WO2024092532A1 - 一种侧行链路harq rtt定时器的启动或重启方法及装置 - Google Patents

一种侧行链路harq rtt定时器的启动或重启方法及装置 Download PDF

Info

Publication number
WO2024092532A1
WO2024092532A1 PCT/CN2022/129105 CN2022129105W WO2024092532A1 WO 2024092532 A1 WO2024092532 A1 WO 2024092532A1 CN 2022129105 W CN2022129105 W CN 2022129105W WO 2024092532 A1 WO2024092532 A1 WO 2024092532A1
Authority
WO
WIPO (PCT)
Prior art keywords
sidelink
pssch
harq feedback
sci
psfch
Prior art date
Application number
PCT/CN2022/129105
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/129105 priority Critical patent/WO2024092532A1/zh
Publication of WO2024092532A1 publication Critical patent/WO2024092532A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method and device for starting or restarting a sidelink HARQ RTT timer.
  • the sidelink hybrid automatic repeat request round-trip time (HARQ RTT) timer is supported in discontinuous reception (DRX). During the running of the sidelink HARQ RTT timer, if the terminal device has no other timer running that keeps the terminal device active, the terminal device can enter the sleep state.
  • the first aspect of the present disclosure provides a method for starting or restarting a sidelink HARQ RTT timer, the method comprising:
  • a second aspect of the present disclosure provides another communication device, including:
  • a processing module is used to determine the physical sidelink feedback channel PSFCH resources associated with the physical sidelink shared channel PSSCH; and start or restart the sidelink HARQ RTT timer for the PSFCH resources associated with the PSSCH.
  • a third aspect of the present disclosure provides a communication device, which includes a processor.
  • the processor calls a computer program in a memory, the method described in the first aspect is executed.
  • An embodiment of a fourth aspect of the present disclosure provides a communication device, which includes a processor and a memory, in which a computer program is stored; the processor executes the computer program stored in the memory so that the communication device executes the method described in the first aspect above.
  • An embodiment of a fifth aspect of the present disclosure provides another communication device, which includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to enable the device to execute the method described in the first aspect above.
  • the sixth embodiment of the present disclosure provides a computer-readable storage medium for storing instructions used by the above-mentioned communication device. When the instructions are executed, the communication device executes the method described in the first aspect.
  • the seventh aspect embodiment of the present disclosure further provides a computer program product comprising a computer program, which, when executed on a computer, enables the computer to execute the method described in the first aspect above.
  • the eighth aspect of the present disclosure provides a chip system, which includes at least one processor and an interface, for supporting a communication device to implement the functions involved in the first aspect, for example, determining or processing at least one of the data and information involved in the above method.
  • the chip system also includes a memory, which is used to store computer programs and data necessary for the communication device.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the ninth aspect of the present disclosure also provides a computer program, which, when executed on a computer, enables the computer to execute the method described in the first aspect.
  • FIG1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • FIG2 is a flow chart of a method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG3 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG4 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG5 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG6 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG7 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG8 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG9 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG10 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG11 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG12 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG13 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG14 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG15 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG16 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG17 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG18 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG19 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG20 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG21 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG22 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG23 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG24 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure
  • FIG25 is a schematic diagram of the structure of a communication device provided in an embodiment of the present disclosure.
  • FIG26 is a schematic diagram of the structure of another communication device provided in an embodiment of the present disclosure.
  • FIG. 27 is a schematic diagram of the structure of a chip provided in an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of devices shown in FIG. 1 are only used as examples and do not constitute a limitation on the embodiments of the present disclosure. In actual applications, two or more network devices and two or more terminal devices may be included.
  • the communication system shown in FIG. 1 includes, for example, a network device 11 and a terminal device 12.
  • LTE long term evolution
  • 5G fifth generation
  • NR 5G new radio
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved NodeB (eNB), a transmission point (TRP), a next generation NodeB (gNB) in an NR system, a base station in other future mobile communication systems, or an access node in a wireless fidelity (WiFi) system.
  • eNB evolved NodeB
  • TRP transmission point
  • gNB next generation NodeB
  • WiFi wireless fidelity
  • the embodiment of the present disclosure does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided in the embodiment of the present disclosure may be composed of a central unit (CU) and a distributed unit (DU), wherein the CU may also be referred to as a control unit.
  • CU central unit
  • DU distributed unit
  • the CU-DU structure may be used to split the protocol layer of the network device, such as a base station, and the functions of some protocol layers are placed in the CU for centralized control, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the DU is centrally controlled by the CU.
  • the terminal device 12 in the disclosed embodiment is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal device may also be referred to as a terminal device (terminal), a user equipment (UE), a mobile station (MS), a mobile terminal device (MT), etc.
  • the terminal device may be a car with communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control (industrial control), a wireless terminal device in self-driving, a wireless terminal device in remote medical surgery, a wireless terminal device in smart grid (smart grid), a wireless terminal device in transportation safety (transportation safey), a wireless terminal device in a smart city (smart city), a wireless terminal device in a smart home (smart home), etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • the communication system described in the embodiment of the present disclosure is for the purpose of more clearly illustrating the technical solution of the embodiment of the present disclosure, and does not constitute a limitation on the technical solution provided by the embodiment of the present disclosure.
  • a person skilled in the art can know that with the evolution of the system architecture and the emergence of new business scenarios, the technical solution provided by the embodiment of the present disclosure is also applicable to similar technical problems.
  • the DRX supports the sidelink HARQ RTT timer.
  • the terminal device if the terminal device has no other timer running that keeps the terminal device active, the terminal device can enter the sleep state.
  • one physical sidelink shared channel may be associated with multiple physical sidelink feedback channel (PSFCH) resources.
  • PSSCH physical sidelink shared channel
  • PSFCH physical sidelink feedback channel
  • the terminal device can determine the PSFCH resources associated with the PSSCH, and start or restart the sidelink HARQ RTT timer for the PSFCH resources associated with the PSSCH, so that when multiple PSFCH resources are introduced, the HARQ RTT timer can be started or restarted.
  • Figure 2 is a flow chart of a method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 2, the method may include but is not limited to the following steps:
  • Step 201 determine the PSFCH resources associated with the PSSCH.
  • PSFCH resources associated with PSSCH can be configured for the terminal device, so that during the sidelink communication process, the terminal device can determine the PSFCH resources associated with PSSCH according to the configuration of the PSFCH resources.
  • one PSSCH may be associated with one or more PSFCH resources.
  • Step 202 start or restart the sidelink HARQ RTT timer for the PSFCH resources associated with the PSSCH.
  • the sidelink HARQ RTT timer is started or restarted for each PSFCH resource associated with the PSSCH.
  • the sidelink HARQ RTT timer may also be started or restarted at the end of the PSFCH resource transmission with successful HARQ feedback.
  • a (listen before talk, LBT) failure detection is performed before HARQ feedback is performed. If the LBT failure causes the HARQ feedback transmission failure, the sidelink HARQ RTT timer can be started or restarted. For example, if a PSFCH resource causes the HARQ feedback transmission failure due to LBT failure, the HARQ RTT timer can be started at the first time slot at the end of the PSFCH resource.
  • the terminal device does not perform the step of determining the PSFCH resources associated with the PSSCH, and can also directly start or restart the sidelink HARQ RTT timer for the PSFCH resources associated with the PSSCH.
  • the terminal device can determine the PSFCH resources associated with the PSSCH, and start or restart the sidelink HARQ RTT timer for the PSFCH resources associated with the PSSCH, so that when multiple PSFCH resources are introduced, the HARQ RTT timer can be started or restarted.
  • Figure 3 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 3, the method may include but is not limited to the following steps:
  • Step 301 determine the PSFCH resources associated with the PSSCH.
  • step 301 may be implemented in any manner in the various embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 302 Start or restart the sidelink HARQ RTT timer for each PSFCH resource associated with the PSSCH.
  • PSSCH can be associated with one or more PSFCH resources
  • the sidelink HARQRTT timer can be started or restarted for each PSFCH resource associated with PSSCH, that is, for each PSFCH resource associated with PSSCH, LBT failure detection is performed before HARQ feedback is performed, and the sidelink HARQRTT timer is started or restarted for the PSFCH resource if the HARQ feedback transmission is successful or the LBT failure causes the HARQ feedback transmission failure.
  • the terminal device can determine the PSFCH resources associated with PSSCH, and start or restart the sidelink HARQRTT timer for each PSFCH resource associated with PSSCH, thereby increasing the length of time the terminal device is in a sleep state and saving resources.
  • Figure 4 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 4, the method may include but is not limited to the following steps:
  • Step 401 determine the PSFCH resources associated with the PSSCH.
  • step 401 may be implemented in any manner in the various embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 402 Acquire sidelink control information SCI associated with the PSSCH.
  • a receiving terminal device can obtain sidelink control information (SCI) associated with PSSCH from a transmitting terminal device.
  • SCI sidelink control information
  • the SCI may include information such as HARQ feedback enable or HARQ feedback disable indication for PSSCH, transmission mode indication, etc.
  • HARQ feedback enable means that HARQ feedback is required for PSSCH
  • HARQ feedback disable means that HARQ feedback is not performed for PSSCH.
  • Step 403 when HARQ feedback enable is indicated in the SCI and the SCI is associated with unicast transmission, for each PSFCH resource associated with the PSSCH, if the LBT failure causes the sidelink HARQ feedback transmission to fail, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • LBT failure detection can be performed for each PSFCH resource associated with PSSCH before HARQ feedback. If LBT failure causes sidelink HARQ feedback transmission failure, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • the sidelink process is a sidelink process associated with PSSCH.
  • a PSSCH is associated with two PSFCH resources.
  • LBT failure detection is performed before HARQ feedback. If the LBT failure causes the sidelink HARQ feedback transmission failure, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH resource, and then HARQ feedback is performed on the second PSFCH resource. LBT failure detection is performed before HARQ feedback. If the LBT failure causes the sidelink HARQ feedback transmission failure, the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the second PSFCH resource.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with unicast transmission
  • the sidelink HARQ RTT timer associated with the sidelink process is started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback, thereby increasing the time that the terminal device is in the sleep state and saving resources.
  • Figure 5 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 5, the method may include but is not limited to the following steps:
  • Step 501 determine the PSFCH resources associated with the PSSCH.
  • Step 502 Acquire the SCI associated with the PSSCH.
  • step 501 to step 502 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 503 when HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is positive acknowledgment ACK and negative acknowledgment NACK, for each PSFCH resource associated with the PSSCH, if the LBT failure causes the sidelink HARQ feedback transmission to fail, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • the HARQ feedback mode for multicast transmission may include positive-negative acknowledgement ACK and negative-acknowledgement NACK (positive-negative acknowledgement) and negative-only acknowledgement NACK-only (negative-only acknowledgement).
  • the ACK and NACK mode means that the HARQ feedback can carry both ACK and NACK; the NACK-only mode means that the HARQ feedback can only carry NACK.
  • the HARQ feedback mode used when performing HARQ feedback for multicast transmission can be selected by the terminal device itself according to conditions.
  • LBT failure detection is performed before HARQ feedback for each PSFCH resource associated with PSSCH, and if LBT failure causes sidelink HARQ feedback transmission failure, the sidelink HARQRTT timer associated with the sidelink process is started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • the sidelink process is a sidelink process associated with PSSCH.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK
  • the sidelink HARQ RTT timer associated with the sidelink process is started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback, thereby increasing the time that the terminal device is in the sleep state and saving resources.
  • Figure 6 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 6, the method may include but is not limited to the following steps:
  • Step 601 determine the PSFCH resources associated with the PSSCH.
  • Step 602 obtaining the SCI associated with the PSSCH.
  • step 601 to step 602 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 603 when HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only, for each PSFCH resource associated with PSSCH, if the sidelink HARQ feedback is NACK and the LBT failure causes the sidelink HARQ feedback transmission failure, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • the sidelink HARQ feedback is NACK
  • LBT failure detection is performed before HARQ feedback for each PSFCH resource associated with PSSCH
  • LBT failure causes the sidelink HARQ feedback transmission failure
  • the sidelink HARQ RTT timer associated with the sidelink process is started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • the sidelink process is a sidelink process associated with PSSCH.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only
  • the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback, thereby increasing the time that the terminal device is in the sleep state and saving resources.
  • FIG. 7 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in FIG. 7, the method may include but is not limited to the following steps:
  • Step 701 determine the PSFCH resources associated with the PSSCH.
  • Step 702 obtaining the SCI associated with the PSSCH.
  • step 701 to step 702 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 703 when HARQ feedback enable is indicated in the SCI and the SCI is associated with unicast transmission, for each PSFCH resource associated with the PSSCH, if the sidelink HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process may be started or restarted at the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback.
  • the sidelink process is the sidelink process associated with the PSSCH.
  • LBT failure detection is performed during HARQ feedback. If LBT is successful, HARQ feedback is sent. The success of LBT can be considered that the sidelink HARQ feedback transmission is successful.
  • the sidelink HARQ RTT timer associated with the sidelink process can be started or restarted in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback.
  • a PSSCH is associated with two PSFCH resources.
  • the sidelink HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH transmission, and then the second PSFCH resource performs HARQ feedback. If the sidelink HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the second PSFCH transmission.
  • the sidelink HARQ RTT timer associated with the sidelink process can be started or restarted in the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • a PSSCH is associated with three PSFCH resources in total.
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH resource, and then the second PSFCH resource performs HARQ feedback.
  • the sidelink HARQ feedback transmission is successful, then the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the second PSFCH transmission.
  • the third PSFCH resource performs HARQ feedback. If LBT failure causes sidelink HARQ feedback transmission failure, then the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the third PSFCH resource.
  • the sidelink HARQ RTT timer may be started or restarted for each PSFCH resource before the PSFCH resource to which the HARQ feedback is successfully transmitted, and the sidelink HARQ feedback may not be sent for the PSFCH resources after the PSFCH resource to which the sidelink HARQ feedback is successfully transmitted, thereby saving resources.
  • a PSSCH is associated with a total of 4 PSFCH resources.
  • HARQ feedback is enabled and SCI is associated with unicast transmission
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH resource, and then the second PSFCH resource performs HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the second PSFCH transmission, and then the third and fourth PSFCH resources do not send sidelink HARQ feedback, and further the sidelink HARQ RTT timer associated with the sidelink process is not restarted in the first time slot at the end of the third and fourth PSFCH resources.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with unicast transmission
  • the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback, thereby increasing the time that the terminal device is in the sleep state and saving resources.
  • Figure 8 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 7, the method may include but is not limited to the following steps:
  • Step 801 determine the PSFCH resources associated with the PSSCH.
  • Step 802 obtaining the SCI associated with the PSSCH.
  • step 801 to step 802 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 803 when HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK, for each PSFCH resource associated with the PSSCH, if the sidelink HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process can be started or restarted in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback.
  • the sidelink process is the sidelink process associated with the PSSCH.
  • a PSSCH is associated with two PSFCH resources.
  • the SCI is associated with multicast transmission, and the HARQ feedback mode is ACK and NACK, for the first PSFCH resource associated with the PSSCH, if the sidelink HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH transmission, and then the second PSFCH resource performs HARQ feedback. If the sidelink HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the second PSFCH transmission.
  • the sidelink HARQ RTT timer associated with the sidelink process can be started or restarted in the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • a PSSCH is associated with three PSFCH resources in total.
  • the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK, for the first PSFCH resource associated with the PSSCH, if the LBT failure causes the sidelink HARQ feedback transmission failure, then the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH resource, and then the second PSFCH resource performs HARQ feedback. If the sidelink HARQ feedback transmission is successful, then the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the second PSFCH transmission.
  • the third PSFCH resource performs HARQ feedback. If the LBT failure causes the sidelink HARQ feedback transmission failure, then the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the third PSFCH resource.
  • the sidelink HARQ RTT timer may be started or restarted for each PSFCH resource before the PSFCH resource for successful HARQ feedback transmission, and the sidelink HARQ feedback may not be sent for the PSFCH resources after the PSFCH resource for successful sidelink HARQ feedback transmission, thereby saving resources.
  • a PSSCH is associated with a total of 4 PSFCH resources.
  • the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH resource, and then the second PSFCH resource performs HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the second PSFCH transmission, and then the third and fourth PSFCH resources do not send sidelink HARQ feedback, and then the sidelink HARQ RTT timer associated with the sidelink process is not restarted in the first time slot at the end of the third and fourth PSFCH resources.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK
  • the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback, thereby increasing the time that the terminal device is in the sleep state and saving resources.
  • FIG. 9 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in FIG. 9, the method may include but is not limited to the following steps:
  • Step 901 determine the PSFCH resources associated with the PSSCH.
  • Step 902 obtaining the SCI associated with the PSSCH.
  • step 901 to step 902 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 903 when HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only, for each PSFCH resource associated with the PSSCH, if the sidelink HARQ feedback is NACK and the sidelink HARQ feedback transmission is successful, start or restart the sidelink HARQ RTT timer associated with the sidelink process in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback.
  • HARQ feedback enable is indicated in SCI and SCI is associated with multicast transmission and HARQ feedback mode is NACK-only
  • the sidelink HARQ feedback is NACK and the sidelink HARQ feedback transmission is successful
  • the sidelink HARQ RTT timer associated with the sidelink process can be started or restarted in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback.
  • the sidelink process is the sidelink process associated with the PSSCH.
  • a PSSCH is associated with two PSFCH resources.
  • the SCI is associated with multicast transmission, and the HARQ feedback mode is NACK-only, if the HARQ feedback is NACK, for the first PSFCH resource associated with the PSSCH, if the sidelink HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH transmission, and then the second PSFCH resource performs HARQ feedback. If the sidelink HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the second PSFCH transmission.
  • the sidelink HARQ RTT timer associated with the sidelink process can be started or restarted in the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • a PSSCH is associated with three PSFCH resources.
  • HARQ feedback mode is NACK-only
  • the third PSFCH resource performs HARQ feedback. If LBT failure causes sidelink HARQ feedback transmission failure, then the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the third PSFCH resource.
  • the sidelink HARQ RTT timer may be started or restarted for each PSFCH resource before the PSFCH resource to which the HARQ feedback is successfully transmitted, and the sidelink HARQ feedback may not be sent for the PSFCH resources after the PSFCH resource to which the sidelink HARQ feedback is successfully transmitted, thereby saving resources.
  • a PSSCH is associated with a total of 4 PSFCH resources.
  • the HARQ feedback mode is ACK and NACK
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH resource, and then the second PSFCH resource performs HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the second PSFCH transmission, and then the third and fourth PSFCH resources do not send sidelink HARQ feedback, and then the sidelink HARQ RTT timer associated with the sidelink process is not restarted in the first time slot at the end of the third and fourth PSFCH resources.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only
  • the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback, thereby increasing the time that the terminal device is in the sleep state and saving resources.
  • FIG. 10 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided in an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in FIG. 10, the method may include but is not limited to the following steps:
  • Step 1001 determine the PSFCH resources associated with the PSSCH.
  • step 1001 can be implemented in any manner in the various embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1002 start the sidelink HARQ RTT timer for the first PSFCH resource that successfully transmits the sidelink HARQ feedback among the PSFCH resources associated with the PSSCH.
  • the sidelink HARQ RTT timer is started for the first PSFCH resource that successfully transmits the sidelink HARQ feedback among the PSFCH resources associated with the PSSCH.
  • a PSSCH is associated with three PSFCH resources.
  • the LBT failure of the first PSFCH resource associated with the PSSCH leads to the failure of HARQ feedback transmission.
  • the second PSFCH resource transmits the sidelink HARQ feedback successfully.
  • the sidelink HARQ RTT timer is started for the second PSFCH resource.
  • the terminal device can determine the PSFCH resources associated with the PSSCH, and start the sidelink HARQ RTT timer for the first PSFCH resource among the PSFCH resources associated with the PSSCH that successfully transmits the sidelink HARQ feedback, thereby reducing the number of times the sidelink HARQ RTT timer is started, which is simple to implement.
  • Figure 11 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 11, the method may include but is not limited to the following steps:
  • Step 1101 determine the PSFCH resources associated with the PSSCH.
  • Step 1102 obtaining the SCI associated with the PSSCH.
  • step 1101 to step 1102 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1103 when HARQ feedback enable is indicated in the SCI and the SCI is associated with unicast transmission, if LBT failure causes sidelink HARQ feedback failure, the sidelink HARQ RTT timer associated with the sidelink process will not be started or restarted in the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process may not be started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • the sidelink process is a sidelink process associated with the PSSCH.
  • a PSSCH is associated with three PSFCH resources in total.
  • the LBT failure of the first PSFCH resource associated with the PSSCH causes the HARQ feedback transmission failure.
  • the sidelink HARQ RTT timer associated with the sidelink process may not be started.
  • the second PSFCH resource is used for HARQ feedback. If the LBT failure causes the HARQ feedback transmission failure, in the first time slot at the end of the second PSFCH resource, the sidelink HARQ RTT timer associated with the sidelink process may not be started.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the HARQ feedback is enabled and the SCI is associated with a unicast transmission
  • the sidelink HARQ RTT timer associated with the sidelink process will not be started or restarted in the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback, thereby reducing the number of times the sidelink HARQ RTT timer is started, which is simple to implement.
  • Figure 12 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 12, the method may include but is not limited to the following steps:
  • Step 1201 determine the PSFCH resources associated with the PSSCH.
  • Step 1202 obtain the SCI associated with the PSSCH.
  • step 1201 to step 1202 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1203 when HARQ feedback enable is indicated in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK, if the LBT failure causes the side link HARQ feedback failure, the side link HARQ RTT timer associated with the side link process will not be started or restarted in the first time slot at the end of the PSFCH resource associated with the side link HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process may not be started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • the sidelink process is a sidelink process associated with the PSSCH.
  • a PSSCH is associated with three PSFCH resources in total.
  • the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK
  • the LBT failure of the first PSFCH resource associated with the PSSCH causes the HARQ feedback transmission failure.
  • the sidelink HARQ RTT timer associated with the sidelink process may not be started.
  • the second PSFCH resource performs HARQ feedback. If the LBT failure causes the HARQ feedback transmission failure, in the first time slot at the end of the second PSFCH resource, the sidelink HARQ RTT timer associated with the sidelink process may not be started.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK
  • the LBT failure causes the sidelink HARQ feedback failure
  • the sidelink HARQ RTT timer associated with the sidelink process will not be started or restarted in the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback, thereby reducing the number of times the sidelink HARQ RTT timer is started, which is simple to implement.
  • Figure 13 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 13, the method may include but is not limited to the following steps:
  • Step 1301 determine the PSFCH resources associated with the PSSCH.
  • Step 1302 obtain the SCI associated with the PSSCH.
  • step 1301 to step 1302 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1303 when HARQ feedback enable is indicated in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only, if the sidelink HARQ feedback is NACK and the LBT failure causes the sidelink HARQ feedback failure, the sidelink HARQ RTT timer associated with the sidelink process is not started or restarted in the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process may not be started or restarted at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback.
  • the sidelink process is a sidelink process associated with the PSSCH.
  • a PSSCH is associated with three PSFCH resources in total.
  • the SCI is associated with multicast transmission, and the HARQ feedback mode is ACK and NACK
  • the sidelink HARQ feedback is NACK
  • the LBT failure of the first PSFCH resource associated with the PSSCH causes the HARQ feedback transmission failure
  • the sidelink HARQ RTT timer associated with the sidelink process may not be started in the first time slot at the end of the first PSFCH resource.
  • the second PSFCH resource HARQ feedback is given. If the LBT failure causes the HARQ feedback transmission failure, the sidelink HARQ RTT timer associated with the sidelink process may not be started in the first time slot at the end of the second PSFCH resource.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only
  • the sidelink HARQ feedback is NACK and the LBT failure causes the sidelink HARQ feedback failure
  • the sidelink HARQ RTT timer associated with the sidelink process will not be started or restarted in the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback, thereby reducing the number of times the sidelink HARQ RTT timer is started, which is simple to implement.
  • Figure 14 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 14, the method may include but is not limited to the following steps:
  • Step 1401 determine the PSFCH resources associated with the PSSCH.
  • Step 1402 obtain the SCI associated with the PSSCH.
  • step 1401 to step 1402 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1403 when HARQ feedback enable is indicated in the SCI and the SCI is associated with unicast transmission, for the first PSFCH resource in the PSSCH associated PSFCH resource that successfully transmits the sidelink HARQ feedback, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot after the end of the first PSFCH transmission that successfully transmits the sidelink HARQ feedback carrying the sidelink HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process is started at the first time slot at the end of the first PSFCH transmission that successfully transmits the sidelink HARQ feedback carrying the sidelink HARQ feedback.
  • the sidelink process is the sidelink process associated with PSSCH.
  • a PSSCH is associated with three PSFCH resources.
  • the LBT failure of the first PSFCH resource associated with the PSSCH leads to the failure of HARQ feedback transmission, and the second PSFCH resource transmits the sidelink HARQ feedback successfully.
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the second PSFCH transmission.
  • the sidelink HARQ RTT timer may not be started for the PSFCH resources before the first PSFCH resource that successfully transmits the sidelink HARQ feedback.
  • the PSFCH resources after the PSFCH resources for which the sidelink HARQ feedback transmission is successful may continue to send sidelink HARQ feedback or may not send sidelink HARQ feedback.
  • the PSFCH resources after the PSFCH resources for which the sidelink HARQ feedback is successfully transmitted may continue to send sidelink HARQ feedback, the sidelink HARQ RTT timer may be restarted only for the PSFCH resources for which the HARQ feedback is successfully transmitted, or the sidelink HARQ RTT timer may be restarted regardless of whether the HARQ feedback transmission is successful or unsuccessful.
  • a PSSCH is associated with 3 PSFCH resources in total.
  • LBT failure of the first PSFCH resource associated with PSSCH leads to HARQ feedback transmission failure.
  • the sidelink HARQ RTT timer associated with the sidelink process is not started in the first time slot at the end of the first PSFCH resource.
  • the second PSFCH resource transmits the sidelink HARQ feedback successfully.
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the second PSFCH transmission.
  • the third PSFCH resource performs HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process is not restarted in the first time slot at the end of the third PSFCH resource, or the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the third PSFCH resource, or the third PSFCH resource does not send HARQ feedback. If the third PSFCH resource HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process can be restarted in the first time slot at the end of the third PSFCH transmission.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with unicast transmission
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH transmission carrying the sidelink HARQ feedback that successfully transmits the sidelink HARQ feedback, thereby reducing the number of times the sidelink HARQ RTT timer is started, which is simple to implement.
  • Figure 15 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 15, the method may include but is not limited to the following steps:
  • Step 1501 determine the PSFCH resources associated with the PSSCH.
  • Step 1502 obtain the SCI associated with the PSSCH.
  • step 1501 to step 1502 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1503 when HARQ feedback enable is indicated in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK, for the first PSFCH resource in the PSSCH associated PSFCH resource that successfully transmits the sidelink HARQ feedback, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot after the first PSFCH transmission carrying the sidelink HARQ feedback that successfully transmits the sidelink HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process is started at the first time slot at the end of the first PSFCH transmission that successfully transmits the sidelink HARQ feedback carrying the sidelink HARQ feedback.
  • the sidelink process is the sidelink process associated with PSSCH.
  • a PSSCH is associated with three PSFCH resources.
  • the SCI is associated with multicast transmission, and the HARQ feedback mode is ACK and NACK
  • the LBT failure of the first PSFCH resource associated with the PSSCH leads to the failure of HARQ feedback transmission
  • the second PSFCH resource transmits the sidelink HARQ feedback successfully.
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the second PSFCH transmission.
  • the sidelink HARQ RTT timer may not be started for the PSFCH resources before the first PSFCH resource that successfully transmits the sidelink HARQ feedback.
  • the PSFCH resources after the PSFCH resources for successful sidelink HARQ feedback transmission may continue to send sidelink HARQ feedback or may not send sidelink HARQ feedback.
  • the PSFCH resources after the PSFCH resources for which the sidelink HARQ feedback transmission is successful may continue to send sidelink HARQ feedback
  • the sidelink HARQ RTT timer may be started only for the PSFCH resources for which the HARQ feedback transmission is successful, or the sidelink HARQ RTT timer may be started regardless of whether the HARQ feedback transmission is successful or failed.
  • a PSSCH is associated with 3 PSFCH resources in total.
  • the LBT failure of the first PSFCH resource associated with the PSSCH leads to the failure of HARQ feedback transmission.
  • the sidelink HARQ RTT timer associated with the sidelink process is not started in the first time slot at the end of the first PSFCH resource.
  • the second PSFCH resource transmits the sidelink HARQ feedback successfully, and the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the second PSFCH transmission.
  • the third PSFCH resource performs HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process is not restarted in the first time slot at the end of the third PSFCH resource, or the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the third PSFCH resource, or the third PSFCH resource does not send HARQ feedback. If the third PSFCH resource HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process can be restarted in the first time slot at the end of the third PSFCH transmission.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH transmission that successfully transmits the sidelink HARQ feedback carrying the sidelink HARQ feedback, thereby reducing the number of times the sidelink HARQ RTT timer is started, which is simple to implement.
  • Figure 16 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 16, the method may include but is not limited to the following steps:
  • Step 1601 determine the PSFCH resources associated with the PSSCH.
  • Step 1602 obtain the SCI associated with the PSSCH.
  • step 1601 to step 1602 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1603 when HARQ feedback enable is indicated in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only, if the sidelink HARQ feedback is NACK, for the first PSFCH resource that successfully transmits the sidelink HARQ feedback in the PSFCH resource associated with the PSSCH, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot after the first PSFCH transmission that successfully transmits the sidelink HARQ feedback carrying the sidelink HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process is started at the first time slot at the end of the first PSFCH transmission that successfully transmits the sidelink HARQ feedback carrying the sidelink HARQ feedback.
  • the sidelink process is the sidelink process associated with PSSCH.
  • a PSSCH is associated with three PSFCH resources.
  • the SCI is associated with multicast transmission, and the HARQ feedback mode is NACK-only, if the sidelink HARQ feedback is NACK, the LBT failure of the first PSFCH resource associated with the PSSCH leads to the failure of HARQ feedback transmission, and the second PSFCH resource transmits the sidelink HARQ feedback successfully.
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the second PSFCH transmission.
  • the sidelink HARQ RTT timer may not be started for the PSFCH resources before the first PSFCH resource that successfully transmits the sidelink HARQ feedback.
  • the PSFCH resources after the PSFCH resources for which the sidelink HARQ feedback is successfully transmitted may continue to send sidelink HARQ feedback or may not send sidelink HARQ feedback.
  • the PSFCH resources after the PSFCH resources for which the sidelink HARQ feedback transmission is successful may continue to send sidelink HARQ feedback
  • the sidelink HARQ RTT timer may be started only for the PSFCH resources for which the HARQ feedback transmission is successful, or the sidelink HARQ RTT timer may be started regardless of whether the HARQ feedback transmission is successful or failed.
  • a PSSCH is associated with 3 PSFCH resources in total.
  • the HARQ feedback mode is NACK-only
  • the sidelink HARQ feedback is NACK
  • the LBT failure of the first PSFCH resource associated with the PSSCH leads to the failure of HARQ feedback transmission
  • the sidelink HARQ RTT timer associated with the sidelink process is not started in the first time slot at the end of the first PSFCH resource.
  • the second PSFCH resource transmits the sidelink HARQ feedback successfully, and then the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the second PSFCH transmission.
  • the third PSFCH resource performs HARQ feedback. If the LBT failure leads to the failure of HARQ feedback transmission, the sidelink HARQ RTT timer associated with the sidelink process is not restarted in the first time slot at the end of the third PSFCH resource, or the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the third PSFCH resource, or the third PSFCH resource does not send HARQ feedback. If the third PSFCH resource HARQ feedback transmission is successful, the sidelink HARQ RTT timer associated with the sidelink process can be restarted in the first time slot at the end of the third PSFCH transmission.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only
  • the sidelink HARQ feedback is NACK
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH transmission that successfully transmits the sidelink HARQ feedback, thereby reducing the number of times the sidelink HARQ RTT timer is started, which is simple to implement.
  • Figure 17 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 17, the method may include but is not limited to the following steps:
  • Step 1701 determine the PSFCH resources associated with the PSSCH.
  • step 1701 can be implemented in any of the ways in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1702 when LBT failure occurs in all PSFCH resources associated with PSSCH, the side link HARQ RTT timer associated with the side link process is started in the first time slot at the end of the last PSFCH resource associated with PSSCH.
  • a sidelink HARQ RTT timer associated with a sidelink process may be started at the first time slot at the end of the last PSFCH resource associated with the PSSCH.
  • the sidelink process may be a sidelink process associated with the PSSCH.
  • a PSSCH is associated with three PSFCH resources.
  • LBT detection is performed before HARQ feedback. If LBT fails, HARQ feedback is performed by the second PSFCH resource. LBT detection is performed before HARQ feedback of the second PSFCH resource. If LBT fails, HARQ feedback is performed by the third PSFCH resource. LBT detection is performed before HARQ feedback of the third PSFCH resource. If LBT fails, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the third PSFCH resource.
  • the terminal device can determine the PSFCH resources associated with the PSSCH, and when LBT failure occurs in all PSFCH resources associated with the PSSCH, the side link HARQ RTT timer associated with the side link process is started in the first time slot at the end of the last PSFCH resource associated with the PSSCH, thereby reducing the number of times the side link HARQ RTT timer is started, which is simple to implement.
  • Figure 18 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 18, the method may include but is not limited to the following steps:
  • Step 1801 determine the PSFCH resources associated with the PSSCH.
  • Step 1802 obtain the SCI associated with the PSSCH.
  • step 1801 to step 1802 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1803 when HARQ feedback enable is indicated in the SCI and the SCI is associated with unicast transmission, if LBT failure occurs in all PSFCH resources associated with the PSSCH, the side link HARQ RTT timer associated with the side link process is started in the first time slot at the end of the last PSFCH resource associated with the PSSCH.
  • the sidelink HARQ RTT timer associated with the sidelink process can be started at the first time slot at the end of the last PSFCH resource associated with PSSCH.
  • the sidelink process can be a sidelink process associated with PSSCH.
  • a PSSCH is associated with three PSFCH resources.
  • an LBT check is performed on the first PSFCH resource associated with the PSSCH before HARQ feedback. If LBT fails, the second PSFCH resource performs HARQ feedback. An LBT check is performed before HARQ feedback on the second PSFCH resource. If LBT fails, the third PSFCH resource performs HARQ feedback. An LBT check is performed before HARQ feedback on the third PSFCH resource. If LBT fails, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the third PSFCH resource.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the side link HARQ RTT timer associated with the side link process is started in the first time slot at the end of the last PSFCH resource associated with the PSSCH, thereby reducing the number of times the side link HARQ RTT timer is started, which is simple to implement.
  • Figure 19 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 19, the method may include but is not limited to the following steps:
  • Step 1901 determine the PSFCH resources associated with the PSSCH.
  • Step 1902 obtain the SCI associated with the PSSCH.
  • steps 1901-1902 may be implemented in any of the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 1903 when HARQ feedback enable is indicated in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK, if LBT failure occurs in all PSFCH resources associated with the PSSCH, the side link HARQ RTT timer associated with the side link process is started in the first time slot at the end of the last PSFCH resource associated with the PSSCH.
  • a sidelink process is a sidelink process associated with the PSSCH.
  • the method for starting the sidelink HARQ RTT timer can be referred to the method for starting the sidelink HARQ RTT timer for the case where the SCI indicates that HARQ feedback is enabled and the SCI is associated with unicast transmission, if all PSFCH resources associated with the PSSCH have experienced LBT failure, and the method for starting the sidelink HARQ RTT timer, so it will not be repeated here.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK
  • the side link HARQ RTT timer associated with the side link process is started in the first time slot at the end of the last PSFCH resource associated with the PSSCH, thereby reducing the number of times the side link HARQ RTT timer is started, which is simple to implement.
  • Figure 20 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 20, the method may include but is not limited to the following steps:
  • Step 2001 determine the PSFCH resources associated with the PSSCH.
  • Step 2002 obtain the SCI associated with the PSSCH.
  • steps 2001-2002 may be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 2003 when HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only, if the sidelink HARQ feedback is NACK and all PSFCH resources associated with the PSSCH have LBT failures, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the last PSFCH resource associated with the PSSCH.
  • a sidelink process is a sidelink process associated with the PSSCH.
  • the method for starting the sidelink HARQ RTT timer can be referred to the method for starting the sidelink HARQ RTT timer for the case where the SCI indicates that HARQ feedback is enabled and the SCI is associated with unicast transmission, and all PSFCH resources associated with the PSSCH have experienced LBT failure, so it will not be repeated here.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only
  • the sidelink HARQ feedback is NACK and all PSFCH resources associated with the PSSCH have LBT failures
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the last PSFCH resource associated with the PSSCH, thereby reducing the number of times the sidelink HARQ RTT timer is started, which is simple to implement.
  • Figure 21 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 21, the method may include but is not limited to the following steps:
  • Step 2101 determine the PSFCH resources associated with the PSSCH.
  • Step 2102 obtain the SCI associated with the PSSCH.
  • step 2101 to step 2102 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 2103 when HARQ feedback enable is indicated in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only, if the sidelink HARQ feedback is ACK, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of each PSFCH resource associated with the PSSCH.
  • the sidelink HARQ RTT timer associated with the sidelink process can be started or restarted in the first time slot at the end of each PSFCH resource associated with PSSCH.
  • the sidelink process is a sidelink process associated with PSSCH.
  • a PSSCH is associated with three PSFCH resources.
  • the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only
  • the sidelink HARQ feedback is ACK
  • the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH resource associated with the PSSCH
  • the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the second PSFCH resource
  • the sidelink HARQ RTT timer associated with the sidelink process is restarted in the first time slot at the end of the third PSFCH resource.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only
  • the sidelink HARQ feedback is ACK
  • the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of each PSFCH resource associated with the PSSCH, thereby increasing the time that the terminal device is in the sleep state and saving resources.
  • Figure 22 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 22, the method may include but is not limited to the following steps:
  • Step 2201 determine the PSFCH resources associated with the PSSCH.
  • Step 2202 obtain the SCI associated with the PSSCH.
  • step 2201 to step 2202 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 2203 when HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only, if the sidelink HARQ feedback is ACK, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of the first or last PSFCH resource associated with the PSSCH.
  • HARQ feedback enable is indicated in SCI and SCI is associated with multicast transmission and HARQ feedback mode is NACK-only
  • the sidelink HARQ feedback is ACK
  • the sidelink HARQ RTT timer associated with the sidelink process can be started or restarted in the first time slot at the end of the first or last PSFCH resource associated with PSSCH.
  • the sidelink process is a sidelink process associated with PSSCH.
  • a PSSCH is associated with three PSFCH resources.
  • the SCI is associated with multicast transmission, and the HARQ feedback mode is NACK-only, if the sidelink HARQ feedback is ACK, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of the first PSFCH resource associated with the PSSCH or the third PSFCH resource.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the SCI indicates that HARQ feedback is enabled and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only
  • the sidelink HARQ feedback is ACK
  • the sidelink HARQ RTT timer associated with the sidelink process is started or restarted in the first time slot at the end of the first or last PSFCH resource associated with the PSSCH, thereby reducing the number of times the sidelink HARQ RTT timer is started, which is simple to implement.
  • Figure 23 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 23, the method may include but is not limited to the following steps:
  • Step 2301 determine the PSFCH resources associated with the PSSCH.
  • Step 2302 obtain the SCI associated with the PSSCH.
  • step 2301 to step 2302 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 2303 when HARQ feedback disabling is indicated in the SCI and no retransmission resources are indicated in the SCI, the side link HARQ RTT timer associated with the side link process is started or restarted in the first time slot at the end of each PSFCH resource associated with the PSSCH.
  • the terminal device does not need to perform HARQ feedback on the PSSCH.
  • a sidelink HARQ RTT timer associated with a sidelink process may be started or restarted at the first time slot at the end of each PSFCH resource associated with the PSSCH, wherein the sidelink process is a sidelink process associated with the PSSCH.
  • a PSSCH is associated with three PSFCH resources. If HARQ feedback disabling is indicated in the SCI and retransmission resources are not indicated in the SCI, the sidelink HARQ RTT timer associated with the sidelink process can be started in the first time slot at the end of the first PSFCH resource, and the sidelink HARQ RTT timer associated with the sidelink process can be restarted in the first time slot at the end of the second PSFCH resource, and the sidelink HARQ RTT timer associated with the sidelink process can be restarted in the first time slot at the end of the third PSFCH resource.
  • the terminal device can determine the PSFCH resources associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the side link HARQRTT timer associated with the side link process is started or restarted in the first time slot at the end of each PSFCH resource associated with the PSSCH, thereby increasing the time that the terminal device is in a sleep state and saving resources.
  • Figure 24 is a flow chart of another method for starting or restarting a sidelink HARQ RTT timer provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 24, the method may include but is not limited to the following steps:
  • Step 2401 determine the PSFCH resources associated with the PSSCH.
  • Step 2402 obtain the SCI associated with the PSSCH.
  • step 2401 to step 2402 can be implemented in any manner in the embodiments of the present disclosure, and the embodiments of the present disclosure do not limit this and will not be described in detail.
  • Step 2403 when HARQ feedback disabling is indicated in the SCI and no retransmission resources are indicated in the SCI, the side link HARQ RTT timer associated with the side link process is started or restarted in the first time slot at the end of the first or last PSFCH resource associated with the PSSCH.
  • a sidelink HARQ RTT timer associated with a sidelink process may be started or restarted in the first time slot at the end of the first or last PSFCH resource associated with the PSSCH, wherein the sidelink process is a sidelink process associated with the PSSCH.
  • a PSSCH is associated with three PSFCH resources. If the SCI indicates that HARQ feedback is disabled and the SCI does not indicate retransmission resources, the sidelink HARQ RTT timer associated with the sidelink process can be started or restarted in the first time slot at the end of the first PSFCH resource associated with the PSSCH or the third PSFCH resource.
  • the terminal device can determine the PSFCH resource associated with the PSSCH and obtain the SCI associated with the PSSCH.
  • the side link HARQ RTT timer associated with the side link process is started or restarted in the first time slot at the end of the first or last PSFCH resource associated with the PSSCH, thereby reducing the number of times the side link HARQ RTT timer is started and the implementation is simple.
  • the terminal starts or restarts the sidelink HARQ RTT timer for each PSFCH resource associated with the PSSCH.
  • the SCI When HARQ feedback is enabled and the SCI is associated with unicast, or HARQ feedback is enabled, the SCI is associated with multicast and the HARQ feedback mode is ACK and NACK, or HARQ feedback is enabled, the SCI is associated with multicast, the HARQ feedback mode is NACK-only and the HARQ feedback is NACK:
  • the sidelink HARQ RTT timer associated with this sidelink process is started or restarted at the first slot (time slot)/symbol (symbol) at the end of the PSFCH resource associated with this sidelink HARQ feedback.
  • the sidelink HARQ RTT timer associated with this sidelink process is started or restarted at the first slot/symbol at the end of the PSFCH transmission carrying this sidelink HARQ feedback. If LBT is successful, the subsequent PSFCH resources may no longer send HARQ feedback, or the subsequent PSFCH resources may continue to send HARQ feedback after LBT is successful.
  • the terminal starts the sidelink HARQ RTT timer on the PSFCH resource with the first HARQ feedback transmission successfully associated with the PSSCH
  • Embodiment When HARQ feedback is enabled and the SCI is associated with unicast, or HARQ feedback is enabled, the SCI is associated with multicast and the HARQ feedback mode is ACK and NACK, or HARQ feedback is enabled, the SCI is associated with multicast, the HARQ feedback mode is NACK-only and the HARQ feedback is NACK:
  • the sidelink HARQ RTT timer associated with this sidelink process is not started or restarted at the first slot/symbol at the end of the PSFCH resource associated with this sidelink HARQ feedback.
  • the sidelink HARQ RTT timer associated with this sidelink process is started or restarted at the first slot/symbol at the end of the PSFCH transmission carrying this sidelink HARQ feedback. If LBT is successful, the subsequent PSFCH resources may no longer send HARQ feedback (the sidelink HARQ RTT timer is only started when the first LBT is successful) or, if LBT is successful, the subsequent PSFCH resources continue to send HARQ feedback.
  • LBT failure occurs on all PSFCH resources associated with PSSCH, and the terminal starts the sidelink HARQ RTT timer on the last PSFCH resource associated with PSSCH.
  • Embodiment When HARQ feedback is enabled and the SCI is associated with unicast, or HARQ feedback is enabled, the SCI is associated with multicast and the HARQ feedback mode is ACK and NACK, or HARQ feedback is enabled, the SCI is associated with multicast, the HARQ feedback mode is NACK-only and the HARQ feedback is NACK:
  • the SCI is associated with multicast and the selected HARQ feedback mode is negative-only acknowledgement, if the HARQ feedback is positive acknowledgement, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted at the first slot/symbol at the end of each PSFCH resource associated with this sidelink HARQ feedback.
  • the SCI is associated with multicast and the selected HARQ feedback mode is negative-only acknowledgement, if the HARQ feedback is positive acknowledgement, the sidelink HARQ RTT timer associated with the sidelink process is started or restarted at the first slot/symbol at the end of the first or last PSFCH resource associated with this sidelink HARQ feedback.
  • the sidelink HARQ RTT timer associated with the sidelink process is started or restarted at the first slot/symbol at the end of each PSFCH resource associated with the PSSCH.
  • the sidelink HARQ RTT timer when starting or restarting the sidelink HARQ RTT timer, can be started or restarted in the first time slot at the end of the PSFCH resource or the end of the PSFCH transmission, or in the first symbol at the end of the PSFCH resource or the end of the PSFCH transmission, or in other granularities, and the present disclosure does not limit this.
  • association with PSSCH may also be referred to as sidelink grant association.
  • the communication device 2500 shown in Figure 25 may include a processing module 2501 and a transceiver module 2502.
  • the transceiver module 2502 may include a sending module and/or a receiving module, the sending module is used to implement a sending function, the receiving module is used to implement a receiving function, and the transceiver module 2502 may implement a sending function and/or a receiving function.
  • the communication device 2500 can be a terminal device, a device in a terminal device, or a device that can be used in conjunction with a terminal device.
  • the communication device 2500 is on the terminal device side, wherein:
  • Processing module 2501 is used to determine the physical sidelink feedback channel PSFCH resources associated with the physical sidelink shared channel PSSCH; and start or restart the sidelink HARQ RTT timer for the PSFCH resources associated with the PSSCH.
  • processing module 2501 is used to:
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to start or restart the sidelink HARQ RTT timer associated with the sidelink process at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback when HARQ feedback enable is indicated in the SCI and the SCI is associated with unicast transmission. For each PSFCH resource associated with the PSSCH, if the listen-before-talk LBT failure leads to the failure of sidelink HARQ feedback transmission, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to indicate HARQ feedback enable in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is affirmative acknowledgment ACK and negative acknowledgment NACK.
  • the HARQ feedback mode is affirmative acknowledgment ACK and negative acknowledgment NACK.
  • LBT failure causes the sidelink HARQ feedback transmission failure
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to indicate HARQ feedback enable in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is negative acknowledgement (NACK-only). For each PSFCH resource associated with the PSSCH, if the sidelink HARQ feedback is NACK and the LBT failure causes the sidelink HARQ feedback transmission failure, start or restart the sidelink HARQ RTT timer associated with the sidelink process at the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to start or restart the sidelink HARQ RTT timer associated with the sidelink process in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback, for each PSFCH resource associated with the PSSCH, when HARQ feedback enable is indicated in the SCI and the SCI is associated with unicast transmission, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to start or restart the sidelink HARQ RTT timer associated with the sidelink process in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback, for each PSFCH resource associated with the PSSCH, when HARQ feedback enable is indicated in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to indicate HARQ feedback enable in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is negative acknowledgement (NACK-only). For each PSFCH resource associated with the PSSCH, if the sidelink HARQ feedback is NACK and the sidelink HARQ feedback transmission is successful, start or restart the sidelink HARQ RTT timer associated with the sidelink process in the first time slot at the end of the PSFCH transmission carrying the sidelink HARQ feedback, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the processing module 2501 is further configured to not send sidelink HARQ feedback for a PSFCH resource following a PSFCH resource on which sidelink HARQ feedback is successfully transmitted.
  • processing module 2501 is used to start a side link HARQ RTT timer for the first PSFCH resource that successfully transmits side link HARQ feedback among the PSFCH resources associated with the PSSCH, wherein the side link process is a side link process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used for not starting or restarting the side link HARQ RTT timer associated with the side link process in the first time slot at the end of the PSFCH resource associated with the side link HARQ feedback when HARQ feedback enable is indicated in the SCI and the SCI is associated with unicast transmission, if LBT failure leads to side link HARQ feedback failure, wherein the side link process is a side link process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to indicate HARQ feedback enable in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK. If LBT failure causes side link HARQ feedback failure, the side link HARQ RTT timer associated with the side link process is not started or restarted in the first time slot at the end of the PSFCH resource associated with the side link HARQ feedback, wherein the side link process is the side link process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to indicate that HARQ feedback is enabled in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is negative acknowledgement (NACK-only). If the sidelink HARQ feedback is NACK and the LBT failure causes the sidelink HARQ feedback failure, the sidelink HARQ RTT timer associated with the sidelink process shall not be started or restarted in the first time slot at the end of the PSFCH resource associated with the sidelink HARQ feedback, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • NACK-only negative acknowledgement
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to start the sidelink HARQ RTT timer associated with the sidelink process in the first time slot at the end of the first PSFCH transmission that successfully transmits the sidelink HARQ feedback carrying the sidelink HARQ feedback, for the first PSFCH resource in the PSFCH resources associated with the PSSCH that successfully transmits the sidelink HARQ feedback, when HARQ feedback enable is indicated in the SCI and the SCI is associated with unicast transmission, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to start the sidelink HARQ RTT timer associated with the sidelink process in the first time slot at the end of the PSFCH transmission of the first sidelink HARQ feedback transmission carrying the sidelink HARQ feedback, for the first PSFCH resource in the PSFCH resources associated with the PSSCH that successfully transmits the sidelink HARQ feedback, when the HARQ feedback enable is indicated in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to indicate HARQ feedback enable in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is negative acknowledgement (NACK-only). If the sidelink HARQ feedback is NACK, for the first PSFCH resource among the PSFCH resources associated with the PSSCH that successfully transmits the sidelink HARQ feedback, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the first PSFCH transmission that successfully transmits the sidelink HARQ feedback and carries the sidelink HARQ feedback, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the processing module 2501 is further used to continue sending sidelink HARQ feedback or not send sidelink HARQ feedback for the PSFCH resources after the PSFCH resources on which the sidelink HARQ feedback is successfully transmitted.
  • processing module 2501 is used to start a sidelink HARQ RTT timer associated with a sidelink process in the first time slot at the end of the last PSFCH resource associated with the PSSCH when LBT failure occurs in all PSFCH resources associated with the PSSCH, wherein the sidelink process is a sidelink process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to start the side link HARQ RTT timer associated with the side link process in the first time slot at the end of the last PSFCH resource associated with the PSSCH, when HARQ feedback enable is indicated in the SCI and the SCI is associated with unicast transmission, if LBT failure occurs in all PSFCH resources associated with the PSSCH, wherein the side link process is a side link process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to indicate HARQ feedback enable in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is ACK and NACK. If LBT failure occurs in all PSFCH resources associated with the PSSCH, the side link HARQ RTT timer associated with the side link process is started in the first time slot at the end of the last PSFCH resource associated with the PSSCH, wherein the side link process is the side link process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to indicate HARQ feedback enable in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is negative acknowledgement (NACK-only). If the sidelink HARQ feedback is NACK and all PSFCH resources associated with the PSSCH have LBT failures, the sidelink HARQ RTT timer associated with the sidelink process is started in the first time slot at the end of the last PSFCH resource associated with the PSSCH, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to indicate HARQ feedback enable in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is negative acknowledgement (NACK-only). If the sidelink HARQ feedback is ACK, start or restart the sidelink HARQ RTT timer associated with the sidelink process in the first time slot at the end of each PSFCH resource associated with the PSSCH, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to indicate that HARQ feedback is enabled in the SCI and the SCI is associated with multicast transmission and the HARQ feedback mode is NACK-only. If the sidelink HARQ feedback is ACK, start or restart the sidelink HARQ RTT timer associated with the sidelink process in the first time slot at the end of the first or last PSFCH resource associated with the PSSCH, wherein the sidelink process is the sidelink process associated with the PSSCH.
  • the communication device further includes:
  • the transceiver module 2502 is used to obtain the side link control information SCI associated with the PSSCH;
  • Processing module 2501 is used to start or restart the side link HARQ RTT timer associated with the side link process in the first time slot at the end of each PSFCH resource associated with the PSSCH when HARQ feedback disabling is indicated in the SCI and retransmission resources are not indicated in the SCI, wherein the side link process is a side link process associated with the PSSCH.
  • the terminal device can determine the PSFCH resources associated with the PSSCH, and start or restart the sidelink HARQ RTT timer for the PSFCH resources associated with the PSSCH, so that when multiple PSFCH resources are introduced, the HARQ RTT timer can be started or restarted.
  • Figure 26 is a schematic diagram of the structure of another communication device provided in an embodiment of the present disclosure.
  • the communication device 2600 can be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the communication device 2600 may include one or more processors 2601.
  • the processor 2601 may be a general-purpose processor or a dedicated processor, etc.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal device, a terminal device chip, a DU or a CU, etc.), execute a computer program, and process the data of the computer program.
  • the communication device 2600 may further include one or more memories 2602, on which a computer program 2604 may be stored, and the processor 2601 executes the computer program 2604 so that the communication device 2600 performs the method described in the above method embodiment.
  • data may also be stored in the memory 2602.
  • the communication device 2600 and the memory 2602 may be provided separately or integrated together.
  • the communication device 2600 may further include a transceiver 2605 and an antenna 2606.
  • the transceiver 2605 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 2605 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication device 2600 may further include one or more interface circuits 2607.
  • the interface circuit 2607 is used to receive code instructions and transmit them to the processor 2601.
  • the processor 2601 runs the code instructions to enable the communication device 2600 to perform the method described in the above method embodiment.
  • the communication device 2600 is a terminal device: the processor 2601 is used to execute step 201, step 202, etc. in Figure 2.
  • the processor 2601 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or, the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 2601 may store a computer program 2603, which runs on the processor 2601 and enables the communication device 2600 to perform the method described in the above method embodiment.
  • the computer program 2603 may be fixed in the processor 2601, in which case the processor 2601 may be implemented by hardware.
  • the communication device 2600 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the present disclosure may be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver may also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal oxide semiconductor
  • PMOS P-type metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 26.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and computer programs;
  • ASIC such as modem
  • the communication device can be a chip or a chip system
  • the communication device can be a chip or a chip system
  • the schematic diagram of the chip structure shown in Figure 27 includes a processor 2701 and an interface 2703.
  • the number of processors 2701 can be one or more, and the number of interfaces 2703 can be multiple.
  • Interface 2703 is used to execute step 402 in FIG. 4 , step 502 in FIG. 5 , etc.
  • the chip 2700 further includes a memory 2702, and the memory 2702 is used to store necessary computer programs and data.
  • the present disclosure also provides a readable storage medium having instructions stored thereon, which implement the functions of any of the above method embodiments when executed by a computer.
  • the present disclosure also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the computer program product includes one or more computer programs.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • At least one in the present disclosure may also be described as one or more, and a plurality may be two, three, four or more, which is not limited in the present disclosure.
  • the technical features in the technical feature are distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc., and there is no order of precedence or size between the technical features described by the "first”, “second”, “third”, “A”, “B”, “C” and “D”.
  • the corresponding relationships shown in the tables in the present disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by the present disclosure.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables can also use other names that can be understood by the communication device, and the values or representations of the parameters can also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种侧行链路HARQ RTT定时器的启动或重启方法及装置,可以应用于移动通信技术,该方法包括:确定物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH资源;对PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器。该方法可以实现在引入多个PSFCH资源时,对HARQ RTT定时器进行启动或重启。

Description

一种侧行链路HARQ RTT定时器的启动或重启方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种侧行链路HARQ RTT定时器的启动或重启方法及装置。
背景技术
非连续接收(discontinuous reception,DRX)中支持侧行链路混合自动重传请求往返时间(hybrid automatic repeat request round-trip time,HARQ RTT)定时器,侧行链路HARQ RTT定时器运行期间,如果终端设备没有其他让终端设备处于激活的定时器在运行,终端设备可以进入睡眠状态。
发明内容
本公开第一方面实施例提供了一种侧行链路HARQ RTT定时器的启动或重启方法,该方法包括:
确定物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH资源;
对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器。
本公开第二方面实施例提供了另一种通信装置,包括:
处理模块,用于确定物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH资源;对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器。
本公开第三方面实施例提供了一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
本公开第四方面实施例提供了一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
本公开第五方面实施例提供了另一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
本公开第六面实施例提供了一种计算机可读存储介质,用于储存为上述通信装置所用的指令,当所述指令被执行时,使所述通信装置执行上述第一方面所述的方法。
本公开第七方面实施例还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
本公开第八方面实施例提供了一种芯片***,该芯片***包括至少一个处理器和接口,用于支持通信装置实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存通信装置必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
本公开第九方面实施例还提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1为本公开实施例提供的一种通信***的架构示意图;
图2为本公开实施例提供的一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图3为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图4为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图5为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图6为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图7为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图8为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图9为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图10为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图11为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图12为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图13为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图14为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图15为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图16为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图17为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图18为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图19为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图20为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图21为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图22为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图23为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图24为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图;
图25为本公开实施例提供的一种通信装置的结构示意图;
图26为本公开实施例提供的另一种通信装置的结构示意图;
图27是本公开实施例提供的芯片的结构示意图。
具体实施方式
为了更好的理解本公开实施例公开的一种侧行链路HARQ RTT定时器的启动或重启方法,下面首先对本公开实施例适用的通信***进行描述。
请参见图1,图1为本公开实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备、和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备11、和一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safey)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
DRX中支持侧行链路HARQ RTT定时器,侧行链路HARQ RTT定时器运行期间,如果终端设备没有其他让终端设备处于激活的定时器在运行,终端设备可以进入睡眠状态。
在侧行链路通信中,一个物理侧行链路共享信道(physical sidelinkshared channel,PSSCH)可能关联多个物理侧行链路反馈信道(physical sidelinkfeedback channel,PSFCH)资源。
本公开中,终端设备可以确定PSSCH关联的PSFCH资源,对PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器,从而可以实现在引入多个PSFCH资源时,对HARQ RTT定时器进行启动或重启。
下面结合附图对本公开所提供的一种侧行链路HARQ RTT定时器的启动或重启方法及装置进行详细地介绍。
请参见图2,图2为本公开实施例提供的一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤201,确定PSSCH关联的PSFCH资源。
本公开中,可以对终端设备配置PSSCH关联的PSFCH资源,由此,在侧行链路通信过程中,终端设备可以根据PSFCH资源的配置情况,确定PSSCH关联的PSFCH资源。
本公开中,一个PSSCH可以关联一个或者多个PSFCH资源。
步骤202,对PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器。
本公开中,针对PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQ RTT定时器,也可以在HARQ反馈成功的PSFCH资源传输结尾启动或重启侧行链路HARQ RTT定时器等。
可选的,针对PSSCH关联的PSFCH资源,在进行HARQ反馈之前进行(listen before talk,LBT)失败检测,如果LBT失败导致HARQ反馈传输失败,可以启动或重启侧行链路HARQ RTT定时器。比如,某PSFCH资源因LBT失败导致HARQ反馈传输失败,那么可以在该PSFCH资源结尾的第一个时隙启动HARQ RTT定时器。
需要说明的是,本公开中,终端设备不进行确定PSSCH关联的PSFCH资源的步骤,也可以直接对PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,对PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器,从而可以实现在引入多个PSFCH资源时,对HARQ RTT定时器进行启动或重启。
请参见图3,图3为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤301,确定PSSCH关联的PSFCH资源。
本公开中,步骤301可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤302,对PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQRTT定时器。
本公开中,PSSCH可以关联一个或者多个PSFCH资源,可以对PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQRTT定时器,也就是针对PSSCH关联的每个PSFCH资源,在进行HARQ反馈之前进行LBT失败检测,HARQ反馈传输成功或LBT失败导致HARQ反馈传输失败,都对PSFCH资源启动或者重启侧行链路HARQRTT定时器。本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并对PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQRTT定时器,从而可以增加终端设备处于睡眠状态的时长,节省资源。
请参见图4,图4为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤401,确定PSSCH关联的PSFCH资源。
本公开中,步骤401可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤402,获取PSSCH关联的侧行链路控制信息SCI。
本公开中,接收端终端设备可以从发送端终端设备获取PSSCH关联的侧行链路控制信息(sidelinkcontrol information,SCI)。
其中,SCI中可以包括对PSSCH的HARQ反馈使能或HARQ反馈去使能指示、传输方式的指示等信息。其中,HARQ反馈使能是指需要对PSSCH进行HARQ反馈,HARQ反馈去使能是指对PSSCH不进行HARQ反馈。
步骤403,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,针对PSSCH关联的每个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,可以针对PSSCH关联的每个PSFCH资源,在HARQ反馈之前进行LBT失败检测,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联2个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于该PSSCH关联的第一个PSFCH资源,在HARQ反馈之前进行LBT失败检测,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在第一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源进行HARQ反馈,在HARQ反馈之前进行LBT失败检测,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在第二个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,针对PSSCH关联的每个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以增加终端设备处于睡眠状态的时长,节省资源。
请参见图5,图5为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤501,确定PSSCH关联的PSFCH资源。
步骤502,获取PSSCH关联的SCI。
本公开中,步骤501-步骤502可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤503,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为肯定应答ACK和否定应答NACK的情况下,针对PSSCH关联的每个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,针对组播传输的HARQ反馈模式可以包括肯定应答ACK和否定应答NACK(positive-negativeacknowledgement)和仅否定应答NACK-only(negative-only acknowledgement)。
其中,ACK和NACK模式是指HARQ反馈既可以携带ACK也可以携带NACK;NACK-only模式是HARQ反馈只可以携带NACK。
本公开中,在针对组播传输进行HARQ反馈时所用的HARQ反馈模式可以由终端设备根据条件自己选择。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,针对PSSCH关联的每个PSFCH资源,在HARQ反馈之前进行LBT失败检测,如果LBT失败导致侧行链路HARQ反馈传输失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQRTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,针对PSSCH关联的每个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以增加终端设备处于睡眠状态的时长,节省资源。
请参见图6,图6为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤601,确定PSSCH关联的PSFCH资源。
步骤602,获取PSSCH关联的SCI。
本公开中,步骤601-步骤602可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤603,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈为NACK且LBT失败导致侧行链路HARQ反馈传输失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK,针对PSSCH关联的每个PSFCH资源,在HARQ反馈之前进行LBT失败检测,如果LBT失败导致侧行链路HARQ反馈传输失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈为NACK且LBT失败导致侧行链路HARQ反馈传输失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以增加终端设备处于睡眠状态的时长,节省资源。
请参见图7,图7为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤701,确定PSSCH关联的PSFCH资源。
步骤702,获取PSSCH关联的SCI。
本公开中,步骤701-步骤702可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤703,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈传输成功,在携带侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈传输成功,那么可以在携带侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,针对PSSCH关联的每个PSFCH资源,在进行HARQ反馈进行LBT失败检测,如果LBT成功,那么发送HARQ反馈,LBT成功可以认为侧行链路HARQ反馈传输成功,可以在携带侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
比如,某PSSCH共关联2个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于该PSSCH关联的第一个PSFCH资源,如果侧行链路HARQ反馈传输成功,那么在第一个PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源进行HARQ反馈,如果侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,如果LBT失败导致侧行链路HARQ反馈传输失败,可以在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于该PSSCH关联的第一个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在第一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源进行HARQ反馈,如果侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,之后第三个PSFCH资源进行HARQ反馈,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在第三个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于HARQ反馈传输成功的PSFCH资源之前的每个PSFCH资源可以启动或重启侧行链路HARQ RTT定时器,对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源可以不发送侧行链路HARQ反馈,从而可以节省资源。
比如,某PSSCH共关联4个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于该PSSCH关联的第一个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输 失败,那么在第一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源进行HARQ反馈,如果侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,之后第三个PSFCH资源和第四个PSFCH资源不发送侧行链路HARQ反馈,进而也不在第三和第四个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈传输成功,在携带侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以增加终端设备处于睡眠状态的时长,节省资源。
请参见图8,图8为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤801,确定PSSCH关联的PSFCH资源。
步骤802,获取PSSCH关联的SCI。
本公开中,步骤801-步骤802可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤803,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈传输成功,在携带侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈传输成功,那么可以在携带侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联2个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于该PSSCH关联的第一个PSFCH资源,如果侧行链路HARQ反馈传输成功,那么在第一个PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源进行HARQ反馈,如果侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果LBT失败导致侧行链路HARQ反馈传输失败,可以在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于该PSSCH关联的第一个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在第一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源进行HARQ反馈,如果侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,之后第三个PSFCH资源进行HARQ反馈,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在第三个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于HARQ反馈传输成功的PSFCH资源之前的每个PSFCH资源可以启动或重启侧行链路HARQ RTT定时器,对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源可以不发送侧行链路HARQ反馈,从而可以节省资源。
比如,某PSSCH共关联4个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于该PSSCH关联的第一个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在第一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源进行HARQ反馈,如果侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,之后第三个PSFCH资源和第四个PSFCH资源不发送侧行链路HARQ反馈,进而也不在第三和第四个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈传输成功,在携带侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以增加终端设备处于睡眠状态的时长,节省资源。
请参见图9,图9为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤901,确定PSSCH关联的PSFCH资源。
步骤902,获取PSSCH关联的SCI。
本公开中,步骤901-步骤902可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤903,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈为NACK且侧行链路HARQ反馈传输成功,在携带侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈为NACK且侧行链路HARQ反馈传输成功,那么可以在携带侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行 链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联2个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果HARQ反馈为NACK,对于该PSSCH关联的第一个PSFCH资源,如果侧行链路HARQ反馈传输成功,那么在第一个PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源进行HARQ反馈,如果侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果HARQ反馈为NACK且LBT失败导致侧行链路HARQ反馈传输失败,可以在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果HARQ反馈为NACK,对于该PSSCH关联的第一个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在第一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源进行HARQ反馈,如果侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,之后第三个PSFCH资源进行HARQ反馈,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在第三个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果HARQ反馈为NACK,对于HARQ反馈传输成功的PSFCH资源之前的每个PSFCH资源可以启动或重启侧行链路HARQ RTT定时器,对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源可以不发送侧行链路HARQ反馈,从而可以节省资源。
比如,某PSSCH共关联4个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果HARQ反馈为NACK,对于该PSSCH关联的第一个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,那么在第一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源进行HARQ反馈,如果侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,之后第三个PSFCH资源和第四个PSFCH资源不发送侧行链路HARQ反馈,进而也不在第三和第四个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,针对PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈为NACK且侧行链路HARQ反馈传输成功,在携带侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以增加终端设备处于睡眠状态的时长,节省资源。
请参见图10,10为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤1001,确定PSSCH关联的PSFCH资源。
本公开中,步骤1001可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1002,对PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器。
本公开中,对PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器。
比如,某PSSCH共关联3个PSFCH资源,对于PSSCH关联的第一个PSFCH资源LBT失败导致HARQ反馈传输失败,第二个PSFCH资源将侧行链路HARQ反馈传输成功,那么对第二个PSFCH资源启动侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并对PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQ RTT定时器的启动次数,实现简单。
请参见图11,图11为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤1101,确定PSSCH关联的PSFCH资源。
步骤1102,获取PSSCH关联的SCI。
本公开中,步骤1101-步骤1102可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1103,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,如果LBT失败导致侧行链路HARQ反馈失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,如果LBT失败导致侧行链路HARQ反馈失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙可以不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于PSSCH关联的第一个PSFCH资源LBT失败导致HARQ反馈传输失败,在第一个PSFCH资源结尾的第一个时隙可以不启动侧行链路进程关联的侧行链路HARQRTT定时器,之后第二个PSFCH资源HARQ反馈,若LBT失败导致HARQ反馈传输失败,在第二个PSFCH资源结尾的第一个时隙可以不启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在 SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,如果LBT失败导致侧行链路HARQ反馈失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQ RTT定时器的启动次数,实现简单。
请参见图12,图12为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图12所示,该方法可以包括但不限于如下步骤:
步骤1201,确定PSSCH关联的PSFCH资源。
步骤1202,获取PSSCH关联的SCI。
本公开中,步骤1201-步骤1202可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1203,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果LBT失败导致侧行链路HARQ反馈失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果LBT失败导致侧行链路HARQ反馈失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙可以不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于PSSCH关联的第一个PSFCH资源LBT失败导致HARQ反馈传输失败,在第一个PSFCH资源结尾的第一个时隙可以不启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源HARQ反馈,若LBT失败导致HARQ反馈传输失败,在第二个PSFCH资源结尾的第一个时隙可以不启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果LBT失败导致侧行链路HARQ反馈失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQ RTT定时器的启动次数,实现简单。
请参见图13,图13为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图13所示,该方法可以包括但不限于如下步骤:
步骤1301,确定PSSCH关联的PSFCH资源。
步骤1302,获取PSSCH关联的SCI。
本公开中,步骤1301-步骤1302可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1303,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK且LBT失败导致侧行链路HARQ反馈失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK且LBT失败导致侧行链路HARQ反馈失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙可以不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果侧行链路HARQ反馈为NACK,对于PSSCH关联的第一个PSFCH资源LBT失败导致HARQ反馈传输失败,在第一个PSFCH资源结尾的第一个时隙可以不启动侧行链路进程关联的侧行链路HARQ RTT定时器,之后第二个PSFCH资源HARQ反馈,若LBT失败导致HARQ反馈传输失败,在第二个PSFCH资源结尾的第一个时隙可以不启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK且LBT失败导致侧行链路HARQ反馈失败,在侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQRTT定时器的启动次数,实现简单。
请参见图14,图14为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图14所示,该方法可以包括但不限于如下步骤:
步骤1401,确定PSSCH关联的PSFCH资源。
步骤1402,获取PSSCH关联的SCI。
本公开中,步骤1401-步骤1402可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1403,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于PSSCH关联的第一个PSFCH资源LBT失败导致HARQ反馈传输失败,第二个PSFCH资源将侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于第一个将侧行链路HARQ反馈传输成功的PSFCH资源之前的PSFCH资源,可不启动侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源可以继续发送侧行链路HARQ反馈或者不发送侧行链路HARQ反馈。
可选的,对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源可以继续发送侧行链路HARQ反馈,可以仅对HARQ反馈传输成功的PSFCH资源重启侧行链路HARQ RTT定时器,也可以是不管HARQ反馈传输成功还是失败均重启侧行链路HARQ RTT定时器。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于PSSCH关联的第一个PSFCH资源LBT失败导致HARQ反馈传输失败,在第一个PSFCH资源结尾的第一个时隙不启动侧行链路进程关联的侧行链路HARQRTT定时器,第二个PSFCH资源将侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。之后,第三个PSFCH资源进行HARQ反馈,如果LBT失败导致HARQ反馈传输失败,在第三个PSFCH资源结尾的第一个时隙不重启侧行链路进程关联的侧行链路HARQ RTT定时器,或者在第三个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,或者第三PSFCH资源不发送HARQ反馈。如果第三个PSFCH资源HARQ反馈传输成功,可以在第三个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQ RTT定时器的启动次数,实现简单。
请参见图15,图15为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图15所示,该方法可以包括但不限于如下步骤:
步骤1501,确定PSSCH关联的PSFCH资源。
步骤1502,获取PSSCH关联的SCI。
本公开中,步骤1501-步骤1502可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1503,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于PSSCH关联的第一个PSFCH资源LBT失败导致HARQ反馈传输失败,第二个PSFCH资源将侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于第一个将侧行链路HARQ反馈传输成功的PSFCH资源之前的PSFCH资源,可以不启动侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源可以继续发送侧行链路HARQ反馈或者不发送侧行链路HARQ反馈。
可选的,对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源可以继续发送侧行链路HARQ反馈,可以仅对HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,也可以是不管HARQ反馈传输成功还是失败均启动侧行链路HARQ RTT定时器。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于PSSCH关联的第一个PSFCH资源LBT失败导致HARQ反馈传输失败,在第一个PSFCH资源结尾的第一个时隙不启动侧行链路进程关联的侧行链路HARQ RTT定时器,第二个PSFCH资源将侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。之后,第三个PSFCH资源进行HARQ反馈,如果LBT失败导致HARQ反馈传输失败,在第三个PSFCH资源结尾的第一个时隙不重启侧行链路进程关联的侧行链路HARQ RTT定时器,或者在第三个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,或者第三PSFCH资源不发送HARQ反馈。如果第三个PSFCH资源HARQ反馈传输成功,可以在第三个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQ RTT定时器的启动次数,实现简单。
请参见图16,图16为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图16所示,该方法可以包括但不限于如下步骤:
步骤1601,确定PSSCH关联的PSFCH资源。
步骤1602,获取PSSCH关联的SCI。
本公开中,步骤1601-步骤1602可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1603,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK,对于PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK,对PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK,对于PSSCH关联的第一个PSFCH资源LBT失败导致HARQ反馈传输失败,第二个PSFCH资源将侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK,对于第一个将侧行链路HARQ反馈传输成功的PSFCH资源之前的PSFCH资源,可以不启动侧行链路HARQ RTT定时器。
可选的,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK,对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源可以继续发送侧行链路HARQ反馈或者不发送侧行链路HARQ反馈。
可选的,对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源可以继续发送侧行链路HARQ反馈,可以仅对HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,也可以是不管HARQ反馈传输成功还是失败均启动侧行链路HARQ RTT定时器。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK,对于PSSCH关联的第一个PSFCH资源LBT失败导致HARQ反馈传输失败,在第一个PSFCH资源结尾的第一个时隙不启动侧行链路进程关联的侧行链路HARQ RTT定时器,第二个PSFCH资源将侧行链路HARQ反馈传输成功,那么在第二个PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。之后,第三个PSFCH资源进行HARQ反馈,如果LBT失败导致HARQ反馈传输失败,在第三个PSFCH资源结尾的第一个时隙不重启侧行链路进程关联的侧行链路HARQ RTT定时器,或者在第三个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,或者第三PSFCH资源不发送HARQ反馈。如果第三个PSFCH资源HARQ反馈传输成功,可以在第三个PSFCH传输结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK,对于PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQ RTT定时器的启动次数,实现简单。
请参见图17,图17为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图17所示,该方法可以包括但不限于如下步骤:
步骤1701,确定PSSCH关联的PSFCH资源。
本公开中,步骤1701可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1702,在PSSCH关联的所有PSFCH资源都发生了LBT失败的情况下,在PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,对于PSSCH关联的PSFCH资源,在HARQ反馈之前进行LBT检测,如果所有PSFCH资源都发生了LBT失败,那么可以在PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程可以是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,对该PSSCH关联的第一个PSFCH资源,在HARQ反馈之前进行LBT检测,如果LBT失败,那么由第二个PSFCH资源进行HARQ反馈,在第二个PSFCH资源HARQ反馈之前进行LBT检测,如果LBT失败,由第三个PSFCH资源进行HARQ反馈,在第三个PSFCH资源HARQ反馈之前进行LBT检测,如果LBT失败,那么在第三个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,在PSSCH关联的所有PSFCH资源都发生了LBT失败的情况下,在PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQ RTT定时器的启动次数,实现简单。
请参见图18,图18为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图18所示,该方法可以包括但不限于如下步骤:
步骤1801,确定PSSCH关联的PSFCH资源。
步骤1802,获取PSSCH关联的SCI。
本公开中,步骤1801-步骤1802可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1803,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,如果PSSCH关联的所有PSFCH资源都发生了LBT失败,在PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启 动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对于PSSCH关联的PSFCH资源,在HARQ反馈之前进行LBT检测,如果所有PSFCH资源都发生了LBT失败,那么可以在PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程可以是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,对该PSSCH关联的第一个PSFCH资源,在HARQ反馈之前进行LBT检测,如果LBT失败,那么由第二个PSFCH资源进行HARQ反馈,在第二个PSFCH资源HARQ反馈之前进行LBT检测,如果LBT失败,由第三个PSFCH资源进行HARQ反馈,在第三个PSFCH资源HARQ反馈之前进行LBT检测,如果LBT失败,那么在第三个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,如果PSSCH关联的所有PSFCH资源都发生了LBT失败,在PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQ RTT定时器的启动次数,实现简单。
请参见图19,图19为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图19所示,该方法可以包括但不限于如下步骤:
步骤1901,确定PSSCH关联的PSFCH资源。
步骤1902,获取PSSCH关联的SCI。
本公开中,步骤1901-1902可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤1903,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果PSSCH关联的所有PSFCH资源都发生了LBT失败,在PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,侧行链路进程是与PSSCH关联的侧行链路进程。
本公开中,对于SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况,如果PSSCH关联的所有PSFCH资源都发生了LBT失败,启动侧行链路HARQ RTT定时器的方法,可以参见上述实施例中在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,PSSCH关联的所有PSFCH资源都发生了LBT失败,启动侧行链路HARQRTT定时器的方法,故在此不再赘述。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果PSSCH关联的所有PSFCH资源都发生了LBT失败,在PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQ RTT定时器的启动次数,实现简单。
请参见图20,图20为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图20所示,该方法可以包括但不限于如下步骤:
步骤2001,确定PSSCH关联的PSFCH资源。
步骤2002,获取PSSCH关联的SCI。
本公开中,步骤2001-2002可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤2003,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK且PSSCH关联的所有PSFCH资源都发生了LBT失败,在PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,侧行链路进程是与PSSCH关联的侧行链路进程。
本公开中,对于SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况,如果侧行链路HARQ反馈为NACK且PSSCH关联的所有PSFCH资源都发生了LBT失败,启动侧行链路HARQ RTT定时器的方法,可以参见上述实施例中在SCI中指示HARQ反馈使能及SCI关联的是单播传输的情况下,PSSCH关联的所有PSFCH资源都发生了LBT失败,启动侧行链路HARQ RTT定时器的方法,故在此不再赘述。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为NACK且PSSCH关联的所有PSFCH资源都发生了LBT失败,在PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQRTT定时器的启动次数,实现简单。
请参见图21,图21为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图21所示,该方法可以包括但不限于如下步骤:
步骤2101,确定PSSCH关联的PSFCH资源。
步骤2102,获取PSSCH关联的SCI。
本公开中,步骤2101-步骤2102可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤2103,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为ACK,在PSSCH关联的每个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为ACK,则不需要发送HARQ反馈,可以在PSSCH关联的每个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQRTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传 输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为ACK,在该PSSCH关联的第一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,在第二个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,在第三个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为ACK,在PSSCH关联的每个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以增加终端设备处于睡眠状态的时长,节省资源。
请参见图22,图22为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图22所示,该方法可以包括但不限于如下步骤:
步骤2201,确定PSSCH关联的PSFCH资源。
步骤2202,获取PSSCH关联的SCI。
本公开中,步骤2201-步骤2202可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤2203,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为ACK,在PSSCH关联的第一个或最后一个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为ACK,则不需要发送HARQ反馈,可以在PSSCH关联的第一个或最后一个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为ACK,在该PSSCH关联的第一个PSFCH资源或者第三个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQRTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈使能及SCI关联的是组播传输且HARQ反馈模式为NACK-only的情况下,如果侧行链路HARQ反馈为ACK,在PSSCH关联的第一个或最后一个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQ RTT定时器的启动次数,实现简单。
请参见图23,图23为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图23所示,该方法可以包括但不限于如下步骤:
步骤2301,确定PSSCH关联的PSFCH资源。
步骤2302,获取PSSCH关联的SCI。
本公开中,步骤2301-步骤2302可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤2303,在SCI中指示HARQ反馈去使能且SCI中未指示重传资源的情况下,在PSSCH关联的每个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,如果SCI中指示HARQ反馈去使能,说明终端设备对PSSCH不用进行HARQ反馈。
本公开中,如果SCI中指示HARQ反馈去使能且SCI中未指示重传资源,那么可以在PSSCH关联的每个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,如果SCI中指示HARQ反馈去使能且SCI中未指示重传资源,可以在第一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,在第二个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器,第三个PSFCH资源结尾的第一个时隙重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈去使能且SCI中未指示重传资源的情况下,在PSSCH关联的每个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQRTT定时器,从而可以增加终端设备处于睡眠状态的时长,节省资源。
请参见图24,图24为本公开实施例提供的另一种侧行链路HARQ RTT定时器的启动或重启方法的流程示意图,该方法由终端设备执行。如图24所示,该方法可以包括但不限于如下步骤:
步骤2401,确定PSSCH关联的PSFCH资源。
步骤2402,获取PSSCH关联的SCI。
本公开中,步骤2401-步骤2402可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤2403,在SCI中指示HARQ反馈去使能且SCI中未指示重传资源的情况下,在PSSCH关联的第一个或最后一个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开中,如果SCI中指示HARQ反馈去使能且SCI中未指示重传资源,那么可以在PSSCH关联的第一个或最后一个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。其中,侧行链路进程是与PSSCH关联的侧行链路进程。
比如,某PSSCH共关联3个PSFCH资源,如果SCI中指示HARQ反馈去使能且SCI中未指示重传资源,可以在该PSSCH关联的第一个PSFCH资源或者第三个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,并获取PSSCH关联的SCI,在SCI中指示HARQ反馈去使能且SCI中未指示重传资源的情况下,在PSSCH关联的第一个或最后一个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,从而可以减少侧行链路HARQRTT定时器的启动次数,实现简单。
为了便于理解本公开的侧行链路HARQ RTT定时器的启动或重启方法,下面结合下述实施例进行 说明。
一、不考虑LBT的结果,终端在PSSCH关联的每个PSFCH资源都启动或重启侧行链路HARQ RTT定时器。
在HARQ反馈使能并且该SCI关联的是单播,或者HARQ反馈使能、该SCI关联的是组播且HARQ反馈模式为ACK和NACK,或者HARQ反馈使能、该SCI关联的是组播、HARQ反馈模式为NACK-only且HARQ反馈为NACK的情况下:
如果LBT失败造成HARQ反馈发送失败,在这个侧行链路HARQ反馈关联的PSFCH资源结尾的第一个slot(时隙)/symbol(符号)启动或重启这个侧行链路process关联的侧行链路HARQ RTT定时器。
如果LBT成功,在携带这个侧行链路HARQ反馈的PSFCH传输结尾的第一个slot/symbol启动或重启这个侧行链路进程关联的侧行链路HARQ RTT定时器。其中,LBT成功,后续的PSFCH资源可以不再继续发送HARQ反馈,或者LBT成功后续的PSFCH资源继续发送HARQ反馈。
二、终端在PSSCH关联的第一个HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器
实施例:在HARQ反馈使能并且该SCI关联的是单播,或者HARQ反馈使能、该SCI关联的是组播且HARQ反馈模式为ACK和NACK,或者HARQ反馈使能、该SCI关联的是组播、HARQ反馈模式为NACK-only且HARQ反馈为NACK的情况下:
如果LBT失败,在这个侧行链路HARQ反馈关联的PSFCH资源结尾的第一个slot/symbol不启动或重启这个侧行链路进程关联的侧行链路HARQ RTT定时器。
如果LBT成功,在携带这个侧行链路HARQ反馈的PSFCH传输结尾的第一个slot/symbol启动或重启这个侧行链路进程关联的侧行链路HARQ RTT定时器。其中,LBT成功,后续的PSFCH资源可以不再继续发送HARQ反馈(只在第一次LBT成功的时候启动行链路HARQ RTT定时器)或者,LBT成功,后续的PSFCH资源继续发送HARQ反馈。
三、PSSCH关联的所有PSFCH资源上都发生LBT失败,终端在PSSCH关联的最后一个PSFCH资源启动侧行链路HARQ RTT定时器。
实施例:在HARQ反馈使能并且该SCI关联的是单播,或者HARQ反馈使能、该SCI关联的是组播且HARQ反馈模式为ACK和NACK,或者HARQ反馈使能、该SCI关联的是组播、HARQ反馈模式为NACK-only且HARQ反馈为NACK的情况下:
如果PSSCH关联的所有PSFCH资源上都发生LBT失败,在这个PSSCH关联的最后一个PSFCH资源结尾的第一个slot/symbol启动或重启这个侧行链路进程关联的侧行链路HARQ RTTT定时器。
四、如果HARQ反馈使能,该SCI关联的是组播并且选择的HARQ反馈模式是negative-only acknowledgement,如果这个HARQ反馈是正向确认(positive acknowledgement),在这个侧行链路HARQ反馈关联的每一个PSFCH资源结尾的第一个slot/symbol启动或重启这个侧行链路进程关联的侧行链路HARQ RTT定时器。
五、如果HARQ反馈使能,该SCI关联的是组播并且选择的HARQ反馈模式是negative-only acknowledgement,如果这个HARQ反馈是正向确认(positive acknowledgement),在这个侧行链路HARQ反馈关联的第一个或最后一个PSFCH资源结尾的第一个slot/symbol启动或重启这个侧行链路process关联的侧行链路HARQ RTT定时器。
六、如果HARQ反馈去使能,并且该SCI里没有指示一个或者多个重传资源,在PSSCH关联的每一个PSFCH资源结尾的第一个slot/symbol启动或重启这个侧行链路进程关联的侧行链路HARQ RTT定时器。
七、如果HARQ反馈去使能,并且该SCI里没有指示一个或者多个重传资源,在这个PSSCH关联的第一个或最后一个PSFCH资源结尾的第一个slot/symbol启动或重启这个侧行链路进程关联的侧行链路HARQ RTT定时器。
需要说明的是,本公开中,在启动或重启侧行链路HARQ RTT定时器时,可以是在PSFCH资源结尾或PSFCH传输结尾的第一个时隙启动或重启侧行链路HARQ RTT定时器,也可以是在PSFCH资源结尾或PSFCH传输结尾的第一个symbol符号启动或重启侧行链路HARQ RTT定时器,也可以是在其他粒度启动或重启侧行链路HARQ RTT定时器,本公开对此不作限定。
需要说明的是,本公开中,与PSSCH关联也可以被称为侧行链路授权关联。
请参见图25,图25为本公开实施例提供的一种通信装置的结构示意图。图25所示的通信装置2500可包括处理模块2501和收发模块2502。收发模块2502可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块2502可以实现发送功能和/或接收功能。
可以理解的是,通信装置2500可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置2500在终端设备侧,其中:
处理模块2501,用于确定物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH资源;对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器。
可选的,处理模块2501,用于:
对所述PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQRTT定时器。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是单播传输的情况下,针对所述PSSCH关联的每个PSFCH资源,如果先听后说LBT失败导致侧行链路HARQ反馈传输失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为肯定应答ACK和否定应答NACK的情况下,针对所述PSSCH关联的每个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,在所述侧行链路HARQ反馈关联的PSFCH资源结 尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,针对所述PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈为NACK且LBT失败导致所述侧行链路HARQ反馈传输失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是单播传输的情况下,针对所述PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈传输成功,在携带所述侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,针对所述PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈传输成功,在携带所述侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,针对所述PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈为NACK且所述侧行链路HARQ反馈传输成功,在携带所述侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,处理模块2501,还用于对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源不发送侧行链路HARQ反馈。
可选的,处理模块2501,用于对所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是单播传输的情况下,如果LBT失败导致侧行链路HARQ反馈失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果LBT失败导致侧行链路HARQ反馈失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,如果侧行链路HARQ反馈为NACK且LBT失败导致所述侧行链路HARQ反馈失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是单播传输的情况下,对于所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的所述第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的所述第一个将侧行链路HARQ反馈发送传输的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ 反馈模式为仅否定应答NACK-only的情况下,如果侧行链路HARQ反馈为NACK,对于所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的所述第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,处理模块2501,还用于对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源继续发送侧行链路HARQ反馈或者不发送侧行链路HARQ反馈。
可选的,处理模块2501,用于在所述PSSCH关联的所有PSFCH资源都发生了LBT失败的情况下,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是单播传输的情况下,如果所述PSSCH关联的所有PSFCH资源都发生了LBT失败,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQRTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果所述PSSCH关联的所有PSFCH资源都发生了LBT失败,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,如果侧行链路HARQ反馈为NACK且所述PSSCH关联的所有PSFCH资源都发生了LBT失败,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,如果侧行链路HARQ反馈为ACK,在所述PSSCH关联的每个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅NACK-only的情况下,如果侧行链路HARQ反馈为ACK,在所述PSSCH关联的第一个或最后一个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
可选的,该通信装置还包括:
收发模块2502,用于获取所述PSSCH关联的侧行链路控制信息SCI;
处理模块2501,用于在所述SCI中指示HARQ反馈去使能且所述SCI中未指示重传资源的情况下,在所述PSSCH关联的每个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
本公开实施例中,终端设备可以确定PSSCH关联的PSFCH资源,对PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器,从而可以实现在引入多个PSFCH资源时,对HARQ RTT定时器进行启动或重启。
请参见图26,图26为本公开实施例提供的另一种通信装置的结构示意图。图26中,该通信装置2600可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置2600可以包括一个或多个处理器2601。处理器2601可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置2600中还可以包括一个或多个存储器2602,其上可以存有计算机程序2604,处理器2601执行所述计算机程序2604,以使得通信装置2600执行上述方法实施例中描述的方法。可选的,所述存储器2602中还可以存储有数据。通信装置2600和存储器2602可以单独设置,也可以集成在一起。
可选的,通信装置2600还可以包括收发器2605、天线2606。收发器2605可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器2605可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置2600中还可以包括一个或多个接口电路2607。接口电路2607用于接收代码指令并传输至处理器2601。处理器2601运行所述代码指令以使通信装置2600执行上述方法实施例中描述的方法。
通信装置2600为终端设备:处理器2601用于执行图2中的步骤201、步骤202等。
在一种实现方式中,处理器2601中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者, 上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器2601可以存有计算机程序2603,计算机程序2603在处理器2601上运行,可使得通信装置2600执行上述方法实施例中描述的方法。计算机程序2603可能固化在处理器2601中,该种情况下,处理器2601可能由硬件实现。
在一种实现方式中,通信装置2600可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuitboard,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备,或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图26的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图27所示的芯片的结构示意图。图27所示的芯片2700包括处理器2701和接口2703。其中,处理器2701的数量可以是一个或多个,接口2703的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口2703,用于执行图4中的步骤步骤402;图5中的步骤502等。
可选的,芯片2700还包括存储器2702,存储器2702用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。

Claims (28)

  1. 一种侧行链路混合自动重传请求往返时间HARQ RTT定时器的启动或重启方法,其特征在于,由终端设备执行,包括:
    确定物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH资源;
    对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器。
  2. 如权利要求1所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    对所述PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQRTT定时器。
  3. 如权利要求2所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是单播传输的情况下,针对所述PSSCH关联的每个PSFCH资源,如果先听后说LBT失败导致侧行链路HARQ反馈传输失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  4. 如权利要求2所述的方法,其特征在于,所述对所述PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为肯定应答ACK和否定应答NACK的情况下,针对所述PSSCH关联的每个PSFCH资源,如果LBT失败导致侧行链路HARQ反馈传输失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  5. 如权利要求2所述的方法,其特征在于,所述对所述PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,针对所述PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈为NACK且LBT失败导致所述侧行链路HARQ反馈传输失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  6. 如权利要求2所述的方法,其特征在于,所述对所述PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是单播传输的情况下,针对所述PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈传输成功,在携带所述侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  7. 如权利要求2所述的方法,其特征在于,所述对所述PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,针对所述PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈传输成功,在携带所述侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  8. 如权利要求2所述的方法,其特征在于,所述对所述PSSCH关联的每个PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,针对所述PSSCH关联的每个PSFCH资源,如果侧行链路HARQ反馈为NACK 且所述侧行链路HARQ反馈传输成功,在携带所述侧行链路HARQ反馈的PSFCH传输结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  9. 如权利要求6-8中任一项所述的方法,其特征在于,还包括:
    对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源不发送侧行链路HARQ反馈。
  10. 如权利要求1所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    对所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  11. 如权利要求10所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是单播传输的情况下,如果LBT失败导致侧行链路HARQ反馈失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  12. 如权利要求10所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果LBT失败导致侧行链路HARQ反馈失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  13. 如权利要求10所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,如果侧行链路HARQ反馈为NACK且LBT失败导致所述侧行链路HARQ反馈失败,在所述侧行链路HARQ反馈关联的PSFCH资源结尾的第一个时隙不启动或不重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  14. 如权利要求10所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是单播传输的情况下,对于所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的所述第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  15. 如权利要求10所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,对于所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的所述第一个将侧行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  16. 如权利要求10所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源启动侧行链路HARQ RTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,如果侧行链路HARQ反馈为NACK,对于所述PSSCH关联的PSFCH资源中第一个将侧行链路HARQ反馈传输成功的PSFCH资源,在携带侧行链路HARQ反馈的所述第一个将侧 行链路HARQ反馈传输成功的PSFCH传输结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  17. 如权利要求11-16中任一项所述的方法,其特征在于,还包括:
    对于侧行链路HARQ反馈传输成功的PSFCH资源之后的PSFCH资源继续发送侧行链路HARQ反馈或者不发送侧行链路HARQ反馈。
  18. 如权利要求1所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    在所述PSSCH关联的所有PSFCH资源都发生了LBT失败的情况下,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  19. 如权利要求18所述的方法,其特征在于,所述在所述PSSCH关联的所有PSFCH资源都发生了LBT失败的情况下,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路HARQ RTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是单播传输的情况下,如果所述PSSCH关联的所有PSFCH资源都发生了LBT失败,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  20. 如权利要求18所述的方法,其特征在于,所述在所述PSSCH关联的所有PSFCH资源都发生了LBT失败的情况下,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路HARQ RTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为ACK和NACK的情况下,如果所述PSSCH关联的所有PSFCH资源都发生了LBT失败,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  21. 如权利要求18所述的方法,其特征在于,所述在所述PSSCH关联的所有PSFCH资源都发生了LBT失败的情况下,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路HARQ RTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,如果侧行链路HARQ反馈为NACK且所述PSSCH关联的所有PSFCH资源都发生了LBT失败,在所述PSSCH关联的最后一个PSFCH资源结尾的第一个时隙启动侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  22. 如权利要求1所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅否定应答NACK-only的情况下,如果侧行链路HARQ反馈为ACK,在所述PSSCH关联的每个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  23. 如权利要求1所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈使能及所述SCI关联的是组播传输且HARQ反馈模式为仅NACK-only的情况下,如果侧行链路HARQ反馈为ACK,在所述PSSCH关联的第一个或最后一个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  24. 如权利要求1所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈去使能且所述SCI中未指示重传资源的情况下,在所述PSSCH关联的每个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程。
  25. 如权利要求1所述的方法,其特征在于,所述对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQRTT定时器,包括:
    获取所述PSSCH关联的侧行链路控制信息SCI;
    在所述SCI中指示HARQ反馈去使能且所述SCI中未指示重传资源的情况下,在所述PSSCH关联的第一个或最后一个PSFCH资源结尾的第一个时隙启动或重启侧行链路进程关联的侧行链路HARQ RTT定时器,其中,所述侧行链路进程是与所述PSSCH关联的侧行链路进程
  26. 一种通信装置,其特征在于,包括:
    处理模块,用于确定物理侧行链路共享信道PSSCH关联的物理侧行链路反馈信道PSFCH资源;对所述PSSCH关联的PSFCH资源启动或重启侧行链路HARQ RTT定时器。
  27. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至25所述的方法。
  28. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至25所述的方法被实现。
PCT/CN2022/129105 2022-11-01 2022-11-01 一种侧行链路harq rtt定时器的启动或重启方法及装置 WO2024092532A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129105 WO2024092532A1 (zh) 2022-11-01 2022-11-01 一种侧行链路harq rtt定时器的启动或重启方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129105 WO2024092532A1 (zh) 2022-11-01 2022-11-01 一种侧行链路harq rtt定时器的启动或重启方法及装置

Publications (1)

Publication Number Publication Date
WO2024092532A1 true WO2024092532A1 (zh) 2024-05-10

Family

ID=90929082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129105 WO2024092532A1 (zh) 2022-11-01 2022-11-01 一种侧行链路harq rtt定时器的启动或重启方法及装置

Country Status (1)

Country Link
WO (1) WO2024092532A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022280A1 (en) * 2020-07-16 2022-01-20 FG Innovation Company Limited Method and user equipment for controlling discontinuous reception behavior on multiple radio interfaces
CN114258162A (zh) * 2020-09-21 2022-03-29 维沃移动通信有限公司 非连续接收的配置方法及装置、终端和可读存储介质
WO2022211593A1 (ko) * 2021-04-01 2022-10-06 삼성전자 주식회사 무선 통신 시스템에서 사이드링크의 비연속적 수신을 지원하기 위한 방법 및 장치
US20220330283A1 (en) * 2021-03-24 2022-10-13 Lg Electronics Inc. Method and apparatus for receiving ue to perform power saving operation based on psfch in nr v2x
CN115190439A (zh) * 2021-04-01 2022-10-14 华为技术有限公司 侧行链路通信方法及装置
CN115209558A (zh) * 2021-04-01 2022-10-18 华为技术有限公司 一种侧行链路的传输方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022280A1 (en) * 2020-07-16 2022-01-20 FG Innovation Company Limited Method and user equipment for controlling discontinuous reception behavior on multiple radio interfaces
CN114258162A (zh) * 2020-09-21 2022-03-29 维沃移动通信有限公司 非连续接收的配置方法及装置、终端和可读存储介质
US20220330283A1 (en) * 2021-03-24 2022-10-13 Lg Electronics Inc. Method and apparatus for receiving ue to perform power saving operation based on psfch in nr v2x
WO2022211593A1 (ko) * 2021-04-01 2022-10-06 삼성전자 주식회사 무선 통신 시스템에서 사이드링크의 비연속적 수신을 지원하기 위한 방법 및 장치
CN115190439A (zh) * 2021-04-01 2022-10-14 华为技术有限公司 侧行链路通信方法及装置
CN115209558A (zh) * 2021-04-01 2022-10-18 华为技术有限公司 一种侧行链路的传输方法及装置

Similar Documents

Publication Publication Date Title
WO2023108657A1 (zh) 一种位置信息的确定方法及其装置
WO2023102743A1 (zh) 接入控制方法及装置
WO2023206034A1 (zh) 混合自动重传请求harq反馈的处理方法及其装置
WO2023231035A1 (zh) 一种非授权频段下传输资源的确定方法及装置
WO2024000531A1 (zh) 一种循环前缀扩展cpe的发送方法及其装置
WO2023230971A1 (zh) 一种多prach传输方法及其装置
WO2023201754A1 (zh) 一种终端设备的移动性管理方法及装置
WO2024092532A1 (zh) 一种侧行链路harq rtt定时器的启动或重启方法及装置
CN118285152A (zh) 一种侧行链路harq rtt定时器的启动或重启方法及装置
WO2024060143A1 (zh) 一种上报方法/装置/设备及存储介质
WO2024000208A1 (zh) 一种定时提前报告tar的触发方法、装置、设备及存储介质
WO2024031373A1 (zh) 一种确定触发连续lbt失败的方法及装置
WO2024138396A1 (zh) 非授权频谱中侧行链路的无线链路失败检测方法及其装置
WO2024130566A1 (zh) 一种反馈方法、装置、设备及存储介质
WO2023240419A1 (zh) 一种接入控制的方法及装置
WO2023122988A1 (zh) 一种定时器同步方法及其装置
WO2024060154A1 (zh) 一种上报方法/装置/设备及存储介质
WO2024000207A1 (zh) 一种定时提前报告tar的触发方法、装置、设备及存储介质
WO2023240515A1 (zh) 一种终端设备节能方法及其装置
WO2024031272A1 (zh) 一种上报方法、装置、设备及存储介质
WO2024031721A1 (zh) 一种调度信令的检测方法及其装置
WO2023245453A1 (zh) 一种消息传输方法/装置/设备及存储介质
WO2024026887A1 (zh) 直连sidelink终端设备间内部协调信息请求的发送方法及其装置
WO2024092622A1 (zh) 一种lbt失败次数的计数方法及装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963850

Country of ref document: EP

Kind code of ref document: A1