units 3b-3 and 3b-4 supply cold heat to the second heat medium heat exchanger 2b-2.
  • the first heat source unit 3a-1 has an accumulator 16a in addition to the compressor 11a, heat source side heat exchanger 12a, expansion valve 13a, and fan 14a shown in FIG. 1.
  • the accumulator 16a is connected to the refrigerant suction port side of the compressor 11a.
  • the second heat source unit 3b-1 has an injection circuit 17 and an accumulator 16b in addition to the compressor 11b, heat source side heat exchanger 12b, expansion valve 13b, and fan 14b shown in FIG. 1.
  • the injection circuit 17 is provided with an expansion valve 18.
  • the accumulator 16b is connected to the refrigerant suction port side of the compressor 11b.
  • the type of refrigerant circulating through the refrigerant circuit 10b of the new model heat source machine is different from the type of refrigerant circulating through the refrigerant circuit 10a of the old model heat source machine.
  • an injection circuit 17 is provided so that cold heat can be generated more efficiently by circulating a refrigerant different from the refrigerant of the old model through the refrigerant circuit 10a.
  • the heat exchange efficiency of the heat source side heat exchanger 12b may be greater than the heat exchange efficiency of the heat source side heat exchanger 12a.
  • a circular tube (not shown) may be used for the heat source side heat exchanger 12a
  • a flat tube may be used for the heat source side heat exchanger 12b.
  • the pump frequency control of the heat source system 1 described with reference to Figs. 1 to 11 can be applied to the heat source system 1a shown in Fig. 12. Also, as described with reference to Fig. 12, the number of heat source units connected to the heat medium heat exchanger of each of the new model and the old model may be multiple.
  • the difference between the new model and the old model is not limited to the pipe specifications of the heat medium heat exchanger.
  • the cold heat generation capacity of the heat source machine that supplies cold heat to the heat medium heat exchanger of the old model may be different from the cold heat generation capacity of the heat source machine that supplies cold heat to the heat medium heat exchanger of the new model.
  • Embodiment 2 is intended to improve the accuracy of the kinetic viscosity used in the pump control described in the embodiment 1.
  • the same components as those described in the embodiment 1 are denoted by the same reference numerals, and detailed descriptions thereof will be omitted.
  • the components and operations described in the embodiment 1 are similar in the present embodiment 2, detailed descriptions thereof will be omitted.
  • Figure 13 is a functional block diagram showing an example of the configuration of the controller of the heat source system of the second embodiment.
  • the storage means 22 stores a first table which is information indicating the viscosity of the heat medium with the outflow temperature Tb and the concentration of the freezing point depressant contained in the heat medium as parameters.
  • the storage means 22 stores a second table which is information indicating the density with the outflow temperature Tb and the concentration of the freezing point depressant contained in the heat medium as parameters.
  • FIG. 14 is a diagram showing an example of a first table stored in the storage means shown in FIG. 13.
  • FIG. 15 is a diagram showing an example of a second table stored in the storage means shown in FIG. 13.
  • viscosity values are recorded corresponding to the outflow temperature Tb and the concentration of the freezing point depressant contained in the heat medium.
  • density values are recorded corresponding to the outflow temperature Tb and the concentration of the freezing point depressant contained in the heat medium.
  • the heat medium circuit control means 30a has a kinetic viscosity calculation means 34.
  • the kinetic viscosity calculation means 34 refers to the first table and the second table, and selects the viscosity and density corresponding to the outflow temperature Tb detected by the first outflow temperature sensor 8a or the second outflow temperature sensor 8b. The kinetic viscosity calculation means 34 then divides the selected viscosity by the selected density to obtain the kinetic viscosity of the heat medium.
  • Fig. 16 is a flowchart showing the operation of step S14 shown in Fig. 8 in the embodiment 2. Note that steps S112 to S115 shown in Fig. 16 are similar to the operations of steps S101 to S104 described with reference to Fig. 9, and therefore detailed descriptions thereof will be omitted.
  • step S13 shown in FIG. 8 an instruction to select brine is input instead of the physical properties of brine.
  • step S111 shown in FIG. 16 the kinetic viscosity calculation means 34 calculates the kinetic viscosity using the viscosity and density corresponding to the outflow temperature Tb of the heat medium.
  • the kinetic viscosity is calculated accurately in accordance with the type and temperature of the heat medium used in the heat medium circuit 6, improving the accuracy of the flow rate control.
  • the storage means 22 may store a first table and a second table for each of the multiple types of heat media.
  • the kinetic viscosity calculation means 34 refers to the information stored in the storage means 22 and determines the kinetic viscosity of the selected heat medium.
  • the kinetic viscosity is accurately calculated in accordance with the type and temperature of the selected heat medium, improving the accuracy of the flow control.
  • the heat medium is described as being brine, but the heat medium may be water. Since the physical properties of water also change with temperature, the storage means 22 may store one or both of the first table and the second table for water. In this case, even if the heat medium is water, the effect of improving the accuracy of flow rate control can be obtained.
  • the heat source system 1 has been described as generating cold heat, but it may also be a system that generates hot heat.
  • the information on the total head stored in the storage means 22 has been described as being for the case where the heat medium is water, but information on the total head for each type of brine may also be stored. Since the absolute value of the total head decreases as the kinetic viscosity increases, the total head may differ depending on the type of brine. Therefore, the storage means 22 may store information on the total head corresponding to the type of brine.
  • the external resistance calculation means 32 reads out from the storage means 22 the value of the total head corresponding to the brine used in the heat medium circuit 6 and calculates the external resistance. This improves the accuracy of the flow control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

熱源システムは、負荷に対して並列に接続される第1の熱媒体熱交換器および第2の熱媒体熱交換器と、第1の熱源機および第2の熱源機と、第1の熱媒体熱交換器を含む熱媒体回路に熱媒体を循環させる第1のポンプと、第2の熱媒体熱交換器を含む熱媒体回路に熱媒体を循環させる第2のポンプと、コントローラとを有し、コントローラは、第1の熱媒体熱交換器および第2の熱媒体熱交換器のそれぞれの機内抵抗を求める機内抵抗算出手段と、第1の熱媒体熱交換器の機内抵抗を用いて第1の機外抵抗を算出し、第2の熱媒体熱交換器の機内抵抗を用いて第2の機外抵抗を算出する機外抵抗算出手と、第2の機外抵抗が第1の機外抵抗に近づくように第2のポンプの運転周波数F2を制御するポンプ制御手段と、を有する。

Description

熱源システム
 本開示は、熱媒体回路を有する熱源システムに関する。
 従来、熱源システムの一例として、複数の熱源機が熱媒体回路に並列に接続された熱源システムが特許文献1に開示されている。
 従来の熱源システムにおいて、複数の熱源機のそれぞれは、水配管を介して、往水側ヘッダ管および還水側ヘッダ管と接続されている。複数の熱源機のそれぞれに、冷媒が循環する冷凍サイクル回路が設けられている。冷凍サイクル回路には、水配管を流通する水と冷媒とを熱交換させる負荷側熱交換器が設けられている。複数の熱源機のそれぞれに接続される水配管には、流量調整ポンプが設けられている。複数の流量調整ポンプのそれぞれは、水配管を介して、水を還水側ヘッダ管から負荷側熱交換器に流通させた後、往水側ヘッダ管に送り出す。複数の負荷側熱交換器のそれぞれにおいて冷媒と熱交換した水は、往水側ヘッダ管を経由して負荷装置を流通した後、還水側ヘッダ管に戻る。
 冷凍サイクル回路に使用される冷媒は、現在、R410AまたはR404AなどのHFC系冷媒が主流である。しかしながら、環境への意識の高まりなどから、より地球温暖化係数(GWP:Global Warming Potential)の値が小さい冷媒へ移行していく傾向にある。現在使用されている冷媒よりもGWPが小さい冷媒に代替化するために、冷凍サイクル回路に使用される冷媒機器についても、代替される冷媒に対応して熱効率を向上させる機器の開発が行われている。
国際公開第2017/068631号
 従来の熱源システムの熱源機に設けられる負荷側熱交換器について、現在使用されている冷媒に対応した旧機種の管路仕様と、代替される冷媒に対応した新機種の管路仕様とが異なってしまうことがある。例えば、旧機種の負荷側熱交換器の水頭損失と新機種の負荷側熱交換器の水頭損失とが異なってしまうことがある。また、熱源システムの所有者の都合によっては、複数の熱源機の全てを、新機種の負荷側熱交換器を有する熱源機に一度に変更することが困難な場合がある。この場合、1つの熱源システムにおいて、旧機種の負荷側熱交換器と新機種の負荷側熱交換器が混在することになる。
 特許文献1に開示された熱源システムにおいて、旧機種の負荷側熱交換器および新機種の負荷側熱交換器が混在すると、旧機種の負荷側熱交換器を流通する水と新機種の負荷側熱交換器を流通する水とに流量差が生じてしまう。並列する複数の水回路の流量差が大きいと、負荷装置に供給される水の温度の安定性が低下するという問題がある。
 本開示は、上記のような課題を解決するためになされたもので、並列に接続される複数の熱媒体熱交換器の水頭損失が異なっていても、負荷に供給する流体の温度を安定させることができる熱源システムを提供するものである。
 本開示に係る熱源システムは、負荷に対して直列に接続され、冷媒と熱媒体とを熱交換させる第1の熱媒体熱交換器と、前記負荷に対して前記第1の熱媒体熱交換器と並列に接続され、前記冷媒と前記熱媒体とを熱交換させる第2の熱媒体熱交換器と、前記第1の熱媒体熱交換器に接続され、前記冷媒が循環する冷媒回路を含む第1の熱源機と、前記第2の熱媒体熱交換器に接続され、前記冷媒が循環する冷媒回路を含む第2の熱源機と、前記第1の熱媒体熱交換器と直列に接続され、前記第1の熱媒体熱交換器および前記負荷を含む熱媒体回路に前記熱媒体を循環させる第1のポンプと、前記第2の熱媒体熱交換器と直列に接続され、前記第2の熱媒体熱交換器および前記負荷を含む熱媒体回路に前記熱媒体を循環させる第2のポンプと、前記第1のポンプおよび前記第2のポンプの運転周波数を制御するコントローラと、を有し、前記コントローラは、前記第1の熱媒体熱交換器および前記第2の熱媒体熱交換器のそれぞれの水頭損失である機内抵抗を求める機内抵抗算出手段と、前記第1の熱媒体熱交換器の前記機内抵抗を用いて第1の機外抵抗を算出し、前記第2の熱媒体熱交換器の前記機内抵抗を用いて第2の機外抵抗を算出する機外抵抗算出手段と、前記第1のポンプの運転周波数を基準にして、前記第2の機外抵抗が前記第1の機外抵抗に近づくように前記第2のポンプの運転周波数を制御するポンプ制御手段と、を有するものである。
 本開示によれば、熱媒体回路を流通する熱媒体について第1の熱媒体熱交換器と第2の熱媒体熱交換器のそれぞれの機内抵抗を求め、各熱媒体熱交換器の機内抵抗を基に各熱媒体熱交換器の機外抵抗が求まる。そして、各熱媒体熱交換器の機外抵抗の差を基に、これらの熱媒体熱交換器間の流量差が少なくなるように第2のポンプの運転周波数が設定される。第1の熱媒体熱交換器を流通する熱媒体と第2の熱媒体熱交換器を流通する熱媒体との流量差が少なくなるので、第1の熱媒体熱交換器を流通する熱媒体と第2の熱媒体熱交換器を流通する熱媒体との温度差が抑制される。その結果、熱媒体回路を介して負荷側装置に供給される熱媒体の温度の安定性が向上する。
実施の形態1に係る熱源システムの一構成例を示すブロック図である。 実施の形態1に係る熱源システムのコントローラの一構成例を示す機能ブロック図である。 複数の熱媒体の種類について、流量と水頭損失との関係を示すグラフである。 図1に示した第1のポンプの全揚程の一例を示すグラフである。 旧機種および新機種のそれぞれの機外抵抗の一例を示すグラフである。 図2に示したコントローラの一構成例を示すハードウェア構成図である。 図2に示したコントローラの別の構成例を示すハードウェア構成図である。 実施の形態1に係る熱源システムの動作手順を示すフローチャートである。 図8に示すステップS14およびS15の動作手順を示すフローチャートである。 熱媒体が水の場合の旧機種および新機種の機外抵抗の一例を示すグラフである。 熱媒体がブラインの場合の旧機種および新機種の機外抵抗の一例を示すグラフである。 変形例1に係る熱源システムの一構成例を示すブロック図である。 実施の形態2に係る熱源システムのコントローラの一構成例を示す機能ブロック図である。 図13に示した記憶手段が記憶する第1のテーブルの一例を示す図である。 図13に示した記憶手段が記憶する第2のテーブルの一例を示す図である。 実施の形態2において、図8に示したステップS14の動作を示すフローチャートである。
実施の形態1.
 本実施の形態1の熱源システムの構成を説明する。図1は、実施の形態1に係る熱源システムの一構成例を示すブロック図である。はじめに、図1を参照して、熱源システム1の全体構成を説明する。熱源システム1は、第1の熱源機3aおよび第2の熱源機3bと、第1の熱媒体熱交換器2aおよび第2の熱媒体熱交換器2bと、第1のポンプ4aおよび第2のポンプ4bと、コントローラ5とを有する。
 第1の熱媒体熱交換器2aおよび第2の熱媒体熱交換器2bは、冷媒と熱媒体とを熱交換させる熱交換器である。第1の熱媒体熱交換器2aおよび第2の熱媒体熱交換器2bは、例えば、プレート式または二重管式の熱交換器である。本実施の形態1においては、第2の熱媒体熱交換器2bの熱交換効率が第1の熱媒体熱交換器2aの熱交換効率よりも大きく、第2の熱媒体熱交換器2bの水頭損失が第1の熱媒体熱交換器2aの水頭損失よりも小さい。例えば、第2の熱媒体熱交換器2bの伝熱面積が第1の熱媒体熱交換器2aの伝熱面積よりも大きい。以下では、第1の熱媒体熱交換器2aを旧機種の熱媒体熱交換器と称し、第2の熱媒体熱交換器2bを新機種の熱媒体熱交換器と称する。
 また、本実施の形態1においては、第1の熱源機3aおよび第2の熱源機3bは同等の冷熱生成能力を有しているが、第1の熱源機3aの冷熱生成能力と第2の熱源機3bの熱生成能力とが異なっていてもよい。第1のポンプ4aの能力と第2のポンプ4bの能力とは同等である。第1のポンプ4aおよび第2のポンプ4bは、信号線(図示せず)を介してコントローラ5と接続されている。
 熱源システム1によって生成される冷熱を利用する負荷装置43は、図1に示すように、熱媒体配管53に接続されている。熱媒体配管53の一方の端部は還流体ヘッダ管42と接続され、熱媒体配管53の他方の端部は往流体ヘッダ管41と接続されている。往流体ヘッダ管41に熱媒体配管51が接続されている。還流体ヘッダ管42に熱媒体配管52が接続されている。往流体ヘッダ管41および還流体ヘッダ管42は、バイパス配管54で接続されている。
 熱媒体配管52は、分岐点44において熱媒体配管7aと熱媒体配管7bとに分岐している。熱媒体配管7aおよび熱媒体配管7bは、合流点45において合流して熱媒体配管51と接続されている。熱媒体配管7aには、第1のポンプ4aおよび第1の熱媒体熱交換器2aが直列に接続されている。熱媒体配管7bには、第2のポンプ4bおよび第2の熱媒体熱交換器2bが直列に接続されている。
 第1のポンプ4a、第1の熱媒体熱交換器2aおよび負荷装置43が熱媒体配管7a、51、52および53で接続され、熱媒体が循環する熱媒体回路6が構成される。第1のポンプ4aは、第1の熱媒体熱交換器2aを含む熱媒体回路6に内蔵されている。また、第2のポンプ4b、第2の熱媒体熱交換器2bおよび負荷装置43が熱媒体配管7b、51、52および53で接続され、熱媒体が循環する熱媒体回路6が構成される。第2のポンプ4bは、第2の熱媒体熱交換器2bを含む熱媒体回路6に内蔵されている。熱媒体は、例えば、水またはブラインである。ブラインは、エチレングリコールまたはプロピレングリコールなど凝固点降下剤を含む液体である。
 第1のポンプ4aおよび第1の熱媒体熱交換器2aと、第2のポンプ4bおよび第2の熱媒体熱交換器2bとが、熱媒体回路6において、並列に接続されている。図1において、熱媒体回路6を循環する熱媒体の流通方向を破線の矢印で示す。熱源システム1は、旧機種の熱媒体熱交換器と新機種の熱媒体熱交換器とが熱媒体回路6に混在するシステムである。
 熱媒体配管7aにおいて、第1の熱媒体熱交換器2aの流出口に、第1の熱媒体熱交換器2aから流出する熱媒体の温度である流出温度Tbを検出する第1の流出温度センサ8aが設けられている。熱媒体配管7bにおいて、第2の熱媒体熱交換器2bの流出口に、第2の熱媒体熱交換器2bから流出する熱媒体の温度である流出温度Tbを検出する第2の流出温度センサ8bが設けられている。第1の流出温度センサ8aおよび第2の流出温度センサ8bは、信号線(図示せず)を介してコントローラ5と接続されている。
 次に、第1の熱源機3aおよび第2の熱源機3bの構成を説明する。第1の熱源機3aは、圧縮機11aと、熱源側熱交換器12aと、膨張弁13aと、ファン14aとを有する。圧縮機11a、熱源側熱交換器12a、膨張弁13aおよび第1の熱媒体熱交換器2aが冷媒配管15aで接続され、冷媒回路10aが構成される。圧縮機11a、膨張弁13aおよびファン14aは、信号線(図示せず)を介してコントローラ5と接続されている。図1において、冷媒回路10aを循環する冷媒の流通方向を破線の矢印で示す。
 第2の熱源機3bは、圧縮機11bと、熱源側熱交換器12bと、膨張弁13bと、ファン14bとを有する。圧縮機11b、熱源側熱交換器12b、膨張弁13bおよび第2の熱媒体熱交換器2bが冷媒配管15bで接続され、冷媒回路10bが構成される。圧縮機11b、膨張弁13bおよびファン14bは、信号線(図示せず)を介してコントローラ5と接続されている。図1において、冷媒回路10bを循環する冷媒の流通方向を破線の矢印で示す。
 次に、第1の熱源機3aの構成を説明する。圧縮機11aは、低温および低圧の冷媒を吸入し、吸入した冷媒を圧縮して吐出する。圧縮機11aは、運転周波数を変更することで容量を調節することができるインバータ圧縮機である。熱源側熱交換器12aは、空気と冷媒とを熱交換させる熱交換器である。熱源側熱交換器12aは、冷媒回路10aにおいて凝縮器として機能する。熱源側熱交換器12aは、例えば、伝熱管および複数の放熱フィンを有するフィンアンドチューブ型熱交換器である。膨張弁13aは、熱源側熱交換器12aから流入する液冷媒を減圧して膨張させる。膨張弁13aは、例えば、電子膨張弁である。ファン14aは、空気を吸い込み、吸い込んだ空気を熱源側熱交換器12aに供給する。ファン14aは、例えば、プロペラファンである。第2の熱源機3bは、第1の熱源機3aと同様な構成であるため、その詳細な説明を省略する。
 次に、コントローラ5の構成を説明する。図2は、実施の形態1に係る熱源システムのコントローラの一構成例を示す機能ブロック図である。コントローラ5は、例えば、マイクロコンピュータである。コントローラ5は、冷凍サイクル制御手段21と、記憶手段22と、熱媒体回路制御手段30とを有する。熱媒体回路制御手段30は、機内抵抗算出手段31と、機外抵抗算出手段32と、ポンプ制御手段33とを有する。
 コントローラ5には、熱媒体の密度および動粘度等の物性の値を入力するための入力手段20が接続される。入力手段20は、例えば、コントローラ5と通信接続されるリモートコントローラ(図示せず)、または、熱源システム1を設置する作業者が携帯および操作するスマートフォン等の情報処理端末(図示せず)である。
 なお、図2に示す機能ブロック図において、冷凍サイクル制御手段21が取得または生成した情報を記憶手段22に記憶させてもよい。この場合、熱媒体回路制御手段30は、冷凍サイクル制御手段21が取得または生成した情報を記憶手段22から読み出してもよい。また、図2は、記憶手段22が、記憶する情報を熱媒体回路制御手段30の各手段のうち、機内抵抗算出手段31に提供することを模式的に示しているが、機内抵抗算出手段31を介して、機外抵抗算出手段32およびポンプ制御手段33に提供してもよい。
 また、本実施の形態1においては、作業者が熱媒体の物性の値を入力するために入力手段20をコントローラ5に接続する場合で説明するが、入力手段20を使用しなくてもよい。例えば、第1の熱源機3aまたは第2の熱源機3bに搭載された制御基板(図示せず)に、熱媒体の物性の値を入力するためのスイッチ(DIPスイッチ、ロータリースイッチなど)が設けられている場合、作業者が制御基板上のスイッチを切り替えて熱媒体の物性値をコントローラ5に入力してもよい。なお、熱媒体回路6に使用される熱媒体の物性の値をコントローラ5に入力する方法は、入力手段20を使用する方法、および制御基板(図示せず)に設けられたスイッチの切り替えによる方法に限らない。
 冷凍サイクル制御手段21は、第1の流出温度センサ8aおよび第2の流出温度センサ8bのそれぞれから受信する流出温度Tbが負荷装置43の設定温度を基準に予め決められた範囲に入るように、圧縮機11aおよび11bの運転周波数、膨張弁13aおよび13bの開度、ならびにファン14aおよび14bの回転周波数を制御する。
 記憶手段22は、熱媒体が水である場合の第1の熱媒体熱交換器2aおよび第2の熱媒体熱交換器2bのそれぞれについて水頭損失に関連する情報を記憶する。水頭損失に関連する情報とは、熱媒体熱交換器の管路仕様の情報である。管路仕様の情報とは、熱媒体熱交換器内の配管の長さおよび直径などの情報である。
 また、記憶手段22は、熱媒体の動粘度および比重から熱媒体の水頭損失を求める算出式を記憶している。算出式は、例えば、ダルシー・ワイスバッハの式およびブラジリウスの式等である。水の場合の水頭損失は、予め試験値を基に作成した近似式を用いて算出していてもよい。記憶手段22は、第1のポンプ4aおよび第2のポンプ4bの全揚程の情報を記憶する。本実施の形態1においては、第1のポンプ4aおよび第2のポンプ4bは同じ性能なので、記憶手段22は、いずれか一方のポンプの全揚程の情報を記憶していればよい。通常、ポンプの全揚程はポンプの仕様書に記述されている。
 機内抵抗算出手段31は、入力手段20を介して熱媒体の密度および動粘度の値が入力されると、密度および動粘度と記憶手段22が記憶する管路仕様の情報とを用いて、次のようにして、第1の熱媒体熱交換器2aおよび第2の熱媒体熱交換器2bのそれぞれの水頭損失である機内抵抗を求める。
 機内抵抗算出手段31は、熱媒体の動粘度と熱媒体の水に対する比重と、式(1)~(4)とを用いて、熱媒体の水頭損失を算出する。式(1)はダルシー・ワイスバッハの式である。式(1)を参照すると、熱媒体の物性により水頭損失が変化することがわかる。
Figure JPOXMLDOC01-appb-M000001
 式(1)の左辺のΔPは圧力損失[kPa]であり、水頭損失に相当する。式(1)において、Lは熱媒体熱交換器内の配管の長さ[m]であり、Dは配管の直径[m]である。ρは熱媒体の密度[kg/l]であり、uは熱媒体の流速[m/s]である。乱流時(3×10^2<Re<1×10^5)における式(1)のfは、式(2)に示すブラジリウスの式によって求まる。
Figure JPOXMLDOC01-appb-M000002
 式(2)のReは式(3)で求まる。式(3)において、uは流速[m/s]であり、Lは配管の長さ[m]であり、νは熱媒体の動粘度[m/s]である。
Figure JPOXMLDOC01-appb-M000003
 ブラインおよび水の流速が等しい場合、水頭損失比αは、式(4)によって表される。式(4)に示すパラメータにおいて、添え字のBはブラインを意味し、wは水を意味する。αは、式(1)に示す水頭損失に対して熱媒体の種類に応じた水頭損失を算出するための補正係数の役目を果たす。
Figure JPOXMLDOC01-appb-M000004
 そして、機内抵抗算出手段31は、熱媒体の種類に対応して、新機種および旧機種の各熱媒体熱交換器の水頭損失である機内抵抗を、式(4)で求めた水頭損失比αを式(1)で求めた水頭損失に乗算することで求める。熱媒体が水の場合は、α=1とする。
 図3は、複数の熱媒体の種類について、流量と水頭損失との関係を示すグラフである。図3の縦軸が水頭損失[kPa]であり、横軸が熱媒体回路の流量[m/h]である。Wgは、動粘度が1.79[mm/s]、比重が1.00の水の場合を示す。Bg1は、動粘度が35.6[mm/s]、比重が1.06のブラインの場合を示す。Bg2は、動粘度が13.7[mm/s]、比重が1.08のブライン(55wt%)の場合を示す。Bg3は、動粘度が5.56[mm/s]、比重が1.05のブライン(40wt%)の場合を示す。図3から、熱媒体の物性の違いによって、同じ流量でも水頭損失が異なることがわかる。記憶手段22は、旧機種および新機種の各熱媒体熱交換器について図3に示すWgのグラフの情報を記憶している。
 機外抵抗算出手段32は、第1のポンプ4aまたは第2のポンプ4bの全揚程の情報を記憶手段22から読み出す。本実施の形態1においては、第1のポンプ4aおよび第2のポンプ4bの能力が同一なので、第1のポンプ4aの場合で説明する。図4は、図1に示した第1のポンプの全揚程の一例を示すグラフである。
 図4に示す全揚程は、ポンプ容量が5.5[kW]であり、ポンプの運転周波数F1が50[Hz]の場合である。周波数変化時の全揚程は、以下の式から求まる。例えば、ポンプの運転周波数F1が50[Hz]、流量が0[m/h]の場合の全揚程を34[m]とすると、ポンプの運転周波数F1が40[Hz]、流量が0[m/h]の場合の全揚程を、機外抵抗算出手段32は、34[m]×(40[Hz]/50[Hz])^2=21.7[m]と算出する。図4の縦軸が全揚程[m]であり、横軸が熱媒体回路の流量[m/h]である。
 そして、機外抵抗算出手段32は、全揚程の単位を[m]から[kPa]に変換する。具体的には、機外抵抗算出手段32は、(全揚程[m]×重力加速度[m/s]×ブライン比重)の式を用いて変換する。ブライン比重は、水に対するブラインの比重である。熱媒体が水の場合、この値は、1.0となる。機外抵抗算出手段32は、新機種および旧機種のそれぞれについて、求めた全揚程と、機内抵抗算出手段31によって求められた機内抵抗との差分を計算することで、機外揚程である機外抵抗[kPa]を求める。つまり、機外抵抗算出手段32は、新機種および旧機種の各熱媒体熱交換器について、(機外抵抗=全揚程-機内抵抗)の式を用いて、機外抵抗を求める。
 図5は、旧機種および新機種のそれぞれの機外抵抗の一例を示すグラフである。図5の縦軸が機外抵抗[kPa]であり、横軸が熱媒体回路の流量[m/h]である。実線は新機種の熱媒体熱交換器の機外抵抗を示す。破線は旧機種の熱媒体熱交換器の機外抵抗を示す。図5から、新機種の機外抵抗と旧機種の機外抵抗とが異なることがわかる。
 ポンプ制御手段33は、第1のポンプ4aの運転周波数F1を基準にして、新機種の機外抵抗が旧機種の機外抵抗に近づく第2のポンプ4bの運転周波数F2を求める。ポンプ制御手段33は、求めた運転周波数F2で運転するように第2のポンプ4bを制御する。ポンプの全揚程はポンプの運転周波数によって変化する。全揚程を変化させることで算出される機外抵抗も全揚程に伴って変化するため、ポンプ制御手段33は、第1のポンプ4aの運転周波数F1が変化すると、新機種の機外抵抗が旧機種の機外抵抗に近づくように、第2のポンプ4bの運転周波数F2を変更する制御を実行する。例えば、図5に示すグラフの場合、ポンプ制御手段33は、現在の第1のポンプ4aの運転周波数F1による流量に対して、新機種の機外抵抗を示す実線が旧機種の機外抵抗を示す破線に重なるように、第2のポンプ4bの運転周波数F2を小さくする制御を行う。
 ここで、図2に示したコントローラ5のハードウェアの一例を説明する。図6は、図2に示したコントローラの一構成例を示すハードウェア構成図である。コントローラ5の各種機能がハードウェアで実行される場合、図2に示したコントローラ5は、図6に示すように、処理回路90で構成される。図2に示した、冷凍サイクル制御手段21、記憶手段22、機内抵抗算出手段31、機外抵抗算出手段32およびポンプ制御手段33の各機能は、処理回路90により実現される。
 各機能がハードウェアで実行される場合、処理回路90は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものに該当する。冷凍サイクル制御手段21、記憶手段22、機内抵抗算出手段31、機外抵抗算出手段32およびポンプ制御手段33の各手段の機能のそれぞれを別々の処理回路90で実現してもよい。また、冷凍サイクル制御手段21、記憶手段22、機内抵抗算出手段31、機外抵抗算出手段32およびポンプ制御手段33の各手段の機能を1つの処理回路90で実現してもよい。
 また、図2に示したコントローラ5の別のハードウェアの一例を説明する。図7は、図2に示したコントローラの別の構成例を示すハードウェア構成図である。コントローラ5の各種機能がソフトウェアで実行される場合、図2に示したコントローラ5は、図7に示すように、CPU(Central Processing Unit)等のプロセッサ91およびメモリ92で構成される。冷凍サイクル制御手段21、記憶手段22、機内抵抗算出手段31、機外抵抗算出手段32およびポンプ制御手段33の各機能は、プロセッサ91およびメモリ92により実現される。図7は、プロセッサ91およびメモリ92が互いにバス93を介して通信可能に接続されることを示している。
 各機能がソフトウェアで実行される場合、冷凍サイクル制御手段21、記憶手段22、機内抵抗算出手段31、機外抵抗算出手段32およびポンプ制御手段33の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、各手段の機能を実現する。
 メモリ92として、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性の半導体メモリが用いられる。また、メモリ92として、RAM(Random Access Memory)の揮発性の半導体メモリが用いられてもよい。さらに、メモリ92として、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。
 なお、本実施の形態1においては、第1のポンプ4aおよび第2のポンプ4bの性能が同じ場合で説明したが、性能が異なっていてもよい。この場合、記憶手段22は、第1のポンプ4aおよび第2のポンプ4bのそれぞれの全揚程の情報を記憶する。
 次に、本実施の形態1の熱源システム1の動作を説明する。図8は、実施の形態1に係る熱源システムの動作手順を示すフローチャートである。図9は、図8に示すステップS14およびS15の動作手順を示すフローチャートである。
 ここでは、入力手段20が、熱源システム1を設置する作業者が携帯する情報処理端末(図示せず)の場合で説明する。情報処理端末(図示せず)は、例えば、ディスプレイを備えたPDA(Personal Digital Assistants)等のタブレットである。
 作業者は、情報処理端末(図示せず)を、ケーブルを介してコントローラ5に接続する。コントローラ5と情報処理端末(図示せず)とが通信できるように接続されると、図8に示すステップS11において、熱媒体回路制御手段30は、ポンプが内蔵式か否かを作業者に問うメッセージを情報処理端末(図示せず)に表示させる。情報処理端末(図示せず)を介して、ポンプが内蔵式でない旨の回答が入力されると(ステップS11においてNoの場合)、熱媒体回路制御手段30は、処理を終了する。
 ステップS11の判定処理において、ポンプが内蔵式である旨の回答が入力されると(ステップS11においてYesの場合)、熱媒体回路制御手段30は、熱媒体熱交換器について、新機種および旧機種が混在しているか否かを作業者に問うメッセージを情報処理端末(図示せず)に表示させる(ステップS12)。情報処理端末(図示せず)を介して、新機種の熱媒体熱交換器および旧機種の熱媒体熱交換器が混在していない旨の回答が入力されると(ステップS12においてNoの場合)、熱媒体回路制御手段30は、処理を終了する。
 ステップS12の判定処理において、情報処理端末(図示せず)を介して、新機種の熱媒体熱交換器および旧機種の熱媒体熱交換器が混在している旨の回答が入力されると(ステップS12においてYesの場合)、熱媒体回路制御手段30は、ブラインの物性が入力されたか否かを判定する(ステップS13)。なお、熱媒体回路6に使用される熱媒体の物性の値をコントローラ5に入力する方法は、入力手段20を使用する方法に限らない。例えば、第1の熱源機3aまたは第2の熱源機3bに搭載された制御基板(図示せず)に、熱媒体の物性の値を入力するためのスイッチ(DIPスイッチ、ロータリースイッチなど)が設けられている場合、作業者が制御基板上のスイッチを切り替えて熱媒体の物性値をコントローラ5に入力してもよい。さらに、熱媒体回路6に使用される熱媒体の物性の値をコントローラ5に入力する方法は、入力手段20を使用する方法、および制御基板(図示せず)に設けられたスイッチの切り替えによる方法に限らない。
 ステップS13の判定処理において、情報処理端末(図示せず)を介して、ブラインの物性が入力されると(ステップS13においてYesの場合)、熱媒体回路制御手段30は、ブラインの物性に対応して、旧機種の流量に新機種の流量が近づくように第2のポンプ4bの運転周波数F2を制御する(ステップS14)。一方、ステップS13の判定処理において、情報処理端末(図示せず)を介して、ブラインの物性が入力されないと(ステップS13においてNoの場合)、熱媒体回路制御手段30は、水の物性に対応して、旧機種の流量に新機種の流量が近づくように第2のポンプ4bの運転周波数F2を制御する(ステップS15)。
 図8に示すステップS14およびS15の動作について、図9を参照して詳しく説明する。ここでは、熱媒体がブラインである場合について、ステップS14の処理を具体的に説明する。
 機内抵抗算出手段31は、熱媒体の密度および動粘度の値が入力されると、熱媒体の密度および動粘度と管路仕様の情報とに基づいて、第1の熱媒体熱交換器2aおよび第2の熱媒体熱交換器2bのそれぞれの機内抵抗を求める(ステップS101)。具体的には、機内抵抗算出手段31は、熱媒体の密度および動粘度の値と、第1の熱媒体熱交換器2aおよび第2の熱媒体熱交換器2bのそれぞれの管路仕様の情報と、式(1)~(4)とを用いて、第1の熱媒体熱交換器2aおよび第2の熱媒体熱交換器2bのそれぞれの機内抵抗を求める。
 次に、機外抵抗算出手段32は、ステップS101で求められた機内抵抗と、ポンプの全揚程とから、第1の熱媒体熱交換器2aの機外抵抗および第2の熱媒体熱交換器2bの機外抵抗を算出する(ステップS102)。具体的には、機外抵抗算出手段32は、ポンプの全揚程から第1の熱媒体熱交換器2aの機内抵抗を減算することで、第1の熱媒体熱交換器2aの機外抵抗である第1の機外抵抗を算出する。また、機外抵抗算出手段32は、ポンプの全揚程から第2の熱媒体熱交換器2bの機内抵抗を減算することで、第2の熱媒体熱交換器2bの機外抵抗である第2の機外抵抗を算出する。
 ポンプ制御手段33は、第1のポンプ4aの運転周波数F1を基準にして、第2の機外抵抗が第1の機外抵抗に近づく第2のポンプ4bの運転周波数F2を求める(ステップS103)。そして、ポンプ制御手段33は、第2のポンプ4bに対して、ステップS103で求めた運転周波数F2で運転するように制御する(ステップS104)。
 なお、ステップS15の場合、ステップS101の処理において、機内抵抗算出手段31は式(4)の計算が不要となる。また、熱媒体が水の場合には、物性の情報が入力されなくてもよい。記憶手段22が、熱媒体が水である場合を基準として、水頭損失に関する情報を記憶しているからである。
 図10は、熱媒体が水の場合の旧機種および新機種の機外抵抗の一例を示すグラフである。図11は、熱媒体がブラインの場合の旧機種および新機種の機外抵抗の一例を示すグラフである。本グラフに示すブラインは、エチレングリコールまたはプロピレングリコールなどの凝固点降下剤の濃度が70wt%のブラインである。図10および図11の縦軸が機外抵抗[kPa]であり、横軸が熱媒体回路の流量[m/h]である。図10および図11において、実線は新機種の熱媒体熱交換器の機外抵抗を示す。破線は旧機種の熱媒体熱交換器の機外抵抗を示す。図10および図11は、ポンプ容量が2.2kW、3.7kWおよび5.5kWであり、第1のポンプ4aおよび第2のポンプ4bのそれぞれの運転周波数が50Hzの場合である。
 図10において、例えば、ポンプ容量5.5kWに注目すると、機外抵抗が0のとき、旧機種では流量が42.5[m/h]であるのに対し、新機種では流量が45.0[m/h]である。第2のポンプ4bの運転周波数F2を50Hzから約48Hzに小さくすることで、新機種と旧機種との流量差が生じないようにすることができる。
 図11において、例えば、ポンプ容量5.5kWに注目すると、機外抵抗が0のとき、旧機種では流量が38.0[m/h]であるのに対し、新機種では流量が41.5[m/h]である。図11に示すブラインの場合についても水の場合と同様に、第2のポンプ4bの運転周波数F2を第1のポンプ4aの運転周波数F1よりも小さくすることで、新機種と旧機種との流量差が生じないようにすることができる。
 本実施の形態1の熱源システム1は、第1の熱媒体熱交換器2aおよび第2の熱媒体熱交換器2bと、第1の熱源機3aおよび第2の熱源機3bと、第1の熱媒体熱交換器2aおよび負荷を含む熱媒体回路6に熱媒体を循環させる第1のポンプ4aと、第2の熱媒体熱交換器2bおよび負荷を含む熱媒体回路6に熱媒体を循環させる第2のポンプ4bと、第1のポンプ4aおよび第2のポンプ4bの運転周波数を制御するコントローラ5とを有する。コントローラ5は、記憶手段22と、機内抵抗算出手段31と、機外抵抗算出手段32と、ポンプ制御手段33とを有する。
 機内抵抗算出手段31は、第1の熱媒体熱交換器2aおよび第2の熱媒体熱交換器2bのそれぞれの水頭損失である機内抵抗を求める。機外抵抗算出手段32は、第1の熱媒体熱交換器2aの機内抵抗を用いて第1の機外抵抗を算出し、第2の熱媒体熱交換器2bの機内抵抗を用いて第2の機外抵抗を算出する。ポンプ制御手段33は、第1のポンプ4aの運転周波数F1を基準にして、第2の機外抵抗が第1の機外抵抗に近づくように第2のポンプ4bの運転周波数F2を制御する。
 本実施の形態1によれば、熱媒体回路6を流通する熱媒体について旧機種の第1の熱媒体熱交換器2aと新機種の第2の熱媒体熱交換器2bのそれぞれの機内抵抗を求め、各熱媒体熱交換器の機内抵抗を基に新機種および旧機種の機外抵抗が求まる。そして、新機種および旧機種の熱媒体熱交換器のそれぞれの機外抵抗の差を基に、新機種と旧機種との流量差が少なくなるように新機種側の第2のポンプ4bの運転周波数F2が設定される。旧機種の第1の熱媒体熱交換器2aを流通する熱媒体と新機種の第2の熱媒体熱交換器2bを流通する熱媒体との流量差が少なくなるため、第1の熱媒体熱交換器2aを流通する熱媒体と第2の熱媒体熱交換器2bを流通する熱媒体とが合流点45で合流する際、それぞれの熱媒体の温度差が抑制される。その結果、熱媒体回路6を介して負荷側装置に供給される熱媒体の温度の安定性が向上する。
 熱媒体回路6の流体が水である場合、水の動粘度および密度を用いて算出される新機種および旧機種の熱媒体熱交換器のそれぞれの機外抵抗の差を基に、新機種と旧機種との流量差が少なくなるように新機種側の第2のポンプ4bの運転周波数F2が設定される。また、熱媒体回路6の流体が水よりも粘度の高いブラインである場合、ブラインの動粘度および密度を用いて算出される新機種および旧機種の熱媒体熱交換器のそれぞれの機外抵抗の差から、新機種と旧機種との流量差が少なくなるように新機種側の第2のポンプ4bの運転周波数F2が設定される。
 また、本実施の形態1によれば、旧機種の第1の熱媒体熱交換器2aの水頭損失よりも新機種の第2の熱媒体熱交換器2bの水頭損失が小さい場合、第1の熱媒体熱交換器2aと第2の熱媒体熱交換器2bとの流量差が少なくなるように第2のポンプ4bの運転周波数F2が第1のポンプ4aの運転周波数F1よりも小さい値に設定される。そのため、第2のポンプ4bを無駄に運転させることを防ぐことができ、第2のポンプ4bの消費電力量を低減できる。
 さらに、本実施の形態1によれば、熱源システム1を設置する作業者は、熱源システム1の設置先で、熱媒体回路6に使用される熱媒体の物性をコントローラ5に入力すればよい。そのため、作業者は、熱媒体配管7aを流通する熱媒体の流量および熱媒体配管7bを流通する熱媒体の流量をそれぞれ計測し、これらの流量に差が生じないように第2のポンプ4bの運転周波数F2を微調整する手間を省くことができる。
(変形例1)
 本実施の形態1の変形例1について説明する。図12は、変形例1に係る熱源システムの一構成例を示すブロック図である。熱源システム1aは、第1の熱源機3a-1~3a-4と、第2の熱源機3b-1~3b-4と、第1の熱媒体熱交換器2a-1および2a-2と、第2の熱媒体熱交換器2b-1および2b-2と、第1のポンプ4aおよび第2のポンプ4bとを有する。図12において熱媒体の流通方向を破線の矢印で示す。
 図12においては、第1の熱源機3a-1~3a-4のうち、第1の熱源機3a-1の構成のみを図12に示しているが、第1の熱源機3a-1~3a-4のそれぞれは同一の構成である。第2の熱源機3b-1~3b-4のうち、第2の熱源機3b-1の構成のみを図12に示しているが、第2の熱源機3b-1~3b-4のそれぞれは同一の構成である。旧機種の熱媒体熱交換器である第1の熱媒体熱交換器2a-1および2a-2は同一の構成である。新機種の熱媒体熱交換器である第2の熱媒体熱交換器2b-1および2b-2は同一の構成である。
 変形例1においては、第1の熱源機3a-1~3a-4の冷熱生成能力と第2の熱源機3b-1~3b-4の冷熱生成能力とが異なっている。第2の熱源機3b-1~3b-4の各熱源機の冷熱生成能力が第1の熱源機3a-1~3a-4の各熱源機の冷熱生成能力よりも大きい。以下では、第2の熱源機3b-1~3b-4を新機種の熱源機と称し、第1の熱源機3a-1~3a-4を旧機種の熱源機と称する。
 熱媒体配管7aは第1のポンプ4aの流体下流側で熱媒体分岐配管7a-1および7a-2に分岐し、熱媒体分岐配管7a-1および7a-2は熱媒体配管7aに合流する。熱媒体分岐配管7a-1に第1の熱媒体熱交換器2a-1が接続されている。第1の熱媒体熱交換器2a-1には、第1の熱源機3a-1および3a-2が接続されている。第1の熱源機3a-1および3a-2が第1の熱媒体熱交換器2a-1に冷熱を供給する。また、熱媒体分岐配管7a-2に第1の熱媒体熱交換器2a-2が接続されている。第1の熱媒体熱交換器2a-2には、第1の熱源機3a-3および3a-4が接続されている。第1の熱源機3a-3および3a-4が第1の熱媒体熱交換器2a-2に冷熱を供給する。
 熱媒体配管7bは第2のポンプ4bの流体下流側で熱媒体分岐配管7b-1および7b-2に分岐し、熱媒体分岐配管7b-1および7b-2は熱媒体配管7bに合流する。熱媒体分岐配管7b-1に第2の熱媒体熱交換器2b-1が接続されている。第2の熱媒体熱交換器2b-1には、第2の熱源機3b-1および3b-2が接続されている。第2の熱源機3b-1および3b-2が第2の熱媒体熱交換器2b-1に冷熱を供給する。また、熱媒体分岐配管7b-2に第2の熱媒体熱交換器2b-2が接続されている。第2の熱媒体熱交換器2b-2には、第2の熱源機3b-3および3b-4が接続されている。第2の熱源機3b-3および3b-4が第2の熱媒体熱交換器2b-2に冷熱を供給する。
 第1の熱源機3a-1は、図1に示した圧縮機11a、熱源側熱交換器12a、膨張弁13aおよびファン14aの他に、アキュームレータ16aを有する。アキュームレータ16aは、圧縮機11aの冷媒吸入口側に接続されている。第2の熱源機3b-1は、図1に示した圧縮機11b、熱源側熱交換器12b、膨張弁13bおよびファン14bの他に、インジェクション回路17と、アキュームレータ16bとを有する。インジェクション回路17には膨張弁18が設けられている。アキュームレータ16bは、圧縮機11bの冷媒吸入口側に接続されている。
 変形例1においては、新機種の熱源機の冷媒回路10bを循環する冷媒の種類と旧機種の熱源機の冷媒回路10aを循環する冷媒の種類とが異なっている。新機種の熱源機においては、旧機種の冷媒とは異なる冷媒を冷媒回路10aに循環させることでより効率よく冷熱を生成できるようにインジェクション回路17が設けられている。また、変形例1において、熱源側熱交換器12bの熱交換効率が熱源側熱交換器12aの熱交換効率よりも大きくてもよい。例えば、伝熱管として、熱源側熱交換器12aに円管(図示せず)が用いられ、熱源側熱交換器12bに扁平管(図示せず)が用いられていてもよい。
 図12に示す熱源システム1aに、図1~図11を参照して説明した熱源システム1のポンプ周波数制御を適用できる。また、図12を参照して説明したように、新機種および旧機種のそれぞれの熱媒体熱交換器に接続される熱源機の数は複数であってもよい。
 さらに、新機種と旧機種との違いは、熱媒体熱交換器の管路仕様に限らない。旧機種の熱媒体熱交換器に冷熱を供給する熱源機の冷熱生成能力と新機種の熱媒体熱交換器に冷熱を供給する熱源機の冷熱生成能力とが異なっていてもよい。変形例1のように熱生成能力が異なる熱源機が混在する熱源システム1aであっても、熱媒体熱交換器の管路仕様の違いに注目して熱源システム1のポンプ周波数制御を適用することで、熱媒体温度の安定性向上および消費電力量の低減を実現できる。
実施の形態2.
 本実施の形態2は、実施の形態1で説明したポンプ制御に用いる動粘度の精度を向上させるものである。本実施の形態2においては、実施の形態1で説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。また、実施の形態1で説明した構成および動作が、本実施の形態2において同様である場合、その詳細な説明を省略する。
 本実施の形態2の熱源システムのコントローラの構成を説明する。図13は、実施の形態2に係る熱源システムのコントローラの一構成例を示す機能ブロック図である。
 本実施の形態2において、記憶手段22は、熱媒体について流出温度Tbおよび熱媒体に含まれる凝固点降下剤の濃度をパラメータとした粘度を示す情報である第1のテーブルを記憶する。記憶手段22は、流出温度Tbおよび熱媒体に含まれる凝固点降下剤の濃度をパラメータとした密度を示す情報である第2のテーブルを記憶する。
 図14は、図13に示した記憶手段が記憶する第1のテーブルの一例を示す図である。図15は、図13に示した記憶手段が記憶する第2のテーブルの一例を示す図である。図14に示す第1のテーブルには、流出温度Tbおよび熱媒体に含まれる凝固点降下剤の濃度に対応して粘度の値が記述されている。図15に示す第2のテーブルには、流出温度Tbおよび熱媒体に含まれる凝固点降下剤の濃度に対応して密度の値が記述されている。
 本実施の形態2においては、図2に示した構成と比較すると、熱媒体回路制御手段30aは、動粘度算出手段34を有する。動粘度算出手段34は、第1のテーブルおよび第2のテーブルを参照し、第1の流出温度センサ8aまたは第2の流出温度センサ8bによって検出された流出温度Tbに対応する粘度および密度を選択する。そして、動粘度算出手段34は、選択した粘度を選択した密度で除算することで、熱媒体の動粘度を求める。
 次に、本実施の形態2の熱源システム1の動作を、図8および図16を参照して説明する。実施の形態1と同様な動作の説明を省略する。図16は、実施の形態2において、図8に示したステップS14の動作を示すフローチャートである。なお、図16に示すステップS112~S115は、図9を参照して説明したステップS101~S104の動作と同様であるため、その詳細な説明を省略する。
 本実施の形態2においては、図8に示したステップS13において、ブラインの物性の代わりに、ブラインを選択する旨の指示が入力される。図16に示すステップS111において、動粘度算出手段34は、熱媒体の流出温度Tbに対応した粘度と密度とを用いて動粘度を求める。
 具体的には、動粘度算出手段34は、ブラインを選択する旨の指示が入力されると、第1の流出温度センサ8aまたは第2の流出温度センサ8bから流出温度Tbの値を受信する。そして、動粘度算出手段34は、記憶手段22が記憶する第1のテーブルおよび第2のテーブルを参照し、流出温度Tbに対応する粘度および密度を選択する。その後、動粘度算出手段34は、選択した粘度および選択した密度と、(動粘度=粘度/密度)の式とを用いて、動粘度を算出する。
 本実施の形態2によれば、熱媒体回路6に使用される熱媒体の種類および温度に対応して動粘度が精度よく算出され、流量制御の精度が向上する。
 なお、本実施の形態2において、記憶手段22は、複数種の熱媒体毎に第1のテーブルおよび第2のテーブルを記憶してもよい。この場合、動粘度算出手段34は、複数種の熱媒体のうち、1つの熱媒体が選択され、流出温度センサから流出温度Tbを受信すると、記憶手段22が記憶する情報を参照し、選択された熱媒体の動粘度を求める。この場合、熱媒体回路6に使用される熱媒体が、複数種の中から選択されたとして、選択された熱媒体の種類および温度に対応して動粘度が精度よく算出され、流量制御の精度が向上する。
 また、本実施の形態2においては、熱媒体がブラインの場合で説明したが、熱媒体が水であってもよい。水も温度に伴って物性に変化が生じるため、記憶手段22が水に関して第1のテーブルおよび第2のテーブルの一方または両方を記憶していてもよい。この場合、熱媒体が水であっても、流量制御の精度が向上する効果が得られる。
 上述の実施の形態1および2においては、熱源システム1が冷熱を生成する場合で説明したが、温熱を生成するシステムであってもよい。また、上述の実施の形態1および2においては、記憶手段22が記憶する全揚程の情報は熱媒体が水の場合で説明したが、ブラインの種類毎の全揚程の情報を記憶していてもよい。動粘度が増えると全揚程の絶対値が低下するために、ブライン種類によって全揚程が異なる場合がある。そのため、記憶手段22がブラインの種類に対応して全揚程の情報を記憶してもよい。この場合、機外抵抗算出手段32は、熱媒体回路6に使用されるブラインに対応した全揚程の値を記憶手段22から読み出して機外抵抗を算出する。これにより、流量制御の精度が向上する。
 1、1a 熱源システム、2a、2a-1、2a-2 第1の熱媒体熱交換器、2b、2b-1、2b-2 第2の熱媒体熱交換器、3a、3a-1~3a-4 第1の熱源機、3b、3b-1~3b-4 第2の熱源機、4a 第1のポンプ、4b 第2のポンプ、5 コントローラ、6 熱媒体回路、7a、7b 熱媒体配管、7a-1、7a-2 熱媒体分岐配管、7b-1、7b-2 熱媒体分岐配管、8a 第1の流出温度センサ、8b 第2の流出温度センサ、10a、10b 冷媒回路、11a、11b 圧縮機、12a、12b 熱源側熱交換器、13a、13b 膨張弁、14a、14b ファン、15a、15b 冷媒配管、16a、16b アキュームレータ、17 インジェクション回路、18 膨張弁、20 入力手段、21 冷凍サイクル制御手段、22 記憶手段、30、30a 熱媒体回路制御手段、31 機内抵抗算出手段、32 機外抵抗算出手段、33 ポンプ制御手段、34 動粘度算出手段、41 往流体ヘッダ管、42 還流体ヘッダ管、43 負荷装置、44 分岐点、45 合流点、51~53 熱媒体配管、54 バイパス配管、90 処理回路、91 プロセッサ、92 メモリ、93 バス。

Claims (7)

  1.  負荷に対して直列に接続され、冷媒と熱媒体とを熱交換させる第1の熱媒体熱交換器と、
     前記負荷に対して前記第1の熱媒体熱交換器と並列に接続され、前記冷媒と前記熱媒体とを熱交換させる第2の熱媒体熱交換器と、
     前記第1の熱媒体熱交換器に接続され、前記冷媒が循環する冷媒回路を含む第1の熱源機と、
     前記第2の熱媒体熱交換器に接続され、前記冷媒が循環する冷媒回路を含む第2の熱源機と、
     前記第1の熱媒体熱交換器と直列に接続され、前記第1の熱媒体熱交換器および前記負荷を含む熱媒体回路に前記熱媒体を循環させる第1のポンプと、
     前記第2の熱媒体熱交換器と直列に接続され、前記第2の熱媒体熱交換器および前記負荷を含む熱媒体回路に前記熱媒体を循環させる第2のポンプと、
     前記第1のポンプおよび前記第2のポンプの運転周波数を制御するコントローラと、を有し、
     前記コントローラは、
     前記第1の熱媒体熱交換器および前記第2の熱媒体熱交換器のそれぞれの水頭損失である機内抵抗を求める機内抵抗算出手段と、
     前記第1の熱媒体熱交換器の前記機内抵抗を用いて第1の機外抵抗を算出し、前記第2の熱媒体熱交換器の前記機内抵抗を用いて第2の機外抵抗を算出する機外抵抗算出手段と、
     前記第1のポンプの運転周波数を基準にして、前記第2の機外抵抗が前記第1の機外抵抗に近づくように前記第2のポンプの運転周波数を制御するポンプ制御手段と、を有する、
     熱源システム。
  2.  前記第2の熱媒体熱交換器は、前記第2の熱媒体熱交換器の前記水頭損失が前記第1の熱媒体熱交換器の前記水頭損失よりも小さい構成である、
     請求項1に記載の熱源システム。
  3.  前記第2の熱媒体熱交換器は、前記第2の熱媒体熱交換器の伝熱面積が前記第1の熱媒体熱交換器の伝熱面積よりも大きい構成である、
     請求項2に記載の熱源システム。
  4.  前記第1の熱媒体熱交換器および前記第2の熱媒体熱交換器のそれぞれの内部の配管の長さおよび直径を含む管路仕様の情報を記憶する記憶手段を有し、
     前記機内抵抗算出手段は、
     前記熱媒体の密度および動粘度と前記第1の熱媒体熱交換器および前記第2の熱媒体熱交換器のそれぞれの管路仕様の情報とに基づいて、前記第1の熱媒体熱交換器および前記第2の熱媒体熱交換器のそれぞれの前記機内抵抗を求める、
     請求項1~3のいずれか1項に記載の熱源システム。
  5.  前記記憶手段は、前記第1のポンプおよび前記第2のポンプのそれぞれの全揚程の情報を記憶し、
     前記機外抵抗算出手段は、
     前記第1のポンプの全揚程から前記第1の熱媒体熱交換器の前記機内抵抗を減算して前記第1の機外抵抗を算出し、前記第2のポンプの全揚程から前記第2の熱媒体熱交換器の前記機内抵抗を減算して前記第2の機外抵抗を算出する、
     請求項4に記載の熱源システム。
  6.  前記第1の熱媒体熱交換器または前記第2の熱媒体熱交換器の前記熱媒体の流出口に設けられ、前記流出口から流出される前記熱媒体の温度である流出温度を検出する流出温度センサを有し、
     前記記憶手段は、
     前記熱媒体について前記流出温度および前記熱媒体に含まれる凝固点降下剤の濃度をパラメータとした粘度を示す情報である第1のテーブル、ならびに前記流出温度および前記濃度をパラメータとした前記密度を示す情報である第2のテーブルを記憶し、
     前記コントローラは、
     前記第1のテーブルおよび前記第2のテーブルを参照し、前記流出温度センサによって検出された前記流出温度に対応する前記粘度および前記密度を選択し、選択した前記粘度を選択した前記密度で除算することで、前記熱媒体の前記動粘度を求める動粘度算出手段を有する、
     請求項4または5に記載の熱源システム。
  7.  前記記憶手段は、複数種の熱媒体毎に前記第1のポンプおよび前記第2のポンプのそれぞれの全揚程の情報を記憶し、
     前記機外抵抗算出手段は、
     前記複数種の熱媒体のうち、1つの熱媒体が選択されると、選択された熱媒体に対応する前記第1のポンプの全揚程および前記第2のポンプの全揚程の情報を前記記憶手段から読み出し、前記第1の機外抵抗および前記第2の機外抵抗を算出する、
     請求項5に記載の熱源システム。
PCT/JP2022/041865 2022-11-10 2022-11-10 熱源システム WO2024100832A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041865 WO2024100832A1 (ja) 2022-11-10 2022-11-10 熱源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041865 WO2024100832A1 (ja) 2022-11-10 2022-11-10 熱源システム

Publications (1)

Publication Number Publication Date
WO2024100832A1 true WO2024100832A1 (ja) 2024-05-16

Family

ID=91032561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041865 WO2024100832A1 (ja) 2022-11-10 2022-11-10 熱源システム

Country Status (1)

Country Link
WO (1) WO2024100832A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220363A (ja) * 2005-02-10 2006-08-24 Shin Nippon Air Technol Co Ltd 1ポンプ方式熱源設備
JP2008224182A (ja) * 2007-03-15 2008-09-25 Shin Nippon Air Technol Co Ltd 1ポンプ方式熱源設備の運転制御方法
JP2014035090A (ja) * 2012-08-07 2014-02-24 Daikin Ind Ltd 空調システム
WO2015114847A1 (ja) * 2014-01-31 2015-08-06 三菱重工業株式会社 ポンプ台数制御方法、ポンプ台数制御装置、ポンプシステム、熱源システム及びプログラム
JP2019020191A (ja) * 2017-07-13 2019-02-07 有限会社北沢技術事務所 管流量計測装置および管下流圧力予測制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220363A (ja) * 2005-02-10 2006-08-24 Shin Nippon Air Technol Co Ltd 1ポンプ方式熱源設備
JP2008224182A (ja) * 2007-03-15 2008-09-25 Shin Nippon Air Technol Co Ltd 1ポンプ方式熱源設備の運転制御方法
JP2014035090A (ja) * 2012-08-07 2014-02-24 Daikin Ind Ltd 空調システム
WO2015114847A1 (ja) * 2014-01-31 2015-08-06 三菱重工業株式会社 ポンプ台数制御方法、ポンプ台数制御装置、ポンプシステム、熱源システム及びプログラム
JP2019020191A (ja) * 2017-07-13 2019-02-07 有限会社北沢技術事務所 管流量計測装置および管下流圧力予測制御装置

Similar Documents

Publication Publication Date Title
JP4904908B2 (ja) 空気調和装置
JP5228023B2 (ja) 冷凍サイクル装置
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
CN102077042B (zh) 空气调节装置的制冷剂量判定方法及空气调节装置
JP5812653B2 (ja) 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
JP6184503B2 (ja) 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
JP2009079842A (ja) 冷凍サイクル装置およびその制御方法
JP2007163103A (ja) 空気調和装置
JP2007163099A (ja) 空気調和装置
JP5430602B2 (ja) 空気調和装置
CN112840164B (zh) 空调装置和管理装置
JP6901041B2 (ja) 冷却装置、制御方法および記憶媒体
JP6479181B2 (ja) 空気調和装置
JP5428381B2 (ja) ヒートポンプシステム
JP2011099591A (ja) 冷凍装置
JP2011012958A (ja) 冷凍サイクル装置の制御方法
CN103890501A (zh) 空气调节装置
JP6589946B2 (ja) 冷凍装置
JP5889347B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
WO2024100832A1 (ja) 熱源システム
JP2007163105A (ja) 空気調和装置
JP5479625B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP4665748B2 (ja) 空気調和装置
JP7309075B2 (ja) 空気調和装置
JP2019168169A (ja) ヒートポンプ冷熱源機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965157

Country of ref document: EP

Kind code of ref document: A1