WO2024092668A1 - 电子控制单元、控制***和终端 - Google Patents

电子控制单元、控制***和终端 Download PDF

Info

Publication number
WO2024092668A1
WO2024092668A1 PCT/CN2022/129676 CN2022129676W WO2024092668A1 WO 2024092668 A1 WO2024092668 A1 WO 2024092668A1 CN 2022129676 W CN2022129676 W CN 2022129676W WO 2024092668 A1 WO2024092668 A1 WO 2024092668A1
Authority
WO
WIPO (PCT)
Prior art keywords
ecu
electronic control
control unit
liquid cooling
cooling structure
Prior art date
Application number
PCT/CN2022/129676
Other languages
English (en)
French (fr)
Inventor
王晓飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/129676 priority Critical patent/WO2024092668A1/zh
Publication of WO2024092668A1 publication Critical patent/WO2024092668A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling

Definitions

  • the present application relates to the field of vehicles, and in particular to an electronic control unit, a control system and a terminal.
  • ECU Electronic control unit
  • driving computer also known as “driving computer”, “on-board computer”, etc.
  • ECU is a terminal microcomputer controller. In the vehicle domain, it can also be called a vehicle-specific single-chip microcomputer.
  • Some ECUs can be connected to thermal management devices to form a thermal management system (TMS) with the thermal management device to ensure that the ECU works in a suitable temperature environment.
  • TMS thermal management system
  • the currently known design solutions include: the ECU can have its own liquid cooling structure, connected to the vehicle's thermal management device for cooling and heat dissipation; an independent external liquid cooling plate is installed, the ECU is fixed on the liquid cooling plate, and the liquid cooling plate is connected to the vehicle's thermal management device to cool and dissipate the ECU fixed on the liquid cooling plate.
  • the water connection of the thermal management system will be very complicated, and system maintenance will also be more difficult.
  • the present application provides an electronic control unit, a control system and a terminal in order to reduce the complexity of the thermal management system and thereby reduce the difficulty of system maintenance.
  • the present application provides a control system, which includes a first ECU and a second ECU, the first ECU includes a liquid cooling structure, and the second ECU does not include a liquid cooling structure; wherein the first ECU and the second ECU each include at least two fastening interfaces, and the at least two fastening interfaces are used to install fasteners, and the fasteners are used to fasten the first ECU and the second ECU.
  • the liquid cooling structure of the ECU with a self-contained liquid cooling structure can be reused, and there is no need to add an additional independent liquid cooling plate. It is only necessary to connect the ECU with a self-contained liquid cooling structure to the water path of the thermal management system. The access of additional independent liquid cooling plates in the water path of the thermal management system is reduced, which can reduce the complexity of the thermal management system and thus reduce the difficulty of system maintenance. In addition, there is no need to purchase additional independent liquid cooling plates, which can reduce costs.
  • the liquid cooling structure of the first ECU includes: a cavity for containing cooling liquid, and a liquid inlet and a liquid outlet connected to the cavity, and the liquid cooling structure is integrally formed with the first ECU.
  • the liquid cooling structure is integrally formed with the first ECU, and it can also be understood that the liquid cooling structure is a non-detachable part of the first ECU.
  • the first ECU also includes at least one heat-conducting groove, which is located on the outer surface of the cavity and the opening of the heat-conducting groove faces the second ECU.
  • the heat-conducting groove is used to hold a heat-conducting material, and the heat-conducting material is used for heat conduction.
  • the thermally conductive material includes but is not limited to thermally conductive pads, thermally conductive gels, etc., and this application does not impose any limitation on this.
  • the first ECU and the second ECU communicate based on a communication channel, and the communication channel includes a controller area network (CAN) bus, a CAN-flexible data-rate (FD) bus, Ethernet or a wireless network.
  • CAN controller area network
  • FD CAN-flexible data-rate
  • Ethernet or a wireless network.
  • the second ECU can communicate with the first ECU based on CAN bus, CAN-FD bus, Ethernet or wireless network, that is, the second ECU and the first ECU can be physically connected through the CAN bus or CAN-FD bus, or can be physically connected through an Ethernet cable, or can be wirelessly connected through a wireless network.
  • This application does not impose any limitations on this.
  • the first ECU is used to obtain the temperature of the second ECU from the second ECU based on a communication channel.
  • the ECU without a liquid cooling structure and the ECU with a liquid cooling structure that are fastened together can be regarded as a whole, and the first ECU and the second ECU can communicate based on the communication channel. Based on this, the first ECU only needs to be communicated with the thermal management device, and the second ECU does not need to be internally communicated with the thermal management device.
  • the complexity of the communication connection of the thermal management system can be reduced to a certain extent, and the difficulty of system maintenance can be further reduced.
  • the system further includes a thermal management device, to which the liquid cooling structure of the first ECU is connected, and the thermal management device is used to control a target temperature and/or a target flow rate of the coolant flowing out of the thermal management device.
  • the thermal management device may also include a liquid inlet and a liquid outlet.
  • the liquid inlet of the liquid cooling structure of the first ECU may be connected to the liquid outlet of the thermal management device, and the liquid outlet of the liquid cooling structure of the first ECU may be connected to the liquid inlet of the thermal management device, thereby realizing the circulation of the coolant between the thermal management device and the liquid cooling structure of the first ECU to ensure that the first ECU and the second ECU in the control system operate in a suitable temperature environment.
  • the first ECU is also used to report indication information of the required temperature and/or required flow rate of the coolant to the thermal management device based on the temperature of the first ECU and the temperature of the second ECU; the thermal management device is specifically used to: receive indication information reported by multiple first ECUs; and control the target temperature and/or target flow rate based on the multiple indication information received.
  • the first ECU is also used to report the temperature of the first ECU and the temperature of the second ECU to the thermal management device; the thermal management device is specifically used to: receive temperatures reported by multiple first ECUs; and control the target temperature and/or target flow rate based on the received multiple temperatures.
  • the present application provides a first ECU, which includes a liquid cooling structure, and the first ECU includes at least two fastening interfaces for installing fasteners, and the fasteners are used to fasten the first ECU and a second ECU that does not include a liquid cooling structure.
  • the liquid cooling structure includes: a cavity for containing cooling liquid, and a liquid inlet and a liquid outlet connected to the cavity, and the liquid cooling structure is integrally formed with the first ECU.
  • the first ECU further includes at least one heat-conducting groove, which is located on the outer surface of the cavity, and is used to hold a heat-conducting material, and the heat-conducting material is used for heat conduction.
  • the first ECU is used to obtain the temperature of the second ECU.
  • the present application provides a second ECU, which does not include a liquid cooling structure.
  • the second ECU includes at least two fastening interfaces for installing fasteners, and the fasteners are used to fasten the second ECU to a first ECU including a liquid cooling structure.
  • the present application provides a terminal, comprising a control system as in the first aspect or any one of the first aspects.
  • the terminal comprises a vehicle.
  • FIG1 is a schematic diagram of a thermal management system
  • FIG2 is a schematic diagram of a first ECU provided in an embodiment of the present application.
  • FIG3 is a comparison diagram of different sizes of a second ECU adapted to a first ECU provided in an embodiment of the present application
  • FIG4 is a schematic diagram of a second ECU provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a control system provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a terminal provided in an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same functions and effects.
  • the first ECU and the second ECU are used to distinguish different ECUs, and their order is not limited.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit them to be different.
  • "at least one” means one or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the previous and next associated objects are in an “or” relationship, but it does not exclude the situation where the previous and next associated objects are in an "and” relationship. The specific meaning can be understood in combination with the context.
  • ECU Also known as “driving computer”, “on-board computer”, etc.
  • ECU like ordinary computers, consists of a microcontroller unit (MCU), memory, input/output interface, analog-to-digital converter, and large-scale integrated circuits such as shaping and driving.
  • MCU microcontroller unit
  • the normal operating temperature of ECU is between -40 degrees Celsius (°C) and 80°C.
  • CAN bus An example of an in-vehicle communication link.
  • CAN bus is a serial communication network that effectively supports distributed control or real-time control.
  • CAN bus is used to connect between vehicle components.
  • CAN bus can connect components including CAN controller chip, data receiver and data transmitter.
  • Fasteners They can also be called standard fasteners or standard parts. They are a general term for a type of mechanical parts used to fasten two or more parts (or components) into a whole. Fasteners come in a wide variety of specifications, with different performances and uses, and are highly standardized, serialized, and universal.
  • Fasteners include but are not limited to the following types of parts:
  • Bolt A type of fastener that includes a head and a screw (a cylinder with external threads). It must be used in conjunction with a nut to fasten two parts with through holes. This type of connection is called a bolt connection. Unscrewing the nut from the bolt can separate the two parts, so a bolt connection is a detachable connection.
  • Stud Unlike bolts, studs have no head and are a type of fastener with external threads on both ends. When connecting, one end must be screwed into a part with an internal threaded hole, and the other end must pass through a part with a through hole, and then a nut is screwed on to fasten the two parts into a whole.
  • This type of connection is called a stud connection, which is also a detachable connection. It is mainly used in scenarios where one of the connected parts is thicker, requires a compact structure, or is frequently disassembled and bolt connections are not suitable.
  • Screw A type of fastener that includes a head and a screw. It can be divided into three categories according to its use: machine screws, set screws, and special-purpose screws. It can be used with or without a nut. For example, when it is used to fasten a part with a set threaded hole to a part with a through hole, it does not need to be used with a nut; when it is used to fasten two parts with through holes, it needs to be used with a nut. This type of connection is called a screw connection, which is also a detachable connection.
  • Self-tapping screws Also known as quick-thread screws, they are steel fasteners that have been galvanized and passivated. Self-tapping screws are mostly used to connect thin metal plates (such as steel plates, sawn plates, etc.). When connecting, it is necessary to first make a threaded bottom hole for the connected parts, and then screw the self-tapping screw into the threaded bottom hole of the connected parts.
  • Wood screws Similar to machine screws, but the threads on the screw are special wood screw threads that can be screwed directly into wooden components (or parts) to fasten a metal (or non-metal) part with a through hole to a wooden component. This type of connection is a detachable connection.
  • Rivet A type of fastener that includes a head and a shank, used to fasten two parts (or components) with holes to make them a whole. This type of connection is called rivet connection, or riveting for short, and is a non-detachable connection. If you want to separate two parts connected by rivets, you need to break the rivets on the parts.
  • Welding nail It is the abbreviation of cylindrical head welding nail for arc stud welding.
  • Welding nail is a fastener with high strength and rigidity connection. It may include a nail rod and a nail head, or it may not include a nail head.
  • the welding nail is fixedly connected to a part (or component) by welding so as to connect it with other parts.
  • Pin Mainly used for positioning parts. Some pins can also be used to connect parts, fix parts, transmit power or lock fasteners, etc.
  • Nut A nut with an internal threaded hole. Its shape includes but is not limited to a flat hexagonal column, a flat square column or a flat cylindrical column. It is used with bolts, studs or screws to fasten two parts together to form a whole.
  • Washer A type of fastener whose shape includes but is not limited to an oblate ring. It can be placed between the support surface of a bolt, screw or nut and the surface of the connected part to increase the contact surface area of the connected parts, reduce the pressure per unit area and protect the surface of the connected parts from damage. Another type is an elastic washer, which can also prevent the nut from loosening.
  • Retaining ring It is installed in the shaft groove or shaft hole groove of the machine or equipment to prevent the parts on the shaft or hole from moving left and right.
  • the currently known design solutions include the following two: the first is that the ECU can have its own liquid cooling structure (for the convenience of description, this ECU is referred to as an ECU with a self-contained liquid cooling structure in this application), and the ECU with a self-contained liquid cooling structure can be directly connected to the vehicle's thermal management device for cooling and heat dissipation; the second is to install an independent liquid cooling plate externally, fix the ECU without a liquid cooling structure (for the convenience of description, this ECU is referred to as an ECU without a self-contained liquid cooling structure in this application) on the liquid cooling plate, and the liquid cooling plate is connected to the vehicle's thermal management device to cool and dissipate the non-self-contained liquid cooling structure ECU fixed on the liquid cooling plate.
  • the vehicle may include both ECUs without self-liquid cooling and ECUs with self-liquid cooling.
  • Some ECUs without self-liquid cooling with low power consumption do not generate much heat, and can ensure that they work in a suitable temperature environment through their own heat dissipation; while some ECUs without self-liquid cooling with high power consumption generate relatively high heat, and cannot ensure that they work in a suitable temperature environment only through their own heat dissipation. Therefore, these ECUs without self-liquid cooling with high power consumption also need to be connected to thermal management devices to ensure that they work in a suitable temperature environment.
  • FIG. 1 is a schematic diagram of a thermal management system. As shown in Figure 1, an ECU with a liquid cooling structure can be directly connected to the thermal management device of the vehicle and become a part of the thermal management system of the vehicle; while an ECU without a liquid cooling structure needs to be fixed on an independent liquid cooling plate and then connected to the thermal management device of the vehicle and become a part of the thermal management system.
  • the liquid cooling plate on which the ECU without a liquid cooling structure is fixed needs to be connected to the water circuit of the thermal management system, and the ECU with a liquid cooling structure also needs to be connected to the water circuit of the thermal management system, which makes the water circuit connection of the thermal management system very complicated; in addition, both the ECU without a liquid cooling structure and the ECU with a liquid cooling structure need to communicate with the thermal management device in the thermal management system, which makes the communication connection of the thermal management system very complicated and the system maintenance is also difficult.
  • the embodiments of the present application provide an electronic control unit, a control system and a terminal.
  • a fastening interface on an ECU without a self-contained liquid cooling structure and an ECU with a self-contained liquid cooling structure By setting a fastening interface on an ECU without a self-contained liquid cooling structure and an ECU with a self-contained liquid cooling structure, and fastening the ECU without a self-contained liquid cooling structure and the ECU with a self-contained liquid cooling structure together based on the fastening interface, the liquid cooling structure of the ECU with a self-contained liquid cooling structure can be reused. There is no need to add an additional independent liquid cooling plate. It is only necessary to connect the ECU with a self-contained liquid cooling structure to the water circuit of the thermal management system. The access of additional independent liquid cooling plates in the water circuit of the thermal management system is reduced, which can reduce the complexity of the thermal management system and thus reduce the difficulty of system maintenance. In addition, there is no need to purchase additional independent liquid cooling plates
  • the first ECU and the second ECU provided in the present application are described in detail below with reference to FIGS. 2 to 4 .
  • FIG. 2 is a schematic diagram of a first ECU provided in an embodiment of the present application.
  • An embodiment of the present application provides a first ECU, the first ECU includes a liquid cooling structure, and the first ECU includes at least two fastening interfaces for installing fasteners, and the fasteners are used to fasten and connect the first ECU with a second ECU that does not include a liquid cooling structure.
  • fasteners are a general term for a type of mechanical parts used to fasten two or more parts (or components) into a whole.
  • Fasteners come in a wide variety of specifications, with different performances and uses, and are highly standardized, serialized, and universal.
  • the fastening interface can be set according to different needs.
  • the specific form of the fastening interface corresponds to the fastener.
  • the form of the fastening interface suitable for different types of fasteners can be different, and the embodiments of this application do not impose any restrictions on this.
  • Figure 2 a shows a three-dimensional stereogram of a first ECU
  • Figure 2 b shows a top view of the first ECU in Figure 2 a)
  • the first ECU includes a liquid cooling structure 210 and multiple fastening interfaces, such as fastening interface 221, fastening interface 222, fastening interface 223, fastening interface 224, fastening interface 225 and fastening interface 226.
  • At least two of the fastening interfaces included in the first ECU can be aligned with at least two of the fastening interfaces included in the second ECU, so as to fasten the second ECU to the first ECU.
  • the positions of the fastening interface 221, the fastening interface 224 and the fastening interface 225 can be connected in a straight line, that is, the positions of the fastening interface 221, the fastening interface 224 and the fastening interface 225 are on the same straight line, and the positions of the fastening interface 222, the fastening interface 223 and the fastening interface 226 cannot be connected in a straight line, that is, the positions of the fastening interface 222, the fastening interface 223 and the fastening interface 226 are not on the same straight line.
  • the second ECU of different sizes can be fastened and connected to the first ECU through the fastening interface 221, the fastening interface 222, the fastening interface 223, the fastening interface 224, the fastening interface 225 and the fastening interface 226, which has good universality.
  • the following describes different sizes of the second ECU that can be adapted to the first ECU provided in the embodiment of the present application in conjunction with FIG. 3 .
  • FIG3 is a comparison diagram of different sizes of a second ECU adapted to a first ECU provided in an embodiment of the present application.
  • Example 1 as shown in a) of Figure 3, the second ECU of size 1 can be fastened and connected to the first ECU through the fastening interface 221 and the fastening interface 223, or the fastening interface 222 and the fastening interface 224, or the fastening interface 221, the fastening interface 222 and the fastening interface 223, or the fastening interface 221, the fastening interface 222 and the fastening interface 224, or the fastening interface 222, the fastening interface 223 and the fastening interface 224, or the fastening interface 221, the fastening interface 224 and the fastening interface 223, or the fastening interface 221, the fastening interface 222, the fastening interface 223 and the fastening interface 224.
  • Example 2 as shown in b) of Figure 3, the second ECU of size 2 can be fastened and connected to the first ECU through fastening interface 223 and fastening interface 225, or fastening interface 221 and fastening interface 226, or fastening interface 221, fastening interface 222 and fastening interface 226, or fastening interface 223, fastening interface 224 and fastening interface 225.
  • a second ECU of size 1 may be fastened and connected to a first ECU, or one or two second ECUs of size 2 may be fastened and connected to a first ECU; the embodiment of the present application does not impose any limitation on this.
  • size 1 and size 2 are not size in a strict sense, but are only used to distinguish second ECUs of different sizes (or specifications), and should not impose any limitations on the present application.
  • Figures 2 and 3 are only examples.
  • the first ECU may include more or fewer fastening interfaces, as long as the second ECU can be fastened to the first ECU.
  • the embodiment of the present application does not limit the specific number of fastening interfaces included in the first ECU.
  • the liquid cooling structure of the first ECU includes: a cavity for containing cooling liquid, and a liquid inlet and a liquid outlet connected to the cavity, and the liquid cooling structure is integrally formed with the first electronic control unit.
  • the liquid cooling structure 210 of the first ECU may include a cavity 211, a liquid inlet 212, and a liquid outlet 213. Liquid cooling liquid may enter the cavity 211 from the liquid inlet 212, and then flow out of the cavity 211 from the liquid outlet 213.
  • the liquid cooling structure 210 is integrally formed with the first ECU, that is, the liquid cooling structure 210 is a non-detachable part of the first ECU.
  • the first ECU further includes at least one heat-conducting groove, which is located on the outer surface of the cavity.
  • the heat-conducting groove is used to hold a heat-conducting material, and the heat-conducting material is used to conduct heat.
  • the first ECU may further include a heat conducting groove 231 and a heat conducting groove 232.
  • a heat conducting material may be placed in the heat conducting groove to facilitate better heat conduction between the first ECU and the second ECU.
  • the heat conducting material includes but is not limited to a heat conducting pad, a heat conducting gel, etc., and the present application embodiment does not make any limitation on this.
  • the first ECU is used to obtain the temperature of the second ECU.
  • the first ECU can obtain its own temperature
  • the second ECU can also obtain its own temperature.
  • the first ECU and the second ECU can communicate, and the first ECU can obtain the temperature of the second ECU from the second ECU, so as to perform subsequent processing based on the temperature of the first ECU and the temperature of the second ECU.
  • the ECU without a liquid cooling structure and the ECU with a liquid cooling structure that are fastened together can be regarded as a whole, and the first ECU and the second ECU can communicate internally based on the communication channel (for example, the first ECU obtains the temperature of the second ECU). Based on this, the first ECU only needs to be communicated with the thermal management device, and the second ECU does not need to be communicated with the thermal management device. This can reduce the complexity of the communication connection of the thermal management system to a certain extent, and further reduce the difficulty of system maintenance.
  • the ECU without a self-contained liquid cooling structure and the ECU with a self-contained liquid cooling structure that are fastened together can be regarded as a whole, and the first ECU and the second ECU can communicate internally based on the communication channel.
  • the first ECU can communicate with the thermal management device, and the second ECU does not need to communicate with the thermal management device, which can reduce the complexity of the communication connection of the thermal management system to a certain extent, and further reduce the difficulty of system maintenance.
  • the thermal management system can save a certain amount of space occupation.
  • FIG. 4 is a schematic diagram of a second ECU provided in an embodiment of the present application.
  • An embodiment of the present application provides a second ECU, which does not include a liquid cooling structure.
  • the second ECU includes at least two fastening interfaces for installing fasteners, and the fasteners are used to fasten the second ECU to a first ECU including a liquid cooling structure.
  • Figure 4 a shows a three-dimensional stereogram of a second ECU
  • Figure 4 b shows a top view of the second ECU in Figure 4 a
  • the second ECU includes multiple fastening interfaces, such as fastening interface 401, fastening interface 402, fastening interface 403 and fastening interface 404.
  • At least two of the fastening interfaces included in the second ECU can be aligned with at least two of the fastening interfaces included in the first ECU, so that the second ECU can be fastened to the first ECU.
  • second ECUs of different sizes can be fastened together with the first ECU provided in the embodiment of the present application, that is, in actual application scenarios, second ECUs of different sizes can be included.
  • Example 1 for example, the size of the second ECU is size 1 as shown in a) of FIG. 3 , and the following are several possible design methods of the second ECU of size 1:
  • the second ECU may include a fastening interface 401 and a fastening interface 403 as shown in b) of Figure 4, so that the fastening interface 401 and the fastening interface 403 of the second ECU can be aligned with the fastening interface 221 and the fastening interface 223 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include a fastening interface 402 and a fastening interface 404 as shown in b) of Figure 4, so that the fastening interface 402 and the fastening interface 404 of the second ECU can be aligned with the fastening interface 222 and the fastening interface 224 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include a fastening interface 401, a fastening interface 402 and a fastening interface 403 as shown in b) of Figure 4, so that the fastening interface 401, the fastening interface 402 and the fastening interface 403 of the second ECU can be aligned with the fastening interface 221, the fastening interface 222 and the fastening interface 223 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include a fastening interface 401, a fastening interface 402 and a fastening interface 404 as shown in b) of Figure 4, so that the fastening interface 401, the fastening interface 402 and the fastening interface 404 of the second ECU can be aligned with the fastening interface 221, the fastening interface 222 and the fastening interface 224 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include a fastening interface 402, a fastening interface 403 and a fastening interface 404 as shown in b) of Figure 4, so that the fastening interface 402, the fastening interface 403 and the fastening interface 404 of the second ECU can be aligned with the fastening interface 222, the fastening interface 223 and the fastening interface 224 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include a fastening interface 401, a fastening interface 404 and a fastening interface 403 as shown in b) of Figure 4, so that the fastening interface 401, the fastening interface 404 and the fastening interface 403 of the second ECU can be aligned with the fastening interface 221, the fastening interface 224 and the fastening interface 223 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include fastening interface 401, fastening interface 402, fastening interface 403 and fastening interface 404 as shown in b) of Figure 4, so that the fastening interface 401, fastening interface 402, fastening interface 403 and fastening interface 404 of the second ECU can be aligned with the fastening interface 221, fastening interface 222, fastening interface 223 and fastening interface 224 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • Example 2 for example, the size of the second ECU is size 2 as shown in a) of FIG. 3 , and the following are several possible design methods of the second ECU of size 2:
  • the second ECU may include a fastening interface 401 and a fastening interface 403 as shown in b) of Figure 4, so that the fastening interface 401 and the fastening interface 403 of the second ECU can be aligned with the fastening interface 223 and the fastening interface 225 of the first ECU, or can be aligned with the fastening interface 221 and the fastening interface 226 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include a fastening interface 402 and a fastening interface 404 as shown in b) of Figure 4, so that the fastening interface 402 and the fastening interface 404 of the second ECU can be aligned with the fastening interface 223 and the fastening interface 225 of the first ECU, or can be aligned with the fastening interface 221 and the fastening interface 226 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include a fastening interface 401, a fastening interface 402 and a fastening interface 403 as shown in b) of Figure 4, so that the fastening interface 401, the fastening interface 402 and the fastening interface 403 of the second ECU can be aligned with the fastening interface 221, the fastening interface 222 and the fastening interface 223 of the first ECU, or can be aligned with the fastening interface 223, the fastening interface 224 and the fastening interface 225 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include a fastening interface 401, a fastening interface 404 and a fastening interface 403 as shown in b) of Figure 4, so that the fastening interface 401, the fastening interface 404 and the fastening interface 403 of the second ECU can be aligned with the fastening interface 221, the fastening interface 222 and the fastening interface 223 of the first ECU, or can be aligned with the fastening interface 223, the fastening interface 224 and the fastening interface 225 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include a fastening interface 401, a fastening interface 404 and a fastening interface 402 as shown in b) of Figure 4, so that the fastening interface 401, the fastening interface 404 and the fastening interface 402 of the second ECU can be aligned with the fastening interface 221, the fastening interface 222 and the fastening interface 223 of the first ECU, or can be aligned with the fastening interface 223, the fastening interface 224 and the fastening interface 225 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • the second ECU may include a fastening interface 402, a fastening interface 403 and a fastening interface 404 as shown in b) of Figure 4, so that the fastening interface 402, the fastening interface 403 and the fastening interface 404 of the second ECU can be aligned with the fastening interface 221, the fastening interface 222 and the fastening interface 223 of the first ECU, or can be aligned with the fastening interface 223, the fastening interface 224 and the fastening interface 225 of the first ECU, so that the second ECU of size 1 can be fastened and connected together with the above-mentioned first ECU.
  • Figure 4 is only an example.
  • the second ECU may include more or fewer fastening interfaces, as long as the second ECU can be fastened to the first ECU.
  • the embodiment of the present application does not limit the specific number of fastening interfaces included in the second ECU.
  • control system provided by the present application is described in detail below in conjunction with FIG. 5 .
  • the present application also provides a control system, which includes a first ECU and a second ECU, the first ECU includes a liquid cooling structure, and the second ECU does not include a liquid cooling structure; wherein the first ECU and the second ECU each include at least two fastening interfaces, and the at least two fastening interfaces are used to install fasteners, and the fasteners are used to fasten the first ECU and the second ECU.
  • one or more second ECUs may be fastened to the surface where the liquid cooling structure of a first ECU is located, and this embodiment of the present application does not impose any limitation on this.
  • Fig. 5 is a schematic diagram of a control system provided by an embodiment of the present application.
  • the system includes a first ECU 501, a second ECU 502, a first ECU 503, a second ECU 504, and a second ECU 505, wherein the first ECU 501 and the second ECU 502 can be fastened together through a fastening interface, and the first ECU 503 and the second ECU 504 and the second ECU 505 can be fastened together through a fastening interface.
  • the size of the second ECU 502 may be the size 1 described above, and the sizes of the second ECU 504 and the second ECU 505 may be the size 2 described above.
  • the embodiments of the present application do not impose any limitation on this.
  • the first ECU 501 and the first ECU 503 may include a fastening interface 221, a fastening interface 222, a fastening interface 223, a fastening interface 224, a fastening interface 225 and a fastening interface 226 as shown in Figure 2.
  • the liquid cooling structure of the first ECU includes: a cavity for containing cooling liquid, and a liquid inlet and a liquid outlet connected to the cavity, and the liquid cooling structure is integrally formed with the first electronic control unit.
  • liquid cooling structure please refer to the relevant description above. For the sake of brevity, it will not be repeated here.
  • the first ECU further includes at least one heat-conducting groove, which is located on the outer surface of the cavity and has an opening toward the second ECU.
  • the heat-conducting groove is used to contain heat-conducting material, and the heat-conducting material is used to conduct heat.
  • the first ECU communicates with the second ECU based on a communication channel, and the communication channel includes a CAN bus, a CAN-FD bus, an Ethernet, or a wireless network.
  • the second ECU 502 is fastened to the first ECU 501
  • the second ECU 504 and the second ECU 505 are fastened to the first ECU 503, and the second ECU 502 and the first ECU 501, as well as the second ECU 504 and the first ECU 503, and the second ECU 505 and the first ECU 503 can communicate based on CAN bus, CAN-FD bus, Ethernet or wireless network.
  • the second ECU 502 and the first ECU 501, the second ECU 504 and the first ECU 503, and the second ECU 505 and the first ECU 503 can be physically connected through the CAN bus or CAN-FD bus, or can be physically connected through an Ethernet cable, or can be wirelessly connected through a wireless network.
  • the embodiments of the present application do not impose any limitations on this.
  • the first ECU is used to obtain the temperature of the second ECU from the second ECU based on the communication channel.
  • the first ECU can obtain its own temperature
  • the second ECU can also obtain its own temperature.
  • the first ECU and the second ECU can communicate based on the above communication channel, so that the first ECU can obtain the temperature of the second ECU from the second ECU, so as to perform subsequent processing based on the temperature of the first ECU and the temperature of the second ECU.
  • the ECU without self-contained liquid cooling structure and the ECU with self-contained liquid cooling structure that are fastened together can be regarded as a whole, and the first ECU and the second ECU can communicate internally based on the communication channel (for example, the first ECU obtains the temperature of the second ECU). Based on this, the first ECU can be connected to the thermal management device for communication, and the second ECU does not need to be connected to the thermal management device for internal communication.
  • the first ECU 501 can obtain its own temperature, and obtain the temperature of the second ECU 502 from the second ECU 502 based on the communication channel between the first ECU 503 and the second ECU 504; the first ECU 503 can obtain its own temperature, and obtain the temperature of the second ECU 504 from the second ECU 504 based on the communication channel between the first ECU 503 and the second ECU 504, and obtain the temperature of the second ECU 505 from the second ECU 505 based on the communication channel between the first ECU 503 and the second ECU 505.
  • the first ECU 501 and the first ECU 503 communicate with the thermal management device, and there is no need for the second ECU 502, the second ECU 504 and the second ECU 505 to communicate with the thermal management device, thereby reducing the complexity of the communication connection of the thermal management system to a certain extent and further reducing the difficulty of system maintenance.
  • control system further includes a thermal management device, to which the liquid cooling structure of the first ECU is connected, and the thermal management device is used to control a target temperature and/or a target flow rate of the coolant flowing out of the thermal management device.
  • control system includes a thermal management device 510, and the liquid cooling structures of the first ECU 501 and the first ECU 503 can be connected to the thermal management device, and the thermal management device can be used to control the target temperature and/or target flow rate of the coolant flowing out of the thermal management device.
  • FIG. 5 is only an example, and in actual application scenarios, the control system may include more or fewer first ECUs, and may also include more or fewer second ECUs, and the embodiments of the present application do not impose any limitation on this.
  • the thermal management device may also include a liquid inlet and a liquid outlet.
  • the liquid inlet of the liquid cooling structure of the first ECU 501 and the first ECU 503 may be connected to the liquid outlet of the thermal management device 510, and the liquid outlet of the liquid cooling structure of the first ECU 501 and the first ECU 503 may be connected to the liquid inlet of the thermal management device 510, thereby realizing the circulation of the coolant between the thermal management device and the liquid cooling structure of the first ECU, so as to ensure that the first ECU and the second ECU in the control system operate in a suitable temperature environment.
  • control system including the thermal management device is the thermal management system (TMS) mentioned above.
  • the first ECU is also used to report indication information of the required temperature and/or required flow rate of the coolant to the thermal management device based on the temperature of the first ECU and the temperature of the second ECU; the thermal management device is specifically used to: receive indication information reported by multiple first ECUs; and control the target temperature and/or target flow rate based on the multiple indication information received.
  • the indication information may include the required temperature and/or the required flow rate, or may not include the required temperature and/or the required flow rate.
  • the embodiment of the present application does not limit the specific content included in the indication information, as long as the required temperature and/or the required flow rate can be obtained based on the indication information.
  • the first ECU can determine the required temperature and/or required flow rate of the liquid coolant based on its own temperature and the temperature of the second ECU, can generate indication information of the required temperature and/or required flow rate of the coolant, and can report the indication information to the thermal management device.
  • the first ECU 501 can determine the required temperature and/or required flow rate of the liquid coolant of the first ECU 501 and the second ECU 502 based on its own temperature and the temperature of the second ECU 502, and can generate indication information of the required temperature and/or required flow rate of the coolant, and can report the indication information to the thermal management device.
  • the first ECU 503 can determine the required temperature and/or required flow rate of the liquid coolant of the first ECU 501, the second ECU 504 and the second ECU 505 based on its own temperature and the temperatures of the second ECU 504 and the second ECU 505, can generate indication information of the required temperature and/or required flow rate of the coolant, and can report the indication information to the thermal management device.
  • the thermal management device can receive indication information reported by multiple first ECUs, and control the target temperature and/or target flow rate of the coolant flowing out of the thermal management device according to the multiple indication information received.
  • the thermal management device 510 can receive indication information reported by the first ECU 501 and the first ECU 503, and determine the target temperature and/or target flow rate according to the indication information reported by the first ECU 501 and the first ECU 503, and control the temperature and/or speed of the coolant flowing out of the thermal management device based on the target temperature and/or target flow rate.
  • the thermal management device may determine multiple required temperatures and/or required flow rates based on the multiple indication information received, and then determine the temperature with the smallest value among the multiple required temperatures as the target temperature of the coolant flowing out of the thermal management device, and/or determine the flow rate with the largest value among the multiple required flow rates as the target flow rate of the coolant flowing out of the thermal management device.
  • the embodiments of the present application do not impose any limitation on this.
  • the first ECU when the second ECU is tightly connected to the first ECU, the first ECU can determine the required temperature and/or required flow rate of the liquid coolant based on the temperature of the first ECU and the temperature of the second ECU, and then generate the indication information of the required temperature and/or required flow rate of the coolant; when the first ECU is not tightly connected to the second ECU, the first ECU can determine the required temperature and/or required flow rate of the liquid coolant based on the temperature of the first ECU itself, and then generate the indication information of the required temperature and/or required flow rate of the coolant.
  • the embodiments of the present application are not limited to this.
  • the first ECU is also used to report the temperature of the first ECU and the temperature of the second ECU to the thermal management device; the thermal management device is specifically used to: receive temperatures reported by multiple first ECUs; and control the target temperature and/or target flow rate based on the received multiple temperatures.
  • the first ECU may report its own temperature and the temperature of the second ECU to the thermal management device.
  • the first ECU 501 can report its own temperature and the temperature of the second ECU 502 to the thermal management device.
  • the first ECU 503 can report its own temperature and the temperatures of the second ECU 504 and the second ECU 505 to the thermal management device.
  • the thermal management device can receive temperatures reported by multiple first ECUs, and control the target temperature and/or target flow rate of the coolant flowing out of the thermal management device according to the received temperatures.
  • the thermal management device 510 can receive the temperatures of the first ECU 501 and the first ECU 503 reported by the first ECU 501, and receive the temperatures of the first ECU 503, the second ECU 504, and the second ECU 505 reported by the first ECU 503, and determine the target temperature and/or target flow rate according to these temperatures, and control the temperature and/or speed of the coolant flowing out of the thermal management device based on the target temperature and/or target flow rate.
  • the thermal management device may control the target temperature and/or target flow rate of the coolant flowing out of the thermal management device according to the temperature with the largest value among the multiple temperatures received.
  • the present application embodiment does not impose any limitation on this.
  • the thermal management device may include a processor and a receiving unit, the receiving unit may be used to receive the indication information or temperature reported by the plurality of first ECUs, and the processor may be used to control the target temperature and/or target flow rate of the coolant flowing out of the thermal management device based on the indication information or temperature received by the receiving unit.
  • the thermal management device may also include a memory, the memory may be used to store program instructions and/or data, and the memory may be located inside or outside the processor, and the embodiments of the present application do not impose any limitation on this.
  • the first ECU when the second ECU is tightly connected to the first ECU, the first ECU can report its own temperature and the temperature of the second ECU to the thermal management device; when the first ECU is not tightly connected to the second ECU, the first ECU can report its own temperature to the thermal management device.
  • This embodiment of the application is not limited to this.
  • the ECU without self-liquid cooling structure and the ECU with self-liquid cooling structure fastened together can be regarded as a whole, and the first ECU and the second ECU can communicate internally based on the communication channel.
  • the first ECU can be connected to the thermal management device for communication
  • the second ECU does not need to be connected to the thermal management device for communication, which can reduce the complexity of the communication connection of the thermal management system to a certain extent, and further reduce the difficulty of system maintenance.
  • the thermal management system can save a certain amount of space for the entire vehicle.
  • An embodiment of the present application also provides a terminal, which includes the control system described above.
  • the terminal may include a vehicle.
  • FIG6 is a schematic diagram of a terminal provided in an embodiment of the present application.
  • the vehicle shown in Fig. 6 is an example of a terminal.
  • the vehicle may include a control system as shown in Fig. 5 .
  • unit may be used to represent circuit-related entities, hardware, firmware, or a combination of hardware and software.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the present embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • each functional unit can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented by software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions (programs). When the computer program instructions (programs) are loaded and executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital versatile disk (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a digital versatile disk (DVD)
  • DVD digital versatile disk
  • SSD solid state disk
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product, which is essentially or partly contributed to the prior art or part of the technical solution.
  • the computer software product is stored in a storage medium, including several instructions to enable a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

提供了电子控制单元、控制***和终端,涉及车领域,该控制***包括第一ECU和第二ECU,第一ECU包括液冷结构,第二ECU不包括液冷结构;其中,第一ECU和第二ECU均包括至少两个紧固接口,这至少两个紧固接口用于安装紧固件,紧固件用于紧固连接第一ECU和第二ECU。通过在非自带液冷结构的ECU和自带液冷结构的ECU上设置紧固接口,并基于紧固接口将这两种ECU紧固连接在一起,以此来复用自带液冷结构的ECU的液冷结构,不需要增加额外的独立的液冷板,只需要将自带液冷结构的ECU连接到热管理***的水路中即可,在热管理***的水路中减少了额外的独立的液冷板的接入,从而可以降低热管理***的复杂度。

Description

电子控制单元、控制***和终端 技术领域
本申请涉及车领域,尤其涉及电子控制单元、控制***和终端。
背景技术
电子控制单元(electronic control unit,ECU),又称“行车电脑”、“车载电脑”等。从用途上讲,ECU是终端的微机控制器,在车辆域中,也可以称为车辆专用单片机。一些ECU可以连接热管理装置,与热管理装置构成热管理***(thermal management system,TMS),以保证ECU工作在合适的温度环境中。
随着车辆的智能化,车载ECU的数量急剧增加,ECU的功耗也明显增加。对于一些功耗较高的需要主动散热的ECU,目前已知的设计方案包括:ECU可以自带液冷结构,连接车辆的热管理装置,进行降温散热;外置一个独立的液冷板,将ECU固定在该液冷板上,该液冷板连接到车辆的热管理装置,对固定在该液冷板上的ECU进行降温散热,在非自带液冷结构的ECU和自带液冷结构的ECU的数量较多的情况下,热管理***的水路连接会很复杂,***维护也比较困难。
发明内容
本申请提供了电子控制单元、控制***和终端,以期降低热管理***的复杂度,进而降低***维护的难度。
第一方面,本申请提供了一种控制***,该***包括第一ECU和第二ECU,该第一ECU包括液冷结构,该第二ECU不包括液冷结构;其中,该第一ECU和该第二ECU均包括至少两个紧固接口,这至少两个紧固接口用于安装紧固件,紧固件用于紧固连接该第一ECU和该第二ECU。
基于上述方案,通过在非自带液冷结构的ECU和自带液冷结构的ECU上设置紧固接口,并基于紧固接口将非自带液冷结构的ECU和自带液冷结构的ECU紧固连接在一起,以此来复用自带液冷结构的ECU的液冷结构,不需要增加额外的独立的液冷板,只需要将自带液冷结构的ECU连接到热管理***的水路中即可,在热管理***的水路中减少了额外的独立的液冷板的接入,可以降低热管理***的复杂度,进而降低***维护的难度。另外,不需要再额外采购独立的液冷板,可以降低成本。
可选地,该第一ECU的液冷结构包括:用于盛放冷却液的腔体,以及连接于该腔体的进液口和出液口,该液冷结构与该第一ECU一体成型。
该液冷结构与该第一ECU一体成型,也可以理解为,该液冷结构是该第一ECU的不可拆卸的一部分。
结合第一方面,在某些可能的设计中,该第一ECU还包括至少一个导热槽,该导热槽位于腔体的外表面,且该导热槽的开口朝向第二ECU,该导热槽用于盛放导热材料,导 热材料用于导热。
导热材料包括但不限于导热垫、导热凝胶等,本申请对此不作任何限定。
结合第一方面,在某些可能的设计中,该第一ECU与该第二ECU之间基于通信通道进行通信,该通信通道包括控制器局域网(controller area network,CAN)总线、CAN-灵活的数据速率(flexible data-rate,FD)总线、以太网或无线网络。
第二ECU与第一ECU之间可以通过基于CAN总线、CAN-FD总线、以太网或无线网络进行通信,也即,第二ECU与第一ECU之间可以通过CAN总线或CAN-FD总线进行物理上的连接,或者,可以通过以太网的网线进行物理上的连接,或者,可以通过无线网络进行无线连接,本申请对此不作任何限定。
结合第一方面,在某些可能的设计中,该第一ECU用于基于通信通道从该第二ECU获取该第二ECU的温度。
紧固连接在一起的非自带液冷结构的ECU和自带液冷结构的ECU可以看作一个整体,且第一ECU与第二ECU之间可以基于通信通道进行通信,基于此,第一ECU与热管理装置进行通信连接即可,第二ECU不需要与热管理装置进行内部通信连接,可以在一定程度上降低热管理***的通信连接的复杂度,进一步降低***维护的难度。
可选地,该***还包括热管理装置,该第一ECU的液冷结构连接该热管理装置,该热管理装置用于控制流出该热管理装置的冷却液的目标温度和/或目标流速。
热管理装置也可以包括进液口和出液口,例如,第一ECU的液冷结构的进液口可以连接热管理装置的出液口,第一ECU的液冷结构的出液口可以连接热管理装置的进液口,从而实现冷却液在热管理装置与第一ECU的液冷结构之间的循环流动,以保证该控制***中的第一ECU和第二ECU工作在合适的温度环境中。
结合第一方面,在某些可能的设计中,该第一ECU还用于根据该第一ECU的温度和该第二ECU的温度向该热管理装置上报对冷却液的需求温度和/或需求流速的指示信息;该热管理装置具体用于:接收多个第一ECU上报的指示信息;根据所接收的多个指示信息,控制目标温度和/或目标流速。
结合第一方面,在某些可能的设计中,该第一ECU还用于向该热管理装置上报该第一ECU的温度和该第二ECU的温度;该热管理装置具体用于:接收多个第一ECU上报的温度;根据所接收的多个温度,控制目标温度和/或目标流速。
第二方面,本申请提供一种第一ECU,该第一ECU包括液冷结构,且该第一ECU包括至少两个紧固接口用于安装紧固件,紧固件用于紧固连接该第一ECU与不包括液冷结构的第二ECU。
基于上述方案,通过在自带液冷结构的ECU上设置紧固接口,并基于紧固接口将非自带液冷结构的ECU和自带液冷结构的ECU紧固连接在一起,也即,紧固连接在一起的非自带液冷结构的ECU和自带液冷结构的ECU可以看作一个整体,以此来复用自带液冷结构的ECU的液冷结构,不需要增加额外的独立的液冷板,只需要将自带液冷结构的ECU连接到热管理***的水路中即可,在热管理***的水路中减少了额外的独立的液冷板的接入,可以降低热管理***的复杂度。另外,不需要再额外采购独立的液冷板,可以降低成本。
可选地,该液冷结构包括:用于盛放冷却液的腔体,以及连接于该腔体的进液口和出 液口,该液冷结构与该第一ECU一体成型。
结合第二方面,在某些可能的设计中,该第一ECU还包括至少一个导热槽,该导热槽位于该腔体的外表面,该导热槽用于盛放导热材料,该导热材料用于导热。
结合第二方面,在某些可能的设计中,该第一ECU用于获取该第二ECU的温度。
第三方面,本申请提供一种第二ECU,该第二ECU不包括液冷结构,该第二ECU包括至少两个紧固接口用于安装紧固件,紧固件用于紧固连接该第二ECU与包括液冷结构的第一ECU。
基于上述方案,通过在非自带液冷结构的ECU上设置紧固接口,并基于紧固接口将非自带液冷结构的ECU和自带液冷结构的ECU紧固连接在一起,也即,紧固连接在一起的非自带液冷结构的ECU和自带液冷结构的ECU可以看作一个整体,以此来复用自带液冷结构的ECU的液冷结构,不需要增加额外的独立的液冷板,只需要将自带液冷结构的ECU连接到热管理***的水路中即可,在热管理***的水路中减少了额外的独立的液冷板的接入,可以降低热管理***的复杂度。另外,不需要再额外采购独立的液冷板,可以降低成本。
第四方面,本申请提供一种终端,该终端包括如第一方面或第一方面中任一项中的控制***。
可选地,该终端包括车辆。
应当理解的是,本申请的第四方面与本申请的第一方面至第三方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是一种热管理***的示意图;
图2是本申请实施例提供的一种第一ECU的示意图;
图3是本申请实施例提供的适配于第一ECU的第二ECU的不同尺寸的对比图;
图4是本申请实施例提供的一种第二ECU的示意图;
图5是本申请实施例提供的一种控制***的示意图;
图6是本申请实施例提供的一种终端的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于清楚描述本申请实施例的技术方案,首先做出如下说明。
第一,在本申请实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一ECU、第二ECU是为了区分不同的ECU,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
第二,在本申请实施例中,“至少一种(个)”是指一种(个)或者多种(个)。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系,但并不排除表示前 后关联对象是一种“和”的关系的情况,具体表示的含义可以结合上下文进行理解。
第三,在本申请实施例中,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
首先对本申请中涉及到的术语作简单说明。
1、ECU:又称“行车电脑”、“车载电脑”等。ECU与普通的电脑一样,由微控制器(microcontroller unit,MCU)、存储器、输入/输出接口、模数转换器以及整形、驱动等大规模集成电路组成。ECU的正常工作温度在-40摄氏度(degree Celsius,℃)至80℃。
2、CAN总线:车内通信链路的一个示例。CAN总线是一种有效支持分布式控制或实时控制的串行通信网络。CAN总线用于车辆的部件之间的连接,例如,CAN总线可以连接包括CAN控制器芯片、数据接收器和数据发送器等在内的部件。
3、紧固件(fastener):也可以称为标准紧固件或标准件。是将两个或两个以上零件(或构件)紧固连接成为一件整体时所采用的一类机械零件的总称。紧固件的品种规格繁多,性能用途各异,而且标准化、系列化、通用化的程度极高。
紧固件包括但不限定于以下几类零件:
螺栓:包括头部和螺杆(带有外螺纹的圆柱体)的一类紧固件,需与螺母配合,用于紧固连接两个带有通孔的零件。这种连接形式称螺栓连接。把螺母从螺栓上旋下,可以使这两个零件分开,所以螺栓连接是属于可拆卸连接。
螺柱:不同于螺栓,螺柱没有头部,是两端均外带螺纹的一类紧固件。连接时,它的一端必须旋入带有内螺纹孔的零件中,另一端穿过带有通孔的零件中,然后旋上螺母,以使得这两个零件紧固连接成一件整体,这种连接形式称为螺柱连接,也是属于可拆卸连接。主要用于被连接零件之一厚度较大、要求结构紧凑,或因拆卸频繁,不宜采用螺栓连接的场景。
螺钉:包括头部和螺杆的一类紧固件,按用途可以分为三类:机器螺钉、紧定螺钉和特殊用途螺钉。可以与螺母配合,也可以不与螺母配合,例如,在用于一个紧定螺纹孔的零件与一个带有通孔的零件之间的紧固连接的情况下,不需要与螺母配合;用于两个带有通孔的零件之间的紧固连接的情况下,需要与螺母配合。这种连接形式称为螺钉连接,也属于可拆卸连接。
自攻螺钉:又称快牙螺丝,是钢制经表面镀锌钝化的快装紧固件。自攻螺钉多用于薄的金属板(例如钢板、锯板等)之间的连接。连接时,需要先对被连接件制出螺纹底孔,再将自攻螺钉拧入被连接件的螺纹底孔中。
木螺钉:与机器螺钉相似,但螺杆上的螺纹为专用的木螺钉专用螺纹,可以直接旋入木质构件(或零件)中,用于把一个带通孔的金属(或非金属)零件与一个木质构件紧固连接在一起。这种连接属于可拆卸连接。
铆钉:包括头部和钉杆的一类紧固件,用于紧固连接两个带孔的零件(或构件),使之成为一件整体。这种连接形式称为铆钉连接,简称铆接,属于不可拆卸连接。如果想要使得用铆钉连接在一起的两个零件分开,需要破坏零件上的铆钉。
焊钉:是电弧螺柱焊用圆柱头焊钉的简称,焊钉是一种高强度刚度连接的紧固件,可以包括钉杆和钉头,或者也可以不包括钉头,用焊接方法把焊钉固定连接在一个零件(或构件)上面,以便再与其他零件进行连接。
销:主要供零件定位,有的销也可以用于零件连接、固定零件、传递动力或锁定紧固件等。
另外,在实际应用场景中,上述螺栓、螺柱或螺钉等可以配合螺母、垫圈、挡圈等使用,本申请实施例对此不作任何限定。
螺母:带有内螺纹孔,形状包括但不限于扁六角柱形、扁方柱形或扁圆柱形,配合螺栓、螺柱或螺钉等,用于紧固连接两个零件,使之成为一个整体。
垫圈:形状包括但不限于呈扁圆环形的一类紧固件。可以置于螺栓、螺钉或螺母的支撑面与连接零件表面之间,起到增大被连接零件接触表面面积,降低单位面积压力和保护被连接零件表面不被损坏的作用。还有一类是弹性垫圈,还能起到阻止螺母回松的作用。
挡圈:供装在机器、设备的轴槽或轴孔槽中,起到阻止轴上或孔上的零件左右移动的作用。
随着车辆的智能化,车载ECU的数量急剧增加,ECU的功耗也明显增加。对于一些功耗较高的需要主动散热的ECU,目前已知的设计方案包括以下两种:第一种,ECU可以自带液冷结构(为了便于描述,本申请中将这种ECU记为简称自带液冷结构的ECU),自带液冷结构的ECU可以直接连接到车辆的热管理装置,进行降温散热;第二种,外置一个独立的液冷板,将没有液冷结构的ECU(为了便于描述,本申请中将这种ECU记为简称非自带液冷结构的ECU)固定在该液冷板上,该液冷板连接到车辆的热管理装置,对固定在该液冷板上的非自带液冷结构ECU进行降温散热。
也就是说,车辆上可以包括非自带液冷结构的ECU和自带液冷结构的ECU。一些功耗较小的非自带液冷结构的ECU产生的热量并不高,通过其自身的散热就可以保证其自身工作在合适的温度环境中;而一些功耗较高的非自带液冷结构的ECU产生的热量比较高,仅通过其自身的散热无法保证其自身工作在合适的温度环境中,因此,这些功耗较高的非自带液冷结构的ECU也需要连接热管理装置,以保证其工作在合适的温度环境中。
图1是一种热管理***的示意图。如图1所示,自带液冷结构的ECU可以直接连接到整车的热管理装置,成为车辆的热管理***中的一部分;而在非自带液冷结构的ECU需要固定在独立的液冷板上,再连接到整车的热管理装置,成为热管理***中的一部分。在非自带液冷结构的ECU和自带液冷结构的ECU的数量较多的情况下,非自带液冷结构的ECU所固定在的液冷板需要接入热管理***的水路中,自带液冷结构的ECU也需要接入热管理***的水路中,从而导致热管理***的水路连接很复杂;另外,非自带液冷结构的ECU和自带液冷结构的ECU均需要与热管理***中的热管理装置进行通信,从而导致热管理***的通信连接也很复杂,***维护也比较困难。
针对上述问题,本申请实施例提供了电子控制单元、控制***和终端,通过在非自带液冷结构的ECU和自带液冷结构的ECU上设置紧固接口,并基于紧固接口将非自带液冷结构的ECU和自带液冷结构的ECU紧固连接在一起,以此来复用自带液冷 结构的ECU的液冷结构,不需要增加额外的独立的液冷板,只需要将自带液冷结构的ECU连接到热管理***的水路中即可,在热管理***的水路中减少了额外的独立的液冷板的接入,可以降低热管理***的复杂度,进而降低***维护的难度。另外,不需要再额外采购独立的液冷板,可以降低成本。
以下先结合图2至图4对本申请提供的第一ECU和第二ECU进行详细说明。
图2是本申请实施例提供的一种第一ECU的示意图。
本申请实施例提供了一种第一ECU,第一ECU包括液冷结构,且该第一ECU包括至少两个紧固接口用于安装紧固件,紧固件用于紧固连接该第一ECU与不包括液冷结构的第二ECU。
上文已述及,紧固件是将两个或两个以上零件(或构件)紧固连接成为一件整体时所采用的一类机械零件的总称,紧固件的品种规格繁多,性能用途各异,而且标准化、系列化、通用化的程度极高。在实际应用场景中,紧固接口可以根据不同的需求来进行设置,紧固接口的具体形态与紧固件向对应,适用于不同类型的紧固件的紧固接口的形态可以不同,本申请实施例对此不作任何限定。
示例性地,如图2所示,图2的a)示出了一种第一ECU的三维立体图,图2的b)示出了图2的a)中第一ECU的俯视图,该第一ECU包括液冷结构210和多个紧固接口,例如紧固接口221、紧固接口222、紧固接口223、紧固接口224、紧固接口225和紧固接口226。
在第一ECU所包括的紧固接口中有至少两个紧固接口与第二ECU所包括的紧固接口中的至少两个紧固接口是可以对齐的,以便于将第二ECU紧固连接在第一ECU上。
作为示例而非限定,如图2的b)所示,紧固接口221、紧固接口224和紧固接口225所在的位置可以连成一条直线,也就是说,紧固接口221、紧固接口224和紧固接口225所在的位置在同一条直线上,紧固接口222、紧固接口223和紧固接口226所在的位置无法连成一条直线,也就是说,紧固接口222、紧固接口223和紧固接口226所在的位置不在同一条直线上。这样一来,可以通过紧固接口221、紧固接口222、紧固接口223、紧固接口224、紧固接口225和紧固接口226将不同尺寸的第二ECU与该第一ECU紧固连接在一起,具有较好的普适性。
以下结合图3对可以适配于本申请实施例提供的第一ECU的第二ECU的不同尺寸进行说明。
图3是本申请实施例提供的适配于第一ECU的第二ECU的不同尺寸的对比图。
示例一,如图3的a),可以通过紧固接口221和紧固接口223,或者,紧固接口222和紧固接口224,或者,紧固接口221、紧固接口222和紧固接口223,或者,紧固接口221、紧固接口222和紧固接口224,或者,紧固接口222、紧固接口223和紧固接口224,或者,紧固接口221、紧固接口224和紧固接口223,或者,紧固接口221、紧固接口222、紧固接口223和紧固接口224,将大小为尺寸1的第二ECU与该第一ECU紧固连接在一起。
示例二,如图3的b),可以通过紧固接口223和紧固接口225,或者,紧固接口221和紧固接口226,或者,紧固接口221、紧固接口222和紧固接口226,或者,紧固接口 223、紧固接口224和紧固接口225,将大小为尺寸2的第二ECU与该第一ECU紧固连接在一起。
可以理解的是,可以将一个大小为尺寸1的第二ECU紧固连接在一个第一ECU上,也可以将一个或两个大小为尺寸2的第二ECU紧固连接在一个第一ECU上;本申请实施例对此不作任何限定。
应理解,上述尺寸1和尺寸2并非严格意义上的大小尺寸,只是为了区分不同尺寸(或者规格)的第二ECU,不应对本申请产生任何限定。
图2和图3仅为示例,在实际应用场景中,第一ECU可以包括更多或更少的紧固接口,只要保证第二ECU能够紧固连接在第一ECU上即可,本申请实施例对第一ECU包括的紧固接口的具体数量不作限定。
可选地,第一ECU的液冷结构包括:用于盛放冷却液的腔体,以及连接于该腔体的进液口和出液口,该液冷结构与所述第一电子控制单元一体成型。
作为示例而非限定,如图2所示,第一ECU的液冷结构210可以包括腔体211、进液口212和出液口213,液冷液可以从进液口212进入到腔体211,再从出液口213流出到腔体211以外。该液冷结构210与该第一ECU一体成型,也就是说,该液冷结构210是该第一ECU的不可拆卸的一部分。
在一种可能的设计中,该第一ECU还包括至少一个导热槽,导热槽位于腔体的外表面,导热槽用于盛放导热材料,导热材料用于导热。
作为示例而非限定,如图2所示,第一ECU还可以包括导热槽231和导热槽232。在利用紧固件将第一ECU和第二ECU紧固连接在一起之前,可以在导热槽中放置导热材料,以便于第一ECU和第二ECU之间更好的导热。导热材料包括但不限于导热垫、导热凝胶等,本申请实施例对此不作任何限定。
在一种可能的设计中,该第一ECU用于获取第二ECU的温度。
第一ECU可以获取自身的温度,第二ECU也可以获取自身的温度。第一ECU与第二ECU可以进行通信,第一ECU可以从第二ECU获取到第二ECU的温度,以便于基于第一ECU的温度和第二ECU的温度进行后续的处理。
紧固连接在一起的非自带液冷结构的ECU和自带液冷结构的ECU可以看作一个整体,且第一ECU与第二ECU之间可以基于通信通道进行内部通信(例如第一ECU获取第二ECU的温度),基于此,第一ECU与热管理装置进行通信连接即可,第二ECU不需要与热管理装置进行通信连接,可以在一定程度上降低热管理***的通信连接的复杂度,进一步降低***维护的难度。
基于上述方案,通过在自带液冷结构的ECU上设置紧固接口,并基于紧固接口将非自带液冷结构的ECU和自带液冷结构的ECU紧固连接在一起,也即,紧固连接在一起的非自带液冷结构的ECU和自带液冷结构的ECU可以看作一个整体,以此来复用自带液冷结构的ECU的液冷结构,不需要增加额外的独立的液冷板,只需要将自带液冷结构的ECU连接到热管理***的水路中即可,在热管理***的水路中减少了额外的独立的液冷板的接入,可以降低热管理***的复杂度。再者,紧固连接在一起的非自带液冷结构的ECU和自带液冷结构的ECU可以看作一个整体,且第一ECU与第二ECU之间可以基于通信通道进行内部通信,基于此,第一ECU与热管理装置进行通 信连接即可,第二ECU不需要与热管理装置进行通信连接,可以在一定程度上降低热管理***的通信连接的复杂度,进一步降低***维护的难度。并且,在降低热管理***的水路连接和通信连接的复杂度的情况下,对于整车而言,热管理***可以节省一定的空间占用。另外,不需要再额外采购独立的液冷板,可以降低成本。
图4是本申请实施例提供的一种第二ECU的示意图。
本申请实施例提供了一种第二ECU,第二ECU不包括液冷结构,该第二ECU包括至少两个紧固接口用于安装紧固件,紧固件用于紧固连接该第二ECU与包括液冷结构的第一ECU。
对紧固接口和紧固件的详细描述可以参看上文,为了简洁,此处不再赘述。
示例性地,如图4所示,图4的a)示出了一种第二ECU的三维立体图,图4的b)示出了图4的a)中第二ECU的仰视图,该第二ECU包括多个紧固接口,例如紧固接口401、紧固接口402、紧固接口403和紧固接口404。
在第二ECU所包括的紧固接口中有至少两个紧固接口与第一ECU所包括的紧固接口中的至少两个紧固接口是可以对齐的,以便于第二ECU能够紧固连接在第一ECU上。
上文已述及,可以将不同尺寸的第二ECU与本申请实施例提供的第一ECU紧固连接在一起,也即,在实际应用场景中,可以包括不同尺寸的第二ECU。
示例一,例如第二ECU的大小是如图3的a)所示的尺寸1,以下是大小为尺寸1的第二ECU的几种可能的设计方式:
设计方式1,第二ECU可以包括如图4的b)所示的紧固接口401和紧固接口403,这样一来,第二ECU的紧固接口401和紧固接口403可以与第一ECU的紧固接口221和紧固接口223对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式2,第二ECU可以包括如图4的b)所示的紧固接口402和紧固接口404,这样一来,第二ECU的紧固接口402和紧固接口404可以与第一ECU的紧固接口222和紧固接口224对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式3,第二ECU可以包括如图4的b)所示的紧固接口401、紧固接口402和紧固接口403,这样一来,第二ECU的紧固接口401、紧固接口402和紧固接口403可以与第一ECU的紧固接口221、紧固接口222和紧固接口223对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式4,第二ECU可以包括如图4的b)所示的紧固接口401、紧固接口402和紧固接口404,这样一来,第二ECU的紧固接口401、紧固接口402和紧固接口404可以与第一ECU的紧固接口221、紧固接口222和紧固接口224对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式5,第二ECU可以包括如图4的b)所示的紧固接口402、紧固接口403和紧固接口404,这样一来,第二ECU的紧固接口402、紧固接口403和紧固接口404可以与第一ECU的紧固接口222、紧固接口223和紧固接口224对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式6,第二ECU可以包括如图4的b)所示的紧固接口401、紧固接口404和紧固接口403,这样一来,第二ECU的紧固接口401、紧固接口404和紧固接口403可以与第一ECU的紧固接口221、紧固接口224和紧固接口223对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式7,第二ECU可以包括如图4的b)所示的紧固接口401、紧固接口402、紧固接口403和紧固接口404,这样一来,第二ECU的紧固接口401、紧固接口402、紧固接口403和紧固接口404可以与第一ECU的紧固接口221、紧固接口222、紧固接口223和紧固接口224对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
示例二,例如第二ECU的大小是如图3的a)所示的尺寸2,以下是大小为尺寸2的第二ECU的几种可能的设计方式:
设计方式1,第二ECU可以包括如图4的b)所示的紧固接口401和紧固接口403,这样一来,第二ECU的紧固接口401和紧固接口403可以与第一ECU的紧固接口223和紧固接口225对齐,或者,可以与第一ECU的紧固接口221和紧固接口226对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式2,第二ECU可以包括如图4的b)所示的紧固接口402和紧固接口404,这样一来,第二ECU的紧固接口402和紧固接口404可以与第一ECU的紧固接口223和紧固接口225对齐,或者,可以与第一ECU的紧固接口221和紧固接口226对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式3,第二ECU可以包括如图4的b)所示的紧固接口401、紧固接口402和紧固接口403,这样一来,第二ECU的紧固接口401、紧固接口402和紧固接口403可以与第一ECU的紧固接口221、紧固接口222和紧固接口223对齐,或者,可以与第一ECU的紧固接口223、紧固接口224和紧固接口225对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式4,第二ECU可以包括如图4的b)所示的紧固接口401、紧固接口404和紧固接口403,这样一来,第二ECU的紧固接口401、紧固接口404和紧固接口403可以与第一ECU的紧固接口221、紧固接口222和紧固接口223对齐,或者,可以与第一ECU的紧固接口223、紧固接口224和紧固接口225对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式5,第二ECU可以包括如图4的b)所示的紧固接口401、紧固接口404和紧固接口402,这样一来,第二ECU的紧固接口401、紧固接口404和紧固接口402可以与第一ECU的紧固接口221、紧固接口222和紧固接口223对齐,或者,可以与第一ECU的紧固接口223、紧固接口224和紧固接口225对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
设计方式6,第二ECU可以包括如图4的b)所示的紧固接口402、紧固接口403和紧固接口404,这样一来,第二ECU的紧固接口402、紧固接口403和紧固接口404可以与第一ECU的紧固接口221、紧固接口222和紧固接口223对齐,或者,可以与第一ECU的紧固接口223、紧固接口224和紧固接口225对齐,从而可以将大小为尺寸1的第二ECU与上述第一ECU紧固连接在一起。
可以理解的是,图4只是一示例,在实际应用场景中,第二ECU可以包括更多或更少的紧固接口,只要保证第二ECU能够紧固连接在第一ECU上即可,本申请实施例对第二ECU包括的紧固接口的具体数量不作限定。
基于上述方案,通过在非自带液冷结构的ECU上设置紧固接口,并基于紧固接口将非自带液冷结构的ECU和自带液冷结构的ECU紧固连接在一起,也即,紧固连接在一起的非自带液冷结构的ECU和自带液冷结构的ECU可以看作一个整体,以此来复用自带液冷结构的ECU的液冷结构,不需要增加额外的独立的液冷板,只需要将自带液冷结构的ECU连接到热管理***的水路中即可,在热管理***的水路中减少了额外的独立的液冷板的接入,可以降低热管理***的复杂度。另外,不需要不需要再额外采购独立的液冷板,可以降低成本。
以下结合图5对本申请提供的控制***进行详细说明。
本申请还提供了一种控制***,该***包括第一ECU和第二ECU,该第一ECU包括液冷结构,该第二ECU不包括液冷结构;其中,该第一ECU和该第二ECU均包括至少两个紧固接口,这至少两个紧固接口用于安装紧固件,紧固件用于紧固连接该第一ECU和该第二ECU。
可以理解的是,一个第一ECU的液冷结构所在的这一面上可以紧固连接一个或多个第二ECU,本申请实施例对此不作任何限定。
图5是本申请实施例提供的一种控制***的示意图。如图5所示,该***包括第一ECU501、第二ECU 502、第一ECU 503、第二ECU 504和第二ECU 505,其中,第一ECU 501与第二ECU 502可以通过紧固接口紧固连接在一起,第一ECU 503与第二ECU 504和第二ECU 505可以通过紧固接口紧固连接在一起。
作为示例而非限定,第二ECU 502的尺寸可以是上文中所述的尺寸1,第二ECU 504和第二ECU 505的尺寸可以是上文中所述的尺寸2,本申请实施例对此不作任何限定。
一示例性,例如,第一ECU 501和第一ECU 503可以包括如图2所示的紧固接口221、紧固接口222、紧固接口223、紧固接口224、紧固接口225和紧固接口226。
关于如何将第二ECU 502紧固连接在第一ECU 501上,以及,如何将第二ECU 504和第二ECU 505紧固连接在第一ECU 503上,可以参看上文所述的图3以及与图3相关的描述,为了简洁,此处不再赘述。
可选地,第一ECU的液冷结构包括:用于盛放冷却液的腔体,以及连接于该腔体的进液口和出液口,该液冷结构与所述第一电子控制单元一体成型。
液冷结构的相关描述可以参看上文中的相关描述,为了简洁,此处不再赘述。
在一种可能的设计中,第一ECU还包括至少一个导热槽,导热槽位于腔体的外表面,且该导热槽的开口朝向第二ECU,导热槽用于盛放导热材料,导热材料用于导热。
关于导热槽的相关描述可以参看上文中的相关描述,为了简洁,此处不再赘述。
在一种可能的实现方式中,第一ECU与第二ECU之间基于通信通道进行通信,该通信通道包括CAN总线、CAN-FD总线、以太网或无线网络。
示例性地,如图5所示,第二ECU 502被紧固连接在第一ECU 501上,第二ECU504和第二ECU 505被紧固连接在第一ECU 503上,第二ECU 502与第一ECU 501之间,以及第二ECU 504与第一ECU 503之间,以及第二ECU 505与第一ECU 503之间,可以 通过基于CAN总线、CAN-FD总线、以太网或无线网络进行通信,也即,第二ECU 502与第一ECU 501之间,以及第二ECU 504与第一ECU 503之间,以及第二ECU 505与第一ECU 503之间,可以通过CAN总线或CAN-FD总线进行物理上的连接,或者,可以通过以太网的网线进行物理上的连接,或者,可以通过无线网络进行无线连接,本申请实施例对此不作任何限定。
在一种可能的实现方式中,第一ECU用于基于通信通道从第二ECU获取该第二ECU的温度。
上文已述及,第一ECU可以获取自身的温度,第二ECU也可以获取自身的温度。第一ECU与第二ECU可以基于上述通信通道进行通信,从而,第一ECU可以从第二ECU获取到第二ECU的温度,以便于基于第一ECU的温度和第二ECU的温度进行后续的处理。
紧固连接在一起的非自带液冷结构的ECU和自带液冷结构的ECU可以看作一个整体,且第一ECU与第二ECU之间可以基于通信通道进行内部通信(例如第一ECU获取第二ECU的温度),基于此,第一ECU与热管理装置进行通信连接即可,第二ECU不需要与热管理装置进行内部通信连接。如图5所示,第一ECU 501可以获取自身的温度,并基于与第二ECU 502之间的通信通道从第二ECU 502获取该第二ECU 502的温度;第一ECU 503可以获取自身的温度,并基于与第二ECU 504之间的通信通道从第二ECU 504获取该第二ECU 504的温度,以及,基于与第二ECU 505之间的通信通道从第二ECU 505获取该第二ECU 505的温度。继而,第一ECU 501和第一ECU 503再与热管理装置进行通信,不需要第二ECU 502、第二ECU 504和第二ECU 505与热管理装置之间进行通信,从而可以在一定程度上降低热管理***的通信连接的复杂度,进一步降低***维护的难度。
可选地,该控制***还包括热管理装置,第一ECU的液冷结构连接该热管理装置,该热管理装置用于控制流出该热管理装置的冷却液的目标温度和/或目标流速。
示例性地,如图5所示,该控制***包括热管理装置510,第一ECU 501和第一ECU 503的液冷结构均可以连接该热管理装置,热管理装置可以用于控制流出该热管理装置的冷却液的目标温度和/或目标流速。
应理解,图5仅为一示例,在实际应用场景中,控制***可以包括更多或更少的第一ECU,也可以包括更多或更少的第二ECU,本申请实施例对此不作任何限定。
虽然图5中未示出,热管理装置也可以包括进液口和出液口。例如,第一ECU 501和第一ECU 503的液冷结构的进液口可以连接热管理装置510的出液口,第一ECU 501和第一ECU 503的液冷结构的出液口可以连接热管理装置510的进液口,从而实现冷却液在热管理装置与第一ECU的液冷结构之间的循环流动,以保证该控制***中的第一ECU和第二ECU工作在合适的温度环境中。
可以理解的是,包括热管理装置的控制***也就是上文所述及到的热管理***(TMS)。
在一种可能的实现方式中,第一ECU还用于根据该第一ECU的温度和第二ECU的温度向热管理装置上报对冷却液的需求温度和/或需求流速的指示信息;热管理装置具体用于:接收多个第一ECU上报的指示信息;根据所接收的多个指示信息,控制目 标温度和/或目标流速。
其中,指示信息可以包括需求温度和/或需求流速,也可以不包括需求温度和/或需求流速,本申请实施例对该指示信息包括的具体内容不作限定,只要基于该指示信息可以获知需求温度和/或需求流速即可。
示例性地,第一ECU在获取到自身的温度,以及获取到第二ECU的温度后,第一ECU可以根据自身的温度和第二ECU的温度,来确定对液冷液的需求温度和/或需求流速,可以生成对冷却液的需求温度和/或需求流速的指示信息,并可以将该指示信息上报给热管理装置。
例如,第一ECU 501在获取自身的温度,以及获取到第二ECU 502的温度后,可以根据自身的温度和第二ECU 502的温度,来确定第一ECU 501和第二ECU 502对液冷液的需求温度和/或需求流速,可以生成对冷却液的需求温度和/或需求流速的指示信息,并可以将该指示信息上报给热管理装置。
又例如,第一ECU 503在获取自身的温度,以及获取到第二ECU 504和第二ECU505的温度后,可以根据自身的温度和第二ECU 504和第二ECU 505的温度,来确定第一ECU 501、第二ECU 504和第二ECU 505对液冷液的需求温度和/或需求流速,可以生成对冷却液的需求温度和/或需求流速的指示信息,并可以将该指示信息上报给热管理装置。
相应地,热管理装置可以接收多个第一ECU上报的指示信息,并根据所接收到的多个指示信息,来控制流出该热管理装置的冷却液的目标温度和/或目标流速。例如,热管理装置510可以接收第一ECU 501和第一ECU 503上报的指示信息,并根据第一ECU 501和第一ECU 503上报的指示信息,来确定出目标温度和/或目标流速,并基于目标温度和/或目标流速对冷却液流出该热管理装置时的温度和/或速度进行控制。
作为示例而非限定,热管理装置可以根据接收到的多个指示信息确定多个需求温度和/或需求流速,继而可以将多个需求温度中数值最小的温度确定为流出该热管理装置的冷却液的目标温度,和/或,将多个需求流速中数值最大的流速确定为流出该热管理装置的冷却液的目标流度。本申请实施例对此不作任何限定。
可以理解的是,在第二ECU紧固连接在第一ECU上的情况下,第一ECU可以基于第一ECU的温度和第二ECU的温度来确定对液冷液的需求温度和/或需求流速,进而生成对冷却液的需求温度和/或需求流速的指示信息;在第一ECU没有紧固连接第二ECU的情况下,第一ECU可以基于第一ECU自身的温度来确定对液冷液的需求温度和/或需求流速,进而生成对冷却液的需求温度和/或需求流速的指示信息。本申请实施例对此不作限定。
在另一种可能的实现方式中,第一ECU还用于向热管理装置上报该第一ECU的温度和第二ECU的温度;该热管理装置具体用于:接收多个第一ECU上报的温度;根据所接收的多个温度,控制目标温度和/或目标流速。
示例性地,第一ECU在获取到自身的温度,以及获取到第二ECU的温度后,可以将自身的温度和第二ECU的温度上报给热管理装置。
例如,第一ECU 501在获取自身的温度,以及获取到第二ECU 502的温度后,可以将自身的温度和第二ECU 502的温度上报给热管理装置。
又例如,第一ECU 503在获取自身的温度,以及获取到第二ECU 504和第二ECU505的温度后,可以将自身的温度和第二ECU 504和第二ECU 505的温度上报给热管理装置。
相应地,热管理装置可以接收多个第一ECU上报的温度,并根据所接收到的温度来控制流出该热管理装置的冷却液的目标温度和/或目标流速。例如,热管理装置510可以接收第一ECU 501上报的第一ECU 501和第一ECU 503的温度,以及接收第一ECU503上报的第一ECU 503、第二ECU 504和第二ECU 505的温度,并根据这些温度,来确定出目标温度和/或目标流速,并基于目标温度和/或目标流速对冷却液流出该热管理装置时的温度和/或速度进行控制。
作为示例而非限定,热管理装置可以根据接收到的这多个温度中数值最大的温度来控制流出该热管理装置的冷却液的目标温度和/或目标流速。本申请实施例对此不作任何限定。
应理解,热管理装置可以包括处理器和接收单元,接收单元可以用于接收多个第一ECU上报的指示信息或温度,处理器可以用于基于接收单元所接收到的指示信息或温度来控制流出该热管理装置的冷却液的目标温度和/或目标流速。另外,该热管理装置还可以包括存储器,存储器可以用于保存程序指令和/或数据,存储器可以位于处理器之内或处理器之外,本申请实施例对此不作任何限定。
可以理解的是,在第二ECU紧固连接在第一ECU上的情况下,第一ECU可以将自身的温度和第二ECU的温度上报给热管理装置;在第一ECU没有紧固连接第二ECU的情况下,第一ECU可以将自身的温度上报给热管理装置。本申请实施例对此不作限定。
基于上述方案,通过在非自带液冷结构的ECU和自带液冷结构的ECU上设置紧固接口,并基于紧固接口将非自带液冷结构的ECU和自带液冷结构的ECU紧固连接在一起,也即,紧固连接在一起的非自带液冷结构的ECU和自带液冷结构的ECU可以看作一个整体,以此来复用自带液冷结构的ECU的液冷结构,不需要增加额外的独立的液冷板,只需要将自带液冷结构的ECU连接到热管理***的水路中即可,在热管理***的水路中减少了额外的独立的液冷板的接入,可以降低热管理***的复杂度。再者,紧固连接在一起的非自带液冷结构的ECU和自带液冷结构的ECU可以看作一个整体,且第一ECU与第二ECU之间可以基于通信通道进行内部通信,基于此,第一ECU与热管理装置进行通信连接即可,第二ECU不需要与热管理装置进行通信连接,可以在一定程度上降低热管理***的通信连接的复杂度,进一步降低***维护的难度。并且,在降低热管理***的水路连接和通信连接的复杂度的情况下,对于整车而言,热管理***可以节省一定的空间占用。另外,不需要再额外采购独立的液冷板,可以降低成本。
本申请实施例还提供一种终端,该终端包括上文所述的控制***。
可选地,该终端可以包括车辆。
图6是本申请实施例提供的一种终端的示意图。
图6所示的车辆为终端的一个示例。作为示例而非限定,如图6所示,车辆可以包括如图5所示的控制***。
本申请中使用的术语“单元”、“模块”“模组”等,可用于表示电路相关的实体、硬件、固件、硬件和软件的组合。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和电路,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本 申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种控制***,其特征在于,所述***包括第一电子控制单元和第二电子控制单元,所述第一电子控制单元包括液冷结构,所述第二电子控制单元不包括液冷结构;
    其中,所述第一电子控制单元和所述第二电子控制单元均包括至少两个紧固接口,所述至少两个紧固接口用于安装紧固件,所述紧固件用于紧固连接所述第一电子控制单元和所述第二电子控制单元。
  2. 如权利要求1所述的***,其特征在于,所述第一电子控制单元的所述液冷结构包括:用于盛放冷却液的腔体,以及连接于所述腔体的进液口和出液口,所述液冷结构与所述第一电子控制单元一体成型。
  3. 如权利要求2所述的***,其特征在于,所述第一电子控制单元还包括至少一个导热槽,所述导热槽位于所述腔体的外表面,且所述导热槽的开口朝向所述第二电子控制单元,所述导热槽用于盛放导热材料,所述导热材料用于导热。
  4. 如权利要求1至3中任一项所述的***,其特征在于,所述第一电子控制单元与所述第二电子控制单元之间基于通信通道进行通信,所述通信通道包括控制器局域网CAN总线、CAN-灵活的数据速率FD总线、以太网或无线网络。
  5. 如权利要求4所述的***,其特征在于,所述第一电子控制单元用于基于所述通信通道从所述第二电子控制单元获取所述第二电子控制单元的温度。
  6. 如权利要求1至5中任一项所述的***,其特征在于,所述***还包括热管理装置,所述第一电子控制单元的所述液冷结构连接所述热管理装置,所述热管理装置用于控制流出所述热管理装置的冷却液的目标温度和/或目标流速。
  7. 如权利要求6所述的***,其特征在于,所述第一电子控制单元还用于根据所述第一电子控制单元的温度和所述第二电子控制单元的温度向所述热管理装置上报对所述冷却液的需求温度和/或需求流速的指示信息;
    所述热管理装置具体用于:
    接收多个所述第一电子控制单元上报的所述指示信息;
    根据所接收的多个所述指示信息,控制所述目标温度和/或目标流速。
  8. 如权利要求6所述的***,其特征在于,所述第一电子控制单元还用于向所述热管理装置上报所述第一电子控制单元的温度和所述第二电子控制单元的温度;
    所述热管理装置具体用于:
    接收多个所述第一电子控制单元上报的温度;
    根据所接收的多个温度,控制所述目标温度和/或目标流速。
  9. 一种第一电子控制单元,其特征在于,所述第一电子控制单元包括液冷结构,且所述第一电子控制单元包括至少两个紧固接口用于安装紧固件,所述紧固件用于紧固连接所述第一电子控制单元与不包括液冷结构的第二电子控制单元。
  10. 如权利要求9所述的第一电子控制单元,其特征在于,所述液冷结构包括:用于盛放冷却液的腔体,以及连接于所述腔体的进液口和出液口,所述液冷结构与所述第一电子控制单元一体成型。
  11. 如权利要求10所述的第一电子控制单元,其特征在于,所述第一电子控制单元还包括至少一个导热槽,所述导热槽位于所述腔体的外表面,所述导热槽用于盛放 导热材料,所述导热材料用于导热。
  12. 如权利要求9至11中任一项所述的第一电子控制单元,其特征在于,所述第一电子控制单元用于获取所述第二电子控制单元的温度。
  13. 一种第二电子控制单元,其特征在于,所述第二电子控制单元不包括液冷结构,所述第二电子控制单元包括至少两个紧固接口用于安装紧固件,所述紧固件用于紧固连接所述第二电子控制单元与包括液冷结构的第一电子控制单元。
  14. 一种终端,其特征在于,所述终端包括如权利要求1至8中任一项所述的控制***。
  15. 如权利要求14所述的终端,其特征在于,所述终端包括车辆。
PCT/CN2022/129676 2022-11-03 2022-11-03 电子控制单元、控制***和终端 WO2024092668A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129676 WO2024092668A1 (zh) 2022-11-03 2022-11-03 电子控制单元、控制***和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129676 WO2024092668A1 (zh) 2022-11-03 2022-11-03 电子控制单元、控制***和终端

Publications (1)

Publication Number Publication Date
WO2024092668A1 true WO2024092668A1 (zh) 2024-05-10

Family

ID=90929288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129676 WO2024092668A1 (zh) 2022-11-03 2022-11-03 电子控制单元、控制***和终端

Country Status (1)

Country Link
WO (1) WO2024092668A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020522A (ja) * 2009-07-14 2011-02-03 Autonetworks Technologies Ltd 車載電力供給制御装置
CN102817692A (zh) * 2011-11-30 2012-12-12 凯迈(洛阳)机电有限公司 一种发动机热管理***
CN103670655A (zh) * 2012-09-14 2014-03-26 上海创斯达热交换器有限公司 发动机冷却模块电子风扇控制装置及其工作方法
CN104895818A (zh) * 2015-04-27 2015-09-09 潍柴动力股份有限公司 一种发动机电控风扇的控制方法、装置及***
CN210680637U (zh) * 2019-10-30 2020-06-05 北京百度网讯科技有限公司 车辆
US20210094489A1 (en) * 2019-09-28 2021-04-01 Lyft, Inc. Unified Automotive Thermal Management Network
CN112638721A (zh) * 2020-06-24 2021-04-09 华为技术有限公司 车辆控制装置、整车集成单元以及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020522A (ja) * 2009-07-14 2011-02-03 Autonetworks Technologies Ltd 車載電力供給制御装置
CN102817692A (zh) * 2011-11-30 2012-12-12 凯迈(洛阳)机电有限公司 一种发动机热管理***
CN103670655A (zh) * 2012-09-14 2014-03-26 上海创斯达热交换器有限公司 发动机冷却模块电子风扇控制装置及其工作方法
CN104895818A (zh) * 2015-04-27 2015-09-09 潍柴动力股份有限公司 一种发动机电控风扇的控制方法、装置及***
US20210094489A1 (en) * 2019-09-28 2021-04-01 Lyft, Inc. Unified Automotive Thermal Management Network
CN210680637U (zh) * 2019-10-30 2020-06-05 北京百度网讯科技有限公司 车辆
CN112638721A (zh) * 2020-06-24 2021-04-09 华为技术有限公司 车辆控制装置、整车集成单元以及车辆

Similar Documents

Publication Publication Date Title
US8648690B2 (en) System and method for monitoring computer servers and network appliances
US20050015632A1 (en) Rack-level power management of computer systems
US7881060B2 (en) Heat-dissipation module and electronic apparatus having the same
US10856441B1 (en) System and method for bi-side heating vapor chamber structure in an information handling system
WO2024092668A1 (zh) 电子控制单元、控制***和终端
US9098643B2 (en) Multiple serial port controller
CN104834584A (zh) 一种监测主机硬件负载的方法和***
CN114166266A (zh) 一种检测cpu散热器螺丝是否漏拧的方法和装置
US20070086160A1 (en) System and method for cooling a cpu passively
CN109408312A (zh) 一种服务器运行温度测试***及设备
CN210605614U (zh) 一种计算机机箱用散热装置
CN216528031U (zh) 一种基于固态硬盘的温度控制装置
CN210742877U (zh) 一种计算机散热装置
CN107526669A (zh) 硬盘温度监控***及监控方法
CN112902494A (zh) 控制方法及电子设备
CN108540337B (zh) 一种双网口pos机及其网络状态监测***、方法
CN114126328A (zh) 一种散热组件及汽车
CN219227413U (zh) 一种电压异常带有警报功能的电源芯片
CN206460456U (zh) 一种硬盘接口扩展装置及硬盘***
CN219162623U (zh) 高功耗快卸电子盘结构
CN210130049U (zh) 一种散热装置及车载电子设备
CN220933456U (zh) 一种计算机双散热装置
CN213844039U (zh) 散热***及电子设备
CN204705974U (zh) 散热装置及具有其的服务器主机
CN218387236U (zh) 变频器结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963978

Country of ref document: EP

Kind code of ref document: A1