WO2024098347A1 - 数据流同步方法、装置、通信设备和存储介质 - Google Patents

数据流同步方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2024098347A1
WO2024098347A1 PCT/CN2022/131236 CN2022131236W WO2024098347A1 WO 2024098347 A1 WO2024098347 A1 WO 2024098347A1 CN 2022131236 W CN2022131236 W CN 2022131236W WO 2024098347 A1 WO2024098347 A1 WO 2024098347A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
synchronization
data stream
threshold
data streams
Prior art date
Application number
PCT/CN2022/131236
Other languages
English (en)
French (fr)
Inventor
沈洋
吴锦花
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280004969.9A priority Critical patent/CN118339810A/zh
Priority to PCT/CN2022/131236 priority patent/WO2024098347A1/zh
Publication of WO2024098347A1 publication Critical patent/WO2024098347A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular to a data stream synchronization method, apparatus, communication equipment and storage medium.
  • XR Extended Reality
  • UE User Equipment
  • Traffic Flows Multiple traffic flows are transmitted between the XR application server and the UE through one or more User Plane Functions (UPF) and base stations (such as gNB).
  • UPF User Plane Functions
  • gNB base stations
  • Multiple traffic flows (data flows) collaborate to implement a single service, so the data packets of different traffic flows (data flows) need to be correlated and synchronized with each other.
  • the XR application server can send downlink traffic at similar times.
  • embodiments of the present disclosure provide a data stream synchronization method, apparatus, communication device, and storage medium.
  • a data stream synchronization method is provided, wherein the method is performed by a user plane function UPF and includes:
  • the synchronization delay difference includes: a time difference between data packets of the at least two data streams that need to be synchronized.
  • the step of performing time synchronization on the at least two data streams comprises:
  • the cached data packet of the first data stream is sent within a predetermined time range from a first moment, wherein the first moment includes a moment when the data packet of the second data stream arrives at the UPF.
  • the method further comprises:
  • a data stream synchronization method is provided, wherein the method is performed by a session management function SMF and includes:
  • PCF policy control function
  • the threshold is sent to the user plane function UPF, wherein the threshold is used for comparison between the UPF and the synchronization delay difference between at least two synchronous data streams, and the time synchronization of at least two of the data streams is determined based on the comparison result obtained by the comparison, wherein the synchronization delay difference includes: the time difference between the data packets that need to be synchronized of the at least two data streams.
  • the threshold is used for the UPF to cache the data packets of the first data stream and send the cached data packets of the first data stream within a predetermined time range from a first moment when it determines that the synchronization delay difference between the data packets of the first data stream and the data packets of the second data stream among the at least two data streams is greater than the threshold, wherein the first moment includes the moment when the data packets of the second data stream arrive at the UPF, and wherein the data packets of the second data stream arrive at the UPF after the data packets of the first data stream.
  • a data stream synchronization method is provided, wherein the method is performed by a policy control function PCF and includes:
  • the user plane function UPF performs time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets of the at least two data streams that need to be synchronized.
  • the method further comprises: sending the threshold to a session management function SMF.
  • determining a threshold between at least two synchronized data streams comprises:
  • the threshold value sent by the receiving application function AF is received.
  • a data stream synchronization method is provided, wherein the method is performed by a session management function SMF and includes:
  • the synchronization delay difference includes: a time difference between data packets of the at least two data streams that need to be synchronized.
  • the method further comprises:
  • PCC policy control and charging
  • PDB packet delay budget
  • the first data stream and/or the second data stream are respectively bound to the Quality of Service (QoS) stream of the corresponding PDB, wherein the PDB of the first data stream and/or the PDB of the second data stream are used for the access network device to control the air interface transmission delay of the QoS stream and synchronize the at least two data streams.
  • QoS Quality of Service
  • the sending the first report information to the PCF includes:
  • the first report information is sent to the PCF, wherein the second report information is at least used to indicate the synchronization delay difference, and wherein the second report information is sent by the UPF when it determines that the synchronization delay difference is greater than the threshold.
  • the method further comprises:
  • the method further comprises:
  • the threshold is sent to the UPF.
  • a data stream synchronization method is provided, wherein the method is performed by a policy control function PCF and includes:
  • the session management function SMF performs time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets of the at least two data streams that need to be synchronized.
  • the method further comprises: sending the threshold to the SMF.
  • the method further comprises:
  • the first report information is subscribed by the PCF to the SMF.
  • determining a threshold between at least two synchronized data streams comprises:
  • the threshold value sent by the receiving application function AF is received.
  • a data stream synchronization method is provided, wherein the method is performed by a user plane function UPF and includes:
  • synchronization delay difference comprises: a time difference between data packets of the at least two data streams that need to be synchronized;
  • a second report message is sent at least to the session management function SMF, wherein the second report message is at least used to indicate the synchronization delay difference, and the second report message is used by the SMF to perform time synchronization on the at least two data streams.
  • the method further comprises:
  • the threshold value sent by the receiving SMF is the threshold value sent by the receiving SMF.
  • the second report information is at least used to indicate the synchronization delay difference between the first data stream and the second data stream in the at least two synchronous data streams.
  • the second report information is used for the SMF to send the first report information to the policy control function PCF, and the PCF determines the packet delay budget PDB of the first data flow and/or the packet delay budget PDB of the second data flow according to the synchronization delay difference; wherein, the PDB of the first data flow and/or the PDB of the second data flow are used for the access network device to control the air interface transmission delay of the quality of service QoS flow and synchronize the at least two data flows.
  • a data stream synchronization device is provided, wherein the device is arranged in a user plane function UPF, and includes:
  • the processing module is configured to determine that the synchronization delay difference between at least two data streams is greater than a threshold, and perform time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets of the at least two data streams that need to be synchronized.
  • the processing module is configured to cache data packets of a first data stream among the at least two data streams, wherein the synchronization delay difference between the first data stream and a second data stream among the at least two data streams is greater than the threshold, and wherein the data packets of the second data stream arrive at the UPF after the data packets of the first data stream;
  • the device also includes: a transceiver module configured to send the cached data packet of the first data stream within a predetermined time range from a first moment, wherein the first moment includes the moment when the data packet of the second data stream arrives at the UPF.
  • the apparatus further comprises:
  • the transceiver module is configured to receive the threshold sent by the session management function SMF.
  • a data stream synchronization device is provided, wherein the device is arranged in a session management function SMF and includes:
  • the transceiver module is configured to receive a threshold between two synchronous data streams sent by a policy control function PCF,
  • the transceiver module is also configured to send the threshold to the user plane function UPF, wherein the threshold is used for comparison between the UPF and the synchronization delay difference between at least two synchronous data streams, and determining the time synchronization of at least two of the data streams based on the comparison result obtained by the comparison, wherein the synchronization delay difference includes: the time difference between the data packets that need to be synchronized of the at least two data streams.
  • the threshold is used for the UPF to cache the data packets of the first data stream and send the cached data packets of the first data stream within a predetermined time range from a first moment when it determines that the synchronization delay difference between the data packets of the first data stream and the data packets of the second data stream among the at least two data streams is greater than the threshold, wherein the first moment includes the moment when the data packets of the second data stream arrive at the UPF, and wherein the data packets of the second data stream arrive at the UPF after the data packets of the first data stream.
  • a data stream synchronization device is provided, wherein the device is arranged in a policy control function PCF and includes:
  • the processing module is configured to determine a threshold between at least two synchronous data streams.
  • the user plane function UPF performs time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets of the at least two data streams that need to be synchronized.
  • the apparatus further comprises:
  • the transceiver module is configured to send the threshold to the session management function SMF.
  • the apparatus further comprises:
  • the transceiver module is configured to receive the threshold sent by the application function AF.
  • a data stream synchronization device is provided, wherein the device is arranged in a session management function SMF, and includes:
  • the processing module is configured to determine that the synchronization delay difference between at least two data streams is greater than a threshold, and perform time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets of the at least two data streams that need to be synchronized.
  • the apparatus further comprises:
  • a transceiver module configured to send first report information to a policy control function PCF, wherein the first report information is used to indicate that the synchronization delay difference between the first data stream and the second data stream is greater than a threshold, wherein the at least two data streams include the first data stream and the second data stream;
  • the transceiver module is further configured to receive a policy control and charging PCC rule carrying a packet delay budget PDB of the first data flow and/or a PCC rule carrying a PDB of the second data flow sent by the PCF, wherein the PDB of the first data flow and/or the PDB of the second data flow is updated by the PCF according to the synchronization delay difference indicated by the first report information;
  • the processing module is specifically configured to bind the first data stream and/or the second data stream to the quality of service QoS flow of the corresponding PDB respectively, wherein the PDB of the first data stream and/or the PDB of the second data stream are used for the access network device to control the air interface transmission delay of the QoS flow and synchronize the at least two data streams.
  • the transceiver module is specifically configured as follows:
  • the first report information is sent to the PCF, wherein the second report information is at least used to indicate the synchronization delay difference, and wherein the second report information is sent by the UPF when it determines that the synchronization delay difference is greater than the threshold.
  • the processing module is further configured to determine that the PCF subscribes to the first report information from the SMF and subscribes to the second report information from the UPF.
  • the transceiver module is further configured as:
  • the threshold is sent to the UPF.
  • a data stream synchronization device is provided, wherein the device is arranged in a policy control function PCF, and includes:
  • the processing module is configured to determine a threshold between at least two synchronous data streams, and the session management function SMF performs time synchronization on the at least two synchronous data streams when the synchronization delay difference between the at least two synchronous data streams is greater than the threshold, wherein the synchronization delay difference includes: the time difference between the data packets of the at least two data streams that need to be synchronized.
  • the apparatus further comprises:
  • the transceiver module is configured to send the threshold to the SMF.
  • the apparatus further comprises:
  • a transceiver module is configured to receive first report information sent by a session management function SMF, wherein the first report information is used to indicate that a synchronization delay difference between a first data stream and a second data stream is greater than a threshold; wherein the first data stream and the second data stream belong to the at least two data streams;
  • the processing module is further configured to update the PDB associated with the first data flow and/or the packet delay budget PDB associated with the second data flow according to the synchronization delay difference indicated by the first report information;
  • the transceiver module is also configured to send to the SMF a policy control and charging PCC rule carrying a packet delay budget PDB of the first data flow and/or a PCC rule carrying a PDB of the second data flow; wherein the PDB of the first data flow and/or the PDB of the second data flow are used for the access network device to control the air interface transmission delay of the quality of service QoS flow and synchronize the at least two data flows.
  • the first report information is subscribed by the PCF to the SMF.
  • the apparatus further comprises:
  • the transceiver module is configured to receive the threshold sent by the application function AF.
  • a data stream synchronization device is provided, wherein the device is arranged in a user plane function UPF, and includes:
  • a processing module configured to determine a synchronization delay difference between at least two synchronous data streams, wherein the synchronization delay difference comprises: a time difference between data packets of the at least two data streams that need to be synchronized;
  • the transceiver module is configured to send a second report information to at least the session management function SMF in response to the synchronization delay difference being greater than a threshold, wherein the second report information is at least used to indicate the synchronization delay difference, and the second report information is used for the SMF to perform time synchronization on the at least two data streams.
  • the transceiver module is further configured as:
  • the threshold value sent by the receiving SMF is the threshold value sent by the receiving SMF.
  • the second report information is at least used to indicate the synchronization delay difference between the first data stream and the second data stream in the at least two synchronous data streams.
  • the second report information is used for the SMF to send the first report information to the policy control function PCF, and the PCF determines the packet delay budget PDB of the first data stream and/or the packet delay budget PDB of the second data stream according to the synchronization delay difference; wherein, the PDB of the first data stream and/or the PDB of the second data stream are used for the access network device to control the air interface transmission delay of the quality of service QoS flow and synchronize the at least two data streams.
  • a communication device wherein the communication device includes:
  • a memory for storing instructions executable by the processor
  • the processor is configured to: when running the executable instructions, implement the data stream synchronization device described in any one of the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, or the sixth aspect.
  • a computer storage medium stores a computer executable program, and when the executable program is executed by a processor, it implements the data stream synchronization device described in any one of the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, or the sixth aspect.
  • a communication system includes a user plane function UPF, a session management function SMF and a policy control function PCF; the UPF is used to implement the method described in any one of the first aspect or the sixth aspect; the SMF is used to implement the method described in any one of the second aspect or the fourth aspect, and the PCF is used to implement the method described in any one of the third aspect or the fifth aspect.
  • the data stream synchronization method, apparatus, communication equipment and storage medium provided by the embodiments of the present disclosure.
  • the user plane function determines that the synchronization delay difference between at least two data streams is greater than a threshold value, and performs time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets that need to be synchronized by the at least two data streams.
  • the UPF performs time synchronization on the at least two data streams, so that the synchronization delay difference between multiple flows can be kept within the threshold value, thereby improving the user experience.
  • FIG1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • FIG2 is a schematic diagram showing a data stream transmission according to an exemplary embodiment
  • FIG3 is a flow chart of a data stream synchronization method according to an exemplary embodiment
  • FIG4 is a schematic flow chart of a data stream synchronization method according to an exemplary embodiment
  • FIG5 is a schematic diagram showing a data stream transmission according to an exemplary embodiment
  • FIG6 is a schematic flow chart of a data stream synchronization method according to an exemplary embodiment
  • FIG7 is a schematic flow chart of a data stream synchronization method according to an exemplary embodiment
  • FIG8 is a schematic flow chart of a data stream synchronization method according to an exemplary embodiment
  • FIG9 is a schematic flow chart of a data stream synchronization method according to an exemplary embodiment
  • FIG10 is a schematic flow chart of a data stream synchronization method according to an exemplary embodiment
  • FIG11 is a schematic diagram showing a data stream transmission according to an exemplary embodiment
  • FIG12 is a flow chart showing a method for synchronizing a data stream according to an exemplary embodiment
  • FIG13 is a schematic flow chart of a data stream synchronization method according to an exemplary embodiment
  • FIG14 is a schematic flow chart of a data stream synchronization method according to an exemplary embodiment
  • FIG15 is a flow chart showing a method for synchronizing a data stream according to an exemplary embodiment
  • FIG16 is a schematic flow chart of a data stream synchronization method according to an exemplary embodiment
  • FIG17 is a block diagram of a data stream synchronization device according to an exemplary embodiment
  • FIG18 is a block diagram of a data stream synchronization device according to an exemplary embodiment
  • FIG19 is a block diagram of a data stream synchronization device according to an exemplary embodiment
  • FIG20 is a block diagram of a data stream synchronization device according to an exemplary embodiment
  • FIG21 is a block diagram of a data stream synchronization device according to an exemplary embodiment
  • FIG22 is a block diagram of a data stream synchronization device according to an exemplary embodiment
  • FIG23 is a block diagram of a UE according to an exemplary embodiment
  • Fig. 24 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first indication information may also be referred to as the second information, and similarly, the second information may also be referred to as the first indication information.
  • word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determination".
  • FIG1 shows a schematic diagram of the structure of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system may include: at least one terminal 11 and at least one base station 12 .
  • the terminal 11 can be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core network devices via a radio access network (RAN).
  • RAN radio access network
  • the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or a "cellular" phone), and a computer with an Internet of Things terminal.
  • it can be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • a station STA
  • a subscriber unit a subscriber station, a mobile station, a mobile station, a remote station, an access point, a remote terminal, an access terminal, a user device, a user agent, a user device, or a user terminal (UE).
  • UE user terminal
  • the terminal 11 can also be a device of an unmanned aerial vehicle.
  • the terminal 11 can also be a vehicle-mounted device, for example, it can be a driving computer with wireless communication function, or a wireless communication device connected to an external driving computer.
  • the terminal 11 may also be a roadside device, for example, a street lamp, a traffic light or other roadside device with a wireless communication function.
  • the base station 12 may be a network device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (4G) system, also known as a long term evolution (LTE) system; or, the wireless communication system may be a 5G system, also known as a new radio (NR) system or a 5G NR system.
  • 4G fourth generation mobile communication technology
  • 5G also known as a new radio (NR) system or a 5G NR system.
  • NR new radio
  • the wireless communication system may be a next generation system of the 5G system.
  • the access network in the 5G system may be called NG-RAN (New Generation-Radio Access Network).
  • an MTC system may be used to communicate with a MTC network.
  • the base station 12 can be an evolved base station (eNB) adopted in a 4G system.
  • the base station 12 can also be a base station (gNB) adopting a centralized distributed architecture in a 5G system.
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack;
  • the distributed unit is provided with a physical (Physical, PHY) layer protocol stack.
  • the specific implementation method of the base station 12 is not limited in the embodiment of the present disclosure.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface can also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an E2E (End to End) connection may also be established between the terminals 11.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the wireless communication system may further include a network management device 13 .
  • the core network device 13 may be a core network device in a wireless communication system, for example, the core network device 13 may be a mobility management entity (MME) in an evolved packet core network device (EPC).
  • MME mobility management entity
  • EPC evolved packet core network device
  • the network management device may also be other core network devices, such as a serving gateway (SGW), a public data network gateway (PGW), a policy and charging rules function (PCRF) or a home subscriber server (HSS).
  • SGW serving gateway
  • PGW public data network gateway
  • PCRF policy and charging rules function
  • HSS home subscriber server
  • the embodiments of the present disclosure list multiple implementation methods to clearly illustrate the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided by the embodiments of the present disclosure can be executed separately, or can be executed together with the methods of other embodiments of the embodiments of the present disclosure, or can be executed together with some methods in other related technologies separately or in combination; the embodiments of the present disclosure do not limit this.
  • the latency requirements between multiple data streams are as follows:
  • the synchronization delay difference between the two data streams should be less than certain values, for example, for immersive multimodal VR applications, the visual-tactile threshold is less than 15ms (if the visual data is delayed compared to the tactile) or less than 50ms (if the tactile is delayed compared to the visual).
  • Typical latency requirements for specific traffic e.g. for immersive multimodal VR UL, the maximum allowed end-to-end latency for haptic data is 5ms.
  • this exemplary embodiment provides a data stream synchronization method, which may be performed by a user plane function UPF, including:
  • Step 301 Determine that the synchronization delay difference between at least two data streams is greater than a threshold, and perform time synchronization on the at least two data streams, wherein the synchronization delay difference includes: a time difference between data packets of the at least two data streams that need to be synchronized.
  • the multiple synchronized data streams may be associated with the same service.
  • the multiple synchronized data streams may be data streams of the same XR application service.
  • the data packets of the multiple data streams of the same service have a synchronization requirement, that is, the data packets of each data stream need to arrive at the UE within a predetermined time range.
  • the at least two data flows are associated with the same user equipment UE or different UEs.
  • multiple synchronized data streams may be used to transmit data packets of the same UE.
  • multiple synchronized data streams may be used to transmit data packets of different UEs.
  • the number of data streams associated with each UE may be different or the same.
  • the data associated with each UE may be different or the same.
  • a data stream may include one or more data packets.
  • the time synchronization of the at least two synchronous data streams may be time synchronization of the data packets in the at least two data streams.
  • Time synchronization may be synchronizing transmission times of at least two data streams.
  • time synchronization is performed on the at least two data streams, including at least one of the following:
  • Synchronizing arrival times of at least two data streams at a data stream destination (e.g., UE);
  • the UPF may receive data streams from an AF server (such as an XR application server) and send the data streams to access network devices.
  • an AF server such as an XR application server
  • the UPF may control the sending time of the data stream, etc., thereby achieving the effect of time synchronization of at least two data streams.
  • the SMF can configure the transmission parameters of the data stream, thereby controlling the data stream transmission time and achieving the effect of time synchronization of at least two data streams.
  • the transmission parameters of the data stream may include but are not limited to at least one of the following: transmission priority; transmission time budget.
  • the PCF may formulate a PCC for time synchronization of at least two data streams.
  • a PCC can be formulated to control the core network device to synchronize the data flow based on at least the threshold.
  • the PCC rule may indicate the core network devices associated with the data stream synchronization and the operations performed by each core network device during the data stream synchronization process.
  • the core network device may synchronize the data flow according to the instruction of the PCC rule.
  • the synchronization delay difference may include at least one of the following: the current synchronization delay difference between data streams; the synchronization delay difference between data streams predicted by the core network device.
  • the synchronization delay difference may include: the time difference between the data packets that need to be synchronized in each data stream arriving at the core network device.
  • the synchronization delay difference between at least two synchronous data streams may include: the time difference between the data packets that need to be synchronized in each data stream arriving at the UPF.
  • the synchronization delay difference between at least two synchronous data streams may be determined by a UPF.
  • the time when the data flow arrives at the UPF may be the time when all data packets in the data flow arrive at the UPF.
  • the UPF may determine the synchronization delay difference between the two data streams after both data streams arrive at the UPF.
  • the UPF may start to determine whether the synchronization delay difference between the two data streams is greater than a threshold after one of the two data streams reaches the UPF.
  • UPF may start a timer after one of the two data streams reaches UPF, and the timer timing value may be a threshold.
  • the timer timing value may be a threshold.
  • the threshold value can be determined based on the synchronization delay difference requirement between data streams for the service associated with the data stream. For example, when the data stream is associated with a VR UL service, the threshold value can be set to 5ms.
  • the threshold may be determined based on the service type of the data flow.
  • the threshold may be sent by the AF that sends the data flow to the core network device.
  • Determining that the synchronization delay difference between at least two synchronous data streams is greater than a threshold may include but is not limited to at least one of the following:
  • a synchronization delay difference between at least two synchronous data streams is greater than a threshold.
  • UPD performs time synchronization on at least two data streams, so that the synchronization delay difference between multiple flows can be kept within the threshold, thereby improving user experience.
  • step 301 may include:
  • Step 401 caching data packets of a first data stream among the at least two data streams, wherein the synchronization delay difference between the first data stream and a second data stream among the at least two data streams is greater than the threshold, and wherein the data packets of the second data stream arrive at the UPF after the data packets of the first data stream;
  • Step 402 Send the cached data packet of the first data stream within a predetermined time range from a first moment, wherein the first moment includes the moment when the data packet of the second data stream arrives at the UPF.
  • the PCC may specify that the UPF performs time synchronization on at least two data streams when the synchronization delay difference between the at least two synchronous data streams is greater than a threshold.
  • UPF When UPF detects that the synchronization delay difference between at least two data streams is greater than a threshold, UPF can perform data stream synchronization.
  • the data packets of the first data stream may arrive at the UPF first, and the data packets of the second data stream may arrive at the UPF later.
  • the first data flow may include a data flow of data packets that first arrive at the UPF.
  • the UPF may buffer data packets of the first data flow that arrive earlier, and send the buffered data packets of the first data flow within a predetermined time range from a first moment.
  • the UPF may send a data packet of the second data flow at a first moment.
  • the predetermined time range may be determined based at least on a synchronization requirement of the data stream.
  • the predetermined duration range is smaller than the synchronization duration requirement of the data stream for synchronization.
  • the predetermined duration range may be determined based on the delay duration of the data packet of the UPF receiving and sending the data stream.
  • the delay duration of the data packet of the UPF receiving and sending the data stream may include: the time required for the UPF to receive the data packet of the data stream and send the data packet of the data stream to the access network device (such as a base station).
  • Determining the predetermined time range based on the delay time of the UPF sending and receiving data packets of the data stream can reduce the time difference between the UPF sending the data packets of the first data stream and the data packets of the second data stream, and improve the synchronization of the first data stream and the second data stream.
  • the predetermined time range may be smaller than a threshold value.
  • the first data stream and the second data stream are synchronized during the UPF sending process, reducing the synchronization delay difference between the first data stream and the second data stream and improving the user experience.
  • the predetermined time range may include at least one of the following:
  • the arrival time of the data packet of the second data flow that arrives at the UPF last may be used as the first time.
  • the time point T_UPF_In_2 at which the data packet of data stream 2 arrives at UPF is later than the time point T_UPF_In_1 at which the data packet of data stream 1 arrives at UPF, and the synchronization delay difference between data stream 2 and data stream 1 is greater than a threshold.
  • UPF can cache the data packet of data stream 1 after receiving the data packet of data stream 1, and send the cached data packet of data stream 1 within a predetermined time range of the first moment of receiving the data packet of data stream 2, that is, send the cached data packet of data stream 1 at T_UPF_Out_1, UPF does not cache the data packet of data stream 2, and directly sends the data packet of data stream 2 after receiving the data packet of data stream 2, that is, send the cached data packet of data stream 2 at T_UPF_Out_2. This enables data stream 1 and data stream 2 to be sent synchronously.
  • the access network device can receive data packets of multiple data streams that have been synchronously processed by the UPF and send them to the UE. This improves the synchronization of data packets of multiple data streams received by the UE. In this process, the access network device does not need to make changes to the data stream synchronization.
  • this exemplary embodiment provides a data stream synchronization method, which can be executed by a UPF.
  • Step 601 Receive the threshold sent by SMF.
  • the PCC rule determined by the PCF may include a threshold.
  • the PCF may send the PCC rule to the SMF, so that the SMF may determine the threshold.
  • the threshold in the PCC rule may be associated with the data flow of the service.
  • the threshold in the PCC can establish an association relationship with the data flow through a service identifier, an identifier of the AF of the data flow, a data flow identifier, and the like.
  • the SMF may send the threshold to the UPF.
  • the threshold may be subscribed by the UPF to the SMF.
  • the PCF when the PCF receives the threshold of the AF from the service request, the PCF generates a PCC for the data stream (data stream group) associated with the threshold, wherein the PCC includes the threshold received from the AF.
  • the threshold can be associated with multiple data streams of the service.
  • the disclosed embodiment also proposes a data stream synchronization method performed by SMF; it should be noted that the method corresponds to the embodiments on the PCF side and/or UPF side and/or access network side, so the same explanations or features will not be repeated one by one, and reference can be made to the embodiments on the corresponding side.
  • this exemplary embodiment provides a data stream synchronization method, which may be executed by a session management function SMF, including:
  • Step 701 Receive the threshold between two synchronous data streams sent by PCF,
  • Step 702 Send the threshold to the UPF, wherein the threshold is used for comparison between the UPF and the synchronization delay difference between at least two synchronous data streams, and determine the time synchronization of at least two of the data streams based on the comparison result obtained by the comparison, wherein the synchronization delay difference includes: the time difference between the data packets that need to be synchronized of the at least two data streams.
  • the PCC rule determined by the PCF may include a threshold.
  • the PCF may send the PCC rule to the SMF, so that the SMF may determine the threshold.
  • the threshold in the PCC rule may be associated with the data flow of the service.
  • the threshold in the PCC can establish an association relationship with the data flow through a service identifier, an identifier of the AF of the data flow, a data flow identifier, and the like.
  • the SMF may send the threshold to the UPF.
  • the threshold may be subscribed by the UPF to the SMF.
  • the PCF when the PCF receives the threshold of the AF from the service request, the PCF generates a PCC for the data stream (data stream group) associated with the threshold, wherein the PCC includes the threshold received from the AF.
  • the threshold can be associated with multiple data streams of the service.
  • the UPF may receive data streams from an AF server (such as an XR application server) and send the data streams to access network devices.
  • an AF server such as an XR application server
  • the synchronization delay difference may include at least one of the following: the current synchronization delay difference between data streams; the synchronization delay difference between data streams predicted by the core network device.
  • the synchronization delay difference may include: the time difference between data packets that need to be synchronized in each data stream arriving at the core network device.
  • the synchronization delay difference between at least two synchronous data streams may include: the time difference between the data packets that need to be synchronized in each data stream arriving at the UPF.
  • the synchronization delay difference between at least two synchronous data streams may be determined by a UPF.
  • the time when the data flow arrives at the UPF may be the time when all data packets in the data flow arrive at the UPF.
  • the UPF may determine the synchronization delay difference between the two data streams after both data streams arrive at the UPF.
  • the UPF may start to determine whether the synchronization delay difference between the two data streams is greater than a threshold after one of the two data streams reaches the UPF.
  • UPF can start a timer after one of the two data streams reaches UPF, and the timer timing value can be a threshold.
  • the timer timing value can be a threshold.
  • the UPF may control the sending time of the data stream, etc., thereby achieving the effect of time synchronization of at least two data streams.
  • UPF performs time synchronization on at least two data streams, so that the synchronization delay difference between multiple flows can be kept within the threshold, thereby improving user experience.
  • the threshold is used for the UPF to cache the data packets of the first data stream and send the cached data packets of the first data stream within a predetermined time range from a first moment when it determines that the synchronization delay difference between the data packets of the first data stream and the data packets of the second data stream among the at least two data streams is greater than the threshold, wherein the first moment includes the moment when the data packets of the second data stream arrive at the UPF, and wherein the data packets of the second data stream arrive at the UPF after the data packets of the first data stream.
  • the PCC may specify that the UPF performs time synchronization on at least two data streams when the synchronization delay difference between the at least two synchronous data streams is greater than a threshold.
  • UPF When UPF detects that the synchronization delay difference between at least two data streams is greater than a threshold, UPF can perform data stream synchronization.
  • the data packets of the first data stream may arrive at the UPF first, and the data packets of the second data stream may arrive at the UPF later.
  • the first data flow may include a data flow of data packets that first arrive at the UPF.
  • the UPF may buffer data packets of the first data flow that arrive earlier, and send the buffered data packets of the first data flow within a predetermined time range from a first moment.
  • the UPF may send a data packet of the second data flow at a first moment.
  • the predetermined time range may be determined based at least on a synchronization requirement of the data stream.
  • the predetermined duration range is smaller than the synchronization duration requirement of the data stream for synchronization.
  • the predetermined duration range may be determined based on the delay duration of the data packet of the UPF receiving and sending the data stream.
  • the delay duration of the data packet of the UPF receiving and sending the data stream may include: the time required for the UPF to receive the data packet of the data stream and send the data packet of the data stream to the access network device (such as a base station).
  • Determining the predetermined time range based on the delay time of the UPF sending and receiving data packets of the data stream can reduce the time difference between the UPF sending the data packets of the first data stream and the data packets of the second data stream, and improve the synchronization of the first data stream and the second data stream.
  • the predetermined time range may be smaller than a threshold value.
  • the first data stream and the second data stream are synchronized during the UPF sending process, reducing the synchronization delay difference between the first data stream and the second data stream and improving the user experience.
  • the predetermined time range may include at least one of the following:
  • the arrival time of the data packet of the second data flow that arrives at the UPF last may be used as the first time.
  • the time point T_UPF_In_2 at which the data packet of data stream 2 arrives at UPF is later than the time point T_UPF_In_1 at which the data packet of data stream 1 arrives at UPF, and the synchronization delay difference between data stream 2 and data stream 1 is greater than a threshold.
  • UPF can cache the data packet of data stream 1 after receiving the data packet of data stream 1, and send the cached data packet of data stream 1 within a predetermined time range of the first moment of receiving the data packet of data stream 2, that is, send the cached data packet of data stream 1 at T_UPF_Out_1, UPF does not cache the data packet of data stream 2, and directly sends the data packet of data stream 2 after receiving the data packet of data stream 2, that is, send the cached data packet of data stream 2 at T_UPF_Out_2. This enables data stream 1 and data stream 2 to be sent synchronously.
  • the access network device can receive data packets of multiple data streams that have been synchronously processed by the UPF and send them to the UE. This improves the synchronization of data packets of multiple data streams received by the UE. In this process, the access network device does not need to make changes to the data stream synchronization.
  • the disclosed embodiment also proposes a data stream synchronization method performed by PCF; it should be noted that the method corresponds to the embodiments of the SMF side and/or UPF side and/or access network side, so the same explanations or features will not be repeated one by one, and reference can be made to the embodiments of the corresponding side.
  • this exemplary embodiment provides a data stream synchronization method, which may be performed by a PCF, including:
  • Step 801 Determine a threshold between at least two synchronous data streams.
  • UPF performs time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets that need to be synchronized of the at least two data streams.
  • the multiple synchronized data streams may be associated with the same service.
  • the multiple synchronized data streams may be data streams of the same XR application service.
  • the data packets of the multiple data streams of the same service have a synchronization requirement, that is, the data packets of each data stream need to arrive at the UE within a predetermined time range.
  • the multiple synchronized data streams may be associated with the same service.
  • the multiple synchronized data streams may be data streams of the same XR application service.
  • the data packets of the multiple data streams of the same service have a synchronization requirement, that is, the data packets of each data stream need to arrive at the UE within a predetermined time range.
  • the at least two data flows are associated with the same user equipment UE or different UEs.
  • multiple synchronized data streams may be used to transmit data packets of the same UE.
  • multiple synchronized data streams may be used to transmit data packets of different UEs.
  • the number of data streams associated with each UE may be different or the same.
  • the data associated with each UE may be different or the same.
  • a data stream may include one or more data packets.
  • the time synchronization of the at least two synchronous data streams may be time synchronization of the data packets in the at least two data streams.
  • Time synchronization may be synchronizing transmission times of at least two data streams.
  • time synchronization is performed on the at least two data streams, including at least one of the following:
  • Synchronizing arrival times of at least two data streams at a data stream destination (e.g., UE);
  • the UPF may receive data streams from an AF server (such as an XR application server) and send the data streams to access network devices.
  • an AF server such as an XR application server
  • the UPF may control the sending time of the data stream, etc., thereby achieving the effect of time synchronization of at least two data streams.
  • the SMF can configure the transmission parameters of the data stream, thereby controlling the data stream transmission time and achieving the effect of time synchronization of at least two data streams.
  • the transmission parameters of the data stream may include but are not limited to at least one of the following: transmission priority; transmission time budget.
  • the PCF may formulate a PCC for time synchronization of at least two data streams.
  • a PCC can be formulated to control the core network device to synchronize the data flow based on at least the threshold.
  • the PCC rule may indicate the core network devices associated with the data stream synchronization and the operations performed by each core network device during the data stream synchronization process.
  • the core network device may synchronize the data flow according to the instruction of the PCC rule.
  • the synchronization delay difference may include at least one of the following: the current synchronization delay difference between data streams; the synchronization delay difference between data streams predicted by the core network device.
  • the synchronization delay difference may include: the time difference between data packets that need to be synchronized in each data stream arriving at the core network device.
  • the synchronization delay difference between at least two synchronous data streams may include: the time difference between the data packets that need to be synchronized in each data stream arriving at the UPF.
  • the synchronization delay difference between at least two synchronous data streams may be determined by a UPF.
  • the time when the data flow arrives at the UPF may be the time when all data packets in the data flow arrive at the UPF.
  • the UPF may determine the synchronization delay difference between the two data streams after both data streams arrive at the UPF.
  • the UPF may start to determine whether the synchronization delay difference between the two data streams is greater than a threshold after one of the two data streams reaches the UPF.
  • UPF may start a timer after one of the two data streams reaches UPF, and the timer timing value may be a threshold.
  • the timer timing value may be a threshold.
  • the threshold value can be determined based on the synchronization delay difference requirement between data streams for the service associated with the data stream. For example, when the data stream is associated with a VR UL service, the threshold value can be set to 5ms.
  • the threshold may be determined based on the service type of the data flow.
  • the threshold may be sent by the AF that sends the data flow to the core network device.
  • Determining that the synchronization delay difference between at least two synchronous data streams is greater than a threshold may include but is not limited to at least one of the following:
  • a synchronization delay difference between at least two synchronous data streams is greater than a threshold.
  • UPD performs time synchronization on at least two data streams, so that the synchronization delay difference between multiple flows can be kept within the threshold, thereby improving user experience.
  • the UPF caches data packets of a first data stream among the at least two data streams, wherein the synchronization delay difference between the first data stream and a second data stream among the at least two data streams is greater than the threshold, and wherein the data packets of the second data stream arrive at the UPF after the data packets of the first data stream;
  • the UPF sends the cached data packet of the first data stream within a predetermined time range from a first moment, wherein the first moment includes the moment when the data packet of the second data stream arrives at the UPF.
  • the PCC may specify that the UPF performs time synchronization on at least two data streams when the synchronization delay difference between the at least two synchronous data streams is greater than a threshold.
  • UPF When UPF detects that the synchronization delay difference between at least two data streams is greater than a threshold, UPF can perform data stream synchronization.
  • the data packets of the first data stream may arrive at the UPF first, and the data packets of the second data stream may arrive at the UPF later.
  • the first data flow may include a data flow of data packets that first arrive at the UPF.
  • the UPF may buffer data packets of the first data flow that arrive earlier, and send the buffered data packets of the first data flow within a predetermined time range from a first moment.
  • the UPF may send a data packet of the second data flow at a first moment.
  • the predetermined time range may be determined based at least on a synchronization requirement of the data stream.
  • the predetermined duration range is smaller than the synchronization duration requirement of the data stream for synchronization.
  • the predetermined duration range may be determined based on the delay duration of the data packet of the UPF receiving and sending the data stream.
  • the delay duration of the data packet of the UPF receiving and sending the data stream may include: the time required for the UPF to receive the data packet of the data stream and send the data packet of the data stream to the access network device (such as a base station).
  • Determining the predetermined time range based on the delay time of the UPF sending and receiving data packets of the data stream can reduce the time difference between the UPF sending the data packets of the first data stream and the data packets of the second data stream, and improve the synchronization of the first data stream and the second data stream.
  • the predetermined time range may be smaller than a threshold value.
  • the first data stream and the second data stream are synchronized during the UPF sending process, reducing the synchronization delay difference between the first data stream and the second data stream and improving the user experience.
  • the predetermined time range may include at least one of the following:
  • the arrival time of the data packet of the second data flow that arrives at the UPF last may be used as the first time.
  • the time point T_UPF_In_2 at which the data packet of data stream 2 arrives at UPF is later than the time point T_UPF_In_1 at which the data packet of data stream 1 arrives at UPF, and the synchronization delay difference between data stream 2 and data stream 1 is greater than a threshold.
  • UPF can cache the data packet of data stream 1 after receiving the data packet of data stream 1, and send the cached data packet of data stream 1 within a predetermined time range of the first moment of receiving the data packet of data stream 2, that is, send the cached data packet of data stream 1 at T_UPF_Out_1, UPF does not cache the data packet of data stream 2, and directly sends the data packet of data stream 2 after receiving the data packet of data stream 2, that is, send the cached data packet of data stream 2 at T_UPF_Out_2. This enables data stream 1 and data stream 2 to be sent synchronously.
  • the access network device can receive data packets of multiple data streams that have been synchronously processed by the UPF and send them to the UE. This improves the synchronization of data packets of multiple data streams received by the UE. In this process, the access network device does not need to make changes to the data stream synchronization.
  • the method further comprises: sending the threshold to a session management function SMF.
  • determining a threshold between at least two synchronized data streams comprises:
  • the threshold value sent by the receiving application function AF is received.
  • the PCC rule determined by the PCF may include a threshold.
  • the PCF may send the PCC rule to the SMF, so that the SMF may determine the threshold.
  • the threshold in the PCC rule may be associated with the data flow of the service.
  • the threshold in the PCC can establish an association relationship with the data flow through a service identifier, an identifier of the AF of the data flow, a data flow identifier, and the like.
  • the SMF may send the threshold to the UPF.
  • the threshold may be subscribed by the UPF to the SMF.
  • the PCF when the PCF receives the threshold of the AF from the service request, the PCF generates a PCC for the data stream (data stream group) associated with the threshold, wherein the PCC includes the threshold received from the AF.
  • the threshold can be associated with multiple data streams of the service.
  • the disclosed embodiment also proposes a data stream synchronization method performed by SMF; it should be noted that the method corresponds to the embodiments on the PCF side and/or UPF side and/or access network side, so the same explanations or features will not be repeated one by one, and reference can be made to the embodiments on the corresponding side.
  • this exemplary embodiment provides a data stream synchronization method, which may be performed by a session management function SMF, including:
  • Step 901 Determine that the synchronization delay difference between at least two data streams is greater than a threshold, and perform time synchronization on the at least two data streams, wherein the synchronization delay difference includes: a time difference between data packets of the at least two data streams that need to be synchronized.
  • the multiple synchronized data streams may be associated with the same service.
  • the multiple synchronized data streams may be data streams of the same XR application service.
  • the data packets of the multiple data streams of the same service have a synchronization requirement, that is, the data packets of each data stream need to arrive at the UE within a predetermined time range.
  • the at least two data flows are associated with the same user equipment UE or different UEs.
  • multiple synchronized data streams may be used to transmit data packets of the same UE.
  • multiple synchronized data streams may be used to transmit data packets of different UEs.
  • the number of data streams associated with each UE may be different or the same.
  • the data associated with each UE may be different or the same.
  • a data stream may include one or more data packets.
  • the time synchronization of the at least two synchronous data streams may be time synchronization of the data packets in the at least two data streams.
  • Time synchronization may be synchronizing transmission times of at least two data streams.
  • time synchronization is performed on the at least two data streams, including at least one of the following:
  • Synchronizing arrival times of at least two data streams at a data stream destination (e.g., UE);
  • the UPF may receive data streams from an AF server (such as an XR application server) and send the data streams to access network devices.
  • an AF server such as an XR application server
  • the UPF may control the sending time of the data stream, etc., thereby achieving the effect of time synchronization of at least two data streams.
  • the SMF can configure the transmission parameters of the data stream, thereby controlling the data stream transmission time and achieving the effect of time synchronization of at least two data streams.
  • the transmission parameters of the data stream may include but are not limited to at least one of the following: transmission priority; transmission time budget.
  • the PCF may formulate a PCC for time synchronization of at least two data streams.
  • a PCC can be formulated to control the core network device to synchronize the data flow based on at least the threshold.
  • the PCC rule may indicate the core network devices associated with the data stream synchronization and the operations performed by each core network device during the data stream synchronization process.
  • the core network device may synchronize the data flow according to the instruction of the PCC rule.
  • the synchronization delay difference may include at least one of the following: the current synchronization delay difference between data streams; the synchronization delay difference between data streams predicted by the core network device.
  • the synchronization delay difference may include: the time difference between data packets that need to be synchronized in each data stream arriving at the core network device.
  • the synchronization delay difference between at least two synchronous data streams may include: the time difference between the data packets that need to be synchronized in each data stream arriving at the UPF.
  • the synchronization delay difference between at least two synchronous data streams may be determined by a UPF.
  • the time when the data flow arrives at the UPF may be the time when all data packets in the data flow arrive at the UPF.
  • the UPF may determine the synchronization delay difference between the two data streams after both data streams arrive at the UPF.
  • the UPF may start to determine whether the synchronization delay difference between the two data streams is greater than a threshold after one of the two data streams reaches the UPF.
  • UPF may start a timer after one of the two data streams reaches UPF, and the timer timing value may be a threshold.
  • the timer timing value may be a threshold.
  • the threshold can be determined based on the synchronization delay difference between data streams required by the service associated with the data stream. For example, when the data stream is associated with a VR UL service, the threshold can be set to 5ms.
  • the threshold may be determined based on the service type of the data flow.
  • the threshold may be sent by the AF that sends the data flow to the core network device.
  • Determining that the synchronization delay difference between at least two synchronous data streams is greater than a threshold may include but is not limited to at least one of the following:
  • a synchronization delay difference between at least two synchronous data streams is greater than a threshold.
  • SMF performs time synchronization on at least two data streams, so that the synchronization delay difference between multiple flows can be kept within the threshold, thereby improving user experience.
  • this exemplary embodiment provides a data stream synchronization method, which may be performed by a session management function SMF, including:
  • Step 1001 Sending first report information to a PCF, where the first report information is used to indicate that the synchronization delay difference between a first data stream and a second data stream is greater than a threshold, wherein the at least two data streams include the first data stream and the second data stream;
  • Step 1002 receiving a PCC rule carrying a PDB of the first data flow and/or a PCC rule carrying a PDB of the second data flow sent by the PCF, where the PDB of the first data flow and/or the PDB of the second data flow are updated by the PCF according to the synchronization delay difference indicated by the first report information;
  • Step 1003 Bind the first data stream and/or the second data stream to the QoS stream of the corresponding PDB respectively, wherein the PDB of the first data stream and/or the PDB of the second data stream is used for the access network device to control the air interface transmission delay of the QoS stream and synchronize the at least two data streams.
  • the PCC may specify that the SMF performs time synchronization on at least two data streams when the synchronization delay difference between the at least two synchronous data streams is greater than a threshold.
  • the SMF may send first report information of at least two data flows to the PCF based on the subscription of the PCF.
  • the first report information carries the synchronization delay difference between the first data stream and the second data stream.
  • the synchronization delay difference may include: a time difference between a data packet of the first data stream and a data packet of the second data stream arriving at the UPF.
  • the PCF may determine the PDB of the first data stream and/or the second data stream based on the received synchronization delay difference.
  • PDB can be used to define the upper limit of the time that the data flow between the N6 termination point and the UE (transmitted through the UPF) may be delayed.
  • the core network equipment and/or access network equipment (such as base stations, etc.) can configure transmission resources for the data flow based on the PDB. For example, a data flow with a smaller PDB is configured with a higher priority transmission resource to shorten the data packet transmission time of the data flow; a data flow with a larger PDB is configured with a lower priority transmission resource.
  • the PCF may configure a PDB for a first data stream of at least two data streams, thereby adjusting the transmission duration of the first data stream and playing a synchronization role.
  • the PCF may configure a smaller PDB for the first data stream that arrives later, thereby reducing the transmission time of the data packet of the first data stream on the air interface, thereby achieving synchronization of the data streams.
  • the PCF may configure a larger PDB for the first data stream that arrives earlier, thereby increasing the transmission time of the first data stream on the air interface, thereby achieving synchronization of the data streams.
  • different data flows correspond to different PCC rules
  • the PDB of the data flow may be carried in the PCC rule macro corresponding to the data flow.
  • the PCF may update the PDB for the first data stream or the second data stream, or may update the PDB for both the first data stream and the second data stream at the same time.
  • the PDB may send the determined PDB of the first data stream and/or the second data stream to the SMF.
  • the SMF binds the first data flow and/or the second data flow to the corresponding QoS flow based on the received PDB.
  • the QoS corresponding to a smaller PDB has a higher transmission priority, which can increase the transmission time of data packets of the data flow at the port.
  • the access network device transmits the first data stream according to the QoS stream corresponding to the first data stream, and the access network device transmits the second data stream QoS parameters according to the QoS stream corresponding to the second data stream to transmit the data stream, thereby achieving synchronization of the data streams.
  • the PCF may subscribe to the SMF for the event "the synchronization delay difference between two or more data streams of the service is greater than a threshold value".
  • the SMF detects the event "the synchronization delay difference between two or more data streams of the service is greater than a threshold value”
  • the SMF reports the event to the PCF, i.e., sends the synchronization delay difference to the PCF.
  • the PCF subscribes to the first report information from the SMF, and the threshold value may be sent to the SMF during the subscription process.
  • the threshold is sent by the AF associated with the data flow to the PCF.
  • the PCF After the PCF receives the first report information reported by the SMF, the PCF updates the PDB value of one or more data flows. After the PCF updates the PDB, the SMF binds the data flows to their respective corresponding QoS flows.
  • the access network equipment (such as gNB and other mechanisms) processes different data flows according to the relevant QoS parameters (including the updated PDB value). The synchronization of data flows is achieved, thereby improving the synchronization of data packets of multiple data flows received by the UE. In this process, the access network equipment does not need to be changed for data flow synchronization.
  • the time point T_UPF_In_2 at which the data packet of data stream 2 arrives at UPF is later than the time point T_UPF_In_1 at which the data packet of data stream 1 arrives at UPF, and the synchronization delay difference between data stream 2 and data stream 1 is greater than a threshold.
  • PCF can determine the PDB of data stream 1 and/or data stream 2 based on the synchronization delay difference. For example, PCF can configure a smaller PDB for data stream 2 that arrives later. This reduces the transmission time of the data packet of data stream 2 at the air interface. This achieves synchronization of data streams.
  • PCF can send the updated PDB to SMF, and SMF binds data stream 1 and/or data stream 2 to the QoS streams corresponding to their respective PDBs.
  • the access network device controls the transmission time of the data stream based on the QoS stream to achieve synchronization of the data stream.
  • the sending the first report information to the PCF includes:
  • the first report information is sent to the PCF, wherein the second report information is at least used to indicate the synchronization delay difference, and wherein the second report information is sent by the UPF when it determines that the synchronization delay difference is greater than the threshold.
  • PCF can subscribe to SMF for the event "the synchronization delay difference between two or more data streams of the service is greater than a threshold", that is, subscribe to the first report information. After SMF receives the subscription from PCF, SMF can send the subscription to UPF.
  • the UPF can detect the synchronization delay difference between the data streams, and after determining that the synchronization delay difference between at least two data streams is greater than a threshold, send a second report information to the SMF.
  • the second report information can be used at least to indicate the synchronization delay difference between at least two data streams (such as the synchronization delay difference between the first data stream and the second data stream).
  • the SMT can send the synchronization delay difference to the PCF.
  • this exemplary embodiment provides a data stream synchronization method, which may be executed by an SMF in a core network device, including:
  • Step 1201 Determine that the PCF subscribes to the first report information from the SMF and subscribes to the second report information from the UPF.
  • the PCF may receive a threshold associated with the data flow from the AF and subscribe to the first report information from the SMF.
  • the SMF may determine the second report information to the UPF when receiving the subscription from the PCF.
  • the UPF sends the second report information to the SMF when the synchronization delay difference is greater than the threshold.
  • this exemplary embodiment provides a data stream synchronization method, which may be executed by an SMF in a core network device, including:
  • Step 1301 receiving the threshold sent by the PCF
  • Step 1302 Send the threshold to UPF.
  • PCF can send thresholds to SMF upon subscription
  • SMF can send the threshold to UPF, which monitors the synchronization delay difference between data streams and sends a second report information to SMF after the synchronization delay difference between at least two data streams is greater than the threshold.
  • the disclosed embodiment also proposes a data stream synchronization method performed by PCF; it should be noted that the method corresponds to the embodiments on the SMF side and/or UPF side and/or access network side, so the same explanations or features will not be repeated one by one, and reference can be made to the embodiments on the corresponding side.
  • this exemplary embodiment provides a data stream synchronization method, which may be executed by a policy control function PCF, including:
  • Step 1401 Determine a threshold between at least two synchronous data streams.
  • the SMF performs time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets of the at least two data streams that need to be synchronized.
  • the multiple synchronized data streams may be associated with the same service.
  • the multiple synchronized data streams may be data streams of the same XR application service.
  • the data packets of the multiple data streams of the same service have a synchronization requirement, that is, the data packets of each data stream need to arrive at the UE within a predetermined time range.
  • a data stream may include one or more data packets.
  • the time synchronization of the at least two synchronous data streams may be time synchronization of the data packets in the at least two data streams.
  • Time synchronization may be synchronizing transmission times of at least two data streams.
  • time synchronization is performed on the at least two data streams, including at least one of the following:
  • Synchronizing arrival times of at least two data streams at a data stream destination (e.g., UE);
  • the core network device includes at least one of the following: a user plane function UPF; a session management function SMF.
  • the core network equipment may include but is not limited to at least one of the following: UPF; SMF; PCF.
  • the UPF may receive data streams from an AF server (such as an XR application server) and send the data streams to access network devices.
  • an AF server such as an XR application server
  • the UPF may control the sending time of the data stream, etc., thereby achieving the effect of time synchronization of at least two data streams.
  • the SMF can configure the transmission parameters of the data stream, thereby controlling the data stream transmission time and achieving the effect of time synchronization of at least two data streams.
  • the transmission parameters of the data stream may include but are not limited to at least one of the following: transmission priority; transmission time budget.
  • the PCF may formulate a PCC for time synchronization of at least two data streams.
  • a PCC can be formulated to control the core network device to synchronize the data flow based on at least the threshold.
  • the PCC rule may indicate the core network devices associated with the data stream synchronization and the operations performed by each core network device during the data stream synchronization process.
  • PCF can also control the delay of data flow transmission on the air interface by updating the PDB of the data flow, thereby achieving the effect of data flow synchronization.
  • the core network device may synchronize the data flow according to the instruction of the PCC rule.
  • the synchronization delay difference may include at least one of the following: the current synchronization delay difference between data streams; the synchronization delay difference between data streams predicted by the core network device.
  • the synchronization delay difference may include: the time difference between data packets that need to be synchronized in each data stream arriving at the core network device.
  • the synchronization delay difference between at least two synchronous data streams may include: the time difference between the data packets that need to be synchronized in each data stream arriving at the UPF.
  • the synchronization delay difference between at least two synchronous data streams may be determined by a UPF.
  • the time when the data flow arrives at the UPF may be the time when all data packets in the data flow arrive at the UPF.
  • the UPF may determine the synchronization delay difference between the two data streams after both data streams arrive at the UPF.
  • the UPF may start to determine whether the synchronization delay difference between the two data streams is greater than a threshold after one of the two data streams reaches the UPF.
  • UPF may start a timer after one of the two data streams reaches UPF, and the timer timing value may be a threshold.
  • the timer timing value may be a threshold.
  • the threshold value can be determined based on the synchronization delay difference requirement between data streams for the service associated with the data stream. For example, when the data stream is associated with a VR UL service, the threshold value can be set to 5ms.
  • the threshold may be determined based on the service type of the data flow.
  • the threshold may be sent by the AF that sends the data flow to the core network device.
  • Determining that the synchronization delay difference between at least two synchronous data streams is greater than a threshold may include but is not limited to at least one of the following:
  • a synchronization delay difference between at least two synchronous data streams is greater than a threshold.
  • SMF performs time synchronization on at least two data streams, so that the synchronization delay difference between multiple flows can be kept within the threshold, thereby improving user experience.
  • the method further comprises: sending the threshold to the SMF.
  • the PCF may send a threshold to a core network device, such as an SMF and/or UPF, for the SMF and/or UPF to determine whether a synchronization delay difference between at least two synchronous data streams is greater than the threshold.
  • a core network device such as an SMF and/or UPF
  • determining a threshold between at least two synchronized data streams comprises:
  • the threshold value sent by the receiving application function AF is received.
  • the PCF can determine that the data stream has a synchronization requirement and can formulate a PCC for time synchronization of at least two data streams.
  • the PCC rule determined by the PCF may include a threshold.
  • the PCF may send the PCC rule to the SMF, so that the SMF may determine the threshold.
  • the threshold in the PCC rule may be associated with the data flow of the service.
  • the threshold in the PCC can establish an association relationship with the data flow through a service identifier, an identifier of the AF of the data flow, a data flow identifier, and the like.
  • the SMF may send the threshold to the UPF.
  • the threshold may be subscribed by the UPF to the SMF.
  • the PCF when the PCF receives the threshold of the AF from the service request, the PCF generates a PCC for the data stream (data stream group) associated with the threshold, wherein the PCC includes the threshold received from the AF.
  • the threshold can be associated with multiple data streams of the service.
  • SMF performs time synchronization on at least two data streams, so that the synchronization delay difference between multiple flows can be kept within the threshold, thereby improving user experience.
  • this exemplary embodiment provides a data stream synchronization method, which may be executed by a policy control function PCF, including:
  • Step 1501 Receive first report information sent by the SMF, wherein the first report information is used to indicate that the synchronization delay difference between the first data stream and the second data stream is greater than a threshold; wherein the first data stream and the second data stream belong to the at least two data streams;
  • Step 1502 updating the PDB associated with the first data stream and/or the PDB associated with the second data stream according to the synchronization delay difference indicated by the first report information;
  • Step 1503 The PCC rule carrying the PDB of the first data flow and/or the PCC rule carrying the PDB of the second data flow are sent to the SMF; wherein the PDB of the first data flow and/or the PDB of the second data flow are used for the access network device to control the air interface transmission delay of the QoS flow and synchronize the at least two data flows.
  • the PCC may specify that the SMF performs time synchronization on at least two data streams when the synchronization delay difference between the at least two synchronous data streams is greater than a threshold.
  • the SMF may send first report information of at least two data flows to the PCF based on the subscription of the PCF.
  • the first report information carries the synchronization delay difference between the first data stream and the second data stream.
  • the synchronization delay difference may include: a time difference between a data packet of the first data stream and a data packet of the second data stream arriving at the UPF.
  • the PCF may determine the PDB of the first data stream and/or the second data stream based on the received synchronization delay difference.
  • PDB can be used to define the upper limit of the time that the data flow between the N6 termination point and the UE (transmitted through the UPF) may be delayed.
  • the core network equipment and/or access network equipment (such as base stations, etc.) can configure transmission resources for the data flow based on the PDB. For example, a data flow with a smaller PDB is configured with a higher priority transmission resource to shorten the data packet transmission time of the data flow; a data flow with a larger PDB is configured with a lower priority transmission resource.
  • the PCF may configure a PDB for a first data stream among the at least two data streams, thereby adjusting the transmission duration of the first data stream and playing a synchronization role.
  • the PCF may configure a smaller PDB for the first data stream that arrives later, thereby reducing the transmission time of the data packet of the first data stream on the air interface, thereby achieving synchronization of the data streams.
  • the PCF may configure a larger PDB for the first data stream that arrives earlier, thereby increasing the transmission time of the first data stream on the air interface, thereby achieving synchronization of the data streams.
  • different data flows correspond to different PCC rules
  • the PDB of the data flow may be carried in the PCC rule macro corresponding to the data flow.
  • the PCF may update the PDB for the first data stream or the second data stream, or may update the PDB for both the first data stream and the second data stream at the same time.
  • the PDB may send the determined PDB of the first data stream and/or the second data stream to the SMF.
  • the SMF binds the first data flow and/or the second data flow to the corresponding QoS flow based on the received PDB.
  • the QoS corresponding to a smaller PDB has a higher transmission priority, which can increase the transmission time of data packets of the data flow at the port.
  • the access network device transmits the first data stream according to the QoS stream corresponding to the first data stream, and the access network device transmits the second data stream QoS parameters according to the QoS stream corresponding to the second data stream to transmit the data stream, thereby achieving synchronization of the data streams.
  • the PCF may subscribe to the SMF for the event "the synchronization delay difference between two or more data streams of the service is greater than a threshold value".
  • the SMF detects the event "the synchronization delay difference between two or more data streams of the service is greater than a threshold value”
  • the SMF reports the event to the PCF, i.e., sends the synchronization delay difference to the PCF.
  • the PCF subscribes to the first report information from the SMF, and the threshold value may be sent to the SMF during the subscription process.
  • the threshold is sent by the AF associated with the data flow to the PCF.
  • the PCF After the PCF receives the first report information reported by the SMF, the PCF updates the PDB value of one or more data streams. After the PCF updates the PDB, the SMF binds the data streams to their respective corresponding QoS streams. Access network equipment (such as gNB and other mechanisms) processes different data streams according to relevant QoS parameters (including updated PDB values). The synchronization of data streams is achieved, thereby improving the synchronization of data packets of multiple data streams received by the UE. In this process, the access network equipment does not need to be changed for data stream synchronization.
  • Access network equipment such as gNB and other mechanisms
  • the time point T_UPF_In_2 at which the data packet of data stream 2 arrives at UPF is later than the time point T_UPF_In_1 at which the data packet of data stream 1 arrives at UPF, and the synchronization delay difference between data stream 2 and data stream 1 is greater than a threshold.
  • PCF can determine the PDB of data stream 1 and/or data stream 2 based on the synchronization delay difference. For example, PCF can configure a smaller PDB for data stream 2 that arrives later. This reduces the transmission time of the data packet of data stream 2 at the air interface. This achieves synchronization of data streams.
  • PCF can send the updated PDB to SMF, and SMF binds data stream 1 and/or data stream 2 to the QoS streams corresponding to their respective PDBs.
  • the access network device controls the transmission time of the data stream based on the QoS stream to achieve synchronization of the data stream.
  • the first report information is subscribed by the PCF to the SMF.
  • the SMF sends first report information to the PCF in response to receiving second report information sent by the UPF, wherein the second report information is at least used to indicate the synchronization delay difference, and wherein the second report information is sent by the UPF when it determines that the synchronization delay difference is greater than the threshold.
  • PCF can subscribe to SMF for the event "the synchronization delay difference between two or more data streams of the service is greater than a threshold", that is, subscribe to the first report information. After SMF receives the subscription from PCF, SMF can send the subscription to UPF.
  • the UPF can detect the synchronization delay difference between the data streams, and after determining that the synchronization delay difference between at least two data streams is greater than a threshold, send a second report information to the SMF.
  • the second report information can be used at least to indicate the synchronization delay difference between at least two data streams (such as the synchronization delay difference between the first data stream and the second data stream).
  • the SMT can send the synchronization delay difference to the PCF.
  • the SMF in response to the PCF subscribing the first report information to the SMF, subscribes to the second report information to the UPF, wherein the first report information is subscribed by the PCF to the SMF.
  • the PCF may receive a threshold associated with the data flow from the AF and subscribe to the first report information from the SMF.
  • the SMF may determine the second report information to the UPF when receiving the subscription from the PCF.
  • the UPF sends the second report information to the SMF when the synchronization delay difference is greater than the threshold.
  • the SMF receives the threshold sent by the PCF; and the SMF sends the threshold to the UPF.
  • PCF can send thresholds to SMF upon subscription
  • SMF can send the threshold to UPF, which monitors the synchronization delay difference between data streams and sends a second report information to SMF after the synchronization delay difference between at least two data streams is greater than the threshold.
  • the disclosed embodiment also proposes a data stream synchronization method performed by UPF; it should be noted that the method corresponds to the embodiments on the SMF side and/or PCF side and/or access network side, so the same explanations or features will not be repeated one by one, and reference can be made to the embodiments on the corresponding side.
  • this exemplary embodiment provides a data stream synchronization method, which can be executed by a UPF, including:
  • Step 1601 Determine a synchronization delay difference between at least two synchronous data streams, wherein the synchronization delay difference includes: a time difference between data packets of the at least two data streams that need to be synchronized;
  • Step 1602 In response to the synchronization delay difference being greater than a threshold, at least a second report message is sent to the SMF, wherein the second report message is at least used to indicate the synchronization delay difference, and the second report message is used for the SMF to time synchronize the at least two data streams.
  • the UPF may receive data streams from an AF server (such as an XR application server) and send the data streams to access network devices.
  • an AF server such as an XR application server
  • the synchronization delay difference may include at least one of the following: the current synchronization delay difference between data streams; the synchronization delay difference between data streams predicted by the core network device.
  • the synchronization delay difference may include: the time difference between data packets that need to be synchronized in each data stream arriving at the core network device.
  • the synchronization delay difference between at least two synchronous data streams may include: the time difference between the data packets that need to be synchronized in each data stream arriving at the UPF.
  • the synchronization delay difference between at least two synchronous data streams may be determined by a UPF.
  • the time when the data flow arrives at the UPF may be the time when all data packets in the data flow arrive at the UPF.
  • the UPF may determine the synchronization delay difference between the two data streams after both data streams arrive at the UPF.
  • the UPF may start to determine whether the synchronization delay difference between the two data streams is greater than a threshold after one of the two data streams reaches the UPF.
  • UPF may start a timer after one of the two data streams reaches UPF, and the timer timing value may be a threshold.
  • the timer timing value may be a threshold.
  • PCF can subscribe to SMF for the event "the synchronization delay difference between two or more data streams of the service is greater than a threshold", that is, subscribe to the first report information. After SMF receives the subscription from PCF, SMF can send the subscription to UPF.
  • the UPF can detect the synchronization delay difference between the data streams, and after determining that the synchronization delay difference between at least two data streams is greater than a threshold, send a second report information to the SMF.
  • the method further comprises:
  • the threshold value sent by the receiving SMF is the threshold value sent by the receiving SMF.
  • PCF can send thresholds to SMF upon subscription
  • SMF can send the threshold to UPF, which monitors the synchronization delay difference between data streams and sends a second report information to SMF after the synchronization delay difference between at least two data streams is greater than the threshold.
  • the second report information is at least used to indicate the synchronization delay difference between the first data stream and the second data stream in the at least two synchronous data streams.
  • the second report information can be used at least to indicate the synchronization delay difference between at least two data streams (such as the synchronization delay difference between the first data stream and the second data stream).
  • the SMT can send the synchronization delay difference to the PCF.
  • the SMF can adjust the synchronization delay difference between the first data stream and the second data stream by adjusting the QoS parameters corresponding to the first data stream and/or the second data stream, thereby achieving synchronization of the data streams.
  • SMF performs time synchronization on at least two data streams, so that the synchronization delay difference between multiple flows can be kept within the threshold, thereby improving user experience.
  • the second report information is used for the SMF to send the first report information to the policy control function PCF, and the PCF determines the packet delay budget PDB of the first data stream and/or the packet delay budget PDB of the second data stream according to the synchronization delay difference; wherein, the PDB of the first data stream and/or the PDB of the second data stream are used for the access network device to control the air interface transmission delay of the quality of service QoS flow and synchronize the at least two data streams.
  • the PCC may specify that the SMF performs time synchronization on at least two data streams when the synchronization delay difference between the at least two synchronous data streams is greater than a threshold.
  • the SMF may send first report information of at least two data flows to the PCF based on the subscription of the PCF.
  • the first report information carries the synchronization delay difference between the first data stream and the second data stream.
  • the synchronization delay difference may include: a time difference between a data packet of the first data stream and a data packet of the second data stream arriving at the UPF.
  • the PCF may determine the PDB of the first data stream and/or the second data stream based on the received synchronization delay difference.
  • PDB can be used to define the upper limit of the time that the data flow between the N6 termination point and the UE (transmitted through the UPF) may be delayed.
  • the core network equipment and/or access network equipment (such as base stations, etc.) can configure transmission resources for the data flow based on the PDB. For example, a data flow with a smaller PDB is configured with a higher priority transmission resource to shorten the data packet transmission time of the data flow; a data flow with a larger PDB is configured with a lower priority transmission resource.
  • the PCF may configure a PDB for a first data stream among the at least two data streams, thereby adjusting the transmission duration of the first data stream and playing a synchronization role.
  • the PCF may configure a smaller PDB for the first data stream that arrives later, thereby reducing the transmission time of the data packet of the first data stream on the air interface, thereby achieving synchronization of the data streams.
  • the PCF may configure a larger PDB for the first data stream that arrives earlier, thereby increasing the transmission time of the first data stream on the air interface, thereby achieving synchronization of the data streams.
  • different data flows correspond to different PCC rules
  • the PDB of the data flow may be carried in the PCC rule macro corresponding to the data flow.
  • the PCF may update the PDB for the first data stream or the second data stream, or may update the PDB for both the first data stream and the second data stream at the same time.
  • the PDB may send the determined PDB of the first data stream and/or the second data stream to the SMF.
  • the SMF binds the first data flow and/or the second data flow to the corresponding QoS flow based on the received PDB.
  • the QoS corresponding to a smaller PDB has a higher transmission priority, which can increase the transmission time of data packets of the data flow at the port.
  • the access network device transmits the first data stream according to the QoS stream corresponding to the first data stream, and the access network device transmits the second data stream QoS parameters according to the QoS stream corresponding to the second data stream to transmit the data stream, thereby achieving synchronization of the data streams.
  • the PCF may subscribe to the SMF for the event "the synchronization delay difference between two or more data streams of the service is greater than a threshold value".
  • the SMF detects the event "the synchronization delay difference between two or more data streams of the service is greater than a threshold value”
  • the SMF reports the event to the PCF, i.e., sends the synchronization delay difference to the PCF.
  • the PCF subscribes to the first report information from the SMF, and the threshold value may be sent to the SMF during the subscription process.
  • the threshold is sent by the AF associated with the data flow to the PCF.
  • the PCF After the PCF receives the first report information reported by the SMF, the PCF updates the PDB value of one or more data streams. After the PCF updates the PDB, the SMF binds the data streams to their respective corresponding QoS streams. Access network equipment (such as gNB and other mechanisms) processes different data streams according to relevant QoS parameters (including updated PDB values). The synchronization of data streams is achieved, thereby improving the synchronization of data packets of multiple data streams received by the UE. In this process, the access network equipment does not need to be changed for data stream synchronization.
  • Access network equipment such as gNB and other mechanisms
  • the time point T_UPF_In_2 at which the data packet of data stream 2 arrives at UPF is later than the time point T_UPF_In_1 at which the data packet of data stream 1 arrives at UPF, and the synchronization delay difference between data stream 2 and data stream 1 is greater than a threshold.
  • PCF can determine the PDB of data stream 1 and/or data stream 2 based on the synchronization delay difference. For example, PCF can configure a smaller PDB for data stream 2 that arrives later. This reduces the transmission time of the data packet of data stream 2 at the air interface. This achieves synchronization of data streams.
  • PCF can send the updated PDB to SMF, and SMF binds data stream 1 and/or data stream 2 to the QoS streams corresponding to their respective PDBs.
  • the access network device controls the transmission time of the data stream based on the QoS stream to achieve synchronization of the data stream.
  • the PCF may adjust the PCC rules to ensure that the delay difference (synchronization delay difference) between multiple data flows of the same application from one or more UEs can be kept within a delay difference threshold (threshold).
  • T_AF_Out indicates the time when AF sends a data packet of service-associated multiple data flows.
  • T_UPF_In indicates the time when UPF receives a data packet.
  • T_UPF_Out indicates the time when UPF sends a data packet.
  • T_gNB_In indicates the time when gNB receives a data packet.
  • T_gNB_Out indicates the time when gNB sends a data packet.
  • T_UE_In indicates the time when UE receives a data packet.
  • the UPF When the UPF detects that the delay difference between two or more flows (data flows) of a service exceeds a threshold, it performs flow synchronization, for example, buffering the packets of the flow (data flow) that arrives first and sending the packets of all related flows (data flows) at similar times when all other flows (data flows) arrive.
  • the delay difference threshold between two or more flows (data streams) of a service is received from the SMF, which is obtained from the PCC rules of the flow group.
  • the PCF When the PCF receives the delay difference threshold (threshold) from the AF in the service request, the PCF generates a PCC rule for the flow group, which includes the delay difference threshold between two or more flows (data flows) based on the service received from the AF.
  • T_AF_Out indicates the time when the AF sends a data packet of the service-associated multiple data streams.
  • T_UPF_In indicates the time when the UPF receives the data packet.
  • T_UPF_Out indicates the time when the UPF sends the data packet.
  • T_gNB_In indicates the time when the gNB receives the data packet.
  • T_gNB_Out indicates the time when the gNB sends the data packet.
  • T_UE_In indicates the time when the UE receives the data packet.
  • PCF When PCF receives the delay difference threshold (threshold) from AF in the service request, PCF subscribes to SMF for the event that "the delay difference (synchronization delay difference) between two or more flows (data flows) of the service exceeds the threshold delay difference threshold (threshold)".
  • SMF detects the event that "the delay difference (synchronization delay difference) between two or more flows of the service exceeds the threshold delay difference threshold (threshold)”
  • SMF reports the event to PCF.
  • PCF updates the PDB value of one or more service flows (data flows). For example, PCF can assign a shorter PDB value to flows that arrive at UPF later.
  • SMF binds the flow to different QoS flows.
  • gNB handles different QoS (data flows) according to relevant QoS parameters (including PDB values).
  • the delay difference between two or more flows of the service can be made not to exceed the threshold, and a good user experience can be guaranteed.
  • the communication protocol of the access network device will not be affected, and the processing of the access network device does not need to be changed.
  • this exemplary embodiment provides a data stream synchronization device 100, which is arranged in a user plane function UPF, and includes:
  • the processing module 110 is configured to determine that the synchronization delay difference between at least two data streams is greater than a threshold, and perform time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets of the at least two data streams that need to be synchronized.
  • the processing module 110 is configured to cache data packets of a first data stream among the at least two data streams, wherein the synchronization delay difference between the first data stream and a second data stream among the at least two data streams is greater than the threshold, and wherein the data packets of the second data stream arrive at the UPF after the data packets of the first data stream;
  • the device also includes: a transceiver module 120, configured to send the cached data packet of the first data stream within a predetermined time range from a first moment, wherein the first moment includes the moment when the data packet of the second data stream arrives at the UPF.
  • a transceiver module 120 configured to send the cached data packet of the first data stream within a predetermined time range from a first moment, wherein the first moment includes the moment when the data packet of the second data stream arrives at the UPF.
  • the apparatus further comprises:
  • the transceiver module 120 is configured to receive the threshold sent by the session management function SMF.
  • this exemplary embodiment provides a data stream synchronization device 200, which is arranged in a session management function SMF, and includes:
  • the transceiver module 210 is configured to receive a threshold between two synchronous data streams sent by a policy control function PCF,
  • the transceiver module 220 is also configured to send the threshold to the user plane function UPF, wherein the threshold is used for comparison between the UPF and the synchronization delay difference between at least two synchronous data streams, and determining the time synchronization of at least two of the data streams based on the comparison result obtained by the comparison, wherein the synchronization delay difference includes: the time difference between the data packets that need to be synchronized of the at least two data streams.
  • the threshold is used for the UPF to cache the data packets of the first data stream and send the cached data packets of the first data stream within a predetermined time range from a first moment when it determines that the synchronization delay difference between the data packets of the first data stream and the data packets of the second data stream among the at least two data streams is greater than the threshold, wherein the first moment includes the moment when the data packets of the second data stream arrive at the UPF, and wherein the data packets of the second data stream arrive at the UPF after the data packets of the first data stream.
  • this exemplary embodiment provides a data stream synchronization device 300, which is arranged in a policy control function PCF, and includes:
  • the processing module 310 is configured to determine a threshold between at least two synchronous data streams. When the synchronization delay difference between the at least two synchronous data streams is greater than the threshold, the user plane function UPF performs time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets that need to be synchronized of the at least two data streams.
  • the apparatus further comprises:
  • the transceiver module 320 is configured to send the threshold to the session management function SMF.
  • the apparatus further comprises:
  • the transceiver module 320 is configured to receive the threshold sent by the application function AF.
  • this exemplary embodiment provides a data stream synchronization device 400, which is arranged in a session management function SMF, and includes:
  • the processing module 410 is configured to determine that the synchronization delay difference between at least two data streams is greater than a threshold, and perform time synchronization on the at least two data streams, wherein the synchronization delay difference includes: the time difference between the data packets of the at least two data streams that need to be synchronized.
  • the apparatus further comprises:
  • the transceiver module 420 is configured to send first report information to the policy control function PCF, where the first report information is used to indicate that the synchronization delay difference between the first data stream and the second data stream is greater than a threshold, wherein the at least two data streams include the first data stream and the second data stream;
  • the transceiver module 420 is further configured to receive a policy control and charging PCC rule carrying a packet delay budget PDB of the first data flow and/or a PCC rule carrying a PDB of the second data flow sent by the PCF, wherein the PDB of the first data flow and/or the PDB of the second data flow is updated by the PCF according to the synchronization delay difference indicated by the first report information;
  • the processing module 410 is specifically configured to bind the first data stream and/or the second data stream to the service quality QoS flow of the corresponding PDB respectively, wherein the PDB of the first data stream and/or the PDB of the second data stream is used for the access network device to control the air interface transmission delay of the QoS flow and synchronize the at least two data streams.
  • the transceiver module 420 is specifically configured as follows:
  • the first report information is sent to the PCF, wherein the second report information is at least used to indicate the synchronization delay difference, and wherein the second report information is sent by the UPF when it determines that the synchronization delay difference is greater than the threshold.
  • the processing module 410 is further configured to determine that the PCF subscribes to the first report information from the SMF and subscribes to the second report information from the UPF.
  • the transceiver module 420 is further configured as:
  • the threshold is sent to the UPF.
  • this exemplary embodiment provides a data stream synchronization device 500, which is arranged in a policy control function PCF, and includes:
  • the processing module 510 is configured to determine a threshold between at least two synchronous data streams, and the session management function SMF performs time synchronization on the at least two data streams when the synchronization delay difference between the at least two synchronous data streams is greater than the threshold, wherein the synchronization delay difference includes: the time difference between the data packets of the at least two data streams that need to be synchronized.
  • the apparatus further comprises:
  • the transceiver module 520 is configured to send the threshold to the SMF.
  • the apparatus further comprises:
  • the transceiver module 520 is configured to receive first report information sent by the session management function SMF, wherein the first report information is used to indicate that the synchronization delay difference between the first data stream and the second data stream is greater than a threshold; wherein the first data stream and the second data stream belong to the at least two data streams;
  • the processing module 510 is further configured to update the PDB associated with the first data flow and/or the packet delay budget PDB associated with the second data flow according to the synchronization delay difference indicated by the first report information;
  • the transceiver module 520 is also configured to send to the SMF a policy control and charging PCC rule carrying a packet delay budget PDB of the first data flow and/or a PCC rule carrying a PDB of the second data flow; wherein the PDB of the first data flow and/or the PDB of the second data flow are used for the access network device to control the air interface transmission delay of the quality of service QoS flow and synchronize the at least two data flows.
  • the first report information is subscribed by the PCF to the SMF.
  • the apparatus further comprises:
  • the transceiver module is configured to receive the threshold sent by the application function AF.
  • this exemplary embodiment provides a data stream synchronization device 600, which is arranged in a user plane function UPF, including:
  • the processing module 610 is configured to determine a synchronization delay difference between at least two synchronous data streams, wherein the synchronization delay difference comprises: a time difference between data packets of the at least two data streams that need to be synchronized;
  • the transceiver module 620 is configured to send a second report message to at least the session management function SMF in response to the synchronization delay difference being greater than a threshold, wherein the second report information is at least used to indicate the synchronization delay difference, and the second report information is used for the SMF to perform time synchronization on the at least two data streams.
  • the transceiver module 620 is further configured as:
  • the threshold value sent by the receiving SMF is the threshold value sent by the receiving SMF.
  • the second report information is at least used to indicate the synchronization delay difference between the first data stream and the second data stream in the at least two synchronous data streams.
  • the second report information is used for the SMF to send the first report information to the policy control function PCF, and the PCF determines the packet delay budget PDB of the first data stream and/or the packet delay budget PDB of the second data stream according to the synchronization delay difference; wherein, the PDB of the first data stream and/or the PDB of the second data stream are used for the access network device to control the air interface transmission delay of the quality of service QoS flow and synchronize the at least two data streams.
  • the present disclosure provides a communication device, including:
  • a memory for storing processor-executable instructions
  • the processor is configured to implement the data stream synchronization method of any embodiment of the present disclosure when running executable instructions.
  • the communication device may include but is not limited to at least one of: UE and network equipment.
  • the network equipment may include core network or access network equipment, etc.
  • the access network equipment may include a base station; the core network may include AMF and SMF.
  • the processor may include various types of storage media, which are non-temporary computer storage media that can continue to memorize information stored thereon after the user device loses power.
  • the processor may be connected to the memory via a bus or the like, and may be used to read an executable program stored in the memory, for example, at least one of the methods shown in FIGS. 3 , 4 , 6 to 10 , and 12 to 16 .
  • the present disclosure also provides a computer storage medium storing a computer executable program, which implements the data stream synchronization method of any embodiment of the present disclosure when the executable program is executed by a processor, such as at least one of the methods shown in Figures 3, 4, 6 to 10, and 12 to 16.
  • An embodiment of the present disclosure also provides a communication system, wherein the communication system includes a user plane function UPF, a session management function SMF and a policy control function PCF; the UPF is used to implement the data flow synchronization method of any embodiment of the present disclosure; the SMF is used to implement the data flow synchronization method of any embodiment of the present disclosure, and the PCF is used to implement the data flow synchronization method of any embodiment of the present disclosure.
  • the communication system includes a user plane function UPF, a session management function SMF and a policy control function PCF;
  • the UPF is used to implement the data flow synchronization method of any embodiment of the present disclosure;
  • the SMF is used to implement the data flow synchronization method of any embodiment of the present disclosure, and the PCF is used to implement the data flow synchronization method of any embodiment of the present disclosure.
  • Fig. 23 is a block diagram of a user device 3000 according to an exemplary embodiment.
  • the user device 3000 may be a mobile phone, a computer, a digital broadcast user device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the user device 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, and a communication component 3016.
  • a processing component 3002 a memory 3004, a power component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, and a communication component 3016.
  • the processing component 3002 generally controls the overall operation of the user device 3000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 3002 may include one or more modules to facilitate the interaction between the processing component 3002 and other components.
  • the processing component 3002 may include a multimedia module to facilitate the interaction between the multimedia component 3008 and the processing component 3002.
  • the memory 3004 is configured to store various types of data to support operations on the user device 3000. Examples of such data include instructions for any application or method operating on the user device 3000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • Power component 3006 provides power to various components of user device 3000.
  • Power component 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to user device 3000.
  • the multimedia component 3008 includes a screen that provides an output interface between the user device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), and when the user device 3000 is in an operation mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 3004 or sent via the communication component 3016.
  • the audio component 3010 also includes a speaker for outputting audio signals.
  • I/O interface 812 provides an interface between processing component 3002 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 3014 includes one or more sensors for providing various aspects of status assessment for the user device 3000.
  • the sensor assembly 3014 can detect the open/closed state of the device 3000, the relative positioning of components, such as the display and keypad of the user device 3000, and the sensor assembly 3014 can also detect the position change of the user device 3000 or a component of the user device 3000, the presence or absence of contact between the user and the user device 3000, the orientation or acceleration/deceleration of the user device 3000, and the temperature change of the user device 3000.
  • the sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor assembly 3014 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the user device 3000 and other devices.
  • the user device 3000 can access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 3016 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the user device 3000 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors, or other electronic components to perform the above methods.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors, or other electronic components to perform the above methods.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 3004 including instructions, and the instructions can be executed by the processor 3020 of the user device 3000 to complete the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • FIG24 shows a structure of a base station according to an embodiment of the present disclosure.
  • the base station 900 may be provided as a network device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922, such as an application.
  • the application stored in the memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any method of the aforementioned method applied to the base station.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input/output (I/O) interface 958.
  • the base station 900 may operate based on an operating system stored in the memory 932, such as Windows Server TM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例是关于数据流同步装置、装置、通信设备和存储介质,用户面功能(UPF)确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。

Description

数据流同步方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及数据流同步方法、装置、通信设备和存储介质。
背景技术
对于一个扩展现实(Extended Reality,XR)服务应用,可以包括来自一个或多个用户设备(User Equipment,UE)的多个流量(数据流),即Traffic Flows。多个流量在XR应用服务器和UE之间通过一个或多个用户面功能(User Plane Function,UPF)和基站(如gNB)进行传输。多个流量(数据流)协作以实现单一服务,因此不同流量(数据流)的数据包需要相互关联和同步。为了实现多个流量(数据流)之间的同步,XR应用服务器可以在相似(Similar)的时间内发送下行链路流量。
发明内容
有鉴于此,本公开实施例提供了一种数据流同步方法、装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种数据流同步方法,其中,由用户面功能UPF执行,包括:
确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述对所述至少两个所述数据流进行时间同步,包括:
缓存所述至少两个数据流中的第一数据流的数据包,其中,所述第一数据流与所述至少两个数据流中第二数据流的所述同步延时差大于所述阈值,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF;
在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻。
在一个实施例中,所述方法还包括:
接收会话管理功能(Session Management Function,SMF)发送的所述阈值。
根据本公开实施例的第二方面,提供一种数据流同步方法,其中,由会话管理功能SMF执行,包括:
接收策略控制功能(Policy Control function,PCF)发送的两个同步数据流之间的阈值,
向用户面功能UPF发送所述阈值,其中,所述阈值,用于供UPF与至少两个同步数据流之间的同步延时差对比,并基于所述对比得到的对比结果确定对至少两个所述数据流的时间同步,其中, 所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述阈值,用于供所述UPF在确定所述至少两个数据流中第一数据流的数据包与第二数据流的数据包之间的所述同步延时差大于所述阈值时,缓存所述第一数据流的数据包,并在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF。
根据本公开实施例的第三方面,提供一种数据流同步方法,其中,由策略控制功能PCF执行,包括:
确定至少两个同步数据流之间的阈值,用户面功能UPF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述方法还包括:向会话管理功能SMF发送所述阈值。
在一个实施例中,所述确定至少两个同步数据流之间的阈值,包括:
接收应用功能AF发送的所述阈值。
根据本公开实施例的第四方面,提供一种数据流同步方法,其中,由会话管理功能SMF执行,包括:
确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述方法还包括:
向策略控制功能PCF发送第一报告信息,所述第一报告信息用于指示第一数据流和第二数据流的所述同步延时差大于阈值,其中,所述至少两个所述数据流包括第一数据流和第二数据流;
接收所述PCF发送的携带有所述第一数据流的包延迟预算(Packet Delay Budget,PDB)的策略控制和计费(Policy Control and Charging,PCC)规则和/或携带有所述第二数据流的PDB的PCC规则,所述第一数据流的PDB和/或所述第二数据流的PDB是所述PCF根据所述第一报告信息指示的所述同步延时差更新的;
将所述第一数据流和/或第二数据流分别绑定到对应PDB的服务质量(Quality of Service,Qos)流,其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制所述QoS流的空口传输时延,同步所述至少两个数据流。
在一个实施例中,所述向PCF发送第一报告信息,包括:
响应于接收到UPF发送第二报告信息,向所述PCF发送第一报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,其中,所述第二报告信息是所述UPF确定所述同步延时差大于所述阈值发送的。
在一个实施例中,所述方法还包括:
确定所述PCF向所述SMF订阅所述第一报告信息,向所述UPF订阅所述第二报告信息。
在一个实施例中,所述方法还包括:
接收PCF发送的所述阈值;
向UPF发送所述阈值。
根据本公开实施例的第五方面,提供一种数据流同步方法,其中,由策略控制功能PCF执行,包括:
确定至少两个同步数据流之间的阈值,会话管理功能SMF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述方法还包括:向所述SMF发送所述阈值。
在一个实施例中,所述方法还包括:
接收会话管理功能SMF发送的第一报告信息,其中,所述第一报告信息,用于指示第一数据流和第二数据流的同步延时差大于阈值;其中,所述第一数据流和第二数据流属于所述至少两个所述数据流;
根据所述第一报告信息指示的所述同步延时差,更新所述第一数据流关联的PDB和/或所述第二数据流关联的包延迟预算PDB;
向SMF发送的携带有所述第一数据流的包延迟预算PDB的策略控制和计费PCC规则和/或携带有所述第二数据流的PDB的PCC规则;其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制服务质量QoS流的空口传输时延,同步所述至少两个数据流。
在一个实施例中,所述第一报告信息,是所述PCF向所述SMF订阅的。
在一个实施例中,所述确定至少两个同步数据流之间的阈值,包括:
接收应用功能AF发送的所述阈值。
根据本公开实施例的第六方面,提供一种数据流同步方法,其中,由用户面功能UPF执行,包括:
确定至少两个同步数据流之间的同步延时差,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差;
响应于所述同步延时差大于阈值,至少向会话管理功能SMF发送第二报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,所述第二报告信息用于供所述SMF对所述至少两个所述数据流进行时间同步。
在一个实施例中,所述方法还包括:
接收SMF发送的所述阈值。
在一个实施例中,所述第二报告信息,至少用于指示所述至少两个同步数据流中第一数据流和第二数据流的同步延时差。
在一个实施例中,所述第二报告信息,用于供所述SMF向策略控制功能PCF发送第一报告信息,并由所述PCF根据所述同步延时差确定所述第一数据流的包延迟预算PDB和/或所述第二数据 流的包延迟预算PDB;其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制服务质量QoS流的空口传输时延,同步所述至少两个数据流。
根据本公开实施例的第七方面,提供一种数据流同步装置,其中,设置于用户面功能UPF中,包括:
处理模块,配置为确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述处理模块,配置为缓存所述至少两个数据流中的第一数据流的数据包,其中,所述第一数据流与所述至少两个数据流中第二数据流的所述同步延时差大于所述阈值,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF;
所述装置还包括:收发模块,配置为在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻。
在一个实施例中,所述装置还包括:
收发模块,配置为接收会话管理功能SMF发送的所述阈值。
根据本公开实施例的第八方面,提供一种数据流同步装置,其中,设置于会话管理功能SMF中,包括:
收发模块,配置为接收策略控制功能PCF发送的两个同步数据流之间的阈值,
所述收发模块,还配置为向用户面功能UPF发送所述阈值,其中,所述阈值,用于供UPF与至少两个同步数据流之间的同步延时差对比,并基于所述对比得到的对比结果确定对至少两个所述数据流的时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述阈值,用于供所述UPF在确定所述至少两个数据流中第一数据流的数据包与第二数据流的数据包之间的所述同步延时差大于所述阈值时,缓存所述第一数据流的数据包,并在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF。
根据本公开实施例的第九方面,提供一种数据流同步装置,其中,设置于策略控制功能PCF中,包括:
处理模块,配置为确定至少两个同步数据流之间的阈值,用户面功能UPF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述装置还包括:
收发模块,配置为向会话管理功能SMF发送所述阈值。
在一个实施例中,所述装置还包括:
收发模块,配置为接收应用功能AF发送的所述阈值。
根据本公开实施例的第十方面,提供一种数据流同步装置,其中,设置于会话管理功能SMF中,包括:
处理模块,配置为确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述装置还包括:
收发模块,配置为向策略控制功能PCF发送第一报告信息,所述第一报告信息用于指示第一数据流和第二数据流的所述同步延时差大于阈值,其中,所述至少两个所述数据流包括第一数据流和第二数据流;
所述收发模块,还配置为接收所述PCF发送的携带有所述第一数据流的包延迟预算PDB的策略控制和计费PCC规则和/或携带有所述第二数据流的PDB的PCC规则,所述第一数据流的PDB和/或所述第二数据流的PDB是所述PCF根据所述第一报告信息指示的所述同步延时差更新的;
所述处理模块,具体配置为将所述第一数据流和/或第二数据流分别绑定到对应PDB的服务质量QoS流,其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制所述QoS流的空口传输时延,同步所述至少两个数据流。
在一个实施例中,所述收发模块,具体配置为:
响应于接收到UPF发送第二报告信息,向所述PCF发送第一报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,其中,所述第二报告信息是所述UPF确定所述同步延时差大于所述阈值发送的。
在一个实施例中,所述处理模块,还配置为确定所述PCF向所述SMF订阅所述第一报告信息,向所述UPF订阅所述第二报告信息。
在一个实施例中,所述收发模块,还配置为:
接收PCF发送的所述阈值;
向UPF发送所述阈值。
根据本公开实施例的第十一方面,提供一种数据流同步装置,其中,设置于策略控制功能PCF中,包括:
处理模块,配置为确定至少两个同步数据流之间的阈值,会话管理功能SMF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述装置还包括:
收发模块,配置为向所述SMF发送所述阈值。
在一个实施例中,所述装置还包括:
收发模块,配置为接收会话管理功能SMF发送的第一报告信息,其中,所述第一报告信息,用于指示第一数据流和第二数据流的同步延时差大于阈值;其中,所述第一数据流和第二数据流属于所述至少两个所述数据流;
所述处理模块,还配置为根据所述第一报告信息指示的所述同步延时差,更新所述第一数据流关联的PDB和/或所述第二数据流关联的包延迟预算PDB;
所述收发模块,还配置为向SMF发送的携带有所述第一数据流的包延迟预算PDB的策略控制和计费PCC规则和/或携带有所述第二数据流的PDB的PCC规则;其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制服务质量QoS流的空口传输时延,同步所述至少两个数据流。
在一个实施例中,所述第一报告信息,是所述PCF向所述SMF订阅的。
在一个实施例中,所述装置还包括:
收发模块,配置为接收应用功能AF发送的所述阈值。
根据本公开实施例的第十二方面,提供一种数据流同步装置,其中,设置于用户面功能UPF中,包括:
处理模块,配置为确定至少两个同步数据流之间的同步延时差,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差;
收发模块,配置为响应于所述同步延时差大于阈值,至少向会话管理功能SMF发送第二报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,所述第二报告信息用于供所述SMF对所述至少两个所述数据流进行时间同步。
在一个实施例中,所述收发模块,还配置为:
接收SMF发送的所述阈值。
在一个实施例中,所述第二报告信息,至少用于指示所述至少两个同步数据流中第一数据流和第二数据流的同步延时差。
在一个实施例中,所述第二报告信息,用于供所述SMF向策略控制功能PCF发送第一报告信息,并由所述PCF根据所述同步延时差确定所述第一数据流的包延迟预算PDB和/或所述第二数据流的包延迟预算PDB;其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制服务质量QoS流的空口传输时延,同步所述至少两个数据流。
根据本公开实施例的第十三方面,提供一种通信设备,其中,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现第一方面、或第二方面、或第三方面、或第四方面、或第五方面、或第六方面任一项所述的数据流同步装置。
根据本公开实施例的第十四方面,提供一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现第一方面、或第二方面、或第三方面、或第四方面、或第五方面、或第六方面任一项所述的数据流同步装置。
根据本公开实施例的第十五方面,提供一种通信***,其中,所述通信******包括用户面功能UPF、会话管理功能SMF和策略控制功能PCF;所述UPF用于实现第一方面或第六方面任一所 述的方法;所述SMF用于实现第二方面或第四方面任一所述的方法,所述PCF用于实现第三方面或第五方面任一所述的方法。
本公开实施例提供的数据流同步方法、装置、通信设备和存储介质。用户面功能(UPF)确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。如此,通过UPF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步,使得多个流量之间的同步延时差可以保持在阈值之内,提高用户体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信***的结构示意图;
图2是根据一示例性实施例示出的一种数据流传输示意图;
图3是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图4是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图5是根据一示例性实施例示出的一种数据流传输示意图;
图6是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图7是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图8是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图9是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图10是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图11是根据一示例性实施例示出的一种数据流传输示意图;
图12是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图13是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图14是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图15是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图16是根据一示例性实施例示出的一种数据流同步方法的流程示意图;
图17是根据一示例性实施例示出的一种数据流同步装置的框图;
图18是根据一示例性实施例示出的一种数据流同步装置的框图;
图19是根据一示例性实施例示出的一种数据流同步装置的框图;
图20是根据一示例性实施例示出的一种数据流同步装置的框图;
图21是根据一示例性实施例示出的一种数据流同步装置的框图;
图22是根据一示例性实施例示出的一种数据流同步装置的框图;
图23是根据一示例性实施例示出的一种UE的框图;
图24是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一指示信息也可以被称为第二信息,类似地,第二信息也可以被称为第一指示信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信***的结构示意图。如图1所示,该无线通信***可以包括:至少一个终端11以及至少一个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网设备进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信***中的网络设备。其中,该无线通信***可以是***移动通信技术(the 4th generation mobile communication,4G)***,又称长期演进(Long Term Evolution,LTE)***;或者,该无线通信***也可以是5G***,又称新空口(new radio,NR)***或5G NR***。或者,该无线通信***也可以是5G***的再下一代***。其中,5G***中的接入网可以称为 NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC***。
其中,基站12可以是4G***中采用的演进型基站(eNB)。或者,基站12也可以是5G***中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于***移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信***还可以包含网络管理设备13。
若干个基站12分别与核心网设备13相连。其中,核心网设备13可以是无线通信***中的核心网设备,比如,该核心网设备13可以是演进的数据分组核心网设备(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于核心网设备13的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
如图2所示,由于XR应用流量(数据流)可能通过不同的路径到达UE。如多个数据流可能在不同的时间到达UPF或gNB,并最终到达UE,因此,会产生同步延时差。当同步延时差大于阈值时,用户体验将受到严重影响。
一些场景下,对于多个数据流之间的延时要求如下:
1)两个数据流之间的同步延时差应小于某些值,例如对于沉浸式多模态VR应用,视觉-触觉的阈值小于15ms(如果视觉数据与触觉相比是延迟的)或小于50ms(如果触觉与视觉相比是延迟的)。
2)特定流量(数据流)的典型延迟要求,例如对于沉浸式多模式VR UL,触觉数据的最大允 许端到端延迟为5ms。
如何保证多个流量(数据流)之间的同步延时差可以保持在阈值之内,提高用户体验,是亟待解决的问题。
如图3所示,本示例性实施例提供一种数据流同步方法,可以由用户面功能UPF执行,包括:
步骤301:确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
这里,多个同步的数据流可以是关联于同一服务。例如,多个同步的数据流可以是同一XR应用服务的数据流。同一服务的多个数据流的数据包具有同步的需求,即各数据流的数据包需要在预定时间范围内到达UE。
在一个实施例中,所述至少两个数据流关联于同一个用户设备UE或不同UE。
在一个可能的实现方式中,多个同步的数据流可以用于传输同一UE的数据包。
在一个可能的实现方式中,多个同步的数据流可以用于传输传输不同UE的数据包。
每个UE关联的数据流的数量可能不同也可能相同。每个UE关联的数据可能不同也可能相同。
一个数据流可以包含一个或多个数据包。对所述至少两个同步数据流进行时间同步,可以是对至少两个数据流中的数据包进行时间同步。
时间同步可以是同步至少两个数据流的传输时间。
在一个可能的实现方式中,对所述至少两个数据流进行时间同步,包括以下至少之一项:
同步至少两个数据流到达数据流目的地(如UE)的到达时间;
同步至少两个数据流到达从核心网设备发出的发送时间。
UPF可以从AF服务器(如XR应用服务器)接收数据流,并将数据流发送给接入网设备。
在一个可能的实施方式中,UPF可以对数据流的发送时间等进行控制,从而起到对至少两个数据流进行时间同步的效果。
SMF可以对数据流的传输参数进行配置,进而实现对数据流传输时间的控制,起到对至少两个数据流进行时间同步的效果。其中,数据流的传输参数可以包括但不限于以下至少一项:传输优先级;传输时间预算。
PCF可以对至少两个数据流进行时间同步的PCC进行制定。
示例性的,当PCF确定具有阈值时,可以确定数据流具有同步需求,因此可以制定PCC,用于控制核心网设备至少基于阈值,对数据流进行同步。
这里,PCC规则可以指示关联于数据流进行同步的核心网设备,以及各核心网设备在对数据流进行同步过程中进行的操作。
在一个可能的实现方式中,核心网设备可以根据PCC规则的指示进行数据流的同步。
同步延时差可以包括以下至少之一项:数据流之间当前的同步延时差;核心网设备预测的数据流之间的同步延时差。
在一个可能的实现方式中,同步延时差可以包括:各数据流中需要同步的数据包到达核心网设 备的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差,可以包括:各数据流中需要同步的数据包到达UPF的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差可以是由UPF确定的。
数据流到达UPF的时间可以是数据流中所有数据包均到达UPF的时间。
在一个可能的实现方式中,UPF可以在两个数据流均到达UPF后,确定两个数据流之间的同步延时差。
在一个可能的实现方式中,UPF可以在两个数据流中一个数据流均到达UPF后,开始确定两个数据流之间的同步延时差是否大于阈值。
示例性的,UPF可以在两个数据流中一个数据流均到达UPF后,开启定时器,定时器定时值可以阈值,当定时器超时后,还没有收到另一个数据流,则开始确定两个数据流之间的同步延时差大于阈值。
阈值可以是根据数据流关联的业务对数据流之间的同步延时差要求确定的。例如,当数据流关联于VR UL业务,那么阈值可以设置为5ms。
在一个可能的实现方式中,阈值可以是基于数据流的业务类型确定的。
在一个可能的实现方式中,阈值可以是发送数据流的AF发送给核心网设备的。
确定至少两个同步数据流之间的同步延时差大于阈值,可以包括但不限于以下至少一项:
根据数据流的到达时间,确定至少两个同步数据流之间的同步延时差大于阈值;
根据接收到的指示信息,确定至少两个同步数据流之间的同步延时差大于阈值。
如此,通过UPD在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步,使得多个流量之间的同步延时差可以保持在阈值之内,提高用户体验。
在一个实施例中,如图4所示,步骤301可以包括:
步骤401:缓存所述至少两个数据流中的第一数据流的数据包,其中,所述第一数据流与所述至少两个数据流中第二数据流的所述同步延时差大于所述阈值,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF;
步骤402:在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻。
这里,可以由PCC规定UPF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步。
当UPF检测到至少两个数据流的同步延时差大于阈值时,UPF可以执行数据流同步。
在一个可能的实现方式中,第一数据流可以有一个或多个;第二数据流也可以有一个或多个。
在一个可能的实现方式中,第一数据流的数据包可以在先到达UPF,第二数据流的数据包可以在后到达UPF。
在一个可能的实现方式中,第一数据流可以包括,最先到达UPF的数据包的数据流。
在一个可能的实现方式中,UPF可以缓冲在先到达的第一数据流的数据包,并在在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包。
在一个可能的实现方式中,UPF可以在第一时刻发送第二数据流的数据包。
在一个可能的实现方式中,预定时长范围可以是至少基于数据流对同步的需求确定的。
在一个可能的实现方式中,预定时长范围小于数据流对同步的同步时长需求。
在一个可能的实现方式中,预定时长范围可以是基于UPF收发数据流的数据包延迟时长确定的。UPF收发数据流的的数据包延迟时长可以包括:UPF接收到数据流的数据包,并向接入网设备(如基站)发送数据流的数据包所需要的时间。
基于UPF收发数据流的数据包的延迟时长确定预定时长范围,可以减少UPF发送第一数据流的数据包和第二数据流的数据包的时间差,提高第一数据流和第二数据流的同步性。
例如,预定时长范围可以小于阈值。
如此,第一数据流和第二数据流实现了在UPF发送过程中的同步,减少了第一数据流和第二数据流之间的同步延时差,提高用户体验。
在一个可能的实现方式中,距第一时刻的预定时长范围内预定时长范围内,可以包括以下至少之一项:
在第一时刻之前的预定时长范围内;
在第一时刻之后的预定时长范围内。
在一个可能的实现方式中,响应于第二数据流有多个,可以将最后到达UPF的第二数据流的数据包的到达时刻作为第一时刻。
示例性的,如图5所示,数据流2的数据包到达UPF的时间点T_UPF_In_2迟于数据流1的数据包到达UPF的时间点T_UPF_In_1,并且数据流2与数据流1之间的同步延时差大于阈值。UPF可以在接收到数据流1的数据包后,缓存数据流1的数据包,并在接收到数据流2的数据包的第一时刻的预定时长范围内发送缓存的数据流1的数据包,即在T_UPF_Out_1发送缓存的数据流1的数据包,UPF不缓存数据流2的数据包,在接收到数据流2的数据包后直接发送数据流2的数据包,即在在T_UPF_Out_2发送缓存的数据流2的数据包。使得数据流1和数据流2能够同步发送。
接入网设备可以接收经过UPF同步处理过的多个数据流的数据包,并发送给UE。从而提高了UE接收到的多个数据流的数据包的同步性。在此过程中,接入网设备无需针对数据流同步进行改变。
如图6所示,本示例性实施例提供一种数据流同步方法,可以由UPF执行,
步骤601:接收SMF发送的所述阈值。
PCF确定的PCC规则中可以包含阈值。PCF可以将PCC规则发送给SMF,如此,SMF可以确定阈值。PCC规则中的阈值可以关联于服务的数据流。
PCC中的阈值可以通过业务标识、数据流的AF的标识、数据流标识等与数据流建立关联关系。
SMF可以将阈值发送给UPF。
在一个可能的实现方式中,阈值可以是UPF向SMF订阅的。
在一个可能的实现方式中,当PCF从服务请求中接收到AF的阈值时,PCF为阈值关联的数据流(数据流组)生成PCC,其中,PCC中包括从AF接收到的阈值。这里,阈值可以关联于服务的多个数据流。
本公开实施例还提出了一种由SMF执行的数据流同步方法;需要说明的是,该方法是与PCF侧和/或UPF侧和/或接入网侧实施例相对应的,因此相同的解释或是特征不再一一赘述,可以参考对应侧的实施例。
如图7所示,本示例性实施例提供一种数据流同步方法,可以由会话管理功能SMF执行,包括:
步骤701:接收PCF发送的两个同步数据流之间的阈值,
步骤702:向UPF发送所述阈值,其中,所述阈值,用于供UPF与至少两个同步数据流之间的同步延时差对比,并基于所述对比得到的对比结果确定对至少两个所述数据流的时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
PCF确定的PCC规则中可以包含阈值。PCF可以将PCC规则发送给SMF,如此,SMF可以确定阈值。PCC规则中的阈值可以关联于服务的数据流。
PCC中的阈值可以通过业务标识、数据流的AF的标识、数据流标识等与数据流建立关联关系。
SMF可以将阈值发送给UPF。
在一个可能的实现方式中,阈值可以是UPF向SMF订阅的。
在一个可能的实现方式中,当PCF从服务请求中接收到AF的阈值时,PCF为阈值关联的数据流(数据流组)生成PCC,其中,PCC中包括从AF接收到的阈值。这里,阈值可以关联于服务的多个数据流。
UPF可以从AF服务器(如XR应用服务器)接收数据流,并将数据流发送给接入网设备。
同步延时差可以包括以下至少之一项:数据流之间当前的同步延时差;核心网设备预测的数据流之间的同步延时差。
在一个可能的实现方式中,同步延时差可以包括:各数据流中需要同步的数据包到达核心网设备的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差,可以包括:各数据流中需要同步的数据包到达UPF的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差可以是由UPF确定的。
数据流到达UPF的时间可以是数据流中所有数据包均到达UPF的时间。
在一个可能的实现方式中,UPF可以在两个数据流均到达UPF后,确定两个数据流之间的同步延时差。
在一个可能的实现方式中,UPF可以在两个数据流中一个数据流均到达UPF后,开始确定两个数据流之间的同步延时差是否大于阈值。
示例性的,UPF可以在两个数据流中一个数据流均到达UPF后,开启定时器,定时器定时值可 以阈值,当定时器超时后,还没有收到另一个数据流,则开始确定两个数据流之间的同步延时差大于阈值。
在一个可能的实施方式中,UPF可以对数据流的发送时间等进行控制,从而起到对至少两个数据流进行时间同步的效果。
如此,通过UPF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步,使得多个流量之间的同步延时差可以保持在阈值之内,提高用户体验。
在一个实施例中,所述阈值,用于供所述UPF在确定所述至少两个数据流中第一数据流的数据包与第二数据流的数据包之间的所述同步延时差大于所述阈值时,缓存所述第一数据流的数据包,并在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF。
这里,可以由PCC规定UPF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步。
当UPF检测到至少两个数据流的同步延时差大于阈值时,UPF可以执行数据流同步。
在一个可能的实现方式中,第一数据流可以有一个或多个;第二数据流也可以有一个或多个。
在一个可能的实现方式中,第一数据流的数据包可以在先到达UPF,第二数据流的数据包可以在后到达UPF。
在一个可能的实现方式中,第一数据流可以包括,最先到达UPF的数据包的数据流。
在一个可能的实现方式中,UPF可以缓冲在先到达的第一数据流的数据包,并在在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包。
在一个可能的实现方式中,UPF可以在第一时刻发送第二数据流的数据包。
在一个可能的实现方式中,预定时长范围可以是至少基于数据流对同步的需求确定的。
在一个可能的实现方式中,预定时长范围小于数据流对同步的同步时长需求。
在一个可能的实现方式中,预定时长范围可以是基于UPF收发数据流的数据包延迟时长确定的。UPF收发数据流的的数据包延迟时长可以包括:UPF接收到数据流的数据包,并向接入网设备(如基站)发送数据流的数据包所需要的时间。
基于UPF收发数据流的数据包的延迟时长确定预定时长范围,可以减少UPF发送第一数据流的数据包和第二数据流的数据包的时间差,提高第一数据流和第二数据流的同步性。
例如,预定时长范围可以小于阈值。
如此,第一数据流和第二数据流实现了在UPF发送过程中的同步,减少了第一数据流和第二数据流之间的同步延时差,提高用户体验。
在一个可能的实现方式中,距第一时刻的预定时长范围内预定时长范围内,可以包括以下至少之一项:
在第一时刻之前的预定时长范围内;
在第一时刻之后的预定时长范围内。
在一个可能的实现方式中,响应于第二数据流有多个,可以将最后到达UPF的第二数据流的数据包的到达时刻作为第一时刻。
示例性的,如图5所示,数据流2的数据包到达UPF的时间点T_UPF_In_2迟于数据流1的数据包到达UPF的时间点T_UPF_In_1,并且数据流2与数据流1之间的同步延时差大于阈值。UPF可以在接收到数据流1的数据包后,缓存数据流1的数据包,并在接收到数据流2的数据包的第一时刻的预定时长范围内发送缓存的数据流1的数据包,即在T_UPF_Out_1发送缓存的数据流1的数据包,UPF不缓存数据流2的数据包,在接收到数据流2的数据包后直接发送数据流2的数据包,即在在T_UPF_Out_2发送缓存的数据流2的数据包。使得数据流1和数据流2能够同步发送。
接入网设备可以接收经过UPF同步处理过的多个数据流的数据包,并发送给UE。从而提高了UE接收到的多个数据流的数据包的同步性。在此过程中,接入网设备无需针对数据流同步进行改变。
本公开实施例还提出了一种由PCF执行的数据流同步方法;需要说明的是,该方法是与SMF侧和/或UPF侧和/或接入网侧实施例相对应的,因此相同的解释或是特征不再一一赘述,可以参考对应侧的实施例。
如图8所示,本示例性实施例提供一种数据流同步方法,可以由PCF执行,包括:
步骤801:确定至少两个同步数据流之间的阈值,UPF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
这里,多个同步的数据流可以是关联于同一服务。例如,多个同步的数据流可以是同一XR应用服务的数据流。同一服务的多个数据流的数据包具有同步的需求,即各数据流的数据包需要在预定时间范围内到达UE。
这里,多个同步的数据流可以是关联于同一服务。例如,多个同步的数据流可以是同一XR应用服务的数据流。同一服务的多个数据流的数据包具有同步的需求,即各数据流的数据包需要在预定时间范围内到达UE。
在一个实施例中,所述至少两个数据流关联于同一个用户设备UE或不同UE。
在一个可能的实现方式中,多个同步的数据流可以用于传输同一UE的数据包。
在一个可能的实现方式中,多个同步的数据流可以用于传输传输不同UE的数据包。
每个UE关联的数据流的数量可能不同也可能相同。每个UE关联的数据可能不同也可能相同。
一个数据流可以包含一个或多个数据包。对所述至少两个同步数据流进行时间同步,可以是对至少两个数据流中的数据包进行时间同步。
时间同步可以是同步至少两个数据流的传输时间。
在一个可能的实现方式中,对所述至少两个数据流进行时间同步,包括以下至少之一项:
同步至少两个数据流到达数据流目的地(如UE)的到达时间;
同步至少两个数据流到达从核心网设备发出的发送时间。
UPF可以从AF服务器(如XR应用服务器)接收数据流,并将数据流发送给接入网设备。
在一个可能的实施方式中,UPF可以对数据流的发送时间等进行控制,从而起到对至少两个数据流进行时间同步的效果。
SMF可以对数据流的传输参数进行配置,进而实现对数据流传输时间的控制,起到对至少两个数据流进行时间同步的效果。其中,数据流的传输参数可以包括但不限于以下至少一项:传输优先级;传输时间预算。
PCF可以对至少两个数据流进行时间同步的PCC进行制定。
示例性的,当PCF确定具有阈值时,可以确定数据流具有同步需求,因此可以制定PCC,用于控制核心网设备至少基于阈值,对数据流进行同步。
这里,PCC规则可以指示关联于数据流进行同步的核心网设备,以及各核心网设备在对数据流进行同步过程中进行的操作。
在一个可能的实现方式中,核心网设备可以根据PCC规则的指示进行数据流的同步。
同步延时差可以包括以下至少之一项:数据流之间当前的同步延时差;核心网设备预测的数据流之间的同步延时差。
在一个可能的实现方式中,同步延时差可以包括:各数据流中需要同步的数据包到达核心网设备的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差,可以包括:各数据流中需要同步的数据包到达UPF的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差可以是由UPF确定的。
数据流到达UPF的时间可以是数据流中所有数据包均到达UPF的时间。
在一个可能的实现方式中,UPF可以在两个数据流均到达UPF后,确定两个数据流之间的同步延时差。
在一个可能的实现方式中,UPF可以在两个数据流中一个数据流均到达UPF后,开始确定两个数据流之间的同步延时差是否大于阈值。
示例性的,UPF可以在两个数据流中一个数据流均到达UPF后,开启定时器,定时器定时值可以阈值,当定时器超时后,还没有收到另一个数据流,则开始确定两个数据流之间的同步延时差大于阈值。
阈值可以是根据数据流关联的业务对数据流之间的同步延时差要求确定的。例如,当数据流关联于VR UL业务,那么阈值可以设置为5ms。
在一个可能的实现方式中,阈值可以是基于数据流的业务类型确定的。
在一个可能的实现方式中,阈值可以是发送数据流的AF发送给核心网设备的。
确定至少两个同步数据流之间的同步延时差大于阈值,可以包括但不限于以下至少一项:
根据数据流的到达时间,确定至少两个同步数据流之间的同步延时差大于阈值;
根据接收到的指示信息,确定至少两个同步数据流之间的同步延时差大于阈值。
如此,通过UPD在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步,使得多个流量之间的同步延时差可以保持在阈值之内,提高用户体验。
在一个可能的实现方式中,UPF缓存所述至少两个数据流中的第一数据流的数据包,其中,所述第一数据流与所述至少两个数据流中第二数据流的所述同步延时差大于所述阈值,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF;
UPF在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻。
这里,可以由PCC规定UPF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步。
当UPF检测到至少两个数据流的同步延时差大于阈值时,UPF可以执行数据流同步。
在一个可能的实现方式中,第一数据流可以有一个或多个;第二数据流也可以有一个或多个。
在一个可能的实现方式中,第一数据流的数据包可以在先到达UPF,第二数据流的数据包可以在后到达UPF。
在一个可能的实现方式中,第一数据流可以包括,最先到达UPF的数据包的数据流。
在一个可能的实现方式中,UPF可以缓冲在先到达的第一数据流的数据包,并在在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包。
在一个可能的实现方式中,UPF可以在第一时刻发送第二数据流的数据包。
在一个可能的实现方式中,预定时长范围可以是至少基于数据流对同步的需求确定的。
在一个可能的实现方式中,预定时长范围小于数据流对同步的同步时长需求。
在一个可能的实现方式中,预定时长范围可以是基于UPF收发数据流的数据包延迟时长确定的。UPF收发数据流的的数据包延迟时长可以包括:UPF接收到数据流的数据包,并向接入网设备(如基站)发送数据流的数据包所需要的时间。
基于UPF收发数据流的数据包的延迟时长确定预定时长范围,可以减少UPF发送第一数据流的数据包和第二数据流的数据包的时间差,提高第一数据流和第二数据流的同步性。
例如,预定时长范围可以小于阈值。
如此,第一数据流和第二数据流实现了在UPF发送过程中的同步,减少了第一数据流和第二数据流之间的同步延时差,提高用户体验。
在一个可能的实现方式中,距第一时刻的预定时长范围内预定时长范围内,可以包括以下至少之一项:
在第一时刻之前的预定时长范围内;
在第一时刻之后的预定时长范围内。
在一个可能的实现方式中,响应于第二数据流有多个,可以将最后到达UPF的第二数据流的数据包的到达时刻作为第一时刻。
示例性的,如图5所示,数据流2的数据包到达UPF的时间点T_UPF_In_2迟于数据流1的数据包到达UPF的时间点T_UPF_In_1,并且数据流2与数据流1之间的同步延时差大于阈值。UPF可以在接收到数据流1的数据包后,缓存数据流1的数据包,并在接收到数据流2的数据包的第一时刻的预定时长范围内发送缓存的数据流1的数据包,即在T_UPF_Out_1发送缓存的数据流1的数据包,UPF不缓存数据流2的数据包,在接收到数据流2的数据包后直接发送数据流2的数据包,即在在T_UPF_Out_2发送缓存的数据流2的数据包。使得数据流1和数据流2能够同步发送。
接入网设备可以接收经过UPF同步处理过的多个数据流的数据包,并发送给UE。从而提高了UE接收到的多个数据流的数据包的同步性。在此过程中,接入网设备无需针对数据流同步进行改变。
在一个实施例中,所述方法还包括:向会话管理功能SMF发送所述阈值。
在一个实施例中,所述确定至少两个同步数据流之间的阈值,包括:
接收应用功能AF发送的所述阈值。
PCF确定的PCC规则中可以包含阈值。PCF可以将PCC规则发送给SMF,如此,SMF可以确定阈值。PCC规则中的阈值可以关联于服务的数据流。
PCC中的阈值可以通过业务标识、数据流的AF的标识、数据流标识等与数据流建立关联关系。
SMF可以将阈值发送给UPF。
在一个可能的实现方式中,阈值可以是UPF向SMF订阅的。
在一个可能的实现方式中,当PCF从服务请求中接收到AF的阈值时,PCF为阈值关联的数据流(数据流组)生成PCC,其中,PCC中包括从AF接收到的阈值。这里,阈值可以关联于服务的多个数据流。
本公开实施例还提出了一种由SMF执行的数据流同步方法;需要说明的是,该方法是与PCF侧和/或UPF侧和/或接入网侧实施例相对应的,因此相同的解释或是特征不再一一赘述,可以参考对应侧的实施例。
如图9所示,本示例性实施例提供一种数据流同步方法,可以由由会话管理功能SMF执行,包括:
步骤901:确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
这里,多个同步的数据流可以是关联于同一服务。例如,多个同步的数据流可以是同一XR应用服务的数据流。同一服务的多个数据流的数据包具有同步的需求,即各数据流的数据包需要在预定时间范围内到达UE。
在一个实施例中,所述至少两个数据流关联于同一个用户设备UE或不同UE。
在一个可能的实现方式中,多个同步的数据流可以用于传输同一UE的数据包。
在一个可能的实现方式中,多个同步的数据流可以用于传输传输不同UE的数据包。
每个UE关联的数据流的数量可能不同也可能相同。每个UE关联的数据可能不同也可能相同。
一个数据流可以包含一个或多个数据包。对所述至少两个同步数据流进行时间同步,可以是对至少两个数据流中的数据包进行时间同步。
时间同步可以是同步至少两个数据流的传输时间。
在一个可能的实现方式中,对所述至少两个数据流进行时间同步,包括以下至少之一项:
同步至少两个数据流到达数据流目的地(如UE)的到达时间;
同步至少两个数据流到达从核心网设备发出的发送时间。
UPF可以从AF服务器(如XR应用服务器)接收数据流,并将数据流发送给接入网设备。
在一个可能的实施方式中,UPF可以对数据流的发送时间等进行控制,从而起到对至少两个数据流进行时间同步的效果。
SMF可以对数据流的传输参数进行配置,进而实现对数据流传输时间的控制,起到对至少两个数据流进行时间同步的效果。其中,数据流的传输参数可以包括但不限于以下至少一项:传输优先级;传输时间预算。
PCF可以对至少两个数据流进行时间同步的PCC进行制定。
示例性的,当PCF确定具有阈值时,可以确定数据流具有同步需求,因此可以制定PCC,用于控制核心网设备至少基于阈值,对数据流进行同步。
这里,PCC规则可以指示关联于数据流进行同步的核心网设备,以及各核心网设备在对数据流进行同步过程中进行的操作。
在一个可能的实现方式中,核心网设备可以根据PCC规则的指示进行数据流的同步。
同步延时差可以包括以下至少之一项:数据流之间当前的同步延时差;核心网设备预测的数据流之间的同步延时差。
在一个可能的实现方式中,同步延时差可以包括:各数据流中需要同步的数据包到达核心网设备的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差,可以包括:各数据流中需要同步的数据包到达UPF的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差可以是由UPF确定的。
数据流到达UPF的时间可以是数据流中所有数据包均到达UPF的时间。
在一个可能的实现方式中,UPF可以在两个数据流均到达UPF后,确定两个数据流之间的同步延时差。
在一个可能的实现方式中,UPF可以在两个数据流中一个数据流均到达UPF后,开始确定两个数据流之间的同步延时差是否大于阈值。
示例性的,UPF可以在两个数据流中一个数据流均到达UPF后,开启定时器,定时器定时值可以阈值,当定时器超时后,还没有收到另一个数据流,则开始确定两个数据流之间的同步延时差大于阈值。
阈值可以是根据数据流关联的业务对数据流之间的同步延时差要求确定的。例如,当数据流关 联于VR UL业务,那么阈值可以设置为5ms。
在一个可能的实现方式中,阈值可以是基于数据流的业务类型确定的。
在一个可能的实现方式中,阈值可以是发送数据流的AF发送给核心网设备的。
确定至少两个同步数据流之间的同步延时差大于阈值,可以包括但不限于以下至少一项:
根据数据流的到达时间,确定至少两个同步数据流之间的同步延时差大于阈值;
根据接收到的指示信息,确定至少两个同步数据流之间的同步延时差大于阈值。
如此,通过SMF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步,使得多个流量之间的同步延时差可以保持在阈值之内,提高用户体验。
如图10所示,本示例性实施例提供一种数据流同步方法,可以由由会话管理功能SMF执行,包括:
步骤1001:向PCF发送第一报告信息,所述第一报告信息用于指示第一数据流和第二数据流的所述同步延时差大于阈值,其中,所述至少两个所述数据流包括第一数据流和第二数据流;
步骤1002:接收所述PCF发送的携带有所述第一数据流的PDB的PCC规则和/或携带有所述第二数据流的PDB的PCC规则,所述第一数据流的PDB和/或所述第二数据流的PDB是所述PCF根据所述第一报告信息指示的所述同步延时差更新的;
步骤1003:将所述第一数据流和/或第二数据流分别绑定到对应PDB的QoS流,其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制所述QoS流的空口传输时延,同步所述至少两个数据流。
这里,可以由PCC规定SMF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步。
在一个可能的实现方式中,SMF可以基于PCF的订阅,向PCF发送至少两个数据流的第一报告信息。
在一个可能的实现方式中,第一报告信息携带有第一数据流和第二数据流的同步延时差。
在一个可能的实现方式中,同步延时差可以包括:第一数据流的数据包和第二数据流的数据包到达UPF的时间差。
PCF可以基于接收到的同步延时差,确定第一数据流和/或第二数据流的PDB。
这里,PDB可以用于定义在N6终止点和UE(通过UPF传输)之间的数据流可能延迟的时间上限,核心网设备和/或接入网设备(如基站等)可以基于PDB为数据流配置传输资源。例如,为PDB较小的数据流配置优先级较高的传输资源,以缩短数据流的的数据包传输时间;为PDB较大的数据流配置优先级较低的传输资源。
PCF可以为至少两个数据流中的第一数据流配置PDB,从而调节第一数据流的传输时长,起到同步的作用。
在一个可能的实现方式中,如果第一数据流的数据包相较第二数据流的数据包晚到UPF,PCF可以为在后到达第一数据流配置较小的PDB。从而减少第一数据流的数据包在空口的传输时长。从 而实现数据流的同步。
在一个可能的实现方式中,如果第一数据流的数据包相较第二数据流的数据包早到UPF,PCF可以为在先到达第一数据流配置较大的PDB。从而增加第一数据流在空口的传输时长。从而实现数据流的同步。
在一个可能的实现方式中,不同的数据流对应于不同的PCC规则,数据流的PDB可以携带于数据流对应的PCC规则宏。
PCF可以为第一数据流或第二数据流更新PDB,也可以同时为第一数据流和第二数据流更新PDB。
PDB可以将确定的第一数据流和/或第二数据流的PDB发送给SMF。
SMF基于接收的PDB将第一数据流和/或第二数据流绑定到对应的QoS流中。
例如,较小PDB对应的QoS具有较高的传输优先级,能够提高数据流的数据包在口传输的时长。
接入网设备根据第一数据流所对应的QoS流传输第一数据流;接入网设备根据第二数据流所对应的QoS流传输第二数据流QoS参数进行数据流的传输。从而实现数据流的同步。
在一个可能的实现方式中,PCF可以向SMF订阅"服务的两个或多个数据流之间的同步延时差大于阈值"的事件。当SMF检测到"服务的两个或多个数据流之间的同步延时差大于阈值"的事件时,SMF将该事件报告给PCF,即向PCF发送同步延时差。
在一个可能的实现方式中,PCF向SMF订阅第一报告信息,在订阅过程中可以将阈值发送给SMF。
在一个可能的实现方式中,阈值是数据流关联的AF发送给PCF的。
PCF接收的SMF上报的第一报告信息后,PCF更新一个或多个数据流的PDB值。PCF更新PDB后,SMF将数据流绑定到各自分别对应的QoS流。接入网设备(如gNB等机制)根据相关的QoS参数(包括更新的PDB值)来处理不同的数据流。实现数据流的同步,从而提高了UE接收到的多个数据流的数据包的同步性。在此过程中,接入网设备无需针对数据流同步进行改变。
示例性的,如图11所示,数据流2的数据包到达UPF的时间点T_UPF_In_2迟于数据流1的数据包到达UPF的时间点T_UPF_In_1,并且数据流2与数据流1之间的同步延时差大于阈值。PCF可以根据同步延时差确定数据流1和/或数据流2的PDB。例如,可PCF可以为在后到达数据流2配置较小的PDB。从而减少数据流2的数据包在空口的传输时长。从而实现数据流的同步。PCF可以将更新的PDB发送给SMF,并由SMF将数据流1和/或数据流2绑定到各自PDB所对应的QoS流中。由接入网设备基于QoS流控制数据流的传输时长,实现数据流的同步。
在一个实施例中,所述向PCF发送第一报告信息,包括:
响应于接收到UPF发送第二报告信息,向所述PCF发送第一报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,其中,所述第二报告信息是所述UPF确定所述同步延时差大于所述阈值发送的。
PCF可以向SMF订阅"服务的两个或多个数据流之间的同步延时差大于阈值"的事件,即订阅第一报告信息。SMF接收到PCF的订阅后,SMF可以将该订阅发送给UPF。
UPF可以检测数据流之间的同步延时差。并在确定至少两个数据流之间的同步延时差大于阈值后,向SMF发送第二报告信息。
第二报告信息可以至少用于指示至少两个数据流之间的同步延时差(如第一数据流和第二数据流之间的同步延时差),SMT接收到第二报告信息后可以向PCF发送同步延时差。
如图12所示,本示例性实施例提供一种数据流同步方法,可以由核心网设备中的SMF执行,包括:
步骤1201:确定所述PCF向所述SMF订阅所述第一报告信息,向所述UPF订阅所述第二报告信息。
PCF可以从AF接收数据流关联的阈值,并向SMF订阅第一报告信息。SMF接收到PCF的订阅时可以向UPF定语第二报告信息。UPF在所述同步延时差大于所述阈值时,向SMF发送第二报告信息。
如图13所示,本示例性实施例提供一种数据流同步方法,可以由核心网设备中的SMF执行,包括:
步骤1301:接收PCF发送的所述阈值;
步骤1302:向UPF发送所述阈值。
PCF可以在订阅时向SMF发送阈值
PCF将阈值发送给SMF后,SMF可以将阈值发送给UPF,由UPF监控数据流之间的同步延时差,并在至少两个数据流之间的同步延时差大于阈值后,向SMF发送第二报告信息。
本公开实施例还提出了一种由PCF执行的数据流同步方法;需要说明的是,该方法是与SMF侧和/或UPF侧和/或接入网侧实施例相对应的,因此相同的解释或是特征不再一一赘述,可以参考对应侧的实施例。
如图14所示,本示例性实施例提供一种数据流同步方法,可以由策略控制功能PCF执行,包括:
步骤1401:确定至少两个同步数据流之间的阈值,SMF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
这里,多个同步的数据流可以是关联于同一服务。例如,多个同步的数据流可以是同一XR应用服务的数据流。同一服务的多个数据流的数据包具有同步的需求,即各数据流的数据包需要在预定时间范围内到达UE。
一个数据流可以包含一个或多个数据包。对所述至少两个同步数据流进行时间同步,可以是对至少两个数据流中的数据包进行时间同步。
时间同步可以是同步至少两个数据流的传输时间。
在一个可能的实现方式中,对所述至少两个数据流进行时间同步,包括以下至少之一项:
同步至少两个数据流到达数据流目的地(如UE)的到达时间;
同步至少两个数据流到达从核心网设备发出的发送时间。
在一个实施例中,所述核心网设备包括以下至少之一项:用户面功能UPF;会话管理功能SMF。
在一个可能的实现方式中,核心网设备可以包括但不限于以下至少之一项:UPF;SMF;PCF。
UPF可以从AF服务器(如XR应用服务器)接收数据流,并将数据流发送给接入网设备。
在一个可能的实施方式中,UPF可以对数据流的发送时间等进行控制,从而起到对至少两个数据流进行时间同步的效果。
SMF可以对数据流的传输参数进行配置,进而实现对数据流传输时间的控制,起到对至少两个数据流进行时间同步的效果。其中,数据流的传输参数可以包括但不限于以下至少一项:传输优先级;传输时间预算。
PCF可以对至少两个数据流进行时间同步的PCC进行制定。
示例性的,当PCF确定具有阈值时,可以确定数据流具有同步需求,因此可以制定PCC,用于控制核心网设备至少基于阈值,对数据流进行同步。
这里,PCC规则可以指示关联于数据流进行同步的核心网设备,以及各核心网设备在对数据流进行同步过程中进行的操作。
PCF还可以通过更新数据流的PDB,从而控制数据流在空口传输的时延,起到数据流同步的效果。
在一个可能的实现方式中,核心网设备可以根据PCC规则的指示进行数据流的同步。
同步延时差可以包括以下至少之一项:数据流之间当前的同步延时差;核心网设备预测的数据流之间的同步延时差。
在一个可能的实现方式中,同步延时差可以包括:各数据流中需要同步的数据包到达核心网设备的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差,可以包括:各数据流中需要同步的数据包到达UPF的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差可以是由UPF确定的。
数据流到达UPF的时间可以是数据流中所有数据包均到达UPF的时间。
在一个可能的实现方式中,UPF可以在两个数据流均到达UPF后,确定两个数据流之间的同步延时差。
在一个可能的实现方式中,UPF可以在两个数据流中一个数据流均到达UPF后,开始确定两个数据流之间的同步延时差是否大于阈值。
示例性的,UPF可以在两个数据流中一个数据流均到达UPF后,开启定时器,定时器定时值可以阈值,当定时器超时后,还没有收到另一个数据流,则开始确定两个数据流之间的同步延时差大于阈值。
阈值可以是根据数据流关联的业务对数据流之间的同步延时差要求确定的。例如,当数据流关联于VR UL业务,那么阈值可以设置为5ms。
在一个可能的实现方式中,阈值可以是基于数据流的业务类型确定的。
在一个可能的实现方式中,阈值可以是发送数据流的AF发送给核心网设备的。
确定至少两个同步数据流之间的同步延时差大于阈值,可以包括但不限于以下至少一项:
根据数据流的到达时间,确定至少两个同步数据流之间的同步延时差大于阈值;
根据接收到的指示信息,确定至少两个同步数据流之间的同步延时差大于阈值。
如此,通过SMF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步,使得多个流量之间的同步延时差可以保持在阈值之内,提高用户体验。
在一个实施例中,所述方法还包括:向所述SMF发送所述阈值。
PCF可以向核心网设备,如SMF和/或UPF发送阈值,用于供SMF和/或UPF确定至少两个同步数据流之间的同步延时差是否大于阈值。
在一个实施例中,所述确定至少两个同步数据流之间的阈值,包括:
接收应用功能AF发送的所述阈值。
PCF如果接收到阈值,那么可以确定数据流有同步的要求。可以对至少两个数据流进行时间同步的PCC进行制定。
PCF确定的PCC规则中可以包含阈值。PCF可以将PCC规则发送给SMF,如此,SMF可以确定阈值。PCC规则中的阈值可以关联于服务的数据流。
PCC中的阈值可以通过业务标识、数据流的AF的标识、数据流标识等与数据流建立关联关系。
SMF可以将阈值发送给UPF。
在一个可能的实现方式中,阈值可以是UPF向SMF订阅的。
在一个可能的实现方式中,当PCF从服务请求中接收到AF的阈值时,PCF为阈值关联的数据流(数据流组)生成PCC,其中,PCC中包括从AF接收到的阈值。这里,阈值可以关联于服务的多个数据流。
如此,通过SMF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步,使得多个流量之间的同步延时差可以保持在阈值之内,提高用户体验。
如图15所示,本示例性实施例提供一种数据流同步方法,可以由策略控制功能PCF执行,包括:
步骤1501:接收SMF发送的第一报告信息,其中,所述第一报告信息,用于指示第一数据流和第二数据流的同步延时差大于阈值;其中,所述第一数据流和第二数据流属于所述至少两个所述数据流;
步骤1502:根据所述第一报告信息指示的所述同步延时差,更新所述第一数据流关联的PDB和/或所述第二数据流关联的PDB;
步骤1503:向SMF发送的携带有所述第一数据流的PDB的PCC规则和/或携带有所述第二数 据流的PDB的PCC规则;其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制QoS流的空口传输时延,同步所述至少两个数据流。
这里,可以由PCC规定SMF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步。
在一个可能的实现方式中,SMF可以基于PCF的订阅,向PCF发送至少两个数据流的第一报告信息。
在一个可能的实现方式中,第一报告信息携带有第一数据流和第二数据流的同步延时差。
在一个可能的实现方式中,同步延时差可以包括:第一数据流的数据包和第二数据流的数据包到达UPF的时间差。
PCF可以基于接收到的同步延时差,确定第一数据流和/或第二数据流的PDB。
这里,PDB可以用于定义在N6终止点和UE(通过UPF传输)之间的数据流可能延迟的时间上限,核心网设备和/或接入网设备(如基站等)可以基于PDB为数据流配置传输资源。例如,为PDB较小的数据流配置优先级较高的传输资源,以缩短数据流的的数据包传输时间;为PDB较大的数据流配置优先级较低的传输资源。
PCF可以为至少两个数据流中的第一数据流配置PDB,从而调节第一数据流的传输时长,起到同步的作用。
在一个可能的实现方式中,如果第一数据流的数据包相较第二数据流的数据包晚到UPF,PCF可以为在后到达第一数据流配置较小的PDB。从而减少第一数据流的数据包在空口的传输时长。从而实现数据流的同步。
在一个可能的实现方式中,如果第一数据流的数据包相较第二数据流的数据包早到UPF,PCF可以为在先到达第一数据流配置较大的PDB。从而增加第一数据流在空口的传输时长。从而实现数据流的同步。
在一个可能的实现方式中,不同的数据流对应于不同的PCC规则,数据流的PDB可以携带于数据流对应的PCC规则宏。
PCF可以为第一数据流或第二数据流更新PDB,也可以同时为第一数据流和第二数据流更新PDB。
PDB可以将确定的第一数据流和/或第二数据流的PDB发送给SMF。
SMF基于接收的PDB将第一数据流和/或第二数据流绑定到对应的QoS流中。
例如,较小PDB对应的QoS具有较高的传输优先级,能够提高数据流的数据包在口传输的时长。
接入网设备根据第一数据流所对应的QoS流传输第一数据流;接入网设备根据第二数据流所对应的QoS流传输第二数据流QoS参数进行数据流的传输。从而实现数据流的同步。
在一个可能的实现方式中,PCF可以向SMF订阅"服务的两个或多个数据流之间的同步延时差大于阈值"的事件。当SMF检测到"服务的两个或多个数据流之间的同步延时差大于阈值"的事件时, SMF将该事件报告给PCF,即向PCF发送同步延时差。
在一个可能的实现方式中,PCF向SMF订阅第一报告信息,在订阅过程中可以将阈值发送给SMF。
在一个可能的实现方式中,阈值是数据流关联的AF发送给PCF的。
PCF接收的SMF上报的第一报告信息后,PCF更新一个或多个数据流的PDB值。PCF更新PDB后,SMF将数据流绑定到各自分别对应的QoS流。接入网设备(如gNB等机制)根据相关的QoS参数(包括更新的PDB值)来处理不同的数据流。实现数据流的同步,从而提高了UE接收到的多个数据流的数据包的同步性。在此过程中,接入网设备无需针对数据流同步进行改变。
示例性的,如图11所示,数据流2的数据包到达UPF的时间点T_UPF_In_2迟于数据流1的数据包到达UPF的时间点T_UPF_In_1,并且数据流2与数据流1之间的同步延时差大于阈值。PCF可以根据同步延时差确定数据流1和/或数据流2的PDB。例如,可PCF可以为在后到达数据流2配置较小的PDB。从而减少数据流2的数据包在空口的传输时长。从而实现数据流的同步。PCF可以将更新的PDB发送给SMF,并由SMF将数据流1和/或数据流2绑定到各自PDB所对应的QoS流中。由接入网设备基于QoS流控制数据流的传输时长,实现数据流的同步。
在一个实施例中,所述第一报告信息,是所述PCF向所述SMF订阅的。
在一个可能的实现方式中,所述SMF响应于接收到UPF发送第二报告信息,向所述PCF发送第一报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,其中,所述第二报告信息是所述UPF确定所述同步延时差大于所述阈值发送的。
PCF可以向SMF订阅"服务的两个或多个数据流之间的同步延时差大于阈值"的事件,即订阅第一报告信息。SMF接收到PCF的订阅后,SMF可以将该订阅发送给UPF。
UPF可以检测数据流之间的同步延时差。并在确定至少两个数据流之间的同步延时差大于阈值后,向SMF发送第二报告信息。
第二报告信息可以至少用于指示至少两个数据流之间的同步延时差(如第一数据流和第二数据流之间的同步延时差),SMT接收到第二报告信息后可以向PCF发送同步延时差。
在一个可能的实现方式中,响应于所述PCF向所述SMF订阅所述第一报告信息,所述SMF向所述UPF订阅所述第二报告信息,其中,所述第一报告信息,是所述PCF向所述SMF订阅的。
PCF可以从AF接收数据流关联的阈值,并向SMF订阅第一报告信息。SMF接收到PCF的订阅时可以向UPF定语第二报告信息。UPF在所述同步延时差大于所述阈值时,向SMF发送第二报告信息。
在一个可能的实现方式中,所述SMF接收PCF发送的所述阈值;所述SMF向UPF发送所述阈值。
PCF可以在订阅时向SMF发送阈值
PCF将阈值发送给SMF后,SMF可以将阈值发送给UPF,由UPF监控数据流之间的同步延时差,并在至少两个数据流之间的同步延时差大于阈值后,向SMF发送第二报告信息。
本公开实施例还提出了一种由UPF执行的数据流同步方法;需要说明的是,该方法是与SMF侧和/或PCF侧和/或接入网侧实施例相对应的,因此相同的解释或是特征不再一一赘述,可以参考对应侧的实施例。
如图16所示,本示例性实施例提供一种数据流同步方法,可以UPF执行,包括:
步骤1601:确定至少两个同步数据流之间的同步延时差,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差;
步骤1602:确响应于所述同步延时差大于阈值,至少向SMF发送第二报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,所述第二报告信息用于供所述SMF对所述至少两个所述数据流进行时间同步。
UPF可以从AF服务器(如XR应用服务器)接收数据流,并将数据流发送给接入网设备。
同步延时差可以包括以下至少之一项:数据流之间当前的同步延时差;核心网设备预测的数据流之间的同步延时差。
在一个可能的实现方式中,同步延时差可以包括:各数据流中需要同步的数据包到达核心网设备的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差,可以包括:各数据流中需要同步的数据包到达UPF的时间差。
在一个可能的实现方式中,至少两个同步数据流之间的同步延时差可以是由UPF确定的。
数据流到达UPF的时间可以是数据流中所有数据包均到达UPF的时间。
在一个可能的实现方式中,UPF可以在两个数据流均到达UPF后,确定两个数据流之间的同步延时差。
在一个可能的实现方式中,UPF可以在两个数据流中一个数据流均到达UPF后,开始确定两个数据流之间的同步延时差是否大于阈值。
示例性的,UPF可以在两个数据流中一个数据流均到达UPF后,开启定时器,定时器定时值可以阈值,当定时器超时后,还没有收到另一个数据流,则开始确定两个数据流之间的同步延时差大于阈值。
PCF可以向SMF订阅"服务的两个或多个数据流之间的同步延时差大于阈值"的事件,即订阅第一报告信息。SMF接收到PCF的订阅后,SMF可以将该订阅发送给UPF。
UPF可以检测数据流之间的同步延时差。并在确定至少两个数据流之间的同步延时差大于阈值后,向SMF发送第二报告信息。
在一个实施例中,所述方法还包括:
接收SMF发送的所述阈值。
PCF可以在订阅时向SMF发送阈值
PCF将阈值发送给SMF后,SMF可以将阈值发送给UPF,由UPF监控数据流之间的同步延时 差,并在至少两个数据流之间的同步延时差大于阈值后,向SMF发送第二报告信息。
在一个实施例中,所述第二报告信息,至少用于指示所述至少两个同步数据流中第一数据流和第二数据流的同步延时差。
第二报告信息可以至少用于指示至少两个数据流之间的同步延时差(如第一数据流和第二数据流之间的同步延时差),SMT接收到第二报告信息后可以向PCF发送同步延时差。
SMF可以通过调整第一数据流和或第二数据流对应QoS参数的方式,调整第一数据流和第二数据流之间的同步延时差,从而实现数据流的同步。
如此,通过SMF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步,使得多个流量之间的同步延时差可以保持在阈值之内,提高用户体验。
在一个实施例中,所述第二报告信息,用于供所述SMF向策略控制功能PCF发送第一报告信息,并由所述PCF根据所述同步延时差确定所述第一数据流的包延迟预算PDB和/或所述第二数据流的包延迟预算PDB;其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制服务质量QoS流的空口传输时延,同步所述至少两个数据流。
这里,可以由PCC规定SMF在至少两个同步数据流之间的同步延时差大于阈值时,对至少两个数据流进行时间同步。
在一个可能的实现方式中,SMF可以基于PCF的订阅,向PCF发送至少两个数据流的第一报告信息。
在一个可能的实现方式中,第一报告信息携带有第一数据流和第二数据流的同步延时差。
在一个可能的实现方式中,同步延时差可以包括:第一数据流的数据包和第二数据流的数据包到达UPF的时间差。
PCF可以基于接收到的同步延时差,确定第一数据流和/或第二数据流的PDB。
这里,PDB可以用于定义在N6终止点和UE(通过UPF传输)之间的数据流可能延迟的时间上限,核心网设备和/或接入网设备(如基站等)可以基于PDB为数据流配置传输资源。例如,为PDB较小的数据流配置优先级较高的传输资源,以缩短数据流的的数据包传输时间;为PDB较大的数据流配置优先级较低的传输资源。
PCF可以为至少两个数据流中的第一数据流配置PDB,从而调节第一数据流的传输时长,起到同步的作用。
在一个可能的实现方式中,如果第一数据流的数据包相较第二数据流的数据包晚到UPF,PCF可以为在后到达第一数据流配置较小的PDB。从而减少第一数据流的数据包在空口的传输时长。从而实现数据流的同步。
在一个可能的实现方式中,如果第一数据流的数据包相较第二数据流的数据包早到UPF,PCF可以为在先到达第一数据流配置较大的PDB。从而增加第一数据流在空口的传输时长。从而实现数据流的同步。
在一个可能的实现方式中,不同的数据流对应于不同的PCC规则,数据流的PDB可以携带于 数据流对应的PCC规则宏。
PCF可以为第一数据流或第二数据流更新PDB,也可以同时为第一数据流和第二数据流更新PDB。
PDB可以将确定的第一数据流和/或第二数据流的PDB发送给SMF。
SMF基于接收的PDB将第一数据流和/或第二数据流绑定到对应的QoS流中。
例如,较小PDB对应的QoS具有较高的传输优先级,能够提高数据流的数据包在口传输的时长。
接入网设备根据第一数据流所对应的QoS流传输第一数据流;接入网设备根据第二数据流所对应的QoS流传输第二数据流QoS参数进行数据流的传输。从而实现数据流的同步。
在一个可能的实现方式中,PCF可以向SMF订阅"服务的两个或多个数据流之间的同步延时差大于阈值"的事件。当SMF检测到"服务的两个或多个数据流之间的同步延时差大于阈值"的事件时,SMF将该事件报告给PCF,即向PCF发送同步延时差。
在一个可能的实现方式中,PCF向SMF订阅第一报告信息,在订阅过程中可以将阈值发送给SMF。
在一个可能的实现方式中,阈值是数据流关联的AF发送给PCF的。
PCF接收的SMF上报的第一报告信息后,PCF更新一个或多个数据流的PDB值。PCF更新PDB后,SMF将数据流绑定到各自分别对应的QoS流。接入网设备(如gNB等机制)根据相关的QoS参数(包括更新的PDB值)来处理不同的数据流。实现数据流的同步,从而提高了UE接收到的多个数据流的数据包的同步性。在此过程中,接入网设备无需针对数据流同步进行改变。
示例性的,如图11所示,数据流2的数据包到达UPF的时间点T_UPF_In_2迟于数据流1的数据包到达UPF的时间点T_UPF_In_1,并且数据流2与数据流1之间的同步延时差大于阈值。PCF可以根据同步延时差确定数据流1和/或数据流2的PDB。例如,可PCF可以为在后到达数据流2配置较小的PDB。从而减少数据流2的数据包在空口的传输时长。从而实现数据流的同步。PCF可以将更新的PDB发送给SMF,并由SMF将数据流1和/或数据流2绑定到各自PDB所对应的QoS流中。由接入网设备基于QoS流控制数据流的传输时长,实现数据流的同步。
以下结合上述任意实施例提供一个具体示例:
PCF可以通过调整PCC规则以保证来自一个或多个UE的同一应用的多个数据流之间的延迟差异(同步延时差)可以保持在延迟差异阈值(阈值)内。
方式1:
如图5所示,其中,T_AF_Out:表示AF发送服务关联多数据流的数据包的时刻。T_UPF_In:表示UPF接收到数据包的时刻。T_UPF_Out:表示UPF发送数据包的时刻。T_gNB_In:表示gNB接收到数据包的时刻。T_gNB_Out:表示gNB发送数据包的时刻。T_UE_In:表示UE接收到数据包的时刻。
当UPF检测到服务的两个或更多的流量(数据流)之间的延迟差异超过阈值时,它执行流量同 步,例如,缓冲首先到达的流量(数据流)的数据包首先到达,并在所有其他流量(数据流)到达的类似时间发送所有相关流量(数据流)的数据包。
服务的两个或更多流量(数据流)之间的延迟差异阈值是从SMF收到的,SMF是从流量组的PCC规则得到的。
当PCF从服务请求中接收到AF的延迟差阈值(阈值)时,PCF为流量组生成PCC规则,其中包括基于从AF接收到的服务的两个或多个流量(数据流)之间的延迟差阈值。
方式2:
如图11所示,其中,T_AF_Out:表示AF发送服务关联多数据流的数据包的时刻。T_UPF_In:表示UPF接收到数据包的时刻。T_UPF_Out:表示UPF发送数据包的时刻。T_gNB_In:表示gNB接收到数据包的时刻。T_gNB_Out:表示gNB发送数据包的时刻。T_UE_In:表示UE接收到数据包的时刻。
当PCF收到服务请求中来自AF的延迟差阈值(阈值)时,PCF向SMF订阅"服务的两个或多个流量(数据流)之间的延迟差异(同步延时差)超过阈值延迟差阈值(阈值)"的事件。当SMF检测到"服务的两个或多个流量之间的延迟差异(同步延时差)超过阈值延迟差阈值(阈值)"的事件时,SMF将该事件报告给PCF。PCF然后更新一个或多个服务流量(数据流)的PDB值,例如PCF可以为较晚到达UPF的流量分配一个较短的PDB值。一旦服务流量的PDB被更新,SMF将该流量绑定到不同的QoS流。gNB根据相关的QoS参数(包括PDB值)来处理不同的QoS(数据流)。
当SMF被PCF订阅时,在"服务的两个或多个流量(数据流)之间的延迟差异(同步延时差)超过阈值延迟差阈值(阈值)"的事件中,SMF将其订阅给UPF。UPF监测服务的两个或更多流量之间的延迟差异SMF,一旦超过延迟差异阈值(阈值),UPF将报告给SMF。
通过以上两种方式,可以使得服务的两个或多个流量之间的延迟差异不超过阈值,并保证良好的用户体验。并且对接入网设备的通信协议等不会产生影响,接入网设备的处理无需改变。
如图17所示,本示例性实施例提供一种数据流同步装置100,设置于用户面功能UPF中,包括:
处理模块110,配置为确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述处理模块110,配置为缓存所述至少两个数据流中的第一数据流的数据包,其中,所述第一数据流与所述至少两个数据流中第二数据流的所述同步延时差大于所述阈值,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF;
所述装置还包括:收发模块120,配置为在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻。
在一个实施例中,所述装置还包括:
收发模块120,配置为接收会话管理功能SMF发送的所述阈值。
如图18所示,本示例性实施例提供一种数据流同步装置200,设置于会话管理功能SMF中,包括:
收发模块210,配置为接收策略控制功能PCF发送的两个同步数据流之间的阈值,
所述收发模块220,还配置为向用户面功能UPF发送所述阈值,其中,所述阈值,用于供UPF与至少两个同步数据流之间的同步延时差对比,并基于所述对比得到的对比结果确定对至少两个所述数据流的时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述阈值,用于供所述UPF在确定所述至少两个数据流中第一数据流的数据包与第二数据流的数据包之间的所述同步延时差大于所述阈值时,缓存所述第一数据流的数据包,并在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF。
如图19所示,本示例性实施例提供一种数据流同步装置300,设置于策略控制功能PCF中,包括:
处理模块310,配置为确定至少两个同步数据流之间的阈值,用户面功能UPF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述装置还包括:
收发模块320,配置为向会话管理功能SMF发送所述阈值。
在一个实施例中,所述装置还包括:
收发模块320,配置为接收应用功能AF发送的所述阈值。
如图20所示,本示例性实施例提供一种数据流同步装置400,设置于会话管理功能SMF中,包括:
处理模块410,配置为确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述装置还包括:
收发模块420,配置为向策略控制功能PCF发送第一报告信息,所述第一报告信息用于指示第一数据流和第二数据流的所述同步延时差大于阈值,其中,所述至少两个所述数据流包括第一数据流和第二数据流;
所述收发模块420,还配置为接收所述PCF发送的携带有所述第一数据流的包延迟预算PDB的策略控制和计费PCC规则和/或携带有所述第二数据流的PDB的PCC规则,所述第一数据流的PDB和/或所述第二数据流的PDB是所述PCF根据所述第一报告信息指示的所述同步延时差更新的;
所述处理模块410,具体配置为将所述第一数据流和/或第二数据流分别绑定到对应PDB的服务 质量QoS流,其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制所述QoS流的空口传输时延,同步所述至少两个数据流。
在一个实施例中,所述收发模块420,具体配置为:
响应于接收到UPF发送第二报告信息,向所述PCF发送第一报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,其中,所述第二报告信息是所述UPF确定所述同步延时差大于所述阈值发送的。
在一个实施例中,所述处理模块410,还配置为确定所述PCF向所述SMF订阅所述第一报告信息,向所述UPF订阅所述第二报告信息。
在一个实施例中,所述收发模块420,还配置为:
接收PCF发送的所述阈值;
向UPF发送所述阈值。
如图21所示,本示例性实施例提供一种数据流同步装置500,设置于策略控制功能PCF中,包括:
处理模块510,配置为确定至少两个同步数据流之间的阈值,会话管理功能SMF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
在一个实施例中,所述装置还包括:
收发模块520,配置为向所述SMF发送所述阈值。
在一个实施例中,所述装置还包括:
收发模块520,配置为接收会话管理功能SMF发送的第一报告信息,其中,所述第一报告信息,用于指示第一数据流和第二数据流的同步延时差大于阈值;其中,所述第一数据流和第二数据流属于所述至少两个所述数据流;
所述处理模块510,还配置为根据所述第一报告信息指示的所述同步延时差,更新所述第一数据流关联的PDB和/或所述第二数据流关联的包延迟预算PDB;
所述收发模块520,还配置为向SMF发送的携带有所述第一数据流的包延迟预算PDB的策略控制和计费PCC规则和/或携带有所述第二数据流的PDB的PCC规则;其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制服务质量QoS流的空口传输时延,同步所述至少两个数据流。
在一个实施例中,所述第一报告信息,是所述PCF向所述SMF订阅的。
在一个实施例中,所述装置还包括:
收发模块,配置为接收应用功能AF发送的所述阈值。
如图22所示,本示例性实施例提供一种数据流同步装置600,设置于用户面功能UPF中,包括:
处理模块610,配置为确定至少两个同步数据流之间的同步延时差,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差;
收发模块620,配置为响应于所述同步延时差大于阈值,至少向会话管理功能SMF发送第二报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,所述第二报告信息用于供所述SMF对所述至少两个所述数据流进行时间同步。
在一个实施例中,所述收发模块620,还配置为:
接收SMF发送的所述阈值。
在一个实施例中,所述第二报告信息,至少用于指示所述至少两个同步数据流中第一数据流和第二数据流的同步延时差。
在一个实施例中,所述第二报告信息,用于供所述SMF向策略控制功能PCF发送第一报告信息,并由所述PCF根据所述同步延时差确定所述第一数据流的包延迟预算PDB和/或所述第二数据流的包延迟预算PDB;其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制服务质量QoS流的空口传输时延,同步所述至少两个数据流。
本公开实施例提供一种通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的数据流同步方法。
在一个实施例中,通信设备可以包括但不限于至少之一:UE及网络设备。这里网络设备可包括核心网或者接入网设备等。这里,接入网设备可包括基站;核心网可包括AMF、SMF。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在用户设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图3、4、6至10、12至16所示的方法的至少其中之一。
本公开实施例还提供一种计算机存储介质,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的数据流同步方法。例如,如图3、4、6至10、12至16所示的方法的至少其中之一。
关于上述实施例中的装置或者存储介质,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例还提供一种通信***,其中,所述通信******包括用户面功能UPF、会话管理功能SMF和策略控制功能PCF;所述UPF用于实现本公开任意实施例的数据流同步方法;所述SMF用于实现本公开任意实施例的数据流同步方法,所述PCF用于实现本公开任意实施例的数据流同步方法。
关于上述实施例中的通信***,其中,各个组成部分执行操作的的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图23据一示例性实施例示出的一种用户设备3000的框图。例如,用户设备3000可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备, 个人数字助理等。
参照图23用户设备3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制用户设备3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在用户设备3000的操作。这些数据的示例包括用于在用户设备3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为用户设备3000的各种组件提供电力。电源组件3006可以包括电源管理***,一个或多个电源,及其他与为用户设备3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在所述用户设备3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当用户设备3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当用户设备3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件3002和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为用户设备3000提供各个方面的状态评估。例如,传感器组件3014可以检测到设备3000的打开/关闭状态,组件的相对定位,例如所述组件为用户设备3000的显示器和小键盘,传感器组件3014还可以检测用户设备3000或用户设备3000一个 组件的位置改变,用户与用户设备3000接触的存在或不存在,用户设备3000方位或加速/减速和用户设备3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于用户设备3000和其他设备之间有线或无线方式的通信。用户设备3000可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由用户设备3000的处理器3020执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图24,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络设备。参照图24所示,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作***,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (31)

  1. 一种数据流同步方法,其中,由用户面功能UPF执行,包括:
    确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
  2. 根据权利要求1所述的方法,其中,所述对所述至少两个所述数据流进行时间同步,包括:
    缓存所述至少两个数据流中的第一数据流的数据包,其中,所述第一数据流与所述至少两个数据流中第二数据流的所述同步延时差大于所述阈值,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF;
    在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    接收会话管理功能SMF发送的所述阈值。
  4. 一种数据流同步方法,其中,由会话管理功能SMF执行,包括:
    接收策略控制功能PCF发送的两个同步数据流之间的阈值,
    向用户面功能UPF发送所述阈值,其中,所述阈值,用于供UPF与至少两个同步数据流之间的同步延时差对比,并基于所述对比得到的对比结果确定对至少两个所述数据流的时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
  5. 根据权利要求4所述的方法,其中,所述阈值,用于供所述UPF在确定所述至少两个数据流中第一数据流的数据包与第二数据流的数据包之间的所述同步延时差大于所述阈值时,缓存所述第一数据流的数据包,并在距第一时刻的预定时长范围内发送缓存的所述第一数据流的数据包,其中,所述第一时刻包括所述第二数据流的数据包到达所述UPF的时刻,其中,所述第二数据流的数据包在所述第一数据流的数据包之后到所述UPF。
  6. 一种数据流同步方法,其中,由策略控制功能PCF执行,包括:
    确定至少两个同步数据流之间的阈值,用户面功能UPF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:向会话管理功能SMF发送所述阈值。
  8. 根据权利要求6所述的方法,其中,所述确定至少两个同步数据流之间的阈值,包括:
    接收应用功能AF发送的所述阈值。
  9. 一种数据流同步方法,其中,由会话管理功能SMF执行,包括:
    确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    向策略控制功能PCF发送第一报告信息,所述第一报告信息用于指示第一数据流和第二数据流的所述同步延时差大于阈值,其中,所述至少两个所述数据流包括第一数据流和第二数据流;
    接收所述PCF发送的携带有所述第一数据流的包延迟预算PDB的策略控制和计费PCC规则和/或携带有所述第二数据流的PDB的PCC规则,所述第一数据流的PDB和/或所述第二数据流的PDB是所述PCF根据所述第一报告信息指示的所述同步延时差更新的;
    将所述第一数据流和/或第二数据流分别绑定到对应PDB的服务质量QoS流,其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制所述QoS流的空口传输时延,同步所述至少两个数据流。
  11. 根据权利要求10所述的方法,其中,所述向PCF发送第一报告信息,包括:
    响应于接收到UPF发送第二报告信息,向所述PCF发送第一报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,其中,所述第二报告信息是所述UPF确定所述同步延时差大于所述阈值发送的。
  12. 根据权利要求11所述的方法,其中,
    所述方法还包括:
    确定所述PCF向所述SMF订阅所述第一报告信息,向所述UPF订阅所述第二报告信息。
  13. 根据权利要求9至12任一项所述的方法,其中,所述方法还包括:
    接收PCF发送的所述阈值;
    向UPF发送所述阈值。
  14. 一种数据流同步方法,其中,由策略控制功能PCF执行,包括:
    确定至少两个同步数据流之间的阈值,会话管理功能SMF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:向所述SMF发送所述阈值。
  16. 根据权利要求14所述的方法,其中,所述方法还包括:
    接收会话管理功能SMF发送的第一报告信息,其中,所述第一报告信息,用于指示第一数据流和第二数据流的同步延时差大于阈值;其中,所述第一数据流和第二数据流属于所述至少两个所述数据流;
    根据所述第一报告信息指示的所述同步延时差,更新所述第一数据流关联的PDB和/或所述第二数据流关联的包延迟预算PDB;
    向SMF发送的携带有所述第一数据流的包延迟预算PDB的策略控制和计费PCC规则和/或携带有所述第二数据流的PDB的PCC规则;其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制服务质量QoS流的空口传输时延,同步所述至少两个数据流。
  17. 根据权利要求16所述的方法,其中,
    所述第一报告信息,是所述PCF向所述SMF订阅的。
  18. 根据权利要求14至17任一项所述的方法,其中,所述确定至少两个同步数据流之间的阈值,包括:
    接收应用功能AF发送的所述阈值。
  19. 一种数据流同步方法,其中,由用户面功能UPF执行,包括:
    确定至少两个同步数据流之间的同步延时差,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差;
    响应于所述同步延时差大于阈值,至少向会话管理功能SMF发送第二报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,所述第二报告信息用于供所述SMF对所述至少两个所述数据流进行时间同步。
  20. 根据权利要求19所述的方法,其中,所述方法还包括:
    接收SMF发送的所述阈值。
  21. 根据权利要求19所述的方法,其中,所述第二报告信息,至少用于指示所述至少两个同步数据流中第一数据流和第二数据流的同步延时差。
  22. 根据权利要求21所述的方法,其中,所述第二报告信息,用于供所述SMF向策略控制功能PCF发送第一报告信息,并由所述PCF根据所述同步延时差确定所述第一数据流的包延迟预算PDB和/或所述第二数据流的包延迟预算PDB;其中,所述第一数据流的PDB和/或所述第二数据流的PDB,用于供接入网设备控制服务质量QoS流的空口传输时延,同步所述至少两个数据流。
  23. 一种数据流同步装置,其中,设置于用户面功能UPF中,包括:
    处理模块,配置为确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
  24. 一种数据流同步装置,其中,设置于会话管理功能SMF中,包括:
    收发模块,配置为接收策略控制功能PCF发送的两个同步数据流之间的阈值,
    所述收发模块,还配置为向用户面功能UPF发送所述阈值,其中,所述阈值,用于供UPF与至少两个同步数据流之间的同步延时差对比,并基于所述对比得到的对比结果确定对至少两个所述数据流的时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
  25. 一种数据流同步装置,其中,设置于策略控制功能PCF中,包括:
    处理模块,配置为确定至少两个同步数据流之间的阈值,用户面功能UPF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
  26. 一种数据流同步装置,其中,设置于会话管理功能SMF中,包括:
    处理模块,配置为确定至少两个数据流之间的同步延时差大于阈值,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
  27. 一种数据流同步装置,其中,设置于策略控制功能PCF中,包括:
    处理模块,配置为确定至少两个同步数据流之间的阈值,会话管理功能SMF在至少两个同步数据流之间的同步延时差大于阈值时,对所述至少两个数据流进行时间同步,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差。
  28. 一种数据流同步装置,其中,设置于用户面功能UPF中,包括:
    处理模块,配置为确定至少两个同步数据流之间的同步延时差,其中,所述同步延时差,包括:所述至少两个数据流需要同步的数据包之间的时间差;
    收发模块,配置为响应于所述同步延时差大于阈值,至少向会话管理功能SMF发送第二报告信息,其中,所述第二报告信息,至少用于指示所述同步延时差,所述第二报告信息用于供所述SMF对所述至少两个所述数据流进行时间同步。
  29. 一种通信设备,其中,所述通信设备,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:用于运行所述可执行指令时,实现权利要求1至3、4或5、或6至8、或9至13、或14至18、或19至22任一项所述的数据流同步装置。
  30. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现权利要求1至3、4或5、或6至8、或9至13、或14至18、或19至22任一项所述的数据流同步装置。
  31. 一种通信***,其中,所述通信******包括用户面功能UPF、会话管理功能SMF和策略控制功能PCF;所述UPF用于实现权利要求1至3,或19至22任一项所述的方法;所述SMF用于实现权利要求4或5,或9至13任一项所述的方法,所述PCF用于实现权利要求6至8,或14至18任一项所述的方法。
PCT/CN2022/131236 2022-11-10 2022-11-10 数据流同步方法、装置、通信设备和存储介质 WO2024098347A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280004969.9A CN118339810A (zh) 2022-11-10 2022-11-10 数据流同步方法、装置、通信设备和存储介质
PCT/CN2022/131236 WO2024098347A1 (zh) 2022-11-10 2022-11-10 数据流同步方法、装置、通信设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/131236 WO2024098347A1 (zh) 2022-11-10 2022-11-10 数据流同步方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024098347A1 true WO2024098347A1 (zh) 2024-05-16

Family

ID=91031700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131236 WO2024098347A1 (zh) 2022-11-10 2022-11-10 数据流同步方法、装置、通信设备和存储介质

Country Status (2)

Country Link
CN (1) CN118339810A (zh)
WO (1) WO2024098347A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120324520A1 (en) * 2010-01-27 2012-12-20 Nederlandse Oraganisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Method, system and device for synchronization of media streams
CN103354528A (zh) * 2013-06-28 2013-10-16 北京智谷睿拓技术服务有限公司 多流同步方法及装置
CN112135177A (zh) * 2020-09-25 2020-12-25 北京猿力未来科技有限公司 数据流同步方法及装置
CN113612698A (zh) * 2021-06-30 2021-11-05 苏州浪潮智能科技有限公司 一种数据包发送方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120324520A1 (en) * 2010-01-27 2012-12-20 Nederlandse Oraganisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Method, system and device for synchronization of media streams
CN103354528A (zh) * 2013-06-28 2013-10-16 北京智谷睿拓技术服务有限公司 多流同步方法及装置
CN112135177A (zh) * 2020-09-25 2020-12-25 北京猿力未来科技有限公司 数据流同步方法及装置
CN113612698A (zh) * 2021-06-30 2021-11-05 苏州浪潮智能科技有限公司 一种数据包发送方法及装置

Also Published As

Publication number Publication date
CN118339810A (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
WO2021217571A1 (zh) 终端状态切换处理、控制方法及装置、通信设备及介质
WO2021030974A1 (zh) 寻呼配置方法、装置、通信设备及存储介质
WO2023077460A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021108966A1 (zh) 无线链路失败的处理方法、装置及计算机存储介质
WO2021012130A1 (zh) 监听处理、策略下发方法及装置、通信设备及存储
JP2023547080A (ja) 接続確立方法、装置、通信機器及び記憶媒体
WO2021217595A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
US11849444B2 (en) Method for processing data, communication device, and storage medium
WO2024065109A1 (zh) 信息传输控制方法、装置、通信设备及存储介质
WO2024098347A1 (zh) 数据流同步方法、装置、通信设备和存储介质
WO2022198389A1 (zh) 侧行链路的配置方法及装置、通信设备和存储介质
WO2022032540A1 (zh) Uav飞行控制、管控策略处理方法及装置、设备及介质
WO2022011557A1 (zh) 激活资源切换方法及装置、通信设备及存储介质
WO2024130563A1 (zh) QoS管理方法以及装置、通信设备及存储介质
WO2024138477A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021208046A1 (zh) 传输处理方法、装置、用户设备、基站及存储介质
WO2024036576A1 (zh) 一种持续时间起始位置确定方法、装置、通信设备及存储介质
WO2024130509A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2024055330A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2024055334A1 (zh) 丢包处理方法、装置、通信设备及存储介质
WO2024130505A1 (zh) 调度处理方法以及装置、通信设备及存储介质
WO2023122916A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2021217573A1 (zh) 控制数据传输速率的方法、装置、通信设备及存储介质
WO2024065207A1 (zh) 一种数据发送方法、装置以及可读存储介质
WO2022257133A1 (zh) 多终端共享pdu会话的方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964816

Country of ref document: EP

Kind code of ref document: A1