WO2024080198A1 - Polarized light adjustment device and laser processing machine - Google Patents

Polarized light adjustment device and laser processing machine Download PDF

Info

Publication number
WO2024080198A1
WO2024080198A1 PCT/JP2023/036169 JP2023036169W WO2024080198A1 WO 2024080198 A1 WO2024080198 A1 WO 2024080198A1 JP 2023036169 W JP2023036169 W JP 2023036169W WO 2024080198 A1 WO2024080198 A1 WO 2024080198A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
linearly polarized
optical element
laser beam
polarization
Prior art date
Application number
PCT/JP2023/036169
Other languages
French (fr)
Japanese (ja)
Inventor
亮平 伊藤
Original Assignee
株式会社アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ filed Critical 株式会社アマダ
Publication of WO2024080198A1 publication Critical patent/WO2024080198A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • This disclosure relates to a polarization adjustment device and a laser processing machine.
  • Laser processing machines cut metal workpieces with a laser beam emitted from a laser oscillator.
  • the laser beam emitted by the laser oscillator is randomly polarized light that contains two mutually orthogonal linearly polarized components (hereafter referred to as p-polarized light and s-polarized light). It is known that the absorption rate of the laser beam by the workpiece when cutting with a randomly polarized laser beam varies depending on the angle of incidence of the laser beam onto the workpiece.
  • the absorption rate of a randomly polarized laser beam is the average value of the absorption rates of p-polarized light and s-polarized light.
  • the laser beam is incident on the workpiece at an angle of 82 degrees to 88 degrees, cutting the workpiece.
  • the workpiece is made of iron metal and the laser beam has a wavelength in the 1 ⁇ m range
  • the absorption rate of p-polarized light is a maximum of about 90%, while the absorption rate of s-polarized light is less than 10%.
  • the absorption rate of a randomly polarized laser beam is the average value of the absorption rates of p-polarized light and s-polarized light, so the absorption rate of a randomly polarized laser beam is 40% or less, which is one of the factors that reduce the processing efficiency when cutting a workpiece.
  • Patent Document 1 discloses a laser processing machine that aligns the polarization directions of two linearly polarized lights contained in a randomly polarized laser beam in parallel and controls the polarization direction of the two parallel linearly polarized lights to match the direction in which cutting is performed (hereinafter referred to as the cutting direction).
  • the cutting direction By matching the polarization direction of the linearly polarized light with the cutting direction, the polarization direction of the laser beam with respect to the cutting front becomes p-polarized light, and the absorption rate of the laser beam in the workpiece becomes the absorption rate of p-polarized light. This improves the absorption rate of the laser beam in the workpiece, thereby improving processing efficiency.
  • the cutting front here refers to the cut surface at the boundary between the non-melted area and the molten area in the cutting direction when the workpiece is melted and cut.
  • the laser processing machine described in Patent Document 1 focuses two linearly polarized laser beams with the same polarization direction and wavelength by one focusing lens and irradiates the workpiece.
  • two laser beams with the same polarization direction and wavelength cannot be focused at the same position. Therefore, in practice, it is necessary to focus the two laser beams at different positions and arrange the two laser beams, for example, side by side.
  • the two laser beams since two laser beams with parallel polarization directions travel along two different axes, the two laser beams have anisotropy with respect to the cutting direction. If the two laser beams have anisotropy with respect to the cutting direction, the cutting quality will not be constant in laser cutting processing in which the cutting direction of the workpiece changes arbitrarily, which may lead to a deterioration of the cutting quality.
  • a polarization adjustment device that can align the polarization directions of two linearly polarized beams contained in a randomly polarized laser beam to be parallel, and can eliminate the anisotropy of the two laser beams with parallel polarization directions in the cutting direction, as well as a laser processing machine equipped with such a polarization adjustment device.
  • a first aspect of one or more embodiments is a polarization adjustment device comprising: a first optical element that separates a randomly polarized laser beam, which includes a first linearly polarized light having a first polarization direction and a second linearly polarized light having a second polarization direction orthogonal to the first polarization direction, into the first linearly polarized light and the second linearly polarized light; a second optical element that converts the polarization direction of the second linearly polarized light separated by the first optical element to the first polarization direction; an axicon lens that expands the second linearly polarized light emitted from the second optical element or the second linearly polarized light incident on the second optical element into a ring shape; and a third optical element that is used in combination with the first optical element or is separate from the first optical element and that coaxially emits the first linearly polarized light separated by the first optical element and the second linearly polarized light expanded into a ring shape by the axicon lens.
  • a second aspect of one or more of the embodiments is a laser processing machine that includes the polarization adjustment device of the first aspect, and a polarization direction control mechanism that controls the polarization direction of the first linearly polarized light and the second linearly polarized light emitted coaxially from the polarization adjustment device so that the polarization direction is parallel to the cutting direction when a laser beam is irradiated onto a workpiece to cut the workpiece.
  • the polarization adjustment device can align the polarization directions of two linearly polarized lights contained in a randomly polarized laser beam in parallel, and can eliminate the anisotropy of the two laser beams with parallel polarization directions in the cutting direction.
  • the laser processing machine can process the workpiece with two laser beams with no anisotropy and with parallel polarization directions.
  • FIG. 1 is a diagram showing an example of the overall configuration of a laser processing machine according to a first embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of the machining head according to the first embodiment.
  • FIG. 3 is a diagram showing an example of the configuration of a special polarizing beam splitter provided in the processing head shown in FIG.
  • FIG. 4 is a diagram showing the polarization direction and shape of the laser beam in FIG. 2, and the positional relationship between the first and second linearly polarized light beams when they are emitted coaxially.
  • FIG. 5 is a diagram showing a configuration example of a lens array provided in the processing head shown in FIG. FIG.
  • FIG. 6A is a diagram showing the relationship between the cutting direction of the workpiece and the polarization direction of the laser beam irradiated onto the workpiece W.
  • FIG. 6B is a diagram showing the relationship between the cutting direction of the workpiece W when the cutting direction of the workpiece W forms a curve and the polarization direction of the laser beam irradiated to the workpiece W.
  • FIG. 7A is a diagram showing the relationship between the cutting front and the polarization direction and the cutting proceeding direction when the cutting front has a semicircular shape.
  • FIG. 7B is a diagram showing the relationship between the cutting front and the polarization direction and the cutting proceeding direction when the cutting front has a rectangular shape.
  • FIG. 8 is a diagram showing an example of the configuration of a machining head according to the second embodiment.
  • FIG. 9 is a diagram showing the polarization direction and shape of the laser beam in FIG. 8 and the positional relationship between the first and second linearly polarized light beams when they are emitted coaxially.
  • FIG. 10 is a diagram showing a special mirror provided in the processing head shown in FIG.
  • the polarization adjustment device includes a first optical element, a second optical element, an axicon lens, and a third optical element.
  • the first optical element separates a randomly polarized laser beam, which includes a first linearly polarized light having a first polarization direction and a second linearly polarized light having a second polarization direction perpendicular to the first polarization direction, into the first linearly polarized light and the second linearly polarized light.
  • the second optical element converts the polarization direction of the second linearly polarized light separated by the first optical element to the first polarization direction.
  • the axicon lens expands the second linearly polarized light output by the second optical element or the second linearly polarized light incident on the second optical element into a ring shape.
  • the third optical element coaxially outputs the first linearly polarized light separated by the first optical element and the second linearly polarized light expanded into a ring shape by the axicon lens.
  • the third optical element is used in combination with the first optical element, or is separate from the first optical element.
  • FIG. 1 is a diagram showing an example of the overall configuration of a laser processing machine 100 equipped with a polarization adjustment device according to the first embodiment.
  • the laser processing machine 100 is a processing machine that cuts and processes a workpiece W using a laser beam.
  • the workpiece W to be processed is, for example, a mild steel plate.
  • the workpiece W may be an iron-based sheet metal other than a mild steel plate, such as stainless steel, or may be a non-iron-based sheet metal such as aluminum, an aluminum alloy, or copper.
  • the laser processing machine 100 includes a laser oscillator 10 that generates and emits a laser beam, a laser processing unit 20, and a process fiber 12 that transmits the laser beam emitted from the laser oscillator 10 to the laser processing unit 20.
  • the laser processing machine 100 also includes an NC (Numerical Control) device 50 and an assist gas supply device 60.
  • the NC device 50 is an example of a control device that controls each part of the laser processing machine 100.
  • a laser oscillator that amplifies the excitation light emitted from a laser diode to emit a laser beam of a specified wavelength, or a laser oscillator that directly uses the laser beam emitted from a laser diode is suitable.
  • the laser oscillator 10 is, for example, a solid-state laser oscillator, a fiber laser oscillator, a disk laser oscillator, or a direct diode laser oscillator (DDL oscillator).
  • the laser oscillator 10 emits a laser beam in the 1 ⁇ m band with a wavelength of 900 nm to 1100 nm.
  • a fiber laser oscillator and a DDL oscillator as examples, a fiber laser oscillator emits a laser beam with a wavelength of 1060 nm to 1080 nm, and a DDL oscillator emits a laser beam with a wavelength of 910 nm to 950 nm.
  • the process fiber 12 transmits the laser beam emitted from the laser oscillator 10 to the laser processing unit 20.
  • the laser beam transmitted by the process fiber 12 is a randomly polarized laser beam that includes a first linearly polarized light having a first polarization direction and a second linearly polarized light having a second polarization direction perpendicular to the first polarization direction.
  • the laser processing unit 20 cuts the workpiece W using a laser beam transmitted by the process fiber 12.
  • the laser processing unit 20 has a processing table 21 on which the workpiece W is placed, a gate-shaped X-axis carriage 22, a Y-axis carriage 23, and a processing head 30A.
  • the X-axis carriage 22 is configured to be freely movable along the X-axis direction on the processing table 21.
  • the Y-axis carriage 23 is configured to be freely movable along the Y-axis direction perpendicular to the X-axis on the X-axis carriage 22.
  • the X-axis carriage 22 and the Y-axis carriage 23 function as a moving mechanism that moves the processing head 30A along the surface of the workpiece W in the X-axis direction, Y-axis direction, or any combined direction of the X-axis and Y-axis.
  • the processing head 30A irradiates the workpiece W with the laser beam transmitted by the process fiber 12.
  • the detailed configuration of the processing head 30A will be described later with reference to Figures 2 to 4.
  • a nozzle 24 that emits a laser beam is detachably attached to the tip of the processing head 30A.
  • a circular opening 25 is provided at the tip of the nozzle 24, and the laser beam is irradiated from the opening 25 to the workpiece W.
  • the machining head 30A is fixed to a Y-axis carriage 23 that is movable in the Y-axis direction, and the Y-axis carriage 23 is mounted on an X-axis carriage 22 that is movable in the X-axis direction. Therefore, the machining head 30A, i.e., the position where the laser beam is irradiated onto the workpiece W, can be moved along the surface of the workpiece W (in the X-axis and Y-axis directions). Note that instead of a configuration in which the machining head 30A moves along the surface of the workpiece W, a configuration in which the workpiece W moves while the position of the machining head 30A is fixed may also be used.
  • the laser processing machine 100 only needs to be equipped with a movement mechanism that moves the machining head 30A relative to the surface of the workpiece W.
  • the NC device 50 reads out a processing program for cutting the workpiece W from a processing program database (not shown) and information for controlling the first motor 41 and the second motor 42 (described below) in accordance with the processing program.
  • the processing program contains codes that define a series of operations of the laser processing machine 100 required to cut the workpiece W, such as setting processing conditions, starting and stopping laser beam emission, and the movement path (cutting processing path) of the processing head 30A.
  • the NC device 50 controls the first motor 41 and the second motor 42 based on the read information, while controlling the X-axis carriage 22 and the Y-axis carriage 23 to cut the workpiece W based on the processing program.
  • the assist gas supply device 60 supplies assist gas to the processing head 30A when processing the workpiece W.
  • the assist gas is nitrogen, oxygen, a mixture of nitrogen and oxygen, or air.
  • nitrogen is used as the assist gas
  • oxygen is used as the assist gas.
  • the assist gas is sprayed from the opening 25 of the nozzle 24 in a direction perpendicular to the workpiece W. The assist gas expels molten metal from the cutting groove where the workpiece W has melted.
  • FIG. 2 shows a configuration example of the processing head 30A.
  • the processing head 30A has a collimator lens 31, a special polarizing beam splitter 32, a quarter-wave plate 33, a first reflecting mirror 34, an axicon lens 35, and a second reflecting mirror 36.
  • the special polarizing beam splitter 32, the quarter-wave plate 33, the first reflecting mirror 34, the axicon lens 35, and the second reflecting mirror 36 in Figure 2 function as a polarization adjustment unit (polarization adjustment device) that outputs the first linearly polarized light L1 in the randomly polarized laser beam L including a first linearly polarized light L1 having a first polarization direction and a second linearly polarized light L2 having a second polarization direction perpendicular to the first polarization direction as the first linearly polarized light L1, and converts the second linearly polarized light L2 into a second linearly polarized light L22 having a first polarization direction and outputs it.
  • polarization adjustment unit polarization adjustment device
  • the special polarizing beam splitter 32 functions as a dual-purpose optical element that serves both as the first optical element and the third optical element.
  • the quarter-wave plate 33 and the first reflecting mirror 34 function as the second optical element.
  • the processing head 30A also has a half-wave plate 37, a first motor 41 that rotates the half-wave plate 37, a lens array 38, a second motor 42 that rotates the lens array 38, and a focusing lens 39.
  • a double circle with a black center indicates the first linearly polarized light
  • a double-headed arrow indicates the second linearly polarized light.
  • the collimating lens 31 is incident with the diverging laser beam emitted from the exit end of the process fiber 12.
  • the diverging laser beam incident on the collimating lens 31 is a randomly polarized laser beam L including a first linearly polarized light L1 having a first polarization direction and a second linearly polarized light L2 having a second polarization direction perpendicular to the first polarization direction.
  • the collimating lens 31 converts the incident randomly polarized laser beam L into parallel light (collimated light).
  • the randomly polarized laser beam L converted into collimated light by the collimating lens 31 is incident on the special polarizing beam splitter 32.
  • the special polarizing beam splitter 32 is arranged so that its surface is at a 45 degree angle with respect to the optical axis.
  • FIG. 3 shows an example of the configuration of the special polarizing beam splitter 32.
  • the special polarizing beam splitter 32 has an elliptical polarizing separation region 321 in the center, and a transmission region 322 around the polarizing separation region 321.
  • FIG. 4 shows the polarization direction and shape of the laser beam in FIG. 2, and the positional relationship of the first and second linearly polarized light L1, L2 when the first and second linearly polarized light L1, L2 are emitted coaxially.
  • FIG. 4 shows the outline of the randomly polarized laser beam L, the first linearly polarized light L1, and the second linearly polarized light L2, L21, and L22.
  • the arrows in the randomly polarized laser beam L, the first linearly polarized light L1, and the second linearly polarized light L2, L21, and L22 in FIG. 4 simply show the polarization direction of each laser beam, and the difference in the length of the arrows is not particularly significant.
  • the polarization separation region 321 is a polarizing beam splitter that separates the first linearly polarized light L1 and the second linearly polarized light L2 in the randomly polarized laser beam L incident thereon, as shown in FIG. 4, by reflecting the first linearly polarized light L1 and transmitting the second linearly polarized light L2 in the randomly polarized laser beam L.
  • the transmission region 322 is provided with an anti-reflection coating, and transmits the incident laser beam.
  • the randomly polarized laser beam L emitted from the collimator lens 31 enters the polarization separation region 321 of the special polarizing beam splitter 32.
  • the polarization separation region 321 reflects the first linearly polarized light L1 contained in the randomly polarized laser beam L downward in the Z-axis direction perpendicular to the X-axis and Y-axis.
  • the polarization separation region 321 also transmits the second linearly polarized light L2 contained in the randomly polarized laser beam L, causing it to enter the quarter-wave plate 33.
  • the quarter-wave plate 33 is disposed between the special polarizing beam splitter 32 and the first reflecting mirror 34, and converts the second linearly polarized light L2 transmitted through the polarization separation region 321 of the special polarizing beam splitter 32 into the first circularly polarized light.
  • the quarter-wave plate 33 is preferably formed of, for example, quartz, and is preferably configured so that the phase delay of the laser beam that is incident on and transmitted through the quarter-wave plate 33 is 90°+n ⁇ 360° (n is an integer).
  • the quarter-wave plate 33 may be fabricated, for example, by bonding two quartz plates together so that their optical axes are perpendicular to each other.
  • the first circularly polarized light converted by the quarter-wave plate 33 is incident on the first reflecting mirror 34.
  • the first reflecting mirror 34 reflects the first circularly polarized light incident thereon and emits it as a second circularly polarized light whose phase is inverted from that of the first circularly polarized light.
  • the second circularly polarized light emitted from the first reflecting mirror 34 is incident on the quarter-wave plate 33.
  • the quarter-wave plate 33 converts the second circularly polarized light reflected by the first reflecting mirror 34 into the first polarization direction.
  • the quarter-wave plate 33 and the first reflecting mirror 34 convert the second linearly polarized light L2 separated by the special polarizing beam splitter 32 into second linearly polarized light L21 having a first polarization direction, as shown in FIG. 4.
  • the second linearly polarized light L21 emitted from the quarter-wave plate 33 enters the polarization separation region 321 of the special polarizing beam splitter 32.
  • the polarization separation region 321 reflects the second linearly polarized light L21 emitted from the quarter-wave plate 33 upward in the Z-axis direction.
  • the axicon lens 35 is disposed between the special polarizing beam splitter 32 and the second reflecting mirror 36.
  • the entrance surface of the axicon lens 35 for the laser beam is a conical inclined surface
  • the exit surface is a flat surface.
  • the inclined surface of the axicon lens 35 expands the second linearly polarized light L21 reflected upward by the polarization separation region 321 of the special polarizing beam splitter 32 into a ring shape, as shown in FIG. 4.
  • the second linearly polarized light L22 expanded into a ring shape by the axicon lens 35 in FIG. 4 is incident on the second reflecting mirror 36.
  • the second reflecting mirror 36 reflects the second linearly polarized light L22 emitted from the axicon lens 35.
  • the second linearly polarized light L22 reflected by the second reflecting mirror 36 is incident on the flat surface of the axicon lens 35 and emerges from the inclined surface.
  • the axicon lens 35 converts the incident ring-shaped second linearly polarized light L22 into collimated light and directs it into the transmission area 322 of the special polarizing beam splitter 32.
  • the transmission region 322 transmits the ring-shaped second linearly polarized light L22 emitted from the axicon lens 35.
  • the ring-shaped second linearly polarized light L22 transmitted through the transmission region 322 is positioned outside the first linearly polarized light L1 reflected by the polarization separation region 321, as shown in FIG. 4.
  • the polarization adjustment unit places a ring-shaped second linearly polarized light L22 having a first polarization direction outside the first linearly polarized light L1 reflected downward by the polarization separation region 321 of the special polarizing beam splitter 32, and emits the first linearly polarized light L1 and the second linearly polarized light L22 coaxially.
  • This makes it possible to align the polarization directions of the two linearly polarized light beams L1 and L2 contained in the randomly polarized laser beam L in parallel, and to eliminate the anisotropy in the cutting progression direction of the two laser beams whose polarization directions are aligned in parallel.
  • the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the special polarizing beam splitter 32 are incident on the half-wave plate 37.
  • the half-wave plate 37 is disposed on the optical path of the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the special polarizing beam splitter 32, and is configured to be rotatable on the XY plane by the first motor 41 (first rotation mechanism).
  • the first motor 41 is controlled by an NC device 50 (first control unit) and rotates the half-wave plate 37 on the XY plane.
  • the NC device 50 controls the first motor 41 so that the polarization directions of the first linearly polarized light L1 and the second linearly polarized light L22 transmitted through the half-wave plate 37 are parallel to the cutting direction of the laser processing machine 100.
  • the half-wave plate 37, the first motor 41, and the NC device 50 function as a polarization direction control mechanism that controls the polarization direction of the first linearly polarized light L1 and the second linearly polarized light L22 emitted from the special polarized beam splitter 32 so that they are parallel to the cutting direction when the workpiece W is cut by irradiating the workpiece W with the laser beam.
  • the laser processing machine 100 aligns the polarization directions of the first linearly polarized light L1 and the second linearly polarized light L2 contained in the randomly polarized laser beam to a first polarization direction, and controls the polarization direction of the laser beam whose polarization direction is aligned to the first polarization direction to be parallel to the cutting direction.
  • the polarization direction of the laser beam with respect to the cutting front which is the cut surface at the boundary between the non-melted area and the molten area in the cutting direction as the workpiece W is melted and cut, becomes p-polarized, thereby improving the absorption rate of the laser beam in the workpiece W.
  • the laser beam emitted from the half-wave plate 37 and controlled so that its polarization direction is parallel to the cutting direction is incident on the lens array 38.
  • the lens array 38 is disposed on the optical path of the laser beam controlled by the half-wave plate 37 so that its polarization direction is parallel to the cutting direction, and is configured to be rotatable by a second motor 42 (second rotation mechanism).
  • FIG. 5 shows an example of the configuration of the lens array 38.
  • the lens array 38 includes a plurality of rectangular lenses 38a arranged two-dimensionally.
  • a laser beam whose polarization direction is controlled by a half-wave plate 37 to be parallel to the cutting progression direction is incident on each of the plurality of lenses 38a.
  • Each of the plurality of lenses 38a may be a convex lens or a concave lens, and the lens array 38 is configured such that the entire plurality of lenses 38a are either convex lenses or concave lenses.
  • the focusing lens 39 focuses the laser beams that have passed through each lens 38a in the lens array 38 so that they overlap with each other, thereby irradiating a rectangular laser beam with a uniform intensity distribution onto the processing point WP of the workpiece W.
  • the second motor 42 is controlled by an NC device 50 (second control unit).
  • the NC device 50 controls the second motor 42 so that one side of the rectangular laser beam that passes through the lens array 38 and the focusing lens 39 and is irradiated to the processing point WP of the workpiece W is parallel to the cutting progression direction.
  • the NC device 50 functions as the first and second control units, but a control unit that controls the first motor 41 and a control unit that controls the second motor 42 may be provided separately.
  • the lens array 38, the second motor 42, the focusing lens 39, and the NC device 50 function as a rectangular beam angle control mechanism that shapes the laser beam, whose polarization direction is controlled by the polarization direction control mechanism so that it is parallel to the cutting direction, into a rectangular shape and controls one side of the rectangularly shaped laser beam so that it is parallel to the cutting direction.
  • FIG. 6A shows the relationship between the cutting direction of the workpiece W and the polarization direction of the laser beam irradiated to the workpiece W.
  • FIG. 6A shows the general shape of the laser beam when the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the special polarized beam splitter 32 are shaped into a rectangular shape by the lens array 38 and irradiated to the workpiece. As shown in FIG.
  • the polarization direction control mechanism controls the polarization direction P of the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the special polarized beam splitter 32 and shaped into a rectangular shape by the lens array 38 so that it is parallel to the cutting direction D when the workpiece W is cut by irradiating the workpiece W with the laser beam.
  • the rectangular beam angle control mechanism shapes the laser beam, which is controlled so that the polarization direction P is parallel to the cutting direction D, into a rectangular shape, and controls one side of the rectangularly shaped laser beam to be parallel to the cutting direction.
  • Figure 6B shows the relationship between the cutting direction of the workpiece W when the cutting direction of the workpiece W is curved and the polarization direction of the laser beam irradiated to the workpiece W.
  • Figure 6B shows the general shape of the laser beam when the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the special polarized beam splitter 32 are shaped into a rectangular shape by the lens array 38 and irradiated to the workpiece.
  • Figure 6B shows the case of cutting the corner R of a product as an example of a case where the cutting direction of the workpiece W is curved.
  • the NC device 50 controls the first and second motors 41, 42 to rotate the half-wave plate 37 and the lens array 38 so that the polarization direction P and one side of the laser beam shaped into a rectangular shape are always parallel to the cutting direction D.
  • the polarization direction P of the laser beam at the cutting front and one side of the rectangular laser beam at the cutting front are always parallel to the cutting direction.
  • Figure 7A is a comparative example assuming that the processing head 30A does not have a lens array 38, and shows the relationship between the cutting front and the polarization direction and cutting direction when the cutting front has a semicircular shape.
  • Figure 7B shows the relationship between the cutting front and the polarization direction and cutting direction when the processing head 30A has a lens array 38 and the cutting front has a rectangular shape.
  • the shape of the cutting front here refers to the shape of the boundary between the non-melted area and the molten area in the cutting direction as the workpiece W melts and is cut, as viewed from the surface of the workpiece W.
  • the wavelength of the laser beam was 1.08 ⁇ m
  • the material of the workpiece W was iron
  • the thickness was 8 mm.
  • the absorption rate was approximately 55% when cutting was performed using the conventional laser beam.
  • the absorption rate of the laser beam in the workpiece W when cutting was performed using the laser processing machine 100 according to this embodiment was approximately 74%, confirming an improvement in absorption rate of approximately 19%.
  • the polarization adjustment device aligns the polarization directions of the first linearly polarized light L1 having a first polarization direction and the second linearly polarized light L2 having a second polarization direction perpendicular to the first polarization direction contained in the randomly polarized laser beam L to the first polarization direction, and emits them coaxially.
  • the polarization adjustment device places a ring-shaped second linearly polarized light L22 having a first polarization direction outside the first linearly polarized light L1 reflected by the polarization separation region 321 of the first optical element (special polarized beam splitter 32), and emits the first linearly polarized light L1 and the second linearly polarized light L22 coaxially.
  • This makes it possible to align the polarization directions of the two linearly polarized lights L1 and L2 contained in the randomly polarized laser beam L in parallel, and to eliminate the anisotropy of the cutting progression direction of the two laser beams whose polarization directions are aligned in parallel.
  • the laser processing machine 100 equipped with the polarization adjustment device according to the first embodiment controls the polarization direction of the two laser beams, the polarization directions of which are aligned in parallel, so that they are parallel to the cutting direction.
  • the polarization direction of the laser beam with respect to the cutting front becomes p-polarized, thereby improving the absorption rate of the laser beam in the workpiece W.
  • the laser processing machine 100 which is equipped with the polarization adjustment device and polarization direction control mechanism according to the first embodiment, controls the polarization direction P of the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the polarization adjustment device so that the polarization direction P is parallel to the cutting direction D when the workpiece W is cut by irradiating the workpiece W with a laser beam.
  • the rectangular beam angle control mechanism of the laser processing machine 100 shapes the laser beam, which has been controlled so that the polarization direction P is parallel to the cutting direction D, into a rectangular shape, and controls one side of the rectangularly shaped laser beam so that it is parallel to the cutting direction.
  • the workpiece W can be processed using two non-anisotropic laser beams with parallel polarization directions. Furthermore, during cutting, the polarization direction P of the laser beam at the cutting front and one side of the laser beam shaped into a rectangle at the cutting front are always parallel to the cutting direction. At any position in the width direction of the cutting groove, the polarization direction P is incident in a direction N perpendicular to the cutting front. Therefore, p-polarized light acts efficiently on the cutting front, improving the absorption rate of the laser beam in the workpiece W. This improves processing efficiency during cutting.
  • Fig. 8 shows an example of the configuration of the processing head 30B according to the second embodiment.
  • the laser processing machine 100 according to the second embodiment has a different internal configuration of the processing head compared to the laser processing machine 100 according to the first embodiment.
  • the other configurations are the same as those of the laser processing machine 100 according to the first embodiment. Therefore, in the laser processing machine 100 according to the second embodiment, the parts that differ from the laser processing machine 100 according to the first embodiment will be mainly described, and the same parts will not be described again.
  • the processing head 30B has a collimator lens 31, a polarizing beam splitter 71, a third reflecting mirror 72, axicon lenses 73 and 74, a fourth reflecting mirror 75, a half-wave plate 76, and a special mirror 77.
  • polarization adjustment unit polarization adjustment device
  • L1' polarization adjustment unit
  • L2' linearly polarized light L2' having a second polarization direction perpendicular to the first polarization direction, as the first linearly polarized light L1'
  • the polarizing beam splitter 71 functions as the first optical element.
  • the half-wave plate 76 functions as the second optical element.
  • the special mirror 77 functions as a third optical element separate from the first optical element.
  • the processing head 30B of the laser processing machine 100 has a half-wave plate 37, a first motor 41, a lens array 38, a second motor 42, a fifth reflecting mirror 78, and a focusing lens 39.
  • a double circle with a black center indicates the first linearly polarized light
  • a double-headed arrow indicates the second linearly polarized light.
  • the diverging laser beam emitted from the exit end of the process fiber 12 is incident on the collimating lens 31.
  • the diverging laser beam incident on the collimating lens 31 is a randomly polarized laser beam L' that includes a first linearly polarized light L1' having a first polarization direction and a second linearly polarized light L2' having a second polarization direction perpendicular to the first polarization direction.
  • the collimating lens 31 converts the incident randomly polarized laser beam L' into collimated light.
  • the randomly polarized laser beam L' converted into collimated light by the collimating lens 31 is incident on the polarizing beam splitter 71.
  • FIG. 9 shows the polarization direction and shape of the laser beam in FIG. 8, and the positional relationship of the first and second linearly polarized light L1', L2' when the first and second linearly polarized light L1', L2' are emitted coaxially.
  • FIG. 9 shows the outline of the randomly polarized laser beam L', the first linearly polarized light L1', and the second linearly polarized light L2', L21', L22'.
  • the arrows in the randomly polarized laser beam L', the first linearly polarized light L1', and the second linearly polarized light L2', L21', L22' in FIG. 9 simply show the polarization direction of each laser beam, and the difference in the length of the arrows is not particularly significant.
  • the polarizing beam splitter 71 is a polarizing beam splitter that separates the first linearly polarized light L1' from the second linearly polarized light L2' as shown in FIG. 9 by transmitting the first linearly polarized light L1' in the randomly polarized laser beam L' and reflecting the second linearly polarized light L2'.
  • the polarizing beam splitter 71 transmits the first linearly polarized light L1' contained in the randomly polarized laser beam L' and makes it incident on the special mirror 77.
  • the first linearly polarized light L1' that has transmitted through the polarizing beam splitter 71 is incident on the transmission area 771 (see FIG. 10) of the special mirror 77, which will be described later.
  • the polarizing beam splitter 71 also reflects the second linearly polarized light L2' contained in the randomly polarized laser beam L' upward in the Z-axis direction perpendicular to the X-axis and Y-axis.
  • the second linearly polarized light L2' reflected upward by the polarizing beam splitter 71 is incident on the third reflecting mirror 72.
  • the third reflecting mirror 72 reflects the second linearly polarized light L2' reflected by the polarizing beam splitter 71 in the X-axis direction.
  • the second linearly polarized light L2' reflected by the third reflecting mirror 72 is incident on the axicon lens 73.
  • the axicon lens 73 is arranged with its conical inclined surface facing the third reflecting mirror 72 and its flat surface facing the axicon lens 74.
  • the inclined surface of the axicon lens 73 expands the second linearly polarized light L2' reflected by the third reflecting mirror 72 into a ring shape, as shown in FIG. 9.
  • the second linearly polarized light L21' expanded into a ring shape by the axicon lens 73 enters the axicon lens 74.
  • the axicon lens 74 is positioned with its flat surface facing the axicon lens 73 and its conical inclined surface facing the fourth reflecting mirror 75.
  • the axicon lens 74 converts the ring-shaped second linearly polarized light L21' emitted from the axicon lens 73 into collimated light and makes it incident on the fourth reflecting mirror 75.
  • the fourth reflecting mirror 75 reflects the ring-shaped second linearly polarized light L21' emitted from the axicon lens 73 and converted into collimated light by the axicon lens 74 downward in the Z-axis direction and makes it incident on the half-wave plate 76.
  • the half-wave plate 76 converts the polarization direction of the ring-shaped second linearly polarized light L21' reflected by the fourth reflecting mirror 75 into the first polarization direction.
  • the half-wave plate 76 converts the second linearly polarized light L21', which has been separated by the polarizing beam splitter 71 and expanded into a ring shape by the axicon lens 73, into a ring-shaped second linearly polarized light L22' having the first polarization direction, as shown in FIG. 9.
  • the ring-shaped second linearly polarized light L22' emitted from the half-wave plate 76 is incident on the special mirror 77.
  • FIG. 10 shows an example of the configuration of special mirror 77.
  • special mirror 77 has an elliptical transmissive area 771 in the center, and a reflective area 772 around the transmissive area 771.
  • Transmissive area 771 is coated with an anti-reflective coating, and transmits the incident laser beam.
  • Reflective area 772 is coated with a highly reflective coating, and reflects the incident laser beam.
  • the first linearly polarized light L1' that has passed through the polarizing beam splitter 71 is incident on the transmission region 771 of the special mirror 77.
  • the transmission region 771 transmits the first linearly polarized light L1' that has passed through the polarizing beam splitter 71.
  • the ring-shaped second linearly polarized light L22' that has been emitted from the half-wave plate 76 is incident on the reflection region 772 of the special mirror 77.
  • the reflection region 772 reflects the incident ring-shaped second linearly polarized light L22' in the X-axis direction.
  • the ring-shaped second linearly polarized light L22' that has been reflected by the reflection region 772 is positioned outside the first linearly polarized light L1' that has passed through the transmission region 771, as shown in FIG. 9.
  • the polarization adjustment unit places a ring-shaped second linearly polarized light L22' having a first polarization direction outside the first linearly polarized light L1' that has passed through the polarizing beam splitter 71 and the transmission area 771 of the special mirror 77, and emits the first linearly polarized light L1' and the second linearly polarized light L22' coaxially.
  • This makes it possible to align the polarization directions of the two linearly polarized lights L1' and L2' contained in the randomly polarized laser beam L' in parallel, and to eliminate anisotropy with respect to the cutting direction of the laser beam.
  • the first linearly polarized light L1' and the second linearly polarized light L22' emitted coaxially from the special mirror 77 are incident on the half-wave plate 37.
  • the half-wave plate 37 is disposed on the optical path of the first linearly polarized light L1' and the second linearly polarized light L22' emitted coaxially from the special mirror 77, and is configured to be rotatable on the XZ plane by the first motor 41.
  • the laser beam emitted from the half-wave plate 37 and controlled so that its polarization direction is parallel to the cutting direction is incident on the lens array 38.
  • the lens array 38 is disposed on the optical path of the laser beam controlled by the half-wave plate 37 so that its polarization direction is parallel to the cutting direction, and is configured to be rotatable on the XZ plane by the second motor 42.
  • the fifth reflecting mirror 78 reflects the laser beam that has passed through the lens array 38 downward in the Z-axis direction, and makes it enter the focusing lens 39.
  • the focusing lens 39 focuses the laser beam reflected by the fifth reflecting mirror 78, and irradiates a rectangular laser beam with a uniform intensity distribution onto the processing point WP of the workpiece W.
  • the first motor 41 is controlled by the NC device 50 to rotate the half-wave plate 37.
  • the NC device 50 controls the first motor 41 so that the polarization directions of the first linearly polarized light L1' and the second linearly polarized light L22' that pass through the half-wave plate 37 and the lens array 38, are reflected by the fifth reflecting mirror 78, and are transmitted through the focusing lens 39, are parallel to the cutting progression direction.
  • the half-wave plate 37, the first motor 41, and the NC device 50 function as a polarization direction control mechanism that controls the polarization direction of the first linearly polarized light L1' and the second linearly polarized light L22' emitted coaxially from the special mirror 77 so that they are parallel to the cutting direction when the workpiece W is cut by irradiating the workpiece W with the laser beam.
  • the second motor 42 is controlled by the NC device 50 to rotate the lens array 38.
  • the NC device 50 controls the second motor 42 so that one side of the rectangular laser beam that passes through the lens array 38, is reflected by the fifth reflecting mirror 78, passes through the focusing lens 39, and is irradiated onto the processing point WP of the workpiece W is parallel to the cutting progression direction.
  • the lens array 38, the second motor 42, the focusing lens 39, and the NC device 50 function as a rectangular beam angle control mechanism that shapes the laser beam, whose polarization direction is controlled by the polarization direction control mechanism so that it is parallel to the cutting direction, into a rectangular shape and controls one side of the rectangularly shaped laser beam so that it is parallel to the cutting direction.
  • the polarization adjustment device aligns the polarization direction of the randomly polarized laser beam L', which includes the first linearly polarized light L1' and the second linearly polarized light L2', to the first polarization direction by using a polarizing beam splitter 71, a third reflecting mirror 72, axicon lenses 73 and 74, a fourth reflecting mirror 75, a half-wave plate 76, and a special mirror 77.
  • Each optical element of the polarization adjustment device according to the second embodiment can be arranged so as not to reflect the laser beam toward the exit end of the process fiber 12.
  • the present invention is not limited to the first or second embodiment described above, and various modifications are possible without departing from the gist of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

In the present invention, a first optical element (32, 71) divides a randomly polarized laser beam (L) into first linear polarized light (L1, L1') having a first polarization direction and second linear polarized light (L2, L2') having a second polarization direction orthogonal to the first polarization direction. A second optical element (33, 34, 76) converts the polarization direction of the second linear polarized light (L2, L21') divided by the first optical element (32, 71) to the first polarization direction. An axicon lens (35, 73, 74) spreads either the second linear polarized light (L21) emitted by the second optical element (33) or the second linear polarized light (L2') incident on the second optical element (76) into a ring form. A third optical element (32, 77) emits the first linear polarized light (L1, L1') divided by the first optical element (32, 71) and the second linear polarized light (L22, L22') that was spread into a ring form by the axicon lens (35, 73, 74) on the same axis.

Description

偏光調整装置及びレーザ加工機Polarization adjustment device and laser processing machine
 本開示は、偏光調整装置及びレーザ加工機に関する。 This disclosure relates to a polarization adjustment device and a laser processing machine.
 レーザ加工機は、レーザ発振器より射出されたレーザビームによって金属の被加工材を切断加工する。レーザ発振器が射出するレーザビームは、互いに直交する2つの直線偏光成分(以下、p偏光、s偏光と言う)を含むランダム偏光である。ランダム偏光のレーザビームにより切断加工を行う際の被加工材のレーザビームの吸収率は、レーザビームが被加工材へ入射する入射角度に応じて変化することが知られている。ランダム偏光のレーザビームの吸収率は、p偏光の吸収率とs偏光の吸収率の平均値となる。 Laser processing machines cut metal workpieces with a laser beam emitted from a laser oscillator. The laser beam emitted by the laser oscillator is randomly polarized light that contains two mutually orthogonal linearly polarized components (hereafter referred to as p-polarized light and s-polarized light). It is known that the absorption rate of the laser beam by the workpiece when cutting with a randomly polarized laser beam varies depending on the angle of incidence of the laser beam onto the workpiece. The absorption rate of a randomly polarized laser beam is the average value of the absorption rates of p-polarized light and s-polarized light.
 レーザ加工機による一般的な切断加工においては、レーザビームは被加工材に対して82度~88度の入射角度で入射されて、被加工材が切断される。被加工材の金属が鉄、レーザビームの波長が1μm帯である場合を例として、レーザビームの入射角が82度~88度であると、p偏光の吸収率が最大で90%程度となるのに対し、s偏光の吸収率は10%未満となる。ランダム偏光のレーザビームの吸収率はp偏光の吸収率とs偏光の吸収率との平均値となるため、ランダム偏光のレーザビームの吸収率は40%またはそれ以下となってしまい、被加工材を切断加工するときの加工効率を低下させる要因の一つとなっている。 In typical cutting processes using laser processing machines, the laser beam is incident on the workpiece at an angle of 82 degrees to 88 degrees, cutting the workpiece. For example, if the workpiece is made of iron metal and the laser beam has a wavelength in the 1 μm range, when the incident angle of the laser beam is 82 degrees to 88 degrees, the absorption rate of p-polarized light is a maximum of about 90%, while the absorption rate of s-polarized light is less than 10%. The absorption rate of a randomly polarized laser beam is the average value of the absorption rates of p-polarized light and s-polarized light, so the absorption rate of a randomly polarized laser beam is 40% or less, which is one of the factors that reduce the processing efficiency when cutting a workpiece.
 この問題を解決する方法として、特許文献1には、ランダム偏光のレーザビームに含まれる2つの直線偏光の偏光方向を平行に揃え、偏光方向が平行に揃った2つの直線偏光の偏光方向を、切断加工を行う方向(以下、切断進行方向と言う)と一致させるように制御するレーザ加工機が開示されている。直線偏光の偏光方向を切断進行方向と一致させることにより、カッティングフロントに対するレーザビームの偏光方向がp偏光となり、被加工材のレーザビームの吸収率がp偏光の吸収率となる。これにより、被加工材のレーザビームの吸収率が向上して加工効率を向上させることができる。なお、ここでのカッティングフロントとは、被加工材が溶融して切断されていくときの切断進行方向の非溶融領域と溶融領域との境界の切断面である。 As a method for solving this problem, Patent Document 1 discloses a laser processing machine that aligns the polarization directions of two linearly polarized lights contained in a randomly polarized laser beam in parallel and controls the polarization direction of the two parallel linearly polarized lights to match the direction in which cutting is performed (hereinafter referred to as the cutting direction). By matching the polarization direction of the linearly polarized light with the cutting direction, the polarization direction of the laser beam with respect to the cutting front becomes p-polarized light, and the absorption rate of the laser beam in the workpiece becomes the absorption rate of p-polarized light. This improves the absorption rate of the laser beam in the workpiece, thereby improving processing efficiency. The cutting front here refers to the cut surface at the boundary between the non-melted area and the molten area in the cutting direction when the workpiece is melted and cut.
特開平7-266071号公報Japanese Patent Application Laid-Open No. 7-266071
 特許文献1に記載されているレーザ加工機は、偏光方向が同一且つ波長が同一である2つの直線偏光のレーザビームを一つの集束レンズによって集束させて、被加工材に照射する。しかしながら、原理的に、偏光方向が同一且つ波長が同一の2つのレーザビームを同じ位置に集束させることはできない。したがって、実際には、2つのレーザビームを集束させる位置を異ならせて、2つのレーザビームを例えば横並びに隣接するように配置する必要がある。すなわち、偏光方向を平行に揃えた2つのレーザビームは互いに異なる2つの軸に沿って進行するため、2つのレーザビームは切断進行方向に対して異方性を有する。2つのレーザビームが切断進行方向に対する異方性を有すると、被加工材の切断進行方向が任意に変化するレーザ切断加工において切断品質が一定とならず、切断品質の低下を招くことがある。 The laser processing machine described in Patent Document 1 focuses two linearly polarized laser beams with the same polarization direction and wavelength by one focusing lens and irradiates the workpiece. However, in principle, two laser beams with the same polarization direction and wavelength cannot be focused at the same position. Therefore, in practice, it is necessary to focus the two laser beams at different positions and arrange the two laser beams, for example, side by side. In other words, since two laser beams with parallel polarization directions travel along two different axes, the two laser beams have anisotropy with respect to the cutting direction. If the two laser beams have anisotropy with respect to the cutting direction, the cutting quality will not be constant in laser cutting processing in which the cutting direction of the workpiece changes arbitrarily, which may lead to a deterioration of the cutting quality.
 ランダム偏光のレーザビームに含まれる2つの直線偏光の偏光方向を平行に揃えることができ、且つ、偏光方向を平行に揃えた2つのレーザビームの切断進行方向に対する異方性をなくすことができる偏光調整装置、及びそのような偏光調整装置を備えるレーザ加工機の登場が望まれている。 There is a demand for a polarization adjustment device that can align the polarization directions of two linearly polarized beams contained in a randomly polarized laser beam to be parallel, and can eliminate the anisotropy of the two laser beams with parallel polarization directions in the cutting direction, as well as a laser processing machine equipped with such a polarization adjustment device.
 1またはそれ以上の実施形態の第1の態様は、第1の偏光方向を有する第1の直線偏光と、前記第1の偏光方向と直交する第2の偏光方向を有する第2の直線偏光とを含むランダム偏光のレーザビームを、前記第1の直線偏光と前記第2の直線偏光とに分離する第1の光学素子と、前記第1の光学素子によって分離された前記第2の直線偏光の偏光方向を前記第1の偏光方向に変換する第2の光学素子と、前記第2の光学素子より射出された前記第2の直線偏光、または前記第2の光学素子に入射される前記第2の直線偏光をリング状に広げるアキシコンレンズと、前記第1の光学素子によって分離された前記第1の直線偏光と、前記アキシコンレンズによってリング状に広げられた前記第2の直線偏光とを同軸で射出する、前記第1の光学素子と兼用されている、または前記第1の光学素子とは別体であるの第3の光学素子と、を備える偏光調整装置である。 A first aspect of one or more embodiments is a polarization adjustment device comprising: a first optical element that separates a randomly polarized laser beam, which includes a first linearly polarized light having a first polarization direction and a second linearly polarized light having a second polarization direction orthogonal to the first polarization direction, into the first linearly polarized light and the second linearly polarized light; a second optical element that converts the polarization direction of the second linearly polarized light separated by the first optical element to the first polarization direction; an axicon lens that expands the second linearly polarized light emitted from the second optical element or the second linearly polarized light incident on the second optical element into a ring shape; and a third optical element that is used in combination with the first optical element or is separate from the first optical element and that coaxially emits the first linearly polarized light separated by the first optical element and the second linearly polarized light expanded into a ring shape by the axicon lens.
 1またはそれ以上の実施形態の第2の態様は、第1の態様の偏光調整装置と、前記偏光調整装置より同軸で射出された前記第1の直線偏光及び前記第2の直線偏光の偏光方向を、被加工材にレーザビームを照射して前記被加工材を切断するときの切断進行方向と平行となるように制御する偏光方向制御機構と、を備えるレーザ加工機である。 A second aspect of one or more of the embodiments is a laser processing machine that includes the polarization adjustment device of the first aspect, and a polarization direction control mechanism that controls the polarization direction of the first linearly polarized light and the second linearly polarized light emitted coaxially from the polarization adjustment device so that the polarization direction is parallel to the cutting direction when a laser beam is irradiated onto a workpiece to cut the workpiece.
 1またはそれ以上の実施形態に係る偏光調整装置によれば、ランダム偏光のレーザビームに含まれる2つの直線偏光の偏光方向を平行に揃えることができ、且つ、偏光方向を平行に揃えた2つのレーザビームの切断進行方向に対する異方性をなくすことができる。1またはそれ以上の実施形態に係るレーザ加工機によれば、偏光方向を平行に揃えた異方性のない2つのレーザビームによって被加工材を加工することができる。 The polarization adjustment device according to one or more embodiments can align the polarization directions of two linearly polarized lights contained in a randomly polarized laser beam in parallel, and can eliminate the anisotropy of the two laser beams with parallel polarization directions in the cutting direction. The laser processing machine according to one or more embodiments can process the workpiece with two laser beams with no anisotropy and with parallel polarization directions.
図1は、第1実施形態に係るレーザ加工機の全体的な構成例を示す図である。FIG. 1 is a diagram showing an example of the overall configuration of a laser processing machine according to a first embodiment. 図2は、第1実施形態に係る加工ヘッドの構成例を示す図である。FIG. 2 is a diagram showing an example of the configuration of the machining head according to the first embodiment. 図3は、図2に示す加工ヘッドが備える特殊偏光ビームスプリッタの構成例を示す図である。FIG. 3 is a diagram showing an example of the configuration of a special polarizing beam splitter provided in the processing head shown in FIG. 図4は、図2におけるレーザビームの偏光方向及び形状と、第1及び第2の直線偏光が同軸で射出されるときの第1及び第2の直線偏光の位置関係を示す図である。FIG. 4 is a diagram showing the polarization direction and shape of the laser beam in FIG. 2, and the positional relationship between the first and second linearly polarized light beams when they are emitted coaxially. 図5は、図2に示す加工ヘッドが備えるレンズアレイの構成例を示す図である。FIG. 5 is a diagram showing a configuration example of a lens array provided in the processing head shown in FIG. 図6Aは、被加工材の切断進行方向と、被加工材Wに照射されるレーザビームの偏光方向との関係を示す図である。FIG. 6A is a diagram showing the relationship between the cutting direction of the workpiece and the polarization direction of the laser beam irradiated onto the workpiece W. 図6Bは、被加工材の切断進行方向が曲線を描くときの切断進行方向と、被加工材Wに照射されるレーザビームの偏光方向との関係を示す図である。FIG. 6B is a diagram showing the relationship between the cutting direction of the workpiece W when the cutting direction of the workpiece W forms a curve and the polarization direction of the laser beam irradiated to the workpiece W. 図7Aは、カッティングフロントの形状が半円状であるときの、カッティングフロントと偏光方向及び切断進行方向との関係を示す図である。FIG. 7A is a diagram showing the relationship between the cutting front and the polarization direction and the cutting proceeding direction when the cutting front has a semicircular shape. 図7Bは、カッティングフロントの形状が矩形状であるときの、カッティングフロントと偏光方向及び切断進行方向との関係を示す図である。FIG. 7B is a diagram showing the relationship between the cutting front and the polarization direction and the cutting proceeding direction when the cutting front has a rectangular shape. 図8は、第2実施形態に係る加工ヘッドの構成例を示す図である。FIG. 8 is a diagram showing an example of the configuration of a machining head according to the second embodiment. 図9は、図8におけるレーザビームの偏光方向及び形状と、第1及び第2の直線偏光が同軸で射出されるときの第1及び第2の直線偏光の位置関係を示す図である。FIG. 9 is a diagram showing the polarization direction and shape of the laser beam in FIG. 8 and the positional relationship between the first and second linearly polarized light beams when they are emitted coaxially. 図10は、図8に示す加工ヘッドが備える特殊ミラーを示す図である。FIG. 10 is a diagram showing a special mirror provided in the processing head shown in FIG.
 1またはそれ以上の実施形態に係る偏光調整装置は、第1の光学素子、第2の光学素子、アキシコンレンズ、第3の光学素子を備える。 The polarization adjustment device according to one or more embodiments includes a first optical element, a second optical element, an axicon lens, and a third optical element.
 第1の光学素子は、第1の偏光方向を有する第1の直線偏光と、第1の偏光方向と直交する第2の偏光方向を有する第2の直線偏光とを含むランダム偏光のレーザビームを、第1の直線偏光と第2の直線偏光とに分離する。第2の光学素子は、第1の光学素子によって分離された第2の直線偏光の偏光方向を第1の偏光方向に変換する。アキシコンレンズは、第2の光学素子により射出された第2の直線偏光、または第2の光学素子に入射される第2の直線偏光を、リング状に広げる。第3の光学素子は、第1の光学素子によって分離された第1の直線偏光と、アキシコンレンズによってリング状に広げられた第2の直線偏光とを同軸で射出する。第3の光学素子は、第1の光学素子と兼用されている、または第1の光学素子とは別体である。 The first optical element separates a randomly polarized laser beam, which includes a first linearly polarized light having a first polarization direction and a second linearly polarized light having a second polarization direction perpendicular to the first polarization direction, into the first linearly polarized light and the second linearly polarized light. The second optical element converts the polarization direction of the second linearly polarized light separated by the first optical element to the first polarization direction. The axicon lens expands the second linearly polarized light output by the second optical element or the second linearly polarized light incident on the second optical element into a ring shape. The third optical element coaxially outputs the first linearly polarized light separated by the first optical element and the second linearly polarized light expanded into a ring shape by the axicon lens. The third optical element is used in combination with the first optical element, or is separate from the first optical element.
 [第1実施形態]
 以下、第1実施形態に係る偏光調整装置及びレーザ加工機について、図面を参照して具体的に説明する。
[First embodiment]
Hereinafter, the polarization adjustment device and the laser processing machine according to the first embodiment will be specifically described with reference to the drawings.
 図1は、第1実施形態に係る偏光調整装置を備えるレーザ加工機100の全体的な構成例を示す図である。図1において、レーザ加工機100は、レーザビームによって被加工材Wを切断加工する加工機である。加工対象の被加工材Wは例えば軟鋼板である。被加工材Wは、ステンレス鋼等の軟鋼板以外の鉄系の板金であってもよいし、アルミニウム、アルミニウム合金、銅等の鉄系以外の板金であってもよい。 FIG. 1 is a diagram showing an example of the overall configuration of a laser processing machine 100 equipped with a polarization adjustment device according to the first embodiment. In FIG. 1, the laser processing machine 100 is a processing machine that cuts and processes a workpiece W using a laser beam. The workpiece W to be processed is, for example, a mild steel plate. The workpiece W may be an iron-based sheet metal other than a mild steel plate, such as stainless steel, or may be a non-iron-based sheet metal such as aluminum, an aluminum alloy, or copper.
 図1に示すように、レーザ加工機100は、レーザビームを生成して射出するレーザ発振器10と、レーザ加工ユニット20と、レーザ発振器10より射出されたレーザビームをレーザ加工ユニット20へと伝送するプロセスファイバ12とを備える。また、レーザ加工機100は、NC(数値制御:Numerical Control)装置50と、アシストガス供給装置60とを備える。NC装置50は、レーザ加工機100の各部を制御する制御装置の一例である。 As shown in FIG. 1, the laser processing machine 100 includes a laser oscillator 10 that generates and emits a laser beam, a laser processing unit 20, and a process fiber 12 that transmits the laser beam emitted from the laser oscillator 10 to the laser processing unit 20. The laser processing machine 100 also includes an NC (Numerical Control) device 50 and an assist gas supply device 60. The NC device 50 is an example of a control device that controls each part of the laser processing machine 100.
 レーザ発振器10としては、レーザダイオードより発せられる励起光を増幅して所定の波長のレーザビームを射出するレーザ発振器、またはレーザダイオードより発せられるレーザビームを直接利用するレーザ発振器が好適である。レーザ発振器10は、例えば、固体レーザ発振器、ファイバレーザ発振器、ディスクレーザ発振器、ダイレクトダイオードレーザ発振器(DDL発振器)である。 As the laser oscillator 10, a laser oscillator that amplifies the excitation light emitted from a laser diode to emit a laser beam of a specified wavelength, or a laser oscillator that directly uses the laser beam emitted from a laser diode, is suitable. The laser oscillator 10 is, for example, a solid-state laser oscillator, a fiber laser oscillator, a disk laser oscillator, or a direct diode laser oscillator (DDL oscillator).
 レーザ発振器10は、波長900nm~1100nmの1μm帯のレーザビームを射出する。ファイバレーザ発振器及びDDL発振器を例とすると、ファイバレーザ発振器は、波長1060nm~1080nmのレーザビームを射出し、DDL発振器は、波長910nm~950nmのレーザビームを射出する。 The laser oscillator 10 emits a laser beam in the 1 μm band with a wavelength of 900 nm to 1100 nm. Taking a fiber laser oscillator and a DDL oscillator as examples, a fiber laser oscillator emits a laser beam with a wavelength of 1060 nm to 1080 nm, and a DDL oscillator emits a laser beam with a wavelength of 910 nm to 950 nm.
 プロセスファイバ12は、レーザ発振器10より射出されたレーザビームをレーザ加工ユニット20へと伝送する。なお、第1実施形態においてプロセスファイバ12で伝送されるレーザビームは、第1の偏光方向を有する第1の直線偏光と、第1の偏光方向と直交する第2の偏光方向を有する第2の直線偏光とを含むランダム偏光のレーザビームである。 The process fiber 12 transmits the laser beam emitted from the laser oscillator 10 to the laser processing unit 20. In the first embodiment, the laser beam transmitted by the process fiber 12 is a randomly polarized laser beam that includes a first linearly polarized light having a first polarization direction and a second linearly polarized light having a second polarization direction perpendicular to the first polarization direction.
 レーザ加工ユニット20は、プロセスファイバ12によって伝送されたレーザビームを用いて、被加工材Wを切断する。レーザ加工ユニット20は、被加工材Wを載せる加工テーブル21と、門型のX軸キャリッジ22と、Y軸キャリッジ23と、加工ヘッド30Aとを有している。X軸キャリッジ22は、加工テーブル21上でX軸方向に沿って移動自在に構成されている。Y軸キャリッジ23は、X軸キャリッジ22上でX軸に垂直なY軸方向に沿って移動自在に構成されている。X軸キャリッジ22及びY軸キャリッジ23は、加工ヘッド30Aを被加工材Wの表面に沿って、X軸方向、Y軸方向、または、X軸とY軸との任意の合成方向に移動させる移動機構として機能する。 The laser processing unit 20 cuts the workpiece W using a laser beam transmitted by the process fiber 12. The laser processing unit 20 has a processing table 21 on which the workpiece W is placed, a gate-shaped X-axis carriage 22, a Y-axis carriage 23, and a processing head 30A. The X-axis carriage 22 is configured to be freely movable along the X-axis direction on the processing table 21. The Y-axis carriage 23 is configured to be freely movable along the Y-axis direction perpendicular to the X-axis on the X-axis carriage 22. The X-axis carriage 22 and the Y-axis carriage 23 function as a moving mechanism that moves the processing head 30A along the surface of the workpiece W in the X-axis direction, Y-axis direction, or any combined direction of the X-axis and Y-axis.
 加工ヘッド30Aは、プロセスファイバ12によって伝送されたレーザビームを被加工材Wに照射する。加工ヘッド30Aの詳細な構成については、図2~図4を参照して後述する。加工ヘッド30Aの先端には、レーザビームを射出するノズル24が着脱自在に取り付けられている。ノズル24の先端部には円形の開口25が設けられており、レーザビームは開口25から被加工材Wに照射される。 The processing head 30A irradiates the workpiece W with the laser beam transmitted by the process fiber 12. The detailed configuration of the processing head 30A will be described later with reference to Figures 2 to 4. A nozzle 24 that emits a laser beam is detachably attached to the tip of the processing head 30A. A circular opening 25 is provided at the tip of the nozzle 24, and the laser beam is irradiated from the opening 25 to the workpiece W.
 加工ヘッド30Aは、Y軸方向に移動自在のY軸キャリッジ23に固定され、Y軸キャリッジ23は、X軸方向に移動自在のX軸キャリッジ22に設けられている。よって、加工ヘッド30A、即ち、レーザビームを被加工材Wに照射する位置を、被加工材Wの面(X軸方向及びY軸方向)に沿って移動させることができる。なお、加工ヘッド30Aを被加工材Wの面に沿って移動させる構成に代えて、加工ヘッド30Aの位置を固定したまま、被加工材Wを移動する構成であってもよい。レーザ加工機100は、被加工材Wの面に対して加工ヘッド30Aを相対的に移動させる移動機構を備えていればよい。 The machining head 30A is fixed to a Y-axis carriage 23 that is movable in the Y-axis direction, and the Y-axis carriage 23 is mounted on an X-axis carriage 22 that is movable in the X-axis direction. Therefore, the machining head 30A, i.e., the position where the laser beam is irradiated onto the workpiece W, can be moved along the surface of the workpiece W (in the X-axis and Y-axis directions). Note that instead of a configuration in which the machining head 30A moves along the surface of the workpiece W, a configuration in which the workpiece W moves while the position of the machining head 30A is fixed may also be used. The laser processing machine 100 only needs to be equipped with a movement mechanism that moves the machining head 30A relative to the surface of the workpiece W.
 NC装置50は、加工プログラムデータベース(図示せず)より、被加工材Wを切断加工するための加工プログラムと、加工プログラムに対応して、後述する第1のモータ41及び第2のモータ42を制御するための情報とを読み出す。 The NC device 50 reads out a processing program for cutting the workpiece W from a processing program database (not shown) and information for controlling the first motor 41 and the second motor 42 (described below) in accordance with the processing program.
 加工プログラムには、加工条件の設定、レーザビームの射出開始及びレーザビームの射出停止、加工ヘッド30Aの移動経路(切断加工経路)等の、被加工材Wを切断加工するために必要なレーザ加工機100の一連の動作を規定するコードが記述されている。NC装置50は、読み出した情報に基づいて、第1のモータ41及び第2のモータ42を制御しつつ、加工プログラムに基づいて被加工材Wを切断加工するようX軸キャリッジ22及びY軸キャリッジ23を制御する。 The processing program contains codes that define a series of operations of the laser processing machine 100 required to cut the workpiece W, such as setting processing conditions, starting and stopping laser beam emission, and the movement path (cutting processing path) of the processing head 30A. The NC device 50 controls the first motor 41 and the second motor 42 based on the read information, while controlling the X-axis carriage 22 and the Y-axis carriage 23 to cut the workpiece W based on the processing program.
 アシストガス供給装置60は、被加工材Wの加工時に、アシストガスを加工ヘッド30Aに供給する。アシストガスは、窒素、酸素、窒素と酸素との混合気体、または空気である。例えば、被加工材Wがステンレス鋼であれば窒素がアシストガスとして用いられ、被加工材Wが軟鋼板であれば酸素がアシストガスとして用いられる。アシストガスは、ノズル24の開口25から被加工材Wに対して垂直な方向に吹き付けられる。アシストガスは、被加工材Wが溶融した切断溝内の溶融金属を排出する。 The assist gas supply device 60 supplies assist gas to the processing head 30A when processing the workpiece W. The assist gas is nitrogen, oxygen, a mixture of nitrogen and oxygen, or air. For example, if the workpiece W is stainless steel, nitrogen is used as the assist gas, and if the workpiece W is a mild steel plate, oxygen is used as the assist gas. The assist gas is sprayed from the opening 25 of the nozzle 24 in a direction perpendicular to the workpiece W. The assist gas expels molten metal from the cutting groove where the workpiece W has melted.
 [加工ヘッド30Aの構成例]
 図2~図5を参照して、加工ヘッド30Aの詳細な構成例について説明する。図2は、加工ヘッド30Aの構成例を示す。図2に示すように、加工ヘッド30Aは、コリメートレンズ31、特殊偏光ビームスプリッタ32、1/4波長板33、第1の反射ミラー34、アキシコンレンズ35、第2の反射ミラー36を有する。図2における特殊偏光ビームスプリッタ32、1/4波長板33、第1の反射ミラー34、アキシコンレンズ35、第2の反射ミラー36は、第1の偏光方向を有する第1の直線偏光L1と、第1の偏光方向と直交する第2の偏光方向を有する第2の直線偏光L2とを含むランダム偏光のレーザビームLにおける第1の直線偏光L1を第1の直線偏光L1として射出し、第2の直線偏光L2を第1の偏光方向を有する第2の直線偏光L22に変換して射出する偏光調整部(偏光調整装置)として機能する。
[Configuration example of machining head 30A]
A detailed configuration example of the processing head 30A will be described with reference to Figures 2 to 5. Figure 2 shows a configuration example of the processing head 30A. As shown in Figure 2, the processing head 30A has a collimator lens 31, a special polarizing beam splitter 32, a quarter-wave plate 33, a first reflecting mirror 34, an axicon lens 35, and a second reflecting mirror 36. The special polarizing beam splitter 32, the quarter-wave plate 33, the first reflecting mirror 34, the axicon lens 35, and the second reflecting mirror 36 in Figure 2 function as a polarization adjustment unit (polarization adjustment device) that outputs the first linearly polarized light L1 in the randomly polarized laser beam L including a first linearly polarized light L1 having a first polarization direction and a second linearly polarized light L2 having a second polarization direction perpendicular to the first polarization direction as the first linearly polarized light L1, and converts the second linearly polarized light L2 into a second linearly polarized light L22 having a first polarization direction and outputs it.
 第1実施形態においては、特殊偏光ビームスプリッタ32は、第1の光学素子と第3の光学素子とを兼用する兼用光学素子として機能する。また、1/4波長板33及び第1の反射ミラー34は、第2の光学素子として機能する。また、加工ヘッド30Aは、1/2波長板37、1/2波長板37を回転させる第1のモータ41、レンズアレイ38、レンズアレイ38を回転させる第2のモータ42、集束レンズ39を有する。なお、図2において、中心が黒の二重丸は第1の直線偏光を示し、両矢印は第2の直線偏光を示す。 In the first embodiment, the special polarizing beam splitter 32 functions as a dual-purpose optical element that serves both as the first optical element and the third optical element. The quarter-wave plate 33 and the first reflecting mirror 34 function as the second optical element. The processing head 30A also has a half-wave plate 37, a first motor 41 that rotates the half-wave plate 37, a lens array 38, a second motor 42 that rotates the lens array 38, and a focusing lens 39. In FIG. 2, a double circle with a black center indicates the first linearly polarized light, and a double-headed arrow indicates the second linearly polarized light.
 コリメートレンズ31は、プロセスファイバ12の射出端より射出された発散光のレーザビームが入射される。コリメートレンズ31に入射される発散光のレーザビームは、第1の偏光方向を有する第1の直線偏光L1と、第1の偏光方向と直交する第2の偏光方向を有する第2の直線偏光L2とを含むランダム偏光のレーザビームLである。コリメートレンズ31は、入射されたランダム偏光のレーザビームLを平行光(コリメート光)に変換する。コリメートレンズ31によりコリメート光に変換されたランダム偏光のレーザビームLは、特殊偏光ビームスプリッタ32へ入射する。特殊偏光ビームスプリッタ32は光軸に対して面が45度の角度となるように配置されている。 The collimating lens 31 is incident with the diverging laser beam emitted from the exit end of the process fiber 12. The diverging laser beam incident on the collimating lens 31 is a randomly polarized laser beam L including a first linearly polarized light L1 having a first polarization direction and a second linearly polarized light L2 having a second polarization direction perpendicular to the first polarization direction. The collimating lens 31 converts the incident randomly polarized laser beam L into parallel light (collimated light). The randomly polarized laser beam L converted into collimated light by the collimating lens 31 is incident on the special polarizing beam splitter 32. The special polarizing beam splitter 32 is arranged so that its surface is at a 45 degree angle with respect to the optical axis.
 図3は、特殊偏光ビームスプリッタ32の構成例を示す。図3に示すように、特殊偏光ビームスプリッタ32は、中心部に楕円状の偏光分離領域321を有し、偏光分離領域321の周囲に透過領域322を有する。図4は、図2におけるレーザビームの偏光方向及び形状と、第1及び第2の直線偏光L1、L2が同軸で射出されるときの第1及び第2の直線偏光L1、L2の位置関係を示す。図4は、ランダム偏光のレーザビームL、第1の直線偏光L1、及び第2の直線偏光L2、L21、L22の外形を模式的に示している。また、図4のランダム偏光のレーザビームL、第1の直線偏光L1、及び第2の直線偏光L2、L21、L22の中の矢印は、単に各々のレーザビームの偏光方向を模式的に示すものであり、矢印の長さの違いに特に意味はない。 FIG. 3 shows an example of the configuration of the special polarizing beam splitter 32. As shown in FIG. 3, the special polarizing beam splitter 32 has an elliptical polarizing separation region 321 in the center, and a transmission region 322 around the polarizing separation region 321. FIG. 4 shows the polarization direction and shape of the laser beam in FIG. 2, and the positional relationship of the first and second linearly polarized light L1, L2 when the first and second linearly polarized light L1, L2 are emitted coaxially. FIG. 4 shows the outline of the randomly polarized laser beam L, the first linearly polarized light L1, and the second linearly polarized light L2, L21, and L22. The arrows in the randomly polarized laser beam L, the first linearly polarized light L1, and the second linearly polarized light L2, L21, and L22 in FIG. 4 simply show the polarization direction of each laser beam, and the difference in the length of the arrows is not particularly significant.
 偏光分離領域321は、入射されたランダム偏光のレーザビームLにおける第1の直線偏光L1を反射させ、第2の直線偏光L2を透過させることによって、図4に示すように、ランダム偏光のレーザビームLにおける第1の直線偏光L1と第2の直線偏光L2とを分離する偏光ビームスプリッタである。透過領域322には反射防止コーティングが施されており、透過領域322は入射されたレーザビームを透過させる。 The polarization separation region 321 is a polarizing beam splitter that separates the first linearly polarized light L1 and the second linearly polarized light L2 in the randomly polarized laser beam L incident thereon, as shown in FIG. 4, by reflecting the first linearly polarized light L1 and transmitting the second linearly polarized light L2 in the randomly polarized laser beam L. The transmission region 322 is provided with an anti-reflection coating, and transmits the incident laser beam.
 コリメートレンズ31より射出されたランダム偏光のレーザビームLは、特殊偏光ビームスプリッタ32の偏光分離領域321へ入射する。偏光分離領域321は、ランダム偏光のレーザビームLに含まれる第1の直線偏光L1をX軸及びY軸に垂直なZ軸方向下方に向けて反射させる。また、偏光分離領域321は、ランダム偏光のレーザビームLに含まれる第2の直線偏光L2を透過させて、1/4波長板33へ入射させる。 The randomly polarized laser beam L emitted from the collimator lens 31 enters the polarization separation region 321 of the special polarizing beam splitter 32. The polarization separation region 321 reflects the first linearly polarized light L1 contained in the randomly polarized laser beam L downward in the Z-axis direction perpendicular to the X-axis and Y-axis. The polarization separation region 321 also transmits the second linearly polarized light L2 contained in the randomly polarized laser beam L, causing it to enter the quarter-wave plate 33.
 1/4波長板33は、特殊偏光ビームスプリッタ32と、第1の反射ミラー34との間に配置され、特殊偏光ビームスプリッタ32の偏光分離領域321を透過した第2の直線偏光L2を、第1の円偏光に変換する。1/4波長板33は例えば水晶により形成され、1/4波長板33に入射して透過するレーザビームの位相遅れが90°+n×360°(nは整数)となるように構成されることが好ましい。1/4波長板33は、例えば互いに直交する方向に光学軸を持つように2枚の水晶板が貼り合わされることにより作製されてもよい。1/4波長板33により変換された第1の円偏光は、第1の反射ミラー34へ入射する。 The quarter-wave plate 33 is disposed between the special polarizing beam splitter 32 and the first reflecting mirror 34, and converts the second linearly polarized light L2 transmitted through the polarization separation region 321 of the special polarizing beam splitter 32 into the first circularly polarized light. The quarter-wave plate 33 is preferably formed of, for example, quartz, and is preferably configured so that the phase delay of the laser beam that is incident on and transmitted through the quarter-wave plate 33 is 90°+n×360° (n is an integer). The quarter-wave plate 33 may be fabricated, for example, by bonding two quartz plates together so that their optical axes are perpendicular to each other. The first circularly polarized light converted by the quarter-wave plate 33 is incident on the first reflecting mirror 34.
 第1の反射ミラー34は、入射された第1の円偏光を反射して、第1の円偏光と位相が反転した第2の円偏光として射出する。第1の反射ミラー34より射出された第2の円偏光は、1/4波長板33へ入射する。1/4波長板33は、第1の反射ミラー34で反射した第2の円偏光を、第1の偏光方向に変換する。 The first reflecting mirror 34 reflects the first circularly polarized light incident thereon and emits it as a second circularly polarized light whose phase is inverted from that of the first circularly polarized light. The second circularly polarized light emitted from the first reflecting mirror 34 is incident on the quarter-wave plate 33. The quarter-wave plate 33 converts the second circularly polarized light reflected by the first reflecting mirror 34 into the first polarization direction.
 以上のような構成により、1/4波長板33及び第1の反射ミラー34は、特殊偏光ビームスプリッタ32によって分離された第2の直線偏光L2を、図4に示すように、第1の偏光方向を有する第2の直線偏光L21に変換する。1/4波長板33より射出された第2の直線偏光L21は、特殊偏光ビームスプリッタ32の偏光分離領域321へ入射する。偏光分離領域321は、1/4波長板33より射出された第2の直線偏光L21を、Z軸方向上方に向けて反射させる。 With the above configuration, the quarter-wave plate 33 and the first reflecting mirror 34 convert the second linearly polarized light L2 separated by the special polarizing beam splitter 32 into second linearly polarized light L21 having a first polarization direction, as shown in FIG. 4. The second linearly polarized light L21 emitted from the quarter-wave plate 33 enters the polarization separation region 321 of the special polarizing beam splitter 32. The polarization separation region 321 reflects the second linearly polarized light L21 emitted from the quarter-wave plate 33 upward in the Z-axis direction.
 アキシコンレンズ35は、特殊偏光ビームスプリッタ32と、第2の反射ミラー36との間に配置されている。特殊偏光ビームスプリッタ32から見て、アキシコンレンズ35におけるレーザビームの入射面は円錐状の傾斜面、射出面は平坦面となっている。アキシコンレンズ35の傾斜面は、特殊偏光ビームスプリッタ32の偏光分離領域321で上方に向けて反射した第2の直線偏光L21を、図4に示すように、リング状に広げる。なお、図4アキシコンレンズ35によりリング状に広げられた第2の直線偏光L22は、第2の反射ミラー36へ入射する。 The axicon lens 35 is disposed between the special polarizing beam splitter 32 and the second reflecting mirror 36. When viewed from the special polarizing beam splitter 32, the entrance surface of the axicon lens 35 for the laser beam is a conical inclined surface, and the exit surface is a flat surface. The inclined surface of the axicon lens 35 expands the second linearly polarized light L21 reflected upward by the polarization separation region 321 of the special polarizing beam splitter 32 into a ring shape, as shown in FIG. 4. The second linearly polarized light L22 expanded into a ring shape by the axicon lens 35 in FIG. 4 is incident on the second reflecting mirror 36.
 第2の反射ミラー36は、アキシコンレンズ35より射出されたた第2の直線偏光L22を反射する。第2の反射ミラー36で反射した第2の直線偏光L22は、アキシコンレンズ35の平坦面に入射して傾斜面より射出する。アキシコンレンズ35は、入射したリング状の第2の直線偏光L22をコリメート光に変換し、特殊偏光ビームスプリッタ32の透過領域322へ入射させる。 The second reflecting mirror 36 reflects the second linearly polarized light L22 emitted from the axicon lens 35. The second linearly polarized light L22 reflected by the second reflecting mirror 36 is incident on the flat surface of the axicon lens 35 and emerges from the inclined surface. The axicon lens 35 converts the incident ring-shaped second linearly polarized light L22 into collimated light and directs it into the transmission area 322 of the special polarizing beam splitter 32.
 透過領域322は、アキシコンレンズ35より射出されたリング状の第2の直線偏光L22を透過させる。透過領域322を透過した、リング状の第2の直線偏光L22は、図4に示すように、偏光分離領域321により反射した第1の直線偏光L1の外側に配置される。 The transmission region 322 transmits the ring-shaped second linearly polarized light L22 emitted from the axicon lens 35. The ring-shaped second linearly polarized light L22 transmitted through the transmission region 322 is positioned outside the first linearly polarized light L1 reflected by the polarization separation region 321, as shown in FIG. 4.
 以上の構成により、偏光調整部は、特殊偏光ビームスプリッタ32の偏光分離領域321により下方に反射した第1の直線偏光L1の外側に、第1の偏光方向を有するリング状の第2の直線偏光L22を配置して、第1の直線偏光L1と第2の直線偏光L22とを同軸で射出する。これにより、ランダム偏光のレーザビームLに含まれる2つの直線偏光L1、L2の偏光方向を平行に揃えることができ、且つ、偏光方向を平行に揃えた2つのレーザビームの切断進行方向に対する異方性をなくすことができる。 With the above configuration, the polarization adjustment unit places a ring-shaped second linearly polarized light L22 having a first polarization direction outside the first linearly polarized light L1 reflected downward by the polarization separation region 321 of the special polarizing beam splitter 32, and emits the first linearly polarized light L1 and the second linearly polarized light L22 coaxially. This makes it possible to align the polarization directions of the two linearly polarized light beams L1 and L2 contained in the randomly polarized laser beam L in parallel, and to eliminate the anisotropy in the cutting progression direction of the two laser beams whose polarization directions are aligned in parallel.
 特殊偏光ビームスプリッタ32より同軸で射出された、第1の直線偏光L1及び第2の直線偏光L22は、1/2波長板37へ入射する。1/2波長板37は、特殊偏光ビームスプリッタ32より同軸で射出された第1の直線偏光L1及び第2の直線偏光L22の光路上に配置され、第1のモータ41(第1の回転機構)によりXY平面上で回転可能に構成される。 The first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the special polarizing beam splitter 32 are incident on the half-wave plate 37. The half-wave plate 37 is disposed on the optical path of the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the special polarizing beam splitter 32, and is configured to be rotatable on the XY plane by the first motor 41 (first rotation mechanism).
 第1のモータ41はNC装置50(第1の制御部)により制御され、1/2波長板37をXY平面上で回転させる。NC装置50は、1/2波長板37を透過した第1の直線偏光L1及び第2の直線偏光L22の偏光方向が、レーザ加工機100の切断進行方向と平行となるように、第1のモータ41を制御する。 The first motor 41 is controlled by an NC device 50 (first control unit) and rotates the half-wave plate 37 on the XY plane. The NC device 50 controls the first motor 41 so that the polarization directions of the first linearly polarized light L1 and the second linearly polarized light L22 transmitted through the half-wave plate 37 are parallel to the cutting direction of the laser processing machine 100.
 以上のように、1/2波長板37と、第1のモータ41と、NC装置50は、特殊偏光ビームスプリッタ32より射出された第1の直線偏光L1及び第2の直線偏光L22の偏光方向を、被加工材Wにレーザビームを照射して被加工材Wを切断するときの切断進行方向と平行となるように制御する偏光方向制御機構として機能する。 As described above, the half-wave plate 37, the first motor 41, and the NC device 50 function as a polarization direction control mechanism that controls the polarization direction of the first linearly polarized light L1 and the second linearly polarized light L22 emitted from the special polarized beam splitter 32 so that they are parallel to the cutting direction when the workpiece W is cut by irradiating the workpiece W with the laser beam.
 レーザ加工機100は、ランダム偏光のレーザビームに含まれる第1の直線偏光L1と第2の直線偏光L2の偏光方向を第1の偏光方向に揃え、偏光方向が第1の偏光方向に揃えられたレーザビームにおける偏光方向を、切断進行方向と平行となるように制御する。レーザビームの偏光方向を切断進行方向と一致させることにより、被加工材Wが溶融して切断されていくときの切断進行方向の非溶融領域と溶融領域との境界の切断面であるカッティングフロントに対するレーザビームの偏光方向がp偏光となるため、被加工材Wのレーザビームの吸収率を向上させることができる。 The laser processing machine 100 aligns the polarization directions of the first linearly polarized light L1 and the second linearly polarized light L2 contained in the randomly polarized laser beam to a first polarization direction, and controls the polarization direction of the laser beam whose polarization direction is aligned to the first polarization direction to be parallel to the cutting direction. By aligning the polarization direction of the laser beam with the cutting direction, the polarization direction of the laser beam with respect to the cutting front, which is the cut surface at the boundary between the non-melted area and the molten area in the cutting direction as the workpiece W is melted and cut, becomes p-polarized, thereby improving the absorption rate of the laser beam in the workpiece W.
 1/2波長板37より射出され、偏光方向が切断進行方向と平行となるように制御されたレーザビームは、レンズアレイ38へ入射する。レンズアレイ38は、1/2波長板37により偏光方向が切断進行方向と平行となるように制御されたレーザビームの光路上に配置され、第2のモータ42(第2の回転機構)により回転可能に構成される。 The laser beam emitted from the half-wave plate 37 and controlled so that its polarization direction is parallel to the cutting direction is incident on the lens array 38. The lens array 38 is disposed on the optical path of the laser beam controlled by the half-wave plate 37 so that its polarization direction is parallel to the cutting direction, and is configured to be rotatable by a second motor 42 (second rotation mechanism).
 図5は、レンズアレイ38の構成例を示す。図5に示すように、レンズアレイ38は、2次元配列された複数の矩形状のレンズ38aを含む。複数のレンズ38aの各々には、1/2波長板37により偏光方向が切断進行方向と平行となるように制御されたレーザビームが入射される。なお、複数のレンズ38aにおける各レンズ38aは、凸レンズであっても凹レンズであってもよく、レンズアレイ38は、複数のレンズ38aの全体が凸レンズと凹レンズとのうちのいずれか一方で構成される。 FIG. 5 shows an example of the configuration of the lens array 38. As shown in FIG. 5, the lens array 38 includes a plurality of rectangular lenses 38a arranged two-dimensionally. A laser beam whose polarization direction is controlled by a half-wave plate 37 to be parallel to the cutting progression direction is incident on each of the plurality of lenses 38a. Each of the plurality of lenses 38a may be a convex lens or a concave lens, and the lens array 38 is configured such that the entire plurality of lenses 38a are either convex lenses or concave lenses.
 集束レンズ39は、レンズアレイ38における各レンズ38aを透過したレーザビームを互いに重畳させるように集束させることにより、強度分布が均一な矩形状のレーザビームを被加工材Wの加工点WPに照射する。 The focusing lens 39 focuses the laser beams that have passed through each lens 38a in the lens array 38 so that they overlap with each other, thereby irradiating a rectangular laser beam with a uniform intensity distribution onto the processing point WP of the workpiece W.
 第2のモータ42はNC装置50(第2の制御部)により制御される。NC装置50は、レンズアレイ38及び集束レンズ39を透過して、被加工材Wの加工点WPに照射される矩形状のレーザビームにおける一辺が切断進行方向と平行となるように、第2のモータ42を制御する。なお、NC装置50が第1及び第2の制御部として機能しているが、第1のモータ41を制御する制御部と第2のモータ42を制御する制御部とが別々に設けられていてもよい。 The second motor 42 is controlled by an NC device 50 (second control unit). The NC device 50 controls the second motor 42 so that one side of the rectangular laser beam that passes through the lens array 38 and the focusing lens 39 and is irradiated to the processing point WP of the workpiece W is parallel to the cutting progression direction. Note that the NC device 50 functions as the first and second control units, but a control unit that controls the first motor 41 and a control unit that controls the second motor 42 may be provided separately.
 以上のように、レンズアレイ38と、第2のモータ42と、集束レンズ39と、NC装置50は、偏光方向制御機構により偏光方向が切断進行方向と平行となるように制御されたレーザビームを矩形状に整形し、矩形状に整形されたレーザビームにおける一辺が切断進行方向と平行となるように制御する矩形ビーム角度制御機構として機能する。 As described above, the lens array 38, the second motor 42, the focusing lens 39, and the NC device 50 function as a rectangular beam angle control mechanism that shapes the laser beam, whose polarization direction is controlled by the polarization direction control mechanism so that it is parallel to the cutting direction, into a rectangular shape and controls one side of the rectangularly shaped laser beam so that it is parallel to the cutting direction.
 図6Aは、被加工材Wの切断進行方向と、被加工材Wに照射されるレーザビームの偏光方向との関係を示している。図6Aは、特殊偏光ビームスプリッタ32より同軸で射出された第1の直線偏光L1及び第2の直線偏光L22が、レンズアレイ38により矩形状に整形され、被加工材に照射されるときのレーザビームの概形を示している。図6Aに示すように、偏光方向制御機構は、特殊偏光ビームスプリッタ32より同軸で射出され、レンズアレイ38により矩形状に整形された第1の直線偏光L1及び第2の直線偏光L22の偏光方向Pを、被加工材Wにレーザビームを照射して被加工材Wを切断するときの切断進行方向Dと平行となるように制御する。矩形ビーム角度制御機構は、偏光方向Pが切断進行方向Dと平行となるように制御されたレーザビームを矩形状に整形し、矩形状に整形されたレーザビームにおける一辺が切断進行方向と平行となるように制御する。 FIG. 6A shows the relationship between the cutting direction of the workpiece W and the polarization direction of the laser beam irradiated to the workpiece W. FIG. 6A shows the general shape of the laser beam when the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the special polarized beam splitter 32 are shaped into a rectangular shape by the lens array 38 and irradiated to the workpiece. As shown in FIG. 6A, the polarization direction control mechanism controls the polarization direction P of the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the special polarized beam splitter 32 and shaped into a rectangular shape by the lens array 38 so that it is parallel to the cutting direction D when the workpiece W is cut by irradiating the workpiece W with the laser beam. The rectangular beam angle control mechanism shapes the laser beam, which is controlled so that the polarization direction P is parallel to the cutting direction D, into a rectangular shape, and controls one side of the rectangularly shaped laser beam to be parallel to the cutting direction.
 図6Bは、被加工材Wの切断進行方向が曲線を描くときの切断進行方向と、被加工材Wに照射されるレーザビームの偏光方向との関係を示している。図6Bは、特殊偏光ビームスプリッタ32より同軸で射出された第1の直線偏光L1及び第2の直線偏光L22が、レンズアレイ38により矩形状に整形され、被加工材に照射されるときのレーザビームの概形を示している。図6Bは、被加工材Wの切断進行方向が曲線を描く場合の一例として、製品のコーナRを切断する場合を示している。図6Bに示すように、レーザ加工機100が被加工材Wの切断加工経路に沿ってコーナRの切断加工をする際、NC装置50は、第1及び第2のモータ41、42を制御して、偏光方向Pと矩形状に整形されたレーザビームの一辺が常に切断進行方向Dと平行となるように、1/2波長板37及びレンズアレイ38を回転させる。これにより、切断加工時に、カッティングフロントにおけるレーザビームの偏光方向P及びカッティングフロントにおいて矩形状に整形されたレーザビームの一辺が、常に切断進行方向と平行となる。 Figure 6B shows the relationship between the cutting direction of the workpiece W when the cutting direction of the workpiece W is curved and the polarization direction of the laser beam irradiated to the workpiece W. Figure 6B shows the general shape of the laser beam when the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the special polarized beam splitter 32 are shaped into a rectangular shape by the lens array 38 and irradiated to the workpiece. Figure 6B shows the case of cutting the corner R of a product as an example of a case where the cutting direction of the workpiece W is curved. As shown in Figure 6B, when the laser processing machine 100 cuts the corner R along the cutting processing path of the workpiece W, the NC device 50 controls the first and second motors 41, 42 to rotate the half-wave plate 37 and the lens array 38 so that the polarization direction P and one side of the laser beam shaped into a rectangular shape are always parallel to the cutting direction D. As a result, during cutting, the polarization direction P of the laser beam at the cutting front and one side of the rectangular laser beam at the cutting front are always parallel to the cutting direction.
 図7Aは、加工ヘッド30Aがレンズアレイ38を備えないと仮定した場合の比較例であり、カッティングフロントの形状が半円状であるときの、カッティングフロントと偏光方向及び切断進行方向との関係を示している。図7Bは、加工ヘッド30Aがレンズアレイ38を備えることによりカッティングフロントの形状が矩形状であるときの、カッティングフロントと偏光方向及び切断進行方向との関係を示している。ここでのカッティングフロントの形状とは、被加工材Wの表面から見た、被加工材Wが溶融して切断されていくときの切断進行方向の非溶融領域と溶融領域との境界の形状である。 Figure 7A is a comparative example assuming that the processing head 30A does not have a lens array 38, and shows the relationship between the cutting front and the polarization direction and cutting direction when the cutting front has a semicircular shape. Figure 7B shows the relationship between the cutting front and the polarization direction and cutting direction when the processing head 30A has a lens array 38 and the cutting front has a rectangular shape. The shape of the cutting front here refers to the shape of the boundary between the non-melted area and the molten area in the cutting direction as the workpiece W melts and is cut, as viewed from the surface of the workpiece W.
 図7Aに示すように、カッティングフロントの形状が半円状である場合には、レーザビームの偏光方向Pが切断進行方向Dと平行であったとしても、切断溝の幅方向の外側に近付くにしたがって、偏光方向Pがカッティングフロントに対して垂直に入射しなくなる。p偏光は、偏光方向Pがカッティングフロントに対して垂直な方向Nで入射するときに作用するため、切断溝の幅方向の外側に近付くにしたがって、p偏光の作用が弱くなり、被加工材Wのレーザビームの吸収率が低下する。 As shown in Figure 7A, when the cutting front is semicircular in shape, even if the polarization direction P of the laser beam is parallel to the cutting progression direction D, the polarization direction P no longer enters perpendicularly to the cutting front as it approaches the outside of the width of the cutting groove. Since p-polarized light works when the polarization direction P enters in a direction N perpendicular to the cutting front, the effect of p-polarized light becomes weaker as it approaches the outside of the width of the cutting groove, and the absorption rate of the laser beam by the workpiece W decreases.
 これに対し、図7Bに示すように、カッティングフロントの形状が矩形状である場合には、レーザビームの偏光方向Pが切断進行方向Dと平行であれば、切断溝の幅方向のどの位置においても、偏光方向Pがカッティングフロントに対して垂直な方向Nで入射する。したがって、カッティングフロントに対して効率よくp偏光が作用し、被加工材Wのレーザビームの吸収率が向上する。 In contrast, as shown in Figure 7B, when the cutting front is rectangular in shape, if the polarization direction P of the laser beam is parallel to the cutting progression direction D, the polarization direction P is incident in a direction N perpendicular to the cutting front at any position in the width direction of the cut groove. Therefore, p-polarized light acts efficiently on the cutting front, improving the absorption rate of the laser beam in the workpiece W.
 従来のランダム偏光のレーザビームであって、カッティングフロントが半円状、すなわち断面形状が円形のレーザビームにより切断加工を行った場合の被加工材Wのレーザビームの吸収率と、本実施形態に係るレーザ加工機100において切断加工を行った場合の被加工材Wのレーザビームの吸収率とを、コンピュータ上のシミュレーションにより比較した。シミュレーションでは、レーザビームの波長を1.08μm、被加工材Wの材質を鉄、厚さを8mmとした。その結果、従来のレーザビームにより切断加工を行った場合の吸収率は約55%であった。これに対し、本実施形態に係るレーザ加工機100において切断加工を行った場合の被加工材Wのレーザビームの吸収率は約74%となり、約19%吸収率が向上することが確認された。 A comparison was made by computer simulation between the absorption rate of the laser beam in the workpiece W when cutting was performed using a conventional randomly polarized laser beam with a semicircular cutting front, i.e., a circular cross-sectional shape, and the absorption rate of the laser beam in the workpiece W when cutting was performed using the laser processing machine 100 according to this embodiment. In the simulation, the wavelength of the laser beam was 1.08 μm, the material of the workpiece W was iron, and the thickness was 8 mm. As a result, the absorption rate was approximately 55% when cutting was performed using the conventional laser beam. In contrast, the absorption rate of the laser beam in the workpiece W when cutting was performed using the laser processing machine 100 according to this embodiment was approximately 74%, confirming an improvement in absorption rate of approximately 19%.
 [第1実施形態の作用効果]
 以上説明したように、第1実施形態によれば、以下の作用効果が得られる。
[Effects of the First Embodiment]
As described above, according to the first embodiment, the following advantageous effects can be obtained.
 第1実施形態に係る偏光調整装置は、ランダム偏光のレーザビームLに含まれる、第1の偏光方向を有する第1の直線偏光L1と、第1の偏光方向と直交する第2の偏光方向を有する第2の直線偏光L2の偏光方向を、第1の偏光方向に揃え、同軸で射出する。第1実施形態に係る偏光調整装置は、第1の光学素子(特殊偏光ビームスプリッタ32)の偏光分離領域321により反射した第1の直線偏光L1の外側に、第1の偏光方向を有するリング状の第2の直線偏光L22を配置して、第1の直線偏光L1と第2の直線偏光L22とを同軸で射出する。これにより、ランダム偏光のレーザビームLに含まれる2つの直線偏光L1、L2の偏光方向を平行に揃えることができ、且つ、偏光方向を平行に揃えた2つのレーザビームの切断進行方向に対する異方性をなくすことができる。 The polarization adjustment device according to the first embodiment aligns the polarization directions of the first linearly polarized light L1 having a first polarization direction and the second linearly polarized light L2 having a second polarization direction perpendicular to the first polarization direction contained in the randomly polarized laser beam L to the first polarization direction, and emits them coaxially. The polarization adjustment device according to the first embodiment places a ring-shaped second linearly polarized light L22 having a first polarization direction outside the first linearly polarized light L1 reflected by the polarization separation region 321 of the first optical element (special polarized beam splitter 32), and emits the first linearly polarized light L1 and the second linearly polarized light L22 coaxially. This makes it possible to align the polarization directions of the two linearly polarized lights L1 and L2 contained in the randomly polarized laser beam L in parallel, and to eliminate the anisotropy of the cutting progression direction of the two laser beams whose polarization directions are aligned in parallel.
 また、第1実施形態に係る偏光調整装置を備えるレーザ加工機100は、偏光方向を平行に揃えた2つレーザビームにおける偏光方向を、切断進行方向と平行となるように制御する。偏光方向を切断進行方向と一致させることにより、カッティングフロントに対するレーザビームの偏光方向がp偏光となるため、被加工材Wのレーザビームの吸収率を向上させることができる。 In addition, the laser processing machine 100 equipped with the polarization adjustment device according to the first embodiment controls the polarization direction of the two laser beams, the polarization directions of which are aligned in parallel, so that they are parallel to the cutting direction. By matching the polarization direction with the cutting direction, the polarization direction of the laser beam with respect to the cutting front becomes p-polarized, thereby improving the absorption rate of the laser beam in the workpiece W.
 また、第1実施形態に係る偏光調整装置と、偏光方向制御機構を備えるレーザ加工機100は、偏光調整装置より同軸で射出された第1の直線偏光L1及び第2の直線偏光L22の偏光方向Pを、被加工材Wにレーザビームを照射して被加工材Wを切断するときの切断進行方向Dと平行となるように制御する。第1実施形態に係るレーザ加工機100の矩形ビーム角度制御機構は、偏光方向Pが切断進行方向Dと平行となるように制御されたレーザビームを矩形状に整形し、矩形状に整形されたレーザビームにおける一辺が切断進行方向と平行となるように制御する。 The laser processing machine 100, which is equipped with the polarization adjustment device and polarization direction control mechanism according to the first embodiment, controls the polarization direction P of the first linearly polarized light L1 and the second linearly polarized light L22 emitted coaxially from the polarization adjustment device so that the polarization direction P is parallel to the cutting direction D when the workpiece W is cut by irradiating the workpiece W with a laser beam. The rectangular beam angle control mechanism of the laser processing machine 100 according to the first embodiment shapes the laser beam, which has been controlled so that the polarization direction P is parallel to the cutting direction D, into a rectangular shape, and controls one side of the rectangularly shaped laser beam so that it is parallel to the cutting direction.
 これにより、偏光方向を平行に揃えた異方性のない2つのレーザビームによって被加工材Wを加工することができる。また、切断加工時に、カッティングフロントにおけるレーザビームの偏光方向P及びカッティングフロントにおいて矩形状に整形されたレーザビームの一辺が、常に切断進行方向と平行となる。切断溝の幅方向のどの位置においても、偏光方向Pがカッティングフロントに対して垂直な方向Nで入射する。したがって、カッティングフロントに対して効率よくp偏光が作用し、被加工材Wのレーザビームの吸収率が向上する。よって、切断加工時の加工効率が向上する。 As a result, the workpiece W can be processed using two non-anisotropic laser beams with parallel polarization directions. Furthermore, during cutting, the polarization direction P of the laser beam at the cutting front and one side of the laser beam shaped into a rectangle at the cutting front are always parallel to the cutting direction. At any position in the width direction of the cutting groove, the polarization direction P is incident in a direction N perpendicular to the cutting front. Therefore, p-polarized light acts efficiently on the cutting front, improving the absorption rate of the laser beam in the workpiece W. This improves processing efficiency during cutting.
 [第2実施形態]
 以下、図8~図10を参照して、第2実施形態に係る偏光調整装置及びレーザ加工機100を説明する。図8は、第2実施形態に係る加工ヘッド30Bの構成例を示す。図8において、図2と同一部分には同一符号を付して詳細な説明を省略することがある。第2実施形態に係るレーザ加工機100は、第1実施形態に係るレーザ加工機100と比べて、加工ヘッドの内部の構成に違いを有する。その他の構成は、第1実施形態に係るレーザ加工機100と同一である。よって、第2実施形態に係るレーザ加工機100においては、第1実施形態に係るレーザ加工機100と相違する部分を中心に説明し、同一部分については再度の説明を省略する。
[Second embodiment]
Hereinafter, the polarization adjustment device and the laser processing machine 100 according to the second embodiment will be described with reference to Figs. 8 to 10. Fig. 8 shows an example of the configuration of the processing head 30B according to the second embodiment. In Fig. 8, the same parts as those in Fig. 2 are given the same reference numerals and detailed description may be omitted. The laser processing machine 100 according to the second embodiment has a different internal configuration of the processing head compared to the laser processing machine 100 according to the first embodiment. The other configurations are the same as those of the laser processing machine 100 according to the first embodiment. Therefore, in the laser processing machine 100 according to the second embodiment, the parts that differ from the laser processing machine 100 according to the first embodiment will be mainly described, and the same parts will not be described again.
 図8に示すように、加工ヘッド30Bは、コリメートレンズ31、偏光ビームスプリッタ71、第3の反射ミラー72、アキシコンレンズ73及び74、第4の反射ミラー75、1/2波長板76、特殊ミラー77を有する。図8における偏光ビームスプリッタ71、第3の反射ミラー72、アキシコンレンズ73及び74、第4の反射ミラー75、1/2波長板76、特殊ミラー77は、第1の偏光方向を有する第1の直線偏光L1’と、第1の偏光方向と直交する第2の偏光方向を有する第2の直線偏光L2’とを含むランダム偏光のレーザビームL’における第1の直線偏光L1’を第1の直線偏光L1’として射出し、第2の直線偏光L2’を第1の偏光方向を有する第2の直線偏光L22’に変換して射出する偏光調整部(偏光調整装置)として機能する。 As shown in FIG. 8, the processing head 30B has a collimator lens 31, a polarizing beam splitter 71, a third reflecting mirror 72, axicon lenses 73 and 74, a fourth reflecting mirror 75, a half-wave plate 76, and a special mirror 77. The polarizing beam splitter 71, the third reflecting mirror 72, the axicon lenses 73 and 74, the fourth reflecting mirror 75, the half-wave plate 76, and the special mirror 77 in FIG. 8 function as a polarization adjustment unit (polarization adjustment device) that outputs the first linearly polarized light L1' in the randomly polarized laser beam L', which includes a first linearly polarized light L1' having a first polarization direction and a second linearly polarized light L2' having a second polarization direction perpendicular to the first polarization direction, as the first linearly polarized light L1', and converts the second linearly polarized light L2' into a second linearly polarized light L22' having the first polarization direction and outputs it.
 第2実施形態においては、偏光ビームスプリッタ71は、第1の光学素子として機能する。また、1/2波長板76は、第2の光学素子として機能する。さらに、特殊ミラー77は、第1の光学素子とは別体の第3の光学素子として機能する。また、第2実施形態に係るレーザ加工機100の加工ヘッド30Bは、1/2波長板37、第1のモータ41、レンズアレイ38、第2のモータ42、第5の反射ミラー78、集束レンズ39を有する。なお、図8において、中心が黒の二重丸は第1の直線偏光を示し、両矢印は第2の直線偏光を示す。 In the second embodiment, the polarizing beam splitter 71 functions as the first optical element. The half-wave plate 76 functions as the second optical element. The special mirror 77 functions as a third optical element separate from the first optical element. The processing head 30B of the laser processing machine 100 according to the second embodiment has a half-wave plate 37, a first motor 41, a lens array 38, a second motor 42, a fifth reflecting mirror 78, and a focusing lens 39. In FIG. 8, a double circle with a black center indicates the first linearly polarized light, and a double-headed arrow indicates the second linearly polarized light.
 図8において、コリメートレンズ31は、プロセスファイバ12の射出端より射出された発散光のレーザビームが入射される。コリメートレンズ31に入射される発散光のレーザビームは、第1の偏光方向を有する第1の直線偏光L1’と、第1の偏光方向と直交する第2の偏光方向を有する第2の直線偏光L2’とを含むランダム偏光のレーザビームL’である。コリメートレンズ31は、入射されたランダム偏光のレーザビームL’をコリメート光に変換する。コリメートレンズ31によりコリメート光に変換されたランダム偏光のレーザビームL’は、偏光ビームスプリッタ71へ入射する。 In FIG. 8, the diverging laser beam emitted from the exit end of the process fiber 12 is incident on the collimating lens 31. The diverging laser beam incident on the collimating lens 31 is a randomly polarized laser beam L' that includes a first linearly polarized light L1' having a first polarization direction and a second linearly polarized light L2' having a second polarization direction perpendicular to the first polarization direction. The collimating lens 31 converts the incident randomly polarized laser beam L' into collimated light. The randomly polarized laser beam L' converted into collimated light by the collimating lens 31 is incident on the polarizing beam splitter 71.
 図9は、図8におけるレーザビームの偏光方向及び形状と、第1及び第2の直線偏光L1’、L2’が同軸で射出されるときの第1及び第2の直線偏光L1’、L2’の位置関係を示す。図9は、ランダム偏光のレーザビームL’、第1の直線偏光L1’、及び第2の直線偏光L2’、L21’、L22’の外形を模式的に示している。また、図9のランダム偏光のレーザビームL’、第1の直線偏光L1’、及び第2の直線偏光L2’、L21’、L22’の中の矢印は、単に各々のレーザビームの偏光方向を模式的に示すものであり、矢印の長さの違いに特に意味はない。 FIG. 9 shows the polarization direction and shape of the laser beam in FIG. 8, and the positional relationship of the first and second linearly polarized light L1', L2' when the first and second linearly polarized light L1', L2' are emitted coaxially. FIG. 9 shows the outline of the randomly polarized laser beam L', the first linearly polarized light L1', and the second linearly polarized light L2', L21', L22'. The arrows in the randomly polarized laser beam L', the first linearly polarized light L1', and the second linearly polarized light L2', L21', L22' in FIG. 9 simply show the polarization direction of each laser beam, and the difference in the length of the arrows is not particularly significant.
 偏光ビームスプリッタ71は、ランダム偏光のレーザビームL’における第1の直線偏光L1’を透過させ、第2の直線偏光L2’を反射させることによって、図9に示すように、第1の直線偏光L1’と第2の直線偏光L2’とを分離する偏光ビームスプリッタである。 The polarizing beam splitter 71 is a polarizing beam splitter that separates the first linearly polarized light L1' from the second linearly polarized light L2' as shown in FIG. 9 by transmitting the first linearly polarized light L1' in the randomly polarized laser beam L' and reflecting the second linearly polarized light L2'.
 偏光ビームスプリッタ71は、ランダム偏光のレーザビームL’に含まれる第1の直線偏光L1’を透過させ、特殊ミラー77へ入射させる。偏光ビームスプリッタ71を透過した第1の直線偏光L1’は、後述する特殊ミラー77の透過領域771(図10参照)へ入射する。また、偏光ビームスプリッタ71は、ランダム偏光のレーザビームL’に含まれる第2の直線偏光L2’をX軸及びY軸に垂直なZ軸方向上方に向けて反射させる。偏光ビームスプリッタ71により上方に反射された第2の直線偏光L2’は、第3の反射ミラー72へ入射する。 The polarizing beam splitter 71 transmits the first linearly polarized light L1' contained in the randomly polarized laser beam L' and makes it incident on the special mirror 77. The first linearly polarized light L1' that has transmitted through the polarizing beam splitter 71 is incident on the transmission area 771 (see FIG. 10) of the special mirror 77, which will be described later. The polarizing beam splitter 71 also reflects the second linearly polarized light L2' contained in the randomly polarized laser beam L' upward in the Z-axis direction perpendicular to the X-axis and Y-axis. The second linearly polarized light L2' reflected upward by the polarizing beam splitter 71 is incident on the third reflecting mirror 72.
 第3の反射ミラー72は、偏光ビームスプリッタ71より反射された第2の直線偏光L2’をX軸方向に反射する。第3の反射ミラー72より反射された第2の直線偏光L2’は、アキシコンレンズ73へ入射する。アキシコンレンズ73は、円錐状の傾斜面を第3の反射ミラー72に向け、平坦面をアキシコンレンズ74に向けて配置されている。 The third reflecting mirror 72 reflects the second linearly polarized light L2' reflected by the polarizing beam splitter 71 in the X-axis direction. The second linearly polarized light L2' reflected by the third reflecting mirror 72 is incident on the axicon lens 73. The axicon lens 73 is arranged with its conical inclined surface facing the third reflecting mirror 72 and its flat surface facing the axicon lens 74.
 アキシコンレンズ73の傾斜面は、第3の反射ミラー72より反射された第2の直線偏光L2’を、図9に示すように、リング状に広げる。アキシコンレンズ73によりリング状に広げられた第2の直線偏光L21’は、アキシコンレンズ74へ入射する。アキシコンレンズ74は、平坦面をアキシコンレンズ73に向け、円錐状の傾斜面を第4の反射ミラー75に向けて配置されている。 The inclined surface of the axicon lens 73 expands the second linearly polarized light L2' reflected by the third reflecting mirror 72 into a ring shape, as shown in FIG. 9. The second linearly polarized light L21' expanded into a ring shape by the axicon lens 73 enters the axicon lens 74. The axicon lens 74 is positioned with its flat surface facing the axicon lens 73 and its conical inclined surface facing the fourth reflecting mirror 75.
 アキシコンレンズ74は、アキシコンレンズ73より射出されたリング状の第2の直線偏光L21’をコリメート光に変換し、第4の反射ミラー75へ入射させる。第4の反射ミラー75は、アキシコンレンズ73より射出され、アキシコンレンズ74によりコリメート光に変換されたリング状の第2の直線偏光L21’をZ軸方向下方に向けて反射させ、1/2波長板76へ入射させる。 The axicon lens 74 converts the ring-shaped second linearly polarized light L21' emitted from the axicon lens 73 into collimated light and makes it incident on the fourth reflecting mirror 75. The fourth reflecting mirror 75 reflects the ring-shaped second linearly polarized light L21' emitted from the axicon lens 73 and converted into collimated light by the axicon lens 74 downward in the Z-axis direction and makes it incident on the half-wave plate 76.
 1/2波長板76は、第4の反射ミラー75より反射されたリング状の第2の直線偏光L21’の偏向方向を、第1の偏光方向に変換する。以上のような構成により、1/2波長板76は、偏光ビームスプリッタ71によって分離され、アキシコンレンズ73によりリング状に広げられた第2の直線偏光L21’を、図9に示すように、第1の偏光方向を有するリング状の第2の直線偏光L22’に変換する。1/2波長板76より射出されたリング状の第2の直線偏光L22’は、特殊ミラー77へ入射する。 The half-wave plate 76 converts the polarization direction of the ring-shaped second linearly polarized light L21' reflected by the fourth reflecting mirror 75 into the first polarization direction. With the above configuration, the half-wave plate 76 converts the second linearly polarized light L21', which has been separated by the polarizing beam splitter 71 and expanded into a ring shape by the axicon lens 73, into a ring-shaped second linearly polarized light L22' having the first polarization direction, as shown in FIG. 9. The ring-shaped second linearly polarized light L22' emitted from the half-wave plate 76 is incident on the special mirror 77.
 図10は、特殊ミラー77の構成例を示す。図10に示すように、特殊ミラー77は、中心部に楕円状の透過領域771を有し、透過領域771の周囲に反射領域772を有する。透過領域771には反射防止コーティングが施されており、入射されたレーザビームを透過させる。反射領域772には高反射コーティングが施されており、反射領域772は入射されたレーザビームを反射する。 FIG. 10 shows an example of the configuration of special mirror 77. As shown in FIG. 10, special mirror 77 has an elliptical transmissive area 771 in the center, and a reflective area 772 around the transmissive area 771. Transmissive area 771 is coated with an anti-reflective coating, and transmits the incident laser beam. Reflective area 772 is coated with a highly reflective coating, and reflects the incident laser beam.
 偏光ビームスプリッタ71を透過した第1の直線偏光L1’は、特殊ミラー77の透過領域771へ入射する。透過領域771は、偏光ビームスプリッタ71を透過した第1の直線偏光L1’を透過させる。1/2波長板76より射出されたリング状の第2の直線偏光L22’は、特殊ミラー77の反射領域772へ入射する。反射領域772は、入射されたリング状の第2の直線偏光L22’をX軸方向に反射させる。反射領域772により反射された、リング状の第2の直線偏光L22’は、図9に示すように、透過領域771を透過した第1の直線偏光L1’の外側に配置される。 The first linearly polarized light L1' that has passed through the polarizing beam splitter 71 is incident on the transmission region 771 of the special mirror 77. The transmission region 771 transmits the first linearly polarized light L1' that has passed through the polarizing beam splitter 71. The ring-shaped second linearly polarized light L22' that has been emitted from the half-wave plate 76 is incident on the reflection region 772 of the special mirror 77. The reflection region 772 reflects the incident ring-shaped second linearly polarized light L22' in the X-axis direction. The ring-shaped second linearly polarized light L22' that has been reflected by the reflection region 772 is positioned outside the first linearly polarized light L1' that has passed through the transmission region 771, as shown in FIG. 9.
 以上の構成により、偏光調整部は、偏光ビームスプリッタ71及び特殊ミラー77の透過領域771を透過した第1の直線偏光L1’の外側に、第1の偏光方向を有するリング状の第2の直線偏光L22’を配置して、第1の直線偏光L1’と第2の直線偏光L22’とを同軸で射出する。これにより、ランダム偏光のレーザビームL’に含まれる2つの直線偏光L1’、L2’の偏光方向を平行に揃えることができ、且つ、レーザビームの切断進行方向に対する異方性をなくすことができる。 With the above configuration, the polarization adjustment unit places a ring-shaped second linearly polarized light L22' having a first polarization direction outside the first linearly polarized light L1' that has passed through the polarizing beam splitter 71 and the transmission area 771 of the special mirror 77, and emits the first linearly polarized light L1' and the second linearly polarized light L22' coaxially. This makes it possible to align the polarization directions of the two linearly polarized lights L1' and L2' contained in the randomly polarized laser beam L' in parallel, and to eliminate anisotropy with respect to the cutting direction of the laser beam.
 特殊ミラー77より同軸で射出された、第1の直線偏光L1’及び第2の直線偏光L22’は、1/2波長板37へ入射する。1/2波長板37は、特殊ミラー77より同軸射出された第1の直線偏光L1’及び第2の直線偏光L22’の光路上に配置され、第1のモータ41によりXZ平面上で回転可能に構成される。 The first linearly polarized light L1' and the second linearly polarized light L22' emitted coaxially from the special mirror 77 are incident on the half-wave plate 37. The half-wave plate 37 is disposed on the optical path of the first linearly polarized light L1' and the second linearly polarized light L22' emitted coaxially from the special mirror 77, and is configured to be rotatable on the XZ plane by the first motor 41.
 1/2波長板37より射出され、偏光方向が切断進行方向と平行となるように制御されたレーザビームは、レンズアレイ38へ入射する。レンズアレイ38は、1/2波長板37により偏光方向が切断進行方向と平行となるように制御されたレーザビームの光路上に配置され、第2のモータ42によりXZ平面上で回転可能に構成される。 The laser beam emitted from the half-wave plate 37 and controlled so that its polarization direction is parallel to the cutting direction is incident on the lens array 38. The lens array 38 is disposed on the optical path of the laser beam controlled by the half-wave plate 37 so that its polarization direction is parallel to the cutting direction, and is configured to be rotatable on the XZ plane by the second motor 42.
 第5の反射ミラー78は、レンズアレイ38を透過したレーザビームをZ軸方向下方に向けて反射し、集束レンズ39へ入射する。 The fifth reflecting mirror 78 reflects the laser beam that has passed through the lens array 38 downward in the Z-axis direction, and makes it enter the focusing lens 39.
 集束レンズ39は、第5の反射ミラー78により反射されたレーザビームを集束させ、強度分布が均一な矩形状のレーザビームを被加工材Wの加工点WPに照射する。 The focusing lens 39 focuses the laser beam reflected by the fifth reflecting mirror 78, and irradiates a rectangular laser beam with a uniform intensity distribution onto the processing point WP of the workpiece W.
 第1のモータ41はNC装置50により制御され、1/2波長板37を回転させる。NC装置50は、1/2波長板37及びレンズアレイ38を透過し、第5の反射ミラー78により反射されて集束レンズ39を透過した第1の直線偏光L1’及び第2の直線偏光L22’の偏光方向が切断進行方向と平行となるように、第1のモータ41を制御する。 The first motor 41 is controlled by the NC device 50 to rotate the half-wave plate 37. The NC device 50 controls the first motor 41 so that the polarization directions of the first linearly polarized light L1' and the second linearly polarized light L22' that pass through the half-wave plate 37 and the lens array 38, are reflected by the fifth reflecting mirror 78, and are transmitted through the focusing lens 39, are parallel to the cutting progression direction.
 以上のように、1/2波長板37と、第1のモータ41と、NC装置50は、特殊ミラー77より同軸で射出された、第1の直線偏光L1’及び第2の直線偏光L22’の偏光方向を、被加工材Wにレーザビームを照射して被加工材Wを切断するときの切断進行方向と平行となるように制御する偏光方向制御機構として機能する。 As described above, the half-wave plate 37, the first motor 41, and the NC device 50 function as a polarization direction control mechanism that controls the polarization direction of the first linearly polarized light L1' and the second linearly polarized light L22' emitted coaxially from the special mirror 77 so that they are parallel to the cutting direction when the workpiece W is cut by irradiating the workpiece W with the laser beam.
 第2のモータ42はNC装置50により制御され、レンズアレイ38を回転させる。NC装置50は、レンズアレイ38を透過し、第5の反射ミラー78により反射されて集束レンズ39を透過して、被加工材Wの加工点WPに照射される矩形状のレーザビームにおける一辺が切断進行方向と平行となるように、第2のモータ42を制御する。 The second motor 42 is controlled by the NC device 50 to rotate the lens array 38. The NC device 50 controls the second motor 42 so that one side of the rectangular laser beam that passes through the lens array 38, is reflected by the fifth reflecting mirror 78, passes through the focusing lens 39, and is irradiated onto the processing point WP of the workpiece W is parallel to the cutting progression direction.
 以上のように、レンズアレイ38と、第2のモータ42と、集束レンズ39と、NC装置50は、偏光方向制御機構により偏光方向が切断進行方向と平行となるように制御されたレーザビームを矩形状に整形し、矩形状に整形されたレーザビームにおける一辺が切断進行方向と平行となるように制御する矩形ビーム角度制御機構として機能する。 As described above, the lens array 38, the second motor 42, the focusing lens 39, and the NC device 50 function as a rectangular beam angle control mechanism that shapes the laser beam, whose polarization direction is controlled by the polarization direction control mechanism so that it is parallel to the cutting direction, into a rectangular shape and controls one side of the rectangularly shaped laser beam so that it is parallel to the cutting direction.
 [第2実施形態の作用効果]
 以上説明したように、第2実施形態によれば、以下の作用効果が得られる。
[Effects of the Second Embodiment]
As described above, according to the second embodiment, the following advantageous effects can be obtained.
 第2実施形態に係る偏光調整装置は、偏光ビームスプリッタ71、第3の反射ミラー72、アキシコンレンズ73及び74、第4の反射ミラー75、1/2波長板76、特殊ミラー77により、第1の直線偏光L1’と第2の直線偏光L2’を含むランダム偏光のレーザビームL’の偏光方向を、第1の偏光方向に揃える。第2実施形態に係る偏光調整装置の各光学素子は、プロセスファイバ12の射出端の方向に向かってレーザビームを反射しないように配置できる。これにより、第1実施形態に係る偏光調整装置において、第1の反射ミラー34により反射され、1/4波長板33より射出された第2の直線偏光L21の一部が特殊偏光ビームスプリッタ32を透過してしまい、プロセスファイバ12の射出端に入射するリスクを低減できる。 The polarization adjustment device according to the second embodiment aligns the polarization direction of the randomly polarized laser beam L', which includes the first linearly polarized light L1' and the second linearly polarized light L2', to the first polarization direction by using a polarizing beam splitter 71, a third reflecting mirror 72, axicon lenses 73 and 74, a fourth reflecting mirror 75, a half-wave plate 76, and a special mirror 77. Each optical element of the polarization adjustment device according to the second embodiment can be arranged so as not to reflect the laser beam toward the exit end of the process fiber 12. This reduces the risk that part of the second linearly polarized light L21 reflected by the first reflecting mirror 34 and exiting from the quarter-wave plate 33 in the polarization adjustment device according to the first embodiment will pass through the special polarizing beam splitter 32 and enter the exit end of the process fiber 12.
 本発明は以上説明した第1または第2実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。 The present invention is not limited to the first or second embodiment described above, and various modifications are possible without departing from the gist of the present invention.
 本願は、2022年10月13日に日本国特許庁に出願された特願2022-164531号、及び2023年9月20日に日本国特許庁に出願された特願2023-152528号に基づく優先権を主張するものであり、その全ての開示内容は引用によりここに援用される。 This application claims priority to Patent Application No. 2022-164531, filed with the Japan Patent Office on October 13, 2022, and Patent Application No. 2023-152528, filed with the Japan Patent Office on September 20, 2023, the entire disclosures of which are incorporated herein by reference.

Claims (4)

  1.  第1の偏光方向を有する第1の直線偏光と、前記第1の偏光方向と直交する第2の偏光方向を有する第2の直線偏光とを含むランダム偏光のレーザビームを、前記第1の直線偏光と前記第2の直線偏光とに分離する第1の光学素子と、
     前記第1の光学素子によって分離された前記第2の直線偏光の偏光方向を前記第1の偏光方向に変換する第2の光学素子と、
     前記第2の光学素子より射出された前記第2の直線偏光、または前記第2の光学素子に入射される前記第2の直線偏光をリング状に広げるアキシコンレンズと、
     前記第1の光学素子によって分離された前記第1の直線偏光と、前記アキシコンレンズによってリング状に広げられた前記第2の直線偏光とを同軸で射出する、前記第1の光学素子と兼用されている、または前記第1の光学素子とは別体の第3の光学素子と、
    を備える偏光調整装置。
    a first optical element that separates a randomly polarized laser beam, the randomly polarized laser beam including a first linearly polarized light having a first polarization direction and a second linearly polarized light having a second polarization direction orthogonal to the first polarization direction, into the first linearly polarized light and the second linearly polarized light;
    a second optical element that converts the polarization direction of the second linearly polarized light separated by the first optical element into the first polarization direction;
    an axicon lens that expands the second linearly polarized light emitted from the second optical element or the second linearly polarized light incident on the second optical element into a ring shape;
    a third optical element which is used as the first optical element or is separate from the first optical element and which coaxially emits the first linearly polarized light separated by the first optical element and the second linearly polarized light expanded into a ring shape by the axicon lens;
    A polarization adjustment device comprising:
  2.  前記第1の光学素子と前記第3の光学素子とを兼用する兼用光学素子を備え、
     前記兼用光学素子は、入射された前記ランダム偏光のレーザビームにおける前記第1の直線偏光を反射させ、前記第2の直線偏光を透過させることによって、前記第1の直線偏光と前記第2の直線偏光とを分離する偏光分離領域を中心部に有し、前記偏光分離領域の周囲に前記第1の偏光方向の直線偏光を透過させる透過領域を有し、
     前記第2の光学素子は、前記偏光分離領域を透過した前記第2の直線偏光を第1の円偏光に変換する1/4波長板と、前記第1の円偏光を反射させて第2の円偏光として射出する第1の反射ミラーとを有し、
     前記1/4波長板は、前記第1の反射ミラーより反射された前記第2の円偏光を前記第1の偏光方向の前記第2の直線偏光に変換し、
     前記偏光分離領域は、前記1/4波長板より射出された前記第2の直線偏光を反射させ、
     前記アキシコンレンズは、前記偏光分離領域で反射した前記第2の直線偏光をリング状に広げ、
     前記アキシコンレンズより射出された前記第2の直線偏光を反射する第2の反射ミラーをさらに備え、
     前記アキシコンレンズは、前記第2の反射ミラーより反射された前記第2の直線偏光を前記透過領域に入射させ、
     前記兼用光学素子は、前記偏光分離領域により反射した前記第1の直線偏光と、前記透過領域を透過した前記第2の直線偏光とを同軸で射出する
    請求項1に記載の偏光調整装置。
    a dual-purpose optical element serving as both the first optical element and the third optical element;
    the dual-purpose optical element has a polarization separation region in its center that separates the first linearly polarized light from the second linearly polarized light by reflecting the first linearly polarized light in the incident randomly polarized laser beam and transmitting the second linearly polarized light, and has a transmission region around the polarization separation region that transmits linearly polarized light in the first polarization direction;
    the second optical element includes a quarter-wave plate that converts the second linearly polarized light transmitted through the polarization separation region into a first circularly polarized light, and a first reflecting mirror that reflects the first circularly polarized light and outputs it as a second circularly polarized light,
    the quarter-wave plate converts the second circularly polarized light reflected by the first reflecting mirror into the second linearly polarized light in the first polarization direction,
    the polarization separation region reflects the second linearly polarized light emitted from the quarter-wave plate,
    the axicon lens expands the second linearly polarized light reflected by the polarization separation region into a ring shape;
    a second reflecting mirror that reflects the second linearly polarized light emitted from the axicon lens,
    the axicon lens causes the second linearly polarized light reflected by the second reflecting mirror to enter the transmission region;
    2 . The polarization adjusting device according to claim 1 , wherein the dual-purpose optical element emits the first linearly polarized light reflected by the polarization separation region and the second linearly polarized light transmitted through the transmission region coaxially.
  3.  前記第3の光学素子は、
     前記第1の光学素子とは別体であり、
     入射されたレーザビームを透過させる透過領域を中心部に有し、前記透過領域の周囲に、入射されたレーザビームを反射させる反射領域を有し、
     前記第1の光学素子は、前記ランダム偏光のレーザビームにおける前記第1の直線偏光を透過させて前記透過領域に入射させ、前記第2の直線偏光を反射させることにより前記第1の直線偏光と前記第2の直線偏光とを分離し、
     前記第1の光学素子より反射された前記第2の直線偏光を反射させる第1の反射ミラーをさらに備え、
     前記アキシコンレンズは、前記第1の反射ミラーより反射された前記第2の直線偏光をリング状に広げ、
     前記アキシコンレンズより射出された前記第2の直線偏光を反射する第2の反射ミラーをさらに備え、
     前記第2の光学素子は、
     1/2波長板であり、
     前記第2の反射ミラーより反射された前記第2の直線偏光の偏光方向を前記第1の偏光方向に変換して前記反射領域に入射させ、
     前記第3の光学素子は、前記透過領域を透過した前記第1の直線偏光と、前記反射領域により反射した前記第2の直線偏光とを同軸で射出する
    請求項1に記載の偏光調整装置。
    The third optical element is
    is separate from the first optical element,
    A transmission region for transmitting an incident laser beam is provided at a central portion, and a reflection region for reflecting the incident laser beam is provided around the transmission region.
    the first optical element transmits the first linearly polarized light in the randomly polarized laser beam to cause it to enter the transmission region, and reflects the second linearly polarized light to separate the first linearly polarized light and the second linearly polarized light;
    a first reflecting mirror that reflects the second linearly polarized light reflected by the first optical element,
    the axicon lens expands the second linearly polarized light reflected by the first reflecting mirror into a ring shape;
    a second reflecting mirror that reflects the second linearly polarized light emitted from the axicon lens,
    The second optical element is
    It is a half wave plate,
    converting a polarization direction of the second linearly polarized light reflected by the second reflecting mirror into the first polarization direction and causing the second linearly polarized light to enter the reflecting area;
    2 . The polarization adjusting device according to claim 1 , wherein the third optical element emits the first linearly polarized light transmitted through the transmission region and the second linearly polarized light reflected by the reflection region coaxially.
  4.  請求項1~3のいずれか1項に記載の偏光調整装置と、
     前記偏光調整装置より同軸で射出された前記第1の直線偏光及び前記第2の直線偏光の偏光方向を、被加工材にレーザビームを照射して前記被加工材を切断するときの切断進行方向と平行となるように制御する偏光方向制御機構と、
    を備えるレーザ加工機。
    A polarization adjustment device according to any one of claims 1 to 3,
    a polarization direction control mechanism that controls the polarization directions of the first linearly polarized light and the second linearly polarized light output from the polarization adjustment device so as to be parallel to a cutting direction when a laser beam is irradiated onto a workpiece to cut the workpiece;
    A laser processing machine comprising:
PCT/JP2023/036169 2022-10-13 2023-10-04 Polarized light adjustment device and laser processing machine WO2024080198A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022164531 2022-10-13
JP2022-164531 2022-10-13
JP2023-152528 2023-09-20
JP2023152528A JP7411851B1 (en) 2022-10-13 2023-09-20 Polarization adjustment device and laser processing machine

Publications (1)

Publication Number Publication Date
WO2024080198A1 true WO2024080198A1 (en) 2024-04-18

Family

ID=89451827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036169 WO2024080198A1 (en) 2022-10-13 2023-10-04 Polarized light adjustment device and laser processing machine

Country Status (2)

Country Link
JP (1) JP7411851B1 (en)
WO (1) WO2024080198A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127990A (en) * 1983-01-13 1984-07-23 Matsushita Electric Ind Co Ltd Laser cutting device
JPH03193281A (en) * 1989-12-20 1991-08-23 Hitachi Ltd Liquid crystal mask type laser beam marker
US20160004074A1 (en) * 2013-03-22 2016-01-07 Shanghai Institute Of Optics And Fine Mechanics Chinese Academy Of Sciences Pupil shaping optical system for lithography machine and method for generating off-axis illumination modes
US20210098973A1 (en) * 2018-11-06 2021-04-01 Zhejiang University Structured beam generation device and method based on beam shaping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127990A (en) * 1983-01-13 1984-07-23 Matsushita Electric Ind Co Ltd Laser cutting device
JPH03193281A (en) * 1989-12-20 1991-08-23 Hitachi Ltd Liquid crystal mask type laser beam marker
US20160004074A1 (en) * 2013-03-22 2016-01-07 Shanghai Institute Of Optics And Fine Mechanics Chinese Academy Of Sciences Pupil shaping optical system for lithography machine and method for generating off-axis illumination modes
US20210098973A1 (en) * 2018-11-06 2021-04-01 Zhejiang University Structured beam generation device and method based on beam shaping

Also Published As

Publication number Publication date
JP7411851B1 (en) 2024-01-11
JP2024058596A (en) 2024-04-25

Similar Documents

Publication Publication Date Title
US11179802B2 (en) Laser machining head and laser machining apparatus
US6331692B1 (en) Diode laser, laser optics, device for laser treatment of a workpiece, process for a laser treatment of workpiece
JP4459530B2 (en) Laser processing equipment
US10413996B2 (en) Laser processing machine
US10471537B2 (en) Direct diode laser processing apparatus and sheet metal processing method using the same
WO2016199514A1 (en) Laser machining apparatus and laser cutting method
TW540194B (en) Laser machining apparatus
KR101195602B1 (en) Laser cutting apparatus capable of cutting workpiece having multi layer
WO2020036021A1 (en) Laser processing machine and laser processing method
WO2020183729A1 (en) Laser device and laser machining apparatus
WO2024080198A1 (en) Polarized light adjustment device and laser processing machine
US20150253577A1 (en) Stabilization of High-Power WBC Systems
KR20110132249A (en) Adjusting device of polarization azimuthal angle and laser processing device
JP2019005802A (en) Laser processing method, laser processing device and laser emission unit
JP2019084542A (en) Beam superposition optical system and laser processing device
JP6643442B1 (en) Laser processing machine and laser processing method
WO2020026701A1 (en) Laser machining device and laser machining method
JP2016073983A (en) Laser welding device and laser welding method
JP3397312B2 (en) Laser beam synthesizer and laser processing system
WO2022181397A1 (en) Laser machining device and laser machining method
WO2023275979A1 (en) Processing head and additive manufacturing device
JP6710891B2 (en) Light modulation device and light modulation method
WO2022202797A1 (en) Laser machining device and laser machining method
WO2024080033A1 (en) Beam combining device and laser processing machine
WO2021107042A1 (en) Laser oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877203

Country of ref document: EP

Kind code of ref document: A1