WO2021012130A1 - 监听处理、策略下发方法及装置、通信设备及存储 - Google Patents

监听处理、策略下发方法及装置、通信设备及存储 Download PDF

Info

Publication number
WO2021012130A1
WO2021012130A1 PCT/CN2019/096915 CN2019096915W WO2021012130A1 WO 2021012130 A1 WO2021012130 A1 WO 2021012130A1 CN 2019096915 W CN2019096915 W CN 2019096915W WO 2021012130 A1 WO2021012130 A1 WO 2021012130A1
Authority
WO
WIPO (PCT)
Prior art keywords
wake
signal
monitoring
period
pdcch
Prior art date
Application number
PCT/CN2019/096915
Other languages
English (en)
French (fr)
Inventor
李艳华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201980001466.4A priority Critical patent/CN110521275B/zh
Priority to PCT/CN2019/096915 priority patent/WO2021012130A1/zh
Publication of WO2021012130A1 publication Critical patent/WO2021012130A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication but is not limited to the field of wireless communication, and in particular to a method and device for monitoring a physical downlink control channel (PDCCH), a method and device for issuing a strategy, communication equipment, and a non-temporary computer Read the storage medium.
  • PDCCH physical downlink control channel
  • the terminal has a Discontinuous Reception (DRX) state, and the terminal in the DRX state has lower power consumption than the terminal in the connected state.
  • DRX Discontinuous Reception
  • a DRX cycle In the DRX state, a DRX cycle is set. As shown in FIG. 1, a DRX cycle includes: a wake-up period (On Duration) and a sleep period (Opportunity for DRX).
  • the terminal During the wake-up period, the terminal is in the awake state, and the terminal can monitor the physical downlink control channel (PDCCH); during the sleep period, the terminal is in the dormant state, and the terminal cannot monitor the PDCCH.
  • PDCCH physical downlink control channel
  • a wake-up signal (Wake UP Signaling, WUS) is also introduced.
  • the WUS is sent before the wake-up period.
  • the terminal monitors the WUS to determine whether the wake-up state needs to be maintained in the subsequent wake-up period. To monitor the PDCCH.
  • the embodiment of the application provides a method and device for processing PDCCH monitoring, a method and device for issuing a policy, a communication device, and a non-transitory computer-readable storage medium.
  • the first aspect of the embodiments of the present application provides a PDCCH monitoring processing method, including:
  • the second aspect of the embodiments of the present application provides a method for issuing a policy, including:
  • a bandwidth part switching command or an RRC message containing a monitoring strategy is issued, where the monitoring strategy is used to determine the monitoring result of the wake-up signal used for PDCCH monitoring.
  • a third aspect of the embodiments of the present application provides a PDCCH monitoring and processing device, including:
  • the receiving module is configured to receive the bandwidth part switching command or the monitoring strategy included in the radio resource control RRC message;
  • the monitoring processing module is configured to perform PDCCH monitoring processing according to the monitoring result of the wake-up signal indicated by the monitoring strategy.
  • the fourth aspect of the embodiments of the present application provides a policy issuing device, including:
  • the issuing module is configured to issue a bandwidth part switching command or an RRC message including a monitoring strategy, wherein the monitoring strategy is used to determine the monitoring result of the wake-up signal used for PDCCH monitoring.
  • a fifth aspect of the embodiments of the present application provides a communication device, which includes:
  • the processor is respectively connected to the transceiver and the memory, and is configured to control the transceiver's transmission and reception by executing computer executable instructions stored on the memory, and can implement the PDCCH monitoring processing method provided by any of the foregoing technical solutions or Strategy issuance method.
  • the sixth aspect of the embodiments of the present application provides a non-transitory computer-readable storage medium on which computer-executable instructions are stored; after the computer-executable instructions are executed by a processor, they can Implement the physical downlink control channel monitoring method or policy issuing method provided by any of the foregoing technical solutions.
  • the monitoring strategy is carried in the bandwidth switching command that triggers the terminal to switch from the source bandwidth part to the target bandwidth part, or the RRC message for establishing a connection between the terminal and the base station, so that after the terminal switches to the target bandwidth part Or after establishing a connection with the base station, simply miss the monitoring moment of WUS, or perform PDCCH monitoring processing according to the monitoring result of WUS indicated by the monitoring strategy.
  • PDCCH monitoring is not performed when PDCCH monitoring is performed, and PDCCH monitoring is performed when PDCCH monitoring is not required.
  • Figure 1 is a schematic diagram of a DRX
  • FIG. 2 is a schematic structural diagram of a wireless communication system provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a PDCCH monitoring method provided by an embodiment of this application.
  • FIG. 4A is a schematic flowchart of a PDCCH monitoring method provided by an embodiment of this application.
  • 4B is a schematic flowchart of another PDCCH monitoring method provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of one WUS corresponding to N wake-up periods according to an embodiment of the application
  • FIG. 6 is a schematic diagram of switching to a target bandwidth part when the mapping relationship between WUS and wake-up period is 1:1 according to an embodiment of the application;
  • FIG. 7 is a schematic diagram of switching to a target bandwidth part when one WUS corresponds to one wake-up period according to an embodiment of the application;
  • FIG. 8 is a schematic diagram of switching to a target bandwidth part when one WUS corresponds to N wakeup periods according to an embodiment of the application;
  • FIG. 9 is a schematic diagram of a policy issuance provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a PDCCH monitoring and processing apparatus provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a policy issuing device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a base station provided by an embodiment of this application.
  • FIG. 2 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include several terminals 110 and several base stations 120.
  • the terminal 110 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 110 can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal 110 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, terminal).
  • the terminal 110 may also be a device of an unmanned aerial vehicle.
  • the terminal 110 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
  • the terminal 110 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as the new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 120 may be an evolved base station (eNB) used in a 4G system.
  • the base station 120 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • the base station 120 adopts a centralized and distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer.
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present application does not limit the specific implementation manner of the base station 120.
  • a wireless connection can be established between the base station 120 and the terminal 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on 5G-based next-generation mobile communication network technology standards.
  • an E2E (End to End) connection may also be established between the terminals 110.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), policy and charging rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • this embodiment provides a method for monitoring the physical downlink control channel PDCCH, which includes:
  • Step S110 Receive the bandwidth part switching command or the monitoring strategy included in the radio resource control RRC message
  • Step S120 Perform PDCCH monitoring processing according to the monitoring result of the wake-up signal indicated by the monitoring strategy.
  • the bandwidth part (Band Width Part, BWP) switching command is used to trigger the terminal to switch from the source bandwidth part to the target bandwidth part.
  • the switching from the source bandwidth part to the target bandwidth part includes:
  • the terminal establishes a connection with the base station through the source bandwidth part, changed to: the terminal establishes a connection with the base station through the target bandwidth part;
  • the terminal uses the source bandwidth part to interact with the base station, which is changed to: the terminal interacts with the base station through the target bandwidth part.
  • the content of interaction here includes: data, signal, and/or signaling.
  • the RRC message may be any message issued by the RRC layer.
  • the RRC message may be a message related to the establishment of an RRC connection between the terminal and the base station.
  • the RRC message may include at least one of the following:
  • RRC messages can all be messages exchanged during the process of establishing a connection between the terminal and the base station.
  • the handover time for the terminal to switch to the target bandwidth portion may be exactly between the listening moments of two wake-up signals (Wake Up Signaling, WUS), or the time when the connection between the terminal and the base station is established, or it may be exactly between two Between the monitoring moments of WUS.
  • the switching time and the monitoring time at this time are both within the effective range of the WUS issued at the previous monitoring time, and the WUS issued at the previous monitoring time of the current time can be called the current WUS.
  • the PDCCH monitoring process is performed according to the monitoring result of the wake-up signal indicated by the monitoring strategy.
  • the monitoring processing here includes: monitoring the PDCCH or not monitoring the PDCCH.
  • the monitoring strategy of the previous wake-up signal can be determined in time according to the monitoring strategy.
  • the monitoring or non-monitoring of the PDCCH in the awakening moment mapped at the current moment is performed according to the monitoring result.
  • WUS is a low-power detection signal.
  • the terminal can complete WUS detection or monitoring with very low power consumption; further based on the monitoring results of WUS monitoring, determine whether it is necessary to perform PDCCH during the mapped wake-up period. monitor. If the terminal does not monitor the WUS corresponding to the wake-up period, the wake-up period can be skipped, that is, the sleep state is still maintained during the wake-up period, so that the PDCCH is not monitored, so as to further save the power consumption of the terminal.
  • the terminal may switch the service scenario, and according to the configuration information of the bandwidth part, the terminal will switch from the source bandwidth part to the target bandwidth part.
  • some terminals may be switched from the source bandwidth part to the target bandwidth part.
  • the terminal switches to the target bandwidth, it may just miss the listening moment of the wake-up signal on the target bandwidth part. At this time, the terminal does not know how to monitor the PDCCH during the wake-up period.
  • the handover process of the bandwidth part may be accompanied by the establishment of an RRC connection with the base station on the target bandwidth part; or the terminal needs to re-establish the RRC connection with the base station during the process of switching from the non-connected state to the connected state; or, the terminal needs to perform services Reconfiguration, for example, using an RRC connection reconfiguration message to configure DRX parameters or WUS configuration for the terminal.
  • the RRC connection re-establishment message can also be used to configure DRX parameters or WUS configuration for the UE.
  • the DRX parameter includes but is not limited to: the length of the DRX cycle.
  • the WUS configuration includes, but is not limited to: WUS signal patterns and the like.
  • the terminal has the requirement of partial switching of the bandwidth and the requirement of RRC connection establishment or reconfiguration or reconnection.
  • the terminal will monitor the PDCCH channel according to the monitoring result of the currently monitored wake-up signal according to the monitoring strategy, or not perform the monitoring of the PDCCH channel according to the monitoring result of the currently not monitored wake-up signal; In this way, it reduces the monitoring confusion of the terminal that the terminal does not know how to handle.
  • the monitoring of the PDCCH is to monitor whether there is signal transmission on the PDCCH.
  • PDCCH can be used to transmit PDCCH signaling and so on.
  • the PDCCH corresponds to a specific time-frequency resource.
  • the terminal monitors the PDCCH during the wake-up period, it can perform signal detection on the time-frequency resource mapped by the PDCCH, so as to realize the monitoring of the PDCCH.
  • the monitoring results monitored by WUS include but are not limited to: monitoring the signal strength of WUS on the corresponding bandwidth reaches the strength threshold, etc.; if WUS is not monitored or the strength of the monitored WUS does not reach the strength threshold, it can be considered that WUS is not Overheard.
  • the step S120 may include:
  • Step S121 Switch from the source bandwidth part to the target bandwidth part according to the bandwidth part switching command or when the RRC message is received, if the listening moment of the wake-up signal corresponding to the current moment is missed, according to the listening strategy according to the wake-up The monitoring result of the signal being monitored is monitored for the PDCCH.
  • the step S120 may include:
  • Step S122 Switch from the source bandwidth part to the target bandwidth part according to the bandwidth part switching command or when the RRC message is received, if the listening moment of the wake-up signal corresponding to the current moment is missed, according to the listening strategy according to the wake-up If the signal is not monitored, the PDCCH monitoring is not performed.
  • monitoring the PDCCH according to the monitoring result of the wake-up signal being monitored according to the monitoring strategy includes:
  • the PDCCH is monitored during the wake-up period within the effective range of the wake-up signal.
  • One WUS corresponds to a specific PDCCH monitoring range, and the monitoring range may be the aforementioned effective range.
  • WUS and wake-up period have two mapping relationships, one is 1:1, that is, one WUS can correspond to one wake-up period in the DRX cycle; the other is: 1:N, and one WUS signal corresponds to multiple Wake-up periods, these wake-up periods are the effective range of the WUS mapping.
  • N is a positive integer equal to or greater than 2.
  • Figure 5 shows a schematic diagram of a 1:1 mapping relationship between WUS and wake-up period.
  • wake-up period 1, wake-up period 2 and wake-up period 3 respectively correspond to their respective WUSs, and are WUS1, WUS2, and WUS3 respectively.
  • Fig. 6 shows a schematic diagram of the mapping relationship between WUS and wake-up period of 1:N.
  • the terminal detects 1 WUS, it needs to monitor the PDCCH during the N wake-up periods mapped by the WUS.
  • one WUS corresponds to three wake-up periods, namely, wake-up period a, wake-up period a+1, and wake-up period a+2.
  • the effective range of the missed wake-up signal in this embodiment may include one or more wake-up periods.
  • the PDCCH monitoring will be performed within the effective range of the wake-up signal to reduce the out-of-effective range Unnecessary power consumption of the terminal caused by the monitoring.
  • monitoring the PDCCH during the wake-up period within the effective range of the wake-up signal includes:
  • PDCCH monitoring is performed within the remaining time of a currently started wake-up period mapped by the wake-up signal.
  • the current here may include: the time when the terminal switches to the target bandwidth part.
  • the effective range of the WUS is a wake-up period, and the PDCCH is monitored during the wake-up period.
  • the terminal switches from the source bandwidth part to the target bandwidth part or receives an RRC message, it not only misses the listening moment of the current wake-up signal, but also the wake-up period mapped by the wake-up signal has begun.
  • the remaining time of the initial wake-up period monitors the PDCCH, thus reducing the missed important content delivered by the PDCCH.
  • Case 1 After the wake-up period 1 of the target bandwidth part has started, the terminal switches to the target bandwidth part. At this time, the terminal performs the wake-up period 1 from the current time to the end time according to the monitoring policy execution as the monitoring result of the wake-up signal. PDCCH monitoring between. Referring to Figure 2, the terminal switches to the target bandwidth part at time T2, and the switching time T2 is in the wake-up period n. At this time, the terminal missed the listening time of the wake-up signal (the time indicated by the upward solid arrow in Figure 7), PDCCH monitoring is performed in the remaining time of the wake-up period n.
  • monitoring the PDCCH during the wake-up period within the effective range of the wake-up signal includes:
  • PDCCH monitoring is performed in a wake-up period mapped by the wake-up signal.
  • the terminal When the mapping relationship between the wake-up signal and the wake-up period is 1:1, and the wake-up period of the wake-up signal mapping has not yet started, it means that the terminal switches to the switching time on the target bandwidth part or when the RRC message is received. Between the monitoring moment of the current wake-up signal and the start time of the wake-up period mapped by the wake-up signal, the terminal will monitor the PDCCH during the entire wake-up period mapped by the current wake-up time.
  • the terminal When the terminal switches to the target bandwidth part or receives an RRC message between the monitoring moment of the current wake-up signal and the start moment of the wake-up period, the terminal will monitor the PDCCH in the entire wake-up period mapped by the wake-up signal.
  • time T2 is between the listening time of the current wake-up signal and the start time of the wake-up period n mapped by the wake-up signal In this way, the terminal will monitor the PDCCH during the entire wake-up period n.
  • monitoring the PDCCH during the wake-up period within the effective range of the wake-up signal includes:
  • N 4
  • M can be any integer less than 4, for example, 3, 2, or 1.
  • the monitoring of the current wake-up signal is missed, and the N wake-up periods mapped by the wake-up signal have started, and the PDCCH monitoring is performed within the remaining time of the current wake-up period that has started and the remaining wake-up period . For example, if the terminal switches to the target bandwidth part or completes the establishment of the RRC connection with the base station during the first wake-up period, the terminal will remain in the first wake-up period before the end of the first wake-up period. PDCCH monitoring is performed during the time and the second to fourth wake-up periods.
  • monitoring the PDCCH during the wake-up period within the effective range of the wake-up signal includes:
  • PDCCH monitoring is performed within M wake-up periods after the current wake-up period mapped by the wake-up signal has started, where, N is a positive integer not less than 2, and M is a positive integer less than N.
  • the terminal if the terminal switches to the switching time on the target bandwidth portion or the receiving time of the RRC message, which falls within the current wake-up period, it will only perform PDCCH for M wake-up periods after the current wake-up period. , Instead of monitoring the current wake-up period.
  • monitoring the PDCCH during the wake-up period within the effective range of the wake-up signal includes:
  • PDCCH monitoring is performed within the M wake-up periods mapped by the wake-up signal, and M is an integer less than or equal to N.
  • the terminal when the terminal switches to the target bandwidth part or completes the RRC connection establishment with the base station when the first wake-up period of the N wake-up periods has not yet started, the terminal will perform the current wake-up signal mapping N PDCCH monitoring during a wake-up period.
  • one wake-up signal corresponds to three wake-up periods, namely, wake-up period n, wake-up period n+1, and wake-up period n+2.
  • the terminal If the terminal switches to the target bandwidth part of the handover time or the completion time of completing the RRC connection establishment with the base station is t1, the terminal will miss the listening moment of the wake-up signal, and it is the first of the 3 wake-up periods mapped by the wake-up signal Before the start time of the wake-up period, at this time, the terminal will monitor the PDCCH in the wake-up period n, the wake-up period n+1, and the wake-up period n+2 in sequence.
  • the terminal may sequentially monitor the PDCCH during the remaining time of the wake-up period n, the wake-up period n+1, and the wake-up period n+2.
  • the terminal If the terminal switches to the switching time on the target bandwidth part or the completion time of completing the RRC connection establishment with the base station is t2, the terminal will miss the listening moment of the wake-up signal, and it is the first of the three wake-up periods mapped by the wake-up signal After the wake-up period starts, at this time, the terminal can monitor the PDCCH in the wake-up period n+1 and the wake-up period n+2 in sequence.
  • the terminal If the terminal switches to the target bandwidth part of the handover time or the completion time of the completion of the RRC connection establishment with the base station is t3, the terminal will miss the listening moment of the wake-up signal, and it is the first of the three wake-up periods mapped by the wake-up signal After the wake-up period ends and before the wake-up period n+1 starts, at this time, the terminal may monitor the PDCCH during the wake-up period n+1 and the wake-up period n+2 in sequence.
  • not performing PDCCH monitoring according to the monitoring result that the wake-up signal is not monitored including:
  • the monitoring result of the current wake-up signal that missed the monitoring moment is that WUS is not monitored. If WUS is not monitored, the terminal can continue to stay dormant during the wake-up period, thus further reducing the terminal Power consumption.
  • not performing PDCCH monitoring during the wake-up period within the effective range of the wake-up signal includes:
  • the PDCCH is not performed within the remaining time of a wake-up period mapped by the currently started wake-up signal monitor.
  • a wake-up signal corresponds to a wake-up period, indicating that the effective range of the wake-up signal includes a wake-up period.
  • a wake-up signal corresponds to a wake-up period. Since it is determined that the wake-up signal that missed the monitoring moment is not monitored according to the monitoring strategy, the PDCCH monitoring is no longer performed during the wake-up period mapped by the wake-up signal.
  • This non-monitoring of the PDCCH includes: not performing PDCCH monitoring in the remaining time of the current wake-up period.
  • no PDCCH monitoring is performed, including:
  • the wake-up period mapped by the wake-up signal has not yet started, after the terminal switches to the target bandwidth part, it will remain in the dormant state during the wake-up period mapped by the wake-up signal that has not yet started, so as not to monitor the PDCCH.
  • the method further includes:
  • the mapping relationship between the wake-up signal and the wake-up period is 1:1, and when one of the wake-up periods mapped by the wake-up signal has already started, PDCCH monitoring continues for the remaining time in the initial wake-up period.
  • mapping relationship is 1:1. Even if the monitoring result indicated by the monitoring strategy is not monitored, because the mapping relationship is 1:1 and the corresponding wake-up period has started, then the wake-up signal that has started Continue to monitor the PDCCH in the remaining time period.
  • not performing PDCCH monitoring during the wake-up period within the effective range of the wake-up signal includes:
  • N wake-up periods When one wake-up signal corresponds to N wake-up periods, and the N wake-up periods mapped by the wake-up signal have started, within the remaining time of the current wake-up period mapped by the wake-up signal and M wake-ups after the remaining current wake-up period During the time period, PDCCH monitoring is not performed, where N is a positive integer not less than 2, and M is a positive integer less than N.
  • the terminal switches to the target bandwidth part within the time of N wake-up periods mapped by the wake-up signal.
  • the terminal directly does not perform PDCCH from the remaining time of the current wake-up period that has started and the remaining M wake-up periods Monitoring.
  • the current wake-up period is a wake-up period including the current moment.
  • not performing PDCCH monitoring during the wake-up period within the effective range of the wake-up signal includes:
  • N wake-up periods corresponds to N wake-up periods
  • M wake-up periods mapped by the wake-up signal have started, in the case of continuing to monitor the PDCCH for the remaining time of the current wake-up period mapped by the wake-up signal, the remaining current During the M wake-up periods after the wake-up period, PDCCH monitoring is not performed, where N is a positive integer not less than 2 and M is a positive integer less than N.
  • not performing PDCCH monitoring during the wake-up period within the effective range of the wake-up signal includes:
  • One wake-up signal corresponds to N wake-up periods, and when the M wake-up periods of the wake-up signal have not yet started, PDCCH monitoring is not performed within the M wake-up periods mapped by the wake-up signal, and M is an integer less than or equal to N.
  • one wake-up signal corresponds to N wake-up periods, which means that the effective range of one wake-up signal includes N wake-up periods.
  • the terminal may switch to the target bandwidth part before the first wake-up period starts, and at this time, it does not perform PDCCH monitoring during the N wake-up periods mapped by the wake-up signal.
  • the terminal may switch to the target bandwidth part at the dormant moment between two adjacent wake-up periods of N wake-up periods. At this time, the terminal will not monitor the PDCCH during the M wake-up periods after the current moment. .
  • the bandwidth part switching command or the RRC message may indicate the monitoring strategy through one or more indication bits.
  • the indication bit may be 1 bit.
  • the bandwidth part switching command or the indication bit included in the RRC message has a first value, it is determined that the missed wake-up signal has the monitored monitoring result;
  • the bandwidth part switching command or the indication bit included in the RRC message is the second value, it is determined that the missed wake-up signal has the unheard monitoring result.
  • this embodiment provides a method for issuing a policy, which includes:
  • Step S200 Issue a bandwidth part switching command or an RRC message containing a monitoring strategy, where the monitoring strategy is used to determine the monitoring result of the wake-up signal used for PDCCH monitoring.
  • the method provided in this embodiment can be applied to a base station.
  • the base station may issue the monitoring strategy according to the current service frequency of the terminal and current data transmission requirements. If the current service frequency is higher than the threshold or there is a current data transmission demand, a monitoring strategy indicating that the wake-up signal is monitored is issued. If the current service frequency is lower than the threshold or there is currently no data transmission demand, then the wake-up signal is issued indicating no The monitoring strategy being monitored.
  • the RRC message may include one of the following indications:
  • the method further includes:
  • the monitoring process of the PDCCH is performed according to the monitoring result of the wake-up signal indicated by the protocol information.
  • the corresponding wake-up signal monitoring moments may be different.
  • the predetermined time may include the time difference between the monitoring moments of at least two adjacent wake-up signals.
  • the terminal after the terminal switches to the target bandwidth part or after receiving the RRC message for a period of time, it can perform PDCCH monitoring processing according to the monitoring result of the wake-up signal indicated by the protocol information in the communication protocol.
  • the PDCCH monitoring processing of the same source includes: performing PDCCH monitoring processing or not performing PDCCH monitoring processing.
  • this embodiment also provides a PDCCH monitoring and processing device, including:
  • the receiving module 110 is configured to receive a bandwidth part switching command or a monitoring strategy included in a radio resource control RRC message;
  • the monitoring processing module 120 is configured to perform PDCCH monitoring processing according to the monitoring result of the wake-up signal indicated by the monitoring strategy.
  • the receiving module 110 and the monitoring processing module 120 may be program modules. After the program modules are executed by the processor, the PDCCH monitoring or non-monitoring processing can be implemented.
  • the receiving module 110 and the monitoring processing module 120 may be a combination of software and hardware, and the combination of software and hardware includes but is not limited to a complex programmable array or a field programmable array.
  • the receiving module 110 and the monitoring processing module 120 may be pure hardware modules, and the pure hardware modules may include, but are not limited to, application specific integrated circuits.
  • the monitoring processing module 120 includes:
  • the first submodule is configured to switch from the source bandwidth part to the target bandwidth part according to the bandwidth part switching command or after receiving the RRC message, if the listening moment of the wake-up signal is missed, according to the listening strategy according to the wake-up
  • the monitoring result of the monitored signal performing monitoring of the PDCCH
  • the second sub-module is configured to switch from the source bandwidth part to the target bandwidth part according to the bandwidth part switching command or after receiving the RRC message, if the listening moment of the wake-up signal is missed, according to the listening strategy according to the wake-up If the signal is not monitored, the PDCCH is not monitored.
  • the first sub-module is configured to perform the monitoring result in the wake-up period within the effective range of the wake-up signal according to the monitoring result of the wake-up signal being monitored according to the monitoring strategy PDCCH monitoring;
  • the second submodule is configured to not perform monitoring of the PDCCH according to the monitoring result that the wake-up signal is not monitored according to the monitoring strategy, including:
  • the PDCCH is not monitored during the wake-up period within the effective range of the wake-up signal.
  • the first sub-module is configured to when the mapping relationship between the wake-up signal and the wake-up period is 1:1, and one of the wake-up periods mapped by the wake-up signal has been At the beginning, the monitoring of the PDCCH is performed within the remaining time of one of the wake-up periods that have started in the current wake-up signal mapping.
  • the first submodule is configured to when the mapping relationship between the wakeup signal and the wakeup period is 1:1, and one of the wakeup periods mapped by the wakeup signal has not At the beginning, the PDCCH is monitored during one of the wake-up periods mapped by the wake-up signal.
  • the first sub-module is configured to: when the mapping relationship between the wake-up signal and the wake-up signal is 1:N, and the N wake-up periods mapped by the wake-up signal have started, the current The PDCCH monitoring is performed within the remaining time of the currently started wake-up period mapped by the wake-up signal and the remaining M wake-up periods after the current wake-up period, where N is a positive integer not less than 2, M is a positive integer less than N.
  • the first submodule is configured to, when the mapping relationship between the wake-up signal and the wake-up signal is 1:N, and the N wake-up periods mapped by the wake-up signal have started, Monitor the PDCCH within M wakeup periods after the current wakeup period mapped by the wakeup signal, where N is a positive integer not less than 2 and M is a positive integer less than N.
  • the first submodule is configured to be when the mapping relationship between the wake-up signal and the wake-up signal is 1:N, and the M wake-up periods of the wake-up signal have not yet started , In the M wake-up periods mapped by the wake-up signal, monitor the PDCCH, where M is an integer less than or equal to N.
  • the first sub-module is configured to when the mapping relationship between the wake-up signal and the wake-up period is 1:1, and one of the wake-up periods mapped by the wake-up signal has started No monitoring of the PDCCH is performed during the remaining time of the wake-up period that is currently started in the wake-up signal mapping.
  • the monitoring processing module further includes:
  • the third sub-module is configured to: if the monitoring moment of the wake-up signal corresponding to the current moment is missed, the mapping relationship between the wake-up signal and the wake-up period is 1:1, and one of the wake-up signal mappings When the wake-up period has started, the PDCCH monitoring is continued for the remaining time in the wake-up period that has started.
  • the second sub-module is configured to when the mapping relationship between the wake-up signal and the wake-up period is 1:1, and one of the wake-up periods mapped by the wake-up signal has not At the beginning, during one of the wake-up periods mapped by the wake-up signal, the PDCCH is not monitored.
  • the second submodule is configured to, when the mapping relationship between the wake-up signal and the wake-up signal is 1:N, and the N wake-up periods mapped by the wake-up signal have started, No monitoring of the PDCCH is performed during the remaining time of the current wake-up period that has already started mapped by the current wake-up signal and the remaining M wake-up periods after the current wake-up period, where N is not less than 2 A positive integer of, M is a positive integer less than N;
  • the mapping relationship between the wake-up signal and the wake-up signal is 1:N, and the N wake-up periods mapped by the wake-up signal have started, the current wake-up period mapped by the current wake-up signal has started.
  • the PDCCH monitoring will not be performed, where N is a positive integer not less than 2, and M is less than N Positive integer.
  • the second sub-module is configured to, when the mapping relationship between the wake-up signal and the wake-up signal is 1:N, and the M wake-up periods of the wake-up signal have not yet started, In the M wake-up periods mapped by the wake-up signal, the PDCCH is not monitored, M is a positive integer less than or equal to N, and N is a positive integer not less than 2.
  • the bandwidth part switching command or the indication bit included in the RRC message is the first value, it is determined that the missed wake-up signal has the monitored result
  • the bandwidth part switching command or the indication bit included in the RRC message is the second value, it is determined that the missed wake-up signal has the unheard monitoring result.
  • the RRC message includes one of the following:
  • the monitoring processing module 120 is further configured to: if the monitoring moment of the wake-up signal is missed after receiving the bandwidth part switching command or the RRC message for a predetermined time, the wake-up signal is indicated according to the protocol information. The monitoring result of the PDCCH is processed.
  • this embodiment also provides a policy issuing device, which includes:
  • the issuing module is configured to issue a bandwidth part switching command or an RRC message including a monitoring strategy, wherein the monitoring strategy is used to determine the monitoring result of the wake-up signal used for PDCCH monitoring.
  • the policy issuing device may be a device applied to a network element of an access network such as a base station, and can issue a bandwidth part switching command or an RRC message containing a monitoring policy through the issuing module.
  • the policy issuing device further includes: a storage module, which is connected to the issuing module and can be used to store the monitoring policy.
  • the RRC message includes one of the following:
  • the base station carries the WUS monitoring strategy in the BWP handover command or in the RRC message (including RRC connection reconfiguration, RRC connection reconfiguration, and RRC connection establishment), so that the terminal can follow the instructions given by the base station after the BWP handover or RRC connection reconfiguration.
  • the WUS monitoring strategy performs WUS monitoring processing.
  • the WUS monitoring strategy sent by the base station will instruct the terminal to take the WUS if it misses the current WUS monitoring moment after the BWP handover or after receiving the RRC message (including RRC connection reconfiguration, RRC connection reestablishment, and RRC connection establishment)
  • the monitoring strategy is based on WUS monitoring or processing according to WUS not monitoring.
  • it may be an explicit indication bit value "1", which means that the terminal missed after the BWP handover or after receiving the RRC message (including RRC connection reconfiguration and RRC connection reestablishment, and RRC connection establishment)
  • the monitoring strategy adopted at the WUS monitoring moment is to process the currently missed WUS monitoring moment as WUS monitoring.
  • it may be an explicit indication bit value "0", which means that the terminal missed after the BWP handover or after receiving the RRC message (including RRC connection reconfiguration and RRC connection reestablishment, and RRC connection establishment)
  • the monitoring strategy adopted is to process the currently missed WUS monitoring moment as if WUS is not monitored.
  • the monitoring strategy adopted is to process the currently missed WUS monitoring moment according to WUS monitoring, that is, to monitor the subsequent wake-up periods within the effective range of WUS:
  • the wake-up period corresponding to the current WUS may have started ,
  • the terminal still monitors the current remaining wake-up time period.
  • the terminal monitors the moment of the wake-up period that is about to start.
  • RRC message including but not limited to at least one of the following: RRC connection reconfiguration message, RRC connection reestablishment message, and RRC connection establishment message
  • the wake-up period corresponding to WUS has started.
  • M is the number of wakeup periods that the terminal missed out of N is excluded.
  • the terminal switches to the target BWP at the moment of the second wake-up period, the terminal starts monitoring from the remaining time of the second wake-up period, which includes a partial wake-up period and the remaining 2 wake-up periods.
  • the terminal will continue to monitor the remaining M upcoming wake-up time periods from the moment it switches to the target BWP.
  • M is the number of wakeup periods that the terminal missed out of N is excluded.
  • the terminal starts monitoring from the third wake-up period, that is, continues monitoring from the remaining two wake-up periods.
  • the wake-up period corresponding to the current WUS has not At the beginning, from the moment of switching to the target BWP, continue to monitor the remaining M upcoming wake-up time periods.
  • the monitoring strategy adopted is to process the current missed WUS monitoring moment as if there is no WUS monitoring, that is, wake up within the effective range of subsequent WUS No monitoring is performed during the period.
  • the terminal may be that the wake-up period corresponding to WUS has not yet started, and the terminal does not monitor the time of the wake-up period that is about to start.
  • the wake-up period corresponding to WUS may have started. At this time, the terminal will not respond to the wake-up period within the current WUS effective range. Monitor.
  • the terminal will continue to maintain the original wake-up period timer, namely Continue to monitor the currently effective wake-up period, but not monitor the complete wake-up period after the WUS effective range.
  • the terminal will not monitor the wake-up period within the current WUS effective range.
  • the protocol stipulates that after the BWP handover or after receiving the RRC message, if the terminal misses the WUS monitoring moment, the monitoring strategy adopted is to process the currently missed WUS monitoring moment as WUS monitoring.
  • An embodiment of the present application also provides a communication device, which may be a terminal, and can implement the PDCCH monitoring method provided by any of the foregoing technical solutions.
  • the communication device can also be an access network element such as a base station, and can implement the policy issuing method provided by any of the foregoing technical solutions.
  • the communication device includes a transceiver, a memory, and a processor.
  • the transceiver can be used to interact with other devices.
  • the transceiver includes but is not limited to a transceiver antenna.
  • the memory can store computer-executable instructions; the processor is connected to the transceiver and the memory, and can implement the PDCCH monitoring processing method or information downloading method provided by any of the foregoing technical solutions, for example, as shown in Figure 3, Figure 4A, Figure 4B and Figure 9 At least one of the methods shown.
  • Fig. 12 shows a terminal according to an exemplary embodiment.
  • the terminal may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, And the communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support the operation of the device 800. Examples of these data include instructions for any application or method operated on the terminal 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or nonvolatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 806 provides power for various components of the terminal 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the terminal 800.
  • the multimedia component 808 includes a screen that provides an output interface between the terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC).
  • the microphone When the terminal 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the terminal 800 with various status assessments.
  • the sensor component 814 can monitor the on/off status of the device 800 and the relative positioning of components, such as the display and keypad of the terminal 800.
  • the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800. The presence or absence of contact with the terminal 800, the orientation or acceleration/deceleration of the terminal 800, and the temperature change of the terminal 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal 800 may be configured by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the terminal 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Figure 13 is a schematic diagram of a base station.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute the PDCCH monitoring method shown in FIG. 4 and/or FIG. 5.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the embodiments of the present application also provide a non-transitory computer-readable storage medium on which computer-executable instructions are stored; after the computer-executable instructions are executed by a processor, the foregoing can be realized
  • the PDCCH monitoring processing method and/or information issuing method provided by any technical solution, for example, at least one of the methods shown in FIG. 3, FIG. 4A, FIG. 4B, and FIG. 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种PDCCH监听方法及装置、策略下发方法及装置、通信设备及非临时性计算机可读存储介质。所述PDCCH监听处理方法包括:接收带宽部分切换命令或者无线资源控制RRC消息包含的监听策略;根据所述监听策略所指示唤醒信号的监听结果,进行PDCCH的监听处理。

Description

监听处理、策略下发方法及装置、通信设备及存储 技术领域
本申请涉及无线通信领域但不限于无线通信领域,尤其涉及一种物理下行控制控制信道(Physical Downlink Control Channel,PDCCH)监听方法及装置、策略下发方法及装置、通信设备及非临时性计算机可读存储介质。
背景技术
终端具有非连续接收(Discontinuous Reception,DRX)态,在该DRX态的终端相对于处于连接态的终端功耗更低。
在DRX态下,设置有DRX周期,参考图1所示,在一个DRX周期内包括:唤醒时段(On Duration)和休眠时段(Opportunity for DRX)。
在唤醒时段内终端处于唤醒状态,且终端可以监听物理下行控制信道(physical downlink control channel,PDCCH);在休眠时段内终端处于休眠状态,且终端不可以监听所述PDCCH。
为了进一步节省处于DRX态终端的功耗,还引入了唤醒信号(Wake UP Signaling,WUS),该WUS在唤醒时段之前进行发送,终端通过监听WUS,确定在后续的唤醒时段是否需要维持唤醒状态,以监听所述PDCCH。
发明内容
本申请实施例提供一种PDCCH监听处理方法及装置、策略下发方法及装置、通信设备及非临时性计算机可读存储介质。
本申请实施例第一方面提供一种PDCCH监听处理方法,包括:
接收带宽部分切换命令或者无线资源控制RRC消息包含的监听策略;
根据所述监听策略所指示唤醒信号的监听结果,进行PDCCH的监听处理。
本申请实施例第二方面提供一种策略下发方法,包括:
下发包含监听策略的带宽部分切换命令或者RRC消息,其中,所述监听策略,用于确定用于进行PDCCH监听的唤醒信号的监听结果。
本申请实施例第三方面提供一种PDCCH监听处理装置,包括:
接收模块,被配置为接收带宽部分切换命令或者无线资源控制RRC消息包含的监听策略;
监听处理模块,被配置为根据所述监听策略所指示唤醒信号的监听结果,进行PDCCH的监听处理。
本申请实施例第四方面提供一种策略下发装置,包括:
下发模块,被配置为下发包含监听策略的带宽部分切换命令或者RRC消息,其中,所述监听策略,用于确定用于进行PDCCH监听的唤醒信号的监听结果。
本申请实施例第五方面提供一种通信设备,其中,包括:
收发器;
存储器;
处理器,分别与所述收发器及存储器连接,配置为通过执行存储在所述存储器上计算机可执行指令,控制所述收发器的收发,并能够实现前述任意技术方案提供的PDCCH监听处理方法或者策略下发方法。
本申请实施例第六方面提供一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质上存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现前述任意技术方案提供的物理下行控制信道的监听方法或者策略下发方法。
本实施例提供的技术方案,在触发终端从源带宽部分切换到目标带宽 部分的带宽切换命令中,或者是终端与基站建立连接的RRC消息中携带监听策略,如此终端切换到目标带宽部分上之后或者与基站建立连接之后,简便错过WUS的监听时刻,也可以根据监听策略所指示的WUS的监听结果,进行PDCCH的监听处理。如此,相当于终端内未设置监听策略,进行PDCCH的监听决策的相关技术,能够减少终端不知道处理导致的终端的处理换乱现象,同时减少了终端随机选择是否进行PDCCH的监听导致的需要进行PDCCH监听时却未进行PDCCH监听,而无需监听PDCCH时却进行了PDCCH的监听。
附图说明
图1为一种DRX的示意图;
图2为本申请实施例提供的一种无线通信***的结构示意图;
图3为本申请实施例提供的一种PDCCH监听方法的流程示意图;
图4A为本申请实施例提供的一种PDCCH监听方法的流程示意图;
图4B为本申请实施例提供的另一种PDCCH监听方法的流程示意图;
图5为本申请实施例提供的一种一个WUS对应于N个唤醒时段的示意图;
图6为本申请实施例提供的一种在WUS与唤醒时段之间映射关系为1:1情况下,切换到目标带宽部分上的示意图;
图7为本申请实施例提供的一种在一个WUS对应于1个唤醒时段情况下,切换到目标带宽部分上的示意图;
图8为本申请实施例提供的一种在一个WUS对应于N个唤醒时段情况下,切换到目标带宽部分上的示意图;
图9为本申请实施例提供的一种策略下发的示意图;
图10为本申请实施例提供的一种PDCCH监听处理装置的结构示意图;
图11为本申请实施例提供的一种策略下发装置的结构示意图;
图12为本申请实施例提供的一种终端的结构示意图;
图13为本申请实施例提供的一种基站的结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图2,其示出了本申请实施例提供的一种无线通信***的结构示意图。如图2所示,无线通信***是基于蜂窝移动通信技术的通信***,该无线通信***可以包括:若干个终端110以及若干个基站120。
其中,终端110可以是指向用户提供语音和/或数据连通性的设备。终端110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端110可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,终端)。或者,终端110也可以是无人飞行器的设备。或者,终端110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信***中的网络侧设备。其中,该无线通信***可以是***移动通信技术(the 4th generation mobile communication, 4G)***,又称长期演进(Long Term Evolution,LTE)***;或者,该无线通信***也可以是5G***,又称新空口(new radio,NR)***或5G NR***。或者,该无线通信***也可以是5G***的再下一代***。其中,5G***中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G***中采用的演进型基站(eNB)。或者,基站120也可以是5G***中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本申请实施例对基站120的具体实现方式不加以限定。
基站120和终端110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于***移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信***还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信***中的核心网设备,比如,该网络管理设备130可以 是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本申请实施例不做限定。
如图3所示,本实施例提供一种物理下行控制信道PDCCH的监听方法,包括:
步骤S110:接收带宽部分切换命令或者无线资源控制RRC消息包含的监听策略;
步骤S120:根据所述监听策略所指示唤醒信号的监听结果,进行PDCCH的监听处理。
所述带宽部分(Band Width Part,BWP)切换命令,用于触发终端从源带宽部分切换到目标带宽部分上。
此处的从源带宽部分切换到目标带宽部分,包括:
终端通过源带宽部分与基站建立连接,变更为:终端通过目标带宽部分与基站建立连接;
和/或,
终端利用源带宽部分与基站进行交互,变更为:终端通过目标带宽部分与基站进行交互。这里的交互的内容包括:数据、信号和/或信令等。
所述RRC消息可为RRC层下发的任何消息。在本实施例中,所述RRC消息可为与终端和基站之间RRC连接建立相关的消息。例如,所述RRC消息可包括以下至少之一:
RRC连接建立消息;
RRC连接重建立消息;
RRC连接配置消息;
RRC连接重配置消息。
这些RRC消息都可为终端与基站之间建立连接的过程中所交互的消息。
终端切换到目标带宽部分上的切换时间,可能恰好位于两个唤醒信号(Wake Up Signaling,WUS)的监听时刻之间,或者,终端与基站建立连接的连接建立完成时刻,也可能恰好位于两个WUS的监听时刻之间。此时的切换时刻和监听时刻,都为前一个监听时刻下发的WUS的生效范围内,该当前时刻的前一个监听时刻下发的WUS可以称之为当前WUS。在本实施例中会根据监听策略所指示的唤醒信号的监听结果,来执行PDCCH的监听处理。此处的监听处理包括:监听PDCCH或者不监听PDCCH。
若利用BWP切换命令及RRC消息携带所述监听策略,如此在终端切换到目标带宽部分上之后或者与基站完成RRC连接建立之后,就能够及时根据监听策略确定出当前时刻的前一个唤醒信号的监听结果,并根据该监听结果进行当前时刻所映射的唤醒时刻内PDCCH监听或不监听。
WUS是一种低功耗的检测信号,如此,终端可以消耗很低的功耗就能够完成WUS的检测或监听;再进一步根据WUS监听的监听结果,确定是否需要在映射的唤醒时段进行PDCCH的监听。终端未监听到对应唤醒时段的WUS,可以跳过该唤醒时段,即在该唤醒时段内依然维持休眠状态,从而不会监听PDCCH,以进一步节省终端的功耗。
在一些实施例中,终端可能进行了业务场景的切换,根据带宽部分的配置信息,终端会从源带宽部分切换到目标带宽部分。
在另一些实施例中,在进行带宽负载均衡时,可能会有部分终端被 从源带宽部分切换到目标带宽部分。
但是终端在切换到目标带宽上之后,可能刚好错过了与目标带宽部分上唤醒信号的监听时刻。此时,终端不知道如何进行唤醒时段内的PDCCH的监听。
在带宽部分切换过程中可能伴随着在目标带宽部分上与基站建立RRC连接;或者终端在非连接态切换到连接态的过程中,需要与基站重新建立RRC连接;或者,需要给终端进行业务的重配,比如,利用RRC连接重配置消息来给终端配置DRX参数或者WUS配置。重建发生的时候,也可以利用RRC连接重建消息来给UE配置DRX参数或者WUS配置。
所述DRX参数包括但不限于:DRX周期的长度。
所述WUS配置包括但不限于:WUS信号的图样等。
总之,终端在使用移动业务的过程中,有带宽部分切换的需求和RRC连接建立或者重配置或重连接等需求。
有鉴于此,本实施例中,终端会根据监听策略按照当前监听到了唤醒信号的监听结果,进行PDCCH信道的监听,或者,按照当前未监听到唤醒信号的监听结果,不进行PDCCH信道的监听;如此,减少终端不知道如何处理,导致的终端的监听混乱现象。
在本实施例中进行PDCCH的监听,为监听PDCCH上是否有信号传输。PDCCH可用于传输PDCCH信令等。PDCCH对应了特定的时频资源,终端在唤醒时段进行PDCCH监听时,可以在PDCCH映射的时频资源上进行信号检测,从而实现对PDCCH的监听。
WUS被监听到的监听结果包括但不限于:监听到对应带宽上的WUS的信号强度达到强度阈值等;若未监听到WUS或者监听到的WUS的强度未达到强度阈值,则可认为WUS未被监听到。
在一些实施例中,如图4A所示,所述步骤S120可包括:
步骤S121:从根据带宽部分切换命令从源带宽部分切换到目标带宽部分上或者在收到RRC消息之时,若错过了当前时刻所对应唤醒信号的监听时刻,根据所述监听策略依照所述唤醒信号被监听到的监听结果,进行所述PDCCH的监听。
如图4B所示,所述步骤S120可包括:
步骤S122:从根据带宽部分切换命令从源带宽部分切换到目标带宽部分上或者在收到RRC消息之时,若错过了当前时刻所对应唤醒信号的监听时刻,根据所述监听策略依照所述唤醒信号未被监听到的监听结果,不进行所述PDCCH的监听。
在一些实施例中,根据监听策略依照唤醒信号被监听到的监听结果进行PDCCH的监听,包括:
根据监听策略依照唤醒信号被监听到的监听结果,在唤醒信号的生效范围内的唤醒时段内,进行PDCCH的监听。
一个WUS对应了特定的PDCCH的监听范围,该监听范围可为前述的生效范围。
例如,WUS与唤醒时段具有两种映射关系,一种是1:1,即一个WUS可以对应于DRX周期中的一个唤醒时段;另一种是:1:N,及一个WUS信号对应了多个唤醒时段,这些唤醒时段即为该WUS映射的生效范围。N为等于或大于2的正整数。
图5所示为WUS与唤醒时段之间映射关系为1:1的示意图,如此,唤醒时段1、唤醒时段2及唤醒时段3分别对应了各自的WUS,且分别是WUS1、WUS2及WUS3。
图6所示为WUS与唤醒时段之间映射关系为1:N的示意图。如此,若终端若监听到了1个WUS,则需要在该WUS映射的N个唤醒时段内 均进行PDCCH的监听。在图6中一个WUS对应了3个唤醒时段,分别是唤醒时段a、唤醒时段a+1及唤醒时段a+2。
在本实施例中错过的唤醒信号的生效范围可能包括一个或多个唤醒时段。
在本实施例中,若错过了当前唤醒信号的监听时刻,根据监听策略视为唤醒信号被监听到的监听结果时,则会在该唤醒信号的生效范围内进行PDCCH的监听,减少生效范围外的监听导致的终端不必要的功耗。
在一些实施例中,在唤醒信号的生效范围内的唤醒时段内进行PDCCH的监听,包括:
在唤醒信号与唤醒时段之间的映射关系为1:1时,且唤醒信号映射的一个唤醒时段已经开始时,在唤醒信号映射的一个当前已经开始的唤醒时段的剩余时间内进行PDCCH的监听。
此处的当前可包括:终端切换到目标带宽部分上的时刻。
例如,若WUS与唤醒时段之间的映射关系为1:1,则该WUS的生效范围为一个唤醒时段,在该唤醒时段内进行PDCCH的监听。
若终端从源带宽部分切换到目标带宽部分上时或者收到RRC消息时,不仅错过了当前唤醒信号的监听时刻,而且唤醒信号所映射的唤醒时段已经开始,则从当前时刻的开始,在已经开始的唤醒时段的剩余时间监听PDCCH,如此,减少错过PDCCH下发的重要内容。
参考图7所示,WUS与唤醒时段之间的映射关系为1:1。图7展示了有两种情况:
情况1:在目标带宽部分唤醒时段1已经开始后,终端切换到目标带宽部分上,此时,终端根据监听策略执行视为监听到了唤醒信号的监听结果进行唤醒时段1从当前时刻以后到结束时刻之间的PDCCH的监听。参考图2中,终端在T2时刻切换到目标带宽部分上,切换时刻T2位于 唤醒时段n上,此时,终端错过了唤醒信号的监听时刻(图7中向上的实线箭头所示时刻),在唤醒时段n的剩余时间内进行PDCCH的监听。
在一些实施例中,在唤醒信号的生效范围内的唤醒时段内进行PDCCH的监听,包括:
在唤醒信号与唤醒时段之间的映射关系为1:1时,且唤醒信号映射的一个唤醒时段尚未开始时,在唤醒信号映射的一个唤醒时段内进行PDCCH的监听。
在在唤醒信号与唤醒时段之间的映射关系为1:1时,且唤醒信号映射的唤醒时段尚未开始,即表明终端切换到目标带宽部分上的切换时刻或与接收到RRC消息之时,是在当前唤醒信号的监听时刻和该唤醒信号映射的唤醒时段的起始时刻之间,则终端会在当前的唤醒时刻映射的整个唤醒时段内进行PDCCH的监听。
参考图7所示的情况2:
终端在当前唤醒信号的监听时刻和唤醒时段的起始时刻之间切换到目标带宽部分上或接收到RRC消息之时,此时,终端会监听唤醒信号映射的整个唤醒时段内的PDCCH。
参考图7所示,终端在T2时刻切换到目标带宽部分上或者完成与接收到RRC消息之时,T2时刻在当前唤醒信号的监听时刻和唤醒信号所映射的唤醒时段n的起始时刻之间,如此,终端会在整个唤醒时段n内进行PDCCH的监听。
在一些实施例中,在唤醒信号的生效范围内的唤醒时段内进行PDCCH的监听,包括:
在一个唤醒信号对应于N个唤醒时段,且唤醒信号映射的N个唤醒时段已经开始时,在唤醒信号映射的已经开始的当前唤醒时段的剩余时间内及剩余的当前唤醒时段后的M个唤醒时段内,进行PDCCH的监听, 其中,N为不小于2的正整数,M为小于N的正整数。
例如,N=4,M可为小于4任意整整数,例如,3、2或1等。
在本实施例中,错过了当前唤醒信号的监听,且唤醒信号所映射的N个唤醒时段已经开始,在当前的已经开始的唤醒时段的剩余时间内,及剩余的唤醒时段内进行PDCCH的监听。例如,在第1个唤醒时段的时间内终端切换到了目标带宽部分上或完成与基站之间的RRC连接建立,则会在第1个唤醒时段未结束时,终端在第1个唤醒时段的剩余时间及第2至4个唤醒时段内均进行PDCCH的监听。
在一些实施例中,在唤醒信号的生效范围内的唤醒时段内进行PDCCH的监听,包括:
在一个唤醒信号对应于N个唤醒时段,且唤醒信号映射的N个唤醒时段已经开始时,在唤醒信号映射的已经开始的当前唤醒时段后的M个唤醒时段内,进行PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
在本实施例中,若终端切换到目标带宽部分上的切换时刻或者接收到RRC消息的收到时刻,正好落在当前唤醒时段内,则会仅对当前唤醒时段之后的M个唤醒时段进行PDCCH的监听,而不再对当前唤醒时段进行监听。
例如,N=3,M=2;若终端在第1个唤醒时段所映射的时间内切换到目标带宽部分上或者接收到RRC消息,在本实施例中,终端不会对已经开始但是尚未结束的第1个唤醒时段的剩余时间继续进行PDCCH的监听,而是会直接从第2个唤醒时段开始PDCCH的监听,并在第2个唤醒时段和第3个唤醒时段进行PDCCH的监听。
在一些实施例中,在唤醒信号的生效范围内的唤醒时段内进行PDCCH的监听,包括:
在一个唤醒信号对应于N个唤醒时段,且唤醒信号的M个唤醒时段尚未开始时,在唤醒信号映射的M个唤醒时段内,进行PDCCH的监听,M为小于或者等于N的整数。
在一些实施例中,终端在N个唤醒时段中第1个唤醒时段尚未开始的情况下,切换到目标带宽部分上或者完成与基站之间RRC连接建立,则终端会进行当前唤醒信号映射的N个唤醒时段的PDCCH的监听。
在另一些实施例中,终端在N个唤醒时段的中相邻两个唤醒时段之间的休眠时段内切换到目标带宽上或者完成与基站之间RRC连接建立,则终端仅会监听尚未开始的剩余的M个唤醒时段内的PDCCH。例如,N=4,若终端在第2个唤醒时段结束后,第3个唤醒时段开始前切换到目标带宽上或者完成与基站之间RRC连接建立,则终端仅会继续监听剩余的第3个唤醒时段和第4个唤醒时段内的PDCCH。
如图8所示,一个唤醒信号(图8中用向上指示的实线箭头表示)对应了3个唤醒时段,分别是唤醒时段n、唤醒时段n+1及唤醒时段n+2。
若终端切换到目标带宽部分上的切换时刻或者完成与基站之间RRC连接建立的完成时刻为t1,终端会错过唤醒信号的监听时刻,且是在唤醒信号映射的3个唤醒时段中第1个唤醒时段的起始时刻之前,此时,终端会依次在唤醒时段n、唤醒时段n+1及唤醒时段n+2内,监听PDCCH。
若终端切换到目标带宽部分上的切换时刻或者完成与基站之间RRC连接建立的完成时刻为t2,终端会错过唤醒信号的监听时刻,且是在唤醒信号映射的3个唤醒时段中第1个唤醒时段开始之后,此时,终端可会依次在唤醒时段n的剩余时间内、唤醒时段n+1及唤醒时段n+2内,监听PDCCH。
若终端切换到目标带宽部分上的切换时刻或者完成与基站之间RRC连接建立的完成时刻为t2,终端会错过唤醒信号的监听时刻,且是在唤 醒信号映射的3个唤醒时段中第1个唤醒时段开始之后,此时,终端可会依次在唤醒时段n+1及唤醒时段n+2内,监听PDCCH。
若终端切换到目标带宽部分上的切换时刻或者完成与基站之间RRC连接建立的完成时刻为t3,终端会错过唤醒信号的监听时刻,且是在唤醒信号映射的3个唤醒时段中第1个唤醒时段结束之后且在唤醒时段n+1开始之前,此时,终端可会依次在唤醒时段n+1及唤醒时段n+2内,监听PDCCH。
在一些实施例中,依照唤醒信号未被监听的监听结果不进行PDCCH的监听,包括:
根据监听策略依照唤醒信号未监听到的监听结果,在唤醒信号的生效范围内的唤醒时段内,不进行PDCCH的监听。
在一些实施例中,根据监听策略,将错过了监听时刻的当前唤醒信号的监听结果为未监听到WUS,若未监听到WUS,则在唤醒时段内终端可以继续保持休眠状态,如此进一步降低终端的功耗。
在一些实施例中,在唤醒信号的生效范围内的唤醒时段内不进行PDCCH的监听,包括:
在唤醒信号与唤醒时段之间的映射关系为1:1时,且唤醒信号映射的一个唤醒时段已经开始时,在当前已经开始的唤醒信号映射的一个唤醒时段的剩余时间内,不进行PDCCH的监听。
此处一个唤醒信号对应于一个唤醒时段,说明唤醒信号的生效范围包括一个唤醒时段。
此时针对一个唤醒信号对应了一个唤醒时段,由于根据监听策略认定错过了监听时刻的唤醒信号未被监听到,则在唤醒信号所映射的唤醒时段不再进行PDCCH的监听。
这种不对PDCCH的监听,包括:在当前唤醒时段的剩余时间内不进 行PDCCH的监听。
在另一个实施例中,在唤醒信号的生效范围内的唤醒时段内,不进行PDCCH的监听,包括:
在唤醒信号与唤醒时段之间的映射关系为1:1时,且唤醒信号映射的一个唤醒时段尚未开始时,在唤醒信号映射的一个唤醒时段内,不进行PDCCH的监听。
若唤醒信号所映射的唤醒时段尚未开始,终端切换到目标带宽部分上后,在唤醒信号所映射的尚未开始的唤醒时段内均保持休眠状态,从而不监听PDCCH。
在一些实施例中,所述方法还包括:
若错过了当前时刻所对应唤醒信号的监听时刻,所述唤醒信号与所述唤醒时段之间的映射关系为1:1,且所述唤醒信号映射的一个所述唤醒时段已经开始时,在已经开始的所述唤醒时段内的剩余时间继续进行PDCCH的监听。
此时,映射关系为1:1,即便根据监听策略所指示的监听结果为未监听到,但是由于映射关系是1:1,且对应的唤醒时段已经开始,则在该已经开始的唤醒信号的剩余时段内继续进行PDCCH的监听。
在另一些实施例中,在唤醒信号的生效范围内的唤醒时段内不进行PDCCH的监听,包括:
在一个唤醒信号对应于N个唤醒时段,且唤醒信号映射的N个唤醒时段已经开始时,在唤醒信号映射的已经开始的当前唤醒时段的剩余时间内及剩余的当前唤醒时段后的M个唤醒时段内,不进行PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
即终端是在唤醒信号映射的N个唤醒时段的时间内切换到目标带宽部分上的,此时,终端直接从已经开始的当前唤醒时段的剩余时间内及 剩余的M个唤醒时段内不进行PDCCH的监听。
该当前唤醒时段为包含有当前时刻的唤醒时段。
在另一些实施例中,在唤醒信号的生效范围内的唤醒时段内不进行PDCCH的监听,包括:
在一个唤醒信号对应于N个唤醒时段,且唤醒信号映射的N个唤醒时段已经开始时,在唤醒信号映射的已经开始的当前唤醒时段的剩余时间内继续监听PDCCH的情况下,在剩余的当前唤醒时段后的M个唤醒时段内,不进行PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
在一些实施例中,在唤醒信号的生效范围内的唤醒时段内不进行PDCCH的监听,包括:
一个唤醒信号对应于N个唤醒时段,且唤醒信号的M个唤醒时段尚未开始时,在唤醒信号映射的M个唤醒时段内,不进行PDCCH的监听,M为小于或者等于N的整数。
此处,一个唤醒信号对应于N个唤醒时段,则说明一个唤醒信号的生效范围包括N个唤醒时段。
例如,终端可能在第1个唤醒时段尚未开始之前切换到目标带宽部分上,则此时在唤醒信号所映射的N个唤醒时段内都不进行PDCCH的监听。
再例如,终端可能在N个唤醒时段的相邻两个唤醒时段之间的休眠时刻切换到目标带宽部分上,则此时,在当前时刻以后的M个唤醒时段内终端都不进行PDCCH的监听。
在一些实施例中,所述带宽部分切换命令或者RRC消息可通过一个或多个指示比特指示所述监听策略。在本实施例中,所述指示比特可为1个比特。
具体如,当所述带宽部分切换命令或所述RRC消息包含的指示比特为第一取值时,确定错过的所述唤醒信号具有被监听到的所述监听结果;
当所述带宽部分切换命令或所述RRC消息包含的指示比特为第二取值时,确定错过的所述唤醒信号具有未监听到的所述监听结果。
如此,在仅增加一个指示比特的情况下,完成了错过的当前WUS的监听结果的指示,从而具有指示简便与现有技术兼容性强的特点。
如图9所示,本实施例提供一种策略下发方法,其中,包括:
步骤S200:下发包含监听策略的带宽部分切换命令或者RRC消息,其中,所述监听策略,用于确定用于进行PDCCH监听的唤醒信号的监听结果。
本实施例提供的方法可应用于基站中。所述基站可以根据当前终端的业务频繁度及当前数据传输需求,下发所述监听策略。若当前业务频繁度高于阈值或者当前有数据传输需求,则下发指示唤醒信号被监听到的监听策略,若当前业务频繁度低于阈值或者当前无数据传输需求,则下发指示唤醒信号未被监听到的监听策略。
在本实施例中,所述RRC消息可包括以下指示之一:
RRC连接建立消息;
RRC连接重建立消息;
RRC连接配置消息;
RRC连接重配置消息。
在一些实施例中,所述方法还包括:
若在接收所述带宽部分切换命令或所述RRC消息预定时间之后,若错过了唤醒信号的监听时刻,根据协议信息所指示唤醒信号的监听结果,进行PDCCH的监听处理。
间隔预定时间之后可能对应的唤醒信号的监听时刻就不同了,例如, 所述预定时间可包括至少相邻两个唤醒信号的监听时刻之间的时间差。
如此,在终端切换到目标带宽部分上之后或者接收到RRC消息一段时间之后,就可以根据通信协议内的协议信息所指示唤醒信号的监听结果,进行PDCCH的监听处理。同样地的出处的PDCCH的监听处理包括:进行PDCCH的监听处理或者不进行PDCCH的监听处理。
如图10所示,本实施例还提供一种PDCCH监听处理装置,包括:
接收模块110,被配置为接收带宽部分切换命令或者无线资源控制RRC消息包含的监听策略;
监听处理模块120,被配置为根据所述监听策略所指示唤醒信号的监听结果,进行PDCCH的监听处理。
在一些实施例中,接收模块110及监听处理模块120可为程序模块,被程序模块被处理器执行后,能够实现PDCCH的监听或不监听的处理。
在一些实施例中,接收模块110及监听处理模块120可为软硬结合模块,该软硬结合模块包括但不限于复杂可编程阵列或现场可编程阵列。
在还有一些实施例中,接收模块110及监听处理模块120可为纯硬件模块,该纯硬件模块可包括但不限于专用集成电路。
在一些实施例中,所述监听处理模块120,包括:
第一子模块,被配置为从根据带宽部分切换命令从源带宽部分切换到目标带宽部分后或者在接收到RRC消息之后,若错过了唤醒信号的监听时刻,根据所述监听策略依照所述唤醒信号被监听到的监听结果,进行所述PDCCH的监听;
或者,
第二子模块,被配置为从根据带宽部分切换命令从源带宽部分切换到目标带宽部分后或者在接收到RRC消息之后,若错过了唤醒信号的监听时刻,根据所述监听策略依照所述唤醒信号未被监听到的监听结果, 不进行所述PDCCH的监听。
在一些实施例中,所述第一子模块,被配置为根据所述监听策略依照所述唤醒信号被监听到的监听结果,在所述唤醒信号的生效范围内的唤醒时段内,进行所述PDCCH的监听;
或者,
所述第二子模块,被配置为根据所述监听策略依照所述唤醒信号未被监听到的监听结果,不进行所述PDCCH的监听,包括:
根据所述监听策略依照所述唤醒信号未被监听到的监听结果,在所述唤醒信号的生效范围内的唤醒时段内,不进行所述PDCCH的监听。
在一些实施例中,所述第一子模块,被配置为当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且所述唤醒信号映射的一个所述唤醒时段已经开始时,在当前的所述唤醒信号映射的已经开始的一个所述唤醒时段的剩余时间内,进行所述PDCCH的监听。
在一些实施例中,所述第一子模块,被配置为当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且所述唤醒信号映射的一个所述唤醒时段尚未开始时,在所述唤醒信号映射的一个所述唤醒时段内,进行所述PDCCH的监听。
在一些实施例中,所述第一子模块,被配置为在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且唤醒信号映射的N个唤醒时段已经开始时,在当前的所述唤醒信号映射的当前已经开始的唤醒时段的剩余时间内及所述当前唤醒时段后剩余的M个唤醒时段内,进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
在一些实施例中,所述第一子模块,被配置为在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号映射的N个唤醒时段已经开始时,在所述唤醒信号映射的已经开始的当前唤醒时段后的M 个唤醒时段内,进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
在一些实施例中,所述第一子模块,被配置为在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号的M个所述唤醒时段尚未开始时,在所述唤醒信号映射的M个所述唤醒时段内,进行所述PDCCH的监听,M为小于或者等于N的整数。
在一些实施例中,所述第一子模块,被配置为当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且唤醒信号映射的一个所述唤醒时段已经开始时,在所述唤醒信号映射的当前已经开始的一个所述唤醒时段的剩余时间内,不进行所述PDCCH的监听。
在一些实施例中,所述监听处理模块,还包括:
第三子模块,被配置为若错过了当前时刻所对应唤醒信号的监听时刻、所述唤醒信号与所述唤醒时段之间的映射关系为1:1,且所述唤醒信号映射的一个所述唤醒时段已经开始时,在已经开始的所述唤醒时段内的剩余时间继续进行PDCCH的监听。
在一些实施例中,所述第二子模块,被配置为当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且所述唤醒信号映射的一个所述唤醒时段尚未开始时,在所述唤醒信号映射的一个所述唤醒时段内,不进行所述PDCCH的监听。
在一些实施例中,所述第二子模块,被配置为在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号映射的N个唤醒时段已经开始时,在当前的所述唤醒信号映射的已经开始的当前唤醒时段的剩余时间内、及所述当前唤醒时段后剩余的M个唤醒时段内,不进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数;
或者,
在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号映射的N个唤醒时段已经开始时,在当前的所述唤醒信号映射的已经开始的当前唤醒时段的剩余时间继续进行PDCCH的监听的情况下,在所述当前唤醒时段后剩余的M个唤醒时段内,不进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
在一些实施例中,所述第二子模块,被配置为在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且唤醒信号的M个所述唤醒时段尚未开始时,在所述唤醒信号映射的M个所述唤醒时段内,不进行所述PDCCH的监听,M为小于或者等于N的正整数,N为不小于2的正整数。
在一些实施例中,当所述带宽部分切换命令或所述RRC消息包含的指示比特为第一取值时,确定错过的所述唤醒信号具有被监听到的所述监听结果;
当所述带宽部分切换命令或所述RRC消息包含的指示比特为第二取值时,确定错过的所述唤醒信号具有未监听到的所述监听结果。
在一些实施例中,所述RRC消息包括以下之一:
RRC连接建立消息;
RRC连接重建立消息;
RRC连接配置消息;
RRC连接重配置消息。
在一些实施例中,所述监听处理模块120,还配置为若在接收所述带宽部分切换命令或所述RRC消息预定时间之后,若错过了唤醒信号的监听时刻,根据协议信息所指示唤醒信号的监听结果,进行PDCCH的监听处理。
如图11所示,本实施例还提供一种策略下发装置,其中,包括:
下发模块,被配置为下发包含监听策略的带宽部分切换命令或者RRC消息,其中,所述监听策略,用于确定用于进行PDCCH监听的唤醒信号的监听结果。
本实施例提供的策略下发装置可为应用于基站等接入网网元中的装置,能够通过下发模块下发含监听策略的带宽部分切换命令或者RRC消息。
在一些实施例中,策略下发装置内还包括:存储模块,该存储模块与下发模块连接,能够用于存储监听策略。
所述RRC消息包括以下之一:
RRC连接建立消息;
RRC连接重建立消息;
RRC连接配置消息;
RRC连接重配置消息。
以下结合上述任意实施例提供几个具体示例:
示例1:
基站在BWP切换命令中或者在RRC消息(包括RRC连接重配置和RRC连接重建、RRC连接建立)中携带WUS的监听策略,便于终端在BWP切换之后或者RRC连接重配置之后,按照基站给出的WUS的监听策略进行WUS监听处理。
示例2:
基站发送的WUS的监听策略,将指示终端在BWP切换之后或者接收到RRC消息(包括RRC连接重配置和RRC连接重建、RRC连接建立)之后,若错过了当前WUS的监听时刻,则采取的WUS的监听策略,即按照WUS监听到进行处理或者按照WUS没有监听到进行处理。
作为一种实施例,可以是一个显式指示比特值“1”,则意味着终端 在BWP切换之后或者接收到RRC消息(包括RRC连接重配置和RRC连接重建、RRC连接建立)之后,错过了WUS监听时刻则采取的监听策略是将当前一个错过的WUS监听时刻按照WUS监听到进行处理。
作为一种实施例,可以是一个显式指示比特值“0”,则意味着终端在BWP切换之后或者接收到RRC消息(包括RRC连接重配置和RRC连接重建、RRC连接建立)之后,错过了当前WUS的监听时刻,则采取的监听策略是将当前一个错过的WUS监听时刻按照WUS没有监听到进行处理。
例如,终端在BWP切换命令中或者在接收到RRC消息(但不限于以后至少之一:RRC连接重配置消息和RRC连接重建消息、RRC连接建立消息)之后,若错过了当前WUS的监听时刻,则采取的监听策略是将当前一个错过的WUS监听时刻按照WUS监听到进行处理即对后续WUS生效范围内的唤醒时段进行监听:
作为一种实施例,对于1:1映射关系的场景,在BWP切换之后或者接收到RRC消息(包括RRC连接重配置和RRC连接重建、RRC连接建立)之后可能为当前WUS对应的唤醒时段已经开始,则终端依然对当前剩余的唤醒时段时刻进行监听。
作为一种实施例,对于1:1映射关系的场景,在BWP切换之后或者接收到RRC消息(包括但不限于以后至少之一:RRC连接重配置消息和RRC连接重建消息、RRC连接建立消息)之后可能为WUS对应的唤醒时段尚未开始,则终端对即将开始的唤醒时段时刻进行监听。
作为一种实施例,对于1:N映射关系的场景,在BWP切换之后或者接收到RRC消息(包括RRC连接重配置和RRC连接重建、RRC连接建立)之后可能为WUS对应的唤醒时段已经开始,此时从切换到新的BWP时刻开始监听当前的剩余的唤醒时段时刻;并继续监听剩下的M个 即将到来的唤醒时段时刻。其中,M为N中去除终端错过的唤醒时段的个数。
例如:假设N=4,而终端在第二个唤醒时段时刻切换到目标BWP,则终端从第二个唤醒时段剩余时刻开始监听,此时包括部分唤醒时段和剩余的2个唤醒时段。
作为一种实施例,对于1:N映射关系的场景,在BWP切换之后或者接收到RRC消息(包括RRC连接重配置和RRC连接重建、RRC连接建立)之后,可能是当前WUS对应的唤醒时段已经开始,终端将从切换到目标BWP时刻开始继续监听剩下的M个即将到来的唤醒时段时刻。其中,M为N中去除终端错过的唤醒时段的个数。
例如:假设N=4,而终端在第二个唤醒时段时刻切换到新的BWP,则终端从第3个唤醒时段时刻开始监听,即从剩余的2个唤醒时段继续监听。
作为一种实施例,对于1:N映射关系的场景,在BWP切换之后或者接收到RRC消息(包括RRC连接重配置和RRC连接重建、RRC连接建立)之后,可能为当前WUS对应的唤醒时段尚未开始,此时从切换到目标BWP时刻开始继续监听剩下的M个即将到来的唤醒时段时刻。
示例2:
终端在BWP切换命令中或者在接收到RRC消息之后,若错过了WUS监听时刻则采取的监听策略是将当前一个错过的WUS监听时刻按照没有WUS监听到进行处理即对后续WUS生效范围内的唤醒时段不进行监听。
作为一种实施例,对于1:1映射关系的场景,在BWP切换之后或者接收到RRC消息(包括RRC连接重配置和RRC连接重建、RRC连接建立)之后可能为WUS对应的唤醒时段已经开始,则终端不对当前剩余 的唤醒时段时刻进行监听。
作为一种实施例,对于1:1映射关系的场景,在BWP切换之后或者接收到RRC消息之后可能为WUS对应的唤醒时段尚未开始,则终端不对即将开始的唤醒时段时刻进行监听。
作为一种实施例,对于1:N映射关系的场景,在BWP切换之后或者接收到RRC消息之后可能为WUS对应的唤醒时段已经开始,此时终端将对当前WUS生效范围内的唤醒时段都不进行监听。
作为一种实施例,对于1:N映射关系的场景,在BWP切换之后或者接收到RRC消息之后,可能为WUS对应的唤醒时段已经开始,此时终端将继续维持原来的唤醒时段定时器,即继续对当前生效的唤醒时段进行监听,但是对WUS生效范围内之后完整的唤醒时段都不进行监听。
作为一种实施例,对于1:N映射关系的场景,在BWP切换之后或者接收到RRC消息(包括RRC连接重配置和RRC连接重建、RRC连接建立)之后可能为WUS对应的唤醒时段尚未开始,此时终端将对当前WUS生效范围内的唤醒时段都不进行监听。
示例3:
终端在BWP切换之后或者接收到RRC消息之后处理中,对于WUS是否监听到还可以基于协议规定:
作为一种实施例,协议规定终端在BWP切换之后或者接收到RRC消息之后,若错过了WUS监听时刻则采取的监听策略是将当前一个错过的WUS监听时刻按照WUS监听到进行处理。
本申请实施例还提供一种通信设备,该通信设备可以为终端,能够实现前述任意技术方案提供的PDCCH监听方法。
该通信设备还可为基站等接入网网元,能够实现前述任意技术方案 提供的策略下发方法。
本实施例提供的通信设备包括:收发器、存储器及处理器。收发器可用于与其他设备进行交互,收发器包括但不限于收发天线。存储器可存储有计算机可执行指令;处理器分别与收发器及存储器连接,能够实现前述任意技术方案提供的PDCCH监听处理方法或信息下方法,例如,如图3、图4A、图4B及图9所示方法的至少其中之一。
图12是根据一示例性实施例示出的一种终端,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理***,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以监听到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端 800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图13是一基站的示意图。参照图13,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模 块。此外,处理组件922被配置为执行指令,以执行图4和/或图5所示的PDCCH监听方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作***,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本申请实施例还提供一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质上存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现前述任意技术方案提供的PDCCH监听处理方法和/或信息下发方法,例如,如图3、图4A、图4B及图9所示方法的至少其中之一。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (36)

  1. 一种物理下行控制控制信道PDCCH监听处理方法,其中,包括:
    接收带宽部分切换命令或者无线资源控制RRC消息包含的监听策略;
    根据所述监听策略所指示唤醒信号的监听结果,进行PDCCH的监听处理。
  2. 根据权利要求1所述的方法,其中,所述根据所述监听策略所映射的唤醒信号的监听结果,进行PDCCH的监听处理,包括:
    从根据带宽部分切换命令从源带宽部分切换到目标带宽部分上或者在收到RRC消息之时,若错过了当前时刻所对应唤醒信号的监听时刻,根据所述监听策略依照所述唤醒信号被监听到的监听结果,进行所述PDCCH的监听;
    或者,
    从根据带宽部分切换命令从源带宽部分切换到目标带宽部分上或者在收到RRC消息之时,若错过了当前时刻所对应唤醒信号的监听时刻,根据所述监听策略依照所述唤醒信号未被监听到的监听结果,不进行所述PDCCH的监听。
  3. 根据权利要求2所述的方法,其中,
    所述根据所述监听策略依照所述唤醒信号被监听到的监听结果,进行所述PDCCH的监听,包括:
    根据所述监听策略依照所述唤醒信号被监听到的监听结果,在所述唤醒信号的生效范围内的唤醒时段内,进行所述PDCCH的监听;
    或者,
    所述根据所述监听策略依照所述唤醒信号未被监听到的监听结果,不进行所述PDCCH的监听,包括:
    根据所述监听策略依照所述唤醒信号未被监听到的监听结果,在所述唤醒信号的生效范围内的唤醒时段内,不进行所述PDCCH的监听。
  4. 根据权利要求3所述的方法,其中,所述在所述唤醒信号的生效范围内的唤醒时段内,进行所述PDCCH的监听,包括:
    当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且所述唤醒信号映射的一个所述唤醒时段已经开始时,在当前的所述唤醒信号映射的已经开始的一个所述唤醒时段的剩余时间内,进行所述PDCCH的监听。
  5. 根据权利要求3所述的方法,其中,所述在所述唤醒信号的生效范围内的唤醒时段内,进行所述PDCCH的监听,包括:
    当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且所述唤醒信号映射的一个所述唤醒时段尚未开始时,在所述唤醒信号映射的一个所述唤醒时段内,进行所述PDCCH的监听。
  6. 根据权利要求3所述的方法,其中,所述在所述唤醒信号的生效范围内的唤醒时段内,进行所述PDCCH的监听,包括:
    在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且唤醒信号映射的N个唤醒时段已经开始时,在当前的所述唤醒信号映射的当前已经开始的唤醒时段的剩余时间内及所述当前唤醒时段后剩余的M个唤醒时段内,进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
  7. 根据权利要求3所述的方法,其中,所述在所述唤醒信号的生效范围内的唤醒时段内,进行所述PDCCH的监听,包括:
    在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号映射的N个唤醒时段已经开始时,在所述唤醒信号映射的已经开始的当前唤醒时段后的M个唤醒时段内,进行所述PDCCH的监听,其中, N为不小于2的正整数,M为小于N的正整数。
  8. 根据权利要求3所述的方法,其中,所述在所述唤醒信号的生效范围内的唤醒时段内,进行所述PDCCH的监听,包括:
    在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号的M个所述唤醒时段尚未开始时,在所述唤醒信号映射的M个所述唤醒时段内,进行所述PDCCH的监听,M为小于或者等于N的整数。
  9. 根据权利要求3所述的方法,其中,所述在所述唤醒信号的生效范围内的唤醒时段内,不进行所述PDCCH的监听,包括:
    当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且唤醒信号映射的一个所述唤醒时段已经开始时,在所述唤醒信号映射的当前已经开始的一个所述唤醒时段的剩余时间内,不进行所述PDCCH的监听;
    或者,
    所述方法还包括:
    若错过了当前时刻所对应唤醒信号的监听时刻,所述唤醒信号与所述唤醒时段之间的映射关系为1:1,且所述唤醒信号映射的一个所述唤醒时段已经开始时,在已经开始的所述唤醒时段内的剩余时间继续进行PDCCH的监听。
  10. 根据权利要求3所述的方法,其中,所述在所述唤醒信号的生效范围内的唤醒时段内,不进行所述PDCCH的监听,包括:
    当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且所述唤醒信号映射的一个所述唤醒时段尚未开始时,在所述唤醒信号映射的一个所述唤醒时段内,不进行所述PDCCH的监听。
  11. 根据权利要求3所述的方法,其中,所述在所述唤醒信号的生效范围内的唤醒时段内,不进行所述PDCCH的监听,包括:
    在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒 信号映射的N个唤醒时段已经开始时,在当前的所述唤醒信号映射的已经开始的当前唤醒时段的剩余时间内、及所述当前唤醒时段后剩余的M个唤醒时段内,不进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数;
    或者,
    在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号映射的N个唤醒时段已经开始时,在当前的所述唤醒信号映射的已经开始的当前唤醒时段的剩余时间继续进行PDCCH的监听的情况下,在所述当前唤醒时段后剩余的M个唤醒时段内,不进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
  12. 根据权利要求3所述的方法,其中,所述在所述唤醒信号的生效范围内的唤醒时段内不进行所述PDCCH的监听,包括:
    在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且唤醒信号的M个所述唤醒时段尚未开始时,在所述唤醒信号映射的M个所述唤醒时段内,不进行所述PDCCH的监听,M为小于或者等于N的正整数,N为不小于2的正整数。
  13. 根据权利要求1至12任一项所述的方法,其中,
    当所述带宽部分切换命令或所述RRC消息包含的指示比特为第一取值时,确定错过的所述唤醒信号具有被监听到的所述监听结果;
    当所述带宽部分切换命令或所述RRC消息包含的指示比特为第二取值时,确定错过的所述唤醒信号具有未监听到的所述监听结果。
  14. 根据权利要求1至12任一项所述的方法,其中,所述RRC消息包括以下之一:
    RRC连接建立消息;
    RRC连接重建立消息;
    RRC连接配置消息;
    RRC连接重配置消息。
  15. 根据权利要求1至12任一项所述的方法,其中,所述方法还包括:
    若在接收所述带宽部分切换命令或所述RRC消息预定时间之后,若错过了唤醒信号的监听时刻,根据协议信息所指示唤醒信号的监听结果,进行PDCCH的监听处理。
  16. 一种策略下发方法,其中,包括:
    下发包含监听策略的带宽部分切换命令或者RRC消息,其中,所述监听策略,用于确定用于进行PDCCH监听的唤醒信号的监听结果。
  17. 根据权利要求16所述的方法,其中,所述RRC消息包括以下之一:
    RRC连接建立消息;
    RRC连接重建立消息;
    RRC连接配置消息;
    RRC连接重配置消息。
  18. 一种物理下行控制信道PDCCH监听处理装置,其中,包括:
    接收模块,被配置为接收带宽部分切换命令或者无线资源控制RRC消息包含的监听策略;
    监听处理模块,被配置为根据所述监听策略所指示唤醒信号的监听结果,进行PDCCH的监听处理。
  19. 根据权利要求18所述的装置,其中,所述监听处理模块,包括:
    第一子模块,被配置为从根据带宽部分切换命令从源带宽部分切换到目标带宽部分上或者在收到RRC消息之时,若错过了当前时刻所对应唤醒信号的监听时刻,根据所述监听策略依照所述唤醒信号被监听到的 监听结果,进行所述PDCCH的监听;
    或者,
    第二子模块,被配置为从根据带宽部分切换命令从源带宽部分切换到目标带宽部分上或者在收到RRC消息之时,若错过了当前时刻所对应唤醒信号的监听时刻,根据所述监听策略依照所述唤醒信号未被监听到的监听结果,不进行所述PDCCH的监听。
  20. 根据权利要求19所述的装置,其中,
    所述第一子模块,被配置为根据所述监听策略依照所述唤醒信号被监听到的监听结果,在所述唤醒信号的生效范围内的唤醒时段内,进行所述PDCCH的监听;
    或者,
    所述第二子模块,被配置为根据所述监听策略依照所述唤醒信号未被监听到的监听结果,不进行所述PDCCH的监听,包括:
    根据所述监听策略依照所述唤醒信号未被监听到的监听结果,在所述唤醒信号的生效范围内的唤醒时段内,不进行所述PDCCH的监听。
  21. 根据权利要求20所述的装置,其中,所述第一子模块,被配置为当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且所述唤醒信号映射的一个所述唤醒时段已经开始时,在当前的所述唤醒信号映射的已经开始的一个所述唤醒时段的剩余时间内,进行所述PDCCH的监听。
  22. 根据权利要求20所述的装置,其中,所述第一子模块,被配置为当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且所述唤醒信号映射的一个所述唤醒时段尚未开始时,在所述唤醒信号映射的一个所述唤醒时段内,进行所述PDCCH的监听。
  23. 根据权利要求20所述的装置,其中,所述第一子模块,被配置 为在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且唤醒信号映射的N个唤醒时段已经开始时,在当前的所述唤醒信号映射的当前已经开始的唤醒时段的剩余时间内及所述当前唤醒时段后剩余的M个唤醒时段内,进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
  24. 根据权利要求20所述的装置,其中,所述第一子模块,被配置为在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号映射的N个唤醒时段已经开始时,在所述唤醒信号映射的已经开始的当前唤醒时段后的M个唤醒时段内,进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
  25. 根据权利要求20所述的装置,其中,所述第一子模块,被配置为在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号的M个所述唤醒时段尚未开始时,在所述唤醒信号映射的M个所述唤醒时段内,进行所述PDCCH的监听,M为小于或者等于N的整数。
  26. 根据权利要求20所述的装置,其中,所述第一子模块,被配置为当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且唤醒信号映射的一个所述唤醒时段已经开始时,在所述唤醒信号映射的当前已经开始的一个所述唤醒时段的剩余时间内,不进行所述PDCCH的监听;
    或者,
    所述监听处理模块,还包括:
    第三子模块,被配置为若错过了当前时刻所对应唤醒信号的监听时刻、所述唤醒信号与所述唤醒时段之间的映射关系为1:1,且所述唤醒信号映射的一个所述唤醒时段已经开始时,在已经开始的所述唤醒时段内的剩余时间继续进行PDCCH的监听。
  27. 根据权利要求20所述的装置,其中,所述第二子模块,被配置 为当所述唤醒信号与所述唤醒时段之间的映射关系为1:1时,且所述唤醒信号映射的一个所述唤醒时段尚未开始时,在所述唤醒信号映射的一个所述唤醒时段内,不进行所述PDCCH的监听。
  28. 根据权利要求20所述的装置,其中,所述第二子模块,被配置为在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号映射的N个唤醒时段已经开始时,在当前的所述唤醒信号映射的已经开始的当前唤醒时段的剩余时间内、及所述当前唤醒时段后剩余的M个唤醒时段内,不进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数;
    或者,
    在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且所述唤醒信号映射的N个唤醒时段已经开始时,在当前的所述唤醒信号映射的已经开始的当前唤醒时段的剩余时间继续进行PDCCH的监听的情况下,在所述当前唤醒时段后剩余的M个唤醒时段内,不进行所述PDCCH的监听,其中,N为不小于2的正整数,M为小于N的正整数。
  29. 根据权利要求20所述的装置,其中,所述第二子模块,被配置为在所述唤醒信号与唤醒信号之间的映射关系为1:N时,且唤醒信号的M个所述唤醒时段尚未开始时,在所述唤醒信号映射的M个所述唤醒时段内,不进行所述PDCCH的监听,M为小于或者等于N的正整数,N为不小于2的正整数。
  30. 根据权利要求18至29任一项所述的装置,其中,
    当所述带宽部分切换命令或所述RRC消息包含的指示比特为第一取值时,确定错过的所述唤醒信号具有被监听到的所述监听结果;
    当所述带宽部分切换命令或所述RRC消息包含的指示比特为第二取值时,确定错过的所述唤醒信号具有未监听到的所述监听结果。
  31. 根据权利要求18至29任一项所述的装置,其中,所述RRC消息包括以下之一:
    RRC连接建立消息;
    RRC连接重建立消息;
    RRC连接配置消息;
    RRC连接重配置消息。
  32. 根据权利要求18至29任一项所述的装置,其中,所述监听处理模块,还配置为若在接收所述带宽部分切换命令或所述RRC消息预定时间之后,若错过了唤醒信号的监听时刻,根据协议信息所指示唤醒信号的监听结果,进行PDCCH的监听处理。
  33. 一种策略下发装置,其中,包括:
    下发模块,被配置为下发包含监听策略的带宽部分切换命令或者RRC消息,其中,所述监听策略,用于确定用于进行PDCCH监听的唤醒信号的监听结果。
  34. 根据权利要求33所述的装置,其中,所述RRC消息包括以下之一:
    RRC连接建立消息;
    RRC连接重建立消息;
    RRC连接配置消息;
    RRC连接重配置消息。
  35. 一种通信设备,其中,包括:
    收发器;
    存储器;
    处理器,分别与所述收发器及存储器连接,配置为通过执行存储在所述存储器上计算机可执行指令,控制所述收发器的收发,并能够实现 权利要求1至15或16至17任一项所述的方法。
  36. 一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质上存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1至15或16至17任一项所述的方法。
PCT/CN2019/096915 2019-07-19 2019-07-19 监听处理、策略下发方法及装置、通信设备及存储 WO2021012130A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980001466.4A CN110521275B (zh) 2019-07-19 2019-07-19 监听处理、策略下发方法及装置、通信设备及存储
PCT/CN2019/096915 WO2021012130A1 (zh) 2019-07-19 2019-07-19 监听处理、策略下发方法及装置、通信设备及存储

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096915 WO2021012130A1 (zh) 2019-07-19 2019-07-19 监听处理、策略下发方法及装置、通信设备及存储

Publications (1)

Publication Number Publication Date
WO2021012130A1 true WO2021012130A1 (zh) 2021-01-28

Family

ID=68634409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096915 WO2021012130A1 (zh) 2019-07-19 2019-07-19 监听处理、策略下发方法及装置、通信设备及存储

Country Status (2)

Country Link
CN (1) CN110521275B (zh)
WO (1) WO2021012130A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518452A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种检测方法及装置
EP4175378A4 (en) * 2020-06-24 2024-04-24 Beijing Xiaomi Mobile Software Co., Ltd. STATUS CONTROL METHODS AND APPARATUS, COMMUNICATION DEVICE AND RECORDING MEDIUM
EP4187981A4 (en) * 2020-07-24 2024-05-08 Beijing Xiaomi Mobile Software Co., Ltd. WAKE-UP SIGNAL PROCESSING METHOD AND DEVICE, COMMUNICATION DEVICE AND STORAGE MEDIUM
WO2024060264A1 (en) * 2022-09-24 2024-03-28 Qualcomm Incorporated Bandwidth part considerations for main radio aided by a low-power wake up radio

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109429310A (zh) * 2017-07-20 2019-03-05 维沃移动通信有限公司 一种drx参数的指示方法、相关设备及***
CN109496452A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 省电信号监听方法及装置
US20190174449A1 (en) * 2018-02-09 2019-06-06 Intel Corporation Technologies to authorize user equipment use of local area data network features and control the size of local area data network information in access and mobility management function
CN109923819A (zh) * 2016-11-02 2019-06-21 Idac控股公司 接收机带宽适配
CN110011714A (zh) * 2018-01-05 2019-07-12 维沃移动通信有限公司 信号接收方法、发送方法、用户设备和网络设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104012155B (zh) * 2012-11-06 2017-12-22 华为技术有限公司 寻呼ue的方法、基站及ue
US10484964B2 (en) * 2017-08-02 2019-11-19 Futurewei Technologies, Inc. System and method for improving paging
US10834699B2 (en) * 2017-11-13 2020-11-10 Qualcomm Incorporated Fallback mode for wake-up signal receivers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923819A (zh) * 2016-11-02 2019-06-21 Idac控股公司 接收机带宽适配
CN109429310A (zh) * 2017-07-20 2019-03-05 维沃移动通信有限公司 一种drx参数的指示方法、相关设备及***
CN110011714A (zh) * 2018-01-05 2019-07-12 维沃移动通信有限公司 信号接收方法、发送方法、用户设备和网络设备
US20190174449A1 (en) * 2018-02-09 2019-06-06 Intel Corporation Technologies to authorize user equipment use of local area data network features and control the size of local area data network information in access and mobility management function
CN109496452A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 省电信号监听方法及装置

Also Published As

Publication number Publication date
CN110521275A (zh) 2019-11-29
CN110521275B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2021159404A1 (zh) 通信处理方法及装置、存储介质
WO2022000188A1 (zh) 用户设备辅助信息的上报方法及装置、用户设备、存储介质
WO2022178832A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021007824A1 (zh) 唤醒信号处理、信息下发方法及装置、通信设备及介质
WO2021168664A1 (zh) 通信方法、装置及计算机存储介质
WO2021012130A1 (zh) 监听处理、策略下发方法及装置、通信设备及存储
WO2021196133A1 (zh) Rrc状态改变的方法、装置、通信设备及存储介质
WO2021030974A1 (zh) 寻呼配置方法、装置、通信设备及存储介质
JP7247374B2 (ja) モニタリング方法、シグナリング下り送信方法及び装置、通信機器及び記憶媒体
WO2021114050A1 (zh) 非连续接收drx的处理方法、装置及计算机存储介质
WO2021012281A1 (zh) 唤醒信号的变更处理、监听方法、通信设备及存储介质
WO2021258372A1 (zh) 状态控制方法、装置、通信设备及存储介质
WO2020258103A1 (zh) 监听方法、指示下发方法及装置、通信设备及存储
WO2021102990A1 (zh) 短周期配置方法、装置、通信设备及存储介质
WO2023065124A1 (zh) 寻呼参数确定方法、装置、通信设备和存储介质
WO2022021033A1 (zh) 信息处理方法、装置、通信设备及存储介质
CN111201814B (zh) 非连续接收的处理方法及装置
WO2021087914A1 (zh) 被调度载波的激活时刻确定方法及装置、设备及介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
US20220408469A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium
WO2021120208A1 (zh) 寻呼方法、装置、通信设备及存储介质
WO2022213330A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022000148A1 (zh) 分组调度方法及装置、用户设备、存储介质
WO2022205046A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022178728A1 (zh) Drx周期的处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938315

Country of ref document: EP

Kind code of ref document: A1