WO2024092646A1 - 一种交通设备及其热管理***和热管理方法 - Google Patents

一种交通设备及其热管理***和热管理方法 Download PDF

Info

Publication number
WO2024092646A1
WO2024092646A1 PCT/CN2022/129631 CN2022129631W WO2024092646A1 WO 2024092646 A1 WO2024092646 A1 WO 2024092646A1 CN 2022129631 W CN2022129631 W CN 2022129631W WO 2024092646 A1 WO2024092646 A1 WO 2024092646A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal management
heat
air
conditioning system
transfer medium
Prior art date
Application number
PCT/CN2022/129631
Other languages
English (en)
French (fr)
Inventor
赵宇
刘宇
姜利文
Original Assignee
宁德时代(上海)智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代(上海)智能科技有限公司 filed Critical 宁德时代(上海)智能科技有限公司
Priority to PCT/CN2022/129631 priority Critical patent/WO2024092646A1/zh
Publication of WO2024092646A1 publication Critical patent/WO2024092646A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit

Definitions

  • the present application relates to the field of thermal management technology, and in particular to a transportation device and a thermal management system and a thermal management method thereof.
  • air conditioning is generally used in transportation equipment (such as cars) to increase the temperature of the internal space of the equipment to achieve the effect of heating.
  • transportation equipment such as cars
  • electric cars currently use electric air conditioners with heat pump functions for in-car heating.
  • heat pump air conditioners have problems such as low heat pump efficiency and are difficult to meet heating needs.
  • the general solution is to add an additional auxiliary heater to directly exchange heat with the heating heat exchanger in the interior space of the car.
  • the heating temperature of the auxiliary heater needs to exceed the target temperature required for the internal space of the equipment, and the specifications of the auxiliary heater (for example, heating power and volume) are required to be high.
  • the present application provides a traffic equipment and its thermal management system and thermal management method to solve the technical problems in the prior art, which can improve the heating effect of the air-conditioning system under low temperature conditions and effectively reduce the specifications of the auxiliary heater.
  • the present application provides a thermal management system for traffic equipment, including an air conditioning system, a thermal management loop and an auxiliary heater.
  • the thermal management loop is used to circulate and transmit a first heat transfer medium, thereby performing thermal management on designated components of the traffic equipment.
  • the thermal management loop can also perform heat exchange with the air conditioning system, thereby selectively transferring the heat generated by the designated components to the air conditioning system at least when the air conditioning system is in a heating state, thereby serving as at least a partial heat source for the evaporation process of the air conditioning system.
  • the auxiliary heater is used to selectively provide heat supplement to the thermal management loop.
  • the auxiliary heater can provide heat supplement to the thermal management loop, ensuring that the air conditioning system can effectively absorb heat from the thermal management loop under low temperature and other working conditions, reducing the pressure of the air conditioning system and improving the heating effect of the air conditioning system.
  • the heating temperature of the auxiliary heater only needs to ensure that the air conditioning system can effectively absorb heat, and at the same time, only a part of the heat supplied by the air conditioning system comes from the auxiliary heater, and the other part comes from the compression work inside the air conditioning system, the specifications of the auxiliary heater can be effectively reduced, the space utilization rate can be improved, and the cost can be reduced.
  • the thermal management system further includes a control module, which controls the auxiliary heater to provide heat supplement to the thermal management loop in response to the heat generated by the designated component not meeting the heating demand of the air conditioning system.
  • the control module controls the auxiliary heater to provide heat supplement to the thermal management loop based on the heating demand of the air conditioning system, so that the air conditioning system can effectively absorb heat from the thermal management loop, thereby realizing automatic control.
  • the thermal management system further includes a detection module, which is used to detect the operating state or operating environment of the air-conditioning system when the air-conditioning system is in a heating state, and the control module determines whether the heat generated by the designated component meets the heating demand of the air-conditioning system based on the detection result of the detection module.
  • the operating state or operating environment of the air-conditioning system is detected by the detection module, so that the control module can determine whether the heat generated by the designated component meets the heating demand of the air-conditioning system, thereby realizing automatic control.
  • the operating environment includes the temperature of the first heat-conducting medium
  • the detection module is used to detect the temperature of the first heat-conducting medium before the first heat-conducting medium exchanges heat with the air-conditioning system.
  • the control module determines that the heat generated by the designated component does not meet the heating demand of the air-conditioning system.
  • control module can also control the auxiliary heater to provide heat supplement to the thermal management circuit in response to the designated component having its own heating demand, so as to heat the designated component through the first heat transfer medium.
  • controlling the auxiliary heater to provide heat supplement to the thermal management circuit is conducive to maintaining the normal working state of the designated component.
  • the heat management circuit includes a main heat exchange area for heat exchange with a designated component and an auxiliary heat exchange area for heat exchange with an auxiliary heater, and the heat management circuit also includes a flow distribution component and a bypass line connected in parallel with the main heat exchange area.
  • the control module controls the flow distribution component to distribute the flow of the first heat transfer medium between the main heat exchange area and the bypass line according to the heating demand of the designated component and the heating demand of the air conditioning system.
  • the flow distribution of the first heat transfer medium is distributed between the main heat exchange area and the bypass line by the flow distribution component, so as to adjust the heat distribution supplied to the designated component and the air conditioning system based on different working conditions.
  • the first heat transfer medium flows to the main heat transfer area and the bypass line after being heated by the auxiliary heat exchange area, and performs heat exchange with the air conditioning system before entering the auxiliary heat exchange area, or the first heat transfer medium heated by the auxiliary heat exchange area flows to the main heat transfer area and the bypass line after performing heat exchange with the air conditioning system, and is heated by the auxiliary heat exchange area after flowing through the main heat exchange area and/or the bypass line.
  • the heat distribution effect of the designated components and the air conditioning system can be improved.
  • the designated component is a battery module of a transportation device
  • the control module controls the flow distribution component to preferentially meet the heating demand of the battery module through the auxiliary heater in response to the output power of the battery module not meeting the external power demand, or controls the flow distribution component to preferentially meet the heating demand of the air conditioning system through the auxiliary heater in response to the output power of the battery module being able to meet the external power demand.
  • the battery module is preferentially heated to increase the output power of the battery module, thereby ensuring the normal operation of the transportation device.
  • the heating demand of the battery module is preferentially satisfied by supplying all the first heat transfer medium to the main heat exchange area or increasing the flow rate of the first heat transfer medium to the main heat exchange area
  • the heating demand of the air conditioning system is preferentially satisfied by supplying all the first heat transfer medium to the bypass line or increasing the flow rate of the first heat transfer medium to the bypass line.
  • control module can also control the flow distribution component to reduce the flow of the first heat transfer medium to the bypass line and increase the flow of the first heat transfer medium to the main heat exchange area in response to the thermal management loop meeting the heating demand of the air-conditioning system, or control the flow distribution component to increase the flow of the first heat transfer medium to the bypass line and reduce the flow of the first heat transfer medium to the main heat exchange area in response to the thermal management loop not meeting the heating demand of the air-conditioning system.
  • the heating demand of the air-conditioning system and the battery module is dynamically balanced by the distribution of flow.
  • the thermal management circuit includes at least two sub-thermal management circuits, and the at least two sub-thermal management circuits are used to perform thermal management on different designated components.
  • the thermal management system also includes a thermal management switching component, and the control module controls the thermal management switching component to selectively switch the heat exchange relationship between the at least two sub-thermal management circuits and the air-conditioning system.
  • the designated components include a battery module and a motor module of the transportation equipment
  • the at least two sub-thermal management loops include a first sub-thermal management loop and a second sub-thermal management loop.
  • the first sub-thermal management loop is used to perform thermal management on the battery module, and includes a first main heat exchange area for heat exchange with the battery module and an auxiliary heat exchange area for heat exchange with the auxiliary heater.
  • the second sub-thermal management loop is used to perform thermal management on the motor module, and includes a second main heat exchange area for heat exchange with the motor module and an external heat exchanger for heat exchange with the external environment.
  • the control module controls the thermal management switching component to switch at least one of the first sub-thermal management loop and the second sub-thermal management loop to perform heat exchange with the air-conditioning system.
  • the two main heat sources i.e., the battery module and the motor module
  • the auxiliary heater is set in the sub-thermal management loop where the battery module is located, and the heating function of the auxiliary heater can be used to selectively heat the battery module, thereby improving the low-temperature starting performance of the transportation equipment.
  • control module can also control the thermal management switching component to switch the first sub-thermal management loop and the second sub-thermal management loop to simultaneously perform heat exchange with the air conditioning system in response to the air conditioning system being in a heating state.
  • the heat recovery efficiency can be improved by switching the first sub-thermal management loop and the second sub-thermal management loop to simultaneously perform heat exchange with the air conditioning system.
  • control module can also control the thermal management switching component to connect the first sub-thermal management circuit and the second sub-thermal management circuit, so that the first heat transfer medium circulates in the total circuit formed by the first sub-thermal management circuit and the second sub-thermal management circuit.
  • the first sub-thermal management loop further includes a first flow distribution component and a first bypass line connected in parallel with the first main heat exchange area, wherein the control module controls the first flow distribution component to distribute the flow of the first heat transfer medium in the first sub-thermal management loop between the first main heat exchange area and the first bypass line according to the heating demand of the designated component and the heating demand of the air conditioning system.
  • the flow of the first heat transfer medium is distributed between the first main heat exchange area and the second bypass line by the first flow distribution component, so as to adjust the heat distribution supplied to the battery module and the air conditioning system based on different working conditions.
  • the second sub-thermal management loop also includes a second flow distribution component and a second bypass line connected in parallel with the external heat exchanger.
  • the control module controls the second flow distribution component to distribute the flow of the first heat transfer medium in the second sub-thermal management loop between the external heat exchanger and the second bypass line according to the heat dissipation demand of the motor module, the heating demand of the air conditioning system, or the external environment of the external heat exchanger.
  • the heat dissipation demand of the motor module and/or the heating demand of the air conditioning system can be dynamically met.
  • the control module in response to the motor module not having additional heat dissipation demand after heating the air-conditioning system or the motor module not meeting the heating demand of the air-conditioning system and being unable to absorb heat from the environment through an external heat exchanger, directs all of the first heat transfer medium in the second sub-thermal management loop into the second bypass line or increases the flow rate of the first heat transfer medium to the second bypass line, or in response to the motor module still having additional heat dissipation demand after heating the air-conditioning system or the motor module not meeting the heating demand of the air-conditioning system and being able to absorb heat from the environment through an external heat exchanger, directs all of the first heat transfer medium in the second sub-thermal management loop into the external heat exchanger or increases the flow rate of the first heat transfer medium to the external heat exchanger.
  • the heat dissipation demand of the motor module and the heating demand of the air-conditioning system can be dynamically balanced according to the actual working conditions of the motor module and the air-conditioning system. It can also avoid additional heat loss when the external heat exchanger cannot absorb heat from the environment, and increase the heat supply to the air-conditioning system when the external heat exchanger can absorb heat from the environment.
  • the air conditioning system includes a first air conditioning loop and a second air conditioning loop.
  • the first air conditioning loop is used to circulate refrigerant and includes a compressor, a condensing heat exchanger, a liquid storage device, a first evaporative heat exchanger, and a second evaporative heat exchanger.
  • the refrigerant evaporates and absorbs heat in the first evaporative heat exchanger, thereby performing air conditioning and refrigeration on a designated area of the transportation equipment.
  • the refrigerant evaporates and absorbs heat in the second evaporative heat exchanger, thereby absorbing heat from the thermal management loop.
  • the second air conditioning loop is used to circulate a second heat transfer medium and includes a heating heat exchanger.
  • the heating heat exchanger performs heat exchange with the condensing heat exchanger, thereby performing air conditioning and heating on the designated area.
  • air conditioning and heating are achieved by heat exchange between the heating heat exchanger and the condensing heat exchanger, which can simplify the flow path design of the air conditioning system.
  • control module can also control the thermal management switching component to switch the second sub-thermal management loop to heat exchange with the condensing heat exchanger in response to the air conditioning system being in the cooling state, thereby transferring the heat released by the condensing heat exchanger to the external heat exchanger.
  • the control module can also control the thermal management switching component to switch the second sub-thermal management loop to heat exchange with the condensing heat exchanger in response to the air conditioning system being in the cooling state, thereby transferring the heat released by the condensing heat exchanger to the external heat exchanger.
  • the air conditioning system further includes a first air conditioning switching component, and the second sub-heat management loop and the second air conditioning loop are respectively connected to the condensing heat exchanger via the first air conditioning switching component, and the control system can also control the first air conditioning switching component to selectively supply the first heat transfer medium in the second sub-heat management loop and the second heat transfer medium in the second air conditioning loop to the condensing heat exchanger.
  • the first heat transfer medium and the second heat transfer medium are selectively supplied to the condensing heat exchanger through the first air conditioning switching component, so that the second sub-heat management loop and the second air conditioning loop can share the flow path in the condensing heat exchanger, simplifying the structure of the condensing heat exchanger.
  • control module can also switch the first sub-thermal management loop to heat exchange with the second evaporative heat exchanger in response to the air conditioning system being in a cooling state, thereby using the second evaporative heat exchanger to cool the battery module.
  • the control module can also switch the first sub-thermal management loop to heat exchange with the second evaporative heat exchanger in response to the air conditioning system being in a cooling state, thereby using the second evaporative heat exchanger to cool the battery module.
  • the control module can also switch the first sub-thermal management loop to heat exchange with the second evaporative heat exchanger in response to the air conditioning system being in a cooling state, thereby using the second evaporative heat exchanger to cool the battery module.
  • the air conditioning system further includes a first air conditioning switching component and a second air conditioning switching component.
  • the control system controls the first air conditioning switching component to connect the heating heat exchanger and the condensing heat exchanger, and controls the second air conditioning switching component to connect the liquid storage device and the first evaporative heat exchanger, so that the air cooled and dehumidified by the first evaporative heat exchanger can be heated by the heating heat exchanger.
  • the air conditioning system also has a dehumidification state.
  • the present application provides a thermal management method for a traffic device, which includes an air conditioning system, a thermal management loop and an auxiliary heater.
  • the thermal management loop performs thermal management on the battery module of the traffic device, and can exchange heat with the air conditioning system to serve as at least a partial heat source for the evaporation process of the air conditioning system.
  • the method includes: in response to the fact that both the battery module and the air conditioning system have heating requirements, controlling the auxiliary heater to provide heat supplement to the thermal management loop; identifying whether the output power of the battery module meets the external power requirements; in response to the fact that the output power of the battery module does not meet the external power requirements, controlling the thermal management loop to preferentially meet the heating requirements of the battery module; or, in response to the fact that the output power of the battery module can meet the external power requirements, controlling the thermal management loop to preferentially meet the heating requirements of the air conditioning system.
  • the auxiliary heater is used to meet the heating requirements of the battery module and the air conditioning system respectively, and according to the working characteristics of the battery module and the air conditioning system, when the output power of the battery module does not meet the external power requirements, the battery module is preferentially heated to increase the output power of the battery module and ensure the normal operation of the traffic device.
  • the thermal management circuit includes a main heat exchange area for heat exchange with the battery module, an auxiliary heat exchange area for heat exchange with the auxiliary heater, a flow distribution component, and a bypass line connected in parallel with the main heat exchange area.
  • the flow distribution component is used to distribute the flow of the first heat transfer medium between the main heat exchange area and the bypass line.
  • the heating demand of the battery module is preferentially met by controlling the flow distribution component to supply all the first heat transfer medium to the main heat exchange area or increase the flow of the first heat transfer medium to the main heat exchange area.
  • the heating demand of the air conditioning system is preferentially met by controlling the flow distribution component to supply all the first heat transfer medium to the bypass line or increase the flow of the first heat transfer medium to the bypass line.
  • the battery module can be better heated.
  • the air conditioning system can better absorb heat from the thermal management circuit.
  • the method further includes: in response to the amount of heat supplied by the thermal management loop to the air-conditioning system reaching the heating demand of the air-conditioning system, controlling the thermal management loop to reduce the heat supply to the air-conditioning system and increase the heat supply to the battery module; or, in response to the amount of heat supplied by the thermal management loop to the air-conditioning system being lower than the heating demand of the air-conditioning system, controlling the thermal management loop to increase the heat supply to the air-conditioning system and reduce the heat supply to the battery module.
  • the heating demand of the air-conditioning system and the battery module is dynamically balanced by heat distribution.
  • the present application provides a transportation device, which includes the above-mentioned thermal management system.
  • the auxiliary heater can provide heat supplement to the thermal management circuit, ensuring that the air-conditioning system can effectively absorb heat from the thermal management circuit under low temperature and other working conditions, reduce the pressure of the air-conditioning system, and improve the heating effect of the air-conditioning system.
  • the heating temperature of the auxiliary heater only needs to ensure that the air-conditioning system can effectively absorb heat, and at the same time, only a part of the heat supplied by the air-conditioning system comes from the auxiliary heater, and the other part comes from the compression work inside the air-conditioning system, it is possible to effectively reduce the specifications of the auxiliary heater, improve space utilization, and reduce costs.
  • FIG1 is a schematic block diagram of an embodiment of a thermal management system for transportation equipment of the present application.
  • FIG2 is a schematic diagram of a working flow path of the thermal management system shown in FIG1 in a first working state
  • FIG. 3 is a schematic diagram of a working flow path of the thermal management system shown in FIG. 1 in a second working state;
  • FIG4 is a schematic diagram of a working flow path of the thermal management system shown in FIG1 in a third working state
  • FIG. 5 is a schematic diagram of a working flow path of the thermal management system shown in FIG. 1 in a fourth working state;
  • FIG. 6 is a schematic diagram of the working flow path of the thermal management system shown in FIG. 1 in a fifth working state;
  • FIG. 7 is a schematic diagram of the working flow path of the thermal management system shown in FIG. 1 in a sixth working state;
  • FIG. 8 is a schematic diagram of the working flow path of the thermal management system shown in FIG. 1 in the seventh working state;
  • FIG9 is a flow chart of an embodiment of a thermal management method for transportation equipment of the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a traffic device of the present application.
  • thermal management system 10- air conditioning system, 20- thermal management loop, 21- control module, 22- detection module, 20A, 20B- sub-thermal management loop, 231, 232- main heat exchange area, 24- auxiliary heat exchange area, 251, 252- bypass line, 261, 262- flow distribution component, 41- battery module, 30- auxiliary heater, 27- external heat exchanger, 42- motor module, 50- thermal management switching component, 10A, 10B- air conditioning loop, 11- compressor, 12- condensing heat exchanger, 13- liquid storage tank, 14, 15- evaporating heat exchanger, 16- heating heat exchanger, 17, 18- air conditioning switching component, b1, b2, b3- water pump, b4- fan, 100- traffic equipment.
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • the car In winter when the temperature is low, the car usually uses air conditioning to raise the temperature of the interior space to achieve the effect of heating.
  • the interior heating of electric vehicles currently mostly uses electric air conditioners with heat pump functions.
  • heat pump air conditioners Under low temperature conditions, heat pump air conditioners have problems such as low heat pump efficiency and are difficult to meet heating needs.
  • the general solution is to add an additional auxiliary heater to directly exchange heat with the heating heat exchanger in the interior space of the car, which has high requirements on the specifications of the auxiliary heater (for example, heating power and volume).
  • the inventor of the present application has discovered through numerous experiments that the specifications of the auxiliary heater can be effectively reduced by coordinating the auxiliary heater with a thermal management circuit, and ultimately obtained the technical solution proposed in the present application.
  • FIG. 1 is a schematic block diagram of an embodiment of a thermal management system for traffic equipment of the present application.
  • the present application provides a thermal management system 1, including an air-conditioning system 10, a thermal management loop 20, and an auxiliary heater 30.
  • the thermal management loop 20 is used to circulate a first heat transfer medium, thereby performing thermal management on designated components of the traffic equipment.
  • the thermal management loop 20 is also capable of performing heat exchange with the air-conditioning system 10, and then when the air-conditioning system 10 is in a heating state, the heat generated by the designated components is selectively transferred to the air-conditioning system 10, thereby serving as at least a partial heat source for the evaporation process of the air-conditioning system.
  • the auxiliary heater 30 is used to selectively provide heat supplement to the thermal management loop 20.
  • the transportation equipment may be equipment that can travel on traffic roads, waters or airspace, such as vehicles, ships, airplanes and any other equipment equipped with an air conditioning system.
  • the air conditioning system 10 can be used to cool, heat and/or dehumidify a designated area in a transportation device (e.g., a passenger cabin).
  • a transportation device e.g., a passenger cabin
  • the air conditioning system 10 can be considered to be in a cooling state.
  • the air conditioning system 10 can be considered to be in a heating state.
  • the air conditioning system 10 can be considered to be in a dehumidifying state.
  • the air conditioning system 10 can include a plurality of modules, and the modules cooperate with each other to cool, heat and/or dehumidify an area in the transportation device.
  • the first heat-conducting medium may be any medium capable of conducting heat, for example, water, ethylene glycol, heat-conducting oil, nanofluid, etc.
  • the specific form of the first heat-conducting medium is not limited here.
  • the thermal management loop 20 refers to a path for circulating the first heat transfer medium.
  • the designated component may be any component that requires thermal management. Thermal management may be heating or heat dissipation. That is, the thermal management loop 20 can heat or dissipate heat for the designated component by circulating the first heat transfer medium. For example, when the temperature of the first heat transfer medium is higher than that of the designated component, the designated component can be heated, and when the temperature of the first heat transfer medium is lower than that of the designated component, the designated component can be dissipated.
  • the thermal management loop 20 performs heat exchange with the air-conditioning system 10.
  • the air-conditioning system 10 can absorb heat from the first heat transfer medium, thereby achieving heat exchange with the air-conditioning system 10.
  • the working principle of the air-conditioning system 10 is to achieve heat transfer through the combination of heat absorption by evaporation and heat release by condensation.
  • the air conditioning system 10 is in a heating state and the designated component is in a heating state
  • the first heat transfer medium in the thermal management loop 20 transfers the heat absorbed from the designated component to the air conditioning system 10 through heat exchange, and then serves as a low-temperature heat source for the evaporation process of the air conditioning system 10 to achieve heat recovery.
  • the thermal management loop 20 may include a water pump, such as the water pump b1 and the water pump b2 in FIG. 1.
  • the water pump b1 and the water pump b2 can be used to promote the circulation of the first heat transfer medium in the thermal management loop 20.
  • the auxiliary heater 30 may be any component capable of generating heat, such as a PTC electric heater, a heating tube, etc.
  • the first heat transfer medium in the thermal management loop 20 absorbs heat from the auxiliary heater 30 to heat a designated component and/or perform heat exchange with the air conditioning system 10 .
  • the designated component may be the battery module 41 and/or the motor module 42 in Figure 1. In other embodiments, the designated component may be any other component that requires thermal management (heating or heat dissipation), and the specific type of the designated component is not specifically limited herein.
  • the auxiliary heater 30 can provide heat supplement to the thermal management loop 20, ensuring that the air-conditioning system 10 can effectively absorb heat from the thermal management loop 20 under low temperature and other working conditions, reducing the pressure of the air-conditioning system 10 and improving the heating effect of the air-conditioning system 10.
  • the heating temperature of the auxiliary heater 30 only needs to ensure that the air-conditioning system 10 can effectively absorb heat, and at the same time, only a part of the heat supplied by the air-conditioning system 10 comes from the auxiliary heater 30, and the other part comes from the compression work inside the air-conditioning system 10, the specifications of the auxiliary heater 30 can be effectively reduced, the space utilization rate can be improved, and the cost can be reduced.
  • the thermal management system 1 further includes a control module 21.
  • the control module 21 controls the auxiliary heater 30 to provide heat supplement to the thermal management loop 20.
  • the control module 21 may include an air conditioning controller.
  • the control module 21 may be a control circuit including an air conditioning controller.
  • the control module 21 is connected to the auxiliary heater 30, and is used to control the auxiliary heater 30 to provide heat supplement to the thermal management circuit 20 or stop providing heat supplement to the thermal management circuit 20. Due to the limitation of the working principle of the air conditioning system 10, it is difficult for the air conditioning system 10 to absorb heat from a low temperature environment (for example, below -10 degrees Celsius). Therefore, when the heat generated by the designated component does not meet the heating demand of the air conditioning system 10, after the designated component generates heat to heat the first heat transfer medium, the air conditioning system 10 still cannot absorb heat from the first heat transfer medium or the absorbed heat is low, and it is difficult to support the heating demand of the air conditioning system 10.
  • the control module 21 is used to control the auxiliary heater 30 to provide heat supplement to the thermal management loop 20 based on the heating demand of the air-conditioning system 10, so that the air-conditioning system 10 can effectively absorb heat from the thermal management loop 20, thereby realizing automatic control.
  • the auxiliary heater 30 can be manually turned on or off by the user to provide heat supplement to the thermal management loop 20 or stop providing heat supplement to the thermal management loop 20.
  • the control module 21 generates a prompt message after determining that the heat generated by the specified component does not meet the heating demand of the air-conditioning system, and the user chooses whether to manually turn on the auxiliary heater 30.
  • the user can decide whether to manually turn on the auxiliary heater 30 based on his own judgment.
  • the thermal management system 1 includes a detection module 22.
  • the detection module 22 is used to detect the operating state or operating environment of the air-conditioning system 10 when the air-conditioning system 10 is in a heating state.
  • the control module 21 determines whether the heat generated by the specified component meets the heating demand of the air-conditioning system 10 based on the detection result of the detection module 22.
  • the operating state refers to the state of the air-conditioning system 10 itself during operation, such as the temperature or pressure of the refrigerant, condenser, and evaporator.
  • the operating environment refers to the external environment in which the air-conditioning system 10 is located during operation, such as the ambient temperature, the temperature of the first heat-conducting medium, etc. In some application scenarios, whether the heat generated by the specified component meets the heating demand of the air-conditioning system 10 can be determined based on the temperature of the first heat-conducting medium.
  • the detection module 22 is connected to the control module 21 and is used to transmit the detection result to the control module 21 so that the control module 21 can determine whether the heat generated by the specified component meets the heating demand of the air-conditioning system 10 based on the detection result.
  • the operating state or operating environment of the air-conditioning system 10 is detected by the detection module 22 to determine whether the heat generated by the designated components meets the heating demand of the air-conditioning system 10, thereby realizing automatic control.
  • the operating environment includes the temperature of the first heat-conducting medium.
  • the detection module 22 is used to detect the temperature of the first heat-conducting medium before the first heat-conducting medium exchanges heat with the air-conditioning system 10.
  • the control module 21 determines that the heat generated by the designated component does not meet the heating demand of the air-conditioning system 10.
  • the detection module 22 may be any temperature sensor with a temperature detection function, such as a thermistor.
  • a specific setting method may be that the first heat-conducting medium first flows through the detection module 22, and then flows through the area for heat exchange with the air-conditioning system 10, so that the detection module 22 detects the temperature of the first heat-conducting medium before the first heat-conducting medium and the air-conditioning system 10 perform heat exchange. Since the air-conditioning system 10 absorbs heat from the first heat-conducting medium, the temperature of the first heat-conducting medium will drop after the heat exchange. Therefore, the temperature detection of the first heat-conducting medium before the first heat-conducting medium and the air-conditioning system 10 perform heat exchange can more accurately determine whether the heat generated by the specified component meets the heating demand of the air-conditioning system 10.
  • the preset temperature threshold may be user-defined or pre-set based on experiments or experience. It can be considered that if the temperature of the first heat transfer medium is lower than the preset temperature threshold, the heat absorbed by the air conditioning system 10 from the first heat transfer medium does not meet the current heating demand of the air conditioner, so the control module 21 controls the auxiliary heater 30 to provide heat supplement to the thermal management circuit 20.
  • control module 21 can also control the auxiliary heater 30 to provide heat supplement to the thermal management loop 20 in response to the designated component having its own heating demand, so as to heat the designated component through the first heat transfer medium.
  • the output power of the battery module 41 decreases in low temperature conditions.
  • the heating demand of the designated component itself may be that the temperature of the designated component is lower than a preset temperature value or the output power or other working performance of the designated component is lower than the preset power requirement or performance requirement, and heating is required to provide output power or improve other working performance.
  • the auxiliary heater 30 is controlled to provide heat supplement to the thermal management loop 20, which is beneficial to maintaining the normal working state of the designated component.
  • the heat management loop 20 includes a main heat exchange area 231 for heat exchange with a designated component and an auxiliary heat exchange area 24 for heat exchange with an auxiliary heater 30.
  • the heat management loop 20 also includes a flow distribution component 261 and a bypass line 251 connected in parallel with the main heat exchange area 231.
  • the control module 21 controls the flow distribution component 261 to distribute the flow of the first heat transfer medium between the main heat exchange area 231 and the bypass line 251 according to the heating demand of the designated component and the heating demand of the air conditioning system 10.
  • the main heat exchange area 231 and the auxiliary heater 30 can be part of the pipeline for the flow of the first heat transfer medium or a heat exchanger connected to the pipeline or heat exchanged, and no further restrictions are made here.
  • the designated components and the auxiliary heater 30 can exchange heat with the main heat exchange area 231 and the auxiliary heater 30 by direct contact, or by other indirect methods, and no further restrictions are made here.
  • the flow distribution component 261 can be implemented by a three-way proportional valve or other arbitrary valve components or other components, and no further restrictions are made here.
  • the bypass line 251 generally refers to a branch that enables the first heat transfer medium upstream of the main heat exchange area 231 to reach the downstream of the main heat exchange area 231 without flowing through the main heat exchange area 231. Further, the heat exchange capacity between the bypass line 251 and the designated component is smaller than the heat exchange capacity between the main heat exchange area 231 and the designated component. In other words, the heat exchange rate per unit time between the unit volume of the first heat transfer medium flowing through the bypass line 251 and the designated component is smaller than the heat exchange rate per unit time between the unit volume of the first heat transfer medium flowing through the main heat exchange area 231 and the designated component.
  • the flow rate of the first heat transfer medium between the main heat exchange area 231 and the bypass line 251 can be adjusted according to the preset priority relationship between the heating demand of the designated component and the heating demand of the air-conditioning system 10 or the size relationship between the heating demand of the designated component and the heating demand of the air-conditioning system 10.
  • the flow adjustment method of the first heat transfer medium on the main heat exchange area 231 and the bypass line 251 can be preset when both the designated component and the air-conditioning system 10 have heating demand.
  • the first heat transfer medium between the main heat exchange area 231 and the bypass line 251 can be adjusted to meet the heating demand of the designated component, or in response to the heating demand of the designated component being less than or equal to the heating demand of the air-conditioning system 10, the first heat transfer medium between the main heat exchange area 231 and the bypass line 251 can be adjusted to meet the heating demand of the air-conditioning system 10.
  • the specific flow distribution method may be to control the first heat transfer medium to flow only through the main heat exchange area 231 or only through the bypass line 251, or to control the flow size of the first heat transfer medium when it flows through the two lines at the same time.
  • the flow distribution of the first heat transfer medium is performed between the main heat exchange area 231 and the bypass line 251 by the flow distribution component 261, so as to adjust the heat distribution supplied to the designated components and the air conditioning system 10 based on different working conditions.
  • the first heat transfer medium flows to the main heat transfer area 231 and the bypass line 251 after being heated by the auxiliary heat exchange area 24, and performs heat exchange with the air conditioning system 10 before entering the auxiliary heat exchange area 24.
  • the first heat transfer medium heated by the auxiliary heat exchange area 24 flows to the main heat exchange area 231 and the bypass line 251 after performing heat exchange with the air conditioning system 10, and is heated by the auxiliary heat exchange area 24 after flowing through the main heat exchange area 231 and/or the bypass line 251.
  • the position of the flow distribution component 261 can be set according to actual conditions, for example, at the parallel branching position of the main heat exchange area 231 and the bypass line 251, or at the parallel confluence position of the main heat exchange area 231 and the bypass line 251.
  • the number of flow distribution components 261 can include multiple, and methods other than three-way proportional valves can be used, such as setting a flow distribution component 261 on the branch where the main heat exchange area 231 is located to control the flow of the first heat transfer medium flowing through the main heat exchange area 231, and/or setting a flow distribution component 261 on the bypass line 251 to control the flow of the first heat transfer medium flowing through the bypass line 251.
  • the designated component is a battery module 41 of a traffic device.
  • the control module 21 controls the flow distribution component 261 to preferentially meet the heating requirements of the battery module 41 in response to the output power of the battery module 41 not meeting the external power requirements.
  • the control flow distribution component 261 preferentially meets the heating requirements of the air conditioning system 10 through the auxiliary heater 30.
  • the battery module 41 includes a plurality of battery packs for providing electrical energy to the traffic equipment.
  • the output power of the battery module 41 may not meet the external power demand because the output power of the battery module 41 is less than the input power required by the external load connected to the battery module 41.
  • the external power demand includes the power demand of the air conditioning system 10, the power demand of the motor module 42, and may also include the power demand of other components.
  • Other components include any other components inside the traffic equipment that require electricity, such as a lighting system.
  • the battery module 41 when the output power of the battery module 41 does not meet the external power demand, the battery module 41 is heated first to ensure the normal operation of the transportation equipment.
  • the heating demand of the battery module 41 is preferentially satisfied by supplying all the first heat transfer medium to the main heat exchange area 231 or increasing the flow rate of the first heat transfer medium to the main heat exchange area 231.
  • the heating demand of the air conditioning system 10 is preferentially satisfied by supplying all the first heat transfer medium to the bypass line 251 or increasing the flow rate of the first heat transfer medium to the bypass line 251.
  • the heating demand of the battery module 41 is preferentially satisfied by supplying all the first heat transfer medium to the main heat exchange area 231. That is, the control module 21 controls the flow distribution component 261 to disconnect the bypass line 251, so that the bypass line 251 does not have the first heat transfer medium flowing, so that the first heat transfer medium flows entirely from the line where the main heat exchange area 231 is located.
  • the heating demand of the battery module 41 is preferentially satisfied by increasing the flow of the first heat transfer medium to the main heat exchange area 231.
  • the control module 21 controls the flow distribution component 261 to adjust the opening degree based on the existing valve opening degree, thereby adjusting the flow of the first heat transfer medium flowing through the main heat exchange area 231 and the bypass line 251, thereby increasing the flow of the line where the main heat exchange area 231 is located and reducing the flow of the bypass line 251.
  • the heating demand of the air-conditioning system 10 is preferentially satisfied by supplying all the first heat transfer medium to the bypass line 251. That is, the control module 21 controls the flow distribution component 261 to disconnect the line where the main heat exchange area 231 is located, so that the line where the main heat exchange area 231 is located does not have the first heat transfer medium flowing, so that the first heat transfer medium flows entirely from the bypass line 251.
  • the heating demand of the air conditioning system 10 is preferentially satisfied by increasing the flow rate of the first heat transfer medium to the bypass line 251.
  • the control module 21 controls the flow distribution component 261 to adjust the opening degree based on the existing valve opening degree, thereby adjusting the flow rate of the first heat transfer medium flowing through the main heat exchange area 231 and the bypass line 251, thereby increasing the flow rate of the first heat transfer medium to the bypass line 251 and reducing the flow rate of the line where the main heat exchange area 231 is located.
  • the battery module 41 can be better heated.
  • the air conditioning system 10 can better absorb heat from the thermal management circuit 20.
  • control module 21 can also control the flow distribution component 261 to reduce the flow of the first heat transfer medium to the bypass line 251 and increase the flow of the first heat transfer medium to the main heat exchange area 231 in response to the heat management loop 20 meeting the heating demand of the air-conditioning system 10.
  • the flow distribution component 261 in response to the heat management loop 20 not meeting the heating demand of the air-conditioning system 10, can be controlled to increase the flow of the first heat transfer medium to the bypass line 251 and reduce the flow of the first heat transfer medium to the main heat exchange area 231.
  • whether the thermal management loop 20 meets the heating demand of the air-conditioning system 10 can be judged by measuring the temperature before or after the first heat transfer medium exchanges heat with the air-conditioning system 10. For example, when the temperature is greater than the first threshold, it is considered that the thermal management loop 20 meets the heating demand of the air-conditioning system 10, and when the temperature is less than the second threshold, it is considered that the thermal management loop 20 does not meet the heating demand of the air-conditioning system 10.
  • the operating state or operating environment of the air-conditioning system 10 can be detected in other ways to determine whether the thermal management loop 20 meets the heating demand of the air-conditioning system 10.
  • the heating demands of the air-conditioning system 10 and the battery module 41 are dynamically balanced through dynamic allocation of flow.
  • the thermal management circuit 20 includes at least two sub-thermal management circuits, such as the sub-thermal management circuit 20A and the sub-thermal management circuit 20B in FIG. 1 .
  • the at least two sub-thermal management circuits are used to circulate the first heat transfer medium and perform thermal management on different designated components.
  • the thermal management system 1 also includes a thermal management switching component 50.
  • the control module 21 controls the thermal management switching component 50 to selectively switch the heat exchange relationship between the at least two sub-thermal management circuits and the air conditioning system 10.
  • the designated components for thermal management performed by each sub-thermal management circuit may be one or more.
  • the thermal management switching component 50 may be a multi-way valve.
  • the control module 21 controls the thermal management switching component 50 to selectively switch the heat exchange between the at least two sub-thermal management loops and the air conditioning system 10, which may be that the control module 21 controls a part of the sub-thermal management loops to perform heat exchange with the air conditioning system 10, or controls all the sub-thermal management loops to perform heat exchange with the air conditioning system 10.
  • the designated components include a battery module 41 and a motor module 42 of the traffic equipment.
  • the at least two sub-thermal management loops include a sub-thermal management loop 20A and a sub-thermal management loop 20B.
  • the sub-thermal management loop 20A is used to perform thermal management on the battery module 41, and includes a main heat exchange area 231 for heat exchange with the battery module 41 and an auxiliary heat exchange area 24 for heat exchange with the auxiliary heater 30.
  • the sub-thermal management loop 20B is used to perform thermal management on the motor module 42, and includes a main heat exchange area 232 for heat exchange with the motor module 42 and an external heat exchanger 27 for heat exchange with the external environment.
  • the control module 21 controls the thermal management switching component 50 to switch at least one of the sub-thermal management loop 20A and the sub-thermal management loop 20B to perform heat exchange with the air conditioning system 10.
  • the thermal management loop 20 may also include other sub-thermal management loops for thermal management of other designated components in the traffic equipment.
  • the external heat exchanger 27 may be a device such as a radiator that can be used to exchange heat with the external environment.
  • the control module 21 responds to the air-conditioning system 10 being in a heating state, and controls the thermal management switching component 50 to switch the sub-thermal management loop 20A to perform heat exchange with the air-conditioning system 10, thereby utilizing the heat generated by the battery module 41 as a low-temperature heat source for the air-conditioning system 10.
  • the sub-thermal management loop 20A may also be switched to perform heat exchange with the air-conditioning system 10 under low-temperature conditions.
  • the auxiliary heater 30 may be used to meet the heating demand of the air-conditioning system 10, and may further meet the heating demand of the battery module 41 when the battery module 41 has a heating demand.
  • the control module 21 responds to the air-conditioning system 10 being in a heating state, and controls the thermal management switching component 50 to switch the sub-thermal management loop 20B to perform heat exchange with the air-conditioning system 10, thereby utilizing the heat generated by the motor module 42 as a low-temperature heat source for the air-conditioning system 10.
  • the thermal management switching component 50 controls the first heat transfer medium in the second sub-thermal management loop 20B to self-circulate. That is, the first heat transfer medium circulates in the sub-thermal management loop 20B, and can perform heat management such as heat dissipation or heating on the motor module 42 separately.
  • the thermal management switching component 50 controls the first heat transfer medium in the sub-thermal management loop 20A to self-circulate. That is, the first heat transfer medium circulates in the sub-thermal management loop 20A, and can perform heat management such as heat dissipation or heating on the battery module 41.
  • the control module 21 controls the auxiliary heater 30 to supplement the heat of the first heat transfer medium in the sub-thermal management loop 20A.
  • the two main heat sources (battery module 41 and motor module 42) of the transportation equipment are thermally managed through two sub-thermal management loops, which can improve the heat recovery utilization rate.
  • the auxiliary heater 30 is set in the sub-thermal management loop 20A where the battery module 41 is located. The heating function of the auxiliary heater 30 can be used to selectively heat the battery module 41, thereby improving the low-temperature starting performance of the transportation equipment.
  • control module 21 can also respond to the air-conditioning system 10 being in a heating state, and control the thermal management switching component 50 to switch the sub-thermal management loop 20A and the sub-thermal management loop 20B to simultaneously perform heat exchange with the air-conditioning system 10.
  • control module 21 can also control the thermal management switching assembly 50 to connect the sub-thermal management loop 20A and the sub-thermal management loop 20B so that the first heat transfer medium circulates in the total loop formed by the sub-thermal management loop 20A and the sub-thermal management loop 20B.
  • the heat balance can be ensured and the thermal management effect can be improved.
  • the heat generated by the motor module 42 is used to heat the battery module 41.
  • the sub-thermal management loop 20A includes a flow distribution component 261 and a bypass line 251 connected in parallel with the main heat exchange area 231.
  • the control module 21 controls the flow distribution component 261 to distribute the flow of the first heat transfer medium in the sub-thermal management loop 20A between the main heat exchange area 231 and the bypass line 251 according to the heating demand of the battery module 41 and the heating demand of the air-conditioning system 10.
  • the specific working process is described in detail above in conjunction with Figures 1-3 and will not be repeated here. It is worth noting that the above-mentioned flow distribution based on the flow distribution component 261 can occur in the state shown in Figure 6.
  • the sub-thermal management loop 20B further includes a flow distribution component 262 and a bypass line 252 connected in parallel with the external heat exchanger 27.
  • the control module 21 controls the second flow distribution component to distribute the flow of the first heat transfer medium in the sub-thermal management loop 20B between the external heat exchanger 27 and the bypass line 252 according to the heat dissipation demand of the motor module 42, the heating demand of the air conditioning system 10, or the external environment of the external heat exchanger 27.
  • the heat dissipation demand of the motor module 42 and/or the heating demand of the air conditioning system can be dynamically met.
  • control module 21 directs all of the first heat transfer medium in the sub-thermal management loop 20B to the bypass line 252 or increases the flow of the first heat transfer medium to the bypass line 252 in response to the motor module 42 having no additional heat dissipation demand after heating the air-conditioning system 10 or the motor module 42 does not meet the heating demand of the air-conditioning system 10 and cannot absorb heat from the environment through the external heat exchanger 27.
  • the first heat transfer medium in the sub-thermal management loop 20B is directed all of the first heat transfer medium to the external heat exchanger 27 or increases the flow of the first heat transfer medium to the external heat exchanger 27.
  • control module 21 controls the flow distribution component 262 to disconnect the bypass line 252 so that no first heat transfer medium flows through the bypass line 252 , so that the first heat transfer medium flows entirely from the line where the external heat exchanger 27 is located.
  • control module 21 controls the flow distribution component 262 to disconnect the circuit where the external heat exchanger 27 is located, so that no first heat transfer medium flows in the circuit where the external heat exchanger 27 is located, and the first heat transfer medium flows entirely from the bypass circuit 252 .
  • the flow distribution component 262 can be used to increase or decrease the flow of the first heat transfer medium flowing to the bypass line 252 and the external heat exchanger 27.
  • the flow distribution component 262 can be implemented by a three-way proportional valve or any other valve component or other element, which is not limited here.
  • Whether there is an additional heat dissipation demand after the motor module 42 provides heat to the air-conditioning system 10 generally refers to whether the motor module 42 can work normally without additional heat dissipation or whether it affects its working efficiency. It can be judged by the temperature of the motor module 42 itself, the temperature of the first heat-conducting medium, or the working performance of the motor module 42. Whether the motor module 42 can meet the heating demand of the air-conditioning system 10 generally refers to whether the heat absorbed by the air-conditioning system 10 from the sub-thermal management loop 20B can meet the heating requirements. As described above, it can be judged by the operating state or operating environment of the air-conditioning system 10.
  • Whether the external heat exchanger 27 can absorb heat from the environment can be judged by the temperature in the external environment or the temperature difference between the external environment temperature and the first heat-conducting medium. It is worth noting that the above-mentioned flow distribution based on the flow distribution component 262 can occur in the state shown in Figure 6.
  • the heat dissipation demand of the motor module 42 and the heating demand of the air conditioning system 10 can be dynamically balanced according to the actual working conditions of the motor module 42 and the air conditioning system 10. It is also possible to avoid additional heat loss when the external heat exchanger 27 cannot absorb heat from the environment, and increase the heat supply to the air conditioning system 10 when the external heat exchanger 27 can absorb heat from the environment.
  • the air conditioning system 10 includes an air conditioning loop 10A and an air conditioning loop 10B.
  • the air conditioning loop 10A is used to circulate the refrigerant and includes a compressor 11, a condensing heat exchanger 12, a liquid storage device 13, and an evaporative heat exchanger 14 and 15.
  • the refrigerant evaporates and absorbs heat in the evaporative heat exchanger 14, thereby performing air conditioning and refrigeration on a designated area of the transportation equipment.
  • the refrigerant evaporates and absorbs heat in the evaporative heat exchanger 15, thereby absorbing heat from the thermal management loop 20.
  • the air conditioning loop 10B is used to circulate the second heat transfer medium and includes a heating heat exchanger 16, which performs heat exchange with the condensing heat exchanger 12, thereby performing air conditioning and heating on the designated area.
  • the compressor 11 compresses the refrigerant into a high-temperature and high-pressure gas and inputs it into the condensing heat exchanger 12.
  • the refrigerant passes through the condensing heat exchanger 12 to condense and release heat to form a high-temperature and high-pressure liquid and is stored in the liquid storage 13.
  • the refrigerant in the liquid storage 13 enters the evaporative heat exchanger 14 and the evaporative heat exchanger 15 after throttling.
  • the functions of the two can be to utilize the liquid refrigerant to evaporate easily under low pressure, turn into vapor and absorb the heat of the cooled medium to achieve the purpose of heat exchange.
  • the condensing heat exchanger 12 and the evaporating heat exchanger 15 are plate heat exchangers, and the plate heat exchanger is provided with two flow paths, one for the refrigerant to flow, and the other for the first heat transfer medium or the second heat transfer medium to flow, so as to achieve heat exchange between the refrigerant and the first heat transfer medium or the second heat transfer medium.
  • the refrigerant evaporates and absorbs heat in the evaporating heat exchanger 15, thereby achieving heat exchange with the first heat transfer medium in the thermal management circuit 20, and the specific heat exchange method can be any one of the methods shown in Figures 2-6.
  • the refrigerant evaporates and absorbs heat in the evaporating heat exchanger 14, thereby absorbing heat from a designated area in the transportation equipment, achieving the purpose of air conditioning and refrigeration.
  • the heating heat exchanger 16 can be a warm air core, and the heating heat exchanger 16 and the condensing heat exchanger 12 perform heat exchange through the second heat transfer medium, thereby being able to heat the designated area in the transportation equipment.
  • a water pump b3 can be provided in the air conditioning loop 10B, and the water pump b3 can be used to promote the circulation of the second heat transfer medium in the air conditioning loop 10B.
  • air-conditioning heating is achieved by heat exchange between the heating heat exchanger 16 and the condensing heat exchanger 12, which can simplify the flow path design of the air-conditioning system.
  • control module 21 controls the thermal management switching component 50 to switch the sub-thermal management loop 20B to heat exchange with the condensing heat exchanger 12, thereby transferring the heat released by the condensing heat exchanger 12 to the external heat exchanger 27.
  • the sub-heat management loop 20B includes the external heat exchanger 27, and the external heat exchanger 27 has a strong heat exchange capability with the external environment, the sub-heat management loop 20B is switched to heat exchange with the condensing heat exchanger 12, so that the heat released by the condensing heat exchanger 12 can be absorbed by the first heat transfer medium and then dissipated to the external environment through the external heat exchanger 27.
  • the external heat exchanger 27 in the sub-thermal management loop 20B can be fully utilized to dissipate heat from the condensing heat exchanger 12, thereby improving the heat dissipation performance of the condensing heat exchanger 12 and reducing the working pressure of the compressor 11.
  • the air conditioning system 10 further includes a first air conditioning switching component 17.
  • the sub-thermal management loop 20B and the air conditioning loop 10B are respectively connected to the condensing heat exchanger 12 via the first air conditioning switching component 17.
  • the control system can also control the first air conditioning switching component 17 to selectively supply the first heat transfer medium in the sub-thermal management loop 20B and the second heat transfer medium in the air conditioning loop 10B to the condensing heat exchanger 12.
  • the first air conditioning switching component 17 can be implemented by a three-way proportional valve, other valve components or other components. Since in the air conditioning system 10, the cooling state and the heating state are two working states that cannot coexist, the sub-thermal management loop 20B can be connected to the condensing heat exchanger 12 via the first air conditioning switching component 17 in the cooling state, and the first heat transfer medium can be supplied to the condensing heat exchanger 12 to achieve heat exchange between the first heat transfer medium and the condensing heat exchanger 12.
  • the air conditioning loop 10B is connected to the condensing heat exchanger 12 via the first air conditioning switching component 17, and the second heat transfer medium can be supplied to the condensing heat exchanger 12 to achieve heat exchange between the second heat transfer medium and the condensing heat exchanger 12. In this way, the first heat transfer medium and the second heat transfer medium can share a flow path of the condensing heat exchanger 12.
  • the first heat transfer medium and the second heat transfer medium are selectively supplied to the condensing heat exchanger 12 through the first air conditioning switching component, so that the sub-thermal management loop 20B and the air conditioning loop 10B can share the flow path in the condensing heat exchanger 12, simplifying the structure of the condensing heat exchanger 12.
  • the control module 21 in response to the air conditioning system 10 being in a cooling state, switches the sub-thermal management loop 20A to heat exchange with the evaporative heat exchanger 15 , thereby utilizing the evaporative heat exchanger 15 to cool the battery module 41 .
  • the refrigerant absorbs heat during evaporation in the evaporative heat exchanger 15 , it can absorb heat from the first heat transfer medium in the sub-thermal management loop 20A.
  • the battery module 41 can be cooled by using the cooled first heat transfer medium to perform heat exchange on the battery module 41 .
  • the battery module 41 can be cooled by the second evaporative heat exchanger 15 .
  • the air conditioning system 10 further includes a first air conditioning switching component 17 and a second air conditioning switching component 18.
  • the control system controls the first air conditioning switching component 17 to connect the heating heat exchanger 16 and the condensing heat exchanger 12, and controls the second air conditioning switching component 18 to connect the liquid storage tank 13 and the evaporative heat exchanger 14, so that the air cooled and dehumidified by the evaporative heat exchanger 14 can be heated by the heating heat exchanger 16.
  • the first air conditioning switching assembly 17 is located between the heating heat exchanger 16 and the condensing heat exchanger 12.
  • the second air conditioning switching assembly is located between the liquid storage tank 13 and the evaporating heat exchanger 14.
  • the second air conditioning switching component 18 can be an electronic expansion valve with a switch function.
  • the second air conditioning switching component 18 is closed in the heating state to prevent the refrigerant from evaporating and absorbing heat in the evaporative heat exchanger 14, affecting the heating effect, and is opened in the cooling state to produce a cooling effect.
  • the dehumidification state is based on the heating state, and the second air conditioning switching component 18 is turned on. At this time, the water vapor in the airflow generated by the fan b4 is absorbed by the evaporative heat exchanger 14 and condensed to form liquid water, thereby achieving the dehumidification effect.
  • the dehumidified airflow is further heated by the heating heat exchanger 16 to form a normal temperature or heating airflow.
  • the air conditioning system 10 also has a dehumidification state by providing the first air conditioning switching component 17 and the second air conditioning switching component 18. It is worth noting that the above dehumidification state can be achieved on the basis of any heating state shown in Figures 2-6.
  • this embodiment further provides a thermal management method based on the above heat pipe system, comprising the following steps:
  • Step S11 in response to the battery module 41 and the air conditioning system 10 both having heating demand, controlling the auxiliary heater 30 to provide heat supplement to the thermal management loop 20 .
  • Step S12 Identify whether the output power of the battery module 41 meets the external power demand.
  • step S13 In response to the identification result that the output power of the battery module 41 does not meet the external power demand, step S13 is executed; in response to the identification result that the output power of the battery module 41 can meet the external power demand, step S14 is executed.
  • Step S13 controlling the thermal management circuit 20 to preferentially meet the heating demand of the battery module 41 .
  • Step S14 controlling the thermal management loop 20 to preferentially meet the heating demand of the air-conditioning system 10 .
  • an auxiliary heater is arranged in the thermal management circuit so that when the transportation equipment is in a low-temperature condition and the battery module and the air-conditioning system have heating needs at the same time, the auxiliary heater can be used to meet the heating needs of the battery module and the air-conditioning system respectively, and according to the working characteristics of the battery module and the air-conditioning system, when the output power of the battery module does not meet the external power demand, the battery module is heated first to ensure the normal operation of the transportation equipment.
  • giving priority to the heating demand of the battery module 41 and giving priority to the heating demand of the air conditioning system 10 can be achieved by using the flow distribution method of the bypass line 251 and the flow distribution component 261 described above. In some other embodiments, it can be achieved by other methods, such as through reasonable flow path settings.
  • the heated first heat transfer medium is controlled to exchange heat with the battery module 41 first, and then with the air conditioning system 10.
  • the heated first heat transfer medium is controlled to exchange heat with the air conditioning system 10 first, and then with the battery module 41.
  • the following steps may also be performed:
  • the thermal management loop 20 In response to the heat supply of the thermal management loop 20 to the air conditioning system 10 reaching the heat supply demand of the air conditioning system 10 , the thermal management loop 20 is controlled to reduce the heat supply to the air conditioning system 10 and increase the heat supply to the battery module 41 .
  • the thermal management loop 20 in response to the heat supply of the thermal management loop 20 to the air conditioning system 10 being lower than the heat demand of the air conditioning system 10 , the thermal management loop 20 is controlled to increase the heat supply to the air conditioning system 10 and reduce the heat supply to the battery module 41 .
  • the above-described method can be implemented by changing the heat exchange sequence between the first heat transfer fluid and the battery module 41 and the air conditioning system 10.
  • the specific judgment method of the above process has been described in detail above and will not be repeated here.
  • the auxiliary heater 30 can provide heat supplement to the thermal management loop 20, ensuring that the air-conditioning system 10 can effectively absorb heat from the thermal management loop 20 under low temperature and other working conditions, reducing the pressure of the air-conditioning system 10 and improving the heating effect of the air-conditioning system 10.
  • the heating temperature of the auxiliary heater 30 only needs to ensure that the air-conditioning system 10 can effectively absorb heat, and at the same time, only a part of the heat supplied by the air-conditioning system 10 comes from the auxiliary heater 30, and the other part comes from the compression work inside the air-conditioning system 10, the specifications of the auxiliary heater 30 can be effectively reduced, the space utilization rate can be improved, and the cost can be reduced.
  • thermal management method is not limited to the thermal management system described above, but is also applicable to other scenarios where an auxiliary heater is used in conjunction with a thermal management loop as a low-temperature heat source for an air-conditioning system.
  • Fig. 10 is a schematic diagram of the structure of an embodiment of a traffic device of the present application.
  • the traffic device 100 provided in this embodiment includes the thermal management system 1 described in the above thermal management system embodiment.
  • the transportation device 100 may be a device that can travel on a traffic road, such as a vehicle, a ship, an airplane, or any other device equipped with an air conditioning system.
  • the thermal management system 1 includes an air conditioning system (not shown), a thermal management circuit (not shown) and an auxiliary heater (not shown).
  • the thermal management circuit is used to circulate the first heat transfer medium, thereby performing thermal management on the designated components of the traffic equipment.
  • the thermal management circuit can also exchange heat with the air conditioning system, thereby selectively transferring the heat generated by the designated components to the air conditioning system at least when the air conditioning system is in a heating state, thereby serving as at least a partial heat source for the evaporation process of the air conditioning system.
  • the auxiliary heater is used to selectively provide heat supplement to the thermal management circuit.
  • the specific structure of the thermal management system 1 can be found in the above-mentioned thermal management system embodiment, which will not be repeated here.
  • the thermal management system 1 is provided with an auxiliary heater (not shown) in the thermal management loop, so that the auxiliary heater can provide heat supplement to the thermal management loop, ensuring that the air-conditioning system can effectively absorb heat from the thermal management loop under low temperature and other working conditions, reducing the pressure of the air-conditioning system and improving the heating effect of the air-conditioning system.
  • the heating temperature of the auxiliary heater only needs to ensure that the air-conditioning system can effectively absorb heat, and at the same time, only part of the heat supplied by the air-conditioning system comes from the auxiliary heater, and the other part comes from the compressor inside the air-conditioning system, the specifications of the auxiliary heater can be effectively reduced, the space utilization rate can be improved, and the cost can be reduced.
  • the transportation device further includes a driving system (not shown).
  • the driving system is used to drive the transportation device to travel on the road.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种交通设备及其热管理***和方法,热管理***(1)包括空调***(10),热管理回路(20)及辅助加热器(30)。热管理回路(20)用于循环传输第一导热介质,进而对交通设备的指定部件进行热管理,热管理回路(20)能够与空调***(10)进行热交换,进而至少在空调***(10)处于制热状态时,选择性地将指定部件产生的热量传递到空调***(10),进而作为空调***(10)的蒸发过程的至少部分热源;辅助加热器(30)用于选择性地向热管理回路(20)提供热量补充,提高空调***(10)的采暖效果。

Description

一种交通设备及其热管理***和热管理方法 【技术领域】
本申请涉及热管理技术领域,特别是一种交通设备及其热管理***和热管理方法。
【背景技术】
在冬季气温较低时,交通设备(例如汽车)内一般会使用空调提升设备内部空间的温度,达到采暖的效果。例如,目前电动汽车的车内采暖多采用具有热泵功能的电动空调器。在低温工况下,热泵空调存在着热泵效率低等问题,难以满足采暖需要。目前,一般的解决方案是增加额外的辅助加热器直接与车内空间内的供暖换热器进行换热。此时,为了达到换热目的,辅助加热器的加热温度需要超过设备内部空间所需的目标温度,对辅助加热器的规格(例如,加热功率以及体积)要求较高。
【发明内容】
鉴于上述问题,本申请提供一交通设备及其热管理***和热管理方法,以解决现有技术中的技术问题,能够提高空调***在低温工况下的采暖效果,同时有效降低辅助加热器的规格。
本申请提供了一种交通设备的热管理***,包括空调***、热管理回路以及辅助加热器。热管理回路用于循环传输第一导热介质,进而对交通设备的指定部件进行热管理,热管理回路还能够与空调***进行热交换,进而至少在空调***处于制热状态时,选择性地将指定部件所产生的热量传递到空调***,进而作为空调***的蒸发过程的至少部分热源。辅助加热器用于选择性地向热管理回路提供热量补充。在上述方案中,通过在热管理回路中设置辅助加热器,使得辅助加热器能够给热管理回路提供热量补充,确保空调***在低温等工况下,能够有效从热管理回路中吸收热量,减轻空调***的压力,提高空调***的采暖效果。另外,由于辅助加热器的加热温度只需要保证空调***能够有效吸热,同时空调***所供应的热量仅一部分来源于辅助加热器,另一部分来源于空调***内部的压缩做功,因此可有效降低辅助加热器的规格,提高空间利用率,并降低成本。
在一些实施例中,热管理***还包括控制模块,控制模块响应于指定部件所产生的热量不满足空调***的供热需求,控制辅助加热器向热管理回路提供热量补充。在上述方案中,利用控制模块基于空调***的供热需求控制辅助加热器向热管理回路提供热量补充,使得空调***能够从热管理回路中有效吸热,进而实现自动化控制。
在一些实施例中,热管理***还包括检测模块,检测模块用于在空调***处于制热状态时对空调***的运行状态或运行环境进行检测,控制模块基于检测模块的检测结果判断指定部件所产生的热量是否满足空调***的供热需求。在上述方案中,通过检测模块对空调***的运行状态或运行环境进行检测,以供控制模块确定指定部件所产生的热量是否满足空调***的供热需求,进而实现自动化控制。
在一些实施例中,运行环境包括第一导热介质的温度,检测模块用于在第一导热介质与空调***进行热交换前对第一导热介质进行温度检测,控制模块响应于检测模块所检测的温度低于预设的温度阈值,判定指定部件所产生的热量不满足空调***的供热需求。在上述方案中,通过在第一导热介质与空调***进行热交换之前,对第一导热介质的温度进行检测来确定指定部件所产生的热量是否满足空调***的供热需求,检测方式相对简单,且检测结果更加准确。
在一些实施例中,控制模块还能够响应于指定部件自身存在供热需求,控制辅助加热器向热管理回路提供热量补充,以通过第一导热介质对指定部件进行加热。在上述方案中,在指定部件自身存在供热需求的情况下,控制辅助加热器向热管理回路提供热量补充,有利于保持指定部件的正常工作状态。
在一些实施例中,热管理回路包括用于与指定部件进行热交换的主换热区以及用于与辅助加热器进行交换的辅换热区,热管理回路还包括流量分配组件以及与主换热区并联的旁通线路。控制模块根据指定部件的供热需求和空调***的供热需求,控制流量分配组件在主换 热区和旁通线路之间对第一导热介质进行流量分配。在上述方案中,通过流量分配组件在主换热区和旁通线路之间进行第一导热介质的流量分配,以便基于不同的工况调整供应到指定部件和空调***的热量分配。
在一些实施例中,第一导热介质在由辅换热区加热后流向主换热区和旁通线路,并在进入辅换热区前与空调***进行热交换,或者经辅换热区加热的第一导热介质在与空调***进行热交换后流向主换热区和旁通线路,并在流经主换热区和/或旁通线路后由辅换热区进行加热。在上述方案中,通过优化辅换热区的设置位置,能够提高指定部件和空调***的热量分配效果。
在一些实施例中,指定部件为交通设备的电池模块,控制模块响应于电池模块的输出功率不满足外部的功率需求,控制流量分配组件通过辅助加热器优先满足电池模块的供热需求,或者响应于电池模块的输出功率能够满足外部的功率需求,控制流量分配组件通过辅助加热器优先满足空调***的供热需求。在上述方案中,在电池模块的输出功率不满足外部的功率需求的情况下,优先对电池模块进行加热,以提升电池模块的输出功率,进而保证交通设备的正常工作。
在一些实施例中,优先满足电池模块的供热需求为将第一导热介质全部供应至主换热区或者增大第一导热介质到主换热区的流量,优先满足空调***的供热需求为将第一导热介质全部供应至旁通线路或者增大第一导热介质到旁通线路的流量。在上述方案中,通过将第一导热介质全部供应至主换热区或增大第一导热介质到主换热区的流量,能够更好地为电池模块进行加热。通过将第一导热介质全部供应至旁通线路或增大第一导热介质到旁通线路的流量,使得空调***能够更好地从热管理回路中进行吸热。
在一些实施例中,在优先满足空调***的供热需求后,控制模块还能够响应于热管理回路达到空调***的供热需求,控制流量分配组件减小第一导热介质到旁通线路的流量,并增大第一导热介质到主换热区的流量,或者响应于热管理回路不满足空调***的供热需求,控制流量分配组件增大第一导热介质到旁通线路的流量,并减小第一导热介质到主换热区的流量。在上述方案中,通过流量的分配来动态平衡空调***和电池模块的供热需求。
在一些实施例中,热管理回路包括至少两个子热管理回路,该至少两个子热管理回路用于对不同的指定部件进行热管理,热管理***还包括热管理切换组件,控制模块控制热管理切换组件选择性切换该至少两个子热管理回路与空调***的热交换关系。在上述方案中,通过选择性切换该至少两个子热管理回路与空调***之间的热交换关系,能够根据不同的工况利用不同的子热管理回路组合方式向空调***提供热量。
在一些实施例中,指定部件包括交通设备的电池模块和电机模块,该至少两个子热管理回路包括第一子热管理回路和第二子热管理回路。第一子热管理回路用于对电池模块进行热管理,并包括用于与电池模块进行热交换的第一主换热区以及用于与辅助加热器进行热交换的辅换热区,第二子热管理回路用于对电机模块进行热管理,并包括用于与电机模块进行热交换的第二主换热区以及用于与外部环境进行热交换的外部换热器,控制模块响应于空调***处于制热状态,控制热管理切换组件将第一子热管理回路和第二子热管理回路中的至少一个切换成与空调***进行热交换。在上述方案中,通过两个子热管理回路对交通设备的两个主要热源(即,电池模块和电机模块)进行热管理,可提高热回收利用率,同时将辅助加热器设置在电池模块所在的子热管理回路中,可以利用辅助加热器的加热功能对电池模块进行选择性加热,进而提高交通设备的低温启动性能。
在一些实施例中,控制模块还能够响应于空调***处于制热状态,控制热管理切换组件将第一子热管理回路和第二子热管理回路切换成同时与空调***进行热交换。在上述方案中,通过将第一子热管理回路和第二子热管理回路切换成同时与空调***进行热交换使得能够提高热回收利用率。
在一些实施例中,控制模块还能够控制热管理切换组件连通第一子热管理回路和第二子热管理回路,以使得第一导热介质在第一子热管理回路和第二子热管理回路形成的总回路内循环。在上述方案中,通过将第一子热管理回路和第二子热管理回路切换成同时与空调***进行热交换,并且二者之间通过相互连通,可以还保证热量的平衡,提高热管理效果。
在一些实施例中,第一子热管理回路还包括第一流量分配组件以及与第一主换热区并联的第一旁通线路,其中控制模块根据指定部件的供热需求和空调***的供热需求,控制第一流量分配组件在第一主换热区和第一旁通线路之间对第一子热管理回路内第一导热介质进行流量分配。在上述方案中,通过第一流量分配组件在第一主换热区和第二旁通线路之间进行 第一导热介质的流量分配,以便基于不同的工况调整供应到电池模块和空调***的热量分配。
在一些实施例中,第二子热管理回路还包括第二流量分配组件以及与外部换热器并联的第二旁通线路,控制模块根据电机模块的散热需求、空调***的供热需求或外部换热器的外部环境,控制第二流量分配组件在外部换热器和第二旁通线路之间对第二子热管理回路内的第一导热介质进行流量分配。在上述方案中,通过在外部换热器和第二旁通线路之间对第二子热管理回路内的第一导热介质进行流量分配,能够动态满足电机模块的散热需求和/或空调***的供热需求。
在一些实施例中,控制模块响应于电机模块在对空调***进行供热后不存在额外的散热需求或者电机模块不满足空调***的供热需求且通过外部换热器无法从环境吸热,将第二子热管理回路内的第一导热介质全部导入第二旁通线路或增大第一导热介质到第二旁通线路的流量,或者响应于电机模块在空调***供热后仍存在额外的散热需求或者电机模块不满足空调***的供热需求且能够通过外部换热器从环境吸热,将第二子热管理回路内的第一导热介质全部导入外部换热器或增大第一导热介质到外部换热器的流量。在上述方案中,可以根据电机模块和空调***的实际工况动态平衡电机模块的散热需求和空调***的供热需求。还能够在外部换热器无法从环境吸热时,避免额外的热量损失,并在外部换热器能够从环境吸热时,增加到空调***的热供应量。
在一些实施例中,空调***包括第一空调回路和第二空调回路。第一空调回路用于循环传输制冷剂,并包括压缩机、冷凝换热器、储液器、第一蒸发换热器以及第二蒸发换热器,制冷剂在第一蒸发换热器进行蒸发吸热,进而对交通设备的指定区域进行空调制冷,制冷剂在第二蒸发换热器进行蒸发吸热,进而从热管理回路吸取热量,第二空调回路用于循环传输第二导热介质,并包括供暖换热器,供暖换热器与冷凝换热器进行热交换,进而对指定区域进行空调供暖。在上述方案中,通过供暖换热器与冷凝换热器进行的换热方式来实现空调供暖,可以简化空调***的流路设计。
在一些实施例中,控制模块还能够响应于空调***处于制冷状态,控制热管理切换组件将第二子热管理回路切换成与冷凝换热器热交换,进而将冷凝换热器所释放的热量传输至外部换热器。在上述方案中,通过在制冷状态下,将第二子热管理回路切换成与冷凝换热器热交换,能够充分利用第二子热管理回路中的外部换热器对冷凝换热器进行散热。
在一些实施例中,空调***还包括第一空调切换组件,第二子热管理回路和第二空调回路分别经第一空调切换组件连接到冷凝换热器,控制***还能够控制第一空调切换组件将第二子热管理回路内的第一导热介质和第二空调回路内的第二导热介质选择性供应至冷凝换热器。在上述方案中,通过第一空调切换组件选择性将第一导热介质和第二导热介质选择性供应至冷凝换热器,使得第二子热管理回路和第二空调回路能够共用冷凝换热器中的流路,简化冷凝换热器的结构。
在一些实施例中,控制模块还能够响应于空调***处于制冷状态,将第一子热管理回路切换成与第二蒸发换热器热交换,进而利用第二蒸发换热器对电池模块进行降温。在上述方案中,通过在制冷状态下,将第一子热管理回路切换成与第二蒸发换热器进行热交换,使得能够利用第二蒸发换热器对电池模块进行降温。
在一些实施例中,空调***还包括第一空调切换组件和第二空调切换组件,控制***响应于空调***处于除湿状态,控制第一空调切换组件连接供暖换热器与冷凝换热器,并控制第二空调切换组件连接储液器与第一蒸发换热器,使得经第一蒸发换热器制冷除湿后的空气能够被供暖换热器加热。上述方案,通过设置第一空调切换组件和第二空调切换组件,使得空调***还具备除湿状态。
本申请提供了一种交通设备的热管理方法,该交通设备包括空调***、热管理回路以及辅助加热器。热管理回路对交通设备的电池模块进行热管理,并能够与空调***进行热交换以作为空调***的蒸发过程的至少部分热源。该方法包括:响应于电池模块和空调***均存在供热需求,控制辅助加热器用于向热管理回路提供热量补充;识别电池模块的输出功率是否满足外部的功率需求;响应于电池模块的输出功率不满足外部的功率需求,控制热管理回路优先满足电池模块的供热需求;或者,响应于电池模块的输出功率能够满足外部的功率需求,控制热管理回路优先满足空调***的供热需求。在上述方案中,通过在热管理回路设置辅助加热器,在交通设备处于低温工况而导致电池模块和空调***同时存在供热需求的情况下,利用辅助加热器分别满足电池模块和空调***的供热需求,并且根据电池模块和空调***的工作特性,在电池模块的输出功率不满足外部的功率需求的情况下,优先对电池模块进 行加热,以提高电池模块的输出功率,保证交通设备的正常工作。
在一些实施例中,热管理回路包括用于与电池模块进行热交换的主换热区、用于与辅助加热器进行交换的辅换热区、流量分配组件以及与主换热区并联的旁通线路,流量分配组件用于在主换热区和旁通线路之间对第一导热介质进行流量分配,优先满足电池模块的供热需求为控制流量分配组件将第一导热介质全部供应至主换热区或者增大第一导热介质到主换热区的流量,优先满足空调***的供热需求为控制流量分配组件将第一导热介质全部供应至旁通线路或者增大第一导热介质到旁通线路的流量。在上述方案中,通过控制第一导热介质将第一导热介质全部供应至主换热区或增大第一导热介质到主换热区的流量,能够更好地为电池模块进行加热。通过将第一导热介质全部供应至旁通线路或增大第一导热介质到旁通线路的流量,使得空调***能够更好地从热管理回路中进行吸热。
在一些实施例中,响应于电池模块的输出功率能够满足外部的功率需求,控制热管理回路优先满足空调***的供热需求的步骤之后,还包括:响应于热管理回路对空调***的供热量达到空调***的供热需求,控制热管理回路减小对空调***的热量供应,并增大对电池模块的热量供应;或者,响应于热管理回路对空调***的供热量低于空调***的供热需求,控制热管理回路增大对空调***的热量供应,并减小对电池模块的热量供应。在上述方案中,通过热量的分配来动态平衡空调***和电池模块的供热需求。
本申请提供了一种交通设备,该交通设备包括上述的热管理***。在上述方案中,通过在热管理回路中设置辅助加热器,使得辅助加热器能够给热管理回路提供热量补充,确保空调***在低温等工况下,能够有效从热管理回路中吸收热量,减轻空调***的压力,提高空调***的采暖效果。另外,由于辅助加热器的加热温度只需要保证空调***能够有效吸热,同时空调***所供应的热量仅一部分来源于辅助加热器,另一部分来源空调***内部的压缩做功,因此可有效降低辅助加热器的规格,提高空间利用率,并降低成本。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
【附图说明】
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1是本申请交通设备的热管理***一实施例的示意框图;
图2是图1所示的热管理***在第一工作状态下的工作流路示意图;
图3是图1所示的热管理***在第二工作状态下的工作流路示意图;
图4是图1所示的热管理***在第三工作状态下的工作流路示意图;
图5是图1所示的热管理***在第四工作状态下的工作流路示意图;
图6是图1所示的热管理***在第五工作状态下的工作流路示意图;
图7是图1所示的热管理***在第六工作状态下的工作流路示意图;
图8是图1所示的热管理***在第七工作状态下的工作流路示意图;
图9是本申请交通设备的热管理方法一实施例的流程示意图;
图10是本申请交通设备一实施例的结构示意图。
在附图中,附图未必按照实际的比例绘制。
具体实施方式中的附图标号如下:
1-热管理***、10-空调***、20-热管理回路、21-控制模块、22-检测模块、20A、20B-子热管理回路、231、232-主换热区、24-辅换热区、251、252-旁通线路、261、262-流量分配组件、41-电池模块、30-辅助加热器、27-外部换热器、42-电机模块、50-热管理切换组件、10A、10B-空调回路、11-压缩机、12-冷凝换热器、13-储液器、14、15-蒸发换热器、16-供暖换热器、17、18-空调切换组件、b1、b2、b3-水泵、b4-风机、100-交通设备。
【具体实施方式】
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在冬季气温较低时,车内一般会使用空调提升车内空间的温度,达到采暖的效果。但是,目前电动汽车的车内采暖多采用具有热泵功能的电动空调器。低温工况下,热泵空调存在着热泵效率低等问题,难以满足采暖需要。目前,一般的解决方案是增加额外的辅助加热器直接与车内空间内的供暖换热器进行换热,对辅助加热器的规格(例如,加热功率以及体积)要求较高。
因此,本申请的发明人通过无数次实验,发现通过将辅助加热器与热管理回路进行配合,可有效降低辅助加热器的规格,最终得到了本申请提出的技术方案。
根据本申请的一些实施例,参照图1,图1是本申请交通设备的热管理***一实施例的示意框图。如图1所示,本申请提供了一种热管理***1,包括空调***10、热管理回路20以及辅助加热器30。热管理回路20用于循环传输第一导热介质,进而对交通设备的指定部件进行热管理。热管理回路20还能够与空调***10进行热交换,进而在空调***10处于制热状态时,选择性地将指定部件所产生的热量传递至空调***10,进而作为空调***的蒸发过程的至少部分热源。辅助加热器30用于选择性地向热管理回路20提供热量补充。
交通设备可以是能够在交通道路、水域或空域上行驶的设备,例如车辆、轮船、飞机等任意具备空调***的设备。
空调***10能够用于对交通设备中的指定区域(例如,乘客舱)进行制冷、制热和/或除湿。在空调***10用于对交通设备中的指定区域进行制冷的情况下,可以认为空调***10处于制冷状态。在空调***10用于对交通设备中的指定区域进行制热的情况下,可以认为空调***10处于制热状态。在空调***10用于对交通设备中的区域进行除湿的情况下,可以认为空调***10处于除湿状态。可选地,空调***10可以包括若干个模块,各模块之间相互配合,以对交通设备中的区域进行制冷、制热和/或除湿。
第一导热介质可以是任意能够导热的介质。例如,第一导热可以是水、乙二醇、导热油、纳米流体等,关于第一导热介质的具体形式此处不做过多限定。
热管理回路20指的是循环传输第一导热介质的通路。指定部件可以是任意需要进行热管理的部件。热管理可以是加热或散热。即,热管理回路20通过循环传输第一导热介质能够实 现对指定部件进行加热或进行散热。示例性地,在第一导热介质比指定部件的温度高的情况下,能够对指定部件进行加热,在第一导热介质比指定部件的温度低的情况下,能够对指定部件进行散热。热管理回路20与空调***10进行热交换,在热管理回路20中第一导热介质的温度比空调***10的热交换区域温度高的情况下,空调***10能够从第一导热介质中进行吸热,从而实现与空调***10进行热交换。空调***10的工作原理是通过蒸发吸热和冷凝放热配合来实现热量的转移。在空调***10处于制热状态且指定部件处于发热状态的情况下,热管理回路20中的第一导热介质将从指定部件处吸收的热量通过热交换传递至空调***10,进而作为空调***10的蒸发过程的低温热源,实现热量的回收利用。可选地,热管理回路20中可以包括水泵,例如图1中的水泵b1、水泵b2。水泵b1以及水泵b2可以用于促进第一导热介质在热管理回路20内的循环。
辅助加热器30可以是任意能够产生热量的部件,例如PTC电加热器、加热管等。热管理回路20中的第一导热介质从辅助加热器30处吸收热量,能够对指定部件进行加热和/或与空调***10进行热交换。
指定部件可以是图1中的电池模块41和/或电机模块42。在其他实施例中,指定部件可以是其他任意需要进行热管理(加热或散热)的部件,关于指定部件的具体类型此处不做具体限定。
在上述方案中,通过在热管理回路20中设置辅助加热器30,使得辅助加热器30能够给热管理回路20提供热量补充,确保空调***10在低温等工况下,能够有效从热管理回路20中吸收热量,减轻空调***10的压力,提高空调***10的采暖效果。另外,由于辅助加热器30的加热温度只需要保证空调***10能够有效吸热,同时空调***10所供应的热量仅一部分来源于辅助加热器30,另一部分来源空调***10内部的压缩做功,因此可有效降低辅助加热器30的规格,提高空间利用率,并降低成本。
如图1所示,在一些实施例中,热管理***1还包括控制模块21。控制模块21响应于指定部件所产生的热量不满足空调***10的供热需求,控制辅助加热器30向热管理回路20提供热量补充。
控制模块21可以包括空调控制器。示例性地,控制模块21可以是包括空调控制器的控制线路。控制模块21与辅助加热器30连接,用于控制辅助加热器30向热管理回路20提供热量补充或停止向热管理回路20提供热量补充。由于空调***10的工作原理限制,导致空调***10很难从低温环境(例如,低于-10摄氏度)下吸热,因此指定部件所产生的热量不满足空调***10的供热需求时指定部件产生热量对第一导热介质加热之后,空调***10仍不能从第一导热介质中吸热或吸收的热量较低,较难支持空调***10的供热需求。
在上述方案中,利用控制模块21基于空调***10的供热需求控制辅助加热器30向热管理回路20提供热量补充,使得空调***10能够从热管理回路20中有效吸热,进而实现自动化控制。一些应用场景中,辅助加热器30可以由用户手动开启或关闭,以向热管理回路20提供热量补充或停止向热管理回路20提供热量补充。例如,控制模块21在判定指定部件所产生的热量不满足空调***的供热需求后产生提示信息,并由用户选择是否手动开启辅助加热器30。或者,用户可以根据自身判断决定是否手动开启辅助加热器30。
一些实施例中,热管理***1包括检测模块22。检测模块22用于在空调***10处于制热状态时,对空调***10的运行状态或运行环境进行检测。控制模块21基于检测模块22的检测结果判断指定部件所产生的热量是否满足空调***10的供热需求。运行状态是指空调***10在运行过程中的自身状态,例如制冷剂、冷凝器、蒸发器的温度或压力等等。运行环境是指空调***10在运行过程时所处的外部环境,例如环境温度、第一导热介质的温度等。在一些应用场景中,可根据第一导热介质的温度判定指定部件所产生的热量是否满足空调***10的供热需求。
检测模块22与控制模块21连接,用于将检测结果传输至控制模块21,以便控制模块21能够基于检测结果判断指定部件所产生的热量是否满足空调***10的供热需求。
在上述方案中,通过检测模块22对空调***10的运行状态或运行环境进行检测,以确定指定部件所产生的热量是否满足空调***10的供热需求,进而实现自动化控制。
一些实施例中,运行环境包括第一导热介质的温度。检测模块22用于在第一导热介质与空调***10进行热交换前对第一导热介质进行温度检测。控制模块21响应于检测模块22所检测的温度低于预设的温度阈值,判断指定部件所产生的热量不满足空调***10的供热需求。
检测模块22可以是任意具有温度检测功能的温度传感器,例如热敏电偶等。具体设置方 式可以是,第一导热介质先流经检测模块22,再流经与空调***10进行热交换的区域,以便检测模块22在第一导热介质与空调***10进行热交换前对第一导热介质进行温度检测。由于空调***10从第一导热介质吸热,导致第一导热介质在进行热交换后会出现温度下降,因此在第一导热介质与空调***10进行热交换前对第一导热介质进行温度检测能够更准确地判断指定部件所产生的热量是否满足空调***10的供热需求。
预设的温度阈值可以是由用户自定义或者根据实验或经验预先设置。可以认为,若第一导热介质的温度低于预设的温度阈值,则空调***10从第一导热介质中吸收的热量不满足空调当前的供热需求,故控制模块21控制辅助加热器30向热管理回路20提供热量补充。
在上述方案中,通过在第一导热介质与空调***10进行热交换之前,对第一导热介质的温度进行检测来确定指定部件所产生的热量不满足空调***10的供热需求,检测方式相对简单,且检测结果更加准确。
一些实施例中,控制模块21还能够响应于指定部件自身存在供热需求,控制辅助加热器30向热管理回路20提供热量补充,以通过第一导热介质对指定部件进行加热。
具体而言,很多装置在低温环境下无法正常的工作或者工作效率变差,例如,电池模块41在低温状态下的输出功率降低。一些应用场景中,指定部件自身存在供热需求可以是指定部件的温度低于预先设置的温度值或指定部件的输出功率或其他工作性能低于预先设置的功率要求或性能要求,需要通过加热来提供输出功率或改善其他工作性能。
在上述方案中,在指定部件自身存在供热需求的情况下,控制辅助加热器30向热管理回路20提供热量补充,有利于保持指定部件的正常工作状态。
一些实施例中,热管理回路20包括用于与指定部件进行热交换的主换热区231以及用于与辅助加热器30进行交换的辅换热区24。热管理回路20还包括流量分配组件261以及与主换热区231并联的旁通线路251。控制模块21根据指定部件的供热需求和空调***10的供热需求,控制流量分配组件261在主换热区231和旁通线路251之间对第一导热介质进行流量分配。
主换热区231和辅助加热器30可以是供第一导热介质流动的管路的一部分或者与该管路连通或热交换的换热器,在此不做过多限定。指定部件和辅助加热器30可以通过直接接触的方式与主换热区231和辅助加热器30进行热交换,也可以通过其他间接方式与主换热区231和辅助加热器30进行热交换,在此不做过多限定。流量分配组件261可以通过三通比例阀或其他任意的阀门组件或其他元件实现,在此不做过多限定。
旁通线路251一般是指能够使得主换热区231上游的第一导热介质在不流经主换热区231的情况下到达主换热区231下游的支路。进一步地,旁通线路251与指定部件的热交换能力要小于主换热区231与指定部件的热交换能力。换言之,流经的旁通线路251的单位体积的第一导热介质与指定部件的单位时间换热量要小于流经的主换热区231的单位体积的第一导热介质与指定部件的单位时间换热量。
在具体实施过程中,可根据指定部件的供热需求和空调***10的供热需求之间预先设置的优先级关系或指定部件的供热需求和空调***10的供热需求之间的大小关系,调整主换热区231和旁通线路251之间第一导热介质的流量大小。一些应用场景中,可以预先设定在指定部件和空调***10均存在供热需求的情况下,主换热区231和旁通线路251上第一导热介质的流量调整方式。一些应用场景中,可以响应于指定部件的供热需求大于空调***10的供热需求,通过调整主换热区231和旁通线路251之间第一导热介质以便满足指定部件的供热需求,或者响应于指定部件的供热需求小于或等于空调***10的供热需求,通过调整主换热区231和旁通线路251之间第一导热介质以便满足空调***10的供热需求。
具体流量分配的方式可以是控制第一导热介质只流经主换热区231或只流经旁通线路251,或控制第一导热介质同时流经这两条线路时的流量大小。
在上述方案中,通过流量分配组件261在主换热区231和旁通线路251之间进行第一导热介质的流量分配,以便基于不同的工况调整供应到指定部件和空调***10的热量分配。
一些实施例中,如图1所示,第一导热介质在由辅换热区24加热后流向主换热区231和旁通线路251,并在进入辅换热区24前与空调***10进行热交换。在其他实施例中,也可以采用其他的设置方式,例如经辅换热区24加热的第一导热介质在与空调***10进行热交换后流向主换热区231和旁通线路251,并在流经主换热区231和/或旁通线路251后由辅换热区24进行加热。
流量分配组件261的位置可以根据实际情况进行设置,例如,在主换热区231和旁通线 路251的并联分流位置处,或主换热区231和旁通线路251的并联汇流位置处。一些应用场景中,流量分配组件261的数量可以包括多个,可以采用三通比例阀以外的方式,例如在主换热区231所处支路上设置一个流量分配组件261,用于控制流经该主换热区231的第一导热介质的流量,并且/或者在旁通线路251上设置一个流量分配组件261,用于控制流经该旁通线路251上的第一导热介质的流量。
在上述方案中,通过优化辅换热区24的设置位置,可以还提高指定部件和空调***10的热量分配效果。
一些实施例中,指定部件为交通设备的电池模块41。在电池模块41和空调***10同时存在供热需求时,控制模块21响应于电池模块41的输出功率不满足外部的功率需求,控制流量分配组件261优先满足电池模块41的供热需求。或者响应于电池模块41的输出功率能够满足外部的功率需求,控制流量分配组件261通过辅助加热器30优先满足空调***10的供热需求。
电池模块41包括若干电池组,用于给交通设备提供电能。电池模块41的输出功率不满足外部的功率需求可以是电池模块41的输出功率小于电池模块41所连接的外部负载所需的输入功率。例如,外部的功率需求包括空调***10的功率需求、电机模块42的功率需求,还可以包括其他部件的功率需求。其他部件包括交通设备内部其他任意需要用电的部件,例如灯光***等。
在上述方案中,通过在电池模块41的输出功率不满足外部的功率需求的情况下,优先对电池模块41进行加热,以保证交通设备的正常工作。
一些实施例中,优先满足电池模块41的供热需求为将第一导热介质全部供应至主换热区231或增大第一导热介质到主换热区231的流量。优先满足空调***10的供热需求为将第一导热介质全部供应至旁通线路251或增大第一导热介质至旁通线路251的流量。
如图2所示,一些应用场景中,优先满足电池模块41的供热需求为将第一导热介质全部供应至主换热区231。即,控制模块21控制流量分配组件261断开旁通线路251,以便旁通线路251无第一导热介质流动,使得第一导热介质全部从主换热区231所处线路流动。
一些应用场景中,优先满足电池模块41的供热需求为将增大第一导热介质到主换热区231的流量。例如,控制模块21控制流量分配组件261在现有阀门开度的基础上进行开度调整,进而调整主换热区231和旁通线路251流过的第一导热介质的流量,实现增大主换热区231所处线路的流量以及减小旁通线路251的流量。
如图3所示,一些应用场景中,优先满足空调***10的供热需求为将第一导热介质全部供应至旁通线路251。即,控制模块21控制流量分配组件261断开主换热区231所处线路,以便主换热区231所处线路无第一导热介质流动,使得第一导热介质全部从旁通线路251流动。
一些应用场景中,优先满足空调***10的供热需求为增大第一导热介质至旁通线路251的流量。例如,控制模块21控制流量分配组件261在现有阀门开度的基础上进行开度调整,进而调整主换热区231和旁通线路251流过的第一导热介质的流量,实现增大第一导热介质至旁通线路251的流量以及减小主换热区231所处线路的流量。
在上述方案中,通过将第一导热介质全部供应至主换热区231或增大第一导热介质到主换热区231的流量,能够更好地为电池模块41进行加热。通过将第一导热介质全部供应至旁通线路251或增大第一导热介质到旁通线路251的流量,使得空调***10能够更好地从热管理回路20中进行吸热。
一些实施例中,在优先满足空调***10的供热需求后,控制模块21还能够响应于热管理回路20达到空调***10的供热需求,控制流量分配组件261减小第一导热介质到旁通线路251的流量,并增大第一导热介质到主换热区231的流量。另外,还可响应于热管理回路20不满足空调***10的供热需求,控制流量分配组件261增大第一导热介质到旁通线路251的流量,并减小第一导热介质到主换热区231的流量。
一些应用场景中,热管理回路20是否达到空调***10的供热需求可通过对第一导热介质与空调***10进行换热前或换热后的温度来进行判断。例如,当温度大于第一阈值时,认为热管理回路20达到空调***10的供热需求,当温度小于第二阈值时,认为热管理回路20不满足到空调***10的供热需求。此外,如上文所述描述,可以通过其他方式对空调***10的运行状态或运行环境进行检测来判断热管理回路20是否达到空调***10的供热需求。
在上述方案中,通过流量的动态分配来动态平衡空调***10和电池模块41的供热需求。
一些实施例中,热管理回路20包括至少两个子热管理回路,例如图1中的子热管理回路20A和子热管理回路20B。该至少两个子热管理回路均用于循环传输第一导热介质,并对不同的指定部件进行热管理。热管理***1还包括热管理切换组件50。控制模块21控制热管理切换组件50选择性切换该至少两个子热管理回路与空调***10的热交换关系。每一子热管理回路所进行热管理的指定部件可以是一个也可以是多个。
热管理切换组件50可以是多通阀门。控制模块21控制热管理切换组件50选择性切换该至少两个子热管理回路与空调***10的热交换可以是控制模块21控制其中一部分子热管理回路与空调***10进行热交换,或控制全部子热管理回路与空调***10进行热交换。
在上述方案中,通过选择性切换该至少两个子热管理回路与空调***10之间的热交换关系,能够根据不同的工况利用不同的子热管理回路组合方式向空调***10提供热量。
如图1所示,一些实施例中,指定部件包括交通设备的电池模块41和电机模块42。该至少两个子热管理回路包括子热管理回路20A和子热管理回路20B。子热管理回路20A用于对电池模块41进行热管理,并包括用于与电池模块41进行热交换的主换热区231以及用于与辅助加热器30进行热交换的辅换热区24。子热管理回路20B用于对电机模块42进行热管理,并包括用于与电机模块42进行热交换的主换热区232以及用于与外部环境进行热交换的外部换热器27。控制模块21响应于空调***10处于制热状态,控制热管理切换组件50将子热管理回路20A和子热管理回路20B中的至少一个切换成与空调***10进行热交换。
热管理回路20除了可以包括子热管理回路20A和子热管理回路20B之外,还可包括其他子热管理回路,用于对交通设备中其他的指定部件进行热管理。外部换热器27可以是散热器等能够用于与外部环境进行热交换的器件。
如图2和图3所示,一些应用场景中,例如,在电池模块41处于充电状态,因此具有较大发热量时,控制模块21响应于空调***10处于制热状态,控制热管理切换组件50将子热管理回路20A切换成与空调***10进行热交换,进而利用电池模块41所产生的热量作为空调***10的低温热源。此外,也可以是在低温工况下,将子热管理回路20A切换成与空调***10进行热交换。此时,可利用辅助加热器30来满足空调***10的供热需求,并还能够在电池模块41存在供热需求时,进一步满足电池模块41的供热需求。
如图4和图5所示,一些应用场景中,例如,在交通设备行使过程中,电机模块42存在较大发热量时,控制模块21响应于空调***10处于制热状态,控制热管理切换组件50将子热管理回路20B切换成与空调***10进行热交换,进而利用电机模块42所产生的热量作为空调***10的低温热源。
可选地,在子热管理回路20A与空调***10进行热交换时,子热管理回路20B未与空调***10进行热交换的情况下,热管理切换组件50控制第二子热管理回路20B中第一导热介质自循环。即第一导热介质在子热管理回路20B中循环传输,能够对电机模块42单独进行散热或加热等热管理。
可选地,在子热管理回路20B与空调***10进行热交换时,子热管理回路20A未与空调***10进行热交换的情况下,热管理切换组件50控制子热管理回路20A中第一导热介质自循环。即第一导热介质在子热管理回路20A中循环传输,能够对电池模块41进行散热或加热等热管理。可选地,在电池模块41存在供热需求的情况下,控制模块21控制辅助加热器30对子热管理回路20A中第一导热介质进行热量补充。
在上述方案中,通过两个子热管理回路对交通设备的两个主要热源(电池模块41和电机模块42)进行热管理,可提高热回收利用率,同时将辅助加热器30设置在电池模块41所在的子热管理回路20A中,可以利用辅助加热器30的加热功能对电池模块41进行选择性加热,进而提高交通设备的低温启动性能。
如图6所示,一些实施例中,例如电池模块41和电机模块42均存在较大发热量或其他工况下时,控制模块21还能够响应于空调***10处于制热状态,控制热管理切换组件50将子热管理回路20A和子热管理回路20B切换成同时与空调***10进行热交换。
在上述方案中,通过将子热管理回路20A和子热管理回路20B切换成同时与空调***10进行热交换使得能够方便同时对两个子热管理回路中的指定部件进行热管理,还可以提高热回收利用率。
如进一步图6所示,一些实施例中,控制模块21还能够控制热管理切换组件50连通子热管理回路20A和子热管理回路20B,以使得第一导热介质在子热管理回路20A和子热管理回路20B形成的总回路内循环。
在上述方案中,通过将子热管理回路20A和子热管理回路20B切换为相互连通,可以还保证热量的平衡,提高热管理效果。例如,利用电机模块42所产生的热量对电池模块41进行加热。
一些实施例中,子热管理回路20A包括流量分配组件261以及与主换热区231并联的旁通线路251。其中控制模块21根据电池模块41的供热需求和空调***10的供热需求,控制流量分配组件261在主换热区231和旁通线路251之间对子热管理回路20A内第一导热介质进行流量分配,具体工作过程在上文结合图1-3进行了详细描述,在此不再赘述。值得注意的是,基于流量分配组件261的上述流量分配可以是发生在图6所示的状态下。
如图1所示,一些实施例中,子热管理回路20B还包括流量分配组件262以及与外部换热器27并联的旁通线路252。控制模块21根据电机模块42的散热需求、空调***10的供热需求或外部换热器27的外部环境,控制第二流量分配组件在外部换热器27和旁通线路252之间对子热管理回路20B内的第一导热介质进行流量分配。
在上述方案中,通过在外部换热器27和旁通线路252之间对子热管理回路20B内的第一导热介质进行流量分配,能够动态满足电机模块42的散热需求和/或空调***的供热需求。
一些实施例中,控制模块21响应于电机模块42在对空调***10进行供热后不存在额外的散热需求或者电机模块42不满足空调***10的供热需求且通过外部换热器27无法从环境吸热,将子热管理回路20B内的第一导热介质全部导入旁通线路252或增大第一导热介质到旁通线路252的流量。或者,响应于电机模块42在空调***10供热后仍存在额外的散热需求或者电机模块42不满足空调***10的供热需求且能够通过外部换热器27从环境吸热,将子热管理回路20B内的第一导热介质全部导入外部换热器27或增大第一导热介质到外部换热器27的流量。
如图4所示,一些应用场景中,控制模块21控制流量分配组件262断开旁通线路252,以便旁通线路252无第一导热介质流动,使得第一导热介质全部从外部换热器27所处线路流动。
如图5所示,一些应用场景中,控制模块21控制流量分配组件262断开外部换热器27所处线路,以便外部换热器27所处线路无第一导热介质流动,使得第一导热介质全部从旁通线路252流动。
在一些应用场景中,与上文描述的流量分配组件261类似,也可以在第一导热介质同时流经旁通线路252和外部换热器27的情况下,通过对流量分配组件262来实现增大或减小流向旁通线路252和外部换热器27的第一导热介质的流量。
类似地,流量分配组件262可以通过三通比例阀或其他任意的阀门组件或其他元件实现,在此不做过多限定。
电机模块42对空调***10进行供热后是否存在额外的散热需求一般是指电机模块42在不额外散热的情况下能否正常工作或对其工作效率是否构成影响,可以通过对电机模块42自身温度、第一导热介质的温度或者电机模块42的工作性能来进行判断。电机模块42能否满足空调***10的供热需求一般是指空调***10从子热管理回路20B中吸收的热量能否满足制热要求,如上文描述的,可以通过空调***10的运行状态或运行环境来进行判断。外部换热器27能否从环境吸热可以通过外部环境中的温度或外部环境温度与第一导热介质的温差来进行判断。值得注意的是,基于流量分配组件262的上述流量分配可以是发生在图6所示的状态下。
在上述方案中,可以根据电机模块42和空调***10的实际工况动态平衡电机模块42的散热需求和空调***10的供热需求。还能够在外部换热器27无法从环境吸热时,避免额外的热量损失,并在外部换热器27能够从环境吸热时,增加到空调***10的热供应量。
如图1所示,一些实施例中,空调***10包括空调回路10A和空调回路10B。空调回路10A用于循环传输制冷剂,并包括压缩机11、冷凝换热器12、储液器13、蒸发换热器14、15。制冷剂在蒸发换热器14进行蒸发吸热,进而对交通设备的指定区域进行空调制冷。制冷剂在蒸发换热器15进行蒸发吸热,进而从热管理回路20吸取热量。空调回路10B用于循环传输第二导热介质,并包括供暖换热器16,供暖换热器16与冷凝换热器12进行热交换,进而对指定区域进行空调供暖。
具体而言,压缩机11将制冷剂压缩成高温高压的气体输入至冷凝换热器12。制冷剂经过冷凝换热器12进行冷凝放热形成高温高压的液体并存储于储液器13内。储液器13内的制冷剂经节流后进入蒸发换热器14和蒸发换热器15,二者的作用可以是利用液态制冷剂在低 压下易蒸发,转变为蒸气并吸收被冷却介质的热量,达到换热目的。
冷凝换热器12和蒸发换热器15采用板式换热器,板式换热器设置有两条流路,一条供制冷剂流动,另一条供第一导热介质或第二导热介质流动,因此实现制冷剂与第一导热介质或第二导热介质之间的热交换。其中,制冷剂在蒸发换热器15中进行蒸发吸热,从而实现与热管理回路20中的第一导热介质之间的热交换,具体热交换方式可以是图2-6任意一个所示的方式。制冷剂在蒸发换热器14中进行蒸发吸热,从而实现交通设备内的从指定区域吸热,达到空调制冷目的。
供暖换热器16可以是暖风芯体,供暖换热器16与冷凝换热器12通过第二导热介质进行热交换,进而能够对交通设备内的指定区域进行供暖。可选地,空调回路10B中可以设置水泵b3,水泵b3可以用于促进第二导热介质在空调回路10B中循环流动。
在上述方案中,通过供暖换热器16与冷凝换热器12进行换热方式来实现空调供暖,可以简化空调***的流路设计。
如图7所示,一些实施例中,控制模块21响应于空调***10处于制冷状态,控制热管理切换组件50将子热管理回路20B切换成与冷凝换热器12热交换,进而将冷凝换热器12所释放的热量传输至外部换热器27。
由于子热管理回路20B中包括外部换热器27,而外部换热器27与外部环境具有较强的热交换能力。将子热管理回路20B切换为与冷凝换热器12热交换,能够使得冷凝换热器12所释放的热量被第一导热介质吸收,然后通过外部换热器27散发至外部环境。
在上述方案中,通过在制冷状态下,将子热管理回路20B切换成与冷凝换热器12热交换,能够充分利用子热管理回路20B中的外部换热器27对冷凝换热器12进行散热,从而提高冷凝换热器12的散热性能,减小压缩机11的工作压力。
一些实施例中,空调***10还包括第一空调切换组件17。子热管理回路20B和空调回路10B分别经第一空调切换组件17连接到冷凝换热器12。控制***还能够控制第一空调切换组件17将子热管理回路20B内的第一导热介质和空调回路10B内的第二导热介质选择性供应至冷凝换热器12。
第一空调切换组件17可以由三通比例阀、其他阀门组件或其他元件实现。由于在空调***10中,制冷状态和制热状态是两种无法共存的两种工作状态,因此可以在制冷状态下,将子热管理回路20B经第一空调切换组件17连接到冷凝换热器12,此时第一导热介质能够供应至冷凝换热器12,实现第一导热介质与冷凝换热器12进行热交换。在制热状态下,将空调回路10B经第一空调切换组件17连接到冷凝换热器12,第二导热介质能够供应至冷凝换热器12,实现第二导热介质与冷凝换热器12进行热交换。这样第一导热介质和第二导热介质可以共用冷凝换热器12的一条流路。
在上述方案中,通过第一空调切换组件选择性将第一导热介质和第二导热介质选择性供应至冷凝换热器12,使得子热管理回路20B和空调回路10B能够共用冷凝换热器12中的流路,简化冷凝换热器12的结构。
如图7所示,一些实施例中,控制模块21响应于空调***10处于制冷状态,将子热管理回路20A切换成与蒸发换热器15热交换,进而利用蒸发换热器15对电池模块41进行降温。
由于制冷剂在蒸发换热器15中进行蒸发吸热,故能够从子热管理回路20A中的第一导热介质中进行吸热,利用已经降温的第一导热介质再对电池模块41进行热交换,使得能够对电池模块41进行降温。
在上述方案中,通过在制冷状态下,将子热管理回路20A切换成与第二蒸发换热器15进行热交换,使得能够利用第二蒸发换热器15对电池模块41进行降温。
如图8所示,一些实施例中,空调***10还包括第一空调切换组件17和第二空调切换组件18。控制***响应于空调***10处于除湿状态,控制第一空调切换组件17连接供暖换热器16与冷凝换热器12,并控制第二空调切换组件18连接储液器13与蒸发换热器14,使得经蒸发换热器14制冷除湿后的空气能够被供暖换热器16加热。
可选地,第一空调切换组件17位于供暖换热器16与冷凝换热器12之间。第二空调切换组件位于储液器13与蒸发换热器14之间。
第二空调切换组件18可以是具有开关功能的电子膨胀阀。第二空调切换组件18在制热状态下关闭,以避免制冷剂在蒸发换热器14蒸发吸热,影响制热效果,并在制冷状态下打开,以产生制冷效果。
除湿状态是在制热状态的基础上,将第二空调切换组件18打开。此时,风机b4所产生的气流中的水蒸气被蒸发换热器14吸热后冷凝形成液态水,进而达到除湿效果。除湿后的气流进一步供暖换热器16加热形成常温或供暖气流。
在上述方案中,通过设置第一空调切换组件17和第二空调切换组件18,使得空调***10还具备除湿状态。值得注意是的,上述除湿状态可以在图2-6任意一个所示的制热状态的基础上实现。
如图9所示,本实施例还提供了基于上述热管***的热管理方法,包括以下步骤:
步骤S11:响应于电池模块41和空调***10均存在供热需求,控制辅助加热器30用于向热管理回路20提供热量补充。
步骤S12:识别电池模块41的输出功率是否满足外部的功率需求。
响应于识别结果为电池模块41的输出功率不满足外部的功率需求,执行步骤S13;响应于识别结果为电池模块41的输出功率能够满足外部的功率需求,执行步骤S14。
步骤S13:控制热管理回路20优先满足电池模块41的供热需求。
步骤S14:控制热管理回路20优先满足空调***10的供热需求。
在上述方案中,通过在热管理回路设置辅助加热器,以使得在交通设备处于低温工况而导致电池模块和空调***同时存在供热需求的情况下,利用辅助加热器分别满足电池模块和空调***的供热需求,并且根据电池模块和空调***的工作特定,在电池模块的输出功率不满足外部的功率需求的情况下,优先对电池模块进行加热,以保证交通设备的正常工作。
一些实施例中,优先满足电池模块41的供热需求和优先满足空调***10的供热需求可以采用上文描述的旁通线路251和流量分配组件261的流量分配方式实现,在其他一些实施例中,可以通过其他方式实现,例如通过合理的流路设置,在优先满足电池模块41的供热需求时,控制经加热后的第一导热介质先与电池模块41进行换热,再与空调***10进行换热。在需要优先满足空调***10的供热需求时,控制经加热后的第一导热介质先与空调***10进行换热,再与电池模块41进行换热。
一些实施例中,在响应于电池模块41的输出功率能够满足外部的功率需求,控制热管理回路20优先满足空调***10的供热需求的步骤之后,还可执行以下步骤:
响应于热管理回路20对空调***10的供热量达到空调***10的供热需求,控制热管理回路20减小对空调***10的热量供应,并增大对电池模块41的热量供应。
或者,响应于热管理回路20对空调***10的供热量低于空调***10的供热需求,控制热管理回路20增大对空调***10的热量供应,并减小对电池模块41的热量供应。
同理,上述方式除了采用上文描述的旁通线路251和流量分配组件261的流量分配方式实现,可以是通过改变第一导热液与电池模块41和空调***10换热顺序实现。此外,上述流程的具体判断方式在上文已经进行详细的描述,在此不再赘述。
在上述方案中,通过在热管理回路20中设置辅助加热器30,使得辅助加热器30能够给热管理回路20提供热量补充,确保空调***10在低温等工况下,能够有效从热管理回路20中吸收热量,减轻空调***10的压力,提高空调***10的采暖效果。另外,由于辅助加热器30的加热温度只需要保证空调***10能够有效吸热,同时空调***10所供应的热量仅一部分来源于辅助加热器30,另一部分来源空调***10内部的压缩做功,因此可有效降低辅助加热器30的规格,提高空间利用率,并降低成本。
值得注意的是,上述热管理方法并不局限于上文描述的热管理***,还适用于其他使用辅助加热器与热管理回路配合作为空调***的低温热源的其他场景。
请参见图10,图10是本申请交通设备一实施例的结构示意图。如图10所示,本实施例提供的交通设备100包括上述热管理***实施例所述的热管理***1。
交通设备100可以是能够在交通道路上行驶的设备,例如车辆、轮船、飞机等任意具备空调***的设备。
热管理***1包括空调***(图未示)、热管理回路(图未示)以及辅助加热器(图未示)。热管理回路用于循环传输第一导热介质,进而对交通设备的指定部件进行热管理,热管理回路还能够与空调***进行热交换,进而至少在空调***处于制热状态时,选择性地将指定部件所产生的热量传递到空调***,进而作为空调***的蒸发过程的至少部分热源。辅助加热器用于选择性地向热管理回路提供热量补充。热管理***1的具体结构可参见上述热管理***实施例,此处不再赘述。
在上述方案中,热管理***1中通过在热管理回路中设置辅助加热器(图未示),使得 辅助加热器能够给热管理回路提供热量补充,确保空调***在低温等工况下,能够有效从热管理回路中吸收热量,减轻空调***的压力,提高空调***的采暖效果。另外,由于辅助加热器的加热温度只需要保证空调***能够有效吸热,同时空调***所供应的热量仅一部分来源于辅助加热器,另一部分来源空调***内部的压缩机,因此可有效降低辅助加热器的规格,提高空间利用率,并降低成本。
一些实施例中,交通设备还包括驱动***(图未示)。驱动***用于驱动交通设备在道路上行驶。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (26)

  1. 一种交通设备的热管理***,其特征在于,包括:
    空调***;
    热管理回路,所述热管理回路用于循环传输第一导热介质,进而对所述交通设备的指定部件进行热管理,所述热管理回路还能够与所述空调***进行热交换,进而至少在所述空调***处于制热状态时,选择性地将所述指定部件所产生的热量传递到所述空调***,进而作为所述空调***的蒸发过程的至少部分热源;
    辅助加热器,所述辅助加热器用于选择性地向所述热管理回路提供热量补充。
  2. 如权利要求1所述的热管理***,其特征在于,所述热管理***还包括控制模块,所述控制模块响应于所述指定部件所产生的热量不满足所述空调***的供热需求,控制所述辅助加热器向所述热管理回路提供热量补充。
  3. 如权利要求2所述的热管理***,其特征在于,所述热管理***还包括检测模块,所述检测模块用于在所述空调***处于制热状态时对所述空调***的运行状态或运行环境进行检测,所述控制模块基于所述检测模块的检测结果判断所述指定部件所产生的热量是否满足所述空调***的供热需求。
  4. 如权利要求3所述的热管理***,其特征在于,所述运行环境包括所述第一导热介质的温度,所述检测模块用于在所述第一导热介质与所述空调***进行热交换前对所述第一导热介质进行温度检测,所述控制模块响应于所述检测模块所检测的温度低于预设的温度阈值,判定所述指定部件所产生的热量不满足所述空调***的供热需求。
  5. 如权利要求2-4任一项所述的热管理***,其特征在于,所述控制模块还能够响应于所述指定部件自身存在供热需求,控制所述辅助加热器对向所述热管理回路提供热量补充,以通过所述第一导热介质对所述指定部件进行加热。
  6. 如权利要求5所述的热管理***,其特征在于,所述热管理回路包括用于与所述指定部件进行热交换的主换热区以及用于与所述辅助加热器进行交换的辅换热区,所述热管理回路还包括流量分配组件以及与所述主换热区并联的旁通线路,其中所述控制模块根据所述指定部件的供热需求和所述空调***的供热需求,控制所述流量分配组件在所述主换热区和所述旁通线路之间对所述第一导热介质进行流量分配。
  7. 如权利要求6所述的热管理***,其特征在于,所述第一导热介质在由所述辅换热区加热后流向所述主换热区和所述旁通线路,并在进入所述辅换热区前与所述空调***进行热交换,或者经所述辅换热区加热的所述第一导热介质在与所述空调***进行热交换后流向所述主换热区和所述旁通线路,并在流经所述主换热区和/或所述旁通线路后由所述辅换热区进行加热。
  8. 如权利要求6或7所述的热管理***,其特征在于,所述指定部件为所述交通设备的电池模块,所述控制模块响应于所述电池模块的输出功率不满足外部的功率需求,控制所述流量分配组件通过所述辅助加热器优先满足所述电池模块的供热需求,或者响应于所述电池模块的输出功率能够满足外部的功率需求,控制所述流量分配组件通过所述辅助加热器优先满足所述空调***的供热需求。
  9. 如权利要求8所述的热管理***,其特征在于,所述优先满足所述电池模块的供热需求为将所述第一导热介质全部供应至所述主换热区或者增大所述第一导热介质到所述主换热区的流量,所述优先满足所述空调***的供热需求为将所述第一导热介质全部供应至所述旁通线路或者增大所述第一导热介质到所述旁通线路的流量。
  10. 如权利要求9所述的热管理***,其特征在于,在优先满足所述空调***的供热需求后,所述控制模块还能够响应于所述热管理回路达到所述空调***的供热需求,控制所述流量分配组件减小所述第一导热介质到所述旁通线路的流量,并增大所述第一导热介质到所 述主换热区的流量,或者响应于所述热管理回路不满足所述空调***的供热需求,控制所述流量分配组件增大所述第一导热介质到所述旁通线路的流量,并减小所述第一导热介质到所述主换热区的流量。
  11. 如权利要求2-10任一项所述的热管理***,其特征在于,所述热管理回路包括至少两个子热管理回路,所述至少两个子热管理回路用于对不同的指定部件进行热管理,所述热管理***还包括热管理切换组件,所述控制模块控制所述热管理切换组件选择性切换所述至少两个子热管理回路与所述空调***的热交换关系。
  12. 如权利要求11所述的热管理***,其特征在于,所述指定部件包括所述交通设备的电池模块和电机模块,所述至少两个子热管理回路包括第一子热管理回路和第二子热管理回路,其中所述第一子热管理回路用于对所述电池模块进行热管理,并包括用于与所述电池模块进行热交换的第一主换热区以及用于与所述辅助加热器进行热交换的辅换热区,所述第二子热管理回路用于对所述电机模块进行热管理,并包括用于与所述电机模块进行热交换的第二主换热区以及用于与外部环境进行热交换的外部换热器,所述控制模块响应于所述空调***处于制热状态,控制所述热管理切换组件将所述第一子热管理回路和第二子热管理回路中的至少一个切换成与所述空调***进行热交换。
  13. 如权利要求12所述的热管理***,其特征在于,所述控制模块还能够响应于所述空调***处于制热状态,控制所述热管理切换组件将所述第一子热管理回路和第二子热管理回路切换成同时与所述空调***进行热交换。
  14. 如权利要求12或13所述的热管理***,其特征在于,所述控制模块还能够控制所述热管理切换组件连通所述第一子热管理回路和所述第二子热管理回路,以使得所述第一导热介质在所述第一子热管理回路和所述第二子热管理回路形成的总回路内循环。
  15. 如权利要求12-14任一项所述的热管理***,其特征在于,所述第一子热管理回路还包括第一流量分配组件以及与所述第一主换热区并联的第一旁通线路,其中所述控制模块根据所述指定部件的供热需求和所述空调***的供热需求,控制所述第一流量分配组件在所述第一主换热区和所述第一旁通线路之间对所述第一子热管理回路内第一导热介质进行流量分配。
  16. 如权利要求12-15任一项所述的热管理***,其特征在于,所述第二子热管理回路还包括第二流量分配组件以及与所述外部换热器并联的第二旁通线路,所述控制模块根据所述电机模块的散热需求、所述空调***的供热需求或所述外部换热器的外部环境,控制所述第二流量分配组件在所述外部换热器和所述第二旁通线路之间对第二子热管理回路内的第一导热介质进行流量分配。
  17. 如权利要求16所述的热管理***,其特征在于,所述控制模块响应于所述电机模块在对所述空调***进行供热后不存在额外的散热需求或者所述电机模块无法满足所述空调***的供热需求且通过所述外部换热器无法从环境吸热,将所述第二子热管理回路内的第一导热介质全部导入所述第二旁通线路或增大所述第一导热介质到所述旁通线路的流量,或者响应于所述电机模块在所述空调***供热后仍存在额外的散热需求或者所述电机模块无法满足所述空调***的供热需求且能够通过所述外部换热器从环境吸热,将所述第二子热管理回路内的第一导热介质全部导入所述外部换热器或增大所述第一导热介质到所述外部换热器的流量。
  18. 如权利要求11-17任一项所述的热管理***,其特征在于,所述空调***包括第一空调回路和第二空调回路,其中所述第一空调回路用于循环传输制冷剂,并包括压缩机、冷凝换热器、储液器、第一蒸发换热器以及第二蒸发换热器,所述制冷剂在所述第一蒸发换热器进行蒸发吸热,进而对所述交通设备的指定区域进行空调制冷,所述制冷剂在所述第二蒸发换热器进行蒸发吸热,进而从所述热管理回路吸取热量,所述第二空调回路用于循环传输第二导热介质,并包括供暖换热器,所述供暖换热器与所述冷凝换热器进行热交换,进而对所 述指定区域进行空调供暖。
  19. 如权利要求18所述的热管理***,其特征在于,所述控制模块还能够响应于所述空调***处于制冷状态,控制所述热管理切换组件将所述第二子热管理回路切换成与所述冷凝换热器热交换,进而将所述冷凝换热器所释放的热量传输至所述外部换热器。
  20. 如权利要求18或19所述的热管理***,其特征在于,所述空调***还包括第一空调切换组件,所述第二子热管理回路和所述第二空调回路分别经所述第一空调切换组件连接到所述冷凝换热器,所述控制***还能够控制所述第一空调切换组件将所述第二子热管理回路内的第一导热介质和所述第二空调回路内的第二导热介质选择性供应至所述冷凝换热器。
  21. 如权利要求18-20任一项所述的热管理***,其特征在于,所述控制模块还能够响应于所述空调***处于制冷状态,将所述第一子热管理回路切换成与所述第二蒸发换热器热交换,进而利用所述第二蒸发换热器对所述电池模块进行降温。
  22. 如权利要求18-21任一项所述的热管理***,其特征在于,所述空调***还包括第一空调切换组件和第二空调切换组件,所述控制***响应于所述空调***处于除湿状态,控制所述第一空调切换组件连接所述供暖换热器与所述冷凝换热器,并控制所述第二空调切换组件连接所述储液器与所述第一蒸发换热器,使得经所述第一蒸发换热器制冷除湿后的空气能够被所述供暖换热器加热。
  23. 一种交通设备的热管理方法,其特征在于,所述交通设备包括空调***、热管理回路以及辅助加热器,其中所述热管理回路对所述交通设备的电池模块进行热管理,并能够与所述空调***进行热交换,以作为所述空调***的蒸发过程的至少部分热源,所述方法包括:
    响应于所述电池模块和所述空调***均存在供热需求,控制所述辅助加热器用于向所述热管理回路提供热量补充;
    识别所述电池模块的输出功率是否满足外部的功率需求;
    响应于所述电池模块的输出功率不满足外部的功率需求,控制所述热管理回路优先满足所述电池模块的供热需求;或者,
    响应于所述电池模块的输出功率能够满足外部的功率需求,控制所述热管理回路优先满足所述空调***的供热需求。
  24. 如权利要求23所述的热管理方法,其特征在于,所述热管理回路包括用于与所述电池模块进行热交换的主换热区、用于与所述辅助加热器进行交换的辅换热区、流量分配组件以及与所述主换热区并联的旁通线路,所述流量分配组件用于在所述主换热区和所述旁通线路之间对所述第一导热介质进行流量分配,所述优先满足所述电池模块的供热需求为控制所述流量分配组件将所述第一导热介质全部供应至所述主换热区或者增大所述第一导热介质到所述主换热区的流量,所述优先满足所述空调***的供热需求为控制所述流量分配组件将所述第一导热介质全部供应至所述旁通线路或者增大所述第一导热介质到所述旁通线路的流量。
  25. 如权利要求23所述的热管理方法,其特征在于,所述响应于所述电池模块的输出功率能够满足外部的功率需求,控制所述热管理回路优先满足所述空调***的供热需求的步骤之后,还包括:
    响应于所述热管理回路对所述空调***的供热量达到所述空调***的供热需求,控制所述热管理回路减小对所述空调***的热量供应,并增大对所述电池模块的热量供应;或者,
    响应于所述热管理回路对所述空调***的供热量低于所述空调***的供热需求,控制所述热管理回路增大对所述空调***的热量供应,并减小对所述电池模块的热量供应。
  26. 一种交通设备,其特征在于,所述交通设备包括如权利要求1-22任意一项所述的热管理***。
PCT/CN2022/129631 2022-11-03 2022-11-03 一种交通设备及其热管理***和热管理方法 WO2024092646A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129631 WO2024092646A1 (zh) 2022-11-03 2022-11-03 一种交通设备及其热管理***和热管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129631 WO2024092646A1 (zh) 2022-11-03 2022-11-03 一种交通设备及其热管理***和热管理方法

Publications (1)

Publication Number Publication Date
WO2024092646A1 true WO2024092646A1 (zh) 2024-05-10

Family

ID=90929277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129631 WO2024092646A1 (zh) 2022-11-03 2022-11-03 一种交通设备及其热管理***和热管理方法

Country Status (1)

Country Link
WO (1) WO2024092646A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275521A (zh) * 2010-06-04 2011-12-14 特斯拉电机公司 具有双模式冷却回路的热管理***
CN205130860U (zh) * 2015-11-24 2016-04-06 安徽江淮汽车股份有限公司 电动汽车的热管理***
CN211592164U (zh) * 2019-12-20 2020-09-29 长安马自达汽车有限公司 一种纯电动乘用车空调及热管理控制***
CN112074425A (zh) * 2018-05-04 2020-12-11 翰昂汽车零部件有限公司 车用热管理***
CN212289438U (zh) * 2020-08-14 2021-01-05 珠海格力电器股份有限公司 热管理***和电动汽车
CN113993731A (zh) * 2021-09-17 2022-01-28 上海汽车集团股份有限公司 车辆热管理***及车辆热管理方法
CN114056030A (zh) * 2020-08-03 2022-02-18 比亚迪股份有限公司 电动车热管理***、热管理方法及车辆
CN114347752A (zh) * 2022-01-14 2022-04-15 中国第一汽车股份有限公司 一种纯电动汽车热管理***及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275521A (zh) * 2010-06-04 2011-12-14 特斯拉电机公司 具有双模式冷却回路的热管理***
US20120183815A1 (en) * 2010-06-04 2012-07-19 Tesla Motors, Inc. Thermal Management System with Dual Mode Coolant Loops
CN205130860U (zh) * 2015-11-24 2016-04-06 安徽江淮汽车股份有限公司 电动汽车的热管理***
CN112074425A (zh) * 2018-05-04 2020-12-11 翰昂汽车零部件有限公司 车用热管理***
CN211592164U (zh) * 2019-12-20 2020-09-29 长安马自达汽车有限公司 一种纯电动乘用车空调及热管理控制***
CN114056030A (zh) * 2020-08-03 2022-02-18 比亚迪股份有限公司 电动车热管理***、热管理方法及车辆
CN212289438U (zh) * 2020-08-14 2021-01-05 珠海格力电器股份有限公司 热管理***和电动汽车
CN113993731A (zh) * 2021-09-17 2022-01-28 上海汽车集团股份有限公司 车辆热管理***及车辆热管理方法
CN114347752A (zh) * 2022-01-14 2022-04-15 中国第一汽车股份有限公司 一种纯电动汽车热管理***及其控制方法

Similar Documents

Publication Publication Date Title
CN111216515B (zh) 一种电动汽车热管理***
CN108638787B (zh) 一种用于电动汽车的水循环式热能综合利用热管理***
WO2020108532A1 (zh) 车辆热管理***及其控制方法、车辆
WO2020108542A1 (zh) 车辆热管理***及其控制方法、车辆
WO2021036957A1 (zh) 用于汽车的热管理***以及基于该***的热管理方法
CN114312205B (zh) 热管理***、热管理***的控制方法与电动汽车
US20220097478A1 (en) Thermal management system
WO2022077944A1 (zh) 热管理***和车辆
CN107639992B (zh) 一种热管理***
CN115675013A (zh) 新能源电动汽车多工况整车热管理***及方法
CN114571955A (zh) 热管理***、控制方法、控制装置、程序产品、存储介质和车辆
CN113993731A (zh) 车辆热管理***及车辆热管理方法
CN216033622U (zh) 集成式热管理***及车辆
CN113997753A (zh) 一种新能源汽车热管理***
US20240017585A1 (en) Thermal management system for electric vehicle and electric vehicle
WO2024092646A1 (zh) 一种交通设备及其热管理***和热管理方法
CN115489262A (zh) 一种间接式多层级余热回收的热泵空调***及其控制方法
CN118302313A (zh) 一种交通设备及其热管理***和热管理方法
WO2020175263A1 (ja) 熱管理システム
CN218906835U (zh) 电动汽车的热管理***
CN113580882B (zh) 热管理***以及交通工具
CN220281077U (zh) 车辆热管理***和车辆
CN221023193U (zh) 热管理***及车辆
CN216139781U (zh) 电动车及其热泵***
CN221090419U (zh) 重型卡车的热泵热管理***和重型卡车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963956

Country of ref document: EP

Kind code of ref document: A1