WO2024088090A1 - 投影设备及其投影图像的显示方法 - Google Patents

投影设备及其投影图像的显示方法 Download PDF

Info

Publication number
WO2024088090A1
WO2024088090A1 PCT/CN2023/124671 CN2023124671W WO2024088090A1 WO 2024088090 A1 WO2024088090 A1 WO 2024088090A1 CN 2023124671 W CN2023124671 W CN 2023124671W WO 2024088090 A1 WO2024088090 A1 WO 2024088090A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
sub
projection
row
pixels
Prior art date
Application number
PCT/CN2023/124671
Other languages
English (en)
French (fr)
Inventor
陈许
吴凯
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2024088090A1 publication Critical patent/WO2024088090A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present disclosure relates to the field of projection display technology, and in particular to a projection device and a method for displaying a projected image thereof.
  • Laser projection equipment generally includes a laser light source, a light valve, a projection lens, and a projection screen.
  • the laser light source is used to provide a laser beam
  • the light valve is used to modulate the laser beam into an image beam (i.e., the image to be projected)
  • the projection lens is used to project the image beam onto the projection screen.
  • a digital micromirror device is integrated in the light valve.
  • the DMD can modulate the light beam emitted by the light source to obtain the image to be projected.
  • the present disclosure provides a projection device and a method for displaying a projected image thereof, which can solve the problem of low efficiency of DMD modulating image beams in the related art.
  • the technical solution is as follows:
  • a method for displaying a projected image is provided, which is applied to a display control circuit of a projection device, wherein the projection device further comprises a digital micromirror device, wherein the digital micromirror device comprises at least one first micromirror array and at least one second micromirror array; the method comprises:
  • the first display data is transmitted to the at least one first micromirror array
  • the second display data is transmitted to the at least one second micromirror array, so that the digital micromirror device modulates the projection image into an image beam.
  • a projection device comprising a display control circuit and a digital micromirror device, the digital micromirror device comprising at least one first micromirror array and at least one second micromirror array; the display control circuit is used to:
  • the first display data is transmitted to the at least one first micromirror array
  • the second display data is transmitted to the at least one second micromirror array, so that the digital micromirror device modulates the projection image into an image beam.
  • a projection device comprising: a memory, a processor and a computer program stored in the memory, wherein the processor implements the method for displaying a projection image as described in the above aspects when executing the computer program.
  • a computer-readable storage medium in which instructions are stored. The instructions are loaded and executed by a processor to implement the method for displaying a projection image as described in the above aspects.
  • a computer program product comprising instructions is provided.
  • the computer program product is run on a computer, the computer is enabled to execute the method for displaying a projection image as described in the above aspects.
  • FIG1 is a schematic diagram of the structure of a projection system provided by an embodiment of the present disclosure.
  • FIG2 is a schematic diagram of a structural disassembly of a projection device provided by an embodiment of the present disclosure
  • FIG3 is a schematic diagram of an optical engine architecture of a projection device provided by an embodiment of the present disclosure.
  • FIG4 is a schematic diagram of the optical path principle of a projection device provided by an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of a circuit structure of a projection device provided by an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of a DLP projection circuit architecture provided by an embodiment of the present disclosure.
  • FIG7 is a schematic diagram of the structure of another projection device provided by an embodiment of the present disclosure.
  • FIG8 is a schematic flow chart of a method for displaying a projection image provided by an embodiment of the present disclosure
  • FIG9 is a schematic diagram of a projection device displaying a projection image provided by an embodiment of the present disclosure.
  • FIG10 is a schematic flow chart of another method for displaying a projection image provided by an embodiment of the present disclosure.
  • FIG11 is a schematic diagram of a projection device dividing an initial projection image provided by an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of another projection device dividing an initial projection image provided by an embodiment of the present disclosure.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • connection and its derivatives may be used.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that” or “if [a stated condition or event] is detected” are optionally interpreted to mean “upon determining that” or “in response to determining that” or “upon detecting [a stated condition or event]” or “in response to detecting [a stated condition or event],” depending on the context.
  • FIG. 1 is a structural diagram of a projection system according to some embodiments.
  • the projection system 1 includes a projection device 100 and a projection screen 200.
  • the projection screen 200 is arranged close to the projection device 100, and the projection device 100 is an ultra-short-throw projection device.
  • FIG. 2 is a schematic diagram of a disassembled structure of a projection device according to some embodiments.
  • the projection device 100 includes an entire housing 40 (only a portion of the entire housing 40 is shown in FIG2 ), a light source 10 assembled in the entire housing 40, an optical machine 20, and a lens 30.
  • the light source 10 is configured to provide an illumination beam (laser beam).
  • the optical machine 20 is configured to modulate the illumination beam provided by the light source 10 using an image signal to obtain a projection beam.
  • the lens 30 is configured to project the projection beam onto a screen or a wall for imaging.
  • the light source 10, the optical engine 20 and the lens 30 are sequentially connected along the light beam propagation direction, and each is wrapped by a corresponding housing.
  • the housings of the light source 10, the optical engine 20 and the lens 30 support the corresponding optical components and make each optical component meet certain sealing or airtight requirements.
  • FIG3 is a schematic diagram of an optical engine architecture in a projection device according to some embodiments, mainly involving a light path diagram of a light source, an optical machine and a lens.
  • one end of the optical engine 20 is connected to the light source 10, and the light source 10 and the optical engine 20 are arranged along the exit direction of the illumination beam of the projection device 100 (refer to the M direction in FIG3 ).
  • the other end of the optical engine 20 is connected to the lens 30, and the optical engine 20 and the lens 30 are arranged along the exit direction of the projection beam of the projection device 100 (refer to the N direction in FIG3 ).
  • the exit direction M of the illumination beam is substantially perpendicular to the exit direction N of the projection beam.
  • this connection structure can adapt to the optical path characteristics of the reflective light valve in the optical engine 20, and on the other hand, it is also beneficial to shorten the length of the optical path in one dimensional direction, which is beneficial to the structural arrangement of the whole machine.
  • the length of the optical path in this dimensional direction will be very long, which is not conducive to the structural arrangement of the whole machine.
  • the reflective light valve will be described later.
  • the light source 10 can provide three primary colors of light sequentially (or other colors of light can be added on the basis of the three primary colors of light), and due to the persistence of vision of the human eye, the human eye sees white light formed by the mixture of the three primary colors of light.
  • the light source 10 can also output the three primary colors of light at the same time and continuously emit white light.
  • the light source 10 includes a light emitting diode (LED), an electroluminescence (EL) device, a laser, etc. Since the laser beam emitted by the laser has good monochromaticity, high color purity, high brightness and good directionality, the laser is widely used as the light source of the projection device 100.
  • LED light emitting diode
  • EL electroluminescence
  • the projection device 100 with a laser as the light source 10 of the projection device 100 can be called a laser projection device.
  • the laser projection device uses a red laser, a green laser, and a blue laser as the light source,
  • the red laser emits a red laser beam
  • the green laser emits a green laser beam
  • the blue laser emits a blue laser beam.
  • the laser projection device realizes image display through three-color laser beams, which can obtain a larger color gamut and has better color expression.
  • FIG. 4 is another optical path diagram of a light source, an optical engine, and a lens in a projection device according to some embodiments.
  • the illumination beam emitted by the light source 10 enters the optical machine 20.
  • the optical machine 20 includes a light pipe 210, a reflector 220, a lens assembly 230, a prism assembly 240, and a light valve 250.
  • the light pipe 210 can receive the illumination beam provided by the light source 10 and homogenize the illumination beam.
  • the outlet of the light pipe 210 can be rectangular, so as to have a shaping effect on the light spot.
  • the reflector 220 can reflect the illumination beam to the lens assembly 230.
  • the lens assembly 230 can converge the illumination beam to the prism assembly 240.
  • the prism assembly 240 reflects the illumination beam to the light valve 250, and the light valve 250 modulates the illumination beam to obtain a projection beam, and reflects the projection beam to the lens 30.
  • the light pipe 210 can also be replaced by a fly-eye lens or other components with a light homogenization function, and the present disclosure is not limited to this.
  • the light valve 250 modulates the illumination light beam provided by the light source 10 using the image signal, that is, controls the projection light beam to display different brightness and gray scale for different pixels of the image to be displayed, so as to finally form an optical image.
  • the light modulator can be divided into a transmissive light modulator or a reflective light modulator.
  • the digital micromirror device (DMD) 250A shown in FIG. 4 reflects the illumination light beam, which is a reflective light modulator.
  • the liquid crystal light valve transmits the illumination light beam, so it is a transmissive light modulator.
  • the optical machine 20 can be divided into a single-chip system, a dual-chip system, or a three-chip system.
  • the light valve 250 in some embodiments of the present disclosure is a digital micromirror device 250A.
  • FIG6 is a schematic diagram of a control system architecture of a laser projection device provided by an embodiment of the present disclosure.
  • the laser projection device may include: a system mainboard 400, a display panel 300, and a power supply board 500.
  • the power supply board 500 is connected to the system mainboard 400 and the display panel 300, respectively, and is used to power various devices or partial modules on the system mainboard 400 and the display panel 300, and is used to power other functional modules in the laser projection device, such as a human eye protection module, a fan, and a wireless fidelity (wireless-fidelity, WI-FI) module.
  • a laser drive component for driving the laser light source to emit light may also be provided on the power supply board 500.
  • the laser drive component may also be provided independently of the power supply board 500.
  • the system mainboard 400 is also connected to the display panel 300, and the system mainboard 400 is used to receive the image data of the projection image sent by the front-end device, and decode the image data.
  • a system-on-chip (SoC) 101 may be provided on the system mainboard 400.
  • the system-on-chip 101 can decode image data of different data formats into a normalized format, and transmit the image data of the normalized format to the display panel 300.
  • the system mainboard 400 can transmit the image data of the normalized format to the display panel 300 through a connector.
  • the system main board 400 may also be called a television (TV) board.
  • TV television
  • the display panel 300 may be provided with an algorithm processing module field programmable gate array (FPGA).
  • the algorithm processing module FPGA can process the image data of the input projection picture, such as motion estimation and motion compensation (MEMC) frequency multiplication processing or image correction processing.
  • MEMC motion estimation and motion compensation
  • a display control chip 301 may be provided on the display panel 300.
  • the display control chip 301 may be connected to the algorithm processing module FPGA and used to receive the processed image data of the projection picture and use the processed projection picture as the projection picture to be displayed.
  • the display panel 300 may not include the algorithm processing module FPGA.
  • the display control chip 301 may be directly connected to the system mainboard 400 , and the display control chip 301 may directly receive the projection image transmitted by the system mainboard 400 .
  • the display control chip 301 may include a light valve driving chip (not shown in the figure).
  • the light valve driving chip may be a digital light processing (DLP) chip.
  • the DLP chip can output a driving signal to the light source to control the light source to emit light.
  • the driving signal may include an image enable signal and a brightness adjustment signal.
  • the image enable signal may also be referred to as a primary color light enable signal.
  • the primary color light enable signal may be represented by an X_EN table. As shown, X is the abbreviation of different primary color lights.
  • the primary color light enable signal is used to control whether the light source emits light (i.e., whether it is lit) to achieve the control of the light emission timing of multiple light sources of different colors.
  • the brightness adjustment signal can be a pulse width modulation (PWM) signal, which is used to control the light emission brightness of the light source.
  • PWM pulse width modulation
  • a light valve 250 may be further provided on the display panel 300.
  • the light modulator may be a digital micromirror device (DMD), which may also be referred to as a light valve.
  • the display control chip 301 may generate a modulation drive signal for driving the light modulator based on the projection image to be projected and displayed, and may generate a drive signal for driving the light source to emit light. Based on this, the light modulator can modulate the light beam emitted by the light source under the control of the modulation drive signal to obtain an image beam of the projection image.
  • the image beam may be projected onto the projection screen through a projection lens to display the projection image.
  • FIG5 is a schematic diagram of a circuit connection structure of a projection device provided by an embodiment of the present disclosure.
  • the projection device may include: a multimedia processing circuit 310, a display control circuit 320, a light source driving circuit 330, a light source 10, a light valve 250, and a projection lens 60.
  • the multimedia processing circuit may include some circuit functions of the system motherboard 400 shown in FIG6.
  • the display control circuit 320 is located on the display panel 300 shown in FIG6, and includes a display control chip, and may also include a light source driving circuit 330 corresponding to FIG6, so as to drive the light source 10 to emit light, and may also drive the light valve 250 to perform light modulation according to a driving signal corresponding to an image signal.
  • the multimedia processing circuit 310 is connected to the display control circuit 320.
  • the multimedia processing circuit 310 is used to receive the initial projection image through various communication interfaces and process the initial projection image (such as decoding processing, feature extraction, brightness processing, clarity processing, and color processing, etc.). Afterwards, the multimedia processing circuit 310 can transmit the processed initial projection image to the display control circuit 320 in the form of a high-definition digital display interface V-by-one signal.
  • the multimedia processing circuit 310 may include a system on chip (SoC).
  • the display control circuit 320 can decode and convert the format of the received initial projection image, and further process the initial projection image (such as geometric correction processing). Afterwards, the display control circuit 320 can transmit the processed initial projection image to the light valve 250 in the form of display data. In addition, the display control circuit 320 can also output a light source driving signal to the light source driving circuit 330 based on the initial projection image.
  • the display control circuit 320 can include an application processor (application processor, AP) and a digital light processing (digital light processing, DLP) control circuit.
  • the light source driving circuit 330 is used to receive a light source driving signal, and output a driving current to the light source 10 based on the light source driving signal to drive the light source in the light source 10 to emit light.
  • the light source in the light source 10 may be a laser light source.
  • the projection device may be a laser projection device.
  • the light source in the light source 10 may be a light-emitting diode (LED) or other types of light sources.
  • the light valve 250 may be a digital micromirror device (DMD).
  • the DMD can modulate the light beam emitted by the light source 10 based on the received initial projection image to obtain an image light beam.
  • the digital micromirror device may include a plurality of micromirror arrays
  • the display control circuit 320 may include a plurality of DLP control circuits corresponding to the plurality of micromirror arrays.
  • the digital micromirror device may include four micromirror arrays
  • the display control circuit 320 may also include four DLP control circuits corresponding to the four micromirror arrays.
  • each of the multiple DLP control circuits can control a corresponding micromirror array to modulate the image light beam.
  • the first DLP control circuit can control the micromirror array LT to modulate the image light beam
  • the second DLP control circuit can control the micromirror array RT to modulate the image light beam
  • the third DLP control circuit can control the micromirror array LB to modulate the image light beam
  • the fourth DLP control circuit can control the micromirror array RB to modulate the image light beam.
  • the projection device may further include a galvanometer 370.
  • the display control circuit 320 may also control the galvanometer 370 to vibrate, so that the multiple image beams obtained by modulating multiple frames of projection images to be displayed by the digital micromirror device DMD250A are sequentially projected to different positions of the projection plane through the projection lens 60. After the multiple image beams projected to different positions on the projection plane are superimposed and displayed, a target projection image can be formed.
  • the projection plane It can be a projection screen of a projection device, or it can be a wall.
  • the multiple frames of projection images to be displayed can be obtained by processing the initial projection images by the display control circuit.
  • FIG8 is a flow chart of a method for displaying a projected image provided by an embodiment of the present disclosure.
  • the method can be applied to a display control circuit of a projection device, for example, it can be applied to the display control circuit 320 in the projection device shown in FIG5 or FIG7.
  • the projection device includes a light valve 250, which can be a digital micromirror device, and the digital micromirror device includes at least one first micromirror array and at least one second micromirror array.
  • the method includes:
  • Step 101 Divide a projection image to be displayed into a first sub-image group and a second sub-image group arranged along a column direction.
  • the display control circuit can perform image division on the projection image to be displayed, so as to divide the image to be displayed into a first sub-image group and a second sub-image group arranged along the column direction.
  • the first sub-image group includes at least one sub-image corresponding to at least one first micromirror array
  • the second sub-image group includes at least one sub-image corresponding to at least one second micromirror array.
  • Each sub-image includes a plurality of rows of pixels, and the row numbers of the plurality of rows of pixels increase row by row in a direction away from the origin of the image coordinate system where the projection image is located.
  • the horizontal axis of the image coordinate system is parallel to the row direction, and the vertical axis is parallel to the column direction.
  • the scale of the horizontal axis of the image coordinate system may represent the column number, and the scale of the vertical axis may represent the row number.
  • the origin of the image coordinate system may refer to the upper left vertex of the projection image to be displayed.
  • the number of rows of pixels included in at least one sub-image in the first image group is the same as the number of rows of pixels included in at least one sub-image in the second sub-image group
  • the number of columns of pixels included in at least one sub-image in the first image group is the same as the number of columns of pixels included in at least one sub-image in the second sub-image group.
  • the number of rows and columns of pixels included in each sub-image is determined based on the resolution of the projection image to be displayed.
  • the resolution of the projection image to be displayed is 3840*2160, that is, the projection image includes 2160 rows of pixels, and each row of pixels includes 3840 pixels.
  • the 3840*2160 resolution can also be expressed as a 4 kilo (K) resolution.
  • the display control circuit can divide the projection image to be displayed into a first sub-image group A and a second sub-image group B arranged along the column direction.
  • Each sub-image in each sub-image group includes 1080 rows of pixels, and each row of pixels includes 1920 pixels, that is, the resolution of each sub-image is 2K.
  • Step 102 Flip the first sub-image group using an axis parallel to the row direction as a flip axis.
  • the flip axis may be a central axis parallel to the row direction in the first sub-image group.
  • the first sub-image group is closer to the origin of the image coordinate system where the projection image is located relative to the second sub-image group of the two sub-image groups.
  • the arrangement position of each row of pixels of each sub-image in the first sub-image group is changed compared to the arrangement position of the row of pixels before flipping.
  • the arrangement position of each row of pixels after flipping is symmetrical with the arrangement position of the row of pixels before flipping along the flip axis.
  • the display control circuit flips the first sub-image group A
  • the pixels of the 1st row of each sub-image in the first sub-image group A flip to the 1080th row
  • the pixels of the 1080th row flip to the 1st row.
  • Step 103 reading pixels in at least one sub-image in the first sub-image group row by row in ascending order of pixel row numbers to obtain first display data.
  • the first display data includes data of multiple rows of pixels of each sub-image in the first sub-image group, and the data of multiple rows of pixels of each sub-image are arranged in ascending order of row numbers.
  • the display control circuit vertically flips at least one sub-image in the first sub-image group, the data of multiple rows of pixels of each sub-image are also arranged in ascending order of row numbers.
  • the arrangement order of multiple rows of pixel data in the first display data read row by row by the display control circuit is the same as the arrangement order of multiple rows of pixel data in at least one sub-image of each sub-image group in the projection image to be displayed received by the display control circuit.
  • Step 104 in the process of reading the pixels in the first sub-image group row by row, read the pixels in at least one sub-image in the second sub-image group row by row in ascending order of pixel row numbers to obtain second display data.
  • the display control circuit can read the pixels in the first sub-image group row by row.
  • the pixels in at least one sub-image in the second sub-image group are read row by row along the order of the row numbers of the pixels in at least one sub-image in the second sub-image, to obtain the second display data.
  • the display control circuit can simultaneously read multiple rows of pixels of multiple sub-images in the projected image.
  • the second display data includes data of multiple rows of pixels in each sub-image of the second sub-image group, and the data of multiple rows of pixels in each sub-image are arranged in the order of the row numbers from small to large.
  • the boundary area of the two sub-image groups is the data alignment area of the two sub-image groups.
  • the display control circuit reads the pixels of each sub-image in the two sub-image groups, it needs to start reading (i.e., refreshing) with the data alignment area as the starting point. If the display control circuit does not flip the first sub-image group, the data of multiple rows of pixels of each sub-image in the first display data obtained by the display control circuit reading the first sub-image group are arranged in reverse order.
  • the data alignment area is the boundary area of the 1080th row of pixels and the 1081st row of pixels.
  • the data of multiple rows of pixels of each sub-image are arranged in the order of the 1080th row to the 1st row.
  • the data alignment area of the two sub-image groups is the boundary area of the pixel starting row (i.e., row 1) of each sub-image in the two sub-image groups.
  • the display control circuit reads with the data alignment area as the starting point, in the first display data obtained, the data of multiple rows of pixels of each sub-image of the first sub-image group are arranged in positive order.
  • the data of multiple rows of pixels of each sub-image are arranged in the order of row 1 to row 1080.
  • Step 105 transmitting the first display data to the at least one first micromirror array, and transmitting the second display data to the at least one second micromirror array, so that the digital micromirror device can modulate the projection image into an image beam.
  • the display control circuit can transmit the first display data to at least one first micromirror array of the digital micromirror device, and transmit the second display data to the at least one second micromirror array.
  • the digital micromirror device can further modulate the light beam emitted by the light source in the light source assembly into an image beam based on the first display data and the second display data. After the image beam is projected onto the projection plane through the projection lens, a projection image can be obtained.
  • the digital micromirror device includes a plurality of micromirrors arranged in an array, and the display control circuit controls the flipping of the plurality of micromirrors in the digital micromirror device to achieve modulation of the light beam emitted by the light source.
  • the display control circuit uniformly controls the flipping of the plurality of micromirrors in the digital micromirror device. Accordingly, the digital micromirror device corresponds only to one frame of the projection image to be displayed. Based on this, when the display control circuit reads the pixels of the projection image, it can only read the plurality of rows of pixels in the projection image in order from small to large row numbers, which results in the low efficiency of the display control circuit in reading the pixels of the projection image.
  • the digital micromirror device can be divided into a plurality of micromirror arrays (e.g., at least one first micromirror array and at least one second micromirror array).
  • the display control circuit in the projection device includes a plurality of DLP control circuits, which can perform partition control on the plurality of micromirror arrays of the digital micromirror device.
  • the display control circuit can divide the projection image to be displayed into a plurality of sub-images corresponding to the plurality of micromirror arrays, and read the pixels of the plurality of sub-images to obtain the display data corresponding to each micromirror array. Accordingly, each micromirror array in the digital micromirror device can modulate the light beam emitted by the light source based on its corresponding display data.
  • the display control circuit can perform partition control on the digital micromirror device, and can flip the first sub-image group obtained by the partition, so as to realize the parallel processing of the sub-images or display data corresponding to the multiple partitions (i.e., micromirror arrays) of the digital micromirror device. Accordingly, when reading the pixels of the projected image, the display control circuit can simultaneously read the multiple rows of pixels of the sub-images corresponding to the first micromirror array and the second micromirror array. In this way, the display control circuit can read the pixels of the projected image to be displayed more efficiently, thereby enabling the digital micromirror device to modulate the image light beam. The efficiency is also high.
  • the projection screen displays a video
  • the efficiency of the digital micromirror device in modulating the image beam is high
  • the refresh rate of the multi-frame projection image in the video displayed on the projection screen is also fast.
  • the display effect of the video can be ensured to be good.
  • the embodiment of the present disclosure provides a method for displaying a projected image, which is applied to a display control circuit of a projection device.
  • the display control circuit can divide the projected image to be displayed into a first sub-image group and a second sub-image group, and flip the first sub-image group.
  • the display control circuit can read the pixels in each sub-image in the first sub-image group row by row in the order of the row numbers of the pixels from small to large, obtain the first display data, and synchronously read the pixels in each sub-image in the second sub-image group row by row, obtain the second display data.
  • the display control circuit can read the pixels of each sub-image in the first sub-image group and the second sub-image group at the same time, the display control circuit has a high efficiency in reading pixels. Based on this, the efficiency of the digital micromirror device in modulating the image light beam based on the first display data and the second display data can also be high.
  • FIG10 is a flow chart of another method for displaying a projected image provided by an embodiment of the present disclosure.
  • the method can be applied to a display control circuit of a projection device, for example, the display control circuit 320 in the projection device shown in FIG5 .
  • the projection device includes a multimedia processing circuit 310, a light valve 250, and a galvanometer 370.
  • the light valve 250 can be a digital micromirror device, which includes at least one first micromirror array and at least one second micromirror array.
  • the method includes:
  • Step 201 Process the initial projection image transmitted by the multimedia processing circuit to obtain multiple frames of projection images to be displayed.
  • the display control circuit can process the initial projection image to divide the initial projection image into multiple frames of projection images to be displayed.
  • the number of multiple frames of projection images obtained by dividing the initial projection image can be the same as the number of vibration directions of the galvanometer in the projection device, and the resolution of the multiple frames of projection images can be the same. For example, if the galvanometer has four vibration directions, the display control circuit can divide the initial projection image into four projection images with the same resolution.
  • the display control circuit may process the initial projection image in a sampling and framing manner to obtain multiple frames of projection images to be displayed. For example, the display control circuit may first select multiple target pixels in the initial projection image, and then, for each target pixel, the display control circuit may use the target pixel as a starting point to extract pixels in alternate rows and/or alternate columns in the initial projection image, thereby obtaining a frame of projection image to be displayed.
  • the 8K resolution can also be expressed as 7680*4320, where 7680*4320 means that the initial projection image includes 4320 rows of pixels, and each row of pixels includes 7680 pixels.
  • the display control circuit can use four pixels located in the first row and the first column, the first row and the second column, the second row and the first column as target pixels. For each target pixel, the display control circuit can use the target pixel as the starting point, and extract a pixel in every other row and every other column in the initial projection image, thereby obtaining a frame of projection image to be displayed.
  • the display control circuit can divide the pixels located in odd rows and odd columns into the projection image to be displayed (a), divide the pixels located in odd rows and even columns into the projection image to be displayed (b), divide the pixels located in even rows and odd columns into the projection image to be displayed (c), and divide the pixels located in even rows and even columns into the projection image to be displayed (d).
  • the resolution of the four frames of projection images to be displayed can all be 4K.
  • Step 202 Divide the projection image to be displayed into a first sub-image group and a second sub-image group arranged along a column direction.
  • the display control circuit can sequentially divide each projection image to be displayed, so as to divide the projection image to be displayed into a first sub-image group and a second sub-image group arranged along the column direction.
  • the first sub-image group includes at least one sub-image corresponding to at least one first micromirror array
  • the second sub-image group includes at least one sub-image corresponding to at least one second micromirror array.
  • Each sub-image includes multiple rows of pixels, and the row numbers of the multiple rows of pixels increase row by row in a direction away from the origin of the image coordinate system where the projection image is located.
  • the horizontal axis of the image coordinate system is parallel to the row direction, and the vertical axis is parallel to the column direction.
  • the scale of the horizontal axis of the image coordinate system can represent the column number, and the scale of the vertical axis can represent the row number.
  • the number of rows of pixels included in at least one sub-image in the first image group may be the same as the number of rows of pixels included in at least one sub-image in the second sub-image group
  • the number of columns of pixels included in at least one sub-image in the first image group may be the same as the number of columns of pixels included in at least one sub-image in the second sub-image group.
  • the number of rows and columns of pixels included in each sub-image may be determined based on the resolution of the projection image to be displayed.
  • the display control circuit may include an AP and a DLP control circuit.
  • the AP may divide a frame of projection image to be displayed into a first sub-image group A and a second sub-image group B arranged along a column direction.
  • the number of at least one first micromirror array included in the digital micromirror device may be equal to the number of at least one second micromirror array.
  • the digital micromirror device may include two first micromirror arrays and two second micromirror arrays.
  • each sub-image group may include two sub-images arranged along the row direction. That is, the display control circuit may divide each frame of the projection image to be displayed into four sub-images.
  • the resolution of the projection image to be displayed is 3840*2160 (i.e., 4K), that is, the projection image to be displayed includes 2160 rows of pixels, and each row of pixels includes 3840 pixels, then the resolution of each sub-image can be 1920*1080 (i.e., 2K).
  • At least one sub-image included in the first sub-image group may correspond to at least one sub-image included in the second sub-image group in a one-to-one manner. There is an overlapping area between every two adjacent sub-images in the first sub-image group, there is an overlapping area between every two adjacent sub-images in the second sub-image group, and there is an overlapping area between each sub-image in the first sub-image group and a corresponding sub-image in the second sub-image group.
  • the display control circuit when the display control circuit divides the projected image, in order to ensure that the image data of the multiple sub-images obtained by the division can be aligned (that is, to ensure that the pixel rows and pixel columns of the multiple sub-images can be aligned), the display control circuit can set an overlapping area between the sub-areas.
  • the overlapping area can also be called a fusion area or a data alignment area.
  • the first sub-image group includes sub-image LT and sub-image RT
  • the second sub-image group includes sub-image LB and sub-image RB
  • sub-image LT corresponds to sub-image LB
  • sub-image RT corresponds to sub-image RB
  • the sub-image LT has overlapping areas with sub-image LB and sub-image RT, respectively
  • the sub-image RT has overlapping areas with sub-image RB
  • sub-image LB has overlapping areas with sub-image RB.
  • the overlapping area between two adjacent sub-images arranged along the row direction may include N columns of pixels.
  • the overlapping area between two adjacent sub-images arranged along the column direction may include M rows of pixels.
  • N and M are both positive integers, and N may be positively correlated with the number of pixel columns included in the sub-image, and M may be positively correlated with the number of pixel rows included in the sub-image. For example, if each sub-image includes 2260 rows and 3840 columns of pixels, the values of M and N may both be 32.
  • Step 203 flip the first sub-image group using an axis parallel to the row direction as a flip axis.
  • the flip axis may be a central axis of each sub-image in the first sub-image group parallel to the row direction.
  • the first sub-image group is closer to the origin of the image coordinate system where the projection image is located relative to the second sub-image group of the two sub-image groups.
  • the arrangement position of each row of pixels of each sub-image in the first sub-image group is changed compared to the arrangement position of the row of pixels before flipping.
  • the arrangement position of each row of pixels of each sub-image in the first sub-image group after flipping is symmetrical with the arrangement position of the row of pixels before flipping along the flip axis.
  • the display control circuit flips the first sub-image group A
  • the pixels of the 1st row of each sub-image in the first sub-image group A flip to the 1080th row
  • the pixels of the 1080th row flip to the 1st row.
  • Step 204 perform image processing on each sub-image in the first sub-image group and each sub-image in the second sub-image group.
  • the display control circuit can perform image processing on the multiple sub-images so that the digital micromirror device can better modulate the image beam.
  • the image processing can at least include: format conversion.
  • the image processing can also include: at least one of brightness processing, clarity processing, color processing and geometric correction processing.
  • the display control circuit can make the image quality of multiple sub-images of the projected image to be displayed better by performing brightness processing, clarity processing, color processing and geometric correction processing on the multiple sub-images, thereby facilitating the digital micromirror device to modulate the light beam emitted by the light source based on the image data of the multiple sub-images.
  • the data format of the initial projection image received by the display control circuit is V-by-one, and the digital micromirror device can only modulate the image beam based on data in the high-speed serial interface (HSSI) format. Therefore, after the display control circuit performs brightness processing, clarity processing, color processing, and geometric correction processing on the multiple sub-images of the projection image to be displayed, the multiple sub-images can be format converted to convert the data format of the multiple sub-images into HSSI.
  • HSSI high-speed serial interface
  • Step 205 reading pixels in at least one sub-image in the first sub-image group row by row in ascending order of pixel row numbers to obtain first display data.
  • the first display data includes data of multiple rows of pixels of each sub-image in the first sub-image group, and the data of multiple rows of pixels of each sub-image are arranged in ascending order of row numbers. Before the display control circuit flips at least one sub-image in the first sub-image group, the data of multiple rows of pixels of each sub-image are also arranged in ascending order of row numbers.
  • the arrangement order of the data of the multiple rows of pixels in the first display data read row by row by the display control circuit is the same as the arrangement order of the multiple rows of pixels in at least one sub-image of each sub-image group in the projection image to be displayed received by the display control circuit. Therefore, it can be ensured that the image content of the image light beam modulated by the digital micromirror device based on the first display data and the second display data is correct.
  • Step 206 in the process of reading the pixels in the first sub-image group row by row, read the pixels in at least one sub-image in the second sub-image group row by row in ascending order of pixel row numbers to obtain second display data.
  • the display control circuit can synchronously read the pixels in at least one sub-image in the second sub-image row by row in the process of reading the pixels in the first sub-image group row by row, along the order of the row numbers of the pixels in at least one sub-image in the second sub-image from small to large, and obtain the second display data. It can be seen that the display control circuit can independently read multiple rows of pixels of each sub-image in the projected image.
  • the second display data includes the data of multiple rows of pixels in each sub-image of the second sub-image group, and the data of the multiple rows of pixels in each sub-image are arranged in the order of row numbers from small to large.
  • the boundary area of the two sub-image groups is the data alignment area of the two sub-image groups.
  • the display control circuit reads the pixels of each sub-image in the two sub-image groups, it needs to start reading (i.e., refreshing) with the data alignment area as the starting point. If the display control circuit does not flip the first sub-image group, the data of multiple rows of pixels of each sub-image in the first display data obtained by the display control circuit reading the first sub-image group are arranged in reverse order.
  • the data alignment area is the boundary area of the 1080th row of pixels and the 1081st row of pixels.
  • the data of multiple rows of pixels of each sub-image are arranged in the order of the 1080th row to the 1st row.
  • the data alignment area of the two sub-image groups is the boundary area of the pixel starting row (i.e., row 1) of each sub-image in the two sub-image groups.
  • the display control circuit reads with the data alignment area as the starting point, in the first display data obtained, the data of multiple rows of pixels of each sub-image of the first sub-image group are arranged in positive order.
  • the data of multiple rows of pixels of each sub-image are arranged in the order of row 1 to row 1080.
  • Step 207 Detect whether the resolution of the sub-image is greater than the display resolution of the micromirror array.
  • the display resolutions of the various micromirror arrays included in the digital micromirror device may be the same, and the resolutions of the various sub-images included in the first sub-image group and the second sub-image group may also be the same.
  • the display control circuit may detect whether the resolution of the sub-image is greater than the display resolution of the micromirror array. If the display control circuit determines that the resolution of the sub-image is greater than the display resolution of the micromirror array, the following step 208 may be executed. If the display control circuit determines that the resolution of the sub-image is less than or equal to the display resolution of the micromirror array, the following step 209 may be executed.
  • the digital micromirror device cannot modulate an image whose resolution is greater than its display resolution. Therefore, before the display control circuit transmits the first display data and the second display data to the digital micromirror device, it should first detect whether the resolution of the sub-image is greater than the display resolution of the micromirror array to ensure that the digital micromirror device can modulate the image beam.
  • Step 208 compress the first display data and the second display data.
  • the display control circuit may compress the first display data and the second display data.
  • the image resolution corresponding to the compressed first display data and the second display data is less than or equal to the display resolution of the micromirror array.
  • the image resolution corresponding to the first display data refers to the resolution of each sub-image in the first sub-image group
  • the image resolution corresponding to the second display data refers to the resolution of each sub-image in the second sub-image group.
  • the display resolutions of the four micromirror arrays are all 2K. If the display control circuit detects that the image resolutions corresponding to the first display data and the second display data are both 4K, the first display data and the second display data may be compressed, and the image resolutions corresponding to the compressed first display data and the second display data may be 2K.
  • Step 209 Transmit the first display data to the at least one first micromirror array, and transmit the second display data to the at least one second micromirror array, so that the digital micromirror device can modulate the projection image into an image beam.
  • the display control circuit determines that the resolution of the sub-image is less than or equal to the display resolution of the micromirror array, or if the display control circuit determines that the resolution of the sub-image is greater than the display resolution of the micromirror array, and after compressing the first display data and the second display data, the first display data can be transmitted to at least one first micromirror array of the digital micromirror device, and the second display data can be transmitted to at least one second micromirror array.
  • the digital micromirror device can modulate the light beam emitted by the light source based on the first display data and the second display data to obtain an image light beam of the projection image to be displayed.
  • At least one first micromirror array of the digital micromirror device can perform light beam modulation based on the first display data, and the image light beam modulated by the at least one first micromirror array corresponds one-to-one to at least one sub-image in the first sub-image group.
  • At least one second micromirror array of the digital micromirror device can perform light beam modulation based on the second display data, and the image light beam modulated by the at least one second micromirror array corresponds one-to-one to at least one sub-image in the second sub-image group.
  • the display control circuit can sequentially transmit the first display data and the second display data corresponding to the multiple frames of projection images to be displayed obtained by dividing the initial projection image to the digital micromirror device.
  • the digital micromirror device can then be modulated in sequence to obtain the image light beams corresponding to the multiple frames of projection images to be displayed. Since the display control circuit has a high efficiency in reading the pixels of the projection image to be displayed, the digital micromirror device has a high efficiency in modulating the image light beam.
  • Step 210 controlling the galvanometer mirror to vibrate so that the galvanometer mirror projects the image light beams obtained by modulating the projection images of different frames by the digital micromirror device to different positions of the projection plane through the projection lens.
  • the display control circuit can synchronously control the galvanometer to vibrate (i.e., deflect) in different directions when controlling the digital micromirror device to modulate the image beam.
  • the galvanometer vibrates in different directions
  • the image beam obtained by modulating the projection images of different frames by the digital micromirror device can be projected to different positions of the projection plane through the projection lens.
  • a target projection image can be formed.
  • the projection plane can be a projection screen of a projection device, or the projection plane can be other planes such as a wall.
  • the display control circuit can divide the initial projection image with a resolution of 8K into four frames of projection images to be displayed with a resolution of 4K. Afterwards, the display control circuit can control the galvanometer to vibrate in four directions in turn, so as to project the image light beams corresponding to the four frames of projection images to be projected obtained by modulating the digital micromirror device to four positions on the projection plane through the projection lens. After the four image light beams on the projection plane are superimposed and displayed, a target projection image with a resolution of 8K can be formed.
  • the projection plane may be a projection screen of a projection device, and the four image beams emitted by the projection lens may be projected to the upper left position, the upper right position, the lower left position, and the lower right position of the projection screen in sequence.
  • the refresh rate of the screen is 60 Hz, that is, the projection screen can display 60 frames of target projection images in 1 second.
  • the galvanometer can vibrate and project the image light beams corresponding to 4 frames of projection images to be projected through the projection lens to 4 positions on the projection screen in 1 ⁇ 60 seconds.
  • step 201 can be deleted according to the situation.
  • step 204 can be deleted according to the situation. Any technician familiar with the technical field can easily think of a method of change within the technical scope disclosed in the present disclosure, which should be covered within the scope of protection of the present disclosure, so it will not be repeated.
  • the embodiment of the present disclosure provides a method for displaying a projected image, which is applied to a display control circuit of a projection device.
  • the display control circuit can divide the projected image to be displayed into a first sub-image group and a second sub-image group, and flip the first sub-image group.
  • the display control circuit can read the pixels in each sub-image in the first sub-image group row by row in the order of the row numbers of the pixels from small to large, obtain the first display data, and synchronously read the pixels in each sub-image in the second sub-image group row by row, obtain the second display data.
  • the display control circuit can read the pixels of each sub-image in the first sub-image group and the second sub-image group at the same time, the display control circuit has a high efficiency in reading pixels. Based on this, the efficiency of the digital micromirror device in modulating the image light beam based on the first display data and the second display data can also be high.
  • the embodiment of the present disclosure provides a projection device, which is used to perform the display method of the projection image provided by the above method embodiment.
  • the projection device includes: a display control circuit 320 and a light valve 250, and the light valve 250 can be a digital micromirror device.
  • the digital micromirror device includes at least one first micromirror array and at least one second micromirror array.
  • the display control circuit 320 is used to:
  • the projection image to be displayed is divided into a first sub-image group and a second sub-image group arranged along a column direction, the first sub-image group includes at least one sub-image corresponding to at least one first micromirror array, and the second sub-image group includes at least one sub-image corresponding to at least one second micromirror array, wherein each sub-image includes a plurality of rows of pixels, and the row numbers of the plurality of rows of pixels increase row by row in a direction away from the origin of an image coordinate system where the projection image is located.
  • the first sub-image group is flipped with an axis parallel to the row direction as the flipping axis.
  • the first sub-image group is closer to the origin of the image coordinate system relative to the second sub-image group.
  • Pixels in at least one sub-image in the first sub-image group are read row by row in an ascending order of pixel row numbers to obtain first display data.
  • the pixels in at least one sub-image in the second sub-image group are read row by row in the order of pixel row numbers from small to large to obtain second display data.
  • the first display data is transmitted to at least one first micromirror array
  • the second display data is transmitted to at least one second micromirror array, so that the digital micromirror device can modulate the projection image into an image beam.
  • At least one sub-image included in the first sub-image group corresponds to at least one sub-image included in the second sub-image group, wherein there is an overlapping area between every two adjacent sub-images in the first sub-image group, there is an overlapping area between every two adjacent sub-images in the second sub-image group, and there is an overlapping area between each sub-image in the first sub-image group and a corresponding sub-image in the second sub-image group.
  • the overlapping region between two adjacent sub-images arranged along the row direction includes N columns of pixels.
  • the overlapping region between two adjacent sub-images arranged along the column direction includes M rows of pixels.
  • N and M are both positive integers, and N is positively correlated with the number of pixel columns included in the sub-image, and M is positively correlated with the number of pixel rows included in the sub-image.
  • the digital micromirror device includes at least one first micromirror array whose number is equal to that of at least one second micromirror array.
  • the display resolutions of the micromirror arrays included in the digital micromirror device are the same, and the resolutions of the sub-images included in the first sub-image group and the second sub-image group are the same.
  • the display control circuit 320 is further configured to compress the first display data and the second display data if the resolution of the sub-image is greater than the display resolution of the micromirror array.
  • the digital micromirror device includes two first micromirror arrays and two second micromirror arrays.
  • the display control circuit 320 is further configured to display each sub-image in the first sub-image group. and performing image processing on each sub-image in the second sub-image group.
  • the image processing includes: format conversion, and the image processing also includes: at least one of brightness processing, definition processing, color processing and geometric correction processing.
  • the projection device further includes a multimedia processing circuit 310, and the display control circuit 320 is further used to receive the initial projection image transmitted by the multimedia processing circuit 310.
  • the initial projection image is processed to obtain multiple frames of projection images to be displayed, and the resolutions of the multiple frames of projection images are the same.
  • the projection device further includes a galvanometer 370 and a projection lens 60.
  • the display control circuit 320 is further used to control the galvanometer 370 to vibrate so that the galvanometer 370 modulates the projection images of different frames by the digital micromirror device to obtain an image light beam which is projected to different positions of the projection plane through the projection lens 60.
  • the embodiment of the present disclosure provides a projection device, in which a display control circuit can divide a projection image to be displayed into a first sub-image group and a second sub-image group, and flip the first sub-image group. Afterwards, the display control circuit can read the pixels in each sub-image in the first sub-image group row by row in the order of the row numbers of the pixels from small to large, to obtain the first display data, and synchronously read the pixels in each sub-image in the second sub-image group row by row, to obtain the second display data. Since the display control circuit can read the pixels of each sub-image in the first sub-image group and the second sub-image group at the same time, the display control circuit has a high efficiency in reading pixels. Based on this, the efficiency of the digital micromirror device in modulating the image light beam based on the first display data and the second display data can also be high.
  • An embodiment of the present disclosure provides a projection device, which includes: a memory, a processor, and a computer program stored in the memory, and when the processor executes the computer program, it implements the display method of the projection image provided by the above method embodiment (for example, the method shown in Figure 8 or Figure 10).
  • An embodiment of the present disclosure provides a computer-readable storage medium storing instructions, which are loaded and executed by a processor to implement a method for displaying a projection image as provided in the above method embodiment (eg, the method shown in FIG. 8 or FIG. 10 ).
  • An embodiment of the present disclosure provides a computer program product comprising instructions.
  • the computer program product When the computer program product is run on a computer, the computer is enabled to execute a method for displaying a projection image as provided in the above method embodiment (for example, the method shown in FIG. 8 or FIG. 10 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本公开公开了一种投影设备及其投影图像的显示方法,应用于投影设备的显示控制电路。该显示控制电路能够将待显示的投影图像划分为第一子图像组和第二子图像组,并对该第一子图像组进行翻转。之后,该显示控制电路能够沿像素的行号由小到大的顺序,逐行读取第一子图像组中每个子图像中的像素,得到第一显示数据,并同步逐行读取第二子图像组中每个子图像中的像素,得到第二显示数据。由于显示控制电路能够同时对第一子图像组和第二子图像组中每个子图像的像素进行读取,因此使得显示控制电路读取像素的效率较高。基于此,可以使得该数字微镜器件基于第一显示数据和第二显示数据调制影像光束的效率也较高。

Description

投影设备及其投影图像的显示方法
相关申请的交叉引用
本公开要求在2022年10月28日提交中国专利局、申请号为202211338770.8,发明名称为投影设备及其投影图像的显示方法的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及投影显示技术领域,特别涉及一种投影设备及其投影图像的显示方法。
背景技术
激光投影设备一般包括激光光源、光阀、投影镜头和投影屏幕。其中,激光光源用于提供激光光束,光阀用于将激光光束调制成影像光束(即待投影显示的图像),投影镜头用于将影像光束投射至投影屏幕上。
相关技术中,该光阀中集成有数字微镜器件(digital micromirror devices,DMD)。该DMD能够对光源发射出的光束进行调制,得到待投影显示的图像。
但是,上述DMD调制影像光束的效率较低。
发明内容
本公开提供了一种投影设备及其投影图像的显示方法,可以解决相关技术中DMD调制影像光束的效率较低的问题。所述技术方案如下:
一方面,提供了一种投影图像的显示方法,应用于投影设备的显示控制电路,所述投影设备还包括数字微镜器件,所述数字微镜器件包括至少一个第一微镜阵列,以及至少一个第二微镜阵列;所述方法包括:
将待显示的投影图像划分为沿列方向排布的第一子图像组和第二子图像组,所述第一子图像组包括与所述至少一个第一微镜阵列一一对应的至少一个子图像,所述第二子图像组包括与所述至少一个第二微镜阵列一一对应的至少一个子图像,其中每个所述子图像均包括多行像素,所述多行像素的行号沿远离所述投影图像所在的图像坐标系的原点的方向逐行增大;
以平行于所述行方向的轴为翻转轴,对所述第一子图像组进行翻转,所述第一子图像组相对于所述第二子图像组靠近所述图像坐标系的原点;
沿像素的行号由小到大的顺序,逐行读取所述第一子图像组中至少一个子图像中的像素,得到第一显示数据;
在逐行读取所述第一子图像组中的像素的过程中,沿像素的行号由小到大的顺序,逐行读取所述第二子图像组中至少一个子图像中的像素,得到第二显示数据;
将所述第一显示数据传输至所述至少一个第一微镜阵列,并将所述第二显示数据传输至所述至少一个第二微镜阵列,以供所述数字微镜器件将所述投影图像调制成影像光束。
另一方面,提供了一种投影设备,所述投影设备包括显示控制电路和数字微镜器件,所述数字微镜器件包括至少一个第一微镜阵列,以及至少一个第二微镜阵列;所述显示控制电路,用于:
将待显示的投影图像划分为沿列方向排布的第一子图像组和第二子图像组,所述第一子图像组包括与所述至少一个第一微镜阵列一一对应的至少一个子图像,所述第二子图像组包括与所述至少一个第二微镜阵列一一对应的至少一个子图像,其中每个所述子图像均包括多行像素,所述多行像素的行号沿远离所述投影图像所在的图像坐标系的原点的方向逐行增大;
以平行于所述行方向的轴为翻转轴,对所述第一子图像组进行翻转,所述第一子图像组相对于所述第二子图像组靠近所述图像坐标系的原点;
沿像素的行号由小到大的顺序,逐行读取所述第一子图像组中至少一个子图像中的像素,得到第一显示数据;
在逐行读取所述第一子图像组中的像素的过程中,沿像素的行号由小到大的顺序,逐行读取所述第二子图像组中至少一个子图像中的像素,得到第二显示数据;
将所述第一显示数据传输至所述至少一个第一微镜阵列,并将所述第二显示数据传输至所述至少一个第二微镜阵列,以供所述数字微镜器件将所述投影图像调制成影像光束。
又一方面,提供了一种投影设备,所述投影设备包括:存储器,处理器及存储在该所述存储器上的计算机程序,所述处理器执行所述计算机程序时实现如上述方面所述的投影图像的显示方法。
再一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令由处理器加载并执行以实现如上述方面所述的投影图像的显示方法。
再一方面,提供了一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如上述方面所述的投影图像的显示方法。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种投影***的结构示意图;
图2是本公开实施例提供的一种投影设备的结构拆解示意图;
图3是本公开实施例提供的一种投影设备的光学引擎架构示意图;
图4是本公开实施例提供的一种投影设备的光路原理示意图;
图5是本公开实施例提供的一种投影设备的电路结构示意图;
图6是本公开实施例提供的一种DLP投影电路架构示意图;
图7是本公开实施例提供的另一种投影设备的结构示意图;
图8是本公开实施例提供的一种投影图像的显示方法的流程示意图;
图9是本公开实施例提供的一种投影设备显示投影图像的示意图;
图10是本公开实施例提供的另一种投影图像的显示方法的流程示意图;
图11是本公开实施例提供的一种投影设备划分初始投影图像的示意图;
图12是本公开实施例提供的另一种投影设备划分初始投影图像的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括 在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或在“检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
本公开一些实施例提供了一种投影***1。图1为根据一些实施例的一种投影***的结构图。
在一些实施例中,如图1所示,投影***1包括投影设备100和投影屏幕200。其中投影屏幕200靠近投影设备100设置,投影设备100为超短焦投影设备。
图2为根据一些实施例的一种投影设备的结构拆解后示意图。
如图2所示,投影设备100包括整机壳体40(图2中仅示出部分整机壳体40),装配于整机壳体40中的光源10,光机20,以及镜头30。光源10被配置为提供照明光束(激光光束)。光机20被配置为利用图像信号对光源10提供的照明光束进行调制以获得投影光束。镜头30被配置为将投影光束投射在屏幕或墙壁上成像。
光源10、光机20和镜头30沿着光束传播方向依次连接,各自由对应的壳体进行包裹。光源10、光机20和镜头30各自的壳体对相应的光学部件进行支撑并使得各光学部件达到一定的密封或气密要求。
图3为根据一些实施例的投影设备中光学引擎架构示意图,主要涉及光源、光机和镜头的一种光路图。
如图3所示,光机20的一端连接光源10,且光源10和光机20沿着投影设备100的照明光束的出射方向(参照图3中的M方向)设置。光机20的另一端和镜头30连接,且光机20和镜头30沿着投影设备100的投影光束的出射方向(参照图3中的N方向)设置。照明光束的出射方向M与投影光束的出射方向N大致垂直,这种连接结构一方面可以适应光机20中反射式光阀的光路特点,另一方面,还有利于缩短一个维度方向上光路的长度,利于整机的结构排布。例如,当将光源10、光机20和镜头30设置在一个维度方向(例如M方向)上时,该维度方向上光路的长度就会很长,从而不利于整机的结构排布。所述反射式光阀将在后文中描述。
在一些实施例中,光源10可以时序性地提供三基色光(也可以在三基色光的基础上增加其他色光),由于人眼的视觉暂留现象,人眼看到的是由三基色光混合形成的白光。或者,光源10也可以同时输出三基色光,持续发出白光。
在一些实施例中,光源10包括发光二极管(Light Emitting Diode,LED)、电致发光(Electro-Luminescence,EL)器件、激光器等。由于激光器出射的激光光束的单色性好、色彩纯度高、亮度较高以及方向性较好,因此,激光器被广泛地作为投影设备100的光源。
需要说明的是,激光器作为投影设备100的光源10的投影设备100可以称为激光投影设备。在激光投影设备以红色激光器、绿色激光器以及蓝色激光器作为光源的情况下, 红色激光器发出红色激光光束,绿色激光器发出绿色激光光束,蓝色激光器发出蓝色激光光束。激光投影设备通过三色激光光束实现图像显示,可以获得较大的色域,具有较好的色彩表现力。
图4为根据一些实施例的投影设备中光源、光机和镜头的另一种光路图。
光源10发出的照明光束进入光机20。如图3和图4所示,光机20包括光导管210、反射镜220、透镜组件230、棱镜组件240以及光阀250。该光导管210可以接收光源10提供的照明光束,并对该照明光束进行匀化。此外,该光导管210的出口可以为矩形,从而对光斑具有整形效果。反射镜220可以将照明光束反射至透镜组件230。透镜组件230可以将照明光束会聚至棱镜组件240。棱镜组件240将照明光束反射至光阀250,光阀250对照明光束进行调制以得到投影光束,并将投影光束反射至镜头30中。当然,光导管210也可以用复眼透镜或其他具有匀光功能的部件替代,本公开对此不做限制。
光机20中,光阀250是利用图像信号对光源10提供的照明光束进行调制,即:控制投影光束针对待显示图像的不同像素显示不同的亮度和灰阶,以最终形成光学图像。根据光阀250对照明光束进行透射还是进行反射,可以将光调制器件分为透射式光调制器件或反射式光调制器件。例如,图4所示的数字微镜器件(Digital Micromirror Device,DMD)250A对照明光束进行反射,即为一种反射式光调制器件。而液晶光阀对照明光束进行透射,因此是一种透射式光调制器件。此外,根据光机20中使用的光调制器件的数量,可以将光机20分为单片***、双片***或三片***。本公开一些实施例中的光阀250为数字微镜器件250A。
图6是本公开实施例提供的一种激光投影设备的控制***架构示意图,参考图6,该激光投影设备可以包括:***主板400,显示板300以及电源板500。该电源板500分别与***主板400和显示板300连接,并用于为***主板400和显示板300上的各个器件或部分模块供电,以及用于为激光投影设备中的其他功能模块,例如人眼保护模块、风扇以及无线保真(wireless-fidelity,WI-FI)模块等供电。其中,该电源板500上还可以设置有用于驱动激光光源发光的激光器驱动组件。或者,该激光器驱动组件也可以独立于该电源板500设置。
该***主板400还与显示板300连接,该***主板400用于接收前端设备发送的投影图像的图像数据,并对该图像数据进行解码处理。其中,如图6所示,该***主板400上可以设置有***级芯片(system on chip,SoC)101。该***级芯片101能够将不同数据格式的图像数据解码为归一化格式,并将归一化格式的图像数据传输至显示板300。例如,***主板400可以通过连接器(connector)向显示板300传输归一化格式的图像数据。
其中,该***主板400也可以称为电视(television,TV)板。
该显示板300上可以设置有算法处理模块现场可编程逻辑门阵列(field programmable gate array,FPGA)。该算法处理模块FPGA能够对输入的投影画面的图像数据进行处理,例如进行运动估计与运动补偿(motion estimation and motion compensation,MEMC)倍频处理或者图像校正处理等处理。
以及,该显示板300上还可以设置有显示控制芯片301。该显示控制芯片301可以与该算法处理模块FPGA连接,并用于接收处理后的投影画面的图像数据,并将处理后的投影画面作为待显示的投影画面。
在一种实施方式中,该显示板300也可以不包括算法处理模块FPGA。该显示控制芯片301可以直接与***主板400连接,该显示控制芯片301能够直接接收***主板400传输的投影图像。
在本公开实施例中,该显示控制芯片301可以包括光阀驱动芯片(图中未示出)。该光阀驱动芯片可以为数字光处理(digital light processing,DLP)芯片。该DLP芯片能够向光源输出驱动信号,以控制光源发光。其中,该驱动信号可以包括图像使能信号和亮度调整信号。该图像使能信号也可称为基色光使能信号。该基色光使能信号可以采用X_EN表 示为,X为不同的基色光的缩写。该基色光使能信号用于控制光源是否发光(即是否点亮),以实现将对多个不同颜色的光源的发光时序的控制。该亮度调整信号可以为脉冲宽度调制(pulse width modulation,PWM)信号,其用于控制光源的发光亮度。
在一种实施方式中,该显示板300上还可以设置有光阀250。其中,该光调制器件可以为数字微镜器件(digital micromirror device,DMD),该数字微镜器件也可以称为光阀。该显示控制芯片301可以基于待投影显示的投影图像,生成用于驱动光调制器件的调制驱动信号,并生成用于驱动光源发光的驱动信号。基于此,该光调制器件能够在该调制驱动信号的控制下,对光源发出的光束进行调制,得到投影图像的影像光束。该影像光束可以通过投影镜头投射至投影屏幕,以实现投影图像的显示。
图5是本公开实施例提供的一种投影设备的电路连接结构示意图。参考图5,该投影设备可以包括:多媒体处理电路310,显示控制电路320,光源驱动电路330,光源10,光阀250以及投影镜头60。需要说明的是,多媒体处理电路可以包括图6所示的***主板400的部分电路功能。显示控制电路320位于图6所示的显示板300上,并包括显示控制芯片,以及也可以包括对应图6中的光源驱动电路330,从而能够驱动光源10发光,也可以根据图像信号对应的驱动信号以驱动光阀250进行光调制。
下面将具体介绍本公开实施例中电路的工作过程。参考图5,该多媒体处理电路310与显示控制电路320连接,该多媒体处理电路310用于通过各类通信接口接收初始投影图像,并对该初始投影图像进行处理(例如解码处理、特征提取、亮度处理、清晰度处理以及颜色处理等)。之后,该多媒体处理电路310可以将处理后的初始投影图像以高清数字显示接口V-by-one的信号形式传输至显示控制电路320。其中,该多媒体处理电路310可以包括芯片级***(system on chip,SoC)。
该显示控制电路320能够对接收到的初始投影图像进行解码和格式转换,并对该初始投影图像进行进一步处理(例如几何校正处理)。之后,该显示控制电路320可以将处理后的初始投影图像以显示数据的形式传输至光阀250。并且,该显示控制电路320还能够基于该初始投影图像向光源驱动电路330输出光源驱动信号。其中,该显示控制电路320可以包括应用处理器(application processor,AP)和数字光处理(digital light processing,DLP)控制电路。
该光源驱动电路330用于接收光源驱动信号,并基于该光源驱动信号向光源10输出驱动电流,以驱动光源10中的光源发光。其中,该光源10中的光源可以是激光光源。相应的,该投影设备可以为激光投影设备。或者,该光源10中的光源可以为发光二极管(light-emitting diode,LED)等其它类型的光源。
该光阀250可以为数字微镜器件(digital micromirror devices,DMD)。该数字微镜器件能够基于接收到的初始投影图像的对光源10发射出的光束进行调制,以得到影像光束。
在一具体实施中,该数字微镜器件可以包括多个微镜阵列,该显示控制电路320可以包括与该多个微镜阵列一一对应的多个DLP控制电路。例如,参考图7,该数字微镜器件可以包括4个微镜阵列,该显示控制电路320也可以包括与该4个微镜阵列一一对应的4个DLP控制电路。
在本公开实施例中,该多个DLP控制电路中的每个DLP控制电路能够控制其对应的一个微镜阵列调制影像光束。由此,能够实现对该数字微镜器件的分区控制。例如,参考图7,第一DLP控制电路能够控制微镜阵列LT调制影像光束,第二DLP控制电路能够控制微镜阵列RT调制影像光束,第三DLP控制电路能够控制微镜阵列LB调制影像光束,第四DLP控制电路能够控制微镜阵列RB调制影像光束。
在一具体实施中,如图5所示,该投影设备还可以包括振镜370。该显示控制电路320还能够控制振镜370振动,以将数字微镜器件DMD250A对多帧待显示的投影图像进行调制得到的多个影像光束通过投影镜头60依次投射至投影平面的不同位置。投射至投影平面上的不同位置的多个影像光束叠加显示后,可以形成目标投影图像。其中,该投影平面 可以为投影设备的投影屏幕,或者可以为墙面。该多帧待显示的投影图像可以是显示控制电路对初始投影图像进行处理得到的。
显示控制芯片301显示控制芯片301显示控制芯片301显示控制芯片301显示控制芯片301光阀250显示控制芯片301图8是本公开实施例提供的一种投影图像的显示方法的流程示意图,该方法可以应用于投影设备的显示控制电路,例如可以应用于图5或图7所示的投影设备中的显示控制电路320。参考图5,该投影设备包括光阀250,该光阀250可以为数字微镜器件,该数字微镜器件包括至少一个第一微镜阵列,以及至少一个第二微镜阵列。如图8所示,该方法包括:
步骤101、将待显示的投影图像划分为沿列方向排布的第一子图像组和第二子图像组。
在本公开实施例中,显示控制电路在接收到待显示的投影图像后,能够对该待显示的投影图像进行图像划分,以将该待显示的图像划分为沿列方向排布的第一子图像组和第二子图像组。其中,该第一子图像组包括与至少一个第一微镜阵列一一对应的至少一个子图像,该第二子图像组包括与至少一个第二微镜阵列一一对应的至少一个子图像。
其中,每个子图像均包括多行像素,该多行像素的行号沿远离投影图像所在的图像坐标系的原点的方向逐行增大。该图像坐标系的横轴平行于行方向,纵轴平行于列方向。并且,该图像坐标系的横轴的刻度可以表示列号,纵轴的刻度可以表示行号。该图像坐标系的原点可以是指该待显示的投影图像的左上顶点。
在一具体实施中,第一图像组中至少一个子图像包括的像素的行数,与第二子图像组中至少一个子图像包括的像素的行数相同,且第一图像组中至少一个子图像包括的像素的列数,与第二子图像组中至少一个子图像包括的像素的列数相同。每个子图像包括的像素的行数和列数均基于该待显示的投影图像的分辨率确定。
示例的,参考图9,假设该待显示的投影图像的分辨率为3840*2160,即该投影图像包括2160行像素,每行像素包括3840个像素。3840*2160分辨率也可以表示为4千(kilo,K)分辨率。如图9所示,显示控制电路可以将待显示的投影图像划分为沿列方向排布的第一子图像组A和第二子图像组B。每个子图像组中的每个子图像均包括1080行像素,每行像素均包括1920个像素,即每个子图像的分辨率为2K。
步骤102、以平行于行方向的轴为翻转轴,对第一子图像组进行翻转。
其中,该翻转轴可以为该第一子图像组中平行于行方向的中轴线。该第一子图像组相对于两个子图像组中的第二子图像组靠近投影图像所在的图像坐标系的原点。显示控制电路在对第一子图像组进行翻转后,该第一子图像组中的每个子图像的每行像素的排布位置,相比于翻转前该行像素的排布位置发生了改变。其中,翻转后的每行像素的排布位置,与翻转前该行像素的排布位置沿翻转轴对称。
例如,参考图9,显示控制电路对该第一子图像组A进行翻转后,该第一子图像组A中的每个子图像的第1行的像素翻转至第1080行,第1080行的像素翻转至第1行。
步骤103、沿像素的行号由小到大的顺序,逐行读取第一子图像组中至少一个子图像中的像素,得到第一显示数据。
其中,该第一显示数据包括该第一子图像组中每个子图像的多行像素的数据,且每个子图像的多行像素的数据是按照行号由小到大的顺序排布的。在显示控制电路未对第一子图像组中的至少一个子图像进行垂直翻转前,每个子图像的多行像素的数据也是按照行号由小到大的顺序排布的。
可以理解的是,显示控制电路逐行读取到的第一显示数据中多行像素的数据的排布顺序,与显示控制电路接收到的待显示的投影图像中,每个子图像组的至少一个子图像中多行像素的排布顺序相同。
步骤104、在逐行读取第一子图像组中的像素的过程中,沿像素的行号由小到大的顺序,逐行读取第二子图像组中至少一个子图像中的像素,得到第二显示数据。
在本公开实施例中,显示控制电路在逐行读取第一子图像组中的像素的过程中,能够 同步沿第二子图像中至少一个子图像的像素的行号由小到大的顺序,逐行读取第二子图像组中至少一个子图像中的像素,得到第二显示数据。由此可知,显示控制电路能够同时读取投影图像中多个子图像的多行像素。其中,该第二显示数据包括该第二子图像组的每个子图像中多行像素的数据,且每个子图像的多行像素的数据是按照行号由小到大的顺序排布的。
可以理解的是,显示控制电路在将一帧待显示的投影图像划分为第一子图像组和第二子图像组后,该两个子图像组的交界区域即为该两个子图像组的数据对齐区域。显示控制电路在读取该两个子图像组中每个子图像的像素时,需以该数据对齐区域为起始点开始读取(即刷新)。若显示控制电路不对第一子图像组进行翻转处理,则显示控制电路对该第一子图像组进行读取得到的第一显示数据中,每个子图像的多行像素的数据是倒序排布的。例如,若该帧待显示的投影图像包括2160行像素,则该数据对齐区域为第1080行像素和第1081行像素的交界区域。显示控制电路对该第一子图像组中至少一个子图像的多行像素进行读取得到的第一显示数据中,每个子图像的多行像素的数据是按照第1080行至第1行的顺序排布的。
在本公开实施例中,显示控制电路对第一子图像组进行翻转后,该两个子图像组的数据对齐区域为该两个子图像组中每个子图像的像素起始行(即第1行)的交界区域。显示控制电路以该数据对齐区域为起始点进行读取后,得到的第一显示数据中,第一子图像组的每个子图像的多行像素的数据是正序排布的。例如,该第一显示数据和第二显示数据中,每个子图像的多行像素的数据均是按照第1行至第1080行的顺序排布的。由此,可以确保该显示控制电路传输至数字微镜器件的显示数据中多行像素的排列顺序,与该显示控制电路接收到的投影图像中多行像素的排列顺序是一致的。
步骤105、将第一显示数据传输至该至少一个第一微镜阵列,并将第二显示数据传输至该至少一个第二微镜阵列,以供数字微镜器件将投影图像调制成影像光束。
在本公开实施例中,显示控制电路在得到第一子图像组对应的第一显示数据,以及第二子图像组对应的第二显示数据后,能够将该第一显示数据传输至数字微镜器件的至少一个第一微镜阵列,并将第二显示数据传输至该至少一个第二微镜阵列。该数字微镜器件进而能够基于该第一显示数据和第二显示数据,将光源组件中光源发出的光束调制成影像光束。该影像光束通过投影镜头投射至投影平面上后,能够得到投影图像。
可以理解的是,该数字微镜器件包括多个阵列排布的微镜,显示控制电路通过控制数字微镜器件中的多个微镜翻转,以实现对光源发出的光束的调制。在相关技术中,显示控制电路对数字微镜器件多个微镜的翻转进行统一控制。相应的,该数字微镜器件仅与一帧待显示的投影图像对应。基于此,显示控制电路在读取投影图像的像素时,仅能按照行号由小到大的顺序依次读取该投影图像中的多行像素,由此导致该显示控制电路读取投影图像的像素的效率较低。
而在本公开实施例中,如图7和图9所示,数字微镜器件可以划分为多个微镜阵列(例如至少一个第一微镜阵列和至少一个第二微镜阵列)。该投影设备中的显示控制电路包括多个DLP控制电路,该多个DLP控制电路能够对数字微镜器件的多个微镜阵列进行分区控制。并且,该显示控制电路能够将待显示的投影图像划分为与多个微镜阵列一一对应的多个子图像,并对该多个子图像的像素进行读取,从而得到每个微镜阵列对应的显示数据。相应的,数字微镜器件中的每个微镜阵列可以基于其对应的显示数据对光源发出的光束进行调制。
基于上述分析可知,显示控制电路能够对数字微镜器件进行分区控制,且能够对划分得到的第一子图像组进行翻转,从而实现对数字微镜器件的多个分区(即微镜阵列)对应的子图像或显示数据的并行处理。相应的,显示控制电路在读取投影图像的像素时,能够同时读取第一微镜阵列和第二微镜阵列对应的子图像的多行像素。由此,可以使得显示控制电路读取待显示的投影图像的像素的效率较高,进而使得该数字微镜器件调制影像光束 的效率也较高。并且,在投影屏幕显示视频时,当该数字微镜器件调制影像光束的效率较高时,该投影屏幕显示的视频中多帧投影图像的刷新速率也较快。由此,可以确保该视频的显示效果较好。
综上所述,本公开实施例提供了一种投影图像的显示方法,应用于投影设备的显示控制电路。该显示控制电路能够将待显示的投影图像划分为第一子图像组和第二子图像组,并对该第一子图像组进行翻转。之后,该显示控制电路能够沿像素的行号由小到大的顺序,逐行读取第一子图像组中每个子图像中的像素,得到第一显示数据,并同步逐行读取第二子图像组中每个子图像中的像素,得到第二显示数据。由于显示控制电路能够同时对第一子图像组和第二子图像组中每个子图像的像素进行读取,因此使得显示控制电路读取像素的效率较高。基于此,可以使得该数字微镜器件基于第一显示数据和第二显示数据调制影像光束的效率也较高。
图10是本公开实施例提供的另一种投影图像的显示方法的流程示意图,该方法可以应用于投影设备的显示控制电路,例如可以应用于图5所示的投影设备中的显示控制电路320。参考图5,该投影设备包括多媒体处理电路310、光阀250以及振镜370。该光阀250可以为数字微镜器件,该数字微镜器件包括至少一个第一微镜阵列,以及至少一个第二微镜阵列。如图10所示,该方法包括:
步骤201、对多媒体处理电路传输的初始投影图像进行处理,得到多帧待显示的投影图像。
在本公开实施例中,该显示控制电路在获取到多媒体处理电路传输的初始投影图像后,可以对该初始投影图像进行处理,以将该初始投影图像划分为多帧待显示的投影图像。其中,对该初始投影图像划分得到的多帧投影图像的数量可以与投影设备中振镜所具有的振动方向的个数相同,且该多帧投影图像的分辨率可以相同。例如,若振镜具有4个振动方向,则显示控制电路可以将该初始投影图像划分为4个分辨率相同的投影图像。
在一具体实施中,显示控制电路可以采用抽样分帧的方式对该初始投影图像进行处理,得到多帧待显示的投影图像。例如,显示控制电路可以先在初始投影图像中选取多个目标像素,之后,对于每个目标像素,显示控制电路能够以该目标像素为起始点,在该初始投影图像中隔行,和/或隔列抽取像素,从而得到一帧待显示的投影图像。
例如,参考图11和图12,假设该初始投影图像的分辨率为8K,该8K分辨率也可以表示为7680*4320,该7680*4320是指该初始投影图像包括4320行像素,每行像素包括7680个像素。显示控制电路可以将位于第一行第一列,第一行第二列,第二行第一列,以及第二行第二列的四个像素作为目标像素。对于每个目标像素,显示控制电路能够以该目标像素为起始点,在该初始投影图像中每隔一行,且每隔一列抽取一个像素,从而得到一帧待显示的投影图像。
基于上述抽样分帧的操作,显示控制电路可以将位于奇数行,且位于奇数列的像素划分为待显示的投影图像(a),将位于奇数行,且位于偶数列的像素划分为待显示的投影图像(b),将位于偶数行,且位于奇数列的像素划分为待显示的投影图像(c),并将位于偶数行,且位于偶数列的像素划分为待显示的投影图像(d)。其中,该4帧待显示的投影图像的分辨率可以均为4K。
步骤202、将待显示的投影图像划分为沿列方向排布的第一子图像组和第二子图像组。
在本公开实施例中,显示控制电路在将初始投影图像划分为多帧待显示的投影图像后,能够依次对每个待显示的投影图像进行图像划分,以将该待显示的投影图像划分为沿列方向排布的第一子图像组和第二子图像组。其中,该第一子图像组包括与至少一个第一微镜阵列一一对应的至少一个子图像,该第二子图像组包括与至少一个第二微镜阵列一一对应的至少一个子图像。每个子图像均包括多行像素,该多行像素的行号沿远离投影图像所在的图像坐标系的原点的方向逐行增大。该图像坐标系的横轴平行于行方向,纵轴平行于列方向。并且,该图像坐标系的横轴的刻度可以表示列号,纵轴的刻度可以表示行号。
在一具体实施中,第一图像组中至少一个子图像包括的像素的行数,与第二子图像组中至少一个子图像包括的像素的行数可以相同,且第一图像组中至少一个子图像包括的像素的列数,与第二子图像组中至少一个子图像包括的像素的列数也可以相同。每个子图像包括的像素的行数和列数均可以基于该待显示的投影图像的分辨率确定。
如图7和图9所示,该显示控制电路可以包括AP和DLP控制电路。该AP可以将一帧待显示的投影图像划分为沿列方向排布的第一子图像组A和第二子图像组B。
在一具体实施中,该数字微镜器件包括的至少一个第一微镜阵列的数量与至少一个第二微镜阵列的数量可以相等。例如,该数字微镜器件可以包括两个第一微镜阵列和两个第二微镜阵列。相应的,每个子图像组可以包括沿行方向排布的两个子图像。也即是,该显示控制电路可以将每帧待显示的投影图像划分为四个子图像。参考图9,假设待显示的投影图像的分辨率为3840*2160(即4K),即该待显示的投影图像包括2160行像素,每行像素包括3840个像素,则每个子图像的分辨率均可以为1920*1080(即2K)。
在一具体实施中,该第一子图像组包括的至少一个子图像可以与第二子图像组包括的至少一个子图像一一对应。该第一子图像组中每相邻两个子图像之间具有重叠区域,该第二子图像组中每相邻两个子图像之间具有重叠区域,且第一子图像组中每个子图像与第二子图像组中对应的一个子图像之间具有重叠区域。
在本公开实施例中,显示控制电路在对投影图像进行划分时,为确保划分得到的多个子图像的图像数据能够对齐(即确保多个子图像的像素行和像素列能够对齐),显示控制电路可以在子区域之间设置重叠区域。其中,该重叠区域也可以称为融合区域或数据对齐区域。
示例的,参考图9,若第一子图像组包括子图像LT和子图像RT,第二子图像组包括子图像LB和子图像RB,则子图像LT与子图像LB对应,子图像RT与子图像RB对应。该子图像LT分别与子图像LB和子图像RT具有重叠区域,该子图像RT与子图像RB具有重叠区域,子图像LB与子图像RB具有重叠区域。
在一具体实施中,在一帧投影图像划分得到的多个子图像中,沿行方向排布且相邻的两个子图像之间的重叠区域可以包括N列像素。沿列方向排布且相邻的两个子图像之间的重叠区域可以包括M行像素。其中,N和M均为正整数,且N可以与子图像包括的像素列数正相关,M可以与子图像包括的像素行数正相关。示例的,若每个子图像包括2260行、3840列像素,则该M和N的取值均可以为32。
步骤203、以平行于行方向的轴为翻转轴,对第一子图像组进行翻转。
其中,该翻转轴可以为该第一子图像组中每个子图像平行于行方向的中轴线。该第一子图像组相对于两个子图像组中的第二子图像组靠近投影图像所在的图像坐标系的原点。显示控制电路在对第一子图像组进行翻转后,该第一子图像组中的每个子图像的每行像素的排布位置,相比于翻转前该行像素的排布位置发生了改变。其中,翻转后的该第一子图像组中的每个子图像的每行像素的排布位置,与翻转前该行像素的排布位置沿翻转轴对称。
例如,参考图9,显示控制电路对该第一子图像组A进行翻转后,第一子图像组A中每个子图像的第1行的像素翻转至第1080行,第1080行的像素翻转至第1行。
步骤204、对第一子图像组中的每个子图像,以及第二子图像组中的每个子图像进行图像处理。
在本公开实施例中,显示控制电路在得到每帧投影图像的多个子图像后,能够对该多个子图像进行图像处理,以便于数字微镜器件能够更好地调制影像光束。其中,该图像处理至少可以包括:格式转换。并且,该图像处理还可以包括:亮度处理、清晰度处理、颜色处理以及几何校正处理中的至少一种。
可以理解的是,显示控制电路在对待显示的投影图像的多个子图像进行亮度处理、清晰度处理、颜色处理以及几何校正处理,可以使得该多个子图像的图像质量较好,进而便于数字微镜器件基于该多个子图像的图像数据对光源发出的光束进行调制。
还可以理解的是,该显示控制电路接收到的初始投影图像的数据格式为V-by-one,而数字微镜器件只能基于高速串行接口(high-speed serial interface,HSSI)格式的数据调制影像光束。因此,显示控制电路在对待显示的投影图像的多个子图像进行亮度处理、清晰度处理、颜色处理以及几何校正处理后,可以对该多个子图像进行格式转换,以将该多个子图像的数据格式转换为HSSI。
步骤205、沿像素的行号由小到大的顺序,逐行读取第一子图像组中至少一个子图像中的像素,得到第一显示数据。
其中,该第一显示数据包括该第一子图像组中每个子图像的多行像素的数据,且每个子图像的多行像素的数据是按照行号由小到大的顺序排布的。在显示控制电路未对第一子图像组中的至少一个子图像进行翻转前,每个子图像的多行像素的数据也是按照行号由小到大的顺序排布的。
可以理解的是,显示控制电路逐行读取到的第一显示数据中多行像素的数据的排布顺序,与显示控制电路接收到的待显示的投影图像中,每个子图像组的至少一个子图像中多行像素的排布顺序相同。由此,可以确保数字微镜器件能够基于该第一显示数据和第二显示数据调制成的影像光束的图像内容是正确的。
步骤206、在逐行读取第一子图像组中的像素的过程中,沿像素的行号由小到大的顺序,逐行读取第二子图像组中至少一个子图像中的像素,得到第二显示数据。
在本公开实施例中,显示控制电路在逐行读取第一子图像组中的像素的过程中,能够同步沿第二子图像中至少一个子图像的像素的行号由小到大的顺序,逐行读取第二子图像组中至少一个子图像中的像素,得到第二显示数据。由此可知,显示控制电路能够独立读取投影图像中每个子图像的多行像素。其中,该第二显示数据包括该第二子图像组的每个子图像中多行像素的数据,且每个子图像的多行像素的数据是按照行号由小到大的顺序排布的。
可以理解的是,显示控制电路在将一帧待显示的投影图像划分为第一子图像组和第二子图像组后,该两个子图像组的交界区域即为该两个子图像组的数据对齐区域。显示控制电路在读取该两个子图像组中每个子图像的像素时,需以该数据对齐区域为起始点开始读取(即刷新)。若显示控制电路不对第一子图像组进行翻转处理,则显示控制电路对该第一子图像组进行读取得到的第一显示数据中,每个子图像的多行像素的数据是倒序排布的。例如,若该帧待显示的投影图像包括2160行像素,则该数据对齐区域为第1080行像素和第1081行像素的交界区域。显示控制电路对该第一子图像组中至少一个子图像的多行像素进行读取得到的第一显示数据中,每个子图像的多行像素的数据是按照第1080行至第1行的顺序排布的。
在本公开实施例中,显示控制电路对第一子图像组进行翻转后,该两个子图像组的数据对齐区域为该两个子图像组中每个子图像的像素起始行(即第1行)的交界区域。显示控制电路以该数据对齐区域为起始点进行读取后,得到的第一显示数据中,第一子图像组的每个子图像的多行像素的数据是正序排布的。例如,该第一显示数据和第二显示数据中,每个子图像的多行像素的数据均是按照第1行至第1080行的顺序排布的。由此,可以确保该显示控制电路传输至数字微镜器件的显示数据中多行像素的排列顺序,与该显示控制电路接收到的投影图像中多行像素的排列顺序是一致的。
步骤207、检测子图像的分辨率是否大于微镜阵列的显示分辨率。
在本公开实施例中,该数字微镜器件中包括的各个微镜阵列的显示分辨率可以相同,该第一子图像组和第二子图像组包括的各个子图像的分辨率也可以相同。显示控制电路在完成对投影图像的多个子图像的图像处理后,可以检测子图像的分辨率是否大于微镜阵列的显示分辨率。显示控制电路若确定子图像的分辨率是大于微镜阵列的显示分辨率,则可以执行下述步骤208。显示控制电路若确定子图像的分辨率小于或等于该微镜阵列的显示分辨率,则可以执行下述步骤209。
可以理解的是,数字微镜器件无法对分辨率大于其显示分辨率的图像进行调制。因此显示控制电路在将第一显示数据和第二显示数据传输至数字微镜器件之前,应先检测子图像的分辨率是否大于微镜阵列的显示分辨率,以确保该数字微镜器件实现对影像光束的调制。
步骤208、对第一显示数据和第二显示数据进行压缩。
在本公开实施例中,显示控制电路若子图像的分辨率是大于微镜阵列的显示分辨率,则可以对第一显示数据和第二显示数据进行压缩。压缩后的第一显示数据和第二显示数据对应的图像分辨率小于或等于微镜阵列的显示分辨率。其中,第一显示数据对应的图像分辨率是指第一子图像组中每个子图像的分辨率,第二显示数据对应的图像分辨率是指第二子图像组中每个子图像的分辨率。
示例的,若数字微镜器件的分辨率为4K,该数字微镜器件包括2个第一微镜阵列和2个第二微镜阵列,则该4个微镜阵列的显示分辨率均为2K。若显示控制电路检测到第一显示数据和第二显示数据对应的图像分辨率均为4K,则可以对该第一显示数据和第二显示数据进行压缩,该压缩后的第一显示数据和第二显示数据对应的图像分辨率可以为2K。
步骤209、将第一显示数据传输至该至少一个第一微镜阵列,并将第二显示数据传输至该至少一个第二微镜阵列,以供数字微镜器件将投影图像调制成影像光束。
在本公开实施例中,显示控制电路若确定子图像的分辨率小于或等于微镜阵列的显示分辨率,或者,显示控制电路若确定子图像的分辨率大于微镜阵列的显示分辨率,并对第一显示数据和第二显示数据进行压缩处理后,可以将第一显示数据传输至数字微镜器件的至少一个第一微镜阵列,并将第二显示数据传输至至少一个第二微镜阵列。该数字微镜器件接收到第一显示数据和第二显示数据后,能够基于该第一显示数据和第二显示数据对光源发出的光束进行调制,得到待显示的投影图像的影像光束。
在一具体实施中,数字微镜器件的至少一个第一微镜阵列能够基于第一显示数据进行光束调制,该至少一个第一微镜阵列调制得到的影像光束与第一子图像组中的至少一个子图像一一对应。数字微镜器件的至少一个第二微镜阵列能够基于第二显示数据进行光束调制,该至少一个第二微镜阵列调制得到的影像光束与第二子图像组中的至少一个子图像一一对应。
可以理解的是,显示控制电路可以将初始投影图像划分得到的多帧待显示的投影图像对应的第一显示数据和第二显示数据依次传输至数字微镜器件。该数字微镜器件进而可以依次进行调制,以得到该多帧待显示的投影图像对应的影像光束。由于显示控制电路读取待显示的投影图像的像素的效率较高,因此该数字微镜器件调制影像光束的效率也较高。
步骤210、控制振镜将振动,以使振镜将数字微镜器件对不同帧的投影图像进行调制得到的影像光束通过投影镜头投射至投影平面的不同位置。
在本公开实施例中,显示控制电路在控制数字微镜器件调制影像光束时,可以同步控制振镜沿不同的方向振动(即偏转)。该振镜在沿不同的方向振动时,能够将数字微镜器件对不同帧的投影图像进行调制得到的影像光束通过投影镜头投射至投影平面的不同位置。由此,投射至该投影屏幕上的多个影像光束叠加显示后,可以形成目标投影图像。其中,该投影平面可以为投影设备的投影屏幕,或者,该投影平面可以为墙面等其它平面。
示例的,假设振镜具有4个振动方向(例如振镜可以沿垂直于其放置平面的方向进行左上、右上、左下和右下四个方向的振动),则在上述步骤201中,显示控制电路可以将分辨率为8K的初始投影图像划分为4帧分辨率为4K的待显示的投影图像。之后,显示控制电路可以控制振镜依次沿4个方向振动,以将数字微镜器件调制得到的该4帧待投影的投影图像对应的影像光束通过投影镜头投射至投影平面的4个位置。该投影平面上的4个影像光束叠加显示后,可以形成分辨率为8K的目标投影图像。
在一具体实施中,该投影平面可以为投影设备的投影屏幕,该投影镜头射出的4个影像光束可以依次投射至投影屏幕的左上位置、右上位置、左下位置和右下位置。若投影屏 幕的刷新速率为60赫兹(Hz),即投影屏幕在1秒内能够显示60帧目标投影图像,则振镜可以通过振动在1\60秒内依次将4帧待投影的投影图像对应的影像光束通过投影镜头投射至投影屏幕的4个位置。
可以理解的是,本公开实施例提供的投影图像的显示方法的步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减。例如,步骤201可以根据抢情况删除。或者,步骤204可以根据情况删除。任何熟悉本技术域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供了一种投影图像的显示方法,应用于投影设备的显示控制电路。该显示控制电路能够将待显示的投影图像划分为第一子图像组和第二子图像组,并对该第一子图像组进行翻转。之后,该显示控制电路能够沿像素的行号由小到大的顺序,逐行读取第一子图像组中每个子图像中的像素,得到第一显示数据,并同步逐行读取第二子图像组中每个子图像中的像素,得到第二显示数据。由于显示控制电路能够同时对第一子图像组和第二子图像组中每个子图像的像素进行读取,因此使得显示控制电路读取像素的效率较高。基于此,可以使得该数字微镜器件基于第一显示数据和第二显示数据调制影像光束的效率也较高。
本公开实施例提供了一种投影设备,该投影设备用于执行上述方法实施例提供的投影图像的显示方法。如图5所示,该投影设备包括:显示控制电路320和光阀250,该光阀250可以为数字微镜器件,参考图7和图9,该数字微镜器件包括至少一个第一微镜阵列,以及至少一个第二微镜阵列。该显示控制电路320用于:
将待显示的投影图像划分为沿列方向排布的第一子图像组和第二子图像组,第一子图像组包括与至少一个第一微镜阵列一一对应的至少一个子图像,第二子图像组包括与至少一个第二微镜阵列一一对应的至少一个子图像,其中每个子图像均包括多行像素,多行像素的行号沿远离投影图像所在的图像坐标系的原点的方向逐行增大。
以平行于行方向的轴为翻转轴,对第一子图像组进行翻转,该第一子图像组相对于第二子图像组靠近图像坐标系的原点。
沿像素的行号由小到大的顺序,逐行读取第一子图像组中至少一个子图像中的像素,得到第一显示数据。
在逐行读取第一子图像组中的像素的过程中,沿像素的行号由小到大的顺序,逐行读取第二子图像组中至少一个子图像中的像素,得到第二显示数据。
将第一显示数据传输至至少一个第一微镜阵列,并将第二显示数据传输至至少一个第二微镜阵列,以供数字微镜器件将投影图像调制成影像光束。
在一具体实施中,第一子图像组包括的至少一个子图像与第二子图像组包括的至少一个子图像一一对应。其中,第一子图像组中每相邻两个子图像之间具有重叠区域,第二子图像组中每相邻两个子图像之间具有重叠区域,且第一子图像组中每个子图像与第二子图像组中对应的一个子图像之间具有重叠区域。
在一具体实施中,沿行方向排布且相邻的两个子图像之间的重叠区域包括N列像素。沿列方向排布且相邻的两个子图像之间的重叠区域包括M行像素。其中,N和M均为正整数,且N与子图像包括的像素列数正相关,M与子图像包括的像素行数正相关。
在一具体实施中,数字微镜器件包括的至少一个第一微镜阵列的数量与至少一个第二微镜阵列的数量相等。
在一具体实施中,数字微镜器件中包括的各个微镜阵列的显示分辨率相同,第一子图像组和第二子图像组包括的各个子图像的分辨率相同。该显示控制电路320,还用于若子图像的分辨率大于微镜阵列的显示分辨率,则对第一显示数据和第二显示数据进行压缩。
在一具体实施中,数字微镜器件中包括两个第一微镜阵列和两个第二微镜阵列。
在一具体实施中,该显示控制电路320,还用于对第一子图像组中的每个子图像,以 及第二子图像组中的每个子图像进行图像处理。其中,图像处理包括:格式转换,图像处理还包括:亮度处理、清晰度处理、颜色处理以及几何校正处理中的至少一种。
在一具体实施中,如图5所示,投影设备还包括多媒体处理电路310,该显示控制电路320,还用于接收多媒体处理电路310传输的初始投影图像。对初始投影图像进行处理,得到多帧待显示的投影图像,多帧投影图像的分辨率相同。
在一具体实施中,参考图5,投影设备还包括振镜370和投影镜头60,该显示控制电路320,还用于控制振镜370将振动,以使振镜370将数字微镜器件对不同帧的投影图像进行调制得到的影像光束通过投影镜头60投射至投影平面的不同位置。
综上所述,本公开实施例提供了一种投影设备,该投影设备中的显示控制电路能够将待显示的投影图像划分为第一子图像组和第二子图像组,并对该第一子图像组进行翻转。之后,该显示控制电路能够沿像素的行号由小到大的顺序,逐行读取第一子图像组中每个子图像中的像素,得到第一显示数据,并同步逐行读取第二子图像组中每个子图像中的像素,得到第二显示数据。由于显示控制电路能够同时对第一子图像组和第二子图像组中每个子图像的像素进行读取,因此使得显示控制电路读取像素的效率较高。基于此,可以使得该数字微镜器件基于第一显示数据和第二显示数据调制影像光束的效率也较高。
可以理解的是,上述实施例提供的投影设备和投影图像的显示方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本公开实施例提供了一种投影设备,该投影设备包括:存储器,处理器及存储在该存储器上的计算机程序,该处理器执行该计算机程序时实现如上述方法实施例提供的投影图像的显示方法(例如图8或图10所示的方法)。
本公开实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,该指令由处理器加载并执行以实现如上述方法实施例提供的投影图像的显示方法(例如图8或图10所示的方法)。
本公开实施例提供了一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得该计算机执行如上述方法实施例提供的投影图像的显示方法(例如图8或图10所示的方法)。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,该程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的示例性实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种投影图像的显示方法,其特征在于,应用于投影设备的显示控制电路,所述投影设备还包括数字微镜器件,所述数字微镜器件包括至少一个第一微镜阵列,以及至少一个第二微镜阵列;所述方法包括:
    将待显示的投影图像划分为沿列方向排布的第一子图像组和第二子图像组,所述第一子图像组包括与所述至少一个第一微镜阵列一一对应的至少一个子图像,所述第二子图像组包括与所述至少一个第二微镜阵列一一对应的至少一个子图像,其中每个所述子图像均包括多行像素,所述多行像素的行号沿远离所述投影图像所在的图像坐标系的原点的方向逐行增大;
    以平行于所述行方向的轴为翻转轴,对所述第一子图像组进行翻转,所述第一子图像组相对于所述第二子图像组靠近所述图像坐标系的原点;
    沿像素的行号由小到大的顺序,逐行读取所述第一子图像组中至少一个子图像中的像素,得到第一显示数据;
    在逐行读取所述第一子图像组中的像素的过程中,沿像素的行号由小到大的顺序,逐行读取所述第二子图像组中至少一个子图像中的像素,得到第二显示数据;
    将所述第一显示数据传输至所述至少一个第一微镜阵列,并将所述第二显示数据传输至所述至少一个第二微镜阵列,以供所述数字微镜器件将所述投影图像调制成影像光束。
  2. 根据权利要求1所述的方法,其特征在于,所述第一子图像组包括的至少一个子图像与所述第二子图像组包括的至少一个子图像一一对应;
    其中,所述第一子图像组中每相邻两个子图像之间具有重叠区域,所述第二子图像组中每相邻两个子图像之间具有重叠区域,且所述第一子图像组中每个子图像与所述第二子图像组中对应的一个子图像之间具有重叠区域。
  3. 根据权利要求2所述的方法,其特征在于,沿所述行方向排布且相邻的两个子图像之间的重叠区域包括N列像素;
    沿所述列方向排布且相邻的两个子图像之间的重叠区域包括M行像素;
    其中,所述N和所述M均为正整数,且所述N与所述子图像包括的像素列数正相关,所述M与所述子图像包括的像素行数正相关。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述数字微镜器件包括的所述至少一个第一微镜阵列的数量与所述至少一个第二微镜阵列的数量相等。
  5. 根据权利要求4所述的方法,其特征在于,所述数字微镜器件中包括的各个微镜阵列的显示分辨率相同,所述第一子图像组和所述第二子图像组包括的各个子图像的分辨率相同;
    在将所述第一显示数据传输至所述至少一个第一微镜阵列,并将所述第二显示数据传输至所述至少一个第二微镜阵列之前,所述方法还包括:
    若所述子图像的分辨率大于所述微镜阵列的显示分辨率,则对所述第一显示数据和所述第二显示数据进行压缩。
  6. 根据权利要求4所述的方法,其特征在于,所述数字微镜器件中包括两个第一微镜阵列和两个第二微镜阵列。
  7. 根据权利要求1至3任一所述的方法,其特征在于,在沿像素的行号由小到大的顺序,逐行读取所述第一子图像组中至少一个子图像中的像素,得到第一显示数据之前,所述方法还包括:
    对所述第一子图像组中的每个子图像,以及所述第二子图像组中的每个子图像进行图像处理;
    其中,所述图像处理包括:格式转换,所述图像处理还包括:亮度处理、清晰度处理、颜色处理以及几何校正处理中的至少一种。
  8. 根据权利要求1至3任一所述的方法,其特征在于,所述投影设备还包括多媒体处理电路,所述方法还包括:
    接收所述多媒体处理电路传输的初始投影图像;
    对所述初始投影图像进行处理,得到多帧待显示的投影图像,所述多帧投影图像的分辨率相同。
  9. 根据权利要求1至3任一所述的方法,其特征在于,所述投影设备还包括振镜和投影镜头,所述方法还包括:
    控制所述振镜将振动,以使所述振镜将所述数字微镜器件对不同帧的投影图像进行调制得到的影像光束通过所述投影镜头投射至投影平面的不同位置。
  10. 一种投影设备,其特征在于,所述投影设备包括显示控制电路和数字微镜器件,所述数字微镜器件包括至少一个第一微镜阵列,以及至少一个第二微镜阵列;所述显示控制电路,用于:
    将待显示的投影图像划分为沿列方向排布的第一子图像组和第二子图像组,所述第一子图像组包括与所述至少一个第一微镜阵列一一对应的至少一个子图像,所述第二子图像组包括与所述至少一个第二微镜阵列一一对应的至少一个子图像,其中每个所述子图像均包括多行像素,所述多行像素的行号沿远离所述投影图像所在的图像坐标系的原点的方向逐行增大;
    以平行于所述行方向的轴为翻转轴,对所述第一子图像组进行翻转,所述第一子图像组相对于所述第二子图像组靠近所述图像坐标系的原点;
    沿像素的行号由小到大的顺序,逐行读取所述第一子图像组中至少一个子图像中的像素,得到第一显示数据;
    在逐行读取所述第一子图像组中的像素的过程中,沿像素的行号由小到大的顺序,逐行读取所述第二子图像组中至少一个子图像中的像素,得到第二显示数据;
    将所述第一显示数据传输至所述至少一个第一微镜阵列,并将所述第二显示数据传输至所述至少一个第二微镜阵列,以供所述数字微镜器件将所述投影图像调制成影像光束。
PCT/CN2023/124671 2022-10-28 2023-10-16 投影设备及其投影图像的显示方法 WO2024088090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211338770.8 2022-10-28
CN202211338770.8A CN115914596A (zh) 2022-10-28 2022-10-28 投影设备及其投影图像的显示方法

Publications (1)

Publication Number Publication Date
WO2024088090A1 true WO2024088090A1 (zh) 2024-05-02

Family

ID=86482538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124671 WO2024088090A1 (zh) 2022-10-28 2023-10-16 投影设备及其投影图像的显示方法

Country Status (2)

Country Link
CN (1) CN115914596A (zh)
WO (1) WO2024088090A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115914596A (zh) * 2022-10-28 2023-04-04 青岛海信激光显示股份有限公司 投影设备及其投影图像的显示方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105684438A (zh) * 2013-11-04 2016-06-15 杜比实验室特许公司 具有全局调光的单和多调制器投影仪***
US20160261838A1 (en) * 2015-03-02 2016-09-08 Disney Enterprises, Inc. System and method for increased spatial resolution
CN110602470A (zh) * 2019-09-20 2019-12-20 青岛海信激光显示股份有限公司 投影显示***及其控制方法
CN113542701A (zh) * 2020-04-20 2021-10-22 青岛海信激光显示股份有限公司 投影显示方法及投影设备
CN114007051A (zh) * 2020-07-28 2022-02-01 青岛海信激光显示股份有限公司 激光投影***及其投影图像的显示方法
CN114245090A (zh) * 2021-12-28 2022-03-25 青岛海信激光显示股份有限公司 图像投影方法、激光投影设备及计算机可读存储介质
CN115914596A (zh) * 2022-10-28 2023-04-04 青岛海信激光显示股份有限公司 投影设备及其投影图像的显示方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105684438A (zh) * 2013-11-04 2016-06-15 杜比实验室特许公司 具有全局调光的单和多调制器投影仪***
US20160261838A1 (en) * 2015-03-02 2016-09-08 Disney Enterprises, Inc. System and method for increased spatial resolution
CN110602470A (zh) * 2019-09-20 2019-12-20 青岛海信激光显示股份有限公司 投影显示***及其控制方法
CN113542701A (zh) * 2020-04-20 2021-10-22 青岛海信激光显示股份有限公司 投影显示方法及投影设备
CN114007051A (zh) * 2020-07-28 2022-02-01 青岛海信激光显示股份有限公司 激光投影***及其投影图像的显示方法
CN114245090A (zh) * 2021-12-28 2022-03-25 青岛海信激光显示股份有限公司 图像投影方法、激光投影设备及计算机可读存储介质
CN115914596A (zh) * 2022-10-28 2023-04-04 青岛海信激光显示股份有限公司 投影设备及其投影图像的显示方法

Also Published As

Publication number Publication date
CN115914596A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US8641205B2 (en) Light source device having first light source, second light source, and control section to control drive timing of first light source and second light source such that drive pattern of second light source is inversion of drive pattern of first light source, and projection apparatus and projection method which utilize said light source device
US8444276B2 (en) Light source device, projection apparatus including the light source device, and projection method
US6621488B1 (en) Image display device and modulation panel therefor
WO2021051814A1 (zh) 投影显示***及其控制方法、投影显示设备
US7396131B2 (en) Projection assembly
WO2024088090A1 (zh) 投影设备及其投影图像的显示方法
KR20020082850A (ko) 프로젝션 디스플레이를 위한 led 광원을 사용하는 방법및 시스템
CN104541321A (zh) 显示器、显示控制方法、显示控制装置以及电子装置
US20090002297A1 (en) Image display device
US20160327783A1 (en) Projection display system and method
CN108234976B (zh) 支持多种激光光源的dlp投影显示驱动***
JP2002189263A (ja) 投射型表示装置
JP2003172900A (ja) 画像投影表示装置、画像投影表示システム並びに画像投影表示方法
WO2022253336A1 (zh) 激光投影设备及投影图像的校正方法
WO2023246211A1 (zh) 激光投影设备及投影图像的显示方法
US20200382750A1 (en) Method of controlling display device, and display device
JP2019023711A (ja) マルチプロジェクションシステム、プロジェクターおよびプロジェクターの制御方法
CN112399157A (zh) 投影机及投影方法
JP2002207192A (ja) 映像表示装置及び駆動回路
US11425330B2 (en) Projector and projection method
WO2023050940A1 (zh) 激光投影设备、投影显示***及投影显示方法
JP2003295315A (ja) 投射型表示装置
JP2019184823A (ja) 投写型映像表示装置
CN219958062U (zh) 投影***
JPH0720587A (ja) プロジエクタ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881669

Country of ref document: EP

Kind code of ref document: A1