WO2024082088A1 - 电极组件、电池单体、电池及用电装置 - Google Patents

电极组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024082088A1
WO2024082088A1 PCT/CN2022/125628 CN2022125628W WO2024082088A1 WO 2024082088 A1 WO2024082088 A1 WO 2024082088A1 CN 2022125628 W CN2022125628 W CN 2022125628W WO 2024082088 A1 WO2024082088 A1 WO 2024082088A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal insulation
diaphragm
insulation layer
base film
electrode assembly
Prior art date
Application number
PCT/CN2022/125628
Other languages
English (en)
French (fr)
Inventor
刘桓基
凌洋芳
黄建涛
孙信
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/125628 priority Critical patent/WO2024082088A1/zh
Priority to EP22940932.1A priority patent/EP4379938A1/en
Priority to US18/509,008 priority patent/US20240128538A1/en
Publication of WO2024082088A1 publication Critical patent/WO2024082088A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and in particular to an electrode assembly, a battery cell, a battery and an electrical device.
  • the activity of the active materials in the battery is low, resulting in a significant reduction in capacity.
  • the battery is also prone to severe lithium deposition at the negative electrode, posing a safety risk.
  • the present application provides an electrode assembly, a battery cell, a battery and an electrical device, which can alleviate the problem that the battery capacity is greatly reduced and causes safety risks under low temperature conditions.
  • an electrode assembly comprising:
  • a plurality of pole pieces each having a first side and a second side opposite to each other along a first direction, at least one of the first side and the second side having a pole ear;
  • a diaphragm is arranged alternately with a plurality of pole pieces
  • the diaphragm is configured to be thermally insulated on at least one of the first side and the second side; and/or
  • the diaphragm is configured to be thermally insulated and disposed on the outermost layer of the plurality of pole pieces.
  • the above-mentioned electrode assembly is configured to be heat-insulated on at least one of the first side and the second side of the plurality of pole pieces by arranging a diaphragm, so that when the battery is working normally, the heat generated by the electrode assembly is not easily dissipated on the first side or the second side, so that the heat can be retained in the electrode assembly, and further when the battery is in a low temperature environment, the temperature of the battery cell can be increased.
  • the diaphragm heat insulation on the outermost layer of multiple pole pieces, when the battery is working normally, the heat generated by the electrode assembly is not easily dissipated from the outermost layer of the multiple pole pieces, so that the heat can be retained in the electrode assembly, and then when the battery is in a low temperature environment, the temperature of the battery cell can be increased.
  • At least one pole piece includes a high thermal resistance alloy substrate
  • the high thermal resistance alloy substrate includes at least one of stainless steel, iron-nickel alloy, iron-aluminum alloy, iron-nickel-manganese alloy, nickel-manganese alloy, and nickel-manganese-aluminum alloy.
  • high heat-resistance alloy substrates can increase the impedance of the pole pieces, thereby increasing the heat generation of the battery cells themselves.
  • the high heat-resistance alloy substrates have low thermal conductivity, thereby reducing heat dissipation.
  • the diaphragm includes a base film and a first heat insulation layer, and the first heat insulation layer is disposed on at least one side edge of the base film along the first direction;
  • the first heat insulation layer is arranged on the outermost base film of the plurality of pole pieces.
  • the thermal insulation effect of the diaphragm is achieved by providing the first thermal insulation layer on the base film, which can simplify the structure and the manufacturing process.
  • the orthographic projection of the first thermal insulation layer on the base film along the second direction has no overlapping area with the orthographic projection of the electrode piece on the base film;
  • the first direction is perpendicular to the second direction.
  • the diaphragm also needs to have micropores for the passage of charged ions, by setting a non-overlapping area between the orthographic projection of the thermal insulation layer on the base membrane and the orthographic projection of the pole piece on the base membrane, the influence of the first thermal insulation layer on the passage of ions can be reduced, thereby ensuring the performance of the battery cell.
  • the orthographic projection of the first thermal insulation layer on the base film along the second direction forms a thermal insulation area, and the thickness of the membrane in the thermal insulation area is greater than the thickness of the membrane in other areas except the thermal insulation area.
  • the diaphragms on the first side or the second side of the multiple pole pieces can be converged, which is specifically manifested in that the distance between the multiple diaphragm segments on the first side or the second side of the multiple pole pieces is reduced. This convergence can block the escape of heat from the first side or the second side, thereby reducing heat loss.
  • the diaphragm when the first thermal insulation layer is disposed on at least one side edge of the base film along the first direction, the diaphragm includes a plurality of diaphragm segments, and the plurality of diaphragm segments are alternately arranged with a plurality of pole pieces, the first thermal insulation layer includes a plurality of thermal insulation segments, and each thermal insulation segment is disposed on a side edge of a corresponding diaphragm segment along the first direction.
  • the multiple diaphragm segments and multiple pole pieces are arranged alternately, the multiple diaphragm segments can be arranged layer by layer in the thickness direction of the base film, so the corresponding multiple insulation segments can be arranged layer by layer. Therefore, the effects of each insulation segment can be combined to further reduce heat escape and increase the temperature of the battery cell.
  • At least two adjacent insulation segments located on the same side along the first direction are connected to each other.
  • At least two adjacent insulation segments located on the same side along the first direction are connected to each other by heat compression.
  • connection of multiple insulation sections can be made tighter by hot pressing.
  • the diaphragm when the first thermal insulation layer is provided on the outermost base film of the plurality of pole pieces, the diaphragm includes a first diaphragm and a second diaphragm, the base film includes a first base film and a second base film, the first diaphragm has the first base film, and the second diaphragm has the second base film;
  • the first diaphragm and the plurality of pole pieces are alternately arranged to form an electrode unit, and the second diaphragm is wound around the outside of the electrode unit;
  • the first heat insulation layer is arranged on the second base film.
  • the first heat insulation layer can be arranged on the outermost layer of the electrode unit, thereby reducing the heat dissipation generated by the electrode unit and increasing the temperature of the battery cell.
  • the orthographic projection of the first thermal insulation layer on the base film along the second direction forms a thermal insulation region
  • the membrane further includes a second thermal insulation layer
  • the second thermal insulation layer is disposed in other regions of the base film except the thermal insulation region
  • the thickness of the second heat insulation layer is smaller than that of the first heat insulation layer, and the first direction is perpendicular to the second direction.
  • the heat dissipation generated by the electrode assembly can be further reduced. Since the diaphragm also needs to have micropores for charged ions to pass through, setting the thickness of the second insulation layer to be smaller than the thickness of the first insulation layer can reduce the obstruction of the micropores and ensure the performance of the battery cell.
  • the first thermal insulation layer has a thickness of about 5 micrometers to about 100 micrometers.
  • the first thermal insulation layer when the first thermal insulation layer is provided on the outermost base film of the plurality of pole pieces, the first thermal insulation layer comprises a thermal insulation material and an adhesive for thermal insulation;
  • the mass percentage of the binder in the first thermal insulation layer is ⁇ 20%.
  • the first thermal insulation layer is arranged at the outermost layer of the plurality of pole pieces, the outermost area of the plurality of pole pieces is large, therefore, the mass percentage of the adhesive can be appropriately reduced, and the mass percentage of the thermal insulation material can be correspondingly increased to improve the thermal insulation effect.
  • the first heat-insulating layer when the first heat-insulating layer is disposed on at least one side edge of the base film in the first direction, the first heat-insulating layer has a heat-insulating material and an adhesive for heat insulation;
  • the mass percentage of the binder in the first heat-insulating layer is ⁇ 50%.
  • the first insulation layer is arranged on at least one side edge of the base film along the first direction and occupies a relatively small area, increasing the mass percentage of the adhesive can improve the connection tightness between multiple insulation segments when multiple insulation segments are connected to each other, thereby improving the insulation effect.
  • the diaphragm has a thermal insulation material for heat insulation, and the thermal insulation material includes an oxide, a nitride, or a combination thereof.
  • the oxide includes silicon oxide, niobium oxide, titanium oxide, aluminum oxide, or a combination thereof.
  • the nitride includes silicon nitride, niobium nitride, titanium nitride, aluminum nitride, or combinations thereof.
  • the membrane has a thermal insulation material and an adhesive for thermal insulation.
  • the diaphragm heat insulation is arranged on at least one side edge along the first direction and the heat insulation is arranged on the outermost side of the plurality of pole pieces, so that the heat insulation effect can be ensured and the heat insulation effect is also stable.
  • the heat insulation material can be bonded and fixed by using an adhesive, which improves the tightness between the heat insulation materials and is conducive to enhancing the heat insulation effect.
  • the present application provides a battery cell comprising the electrode assembly in any of the above embodiments.
  • the above-mentioned battery cell is configured to be heat-insulated by setting a diaphragm on at least one of the first side and the second side of the plurality of pole pieces, so that when the battery is working normally, the heat generated by the electrode assembly is not easily dissipated on the first side or the second side, so that the heat can be retained in the electrode assembly, and further when the battery is in a low temperature environment, the temperature of the battery cell can be increased.
  • the diaphragm heat insulation on the outermost layer of multiple pole pieces, when the battery is working normally, the heat generated by the electrode assembly is not easily dissipated from the outermost layer of the multiple pole pieces, so that the heat can be retained in the electrode assembly, and then when the battery is in a low temperature environment, the temperature of the battery cell can be increased.
  • the battery cell further comprises a housing having a receiving cavity, and the electrode assembly is disposed in the receiving cavity;
  • a third heat insulation layer is arranged on the cavity wall of the accommodating cavity.
  • the third heat insulating layer By arranging the third heat insulating layer on the cavity wall of the accommodating cavity, it is possible to prevent heat from escaping from the outer shell.
  • the battery cell further includes a shell and an insulating layer, the shell has a receiving cavity, the electrode assembly is disposed in the receiving cavity, and the insulating layer is disposed between the electrode assembly and the cavity wall of the receiving cavity;
  • the insulating layer comprises an insulating base layer and a fourth thermal insulation layer, and the fourth thermal insulation layer is arranged on the insulating base layer.
  • thermal insulation layer By providing a fourth thermal insulation layer on the insulating base film, another thermal insulation layer can be added to the outside of the electrode assembly, which can cooperate with the diaphragm to achieve a double thermal insulation effect.
  • the present application provides a battery, comprising a battery cell in any of the above embodiments.
  • the above-mentioned battery is configured to be heat-insulating and arranged on at least one of the first side and the second side of the plurality of electrode pieces by arranging a diaphragm, so that when the battery is working normally, the heat generated by the electrode assembly is not easily dissipated on the first side or the second side, so that the heat can be retained in the electrode assembly, and further, when the battery is in a low temperature environment, the temperature of the battery cell can be increased.
  • the diaphragm heat insulation on the outermost layer of multiple pole pieces, when the battery is working normally, the heat generated by the electrode assembly is not easily dissipated from the outermost layer of the multiple pole pieces, so that the heat can be retained in the electrode assembly, and then when the battery is in a low temperature environment, the temperature of the battery cell can be increased.
  • the present application provides an electrical device, comprising the battery in any of the above embodiments.
  • the above-mentioned electrical device is configured to be heat-insulating and arranged on at least one of the first side and the second side of the plurality of electrode pieces by arranging a diaphragm, so that when the battery is working normally, the heat generated by the electrode assembly is not easily dissipated on the first side or the second side, so that the heat can be retained in the electrode assembly, and further when the battery is in a low temperature environment, the temperature of the battery cell can be increased.
  • the diaphragm heat insulation on the outermost layer of multiple pole pieces, when the battery is working normally, the heat generated by the electrode assembly is not easily dissipated from the outermost layer of the multiple pole pieces, so that the heat can be retained in the electrode assembly, and then when the battery is in a low temperature environment, the temperature of the battery cell can be increased.
  • FIG. 1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • FIG2 is an exploded view of a battery provided in some embodiments of the present application.
  • FIG3 is a schematic diagram of the exploded structure of a battery cell according to some embodiments of the present application.
  • FIG4 is a schematic diagram of the structure of an electrode assembly in some embodiments of the present application.
  • FIG5 is a schematic structural diagram of electrode assemblies in other embodiments of the present application.
  • FIG6 is a schematic diagram of the cross-sectional structure of the diaphragm in the electrode assembly shown in FIG4 ;
  • FIG7 is a schematic diagram of a cross-sectional structure of an electrode assembly according to some embodiments of the present application.
  • FIG8 is a schematic diagram of the cross-sectional structure of electrode assemblies according to other embodiments of the present application.
  • FIG9 is a schematic diagram of a cross-sectional structure of a diaphragm in some embodiments of the present application.
  • FIG10 shows a bottom temperature rise curve of the battery cell of Example 1.
  • FIG11 shows a bottom temperature rise curve of a battery cell of Comparative Example 1
  • FIG. 12 shows a bottom temperature rise curve of the battery cell 20 of Example 2.
  • FIG. 13 shows a bottom temperature rise curve of the battery cell 20 of Example 3.
  • FIG14 shows a bottom temperature rise curve of a battery cell of Example 4.
  • FIG15 shows a bottom temperature rise curve of a battery cell of Example 5.
  • FIG16 shows a bottom temperature rise curve of a battery cell of Example 6.
  • FIG17 shows a bottom temperature rise curve of a battery cell of Example 7.
  • FIG18 shows a bottom temperature rise curve of a battery cell of Example 8.
  • FIG. 19 shows a bottom temperature rise curve of the battery cell of Example 9.
  • Electrode terminal 211 shell 22
  • electrode assembly 23 pole ear 231, pole piece 232
  • diaphragm 233 diaphragm 2331, second diaphragm 2332, base film 2333, first thermal insulation layer 2334, diaphragm segment 2335, second thermal insulation layer 2336, shell 24, accommodating cavity 241.
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • lithium-ion batteries as their main power source, which have the advantages of high operating voltage, high energy density, long cycle life, no memory effect, and small size.
  • my country has been continuously optimizing and promoting the development plan of the new energy industry, which will inevitably increase the demand for power batteries significantly.
  • lithium-ion batteries is greatly affected by temperature. Usually, its charging capacity is reduced in low temperature environment, and the capacity cannot be fully utilized. Especially in the cold winter, the loss of capacity of battery active materials is more prominent, the voltage platform is reduced, and the battery energy density is lost; at the same time, in low temperature environment, the electronic conductivity and ion conductivity of lithium-ion batteries are reduced, and the kinetics drop sharply, resulting in lithium deposition in lithium-ion batteries during high-rate charging, deteriorating the battery interface, and posing serious safety hazards.
  • the first most commonly used technical solution for battery insulation design is to set a hollow/filled insulation layer in the battery box.
  • the external environment temperature is low and the vehicle runs at a high speed, resulting in a large flow rate of low-temperature gas outside the battery box, the first insulation design cannot effectively slow down the heat transfer rate between the inside of the battery box and the external environment, thereby causing the internal temperature of the battery box to be too low, which in turn affects the performance of the battery.
  • the second technical solution is to install a heating device in the battery pack to heat the battery pack at low temperatures.
  • the second heating solution requires the use of phase change heating materials, heaters or heating covers, but this heating method requires the addition of additional equipment, which occupies the layout space in the battery and requires an additional heating controller, while also affecting the capacity density and safety of the battery system.
  • the applicant considered the need to improve the heat preservation and heating of a single battery cell.
  • an electrode assembly including multiple pole pieces and a diaphragm
  • the multiple pole pieces have a first side and a second side opposite to each other along a first direction, at least one of the first side and the second side has a pole ear
  • the diaphragm is alternately arranged with the multiple pole pieces.
  • the diaphragm is configured to be thermally insulated and arranged on at least one of the first side and the second side and thermally insulated and arranged on the outermost layer of the multiple pole pieces.
  • the diaphragm insulation is arranged on at least one of the first side and the second side of the plurality of pole pieces, when the battery is working normally, the heat generated by the electrode assembly is not easy to dissipate on the first side or the second side, so that the heat can be retained in the electrode assembly, and then when the battery is in a low temperature environment, the temperature of the battery cell can be increased.
  • the diaphragm insulation is arranged on the outermost layer of multiple pole pieces, the heat generated by the electrode assembly is not easily dissipated from the outermost layer of multiple pole pieces when the battery is working normally, so that the heat can be retained in the electrode assembly, and then when the battery is in a low temperature environment, the temperature of the battery cell can be increased.
  • the electrode assembly disclosed in the embodiment of the present application is applied to a battery cell.
  • the battery cell disclosed in the embodiment of the present application can be used in, but not limited to, electrical devices such as vehicles, ships, or aircraft.
  • a power supply system comprising the battery cell, battery, etc. disclosed in the present application can be used to form the electrical device, which is conducive to alleviating and automatically adjusting the deterioration of the expansion force of the battery cell, replenishing the consumption of the electrolyte, and improving the stability of the battery performance and the battery life.
  • the embodiment of the present application provides an electric device using a battery as a power source
  • the electric device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, etc.
  • the electric toy may include a fixed or mobile electric toy, such as a game console, an electric car toy, an electric ship toy, and an electric airplane toy, etc.
  • the spacecraft may include an airplane, a rocket, a space shuttle, and a spacecraft, etc.
  • FIG. 1 is a schematic diagram of the structure of a vehicle 1000 provided in some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 is provided inside the vehicle 1000, and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000, for example, the battery 100 may be used as an operating power source for the vehicle 1000.
  • the vehicle 1000 may also include a controller 200 and a motor 300, and the controller 200 is used to control the battery 100 to power the motor 300, for example, for the starting, navigation and working power requirements of the vehicle 1000 during driving.
  • the battery 100 can not only serve as an operating power source for the vehicle 1000, but also serve as a driving power source for the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • FIG. 2 is an exploded view of a battery 100 provided in some embodiments of the present application.
  • the battery 100 includes a box body 10 and a battery cell 20, and the battery cell 20 is contained in the box body 10.
  • the box body 10 is used to provide a storage space for the battery cell 20, and the box body 10 can adopt a variety of structures.
  • the box body 10 may include a first part 11 and a second part 12, and the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a storage space for accommodating the battery cell 20.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure, and the first part 11 covers the open side of the second part 12, so that the first part 11 and the second part 12 jointly define a storage space; the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 covers the open side of the second part 12.
  • the box body 10 formed by the first part 11 and the second part 12 may be in a variety of shapes, such as a cylinder, a cuboid, etc.
  • the battery 100 there may be multiple battery cells 20, and the multiple battery cells 20 may be connected in series, in parallel, or in a mixed connection.
  • a mixed connection means that the multiple battery cells 20 are both connected in series and in parallel.
  • the multiple battery cells 20 may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the multiple battery cells 20 is accommodated in the box 10; of course, the battery 100 may also be a battery module formed by connecting multiple battery cells 20 in series, in parallel, or in a mixed connection, and then the multiple battery modules are connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box 10.
  • the battery 100 may also include other structures, for example, the battery 100 may also include a busbar component for realizing electrical connection between the multiple battery cells 20.
  • Each battery cell 20 may be a secondary battery or a primary battery, or a lithium-sulfur battery, a sodium-ion battery, or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be cylindrical, flat, rectangular, or in other shapes.
  • FIG3 is a schematic diagram of the exploded structure of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit that constitutes a battery.
  • the battery cell 20 includes an end cap 21, a housing 22, an electrode assembly 23 and other functional components.
  • the end cap 21 refers to a component that covers the opening of the shell 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 21 can be adapted to the shape of the shell 22 to match the shell 22.
  • the end cap 21 can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the end cap 21 is not easily deformed when squeezed and collided, so that the battery cell 20 can have a higher structural strength and the safety performance can also be improved.
  • Functional components such as electrode terminals 211 can be provided on the end cap 21. The electrode terminal 211 can be used to electrically connect with the electrode assembly 23 for outputting or inputting electrical energy of the battery cell 20.
  • the end cap 21 can also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the material of the end cap 21 can also be a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiments of the present application do not impose special restrictions on this.
  • an insulating member may be provided inside the end cap 21, and the insulating member may be used to isolate the electrical connection components in the housing 22 from the end cap 21 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, or the like.
  • the shell 22 is a component used to cooperate with the end cap 21 to form the internal environment of the battery cell 20, wherein the formed internal environment can be used to accommodate the electrode assembly 23, the electrolyte and other components.
  • the shell 22 and the end cap 21 can be independent components, and an opening can be set on the shell 22, and the internal environment of the battery cell 20 is formed by covering the opening with the end cap 21 at the opening.
  • the end cap 21 and the shell 22 can also be integrated. Specifically, the end cap 21 and the shell 22 can form a common connection surface before other components are put into the shell, and when the interior of the shell 22 needs to be encapsulated, the end cap 21 covers the shell 22.
  • the shell 22 can be of various shapes and sizes, such as a rectangular parallelepiped, a cylindrical shape, a hexagonal prism, etc. Specifically, the shape of the shell 22 can be determined according to the specific shape and size of the electrode assembly 23.
  • the material of the shell 22 can be various, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiment of the present application does not impose any special restrictions on this.
  • the electrode assembly 23 is a component in the battery cell 20 where electrochemical reactions occur.
  • One or more electrode assemblies 23 may be included in the housing 22.
  • the electrode assembly 23 is mainly formed by winding or stacking positive and negative electrode sheets, and a separator is usually provided between the positive and negative electrode sheets.
  • the parts of the positive and negative electrode sheets with active materials constitute the main body of the electrode assembly 23, and the parts of the positive and negative electrode sheets without active materials each constitute a tab 231.
  • the positive tab and the negative tab may be located together at one end of the main body or respectively at both ends of the main body.
  • the positive active material and the negative active material react with the electrolyte, and the tab 231 connects the electrode terminals to form a current loop.
  • Figure 4 is a schematic diagram of the structure of an electrode assembly according to some embodiments of the present application
  • Figure 5 is a schematic diagram of the structure of an electrode assembly according to other embodiments of the present application.
  • the present application provides an electrode assembly 23.
  • the electrode assembly 23 includes a plurality of pole pieces 232 and a diaphragm 233.
  • the plurality of pole pieces 232 have a first side and a second side opposite to each other along a first direction, and at least one of the first side and the second side has a pole ear.
  • the diaphragm 233 is alternately arranged with the plurality of pole pieces 232.
  • the diaphragm 233 is configured to be thermally insulated and arranged on at least one of the first side and the second side, and/or the diaphragm 233 can also be configured to be thermally insulated and arranged on the outermost layer of the plurality of pole pieces 232.
  • the plurality of electrode sheets 232 include at least one positive electrode sheet and at least one negative electrode sheet.
  • the separator 233 and the plurality of pole pieces 232 are alternately arranged, which means that the separator 233 is isolated and arranged between every two adjacent pole pieces 232 . Specifically, the separator 233 is isolated and arranged between the positive pole piece and the negative pole piece.
  • the first side edges and the second side edges of the plurality of pole pieces 232 are opposite to each other along a first direction.
  • the first direction may be the width direction of the diaphragm 233, specifically the Z direction as shown in FIGS. 4 and 5 .
  • the electrode assembly 23 may be formed by stacking multiple pole pieces 232 and the diaphragm 233.
  • the electrode assembly 23 may be formed by winding multiple pole pieces 232 and the diaphragm 233.
  • the diaphragms 233 in the above two methods may include a first diaphragm 2331 and a second diaphragm 2332.
  • the first diaphragm 2331 and the multiple pole pieces 232 are stacked to form an electrode unit.
  • the second diaphragm 2332 is wound around the outside of the electrode unit.
  • the first diaphragm 2331 may include multiple diaphragm segments 2335. Each diaphragm segment 2335 is used to isolate two adjacent pole pieces 232.
  • the outermost layer of the plurality of pole pieces 232 that is thermally insulated by the diaphragm 233 refers to the outer side of the outermost pole piece 232 that is thermally insulated by the diaphragm 233 .
  • the diaphragm 233 is configured to be heat-insulating and arranged on at least one of the first side and the second side of the plurality of pole pieces 232, when the battery 100 is operating normally, the heat generated by the electrode assembly 23 is not easily dissipated on the first side or the second side, so that the heat can be retained in the electrode assembly 23, and further, when the battery 100 is in a low temperature environment, the temperature of the battery cell 20 can be increased.
  • the heat generated by the electrode assembly 23 is not easily dissipated from the outermost layer of the multiple pole pieces 232, so that the heat can be retained in the electrode assembly 23, and further when the battery 100 is in a low temperature environment, the temperature of the battery cell 20 can be increased.
  • the diaphragm 233 includes a base film 2333 and a first thermal insulation layer 2334 , the first thermal insulation layer 2334 is disposed on at least one of the first side and the second side of the base film 2333 , and/or the first thermal insulation layer 2334 is disposed on the outermost base film 2333 of the plurality of pole pieces 232 .
  • the base film 2333 is the main part of the diaphragm 233 and is used to form a substrate layer.
  • the base film 2333 can be made of a polypropylene or polyethylene microporous film.
  • the first heat insulating layer 2334 is a material layer with heat insulating function, and the method of providing the first heat insulating layer 2334 on the base film 2333 may be coating, sputtering, infiltration, etc., which is not limited here.
  • the heat insulating effect of the diaphragm 233 can be achieved, thereby simplifying the structure and the manufacturing process.
  • the first heat insulating layer 2334 may be disposed on one side edge of the base film 2333 along the width direction thereof, or may be disposed on both side edges of the base film 2333 along the width direction thereof, and the first heat insulating layer 2334 may be disposed on the same side discontinuously along the circumference direction of the base film 2333, or may be disposed continuously along the circumference direction of the base film 2333.
  • the width direction of the base film 2333 is the first direction.
  • the first thermal insulation layer 2334 may be covered on one side surface of the outermost base film 2333 of the plurality of pole pieces 232 , or may be covered on both side surfaces of the outermost base film 2333 of the plurality of pole pieces 232 , or may be a portion of one side surface of the outermost base film 2333 of the plurality of pole pieces 232 .
  • the insulation effect can also be achieved by using the base film material of the local area of the diaphragm 233, thickening improvements, etc.
  • the orthographic projection of the first thermal insulation layer 2334 on the base film 2333 along the second direction has no overlapping area with the orthographic projection of the pole piece 232 on the base film 2333.
  • the first direction is perpendicular to the second direction.
  • the second direction is the X direction or the Y direction shown in FIG. 4 and FIG. 5 .
  • the diaphragm 233 also needs to have micropores for the passage of charged ions, by setting a non-overlapping area between the orthographic projection of the thermal insulation layer 2324 on the base film 2333 and the orthographic projection of the pole piece 232 on the base film 2333, the influence of the first thermal insulation layer 2334 on the passage of ions can be reduced, thereby ensuring the performance of the battery cell 20.
  • the orthographic projection of the first thermal insulation layer 2334 on the base film 2333 along the second direction forms a thermal insulation region, and the thickness of the membrane 233 in the thermal insulation region is greater than the thickness of the membrane 233 in other regions except the thermal insulation region.
  • base film 2333 of the diaphragm 233 in other areas may also be provided with other coating layers, such as ceramic coating, polymer coating, etc.
  • the diaphragms 233 on the first side or the second side of the multiple pole pieces 232 can be converged. Specifically, the distance between the multiple diaphragm segments 2335 on the first side or the second side of the multiple pole pieces 232 is reduced. This convergence can block the escape of heat from the first side or the second side, thereby reducing heat loss.
  • the diaphragm 233 includes a plurality of diaphragm segments 2335, and the plurality of diaphragm segments 2335 are alternately disposed with a plurality of pole pieces.
  • the first thermal insulation layer 2334 includes a plurality of thermal insulation segments 2334a, and each thermal insulation segment 2334a is disposed on one side edge of a corresponding diaphragm segment 2335 along the first direction.
  • the multiple diaphragm segments 2335 and the multiple pole pieces are arranged alternately, the multiple diaphragm segments 2335 can be arranged layer by layer in the thickness direction of the base film 2333, so the corresponding multiple thermal insulation segments 2334a can be arranged layer by layer. Therefore, the effects of each thermal insulation segment 2334a can be combined to further reduce heat escape and increase the temperature of the battery cell 20.
  • each diaphragm segment 2335 is provided with a corresponding heat insulation segment 2334a on one side edge along the first direction.
  • each diaphragm segment 2335 is provided with a corresponding heat insulation segment 2334a on both side edges along the first direction.
  • only some diaphragm segments 2335 are provided with a corresponding heat insulation segment 2334a on one side edge along the first direction.
  • only some diaphragm segments 2335 are provided with a corresponding heat insulation segment 2334a on both side edges along the first direction.
  • At least two adjacent diaphragm segments 2335 on the same side along the first direction are connected to each other.
  • At least two adjacent insulation sections 2334a located on the same side along the first direction are connected to each other.
  • the gaps between the diaphragm segments 2335 can be eliminated, and heat can be prevented from escaping from the gaps, so as to increase the temperature of the battery cell 20 .
  • thermal insulation sections 2334a located on the same side along the first direction are connected to each other.
  • At least two adjacent thermal insulation segments 2334a located on the same side along the first direction are connected to each other by heat compression.
  • the multiple thermal insulation segments 2334a are connected by hot pressing, which means that at least two adjacent thermal insulation segments 2334a are connected by a hot pressing process.
  • connection of multiple insulation segments 2334a can be made tighter by heat pressing.
  • At least two adjacent insulation segments 2334a may be connected to each other by fasteners, such as straps, clips, etc., or by using adhesives.
  • the diaphragm 233 when the first thermal insulation layer 2334 is disposed on the outermost base film 2333 of the plurality of pole pieces 232, the diaphragm 233 includes a first diaphragm 2331 and a second diaphragm 2332, the base film 2333 includes a first base film and a second base film, the first diaphragm 2331 has a first base film, the second diaphragm 2332 has a second base film, the first diaphragm 2331 and the plurality of pole pieces 232 are alternately disposed to form an electrode unit 233, and the second diaphragm 2332 is wound around the outside of the electrode unit 233.
  • the first thermal insulation layer 2334 is disposed on the second base film.
  • the first heat insulating layer 2334 can be disposed on the outermost layer of the electrode unit 233 , thereby reducing the heat dissipation generated by the electrode unit 233 and increasing the temperature of the battery cell 20 .
  • the second diaphragm 2332 can be wound around the outside of the electrode unit 233 in a full circle, a half circle or other number of circles along the circumference of the electrode unit 233, which is not limited here.
  • the first base film and the second base film are integrally formed.
  • the forming method of the diaphragm 233 can be simplified.
  • the first thermal insulation layer 2334 is projected onto the base film 2333 along the second direction to form a thermal insulation region
  • the membrane 233 also includes a second thermal insulation layer 2336 , which is disposed in regions other than the thermal insulation region, and a thickness of the second thermal insulation layer 2336 is less than a thickness of the first thermal insulation layer 2334 .
  • the heat dissipation generated by the electrode assembly 23 can be further reduced. Since the diaphragm 233 also needs to have micropores for charged ions to pass through, setting the thickness of the second thermal insulation layer 2336 to be smaller than the thickness of the first thermal insulation layer 2334 can reduce the obstruction of the micropores and ensure the performance of the battery cell 20.
  • the second thermal insulation layer 2336 may be covered on one side surface of the base film 2333 in other areas, or on both side surfaces of the base film 2333 in other areas, or may be a portion of one side surface of the base film 2333 in other areas.
  • the diaphragm 233 has a thermal insulation material for heat insulation, and the thermal insulation material includes oxide, nitride or a combination thereof.
  • Oxides and nitrides have good stability as thermal insulation materials and good thermal insulation effects.
  • the first insulation layer 2334 has an insulation material.
  • the oxide includes silicon oxide, niobium oxide, titanium oxide, aluminum oxide, or a combination thereof.
  • the nitride is selected from silicon nitride, niobium nitride, titanium nitride, aluminum nitride or a combination thereof.
  • the diaphragm 233 has a heat insulating material and an adhesive for heat insulation.
  • the diaphragm 233 is heat-insulated on at least one side edge in the first direction and is heat-insulated on the outermost layer of the plurality of pole pieces 232, so that the heat-insulating effect can be ensured and the heat-insulating effect is stable.
  • the heat-insulating material can be bonded and fixed by using an adhesive, so that the tightness between the heat-insulating materials is improved, which is conducive to enhancing the heat-insulating effect.
  • the adhesive includes polytetrafluoroethylene, polyvinylidene fluoride, polymethacrylate, polyacrylic acid, polyamide, polyimide, sodium alginate or a combination thereof.
  • the first insulation layer 2334 when the first insulation layer 2334 is disposed on the outermost base film 2333 of the plurality of pole pieces 232, the first insulation layer 2334 has insulation material and adhesive for heat insulation.
  • the mass percentage of the adhesive in the first insulation layer 2334 is ⁇ 20%.
  • the mass percentage of the adhesive can be appropriately reduced and the mass percentage of the thermal insulation material can be correspondingly increased to improve the thermal insulation effect.
  • the mass percentage of the binder in the first thermal insulation layer 2334 is 20%, 15%, 10%, or 5%.
  • the first insulation layer 2334 when the first insulation layer 2334 is disposed on at least one side edge of the base film 2333 along the first direction, the first insulation layer 2334 has insulation material and adhesive for heat insulation.
  • the mass percentage of the adhesive in the first insulation layer 2334 is ⁇ 50%.
  • the first insulation layer 2334 is arranged on at least one side edge of the base film 2333 along the first direction and occupies a relatively small area, increasing the mass percentage of the adhesive can improve the connection tightness between multiple insulation segments 2334a when multiple insulation segments 2334a are connected to each other, thereby improving the insulation effect.
  • the mass percentage of the binder in the first thermal insulation layer 2334 is 50%, 45%, 40%, 35%, 30%, 20%, 15%, 10%, or 5%.
  • the thickness of the first thermal insulation layer 2334 is about 5 micrometers to about 100 micrometers.
  • the thickness of the first heat insulation layer 2334 is about 5 microns to about 100 microns, a good heat insulation effect can be achieved, which can be specifically verified by subsequent experiments.
  • the present application is further described below with respect to a specific implementation case in which the first thermal insulation layer 2334 is disposed on at least one side edge of the base film 2333 along its width direction, but the technical parameters involved in the scheme cannot be understood as limitations on the present application.
  • Embodiment 1 The first heat insulating layer 2334 is disposed on one side edge of the base film 2333 along its width direction.
  • the current collectors of the positive electrode sheet and the negative electrode sheet are made of copper and aluminum substrates respectively, the active material of the positive electrode sheet is lithium iron phosphate, the active material of the negative electrode sheet is graphite, the insulation material of the first insulation layer 2334 is silicon oxide, and the thickness of the first insulation layer 2334 is 20 microns.
  • the battery cell 20 having the above structure was discharged under the condition of -10°C.
  • FIG. 10 shows a bottom temperature rise curve of the battery cell of Example 1.
  • the bottom temperature of the battery cell 20 increases by a maximum of 10° C.
  • the capacity fading rate of the battery cell 20 is 26.27%.
  • Comparative Example 1 the diaphragm 233 does not have the first heat insulation layer 2334 .
  • the current collectors of the positive electrode sheet and the negative electrode sheet are made of copper and aluminum substrates respectively
  • the active material of the positive electrode sheet is lithium iron phosphate
  • the active material of the negative electrode sheet is graphite.
  • FIG. 11 shows a bottom temperature rise curve of a battery cell of Comparative Example 1.
  • the maximum increase in the bottom temperature of the battery cell 20 is less than 4° C.
  • the capacity fading rate of the battery cell 20 was 39.81%.
  • the present application is further described below with respect to a specific implementation case in which the first thermal insulation layer 2334 is disposed on the outermost base film 2333 of a plurality of pole pieces 232 , but the technical parameters involved in the scheme cannot be understood as limitations on the present application.
  • Embodiment 2 The first thermal insulation layer 2334 is disposed on the outermost base film 2333 of the plurality of pole pieces 232 .
  • the current collectors of the positive electrode sheet and the negative electrode sheet are made of copper and aluminum substrates respectively
  • the active material of the positive electrode sheet is lithium iron phosphate
  • the active material of the negative electrode sheet is graphite
  • the insulation material of the first insulation layer 2334 is silicon oxide
  • the thickness of the first insulation layer 2334 is 20 microns.
  • the battery cell 20 having the above structure was discharged under the condition of -10°C.
  • FIG. 12 shows a bottom temperature rise curve of the battery cell of Example 2.
  • the bottom temperature of the battery cell 20 increases by a maximum of 17° C. to 18° C.
  • the capacity fading rate of the battery cell 20 was 25.2%.
  • At least one pole piece 232 includes a high thermal resistance alloy substrate
  • the high thermal resistance alloy substrate includes at least one of stainless steel, iron-nickel alloy, iron-aluminum alloy, iron-nickel-manganese alloy, nickel-manganese alloy, and nickel-manganese-aluminum alloy.
  • the use of a high heat-resistance alloy substrate can increase the impedance of the pole piece 232, thereby increasing the heat generation of the battery cell 20 itself.
  • the high heat-resistance alloy substrate has a low thermal conductivity, thereby reducing heat dissipation.
  • each pole piece 232 comprises a stainless steel substrate.
  • a portion of the pole pieces 232 comprises a stainless steel substrate.
  • the present application is further described below with respect to a specific implementation case in which the pole piece 232 uses a stainless steel substrate and the first thermal insulation layer 2334 is arranged on at least one side edge of the base film 2333 along its width direction.
  • the technical parameters involved in the scheme cannot be understood as limitations on the present application.
  • Embodiment 3 Both the positive electrode sheet and the negative electrode sheet are made of stainless steel substrate, and the first heat insulation layer 2334 is disposed on one side edge of the base film 2333 along its width direction.
  • the active material of the positive electrode plate is lithium iron phosphate
  • the active material of the negative electrode plate is graphite
  • the insulation material of the first insulation layer 2334 is silicon oxide
  • the thickness of the first insulation layer 2334 is 20 microns.
  • the battery cell 20 having the above structure was discharged under the condition of -10°C.
  • FIG. 13 shows a bottom temperature rise curve of a battery cell in Example 3.
  • the bottom temperature of the battery cell 20 increases by a maximum of 24° C.
  • the capacity fading rate of the battery cell 20 was 19.9%.
  • Example 1 and Example 3 it can be concluded from Example 1 and Example 3 that, under the same conditions of using the first heat insulating layer 2334 of the heat insulating material having silicon oxide, the pole piece having the stainless steel substrate can make the capacity attenuation rate of the battery cell 20 smaller in a low temperature environment and the temperature rise higher. This shows that the present application can play a better role in reducing heat dissipation when having both the first heat insulating layer 2334 provided on one side edge of the base film 2333 along its width direction and the stainless steel substrate used for the pole piece.
  • the present application is further described below with respect to a specific implementation case in which the pole piece 232 uses a stainless steel substrate and the first thermal insulation layer 2334 is disposed on the outermost base film 2333 of the plurality of pole pieces 232 , but the technical parameters involved in the scheme cannot be understood as limitations on the present application.
  • Embodiment 4 Both the positive electrode sheet and the negative electrode sheet are made of stainless steel substrate, and the first heat insulation layer 2334 is disposed on the outermost base film 2333 of the plurality of electrode sheets 232 .
  • the active material of the positive electrode plate is lithium iron phosphate
  • the active material of the negative electrode plate is graphite
  • the insulation material of the first insulation layer 2334 is silicon oxide
  • the thickness of the first insulation layer 2334 is 20 microns.
  • FIG. 14 shows a bottom temperature rise curve of the battery cell of Example 4.
  • the bottom temperature of the battery cell 20 increases by a maximum of 37° C.
  • the capacity fading rate of the battery cell 20 was 12.2%.
  • Example 2 and Example 4 it can be concluded from Example 2 and Example 4 that, under the same conditions of using the first insulation layer 2334 of the insulation material having silicon oxide, the pole piece having the stainless steel substrate can make the capacity decay rate of the battery cell 20 smaller in a low temperature environment and the temperature rise higher. This shows that the present application can play a better role in reducing heat dissipation when having the first insulation layer 2334 of the base film 2333 disposed on the outermost layer of multiple pole pieces 232 and the stainless steel substrate used for the pole piece.
  • Embodiment 5 Both the positive electrode sheet and the negative electrode sheet are made of stainless steel substrate, and the first heat insulation layer 2334 is disposed on the edge of one side of the base film 2333 along the width direction thereof.
  • the active material of the positive electrode plate is lithium iron phosphate
  • the active material of the negative electrode plate is graphite
  • the insulation material of the first insulation layer 2334 is aluminum oxide
  • the thickness of the first insulation layer 2334 is 20 microns.
  • the battery cell 20 having the above structure was discharged under the condition of -10°C.
  • FIG. 15 shows a bottom temperature rise curve of the battery cell of Example 5.
  • the bottom temperature of the battery cell 20 increases by a maximum of 21° C.
  • the capacity fading rate of the battery cell 20 was 20.5%.
  • Embodiment 6 Both the positive electrode sheet and the negative electrode sheet are made of stainless steel substrate, and the first heat insulation layer 2334 is disposed on the outermost base film 2333 of the plurality of electrode sheets 232 .
  • the active material of the positive electrode plate is lithium iron phosphate
  • the active material of the negative electrode plate is graphite
  • the insulation material of the first insulation layer 2334 is aluminum oxide
  • the thickness of the first insulation layer 2334 is 20 microns.
  • the battery cell 20 having the above structure was discharged under the condition of -10°C.
  • FIG. 16 shows a bottom temperature rise curve of the battery cell of Example 6.
  • the bottom temperature of the battery cell 20 increases by a maximum of 23° C.
  • the capacity fading rate of the battery cell 20 was 23.1%.
  • Example 3 and Example 5 it can be concluded from Example 3 and Example 5 that the first thermal insulation layer 2334 with a thermal insulation material of silicon oxide can make the capacity attenuation rate of the battery cell 20 in a low temperature environment smaller and the temperature rise higher than the first thermal insulation layer 2334 with a thermal insulation material of aluminum oxide. This shows that the present application can play a better role in reducing heat dissipation when the first thermal insulation layer 2334 with a thermal insulation material of silicon oxide is used.
  • the first thermal insulation layer 2334 using a thermal insulation material having silicon oxide can make the capacity attenuation rate of the battery cell 20 in a low temperature environment smaller and the temperature rise higher than the first thermal insulation layer 2334 using a thermal insulation material having aluminum oxide. This shows that the present application can play a better role in reducing heat dissipation when the first thermal insulation layer 2334 of the thermal insulation material having silicon oxide is used.
  • Embodiment 7 Both the positive electrode sheet and the negative electrode sheet are made of stainless steel substrate, and the first heat insulation layer 2334 is disposed on one side edge of the base film 2333 along its width direction.
  • the active material of the positive electrode plate is lithium iron phosphate
  • the active material of the negative electrode plate is graphite
  • the insulation material of the first insulation layer 2334 is silicon oxide
  • the thickness of the first insulation layer 2334 is 50 microns.
  • the battery cell 20 having the above structure was discharged under the condition of -10°C.
  • FIG. 17 shows a bottom temperature rise curve of the battery cell 20 of the seventh embodiment.
  • the bottom temperature of the battery cell 20 increases by a maximum of 28° C.
  • the capacity fading rate of the battery cell 20 was 18%.
  • Embodiment 8 Both the positive electrode sheet and the negative electrode sheet are made of stainless steel substrate, and the first heat insulation layer 2334 is disposed on the outermost base film 2333 of the plurality of electrode sheets 232 .
  • the active material of the positive electrode plate is lithium iron phosphate
  • the active material of the negative electrode plate is graphite
  • the insulation material of the first insulation layer 2334 is silicon oxide
  • the thickness of the first insulation layer 2334 is 50 microns.
  • the battery cell 20 having the above structure was discharged under the condition of -10°C.
  • FIG. 18 shows a bottom temperature rise curve of the battery cell of Example 8.
  • the bottom temperature of the battery cell 20 increases by a maximum of 39° C.
  • the capacity fading rate of the battery cell 20 was 15.6%.
  • Example 3 and Example 7 It can be concluded from Example 3 and Example 7 that, under the same conditions of using the first thermal insulation layer 2334 of the thermal insulation material having silicon oxide, the thicker the first thermal insulation layer 2334, the higher the temperature rise of the battery cell 20 in a low temperature environment, but the capacity fading rate of the battery cell 20 is not further reduced. This shows that increasing the thickness of the first thermal insulation layer 2334 of the present application can increase the temperature rise of the battery cell 20 in a low temperature environment.
  • Example 4 and Example 8 it can be concluded from Example 4 and Example 8 that under the same conditions of using the first thermal insulation layer 2334 of the thermal insulation material having silicon oxide, the thicker the first thermal insulation layer 2334, the higher the temperature rise of the battery cell 20 in a low temperature environment, but the capacity fading rate of the battery cell 20 is not further reduced. This shows that increasing the thickness of the first thermal insulation layer 2334 of the present application can increase the temperature rise of the battery cell 20 in a low temperature environment.
  • the present application also provides a more optimal embodiment.
  • Embodiment 9 Both the positive electrode and the negative electrode are made of stainless steel substrate, and the first insulation layer 2334 is arranged on one side edge of the base film 2333 along its width direction, that is, the insulation area, and the second insulation layer 2336 is arranged in other areas except the insulation area.
  • the active material of the positive electrode plate is lithium iron phosphate
  • the active material of the negative electrode plate is graphite
  • the insulation materials of the first insulation layer 2334 and the second insulation layer 2336 are both silicon oxide
  • the thickness of the first insulation layer 2334 is 50 microns
  • the thickness of the second insulation layer 2336 is 20 microns.
  • the battery cell 20 having the above structure was discharged under the condition of -10°C.
  • FIG. 19 shows a bottom temperature rise curve of the battery cell of Example 9.
  • the bottom temperature of the battery cell 20 increases by a maximum of 39° C.
  • the capacity fading rate of the battery cell 20 was 12%.
  • Example 7 and Example 9 it can be concluded from Example 7 and Example 9 that under the same conditions that the first thermal insulation layer 2334 of the thermal insulation material having silicon oxide and the thickness of the first thermal insulation layer 2334 are equal, the battery cell 20 provided with the second thermal insulation layer 2336 in other regions has a higher temperature rise in a low temperature environment, and the capacity fading rate of the battery cell 20 is also smaller. This shows that the addition of the second thermal insulation layer 2336 in other regions of the present application can play a better role in reducing heat dissipation.
  • the present application provides a battery cell 20 , including the electrode assembly 23 in any of the above embodiments.
  • the diaphragm 233 is configured to be heat-insulating and arranged on at least one of the first side and the second side of the plurality of pole pieces 232, when the battery 100 is operating normally, the heat generated by the electrode assembly 23 is not easily dissipated on the first side or the second side, so that the heat can be retained in the electrode assembly 23, and further, when the battery 100 is in a low temperature environment, the temperature of the battery cell 20 can be increased.
  • the heat generated by the electrode assembly 23 is not easily dissipated from the outermost layer of the multiple pole pieces 232, so that the heat can be retained in the electrode assembly 23, and further when the battery 100 is in a low temperature environment, the temperature of the battery cell 20 can be increased.
  • the battery cell 20 further includes a housing 24, the housing 24 has a receiving cavity 241, and the electrode assembly 23 is disposed in the receiving cavity 241.
  • a third heat insulation layer is disposed on the cavity wall of the receiving cavity 241.
  • the housing 24 includes an end cover 21 and a shell 22 , and the end cover 21 covers an opening of the shell 22 to define a receiving cavity 241 .
  • the third heat insulation layer is provided on at least one side wall of the accommodating cavity 241.
  • the thickness direction of the electrode assembly 23 is the Y direction shown in FIGS.
  • the area of the cavity wall on one side of the accommodating cavity 241 is the largest, which can improve the heat insulation effect.
  • the third heat insulation layer is provided on at least one side wall of the accommodating cavity 241 .
  • the thermal insulation material in the third thermal insulation layer may be the same as that of the aforementioned first thermal insulation layer 2334, which will not be described in detail here.
  • the battery cell 20 includes a housing 24 and an insulating layer, the housing 24 has a receiving cavity 241, the electrode assembly 23 is disposed in the receiving cavity 241, and the insulating layer is disposed between the electrode assembly 23 and the cavity wall of the receiving cavity 241.
  • the insulating layer includes an insulating base layer and a fourth thermal insulation layer, and the fourth thermal insulation layer is disposed on the insulating base layer.
  • the insulating layer may be referred to as a polyester film (mylar film), which can insulate and isolate the electrode assembly 23 and the housing 24 to prevent a short circuit between the two.
  • a polyester film mylar film
  • another heat-insulating layer can be added to the outside of the electrode assembly 23 , which can cooperate with the diaphragm 233 to achieve a double heat-insulating effect.
  • the fourth heat-insulating layer may be covered on one side surface of the insulating base layer, may be covered on both side surfaces of the insulating base layer, or may be a portion of the surface of one side of the insulating base layer.
  • the present application provides a battery 100 , comprising the battery cell 20 in any of the above embodiments.
  • the diaphragm 233 is configured to be heat-insulating and arranged on at least one of the first side and the second side of the plurality of pole pieces 232, when the battery 100 is operating normally, the heat generated by the electrode assembly 23 is not easily dissipated on the first side or the second side, so that the heat can be retained in the electrode assembly 23, and further, when the battery 100 is in a low temperature environment, the temperature of the battery cell 20 can be increased.
  • the heat generated by the electrode assembly 23 is not easily dissipated from the outermost layer of the multiple pole pieces 232, so that the heat can be retained in the electrode assembly 23, and further when the battery 100 is in a low temperature environment, the temperature of the battery cell 20 can be increased.
  • the present application provides an electrical device, comprising the battery 100 in any of the above embodiments.
  • the diaphragm 233 is configured to be heat-insulating and arranged on at least one side edge of the multiple pole pieces 232 along the width direction thereof, when the battery 100 is working normally, the heat generated by the electrode assembly 23 is not easily dissipated on one side along the width direction of the multiple pole pieces 232, so that the heat can be retained in the electrode assembly 23, and further when the battery 100 is in a low temperature environment, the temperature of the battery cell 20 can be increased.
  • the heat generated by the electrode assembly 23 is not easily dissipated from the outermost layer of the multiple pole pieces 232, so that the heat can be retained in the electrode assembly 23, and further when the battery 100 is in a low temperature environment, the temperature of the battery cell 20 can be increased.
  • the present application provides an electrode assembly 23, including a plurality of pole pieces 232 and a diaphragm 233.
  • the diaphragm 233 includes a plurality of diaphragm segments 2335, and the plurality of diaphragm segments 2335 are arranged alternately with the plurality of pole pieces.
  • the diaphragm 233 includes a base film 2333 and a first thermal insulation layer 2334, and the first thermal insulation layer 2334 includes a plurality of thermal insulation segments 2334a, and each thermal insulation segment 2334a is arranged at the two side edges of a corresponding diaphragm segment 2335 along the width direction of the base film 2333.
  • the orthographic projection of the first thermal insulation layer 2334 on the base film 2333 has no overlapping area with the orthographic projection of the pole piece 232 on the base film 2333.
  • the orthographic projection of the first thermal insulation layer 2334 on the base film 2333 forms a thermal insulation region, and the thickness of the diaphragm 233 in the thermal insulation region is greater than the thickness of the diaphragm 233 in other regions except the thermal insulation region.
  • the diaphragm 233 also includes a second heat insulating layer 2336, which is provided in other areas except the heat insulating area, and the thickness of the second heat insulating layer 2336 is less than the thickness of the first heat insulating layer 2334.
  • the diaphragm 233 has a heat insulating material and an adhesive for heat insulation.
  • the heat insulating material is silicon oxide.
  • the adhesive includes polyvinyl fluoride, polyacrylate, sodium alginate or a combination thereof.
  • the mass percentage of the adhesive in the first heat insulating layer 2334 is ⁇ 50%.
  • the thickness of the first heat insulating layer 2334 is about 5 microns to about 100 microns.
  • the present application provides an electrode assembly 23, including a plurality of pole pieces 232 and a diaphragm 233.
  • the diaphragm 233 includes a base film 2333 and a first heat insulating layer 2334.
  • the diaphragm 233 includes a first diaphragm 2331 and a second diaphragm 2332.
  • the base film 2333 includes a first base film and a second base film.
  • the first diaphragm 2331 has a first base film
  • the second diaphragm 2332 has a second base film.
  • the first diaphragm 2331 and the plurality of pole pieces 232 are alternately arranged to form an electrode unit 233.
  • the second diaphragm 2332 is wound on the outside of the electrode unit 233.
  • the first heat insulating layer 2334 is arranged on the second base film.
  • the first base film and the second base film are integrally formed.
  • the orthographic projection of the first thermal insulation layer 2334 on the base film 2333 forms a thermal insulation region.
  • the diaphragm 233 also includes a second thermal insulation layer 2336.
  • the second thermal insulation layer 2336 is arranged in other regions except the thermal insulation region.
  • the thickness of the second thermal insulation layer 2336 is less than the thickness of the first thermal insulation layer 2334.
  • the diaphragm 233 has a thermal insulation material and an adhesive for thermal insulation.
  • the thermal insulation material is silicon oxide.
  • the adhesive includes polyvinyl fluoride, polyacrylate, sodium alginate or a combination thereof.
  • the mass percentage of the adhesive in the first thermal insulation layer 2334 is ⁇ 20%.
  • the thickness of the first thermal insulation layer 2334 is about 5 microns to about 100 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电极组件(23)、电池单体(20)、电池(100)及用电装置。电极组件(23),包括多个极片(232),具有沿第一方向相对的第一侧边和第二侧边,第一侧边和第二侧边中的至少一者具有极耳;及隔膜(233),与多个极片(232)交替设置;隔膜(233)被配置为隔热设置于第一侧边和第二侧边中的至少一者;和/或隔膜(233)被配置为隔热设置于多个极片(232)的最外层。

Description

电极组件、电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电极组件、电池单体、电池及用电装置。
背景技术
近年来,可移动设备、电动汽车及智能电网的快速发展使得高能量密度的电池受到大量的关注和研究。其中,温度是影响电池容量的一个重要因素。
在低温条件下,电池内的活性材料的活性较低,造成容量大大降低,并且,在大倍率充电过程中,电池也易出现负极严重析锂的现象,从而引发安全风险。
发明内容
鉴于上述问题,本申请提供一种电极组件、电池单体、电池及用电装置,能够缓解低温条件下,电池容量大大降低及引发安全风险的问题。
第一方面,本申请提供一种电极组件,包括:
多个极片,具有沿第一方向相对的第一侧边和第二侧边,第一侧边和第二侧边中的至少一者具有极耳;及
隔膜,与多个极片交替设置;
隔膜被配置为隔热设置于第一侧边和第二侧边中的至少一者;和/或
隔膜被配置为隔热设置于多个极片的最外层。
上述电极组件,一方面,通过设置隔膜被配置为隔热设置于多个极片的第一侧边和第二侧边中的至少一者,使得电池在正常工作时,电极组件产生的热量不易在第一侧边或者第二侧边逸散,从而使得热量能够在电极组件内保留,进而在电池处于低温环境时,也能提搞电池单体的温度。
另一方面,通过设置隔膜隔热设置于多个极片的最外层,使得电池在正常工作时,电极组件产生的热量不易从多个极片的最外层逸散,从而使得热量能够在电极组件内保留,进而在电池处于低温环境时,也能提搞电池单体的温度。
在一些实施例中,至少一极片包括高阻热合金基材,高阻热合金基材包含不锈钢、铁镍合金、铁铝合金、铁镍锰合金、镍锰合金、镍锰铝合金中的至少一种。
采用高阻热合金基材,能够提升极片的阻抗,使得电池单体的本身产热量增加,并且高阻热合金基材导热率低,进而能够使得热量逸散少。
在一些实施例中,隔膜包括基膜及第一隔热层,第一隔热层设于基膜沿第一方向的至少一侧边缘;和/或
第一隔热层设于多个极片的最外层的基膜。
通过在基膜上设置第一隔热层的方式,来实现隔膜的隔热效果,能够简化结构和制作工艺。
在一些实施例中,当第一隔热层设于基膜沿第一方向的至少一侧边缘,第一隔热层沿第二方向在基膜上的正投影与极片在基膜上的正投影无重叠区域;
其中,第一方向与第二方向相垂直。
由于隔膜还需要具有微孔,以供带电离子通过,因此,通过设置隔热层在基膜上的正投影与极片在基膜上的正投影无重叠区域,能够减小第一隔热层对电离子通过的影响,确保电池单体的使用性能。
在一些实施例中,当第一隔热层设于基膜沿第一方向的至少一侧边缘,第一隔热层沿第二方向在基膜上的正投影形成隔热区域,隔膜在隔热区域的厚度大于隔膜在除隔热区域以外的其他区域的厚度。
通过设置隔膜在隔热区域的厚度大于隔膜在除隔热区域以外的其他区域的厚度,能够使得在多个极片的第一侧边或者第二侧边的隔膜汇聚,具体表现为在多个极片的第一侧边或者第二侧边的多个隔膜段彼此的间距减小了,该汇聚能够使得热量从第一侧边或者第二侧边逃逸受到阻挡,进而减小热量流失。
在一些实施例中,当第一隔热层设于基膜沿第一方向的至少一侧边缘,隔膜包括多个隔膜段,多个隔膜段与多个极片交替设置,第一隔热层包括多个隔热段,每一隔热段设于对应一隔膜段沿第一方向的一侧边缘。
由于多个隔膜段与多个极片交替设置,故能够使多个隔膜段在基膜的厚度方向上层层设置,故能够使对应的多个隔热段层层设置,因此,能够综合各隔热段的作用,进一步地减小热量逃逸,以提高电池单体的温度。
在一些实施例中,沿第一方向位于同一侧的至少两个相邻的隔热段彼此相连。
如此,能够避免热量从两个隔膜段之间的缝隙逸散。
在一些实施例中,沿第一方向位于同一侧的至少两个相邻的隔热段彼此热压相连。
通过热压相连的方式能够使多个隔热段的连接更加紧密。
在一些实施例中,当第一隔热层设于多个极片的最外层的基膜,隔膜包括第一隔膜和第二隔膜,基膜包括第一基膜和第二基膜,第一隔膜具有第一基膜,第二隔膜具有第二基膜;
第一隔膜与多个极片交替设置形成电极单元,第二隔膜卷绕于电极单元的外侧;
第一隔热层设于第二基膜。
如此,能够在电极单元的最外层设置第一隔热层,进而减小电极单元产生的热量逸散,提高电池单体的温度。
在一些实施例中,第一隔热层沿第二方向在基膜上的正投影形成隔热区域,隔膜还包 括第二隔热层,第二隔热层设于基膜除隔热区域以外的其他区域;
其中,第二隔热层的厚度小于第一隔热层的厚度,第一方向与第二方向相垂直。
通过设置第二隔热层在除隔热区域之外的其他区域,能够进一步地减小电极组件产生的热量逸散,并且由于隔膜还需要具有微孔,以供带电离子通过,因此,设置第二隔热层的厚度小于第一隔热层的厚度能够减小对微孔的阻挡,确保电池单体的使用性能。
在一些实施例中,第一隔热层的厚度为约5微米~约100微米。
在一些实施例中,当第一隔热层设于多个极片的最外层的基膜,第一隔热层具有用于隔热的隔热材料和粘接剂;
第一隔热层中粘结剂的质量百分比≤20%。
由于第一隔热层设于多个极片的最外层,多个极片的最外侧的面积大,因此,粘接剂的质量百分比可以适当降低,而隔热材料的质量百分比可以相应增加,以提高隔热效果。
在一些实施例中,当第一隔热层设于基膜第一方向的至少一侧边缘,第一隔热层具有用于隔热的隔热材料和粘接剂;
第一隔热层中粘结剂的质量百分比≤50%。
由于第一隔热层设于基膜沿第一方向的至少一侧边缘,所占面积相对小,因此,增大粘接剂的质量百分比能够在多个隔热段彼此相连时,提高多个隔热段之间的连接紧密性,进而提高隔热效果。
在一些实施例中,隔膜具有用于隔热的隔热材料,隔热材料包括氧化物、氮化物或其组合。
在一些实施例中,氧化物包括氧化硅、氧化铌、氧化钛、氧化铝或其组合。
在一些实施例中,氮化物包括氮化硅、氮化铌、氮化钛、氮化铝或其组合。
在一些实施例中,隔膜具有用于隔热的隔热材料和粘接剂。
通过设置隔热材料来实现隔膜隔热设置于沿第一方向的至少一侧边缘和隔热设置于多个极片的最外侧,能够确保隔热效果,且隔热作用也稳定。并且,利用粘接剂,能够将隔热材料进行粘接固,提高了隔热材料之间的紧密性,有利于增强隔热效果。
第二方面,本申请提供一种电池单体,包括上述任意实施例中的电极组件。
上述电池单体,一方面,通过设置隔膜被配置为隔热设置于多个极片的第一侧边和第二侧边中的至少一者,使得电池在正常工作时,电极组件产生的热量不易在第一侧边或者第二侧边逸散,从而使得热量能够在电极组件内保留,进而在电池处于低温环境时,也能提搞电池单体的温度。
另一方面,通过设置隔膜隔热设置于多个极片的最外层,使得电池在正常工作时,电极组件产生的热量不易从多个极片的最外层逸散,从而使得热量能够在电极组件内保留,进而在电池处于低温环境时,也能提搞电池单体的温度。
在一些实施例中,电池单体还包括外壳,外壳具有容纳腔,电极组件设于容纳腔内;
容纳腔的腔壁上设有第三隔热层。
通过在容纳腔的腔壁上设置第三隔热层,能够避免热量从外壳进行逸散。
在一些实施例中,电池单体还包括外壳及绝缘层,外壳具有容纳腔,电极组件设于容纳腔内,绝缘层设于电极组件与容纳腔的腔壁之间;
绝缘层包括绝缘基层及第四隔热层,第四隔热层设于绝缘基层。
通过在绝缘基膜上设置第四隔热层,能够在电极组件的外侧再增加一层隔热层,能够与隔膜配合起到双重的隔热效果。
第二方面,本申请提供一种电池,包括上述任意实施例中的电池单体。
上述电池,一方面,通过设置隔膜被配置为隔热设置于多个极片的第一侧边和第二侧边中的至少一者,使得电池在正常工作时,电极组件产生的热量不易在第一侧边或者第二侧边逸散,从而使得热量能够在电极组件内保留,进而在电池处于低温环境时,也能提搞电池单体的温度。
另一方面,通过设置隔膜隔热设置于多个极片的最外层,使得电池在正常工作时,电极组件产生的热量不易从多个极片的最外层逸散,从而使得热量能够在电极组件内保留,进而在电池处于低温环境时,也能提搞电池单体的温度。
第二方面,本申请提供一种用电装置,包括上述任意实施例中的电池。
上述用电装置,一方面,通过设置隔膜被配置为隔热设置于多个极片的第一侧边和第二侧边中的至少一者,使得电池在正常工作时,电极组件产生的热量不易在第一侧边或者第二侧边逸散,从而使得热量能够在电极组件内保留,进而在电池处于低温环境时,也能提搞电池单体的温度。
另一方面,通过设置隔膜隔热设置于多个极片的最外层,使得电池在正常工作时,电极组件产生的热量不易从多个极片的最外层逸散,从而使得热量能够在电极组件内保留,进而在电池处于低温环境时,也能提搞电池单体的温度。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例提供的车辆的结构示意图
图2为本申请一些实施例提供的电池的***图;
图3为本申请一些实施例的电池单体的分解结构示意图;
图4为本申请一些实施例的电极组件的结构示意图;
图5为本申请另一些实施例的电极组件的结构示意图;
图6为图4所示的电极组件中的隔膜的截面结构示意图;
图7为本申请一些实施例的电极组件的截面结构示意图;
图8为本申请另一些实施例的电极组件的截面结构示意图;
图9为本申请一些实施例中的隔膜的截面结构示意图;
图10示出了实施例1的电池单体的底部温升曲线图;
图11示出了对比例1电池单体的底部温升曲线图;
图12示出了实施例2电池单体20的底部温升曲线图;
图13示出了实施例3电池单体20的底部温升曲线图;
图14示出了实施例4的电池单体的底部温升曲线图;
图15示出了实施例5的电池单体的底部温升曲线图;
图16示出了实施例6的电池单体的底部温升曲线图;
图17示出了实施例7的电池单体的底部温升曲线图;
图18示出了实施例8的电池单体的底部温升曲线图;
图19示出了实施例9的电池单体的底部温升曲线图。
具体实施方式中的附图标号如下:
车辆1000;
电池100;
控制器200;
马达300;
箱体10;
第一部分11、第二部分12;
电池单体20;
端盖21、电极端子211、壳体22、电极组件23、极耳231、极片232、隔膜233、第一隔膜2331、第二隔膜2332、基膜2333、第一隔热层2334、隔膜段2335、第二隔热层2336、外壳24、容纳腔241。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
随着科技的不断进步以及人们对物质要求的不断提高,越来越多的电子设备选择以具有工作电压高、能量密度大、循环寿命长、无记忆效应、体积小等优点的锂离子电池作为主要的动力来源。而近年来我国对新能源产业发展规划在不断的进行优化和推广,使得动力电池的需求必将显著增长。
众所周知,锂离子电池的使用受温度影响较大。通常在低温环境中其充电能力降低,同时容量得不到完全发挥,特别是寒冷的冬季,电池活性材料容量发挥损失的现象更为突出, 电压平台降低,使得电池能量密度损失;同时,在低温环境中,锂离子电池电子电导和离子电导降低,动力学急剧下降,导致锂离子电池在大倍率充电过程中出现析锂,恶化电池界面,存在严重的安全隐患。
为此,为了尽可能使动力电池***工作在合适的温度范围内,避免锂离子电池内部环境与电池外部环境的热量传递过快导致电池内部温度过低。目前,电池保温的设计,第一种大多采用的技术方案为在电池箱体内设置中空/填充保温层,第一种保温设计在外部环境温度较低、汽车运行速度较高致使电池箱体的外部低温气体流速较大时,并不能有效减缓电池箱体内部与外部环境的热传递速率,从而导致电池箱体内部温度过低,进而影响到电池性能的发挥。
第二种技术方案是在电池包内设置加热装置,在低温时对电池包内进行加热,第二种的加热方案需要采用相变加热材料、加热器或加热罩,但这种加热方法需要增加额外的设备,挤占了电池内的布置空间,需要额外的加热控制器,同时对电池***的能力密度和安全性产生了影响。
因此,本申请人基于上述技术方案,考虑需从单个电池单体的保温升温去改进。
目前,也出现了第三种技术方案,是在电池单体内部使用高导体系电解液与石墨,但使用高导体系电解液与石墨无疑会大幅增加成本。
为了缓解低温缓解下的容量大大降低及安全风险问题,并避免大幅增加成本,本申请人设计了一种电极组件,包括多个极片及隔膜,多个极片具有沿第一方向相对的第一侧边和第二侧边,第一侧边和第二侧边中的至少一者具有极耳,隔膜与多个极片交替设置。隔膜被配置为隔热设置于第一侧边和第二侧边中的至少一者和隔热设置于多个极片的最外层。
在这样的电极组件中,一方面,由于隔膜隔热设置于多个极片的第一侧边和第二侧边中的至少一者,使得电池在正常工作时,电极组件产生的热量不易在第一侧边或者第二侧边逸散,从而使得热量能够在电极组件内保留,进而在电池处于低温环境时,也能提搞电池单体的温度。
另一方面,由于隔膜隔热设置于多个极片的最外层,使得电池在正常工作时,电极组件产生的热量不易从多个极片的最外层逸散,从而使得热量能够在电极组件内保留,进而在电池处于低温环境时,也能提搞电池单体的温度。
本申请实施例公开的电极组件应用于电池单体中。本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源***,这样,有利于缓解并自动调节电芯膨胀力恶化,补充电解液消耗,提升电池性能的稳定性和电池寿命。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其 中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的***图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3为本申请一些实施例提供的电池单体20的分解结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20包括有端盖21、壳体22、电极组件23以及其他的功能性部件。
端盖21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的 部件。不限地,端盖21的形状可以与壳体22的形状相适应以配合壳体22。可选地,端盖21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖21上可以设置有如电极端子211等的功能性部件。电极端子211可以用于与电极组件23电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖21的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与端盖21,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体22是用于配合端盖21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件23、电解液以及其他部件。壳体22和端盖21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使端盖21盖合开口以形成电池单体20的内部环境。不限地,也可以使端盖21和壳体22一体化,具体地,端盖21和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使端盖21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电极组件23的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件23是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更多个电极组件23。电极组件23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电极组件23的主体部,正极片和负极片不具有活性物质的部分各自构成极耳231。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳231连接电极端子以形成电流回路。
根据本申请的一些实施例,参照图4和图5,图4为根据本申请一些实施例的电极组件的结构示意图,图5为根据本申请另一些实施例的电极组件的结构示意图。本申请提供一种电极组件23。电极组件23包括多个极片232及隔膜233。多个极片232具有沿第一方向相对的第一侧边和第二侧边,第一侧边和第二侧边中的至少一者具有极耳。隔膜233与多个极片232交替设置。隔膜233被配置为隔热设置于第一侧边和第二侧边中的至少一者,和/或隔膜233还可以配置为隔热设置于多个极片232的最外层。
多个极片232中包括至少一正极片和至少一负极片。
隔膜233与多个极片232交替设置,是指隔膜233隔离设置在每相邻两个极片232之间,具体地,隔膜233隔离设置在正极片与负极片之间。
多个极片232的第一侧边和第二侧边沿第一方向相对,第一方向可为隔膜233的宽度 方向,具体是指是如图4和图5所示的Z方向。
参照图5,多个极片232与隔膜233构成电极组件23的方式可以是层叠设置,参照图4,多个极片232与隔膜233构成电极组件23的方式也可以为卷绕设置,具体不限定。参照图6,上述两种方式的隔膜233,均可包括第一隔膜2331和第二隔膜2332,第一隔膜2331与多个极片232层叠设置形成电极单元,第二隔膜2332卷绕于电极单元的外侧。参照图6和图7,其中,第一隔膜2331又可以包括多个隔膜段2335,每一隔膜段2335用于隔离相邻的两个极片232。
隔膜233隔热设置多个极片232的最外层是指隔热设置于多个极片232的最外侧的极片232的外侧。
一方面,通过设置隔膜233被配置为隔热设置于多个极片232的第一侧边和第二侧边中的至少一者,使得电池100在正常工作时,电极组件23产生的热量不易在第一侧边或者第二侧边逸散,从而使得热量能够在电极组件23内保留,进而在电池100处于低温环境时,也能提搞电池单体20的温度。
另一方面,通过设置隔膜233隔热设置于多个极片232的最外层,使得电池100在正常工作时,电极组件23产生的热量不易从多个极片232的最外层逸散,从而使得热量能够在电极组件23内保留,进而在电池100处于低温环境时,也能提搞电池单体20的温度。
参照图6和图9,根据本申请的一些实施例,隔膜233包括基膜2333及第一隔热层2334,第一隔热层2334设于基膜2333第一侧边和第二侧边中的至少一者,和/或第一隔热层2334设于多个极片232的最外层的基膜2333。
基膜2333为隔膜233的主体部分,用于形成基材层,基膜2333可以采用聚丙烯或聚乙烯微孔膜。
第一隔热层2334是具有隔热功能的材料层,其设于基膜2333的方式可以是涂覆,也可以是溅射、浸润等,在此不作限制。
通过在基膜2333上设置第一隔热层2334的方式,来实现隔膜233的隔热效果,能够简化结构和制作工艺。
参照图9,可选地,第一隔热层2334可设于基膜2333沿其宽度方向的一侧边缘,也可以设于基膜2333沿其宽度方向的两侧边缘,并且第一隔热层2334在同一侧的设置方式可以是沿基膜2333的周长方向间断设置,也可以是沿基膜2333的周长方向连续设置。其中,基膜2333的宽度方向为第一方向。
参照图6,可选地,第一隔热层2334可覆设于多个极片232的最外层的基膜2333的一侧表面,也可以覆设于多个极片232的最外层的基膜2333的两侧表面,还可以是覆设于多个极片232的最外层的基膜2333的一侧表面的部分。
在其他实施方式中,除了上述的设置第一隔热层2334的方式进行隔热外,还可以通 过隔膜233的局部区域基膜材料、增厚改进等实现隔热的作用。
参照图7和图8,根据本申请的一些实施例,当第一隔热层2334设于基膜2333沿第一方向的至少一侧边缘,第一隔热层2334沿第二方向在基膜2333上的正投影与极片232在基膜2333上的正投影无重叠区域。其中,第一方向与第二方向相垂直。
具体地,第二方向为图4和图5所示的X方向或者Y方向。
由于隔膜233还需要具有微孔,以供带电离子通过,因此,通过设置隔热层2324在基膜2333上的正投影与极片232在基膜2333上的正投影无重叠区域,能够减小第一隔热层2334对电离子通过的影响,确保电池单体20的使用性能。
根据本申请的一些实施例,第一隔热层2334沿第二方向在基膜2333上的正投影形成隔热区域,隔膜233在隔热区域的厚度大于隔膜233在除隔热区域以外的其他区域的厚度。
需要指出的是在其他区域的隔膜233的基膜2333,也可以设置有其他涂覆层,例如涂覆陶瓷、聚合物等。
通过设置隔膜233在隔热区域的厚度大于隔膜233在除隔热区域以外的其他区域的厚度,能够使得在多个极片232的第一侧边或者第二侧边的隔膜233汇聚,具体表现为在多个极片232的第一侧边或者第二侧边的多个隔膜段2335彼此的间距减小了,该汇聚能够使得热量从第一侧边或者第二侧边逃逸受到阻挡,进而减小热量流失。
参照图7和图8,根据本申请的一些实施例,当第一隔热层2334设于基膜2333沿第一方向的至少一侧边缘。隔膜233包括多个隔膜段2335,多个隔膜段2335与多个极片交替设置。第一隔热层2334包括多个隔热段2334a,每一隔热段2334a设于对应一隔膜段2335沿第一方向的一侧边缘。
由于多个隔膜段2335与多个极片交替设置,故能够使多个隔膜段2335在基膜2333的厚度方向上层层设置,故能够使对应的多个隔热段2334a层层设置,因此,能够综合各隔热段2334a的作用,进一步地减小热量逃逸,以提高电池单体20的温度。
可选地,每一隔膜段2335沿第一方向的一侧边缘均设有对应隔热段2334a。可选地,每一隔膜段2335沿第一方向的两侧边缘均设有对应隔热段2334a。可选地,仅部分隔膜段2335沿第一方向的一侧边缘设有对应隔热段2334a。可选地,仅部分隔膜段2335沿第一方向的两侧边缘均设有对应隔热段2334a。
参照图7和图8,根据本申请的一些实施例,沿第一方向的同一侧的至少两个相邻的隔膜段2335彼此相连。
如此,能够避免热量从两个隔膜段2335之间的缝隙逸散。
具体到本申请的实施例中,沿第一方向位于同一侧的至少两个相邻的隔热段2334a彼此相连。
通过设置位于同一侧的至少两个相邻的隔热段2334a彼此相连,能够消除隔膜段2335 之间的缝隙,避免热量从该缝隙中逃逸,以提高电池单体20的温度。
可选地,沿第一方向位于同一侧的全部隔热段2334a彼此相连。
参照图7和图8,根据本申请的一些实施例,沿第一方向位于同一侧的至少两个相邻的隔热段2334a彼此热压相连。
多个隔热段2334a热压相连是指通过热压工艺使得至少两个相邻的隔热段2334a相连。
通过热压相连的方式能够使多个隔热段2334a的连接更加紧密。
在其他实施例中,也可以通过紧固件使得至少两个相邻的隔热段2334a彼此相连,例如绑带、卡夹等,也可以通过使用粘接胶使得至少两个相邻的隔热段2334a彼此相连。
参照图4~图6,根据本申请的一些实施例,当第一隔热层2334设于多个极片232的最外层的基膜2333,隔膜233包括第一隔膜2331和第二隔膜2332,基膜2333包括第一基膜和第二基膜,第一隔膜2331具有第一基膜,第二隔膜2332具有第二基膜,第一隔膜2331与多个极片232交替设置形成电极单元233,第二隔膜2332卷绕于电极单元233的外侧。第一隔热层2334设于第二基膜。
如此,能够在电极单元233的最外层设置第一隔热层2334,进而减小电极单元233产生的热量逸散,提高电池单体20的温度。
需要指出的是,第二隔膜2332卷绕于电极单元233的外侧的方式,可以为沿电极单元233的周向卷绕呈整圈,也可以沿电极单元233的周向卷绕呈半圈或者其他圈数,在此不作限制。
可选地,第一基膜与第二基膜一体成型。通过设置第一基膜与第二基膜一体成型,能够简化隔膜233的成型方式。
参照图9,根据本申请的一些实施例,第一隔热层2334沿第二方向在基膜2333上的正投影形成隔热区域,隔膜233还包括第二隔热层2336,第二隔热层2336设于除隔热区域之外的其他区域,第二隔热层2336的厚度小于第一隔热层2334的厚度。
通过设置第二隔热层2336在除隔热区域之外的其他区域,能够进一步地减小电极组件23产生的热量逸散,并且由于隔膜233还需要具有微孔,以供带电离子通过,因此,设置第二隔热层2336的厚度小于第一隔热层2334的厚度能够减小对微孔的阻挡,确保电池单体20的使用性能。
可选地,第二隔热层2336可覆设于其他区域的基膜2333的一侧表面,也可以覆设于于其他区域的基膜2333的的两侧表面,还可以是覆设于于其他区域的基膜2333的一侧表面的部分。
根据本申请的一些实施例,隔膜233具有用于隔热的隔热材料,隔热材料包括氧化物、氮化物或其组合。
氧化物和氮化物作为隔热材料的稳定性好,且隔热效果佳。
具体地,第一隔热层2334具有隔热材料。
根据本申请的一些实施例,氧化物包括氧化硅、氧化铌、氧化钛、氧化铝或其组合。
根据本申请的一些实施例,氮化物选自氮化硅、氮化铌、氮化钛、氮化铝或其组合。
根据本申请的一些实施例,隔膜233具有用于隔热的隔热材料和粘接剂。
通过设置隔热材料来实现隔膜233隔热设置于第一方向的至少一侧边缘和隔热设置于多个极片232的最外层,能够确保隔热效果,且隔热作用也稳定。并且,利用粘接剂,能够将隔热材料进行粘接固,提高了隔热材料之间的紧密性,有利于增强隔热效果。
根据本申请的一些实施例,粘接剂包括聚四氟乙烯、聚偏氟乙烯、聚甲基丙烯酸酯、聚丙烯酸、聚酰胺、聚酰亚胺、海藻酸钠或其组合。
根据本申请的一些实施例,当第一隔热层2334设于多个极片232的最外层的基膜2333,第一隔热层2334具有用于隔热的隔热材料和粘接剂。第一隔热层2334中粘结剂的质量百分比≤20%。
由于第一隔热层2334设于多个极片232的最外层,多个极片232的最外层的面积大,因此,粘接剂的质量百分比可以适当降低,而隔热材料的质量百分比可以相应增加,以提高隔热效果。
可选地,第一隔热层2334中粘结剂的质量百分比为20%、15%、10%、或者5%。
根据本申请的一些实施例,当第一隔热层2334设于基膜2333沿第一方向的至少一侧边缘,第一隔热层2334具有用于隔热的隔热材料和粘接剂。第一隔热层2334中粘结剂的质量百分比≤50%。
由于第一隔热层2334设于基膜2333沿第一方向的至少一侧边缘,所占面积相对小,因此,增大粘接剂的质量百分比能够在多个隔热段2334a彼此相连时,提高多个隔热段2334a之间的连接紧密性,进而提高隔热效果。
可选地,第一隔热层2334中粘结剂的质量百分比为50%、45%、40%、35%、30%、20%、15%、10%、或者5%。
根据本申请的一些实施例,第一隔热层2334的厚度约5微米~约100微米。
当第一隔热层2334的厚度约5微米~约100微米,能够使得隔热效果佳,具体可依据后续的实验论证。
下面针对第一隔热层2334设于基膜2333沿其宽度方向的至少一侧边缘的具体实施案例对本申请做进一步描述,但方案中所涉及的技术参数不能理解为对本申请的限制。
实施例1:第一隔热层2334设于基膜2333沿其宽度方向的一侧边缘。
其中,正极片与负极片的集流体分别采用铜、铝基材,正极极片的活性材料为磷酸铁锂,负极极片的活性材料为石墨,第一隔热层2334的隔热材料采用氧化硅,第一隔热层2334 的厚度为20微米。
对具有以上结构的电池单体20在-10℃的条件下放电。
测试结果如下:
图10示出了实施例1的电池单体的底部温升曲线图。
由图10可知,电池单体20的底部温度最大升高10℃。
另外,电池单体20的容量衰减率(fading)为26.27%。
对比例1:隔膜233无第一隔热层2334。
其中,正极片与负极片的集流体分别采用铜、铝基材,正极极片的活性材料为磷酸铁锂,负极极片的活性材料为石墨。
测试结果如下:
图11示出了对比例1电池单体的底部温升曲线图。
由图11可知,电池单体20的底部温度最大升高<4℃。
另外,电池单体20的容量衰减率(fading)为39.81%。
从对比例1和实施例1可以得出,当使用了具有氧化硅的隔热材料的第一隔热层2334设置在基膜2333沿其宽度方向的一侧边缘后,电池单体20在低温环境下的容量衰减率减小,且温升也提高。这说明本申请的设于基膜2333沿其宽度方向的一侧边缘的第一隔热层2334能够起到减小热量逸散的作用。
下面针对第一隔热层2334设于多个极片232的最外层的基膜2333的具体实施案例对本申请做进一步描述,但方案中所涉及的技术参数不能理解为对本申请的限制。
实施例2:第一隔热层2334设于多个极片232的最外层的基膜2333。
其中,正极片与负极片的集流体分别采用铜、铝基材,正极极片的活性材料为磷酸铁锂,负极极片的活性材料为石墨,第一隔热层2334的隔热材料采用氧化硅,第一隔热层2334的厚度为20微米。
对具有以上结构的电池单体20在-10℃的条件下放电。
测试结果如下:
图12示出了实施例2电池单体的底部温升曲线图。
由图12可知,电池单体20的底部温度最大升高17℃~18℃。
另外,电池单体20的容量衰减率(fading)为25.2%。
从对比例1和实施例2可以得出,当使用了具有氧化硅的隔热材料的第一隔热层2334设置在多个极片232的最外层的基膜2333上后,电池单体20在低温环境下的容量衰减率减小,且温升也提高。这说明本申请的设于多个极片232的最外层的基膜2333的第一隔热层2334能够起到减小热量逸散的作用。
根据本申请的一些实施例,至少一极片232包括高阻热合金基材,高阻热合金基材包 含不锈钢、铁镍合金、铁铝合金、铁镍锰合金、镍锰合金、镍锰铝合金中的至少一种。
采用高阻热合金基材,能够提升极片232的阻抗,使得电池单体20的本身产热量增加,并且高阻热合金基材导热率低,进而能够使得热量逸散少。
可选地,每一极片232包括不锈钢基材。可选地,部分极片232包括不锈钢基材。
下面针对极片232采用不锈钢基材,且第一隔热层2334设于基膜2333沿其宽度方向的至少一侧边缘的具体实施案例对本申请做进一步描述,但方案中所涉及的技术参数不能理解为对本申请的限制。
实施例3:正极片与负极片均采用不锈钢基材,且第一隔热层2334设于基膜2333沿其宽度方向的一侧边缘。
其中,正极极片的活性材料为磷酸铁锂,负极极片的活性材料为石墨,第一隔热层2334的隔热材料采用氧化硅,第一隔热层2334的厚度为20微米。
对具有以上结构的电池单体20在-10℃的条件下放电。
测试结果如下:
图13示出了实施例3电池单体的底部温升曲线图。
由图13可知,电池单体20的底部温度最大升高24℃。
另外,电池单体20的容量衰减率(fading)为19.9%。
从实施例1和实施例3可以得出,在使用了具有氧化硅的隔热材料的第一隔热层2334的同等条件下,具有不锈钢基材的极片,可使得电池单体20在低温环境下的容量衰减率更小,且温升也更高。这说明本申请在同时具有设于基膜2333沿其宽度方向的一侧边缘的第一隔热层2334和极片使用的不锈钢基材时,能够起到更佳的减小热量逸散的作用。
下面针对极片232采用不锈钢基材,且第一隔热层2334设于多个极片232的最外层的基膜2333的具体实施案例对本申请做进一步描述,但方案中所涉及的技术参数不能理解为对本申请的限制。
实施例4:正极片与负极片均采用不锈钢基材,第一隔热层2334设于多个极片232的最外层的基膜2333。
其中,正极极片的活性材料为磷酸铁锂,负极极片的活性材料为石墨,第一隔热层2334的隔热材料采用氧化硅,第一隔热层2334的厚度为20微米。
测试结果如下:
图14示出了实施例4的电池单体的底部温升曲线图。
由图14可知,电池单体20的底部温度最大升高37℃。
另外,电池单体20的容量衰减率(fading)为12.2%。
从实施例2和实施例4可以得出,在使用了具有氧化硅的隔热材料的第一隔热层2334的同等条件下,具有不锈钢基材的极片,可使得电池单体20在低温环境下的容量衰减率更小, 且温升也更高。这说明本申请在同时具有设于多个极片232的最外层的基膜2333的第一隔热层2334和极片使用的不锈钢基材时,能够起到更佳的减小热量逸散的作用。
为了进一步地验证第一隔热层2334的隔热材料对热量逸散的影响,下面还给出了一些具体实施案例对本申请做进一步描述,但方案中所涉及的技术参数不能理解为对本申请的限制。
实施例5:正极片与负极片均采用不锈钢基材,且第一隔热层2334设于基膜2333沿其宽度方向的一侧的边缘。
其中,正极极片的活性材料为磷酸铁锂,负极极片的活性材料为石墨,第一隔热层2334的隔热材料采用氧化铝,第一隔热层2334的厚度为20微米。
对具有以上结构的电池单体20在-10℃的条件下放电。
测试结果如下:
图15示出了实施例5的电池单体的底部温升曲线图。
由图15可知,电池单体20的底部温度最大升高21℃。
另外,电池单体20的容量衰减率(fading)为20.5%。
实施例6:正极片与负极片均采用不锈钢基材,且第一隔热层2334设于多个极片232的最外层的基膜2333。
其中,正极极片的活性材料为磷酸铁锂,负极极片的活性材料为石墨,第一隔热层2334的隔热材料采用氧化铝,第一隔热层2334的厚度为20微米。
对具有以上结构的电池单体20在-10℃的条件下放电。
测试结果如下:
图16示出了实施例6的电池单体的底部温升曲线图。
由图16可知,电池单体20的底部温度最大升高23℃。
另外,电池单体20的容量衰减率(fading)为23.1%。
从实施例3和实施例5可以得出,使用了具有氧化硅的隔热材料的第一隔热层2334,比使用了具有氧化铝的隔热材料的第一隔热层2334,可使得电池单体20在低温环境下的容量衰减率更小,且温升也更高。这说明本申请在具有氧化硅的隔热材料的第一隔热层2334时,能够起到更佳的减小热量逸散的作用。
同样的,从实施例4和实施例6可以得出,使用了具有氧化硅的隔热材料的第一隔热层2334,比使用了具有氧化铝的隔热材料的第一隔热层2334,可使得电池单体20在低温环境下的容量衰减率更小,且温升也更高。这说明本申请在具有氧化硅的隔热材料的第一隔热层2334时,能够起到更佳的减小热量逸散的作用。
为了进一步地验证第一隔热层2334的厚度对热量逸散的影响,下面还给出了一些具体实施案例对本申请做进一步描述,但方案中所涉及的技术参数不能理解为对本申请的限制。
实施例7:正极片与负极片均采用不锈钢基材,且第一隔热层2334设于基膜2333沿其宽度方向的一侧边缘。
其中,正极极片的活性材料为磷酸铁锂,负极极片的活性材料为石墨,第一隔热层2334的隔热材料采用氧化硅,第一隔热层2334的厚度为50微米。
对具有以上结构的电池单体20在-10℃的条件下放电。
测试结果如下:
图17示出了实施例7的电池单体20的底部温升曲线图。
由图17可知,电池单体20的底部温度最大升高28℃。
另外,电池单体20的容量衰减率(fading)为18%。
实施例8:正极片与负极片均采用不锈钢基材,第一隔热层2334设于多个极片232的最外层的基膜2333。
其中,正极极片的活性材料为磷酸铁锂,负极极片的活性材料为石墨,第一隔热层2334的隔热材料采用氧化硅,第一隔热层2334的厚度为50微米。
对具有以上结构的电池单体20在-10℃的条件下放电。
测试结果如下:
图18示出了实施例8的电池单体的底部温升曲线图。
由图18可知,电池单体20的底部温度最大升高39℃。
另外,电池单体20的容量衰减率(fading)为15.6%。
从实施例3和实施例7可以得出,在使用了具有氧化硅的隔热材料的第一隔热层2334的同等条件下,第一隔热层2334的厚度越厚,电池单体20在低温环境下的温升更高,但电池单体20的容量衰减率(fading)并没有进一步地减小。这说明本申请的第一隔热层2334的厚度增加厚能提高电池单体20在低温环境下的温升。
同样的,从实施例4和实施例8可以得出,在使用了具有氧化硅的隔热材料的第一隔热层2334的同等条件下,第一隔热层2334的厚度越厚,电池单体20在低温环境下的温升更高,但电池单体20的容量衰减率(fading)并没有进一步地减小。这说明本申请的第一隔热层2334的厚度增加筋能提高电池单体20在低温环境下的温升。
基于以上情况,本申请还给出了一个更优的实施例。
实施例9:正极片与负极片均采用不锈钢基材,且第一隔热层2334设于基膜2333沿其宽度方向的一侧边缘,也即隔热区域,第二隔热层2336设于除隔热区域之外的其他区域。
其中,正极极片的活性材料为磷酸铁锂,负极极片的活性材料为石墨,第一隔热层2334和第二隔热层2336的隔热材料均采用氧化硅,第一隔热层2334的厚度为50微米,第二隔热层2336的厚度为20微米。
对具有以上结构的电池单体20在-10℃的条件下放电。
测试结果如下:
图19示出了实施例9的电池单体的底部温升曲线图。
由图19可知,电池单体20的底部温度最大升高39℃。
另外,电池单体20的容量衰减率(fading)为12%。
从实施例7和实施例9可以得出,在使用了具有氧化硅的隔热材料的第一隔热层2334及第一隔热层2334的厚度相等的同等条件下,在其他区域设置有第二隔热层2336的电池单体20在低温环境下的温升更高,且电池单体20的容量衰减率(fading)也更小。这说明本申请的在其他区域增设第二隔热层2336能够起到更佳的减小热量逸散的作用。
根据本申请的一些实施例,参阅图8和图9,本申请提供了一种电池单体20,包括以上任意实施例中的电极组件23。
一方面,通过设置隔膜233被配置为隔热设置于多个极片232的第一侧边和第二侧边中的至少一者,使得电池100在正常工作时,电极组件23产生的热量不易在第一侧边或者第二侧边逸散,从而使得热量能够在电极组件23内保留,进而在电池100处于低温环境时,也能提搞电池单体20的温度。
另一方面,通过设置隔膜233隔热设置于多个极片232的最外层,使得电池100在正常工作时,电极组件23产生的热量不易从多个极片232的最外层逸散,从而使得热量能够在电极组件23内保留,进而在电池100处于低温环境时,也能提搞电池单体20的温度。
根据本申请的一些实施例,参阅图3,电池单体20还包括外壳24,外壳24具有容纳腔241,电极组件23设于容纳腔241内。容纳腔241的腔壁上设有第三隔热层。
具体地,外壳24包括端盖21和壳体22,端盖21盖合于壳体22的开口处,以界定形成容纳腔241。
通过在容纳腔241的腔壁上设置第三隔热层,能够避免热量从外壳24进行逸散。
可选地,在电极组件23的厚度方向上,第三隔热层设于容纳腔241的至少一侧腔壁上。具体地,电极组件23的厚度方向为图4和图5所示的Y方向。
在电极组件23的厚度方向上,容纳腔241的一侧腔壁的面积最大,能够在提高隔热效果。
可选地,在电极组件23除厚度方向的其他方向上,第三隔热层设于容纳腔241的至少一侧腔壁上。
可选地,第三隔热层中的隔热材料可与前述的第一隔热层2334相同,在此不再赘述。
参照图3,根据本申请的一些实施例,电池单体20包括外壳24及绝缘层,外壳24具有容纳腔241,电极组件23设于容纳腔241内,绝缘层设于电极组件23与容纳腔241的腔壁之间。绝缘层包括绝缘基层及第四隔热层,第四隔热层设于绝缘基层。
绝缘层可以称为聚酯膜(mylar膜),能够绝缘隔离在电极组件23与外壳24之间,以 避免两者短路。
通过在绝缘基膜上设置第四隔热层,能够在电极组件23的外侧再增加一层隔热层,能够与隔膜233配合起到双重的隔热效果。
可选地,第四隔热层可覆设于绝缘基层的一侧表面,也可以覆设于绝缘基层的两侧表面,还可以是覆设于绝缘基层的一侧表面的部分。
参照图2,根据本申请的一些实施例,参阅图2,本申请提供了一种电池100,包括以上任意实施例中的电池单体20。
一方面,通过设置隔膜233被配置为隔热设置于多个极片232的第一侧边和第二侧边中的至少一者,使得电池100在正常工作时,电极组件23产生的热量不易在第一侧边或者第二侧边逸散,从而使得热量能够在电极组件23内保留,进而在电池100处于低温环境时,也能提搞电池单体20的温度。
另一方面,通过设置隔膜233隔热设置于多个极片232的最外层,使得电池100在正常工作时,电极组件23产生的热量不易从多个极片232的最外层逸散,从而使得热量能够在电极组件23内保留,进而在电池100处于低温环境时,也能提搞电池单体20的温度。
根据本申请的一些实施例,本申请提供了一种用电装置,包括以上任意实施例中的电池100。
一方面,通过设置隔膜233被配置为隔热设置于多个极片232沿其宽度方向的至少一侧边缘,使得电池100在正常工作时,电极组件23产生的热量不易在沿多个极片232的宽度方向的一侧逸散,从而使得热量能够在电极组件23内保留,进而在电池100处于低温环境时,也能提搞电池单体20的温度。
另一方面,通过设置隔膜233隔热设置于多个极片232的最外层,使得电池100在正常工作时,电极组件23产生的热量不易从多个极片232的最外层逸散,从而使得热量能够在电极组件23内保留,进而在电池100处于低温环境时,也能提搞电池单体20的温度。
根据本申请的一些实施例,参阅图7~图9,本申请提供一种电极组件23,包括多个极片232及隔膜233。隔膜233包括多个隔膜段2335,多个隔膜段2335与多个极片交替设置。隔膜233包括基膜2333及第一隔热层2334,第一隔热层2334包括多个隔热段2334a,每一隔热段2334a设于对应一隔膜段2335沿基膜2333的宽度方向的两侧边缘。第一隔热层2334在基膜2333上的正投影与极片232在基膜2333上的正投影无重叠区域。第一隔热层2334在基膜2333上的正投影形成隔热区域,隔膜233在隔热区域的厚度大于隔膜233在除隔热区域以外的其他区域的厚度。隔膜233还包括第二隔热层2336,第二隔热层2336设于除隔热区域之外的其他区域,第二隔热层2336的厚度小于第一隔热层2334的厚度。沿基膜2333的宽度方向位于同一侧的全部隔热段2334a彼此热压相连。隔膜233具有用于隔热的隔热材料和粘接剂。隔热材料为氧化硅。粘接剂包括聚氟乙烯、聚丙烯酸酯、海藻酸钠或其组合。第一 隔热层2334中粘结剂的质量百分比≤50%。第一隔热层2334的厚度约5微米~约100微米。
根据本申请的一些实施例,参阅图4~图6,本申请提供一种电极组件23,包括多个极片232及隔膜233。隔膜233包括基膜2333及第一隔热层2334,隔膜233包括第一隔膜2331和第二隔膜2332,基膜2333包括第一基膜和第二基膜,第一隔膜2331具有第一基膜,第二隔膜2332具有第二基膜,第一隔膜2331与多个极片232交替设置形成电极单元233,第二隔膜2332卷绕于电极单元233的外侧。第一隔热层2334设于第二基膜。第一基膜与第二基膜一体成型。第一隔热层2334在基膜2333上的正投影形成隔热区域,隔膜233还包括第二隔热层2336,第二隔热层2336设于除隔热区域之外的其他区域,第二隔热层2336的厚度小于第一隔热层2334的厚度。隔膜233具有用于隔热的隔热材料和粘接剂。隔热材料为氧化硅。粘接剂包括聚氟乙烯、聚丙烯酸酯、海藻酸钠或其组合。第一隔热层2334中粘结剂的质量百分比≤20%。第一隔热层2334的厚度约5微米~约100微米。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (19)

  1. 一种电极组件,包括:
    多个极片,具有沿第一方向相对的第一侧边和第二侧边,所述第一侧边和所述第二侧边中的至少一者具有极耳;及
    隔膜,与所述多个极片交替设置;
    所述隔膜被配置为隔热设置于所述第一侧边和所述第二侧边中的至少一者;和/或
    所述隔膜被配置为隔热设置于所述多个极片的最外层。
  2. 根据权利要求1所述的电极组件,其中,至少一所述极片包括高阻热合金基材,所述高阻热合金基材包含不锈钢、铁镍合金、铁铝合金、铁镍锰合金、镍锰合金、镍锰铝合金中的至少一种。
  3. 根据权利要求1或2所述的电极组件,其中,所述隔膜包括基膜及第一隔热层,所述第一隔热层设于所述第一方向的至少一侧边缘;和/或
    所述第一隔热层设于所述多个极片的最外层的所述基膜。
  4. 根据权利要求3所述的电极组件,其中,当所述第一隔热层设于所述基膜沿所述第一方向的至少一侧边缘,所述第一隔热层沿第二方向在所述基膜上的正投影与所述极片在所述基膜上的正投影无重叠区域;
    其中,所述第一方向与所述第二方向相垂直。
  5. 根据权利要求3或4所述的电极组件,其中,当所述第一隔热层设于所述基膜沿所述第一方向的至少一侧边缘,所述第一隔热层沿所述第二方向在所述基膜上的正投影形成隔热区域,所述隔膜在所述隔热区域的厚度大于所述隔膜在除所述隔热区域以外的其他区域的厚度。
  6. 根据权利要求3~5任一项所述的电极组件,其中,当所述第一隔热层设于所述基膜沿其所述第一方向的至少一侧边缘,所述隔膜包括多个隔膜段,所述多个隔膜段与所述多个极片交替设置,所述第一隔热层包括多个隔热段,每一所述隔热段设于对应一所述隔膜段沿所述第一方向的一侧边缘。
  7. 根据权利要求6所述的电极组件,其中,沿所述第一方向位于同一侧的至少两个相邻的所述隔热段彼此相连。
  8. 根据权利要求7所述的电极组件,其中,沿所述第一方向位于同一侧的至少两个相邻的所述隔热段彼此热压相连。
  9. 根据权利要求3~8任一项所述的电极组件,其中,当所述第一隔热层设于所述多个极片的最外层的所述基膜,所述隔膜包括第一隔膜和第二隔膜,所述基膜包括第一基膜和第二基膜,所述第一隔膜具有所述第一基膜,所述第二隔膜具有所述第二基膜;
    所述第一隔膜与所述多个极片交替设置形成电极单元,所述第二隔膜卷绕于所述电极单元的外侧;
    所述第一隔热层设于所述第二基膜。
  10. 根据权利要求3~9任一项所述的电极组件,其中,所述第一隔热层沿第二方向在所述基膜上的正投影形成隔热区域,所述隔膜还包括第二隔热层,所述第二隔热层设于所述基膜除所述隔热区域以外的其他区域;
    其中,所述第二隔热层的厚度小于第一隔热层的厚度,所述第一方向与所述第二方向相垂直。
  11. 根据权利要求3~10任一项所述的电极组件,其中,所述第一隔热层的厚度为5微米~100微米。
  12. 根据权利要求3~11任一项所述的电极组件,其中,当所述第一隔热层设于所述多个极片的最外层的所述基膜,所述第一隔热层具有用于隔热的隔热材料和粘接剂;
    所述第一隔热层中所述粘结剂的质量百分比≤20%。
  13. 根据权利要求3~12任一项所述的电极组件,其中,当所述第一隔热层设于所述基膜沿所述第一方向至少一侧边缘,所述第一隔热层具有用于隔热的隔热材料和粘接剂;
    所述第一隔热层中所述粘结剂的质量百分比≤50%。
  14. 根据权利要求1~13任一项所述的电极组件,其中,所述隔膜具有用于隔热的隔热材料,所述隔热材料包括氧化物、氮化物或其组合,
    可选的,所述氧化物包括氧化硅、氧化铌、氧化钛、氧化铝或其组合;
    可选的,所述氮化物包括氮化硅、氮化铌、氮化钛、氮化铝或其组合。
  15. 一种电池单体,包括如权利要求1~14任一项所述的电极组件。
  16. 根据权利要求15所述的电池单体,其中,所述电池单体还包括外壳,所述外壳具有容纳腔,所述电极组件设于所述容纳腔内;
    所述容纳腔的腔壁上设有第三隔热层。
  17. 根据权利要求15或16所述的电池单体,其中,所述电池单体还包括外壳及绝缘层,所述外壳具有容纳腔,所述电极组件设于容纳腔内,所述绝缘层设于所述电极组件与所述容纳腔的腔壁之间;
    所述绝缘层包括绝缘基层及第四隔热层,所述第四隔热层设于所述绝缘基层。
  18. 一种电池,其中,包括如权利要求15~17任一项所述的电池单体。
  19. 一种用电装置,其中,包括如权利要求18所述的电池。
PCT/CN2022/125628 2022-10-17 2022-10-17 电极组件、电池单体、电池及用电装置 WO2024082088A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/125628 WO2024082088A1 (zh) 2022-10-17 2022-10-17 电极组件、电池单体、电池及用电装置
EP22940932.1A EP4379938A1 (en) 2022-10-17 2022-10-17 Electrode assembly, battery cell, battery and electric device
US18/509,008 US20240128538A1 (en) 2022-10-17 2023-11-14 Electrode assembly, battery cell, battery, and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125628 WO2024082088A1 (zh) 2022-10-17 2022-10-17 电极组件、电池单体、电池及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/509,008 Continuation US20240128538A1 (en) 2022-10-17 2023-11-14 Electrode assembly, battery cell, battery, and electrical device

Publications (1)

Publication Number Publication Date
WO2024082088A1 true WO2024082088A1 (zh) 2024-04-25

Family

ID=90625648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125628 WO2024082088A1 (zh) 2022-10-17 2022-10-17 电极组件、电池单体、电池及用电装置

Country Status (3)

Country Link
US (1) US20240128538A1 (zh)
EP (1) EP4379938A1 (zh)
WO (1) WO2024082088A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064300A (zh) * 2010-12-25 2011-05-18 佛山塑料集团股份有限公司 一种锂离子二次电池用多孔复合隔膜及其制备方法
CN102437302A (zh) * 2011-11-25 2012-05-02 东莞市比比克电子科技有限公司 一种锂离子电池隔膜及高温热稳定型锂离子电池
CN105047997A (zh) * 2015-06-10 2015-11-11 深圳市海盈科技股份有限公司 锂离子电芯体以及其制成的锂离子电池以及制备方法
CN107528014A (zh) * 2017-08-23 2017-12-29 深圳市比克动力电池有限公司 动力电池电芯、包含该电芯的锂电池及锂电池制备方法
CN209843865U (zh) * 2019-05-05 2019-12-24 惠州比亚迪实业有限公司 电池极芯及其单元、单体电池、电池模组、电池包和车辆
CN113131088A (zh) * 2019-12-30 2021-07-16 荣盛盟固利新能源科技有限公司 一种锂离子软包电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064300A (zh) * 2010-12-25 2011-05-18 佛山塑料集团股份有限公司 一种锂离子二次电池用多孔复合隔膜及其制备方法
CN102437302A (zh) * 2011-11-25 2012-05-02 东莞市比比克电子科技有限公司 一种锂离子电池隔膜及高温热稳定型锂离子电池
CN105047997A (zh) * 2015-06-10 2015-11-11 深圳市海盈科技股份有限公司 锂离子电芯体以及其制成的锂离子电池以及制备方法
CN107528014A (zh) * 2017-08-23 2017-12-29 深圳市比克动力电池有限公司 动力电池电芯、包含该电芯的锂电池及锂电池制备方法
CN209843865U (zh) * 2019-05-05 2019-12-24 惠州比亚迪实业有限公司 电池极芯及其单元、单体电池、电池模组、电池包和车辆
CN113131088A (zh) * 2019-12-30 2021-07-16 荣盛盟固利新能源科技有限公司 一种锂离子软包电池

Also Published As

Publication number Publication date
EP4379938A1 (en) 2024-06-05
US20240128538A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
CN216872113U (zh) 电池和用电设备
CN216872114U (zh) 电池和用电设备
US11843119B2 (en) Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly
CN216872134U (zh) 电池和用电设备
WO2020248785A1 (zh) 电池包和电池包制备方法及车辆
WO2024031859A1 (zh) 电极组件、电池单体、电池及用电装置
CN115884451A (zh) 加热膜、电池、用电装置、制造方法以及制造设备
WO2024082088A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023245501A1 (zh) 热管理部件、热管理***、电池及用电装置
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023220884A1 (zh) 电池及用电装置
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023087217A1 (zh) 电池单体及其制造方法、制造设备、电池和用电装置
JP2001256942A (ja) 電池モジュール及び扁平形状電池
WO2024087196A1 (zh) 正极片、电极组件、二次电池及用电装置
WO2024138707A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024087015A1 (zh) 一种电池单体、电池和用电装置
WO2024087190A1 (zh) 极片、电极组件、二次电池及用电装置
WO2024138683A1 (zh) 集流体、电池单体、电池以及用电装置
CN220341278U (zh) 电池和用电设备
WO2024060194A1 (zh) 电池及用电装置
WO2023137872A1 (zh) 电池、用电设备、电池的制造方法及制造设备
WO2024016452A1 (zh) 隔膜、电池单体、热压模具、电池和用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022940932

Country of ref document: EP

Effective date: 20231113