WO2024092983A1 - 一种多晶型抗性淀粉的制备方法 - Google Patents

一种多晶型抗性淀粉的制备方法 Download PDF

Info

Publication number
WO2024092983A1
WO2024092983A1 PCT/CN2022/140262 CN2022140262W WO2024092983A1 WO 2024092983 A1 WO2024092983 A1 WO 2024092983A1 CN 2022140262 W CN2022140262 W CN 2022140262W WO 2024092983 A1 WO2024092983 A1 WO 2024092983A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
resistant starch
resistant
content
polycrystalline
Prior art date
Application number
PCT/CN2022/140262
Other languages
English (en)
French (fr)
Inventor
詹锦玲
陈浩
田耀旗
田师雨
麻荣荣
王凡
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2024092983A1 publication Critical patent/WO2024092983A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/16Preparation of compounds containing saccharide radicals produced by the action of an alpha-1, 6-glucosidase, e.g. amylose, debranched amylopectin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention relates to a method for preparing polycrystalline resistant starch, and belongs to the technical field of starch modification.
  • Common resistant starches are mainly divided into five types: RS1 (physical embedded starch), RS2 (natural resistant starch granules), RS3 (aged starch), RS4 (chemically modified starch) and RS5 (starch-lipid complex).
  • RS1 and RS2 exist naturally, and the crystal type is closely related to the source of starch. Starch from cereals such as corn is A-type crystal, and raw bananas, potatoes, etc. are B-type crystal. RS1 and RS2 usually have poor thermal stability, and most of these two types of RS are lost during thermal processing.
  • RS3 is formed during the recrystallization of starch. By regulating the recrystallization conditions such as regeneration temperature and moisture content, A-type crystal or B-type crystal can be produced.
  • the product has a large difference in heat resistance (70°C ⁇ 150°C) and low water retention.
  • RS4 is obtained by introducing chemical functional groups to cause changes in the molecular structure of starch, but its production time is long, the product quality may change, the reaction rate is low, and it pollutes the environment.
  • special consideration needs to be given to the safety requirements of the product, which has great restrictions on the reagents used.
  • RS5 is a V-type crystal, which is divided into two categories according to heat resistance: VI-type crystal and VII-type crystal; VI-type crystal structure has relatively low order, and the dissociation temperature is about 95°C ⁇ 105°C; VII-type crystal has relatively high order, and the dissociation temperature is about 115°C ⁇ 130°C; VI-type crystal is generally prepared at a lower temperature, and VII-type crystal needs to be formed under high temperature and long time conditions.
  • High-amylose corn starch has a B-type crystalline structure, a high amylose content, and a linear arrangement of the molecular structure. It can withstand a certain high temperature. After cooking, it retains some highly ordered heat-resistant B-type crystals. After thermal processing, the resistant starch content can still reach 40%. It is the only RS2 resistant starch that can be supplied on a large scale.
  • the amylose content is the main factor that determines the palatability and digestibility of food. Generally, starch with low to medium amylose content has better palatability, while high-amylose corn starch has a hard texture and poor palatability due to its high amylose content.
  • CN109549173A discloses a novel resistant starch, which is obtained by compounding with long-chain saturated fatty acids after debranching by pullulanase, and the fifth type of novel resistant starch (RS5) is obtained, and the content of RS5 is higher than 57.5%; however, this method has the following defects: (1) The gelatinization and secondary gelatinization of starch are both treated at a high temperature of more than 120°C for a long time, the high-amylose corn starch is completely gelatinized, and the heat-resistant B-type crystals are completely destroyed.
  • V-type crystals of RS5 can be obtained, which dissociate at about 90°C and have low heat stability;
  • the gelatinization and secondary gelatinization of starch need to be treated at more than 120°C for a long time, and the required conditions cannot be met at room temperature and pressure. Therefore, special high-temperature and high-pressure equipment must be used, resulting in high energy consumption and high cost.
  • B+V-type crystalline resistant starch is obtained on the basis of RS5 (starch-lipid complex), which is obtained by retrogradation, alkaline method, high-speed homogenization, high hydrostatic pressure and other methods.
  • RS5 starch-lipid complex
  • the alkaline method involved requires the use of sodium hydroxide and hydrochloric acid, and the high-speed homogenization and high hydrostatic pressure methods require specific equipment, which has the problem of high cost.
  • CN115353570A discloses a method for preparing a binary composite resistant starch (RS4+RS5), which is prepared by esterification modification of RS4-type resistant starch and further compounded with monoglyceride, and is V-type crystalline, with a resistant starch content of about 60%, and there are still problems such as the need to improve the anti-digestion performance and the restriction/polluting environment of the use of chemical modification reagents due to food industry safety requirements.
  • RS4+RS5 binary composite resistant starch
  • the present invention provides a method for preparing polycrystalline resistant starch.
  • the product obtained by the method retains the heat-resistant B-type crystals of high-amylose corn starch, de-clustering the heat-labile amorphous region and efficiently complexing with fatty acids, cooling and crystallizing to form B+VI-type crystals, and regulating the crystallization characteristics to convert B+VI-type crystals into A+B+VII-type.
  • the obtained product has a high resistant starch content (up to 67% to 69%), a high crystallinity (more than 40%), good heat resistance (the resistant starch content decreases by less than 5% after boiling the resistant starch in a water bath for 10 minutes), and better palatability (the fatty acid content reaches more than 4.8g/100g).
  • the method of the present invention is simple to operate, can be achieved at room temperature and pressure, and has low cost.
  • the first object of the present invention is to provide a method for preparing polycrystalline resistant starch, the method comprising preparing starch milk using plasma activated water at pH 4 to 5, then using pullulan to hydrolyze the heat-inlaboratory amorphous region of clustered starch, ultrasonic treatment to strengthen the complexation of starch and fatty acids, cooling and crystallizing, and then converting through toughening treatment to obtain polycrystalline resistant starch (containing three crystal forms of A, B, and VII, named A+B+VII-type crystalline resistant starch).
  • the method specifically comprises the following steps:
  • step (3) The fatty acid complex product obtained in step (3) is cooled and crystallized, toughened, dehydrated, washed, and dried to obtain polymorphic (A+B+VII-type) crystalline resistant starch.
  • the mass fraction of the starch milk in step (1) is 15% to 18% (w/w, dry starch basis accounts for the total mass of the starch milk).
  • the gelatinization temperature in step (2) is 90-100° C. and the time is 25-35 min.
  • the declustering enzymatic hydrolysis temperature in step (2) is 55-65°C and the time is 12-24h; the pullulanase addition amount is 40-50 ASPU/g dry starch; the declustering enzymatic hydrolysis retains the heat-resistant B-crystals in the high-amylose corn starch and converts the heat-insensitive amorphous regions into short-chain amylose using pullulanase.
  • the fatty acid in step (3) is any one of oleic acid, linoleic acid, and linolenic acid.
  • the fatty acid added to the starch milk after enzymatic hydrolysis in step (3) is added at 70-90°C; the amount of the fatty acid added is 6% to 10% of the dry basis mass of the starch; and the fatty acid is any one of oleic acid, linoleic acid, and linolenic acid.
  • the ultrasonic frequency in step (3) is 25-35 kHz
  • the ultrasonic power is 300-400 W
  • the ultrasonic treatment time is 30-60 min.
  • the cooling crystallization in step (4) is to rapidly cool the product to 3-5°C at an average cooling rate of 5-10°C/min, and crystallize at this temperature for 30-60 min.
  • the toughening in step (4) is performed at 45-55° C. for 96-120 hours.
  • the drying in step (4) is hot air drying at 50-60° C. for 6-10 hours.
  • the fatty acid added in step (3) is a water-insoluble fatty acid and needs to be dispersed by anhydrous ethanol.
  • the volume of anhydrous ethanol used is 0.05 to 0.1 times the volume of the starch milk.
  • the dehydration centrifugal speed in step (4) is 4000-5000 rpm, and the centrifugal time is 8-15 min.
  • the second object of the present invention is to provide a polycrystalline resistant starch prepared by the above method.
  • the third object of the present invention is to provide a use of the above method or polycrystalline resistant starch in preparing functional foods.
  • the application includes functional foods that can improve intestinal health, prevent diabetes, and protect intestinal barriers.
  • high amylose corn starch refers to corn starch with an amylose content exceeding 70%.
  • the heat-resistant and stable B-type crystals are retained.
  • the unstable B-type crystals are complexed with fatty acids under the assistance of ultrasound to form amylose-lipid complexes, which are transformed into heat-resistant V-type crystals with a three-dimensional helical structure and excellent thermal stability. They are not easily reacted with amylase, thereby increasing the resistant starch content and the thermal stability.
  • Plasma activated water with a pH of 4 to 5.
  • the weak acid components in the water can act on the amorphous area of starch, reduce the viscosity of high-amylose corn starch milk, improve the problem of extremely low solid content (5% to 7%) in the starch milk system prepared by hydrothermal gelatinization, improve starch utilization, and improve the problem that the high viscosity of the starch milk system is not conducive to fatty acid complexation.
  • Plasma activated water is a weak acid system. Regardless of the degree of unsaturation of the fatty acid, the weak acid system is conducive to the formation of helices in amylose and strengthens hydrophobic interactions, thereby promoting the formation of starch-fatty acid complexes. Avoiding the use of plasma activated water with a high degree of acidity can effectively prevent strong acid components from attacking the crystalline area of starch, prevent the heat-resistant B-type crystals from being destroyed, and prevent the loss of pullulanase activity.
  • the rapid cooling crystallization method is used to promote the formation of a large number of crystal nuclei, and the growth of crystals is promoted by keeping the temperature at a suitable temperature, which is conducive to the formation of higher crystallinity and larger crystallite size of V-type crystalline starch, making the crystal structure more perfect and improving the stability of the complex.
  • Toughening treatment can change the internal stacking state of starch granules, causing starch crystals to melt and rearrange their molecules, increasing the degree of crystallinity.
  • High-amylose corn starch can also obtain A-type crystals after toughening treatment.
  • the method of the invention is easy to operate, can be realized at normal temperature and pressure, and has low cost.
  • the polycrystalline resistant starch prepared by the above method has a resistant starch content of more than 67% (up to 67% to 69%) measured by the Englyst method; the crystallinity measured by XRD is significantly increased compared with the high-amylose corn starch after cooking, thereby increasing the resistant starch content and improving the crystallinity (the crystallinity can reach more than 40%); the resistant starch is boiled in a water bath for 10 minutes, and the resistant starch content is measured by the Englyst method, and only decreases by less than 5%, indicating that the present invention greatly improves the heat resistance of the resistant starch; at the same time, unsaturated fatty acids are introduced into the resistant starch (the fatty acid content is more than 4.8g/100g), which plays a role in improving the taste, protecting the intestinal barrier, and regulating intestinal microorganisms.
  • This polycrystalline resistant starch not only has unique food processing properties such as good rheological properties and stability, improved taste, reduced food expansion, but also has excellent physiological functions such as improving intestinal health, preventing diabetes, protecting intestinal barrier, etc. It has important industrial application value and broad market development prospects.
  • FIG1 is an XRD diagram of polycrystalline resistant starch of Example 1 of the present invention.
  • FIG. 2 is an XRD diagram of the resistant starch of Comparative Example 5 of the present invention.
  • the resistant starch content was calculated by combining the G120 (glucose released after 120 minutes of incubation) and Ws (sample weight) values using the following formula:
  • Distilled water was placed in a cylindrical tube with a diameter of 3 cm and a height of 15 cm.
  • the plasma jet probe was 25 cm away from the water surface.
  • An atmospheric pressure plasma jet excitation device was used to excite for 40-60 seconds to obtain plasma-activated water with a pH of 4-5.
  • High amylose corn starch Xiangyu 1945, purchased from Quanyin Xiangyu (Beijing) Biotechnology Co., Ltd.
  • Pullulanase was purchased from SIGMA-ALDRICH.
  • the crystal structure of the sample was determined using an X-ray diffractometer, using a Cu-K ⁇ light source (40 kV, 30 mA) to scan from 4° to 30° (2 ⁇ ) at a scanning rate of 2°/min.
  • the relative crystallinity RC was calculated using MDI Jade 6.0 software as follows:
  • Ac and Aa represent the areas of crystalline and amorphous regions in the X-ray diffraction pattern, respectively.
  • a method for preparing polycrystalline resistant starch comprises the following steps:
  • the ultrasonic product is rapidly cooled to 4°C at an average cooling rate of 8°C/min, and crystallized at this temperature for 45min, and then heated to 50°C for toughening for 108h. Then centrifuge at 4500rpm for 12min, and then wash three times with 50% ethanol. Finally, the sample is hot-air dried at 55°C for 8h, crushed, and passed through a 100-mesh sieve to obtain polycrystalline resistant starch.
  • the Englyst method was used to measure the resistant starch content, which was up to 69.6%.
  • the product was subjected to XRD testing ( Figure 1).
  • the diffraction peaks near the diffraction angles 2 ⁇ of 7.4°, 13°, and 19.7° indicated the formation of V-type crystals, and the diffraction peaks near 5.4°, 16.8°, and 23° indicated the presence of A-type crystals and B-type crystals.
  • the resistant starch formed A+B+VII-crystals with a crystallinity of 41.7%.
  • the Englyst method was used to measure the resistant starch content, which only decreased by 3.8%.
  • the fatty acid content of the product was determined to be 4.91g/100g.
  • a method for preparing polycrystalline resistant starch comprises the following steps:
  • the product is rapidly cooled to 3°C at an average cooling rate of 5°C/min, and crystallized at this temperature for 60min, and then heated to 45°C for toughening for 120h. Cool to room temperature, then centrifuge at 4000rpm for 15min, and then wash three times with 40% ethanol. Finally, the sample is hot-air dried at 50°C for 10h, crushed, and passed through a 100-mesh sieve to obtain polycrystalline resistant starch.
  • the resistant starch is A+B+VII-crystal form with a crystallinity of 40.9%.
  • the content of resistant starch measured by the Englyst method can reach 68.3%. After the starch is placed in a boiling water bath for ten minutes, the content of resistant starch measured by the Englyst method only drops by 4.2%. The fatty acid content of the product is measured, and the result is 4.83g/100g.
  • a method for preparing polycrystalline resistant starch comprises the following steps:
  • the product is rapidly cooled to 5°C at an average cooling rate of 10°C/min, and crystallized at this temperature for 30min, and then heated to 55°C for toughening for 96h. Cool to room temperature, then centrifuge at 5000rpm for 8min, and then wash three times with 60% ethanol. Finally, the sample is hot-air dried at 60°C for 6h, crushed, and passed through a 100-mesh sieve to obtain polycrystalline resistant starch.
  • the resistant starch A+B+VII-crystal form has a crystallinity of 40.6%, and the resistant starch content measured by the Englyst method can reach 67.5%. After the starch is placed in a boiling water bath for ten minutes, the resistant starch content measured by the Englyst method only decreases by 4.5%. The fatty acid content of the product is measured, and the result is 4.81g/100g.
  • Example 1 The only difference from Example 1 is that the plasma activated water with a pH value of 5 is replaced by a sodium acetate solution with a pH value of 5; the other steps and parameters are consistent with those in Example 1.
  • the crystallinity of the resistant starch, A+B+VII-form, was 31.2%, and the resistant starch content measured by the Englyst method was 53.7%. After the starch was placed in a boiling water bath for ten minutes, the resistant starch content decreased by 9.8% as measured by the Englyst method. The fatty acid content of the product was measured, and the result was 3.86 g/100 g.
  • the resistant starch content, crystallinity and fatty acid content were all decreased. This may be because Na + affects the formation of hydrogen bonds between starch chain segments, resulting in a decrease in the degree of starch chain order.
  • Example 1 The only difference from Example 1 is that the starch milk with a solid content of 15% is prepared using plasma-activated water with a pH value of 3 instead of plasma-activated water with a solid content of 15%; the other steps and parameters are consistent with Example 1.
  • the resistant starch crystal form is A+B+VII-type, the crystallinity is 37.7%, and the content of the resistant starch prepared in the comparative example is 59.6% as measured by the Englyst method. After the starch is placed in a boiling water bath for ten minutes, the content of the resistant starch is decreased by 7.6% as measured by the Englyst method. The fatty acid content of the product is measured, and the result is 4.51 g/100 g.
  • the resistant starch prepared in Example 1 Compared with the resistant starch prepared in Example 1, the resistant starch content and crystallinity decreased significantly, and the fatty acid content was quite different. This is because the lower pH destroyed the crystalline region of the starch and reduced the crystallinity; at the same time, the lower pH would limit the activity of pullulanase.
  • Example 1 The only difference from Example 1 is that the starch milk with a solid content of 15% is prepared using plasma-activated water with a pH value of 5, and is replaced by starch milk with a solid content of 15% using plasma-activated water with a pH value of 6; the other steps and parameters are consistent with Example 1.
  • the resistant starch crystal form is A+B+VII-type, the crystallinity is 36.3%, and the resistant starch content measured by the Englyst method is 57.8%. After the starch is placed in a boiling water bath for ten minutes, the resistant starch content is decreased by 8.4% by the Englyst method. The fatty acid content of the product is measured, and the result is 4.48g/100g.
  • the resistant starch prepared in Example 1 Compared with the resistant starch prepared in Example 1, the resistant starch content and crystallinity are significantly reduced, and the fatty acid content is quite different. This is because the ion-activated water with a higher pH value has limited effect on the amorphous region of starch, cannot effectively reduce the viscosity of high-amylose corn starch milk, and is not conducive to fatty acid complexation.
  • Example 1 The only difference from Example 1 is that "the product after ultrasound is rapidly cooled to 4°C at an average cooling rate of 8°C/min, and crystallized at this temperature for 45 minutes, and then heated to 50°C for toughening for 108 hours” is replaced by "the product after ultrasound is naturally cooled to 20°C at room temperature, and then heated to 45°C for toughening for 72 hours”; other steps and parameters are consistent with Example 1.
  • the content of resistant starch prepared in this comparative example was measured by the Englyst method to be 56.2%.
  • the product was subjected to XRD test ( Figure 2), forming B+VI- crystal form with a crystallinity of 32.7%.
  • the content of resistant starch was measured by the Englyst method to decrease by 8.9%.
  • the fatty acid content of the product was measured, and the result was 4.31g/100g.
  • the raw material of the present invention is high-amylose corn starch, which has special application value;
  • the resistant starch prepared by the present invention has better palatability than simple RS2 high-amylose corn starch; the resistant starch content is increased, the crystallinity is improved, and the obtained resistant starch has good heat resistance;
  • the present invention complexes fatty acids and starch, protects unsaturated fatty acids, and makes the resistant starch have the efficacy of unsaturated fatty acids;
  • the resistant starch not only has good rheological properties and stability, improves taste, reduces the expansion of food and other unique food processing characteristics, but also has excellent physiological functions such as preventing diabetes, improving intestinal health, protecting intestinal barriers, etc., and has important industrial application value and broad market development prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

一种多晶型抗性淀粉的制备方法,以高直链玉米淀粉为原料,使用pH 4-5的等离子体活化水调制高浓度淀粉乳,通过普鲁兰酶联合超声波辅助络合技术,在保留耐热B‑型结晶的基础上,使不耐热的无定形区解簇后与脂肪酸高效络合,经过冷却结晶形成B+VI‑型结晶,再通过韧化处理得到耐热性更高的A+B+VII‑型结晶。制备的多晶型抗性淀粉含量高达69.6%,耐热稳定性高,结晶度高,适口性好,可以作为食品中的功能性食品配料,对血糖、胆固醇水平调节、肠道健康调控等方面具有实践价值。

Description

一种多晶型抗性淀粉的制备方法 技术领域
本发明涉及一种多晶型抗性淀粉的制备方法,属于淀粉改性技术领域。
背景技术
常见的抗性淀粉主要分为5种:RS1(物理包埋淀粉)、RS2(天然抗性淀粉颗粒)、RS3(老化淀粉)、RS4(化学改性淀粉)和RS5(淀粉-脂质复合物)。RS1、RS2是天然存在的,结晶类型与淀粉来源密切相关,玉米等禾谷类淀粉为A-型结晶,生香蕉、马铃薯等为B-型结晶。RS1和RS2通常热稳定差,这两类RS在热加工过程中损失掉绝大部分。RS3在淀粉重结晶过程中形成,通过调控回生温度、水分含量等重结晶条件可产生A-型结晶或B-型结晶,产品耐热性差异较大(70℃~150℃),持水性低。RS4通过引入化学官能团引起淀粉分子结构变化得到,但其生产时间长,产品质量可能发生变化,反应速率低、污染环境,同时在食品工业中需要特别考虑产品的安全性要求,对所用试剂有很大的限制。RS5为V-型结晶,根据耐热性分为VI-型结晶和VII-型结晶两类;VI-型结晶结构有序性相对较低,解离温度约95℃~105℃;VII-型结晶有序性相对较高,解离温度约115℃~130℃;VI-型结晶一般在较低温度下制得,VII-型结晶需要在高温长时条件下形成。
其中,具有一定抗酶解能力的天然淀粉颗粒被称为RS2,如生香蕉淀粉,马铃薯淀粉等,但通常其热稳定性较差,在热加工过程中会损失掉大部分。高直链玉米淀粉呈B-型结晶结构,直链淀粉含量高,分子结构呈现线条状排列,可以耐受一定的高温,蒸煮后保留部分高度有序耐热B-型结晶,热加工后抗性淀粉含量仍可达到40%,是当前仅可规模化供应的RS2型抗性淀粉。然而,直链淀粉含量是决定食品适口性、消化特性等的主要因素。一般低至中等直链含量的淀粉适口性更好,而高直链玉米淀粉由于直链含量高,质地较硬,适口性较差。
有文献报道通过包裹脂肪酸的方式来解决食品适口性、消化特性等问题。
比如,CN109549173A公开了一种新型抗性淀粉,由经普鲁兰酶脱分支后与长链饱和脂肪酸复合而成,获得了第五类新型抗性淀粉(RS5),RS5的含量高于57.5%;但是,该方法存在如下缺陷:(1)淀粉的凝胶化及二次凝胶化均在120℃以上高温处理较长时间,高直链玉米淀粉完全糊化,耐热的B-型结晶被完全破坏,最终仅能得到V-型结晶的RS5,在90℃左右即发生解离,耐热稳定性不高;(2)淀粉的凝胶化及二次凝胶化需要在120℃以上处理较长时间,常温常压下无法满足所需条件,因此必须使用特殊高温高压设备,导致能耗高,成本高。
此外,也有报道在RS5(淀粉-脂质复合物)的基础上获得了B+V-型结晶抗性淀粉,通 过回生、碱性方法、高速均质、高静水压等方法得到,涉及的碱性方法需要使用氢氧化钠和盐酸,高速均质、高静水压的方法需要特定设备,存在成本高等问题。也有报道CN115353570A公开了一种二元复合型抗性淀粉(RS4+RS5)的制备方法,通过酯化改性制备RS4型抗性淀粉并进一步复合单甘油酯制备得到,呈V-型晶型,抗性淀粉含量约为60%,仍存在抗消化性能有待提高、使用化学改性试剂收到食品工业安全性要求的限制/污染环境等问题。
发明内容
为解决上述的至少一个技术问题,本发明提供了一种多晶型抗性淀粉的制备方法,该方法得到的产品保留高直链玉米淀粉耐热的B-型结晶,将不耐热无定形区解簇后与脂肪酸高效络合,冷却结晶形成B+VI-型结晶,并调控结晶特征将B+VI-型结晶转化为A+B+VII-型,所得产品抗性淀粉含量高(高达67%~69%)、结晶度高(40%以上)、耐热性好(将抗性淀粉沸水浴10min后抗性淀粉含量下降不足5%)、适口性更佳(脂肪酸含量达4.8g/100g以上)。同时,本发明方法操作简便,在常温常压下即可实现,成本低。
本发明的第一个目的是提供一种多晶型抗性淀粉的制备方法,所述方法包括采用pH 4~5的等离子体活化水制备淀粉乳,再使用普鲁兰酶解簇淀粉不耐热的无定形区,超声波处理强化淀粉与脂肪酸的络合,冷却结晶,再通过韧化处理转化得到多晶型抗性淀粉(含有A、B、VII三种晶型,命名为A+B+VII-型结晶抗性淀粉)。
在一种实施方式中,所述方法具体包括以下步骤:
(1)等离子体活化淀粉乳的调制:将高直链玉米淀粉加入pH 4~5的等离子体活化水中调制得到淀粉乳;
(2)淀粉无定形区解簇:将步骤(1)所得的淀粉乳糊化,加普鲁兰酶解簇酶解处理;
(3)超声波辅助脂肪酸络合:向步骤(2)酶解处理后的淀粉乳添加脂肪酸,进行超声处理;得脂肪酸络合产物;
(4)冷却结晶:将步骤(3)所得脂肪酸络合产物冷却结晶、韧化、脱水、洗涤、干燥、即得多晶型(A+B+VII-型)结晶抗性淀粉。
在一种实施方式中,步骤(1)所述淀粉乳的质量分数为15%~18%(w/w,淀粉干基占淀粉乳总质量)。
在一种实施方式中,步骤(2)所述糊化的温度为90~100℃,时间为25~35min。
在一种实施方式中,步骤(2)所述解簇酶解温度为55~65℃,时间为12~24h;所述普鲁兰酶添加量为40~50ASPU/g干淀粉;解簇酶解,是保留高直链玉米淀粉中耐热的B-结晶,将不耐热的无定形区使用普鲁兰酶转化为直链淀粉短链。
在一种实施方式中,步骤(3)所述脂肪酸为油酸、亚油酸、亚麻酸中的任意一种。
在一种实施方式中,步骤(3)所述酶解处理后的淀粉乳添加脂肪酸是在70~90℃条件下加入脂肪酸;所述脂肪酸的添加量为淀粉干基质量的6%~10%;所述脂肪酸为油酸、亚油酸、亚麻酸中的任意一种。
在一种实施方式中,步骤(3)所述超声频率25~35kHz,超声功率300~400W,超声处理时间30~60min。
在一种实施方式中,步骤(4)所述冷却结晶是将产物以5~10℃/min平均冷却速率快速冷却至3~5℃,并在该温度下结晶30~60min。
在一种实施方式中,步骤(4)所述韧化是在45~55℃韧化96~120h。
在一种实施方式中,步骤(4)所述干燥是在50~60℃下热风干燥6~10h。
在一种实施方式中,步骤(3)中加入的脂肪酸为水不溶性脂肪酸,需要通过无水乙醇分散,无水乙醇的体积用量为淀粉乳体积的0.05~0.1倍。
在一种实施方式中,步骤(4)所述脱水的离心转速为4000~5000rpm,离心时间为8~15min。
本发明的第二个目的是提供一种上述方法制备得到的多晶型抗性淀粉。
本发明的第三个目的是提供一种由上述所述方法或多晶型抗性淀粉在制备功能食品中的应用。
所述应用,包括功能食品可以是能改善肠道健康、预防糖尿病、保护肠屏障的功能食品。
本发明中,高直链玉米淀粉是指直链淀粉含量超过70%的玉米淀粉。
本发明的有益效果:
(1)保留耐热稳定B-型结晶,不稳定的B-型结晶在超声波辅助下与脂肪酸络合形成直链淀粉-脂质复合物,转化为耐热的V-型结晶,具有三维螺旋结构,且具有极好的热稳定性,不易与淀粉酶作用,实现抗性淀粉含量增加,耐热稳定性增加。
(2)使用pH 4~5的等离子体活化水,其中的弱酸性组分可以作用于淀粉的无定形区,降低高直链玉米淀粉乳的黏度,可以改善水热糊化法制备淀粉乳体系固形物含量极低(5%~7%)的问题,提高淀粉利用率,并改善淀粉乳体系黏度高不利于脂肪酸络合的问题;等离子体活化水是弱酸性体系,无论脂肪酸的不饱和度大小,弱酸性体系均有利于直链淀粉形成螺旋,并加强疏水相互作用,从而促进淀粉-脂肪酸复合物的形成;避免使用酸性程度高的等离子体活化水,可以有效防止强酸性组分攻击淀粉的结晶区,防止耐热的B-型结晶被破坏,同时防止普鲁兰酶的活性丧失。
(3)采用快速冷却结晶的方法促使大量晶核的形成,并通过在合适温度下的保温促进晶 体的生长,有利于V-型结晶淀粉形成更高的结晶度和更大的微晶尺寸,结晶结构趋于完美,提高复合物的稳定性。
(4)韧化处理可以改变淀粉颗粒内部的堆积状态,淀粉晶体进行熔融和分子重排,结晶度增加,高直链玉米淀粉经过韧化处理还可以得到A-型结晶。
本发明至少具有以下优点:
本发明方法操作简便,在常温常压下即可实现,成本低。
采用上述方法制备得到的多晶型抗性淀粉,通过Englyst法测得抗性淀粉含量可达67%以上(高达67%~69%);通过XRD测得结晶度相较于蒸煮后的高直链玉米淀粉显著增加,实现抗性淀粉含量增加,结晶度提高(结晶度可达40%以上);将抗性淀粉沸水浴10min,用Englyst法测得其抗性淀粉含量仅下降不足5%,说明本发明大幅提高了抗性淀粉的耐热性;同时在抗性淀粉中引入了不饱和脂肪酸(脂肪酸含量达4.8g/100g以上),起到了提升口感、保护肠道屏障、调节肠道微生物的作用。
该多晶型抗性淀粉不仅具有良好的流变学特性及稳定性、改善口感、减少食品的膨胀度等独特的食品加工特性,还具有优良的生理功能如改善肠道健康、预防糖尿病、保护肠屏障等,有重要的工业应用价值和广阔的市场开发前景。
附图说明
图1为本发明实施例1多晶型抗性淀粉的XRD图;
图2为本发明的对比例5抗性淀粉的XRD图。
具体实施方式
下面将结合实施例对本发明的技术方案进行详细描述,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
1、抗性淀粉含量的测定
参考Englyst法测定抗性淀粉的含量。将制备好的淀粉-脂肪酸络合物与去离子水混匀,漩涡震荡。将测试管置于37℃振荡水浴锅中,每支试管加入10颗玻璃珠、4mL醋酸钠缓冲液(0.5mol/L,pH 5.2),保温30min。加入新鲜配制的混合酶溶液,37℃水浴震荡。每隔0、10、20、30、45、60、90、120、180min取0.1mL水解液,加入0.9mL的90%乙醇溶液中灭酶,使用葡萄糖测定试剂盒测定孵育液中的葡萄糖含量。
抗性淀粉含量的计算,结合G120(保温120分钟后释放的葡萄糖)和Ws(样品重量) 值,使用以下公式计算:
Figure PCTCN2022140262-appb-000001
2、等离子体活化水的制备
将蒸馏水放入直径3cm、高15cm的圆柱管中,等离子体射流探头距水面25cm,使用大气压等离子体射流激发装置激发40-60s,得到pH为4-5的等离子体活化水。
3、高直链玉米淀粉
高直链玉米淀粉,祥玉1945,购买自荃银祥玉(北京)生物科技有限公司
4、普鲁兰酶
普鲁兰酶购买自SIGMA-ALDRICH公司。
5、结晶度的测定
使用X-射线衍射仪测定样品的结晶结构,选用Cu-Kα光源(40kV,30mA)以2°/min的扫描速率从4°扫描至30°(2θ)。采用MDI Jade 6.0软件计算相对结晶度RC,方法如下:
Figure PCTCN2022140262-appb-000002
其中,A c和A a分别代表X-射线衍射图中结晶区与无定型区的面积。
实施例1
一种多晶型抗性淀粉的制备方法,具体包括如下步骤:
称取10g过100目筛的高直链玉米淀粉,用pH值为5的等离子体活化水配成固形物含量15%的淀粉乳,然后将淀粉乳在95℃下糊化30min,冷却至60℃,加入45ASPU/g干淀粉的普鲁兰酶解簇18h,沸水灭酶后降温至80℃,再加入淀粉干基的6%的油酸,在超声频率30kHz,功率350W,80℃下超声处理45min,之后将超声后的产物以8℃/min平均冷却速率快速冷却至4℃,并在该温度下结晶45min,然后再加热至50℃韧化108h。随后4500rpm离心12min,再用50%乙醇洗涤三次。最后将样品在55℃下热风干燥8h、粉碎、过100目筛,即得多晶型抗性淀粉。
用Englyst法测得抗性淀粉含量可达69.6%。对产品进行XRD测试(图1),在衍射角2θ为7.4°、13°、19.7°附近的衍射峰表明V-型结晶的形成,5.4°、16.8°、23°附近的衍射峰表明A-型结晶和B-型结晶的存在,该抗性淀粉形成A+B+VII-晶型,结晶度为41.7%。将该淀粉放入沸水浴十分钟后,用Englyst法测得抗性淀粉含量仅下降3.8%。对产品进行脂肪酸含量测定,结果为4.91g/100g。
实施例2
一种多晶型抗性淀粉的制备方法,具体包括如下步骤:
称取10g过100目筛的高直链玉米淀粉,用pH值为4.5的等离子体活化水配成固形物含量16%的淀粉乳,然后将淀粉乳在90℃下糊化35min,冷却至55℃,加入40ASPU/g干淀粉的普鲁兰酶解簇24h,沸水灭酶后降温至70℃,再加入淀粉干基的8%的油酸,在超声频率25kHz,功率400W,70℃下超声处理60min,将产物以5℃/min平均冷却速率快速冷却至3℃,并在该温度下结晶60min,然后再加热至45℃韧化120h。冷却至室温,随后4000rpm离心15min,再用40%乙醇洗涤三次。最后将样品在50℃下热风干燥10h、粉碎、过100目筛,即得多晶型抗性淀粉。
该抗性淀粉为A+B+VII-晶型,结晶度为40.9%,用Englyst法测得抗性淀粉含量可达68.3%。将该淀粉放入沸水浴十分钟后,用Englyst法测得抗性淀粉含量仅下降4.2%。对产品进行脂肪酸含量测定,结果为4.83g/100g。
实施例3
一种多晶型抗性淀粉的制备方法,具体包括如下步骤:
称取10g过100目筛的高直链玉米淀粉,用pH值为4的等离子体活化水配成固形物含量18%的淀粉乳,然后将淀粉乳在100℃下糊化25min,冷却至65℃,加入50ASPU/g干淀粉的普鲁兰酶解簇12h,沸水灭酶后降温至90℃,再加入淀粉干基的10%的油酸,在超声频率35kHz,功率300W,90℃下超声处理30min,将产物以10℃/min平均冷却速率快速冷却至5℃,并在该温度下结晶30min,然后再加热至55℃韧化96h。冷却至室温,随后5000rpm离心8min,再用60%乙醇洗涤三次。最后将样品在60℃下热风干燥6h、粉碎、过100目筛,即得多晶型抗性淀粉。
该抗性淀粉A+B+VII-晶型,结晶度为40.6%,用Englyst法测得抗性淀粉含量可达67.5%。将该淀粉放入沸水浴十分钟后,用Englyst法测得抗性淀粉含量仅下降4.5%。对产品进行脂肪酸含量测定,结果为4.81g/100g。
对比例1
考察等离子体活化水、普鲁兰酶、超声波和冷却结晶韧化对制备抗性淀粉的影响,改变其中一个或几个条件时,其余工艺步骤和参数与实施例1相同,结果如表1。
表1
Figure PCTCN2022140262-appb-000003
Figure PCTCN2022140262-appb-000004
备注:“+”代表添加,“-”代表不添加。
对比例2
与实施例1的区别仅在于,将pH值为5的等离子活化水替换成pH值为5的醋酸钠溶液;其他步骤和参数均与实施例1保持一致。
该抗性淀粉,A+B+VII-晶型的结晶度为31.2%,用Englyst法测得抗性淀粉含量为53.7%。将该淀粉放入沸水浴十分钟后,用Englyst法测得抗性淀粉含量下降9.8%。对产品进行脂肪酸含量测定,结果为3.86g/100g。
与实施例1制备得到的抗性淀粉相比,抗性淀粉含量、结晶度、脂肪酸含量均下降。可能是由于Na +影响淀粉链段之间氢键的形成,导致淀粉链有序化程度降低。
对比例3
与实施例1的区别仅在于,将pH值为5的等离子体活化水配成固形物含量15%的淀粉乳,换成采用pH值为3的等离子体活化水配成固形物含量15%的淀粉乳;其他步骤和参数均与实施例1保持一致。
该抗性淀粉结晶晶型为A+B+VII-型,结晶度为37.7%,用Englyst法测得该对比例制备的抗性淀粉含量为59.6%。将该淀粉放入沸水浴十分钟后,用Englyst法测得抗性淀粉含量下降7.6%。对产品进行脂肪酸含量测定,结果为4.51g/100g。
与实施例1制备得到的抗性淀粉相比,抗性淀粉含量、结晶度下降较明显,脂肪酸含量差别较大。这是由于较低的pH对淀粉的结晶区造成破坏,结晶度降低;同时,较低的pH会限制普鲁兰酶的活性。
对比例4
与实施例1的区别仅在于,将pH值为5的等离子体活化水配成固形物含量15%的淀粉乳,换成采用pH值为6的等离子体活化水配成固形物含量15%的淀粉乳;其他步骤和参数均与实施例1保持一致。
该抗性淀粉结晶晶型为A+B+VII-型,结晶度为36.3%,用Englyst法测得抗性淀粉含量 为57.8%。将该淀粉放入沸水浴十分钟后,用Englyst法测得抗性淀粉含量下降8.4%。对产品进行脂肪酸含量测定,结果为4.48g/100g。
与实施例1制备得到的抗性淀粉相比,抗性淀粉含量、结晶度明显下降,脂肪酸含量差别较大。这是由于较高pH值的等离子活化水,对淀粉的无定形区作用有限,无法有效降低高直链玉米淀粉乳的黏度,不利于脂肪酸络合。
对比例5
以实施例1的区别仅在于,“将超声后的产物以8℃/min平均冷却速率快速冷却至4℃,并在该温度下结晶45min,然后再加热至50℃韧化108h”换成“采用超声后的产物在室温下自然冷却至20℃,然后再加热至45℃韧化72h”;其他步骤和参数均与实施例1保持一致。
用Englyst法测得该对比例制备的抗性淀粉含量为56.2%。对产品进行XRD测试(图2),形成B+VI-晶型,结晶度为32.7%。将该淀粉放入沸水浴十分钟后用Englyst法测得抗性淀粉含量下降8.9%。对产品进行脂肪酸含量测定,结果为4.31g/100g。
与实施例1制备得到的抗性淀粉相比,仅形成B+VI-晶型;抗性淀粉含量、结晶度、脂肪酸含量差别较大。这是由于自然冷却形成的晶核较少,不利于V-型结晶淀粉形成更高的结晶度和更大的微晶尺寸;且韧化时间不足,无法有效提高淀粉螺旋有序度以及晶体完美度。
综上所述,本发明的原料为高直链玉米淀粉,具有特殊的应用价值;本发明制得的抗性淀粉比单纯的RS2高直链玉米淀粉具有更佳的适口性;提高了抗性淀粉含量,提升了结晶度,且得到的抗性淀粉耐热性好;本发明将脂肪酸和淀粉络合,对不饱和脂肪酸起到保护作用,并使得抗性淀粉兼具不饱和脂肪酸的功效;该抗性淀粉不仅具有良好的流变学特性及稳定性、改善口感、减少食品的膨胀度等独特的食品加工特性,还具有优良的生理功能如预防糖尿病、改善肠道健康、保护肠屏障等,有重要的工业应用价值和广阔的市场开发前景。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (11)

  1. 一种多晶型抗性淀粉的制备方法,其特征在于,所述方法包括采用pH 4~5的等离子体活化水制备淀粉乳,再使用普鲁兰酶解簇淀粉,超声波处理强化淀粉与脂肪酸的络合,冷却结晶,再通过韧化处理转化得到多晶型抗性淀粉。
  2. 根据权利要求1所述的方法,其特征在于,所述方法包括如下步骤:
    (1)将高直链玉米淀粉加入pH 4~5的等离子体活化水中调制得到淀粉乳;
    (2)将步骤(1)所得的淀粉乳糊化,加普鲁兰酶解簇酶解处理;
    (3)向步骤(2)酶解处理后的淀粉乳添加脂肪酸,进行超声处理,得脂肪酸络合产物;
    (4)将步骤(3)所得脂肪酸络合产物冷却结晶、韧化、脱水、洗涤、干燥、即得多晶型结晶抗性淀粉。
  3. 根据权利要求1所述的方法,其特征在于,步骤(1)所述淀粉乳的质量分数为15%~18%。
  4. 根据权利要求1所述的方法,其特征在于,步骤(2)所述解簇酶解温度为55~65℃,时间为12~24h;所述普鲁兰酶添加量为40~50ASPU/g干淀粉。
  5. 根据权利要求1所述的方法,其特征在于,步骤(3)所述酶解处理后的淀粉乳添加脂肪酸是在70~90℃条件下加入脂肪酸;所述脂肪酸的添加量为淀粉干基质量的6%~10%。
  6. 根据权利要求5所述的方法,其特征在于,所述脂肪酸为油酸、亚油酸、亚麻酸中的任意一种。
  7. 根据权利要求1所述的方法,其特征在于,步骤(3)所述超声频率25~35kHz,超声功率300~400W,超声处理时间30~60min。
  8. 根据权利要求1所述的方法,其特征在于,步骤(4)所述冷却结晶是将产物以5~10℃/min平均冷却速率快速冷却至3~5℃,并在该温度下结晶30~60min。
  9. 根据权利要求1所述的方法,其特征在于,步骤(4)所述韧化是在45~55℃韧化96~120h。
  10. 由权利要求1~8任一所述的方法制备得到的多晶型抗性淀粉。
  11. 由权利要求1~8任一所述的方法或权利要求9所述的多晶型抗性淀粉在制备功能食品中的应用。
PCT/CN2022/140262 2022-11-03 2022-12-20 一种多晶型抗性淀粉的制备方法 WO2024092983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211369208.1 2022-11-03
CN202211369208.1A CN115572750B (zh) 2022-11-03 2022-11-03 一种多晶型抗性淀粉的制备方法

Publications (1)

Publication Number Publication Date
WO2024092983A1 true WO2024092983A1 (zh) 2024-05-10

Family

ID=84589995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140262 WO2024092983A1 (zh) 2022-11-03 2022-12-20 一种多晶型抗性淀粉的制备方法

Country Status (2)

Country Link
CN (1) CN115572750B (zh)
WO (1) WO2024092983A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914163A (zh) * 2010-08-26 2010-12-15 华南理工大学 一种慢性消化淀粉及其制备方法
BRPI0903002A2 (pt) * 2009-08-20 2011-05-10 Universidade Estadual De Campinas - Unicamp processo de modulaÇço das propriedades de amido usando plasma frio e amido modificado
JP5410004B2 (ja) * 2007-03-30 2014-02-05 フタムラ化学株式会社 超音波照射難消化性処理デンプン
CN106723058A (zh) * 2016-11-25 2017-05-31 山东省农业科学院农产品研究所 制备具有增抗性和易消化性淀粉的方法
CN107686524A (zh) * 2017-10-19 2018-02-13 齐鲁工业大学 V6‑型结晶结构马铃薯淀粉‑脂肪酸复合物的制备方法
CN110229241A (zh) * 2019-06-21 2019-09-13 华南理工大学 一种基于冷等离子体制备马铃薯羟丙基淀粉的方法
CN111234867A (zh) * 2018-11-28 2020-06-05 中国石油化工股份有限公司 一种用于裂解汽油的c9+馏分的加氢方法
CN112877385A (zh) * 2021-02-05 2021-06-01 齐鲁工业大学 一种酶法改性淀粉-甘油酯复合物及其制备方法
WO2021114694A1 (zh) * 2019-12-12 2021-06-17 江苏大学 超声协同普鲁兰酶制备慈姑抗性淀粉方法
CN112998274A (zh) * 2021-03-31 2021-06-22 齐鲁工业大学 一种高直链玉米淀粉-c18脂肪酸复合物的制备方法
WO2021169119A1 (zh) * 2020-02-26 2021-09-02 江南大学 一种慢消化淀粉的制备方法
CN114947131A (zh) * 2022-05-23 2022-08-30 江苏大学 具有降血糖功效的莲藕rs5型抗性淀粉的超声波制备技术

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180824B (zh) * 2018-07-24 2020-01-17 江南大学 一种抗性淀粉的制备方法
CN109762074B (zh) * 2019-03-01 2021-03-16 郑州轻工业学院 一种等离子体活化水湿热改性天然淀粉的方法
CN111675830B (zh) * 2020-06-03 2021-10-22 江南大学 一种脱支淀粉-脂质复合物的制备方法
CN114162916B (zh) * 2021-12-03 2023-10-20 西安交通大学 一种液下膜囊大体积等离子体制备活化液的方法与装置
CN115477707B (zh) * 2022-09-30 2023-04-28 江南大学 一种v-型结晶淀粉的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410004B2 (ja) * 2007-03-30 2014-02-05 フタムラ化学株式会社 超音波照射難消化性処理デンプン
BRPI0903002A2 (pt) * 2009-08-20 2011-05-10 Universidade Estadual De Campinas - Unicamp processo de modulaÇço das propriedades de amido usando plasma frio e amido modificado
CN101914163A (zh) * 2010-08-26 2010-12-15 华南理工大学 一种慢性消化淀粉及其制备方法
CN106723058A (zh) * 2016-11-25 2017-05-31 山东省农业科学院农产品研究所 制备具有增抗性和易消化性淀粉的方法
CN107686524A (zh) * 2017-10-19 2018-02-13 齐鲁工业大学 V6‑型结晶结构马铃薯淀粉‑脂肪酸复合物的制备方法
CN111234867A (zh) * 2018-11-28 2020-06-05 中国石油化工股份有限公司 一种用于裂解汽油的c9+馏分的加氢方法
CN110229241A (zh) * 2019-06-21 2019-09-13 华南理工大学 一种基于冷等离子体制备马铃薯羟丙基淀粉的方法
WO2021114694A1 (zh) * 2019-12-12 2021-06-17 江苏大学 超声协同普鲁兰酶制备慈姑抗性淀粉方法
WO2021169119A1 (zh) * 2020-02-26 2021-09-02 江南大学 一种慢消化淀粉的制备方法
CN112877385A (zh) * 2021-02-05 2021-06-01 齐鲁工业大学 一种酶法改性淀粉-甘油酯复合物及其制备方法
CN112998274A (zh) * 2021-03-31 2021-06-22 齐鲁工业大学 一种高直链玉米淀粉-c18脂肪酸复合物的制备方法
CN114947131A (zh) * 2022-05-23 2022-08-30 江苏大学 具有降血糖功效的莲藕rs5型抗性淀粉的超声波制备技术

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN YANFANG: "Research Progress on the Preparation of Resistant Starch and Its Application in Flour Products", MODERN FOOD, vol. 28, no. 16, 28 August 2022 (2022-08-28), pages 69 - 74, XP093168586, ISSN: 2096-5060, DOI: 10.16736/j.cnki.cn41-1434/ts.2022.16.016 *
LIN YAN: "Recent Advances in Structural Characteristics and Intestinal Flora-Regulating Function of Resistant Starch", FOOD SCIENCE, BEIJING FOOD SCIENCE RESEARCH INSTITUTE, CN, vol. 41, no. 11, 15 June 2020 (2020-06-15), CN , pages 222 - 232, XP093168582, ISSN: 1002-6630, DOI: 10.7506/spkx1002-6630-20190611-113 *
YAN YIZHE: "Effects of plasma-activated water and annealing on structure and properties of wheat starch Chinese ", FOOD AND FERMENTATION INDUSTRIES, vol. 49, no. 8, 15 July 2022 (2022-07-15), pages 21 - 26, XP093168579 *

Also Published As

Publication number Publication date
CN115572750B (zh) 2023-10-27
CN115572750A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
Zhang et al. Ultrasound-assisted preparation of octenyl succinic anhydride modified starch and its influence mechanism on the quality
CN105132492B (zh) 一种超高压协同酶制备的高抗性淀粉含量的产品及其制备方法
JP4482611B1 (ja) レジスタントスターチ高含有澱粉およびそれを用いた飲食品
CN109180824B (zh) 一种抗性淀粉的制备方法
Hu et al. Effects on the structure and properties of native corn starch modified by enzymatic debranching (ED), microwave assisted esterification with citric acid (MCAE) and by the dual ED/MCAE treatment
CN101914163A (zh) 一种慢性消化淀粉及其制备方法
Butt et al. Rice starch citrates and lactates: A comparative study on hot water and cold water swelling starches
CN105001343A (zh) 一种利用压热处理协同酶法脱支制备高抗性淀粉(rs3)含量的产品及其制备方法
CN103555793B (zh) 一种籼米强抗消化淀粉及其制备方法
Sánchez‐Rivera et al. Citric acid esterification of unripe plantain flour: Physicochemical properties and starch digestibility
Wang et al. Structural and physicochemical properties of resistant starch under combined treatments of ultrasound, microwave, and enzyme
WO2023056805A1 (zh) 一种改性淀粉-脂质二元复合物的制备方法
Wang et al. Comparison of physicochemical properties and digestibility of sweet potato starch after two modifications of microwave alone and microwave-assisted L-malic acid
Jin et al. Effects of high power ultrasound on the enzymolysis and structures of sweet potato starch
WO2024092983A1 (zh) 一种多晶型抗性淀粉的制备方法
CN117070581A (zh) 一种高含量抗性淀粉的制备方法
CN115595346B (zh) 一种豌豆iii型抗性淀粉制备方法
CN113845600B (zh) 一种高直链绿豆抗性淀粉的制备方法
CN115251365B (zh) 一种淀粉微/纳晶-蛋白质凝胶及制备方法
Wang et al. The structural properties and resistant digestibility of maize starch-glyceride monostearate complexes
CN105131310A (zh) 一种非晶颗粒态抗性淀粉的制备方法
Amonsou Impact of starch modification processes on resistant starch of root and tuber crops
CN115011652B (zh) 一种利用粉丝副产物制备抗性淀粉的方法
Sun et al. Characterization of Arrowhead‐Derived Type 3 Resistant Starch Prepared by Ultrasound‐Assisted α‐Amylase Degradation
CN116693705B (zh) 一种耐热型抗性淀粉及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964278

Country of ref document: EP

Kind code of ref document: A1