WO2024080033A1 - Beam combining device and laser processing machine - Google Patents

Beam combining device and laser processing machine Download PDF

Info

Publication number
WO2024080033A1
WO2024080033A1 PCT/JP2023/031964 JP2023031964W WO2024080033A1 WO 2024080033 A1 WO2024080033 A1 WO 2024080033A1 JP 2023031964 W JP2023031964 W JP 2023031964W WO 2024080033 A1 WO2024080033 A1 WO 2024080033A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
guide light
light
laser
wedge prism
Prior art date
Application number
PCT/JP2023/031964
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 小林
陽亮 有本
Original Assignee
株式会社アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ filed Critical 株式会社アマダ
Publication of WO2024080033A1 publication Critical patent/WO2024080033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to a beam combining device and a laser processing machine.
  • Laser processing machines In recent years, the laser beams used by laser processing machines to process sheet metal as a workpiece have become increasingly powerful (higher brightness). Laser processing machines sometimes superimpose two laser beams with different wavelengths emitted from two laser oscillators using optical components such as a dichroic mirror with a wavelength-selective coating to increase the power of the laser beam. Laser processing machines also have the function of irradiating the sheet metal with a guide light made of visible light in order to determine the starting position of processing and to check the processing trajectory (see Patent Document 1).
  • a dichroic mirror installed in a beam coupler, which is a beam combining device, and emit a guide light onto the same optical axis as the combined laser beam
  • at least two mirrors are required.
  • Increasing the number of optical components requires a mechanism for adjusting the position of each optical component, which makes the adjustment work more complicated and increases the size of the beam coupler.
  • the higher the power of the laser beam the more susceptible it is to the effects of thermal lenses, so it is desirable to reduce the number of optical components such as lenses and mirrors as much as possible.
  • a first aspect of one or more embodiments includes a first collimating lens that converts a first laser beam of divergent light having a first wavelength emitted from a first laser oscillator into collimated light, a second collimating lens that converts a second laser beam of divergent light having a second wavelength emitted from a second laser oscillator into collimated light, a first surface that is coated with a first coating that has a property of reflecting the first laser beam converted into collimated light by the first collimating lens and transmitting a guide light consisting of visible light, and a second collimating lens that has a property of transmitting the second laser beam converted into collimated light by the second collimating lens and reflecting the guide light.
  • the present invention provides a beam combining device that includes a wedge prism that emits a combined laser beam by combining the first laser beam reflected by the first surface with the second laser beam that has been transmitted through the second surface and the first surface in this order, and emits the guide light reflected by the second surface and transmitted through the first surface onto the same optical axis as the optical axis of the combined laser beam, and a focusing lens that focuses the combined laser beam or the guide light emitted from the wedge prism and inputs it into an optical fiber that transmits the combined laser beam or the guide light.
  • the laser beams of two wavelengths are combined by a wedge prism, and the guide light is emitted on the same optical axis as the optical axis of the combined laser beam, thereby realizing a configuration in which the combined laser beam and the guide light are emitted on the same optical axis with a small number of optical components.
  • a second aspect of one or more of the embodiments provides a laser processing machine including the first laser oscillator, the second laser oscillator, the beam combining device of the first aspect, a guide light emitting unit that emits the guide light toward the wedge prism, and a processing head that irradiates the combined laser beam or the guide light transmitted by the optical fiber onto a workpiece to be processed.
  • the laser beams of two wavelengths are combined by a wedge prism, and the guide light is emitted on the same optical axis as the optical axis of the combined laser beam, thereby realizing a configuration in which the combined laser beam and the guide light are emitted on the same optical axis with a small number of optical components.
  • the workpiece can be processed after the processing start position is determined and the processing trajectory is confirmed using the guide light.
  • the beam combining device and laser processing machine can combine laser beams of two wavelengths with a small number of optical components and emit a guide light onto the same optical axis as the optical axis of the combined laser beam.
  • FIG. 1 illustrates a beam combining device and a laser processing machine according to one or more embodiments.
  • FIG. 2A is a cross-sectional view of a position adjustment mechanism for a first collimating lens included in a beam combining device according to one or more embodiments, taken along a plane perpendicular to the Z axis.
  • FIG. 2B is a cross-sectional view of a position adjustment mechanism for a first collimating lens included in a beam combining device according to one or more embodiments, taken along a plane perpendicular to the X-axis.
  • FIG. 3 is a characteristic diagram illustrating the reflection and transmission characteristics of first and second coatings applied to the first and second surfaces of a wedge prism included in a beam combining device according to one or more embodiments.
  • the beam combining device includes a first collimating lens, a second collimating lens, a wedge prism, and a focusing lens.
  • the first collimating lens converts a first laser beam of divergent light having a first wavelength emitted from a first laser oscillator into collimated light.
  • the second collimating lens converts a second laser beam of divergent light having a second wavelength emitted from a second laser oscillator into collimated light.
  • the wedge prism includes a first surface that is coated with a first coating having a property of reflecting the first laser beam converted into collimated light by the first collimating lens and transmitting a guide light consisting of visible light, and a second surface that is coated with a second coating having a property of transmitting the second laser beam converted into collimated light by the second collimating lens and reflecting the guide light.
  • the first coating has a property of transmitting the second laser beam that has passed through the second surface.
  • the wedge prism emits a combined laser beam that combines the first laser beam reflected by the first surface with the second laser beam that has been transmitted through the second surface and the first surface in that order, and emits the guide light that has been reflected by the second surface and transmitted through the first surface onto the same optical axis as the optical axis of the combined laser beam.
  • the focusing lens focuses the combined laser beam or the guide light emitted from the wedge prism and makes it incident on the optical fiber that transmits the combined laser beam or the guide light.
  • the laser processing machine includes the first laser oscillator, the second laser oscillator, a beam combining device of the first aspect, a guide light emitting unit that emits the guide light toward the wedge prism, and a processing head that irradiates the combined laser beam or the guide light transmitted by the optical fiber onto a workpiece to be processed.
  • FIG. 1 shows a beam combining device and a laser processing machine according to one or more embodiments.
  • the laser processing machine 100 according to one or more embodiments shown in FIG. 1 includes a first laser oscillator 11, a second laser oscillator 12, a beam coupler 20 which is a beam combining device according to one or more embodiments, and a processing head 40.
  • the first laser oscillator 11 and the second laser oscillator 12 are, for example, a fiber laser oscillator, a disk laser oscillator, or a direct diode laser oscillator.
  • the connector 13c of the feeding fiber 13 that transmits the first laser beam emitted from the first laser oscillator 11 is connected to the end of the protrusion 201p in the housing 201 of the beam coupler 20.
  • the connector 14c of the feeding fiber 14 that transmits the second laser beam emitted from the second laser oscillator 12 is connected to one end of the main body 201m in the housing 201.
  • the first connector 30c1 of the process fiber 30 is connected to the other end of the main body 201m, and the second connector 30c2 is connected to the housing 401 of the processing head 40.
  • the beam coupler 20 includes a first collimating lens 21, a second collimating lens 22, a wedge prism 23, and a focusing lens 24 in a housing 201.
  • a guide light emitting unit 26 is provided on the outside of the beam coupler 20, which emits guide light consisting of visible light for determining the processing start position and checking the processing trajectory.
  • the guide light emitting unit 26 is attached to the outer surface of the housing 201, and irradiates the guide light shown by the dashed line to the wedge prism 23 through an opening provided in the housing 201.
  • the guide light emitting unit 26 may be provided inside the housing 201.
  • the first surface 23a of the wedge prism 23 is coated with a first coating, which will be described later.
  • the second surface 23b, which faces the first surface 23a of the wedge prism 23, is coated with a second coating, which will be described later.
  • the first laser beam emitted from the first laser oscillator 11 has a wavelength ⁇ 1
  • the second laser beam emitted from the second laser oscillator 12 has a wavelength ⁇ 2 that is shorter than the wavelength ⁇ 1.
  • the first laser beam, the second laser beam, and the combined laser beam described below are indicated by dashed dotted lines.
  • the guide light has a wavelength ⁇ 3, and has a relationship of ⁇ 1> ⁇ 2> ⁇ 3.
  • the wavelength ⁇ 1 and the wavelength ⁇ 2 are 1030 nm to 1090 nm
  • the wavelength ⁇ 3 is 600 nm to 700 nm.
  • the first laser beam emitted from the first laser oscillator 11 is transmitted to the beam coupler 20 by the feeding fiber 13.
  • the second laser beam emitted from the second laser oscillator 12 is transmitted to the beam coupler 20 by the feeding fiber 14.
  • the first collimating lens 21 converts the first laser beam of diverging light emitted from the end of the feeding fiber 13 into collimated light.
  • the first laser beam converted into collimated light is incident on the first surface 23a of the wedge prism 23.
  • the second collimating lens 22 converts the second laser beam of diverging light emitted from the end of the feeding fiber 14 into collimated light.
  • the second laser beam converted into collimated light is incident on the second surface 23b of the wedge prism 23.
  • the first collimating lens 21 and the second collimating lens 22 are biconvex lenses in which both the entrance surface and the exit surface of the laser beam are convex, but they may also be plano-convex lenses in which the entrance surface is flat and the exit surface is convex.
  • the lens shapes of the first collimating lens 21 and the second collimating lens 22 are not limited.
  • the focusing lens 24 and the collimating lens 41 or focusing lens 43 in the processing head 40 which will be described later, may also be biconvex lenses or plano-convex lenses, and the lens shapes are not limited.
  • FIG. 2A is a cross-sectional view of the position adjustment mechanism 50 of the first collimator lens 21 provided in the beam coupler 20, cut along a plane perpendicular to the Z axis.
  • FIG. 2B is a cross-sectional view of the position adjustment mechanism 50 of the first collimator lens 21 provided in the beam coupler 20, cut along a plane perpendicular to the X axis.
  • the position of the first collimator lens 21 is adjusted by the position adjustment mechanism 50 as shown in FIG. 2A and FIG. 2B.
  • the position of the second collimator lens 22 is also adjusted by a position adjustment mechanism similar to the position adjustment mechanism 50 shown in FIG. 2A and FIG. 2B.
  • the optical axis direction of the first laser beam emitted from the first collimator lens 21 is the Z axis, and the two orthogonal directions perpendicular to the Z axis are the X axis and the Y axis.
  • the first collimator lens 21 is a plano-convex lens.
  • the first collimator lens 21 is held in the position adjustment mechanism 50 by the lens holder 51.
  • two coil springs 53x extending in the X-axis direction apply a force in the X-axis direction to the lens holder 51
  • two coil springs 53y extending in the Y-axis direction apply a force in the Y-axis direction to the lens holder 51.
  • the position of the lens holder 51 in the X-axis direction can be adjusted by turning the X-axis adjustment screw member 52x
  • the position of the lens holder 51 in the Y-axis direction can be adjusted by turning the Y-axis adjustment screw member 52y.
  • the connector 13c is attached to a receiver 20R (not shown in FIG. 1) provided at the end of the protrusion 201p.
  • Two coil springs 53z extending in the Z-axis direction apply a force in the Z-axis direction to the lens holder 51.
  • a movable inner cylinder 54 is provided adjacent to the lens holder 51 inside the protrusion 201p.
  • a thread 54sw is formed at the end of the movable inner cylinder 54, and a thread 20sw is formed on the opposing inner circumferential surface of the protrusion 201p.
  • the first coating applied to the first surface 23a of the wedge prism 23 has the property of reflecting the first laser beam converted into collimated light. Therefore, the first laser beam is reflected by the first surface 23a and heads toward the focusing lens 24.
  • the second coating applied to the second surface 23b of the wedge prism 23 has the property of transmitting the second laser beam converted into collimated light.
  • the first coating has the property of transmitting the second laser beam that has passed through the second surface 23b. Therefore, the second laser beam passes through the second surface 23b and the first surface 23a in this order and heads toward the focusing lens 24.
  • the first coating also has the property of transmitting the guide light emitted from the guide light emission section 26.
  • the second coating also has the property of reflecting the guide light. Therefore, the guide light passes through the first surface 23a, is reflected by the second surface 23b, and passes through the first surface 23a again to proceed toward the focusing lens 24.
  • the positions of the first collimating lens 21 and the second collimating lens 22 are adjusted so that the first laser beam reflected by the first surface 23a and the second laser beam transmitted through the second surface 23b and the first surface 23a are superimposed on each other.
  • the attachment position of the guide light emitting unit 26 relative to the housing 201 and the direction in which the guide light is emitted are adjusted so that the guide light reflected by the second surface 23b travels along the same optical axis as the optical axis of the combined laser beam toward the focusing lens 24.
  • the position of the first collimator lens 21 in the X-axis, Y-axis, and Z-axis directions is adjusted by the position adjustment mechanism 50.
  • the position of the second collimator lens 22 in the X-axis, Y-axis, and Z-axis directions is adjusted by a position adjustment mechanism similar to the position adjustment mechanism 50.
  • the wedge prism 23 generates and emits a combined laser beam by combining the first laser beam and the second laser beam by superimposing them on each other.
  • the focusing lens 24 focuses the combined laser beam and makes it incident on the core of the process fiber 30.
  • the process fiber 30 is an optical fiber that transmits the combined laser beam to the processing head 40.
  • the processing head 40 includes a collimating lens 41, a bend mirror 42, and a focusing lens 43 in a housing 401.
  • the collimating lens 41 converts the divergent combined laser beam emitted from the end of the process fiber 30 into collimated light.
  • the collimating lens 41 bends the traveling direction of the combined laser beam converted into collimated light by 90 degrees.
  • the focusing lens 43 focuses the incident combined laser beam and irradiates it onto the sheet metal W to be processed.
  • the laser processing machine 100 may be a processing machine that cuts the sheet metal W, or may be a processing machine that welds the sheet metal W.
  • the sheet metal W is an example of a workpiece, and the workpiece is not limited to sheet metal.
  • the focusing lens 43 focuses the incident guide light and irradiates it on the metal sheet W.
  • the operator can determine the processing start position and check the processing trajectory. Note that in FIG. 1, the guide light shown by the dashed line is not shown as being incident on the processing head 40 and irradiated on the metal sheet W, but it is irradiated on the metal sheet W in the same way as the combined laser beam shown by the dashed line.
  • FIG. 3 is a characteristic diagram showing the reflection and transmission characteristics of the first and second coatings applied to the first surface 23a and second surface 23b of the wedge prism 23 provided in the beam coupler 20.
  • FIG. 3 shows the reflection and transmission characteristics Ca of the first coating and the reflection and transmission characteristics Cb of the second coating.
  • the reflection and transmission characteristics Ca of the first coating are characteristics that reflect the first laser beam having a wavelength ⁇ 1 and transmit the second laser beam having a wavelength ⁇ 2 and the guide light having a wavelength ⁇ 3.
  • the reflection and transmission characteristics Cb of the second coating are characteristics that reflect the wavelength ⁇ 3 and transmit the second laser beam having a wavelength ⁇ 2.
  • the beam coupler 20 equipped with the wedge prism 23 can supply a combined laser beam to the processing head 40 when the first and second laser beams are incident, and can supply the guide light to the processing head 40 when the guide light is incident.
  • the beam coupler 20 is configured so that the wedge prism 23 emits a combined laser beam obtained by superimposing the first laser beam and the second laser beam on each other, thereby enabling the laser beam to have a high output.
  • the beam coupler 20 is configured so that the wedge prism 23 emits the guide light onto the same optical axis as the optical axis of the combined laser beam, thereby realizing a configuration in which the combined laser beam and the guide light are emitted onto the same optical axis with a small number of optical components.
  • the laser processing machine 100 includes a processing head 40 that irradiates the combined laser beam transmitted by the first laser oscillator 11, the second laser oscillator 12, the beam coupler 20, and the process fiber 30 onto the metal sheet W to be processed.
  • the laser processing machine 100 can emit the combined laser beam and the guide light on the same optical axis with a small number of optical components, and the operator can process the metal sheet W after determining the processing start position and checking the processing trajectory.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A first surface (23a) of a wedge prism (23) has a first coating, and a second surface (23b) thereof has a second coating. The wedge prism (23) emits a combined laser beam obtained by superimposing on one another a first laser beam reflected by the first surface (23a) and a second laser beam that has been transmitted through the second surface (23b) and the first surface (23a) in the stated order. The second coating has the characteristic of reflecting guide light. The wedge prism (23) emits the guide light which has been reflected by the second surface (23b) and transmitted through the first surface (23a), on an optical axis that is the same as an optical axis of the combined laser beam.

Description

ビーム結合装置及びレーザ加工機Beam combining device and laser processing machine
 本発明は、ビーム結合装置及びレーザ加工機に関する。 The present invention relates to a beam combining device and a laser processing machine.
 近年、レーザ加工機が被加工材である板金を加工する際に使用するレーザビームの高出力化(高輝度化)が進んでいる。レーザ加工機は、2つのレーザ発振器より射出された波長が異なる2つのレーザビームを、波長選択性コーティングを施したダイクロイックミラー等の光学部品で互いに重畳してレーザビームの高出力化することがある。また、レーザ加工機は、加工開始位置を決めたり、加工の軌跡を確認したりするために、可視光よりなるガイド光を板金に照射する機能を備えている(特許文献1参照)。 In recent years, the laser beams used by laser processing machines to process sheet metal as a workpiece have become increasingly powerful (higher brightness). Laser processing machines sometimes superimpose two laser beams with different wavelengths emitted from two laser oscillators using optical components such as a dichroic mirror with a wavelength-selective coating to increase the power of the laser beam. Laser processing machines also have the function of irradiating the sheet metal with a guide light made of visible light in order to determine the starting position of processing and to check the processing trajectory (see Patent Document 1).
特開2021-154336号公報JP 2021-154336 A
 ビーム結合装置であるビームカプラ内に設けたダイクロイックミラーを用いて、2つの波長のレーザビームを結合し、ガイド光を結合したレーザビームの光軸と同じ光軸上に射出させようとすると、少なくとも2枚のミラーが必要となる。光学部品が増えると各光学部品の位置調整機構が必要となり、調整作業の煩雑さを招き、ビームカプラが大型化してしまう。レーザビームが高出力になればなるほど熱レンズの影響を受けやすくなるため、レンズまたはミラー等の光学部品をできるだけ少なくすることが望まれる。 If you want to combine two laser beams of different wavelengths using a dichroic mirror installed in a beam coupler, which is a beam combining device, and emit a guide light onto the same optical axis as the combined laser beam, at least two mirrors are required. Increasing the number of optical components requires a mechanism for adjusting the position of each optical component, which makes the adjustment work more complicated and increases the size of the beam coupler. The higher the power of the laser beam, the more susceptible it is to the effects of thermal lenses, so it is desirable to reduce the number of optical components such as lenses and mirrors as much as possible.
 1またはそれ以上の実施形態の第1の態様は、第1のレーザ発振器より射出される第1の波長を有する発散光の第1のレーザビームをコリメート光に変換する第1のコリメートレンズと、第2のレーザ発振器より射出される第2の波長を有する発散光の第2のレーザビームをコリメート光に変換する第2のコリメートレンズと、前記第1のコリメートレンズによってコリメート光に変換された前記第1のレーザビームを反射し、かつ可視光よりなるガイド光を透過させる特性を有する第1のコーティングが施された第1の面と、前記第2のコリメートレンズによってコリメート光に変換された前記第2のレーザビームを透過させ、かつ前記ガイド光を反射する特性を有する第2のコーティングが施された第2の面とを含み、前記第1のコーティングは、前記第2の面を透過した前記第2のレーザビームを透過させる特性を有し、前記第1の面で反射した前記第1のレーザビームと、前記第2の面及び前記第1の面をこの順で透過した前記第2のレーザビームとを結合させた結合レーザビームを射出し、前記第2の面で反射して前記第1の面を透過した前記ガイド光を前記結合レーザビームの光軸と同じ光軸上に射出するウェッジプリズムと、前記ウェッジプリズムより射出された前記結合レーザビームまたは前記ガイド光を集束させて、前記結合レーザビームまたは前記ガイド光を伝送する光ファイバに入射させる集束レンズとを備えるビーム結合装置を提供する。 A first aspect of one or more embodiments includes a first collimating lens that converts a first laser beam of divergent light having a first wavelength emitted from a first laser oscillator into collimated light, a second collimating lens that converts a second laser beam of divergent light having a second wavelength emitted from a second laser oscillator into collimated light, a first surface that is coated with a first coating that has a property of reflecting the first laser beam converted into collimated light by the first collimating lens and transmitting a guide light consisting of visible light, and a second collimating lens that has a property of transmitting the second laser beam converted into collimated light by the second collimating lens and reflecting the guide light. The present invention provides a beam combining device that includes a wedge prism that emits a combined laser beam by combining the first laser beam reflected by the first surface with the second laser beam that has been transmitted through the second surface and the first surface in this order, and emits the guide light reflected by the second surface and transmitted through the first surface onto the same optical axis as the optical axis of the combined laser beam, and a focusing lens that focuses the combined laser beam or the guide light emitted from the wedge prism and inputs it into an optical fiber that transmits the combined laser beam or the guide light.
 1またはそれ以上の実施形態の第1の態様によれば、ウェッジプリズムによって2つの波長のレーザビームを結合し、ガイド光を結合したレーザビームの光軸と同じ光軸上に射出するので、少ない光学部品で結合レーザビームとガイド光とを同じ光軸上に射出する構成が実現される。 According to a first aspect of one or more embodiments, the laser beams of two wavelengths are combined by a wedge prism, and the guide light is emitted on the same optical axis as the optical axis of the combined laser beam, thereby realizing a configuration in which the combined laser beam and the guide light are emitted on the same optical axis with a small number of optical components.
 1またはそれ以上の実施形態の第2の態様は、前記第1のレーザ発振器と、前記第2のレーザ発振器と、第1の態様のビーム結合装置と、前記ガイド光を前記ウェッジプリズムに向けて射出するガイド光射出部と、前記光ファイバによって伝送される前記結合レーザビームまたは前記ガイド光を加工対象の被加工材に照射する加工ヘッドとを備えるレーザ加工機を提供する。 A second aspect of one or more of the embodiments provides a laser processing machine including the first laser oscillator, the second laser oscillator, the beam combining device of the first aspect, a guide light emitting unit that emits the guide light toward the wedge prism, and a processing head that irradiates the combined laser beam or the guide light transmitted by the optical fiber onto a workpiece to be processed.
 1またはそれ以上の実施形態の第2の態様によれば、ウェッジプリズムによって2つの波長のレーザビームを結合し、ガイド光を結合したレーザビームの光軸と同じ光軸上に射出するので、少ない光学部品で結合レーザビームとガイド光とを同じ光軸上に射出する構成が実現される。1またはそれ以上の実施形態の第2の態様によれば、ガイド光によって加工開始位置を決めたり、加工の軌跡を確認したりした上で、被加工材を加工することができる。 According to a second aspect of one or more of the embodiments, the laser beams of two wavelengths are combined by a wedge prism, and the guide light is emitted on the same optical axis as the optical axis of the combined laser beam, thereby realizing a configuration in which the combined laser beam and the guide light are emitted on the same optical axis with a small number of optical components. According to the second aspect of one or more of the embodiments, the workpiece can be processed after the processing start position is determined and the processing trajectory is confirmed using the guide light.
 1またはそれ以上の実施形態に係るビーム結合装置及びレーザ加工機によれば、少ない光学部品で、2つの波長のレーザビームを結合し、ガイド光を結合したレーザビームの光軸と同じ光軸上に射出することができる。 The beam combining device and laser processing machine according to one or more of the embodiments can combine laser beams of two wavelengths with a small number of optical components and emit a guide light onto the same optical axis as the optical axis of the combined laser beam.
図1は、1またはそれ以上の実施形態に係るビーム結合装置及びレーザ加工機を示す図である。FIG. 1 illustrates a beam combining device and a laser processing machine according to one or more embodiments. 図2Aは、1またはそれ以上の実施形態に係るビーム結合装置が備える第1のコリメートレンズの位置調整機構をZ軸と直交する面で切断した断面図である。FIG. 2A is a cross-sectional view of a position adjustment mechanism for a first collimating lens included in a beam combining device according to one or more embodiments, taken along a plane perpendicular to the Z axis. 図2Bは、1またはそれ以上の実施形態に係るビーム結合装置が備える第1のコリメートレンズの位置調整機構をX軸と直交する面で切断した断面図である。FIG. 2B is a cross-sectional view of a position adjustment mechanism for a first collimating lens included in a beam combining device according to one or more embodiments, taken along a plane perpendicular to the X-axis. 図3は、1またはそれ以上の実施形態に係るビーム結合装置が備えるウェッジプリズムの第1の面及び第2の面に施されている第1及び第2のコーティングに施されている反射・透過特性を示す特性図である。FIG. 3 is a characteristic diagram illustrating the reflection and transmission characteristics of first and second coatings applied to the first and second surfaces of a wedge prism included in a beam combining device according to one or more embodiments.
 1またはそれ以上の実施形態に係るビーム結合装置は、第1のコリメートレンズ、第2のコリメートレンズ、ウェッジプリズム、集束レンズを備える。前記第1のコリメートレンズは、第1のレーザ発振器より射出される第1の波長を有する発散光の第1のレーザビームをコリメート光に変換する。前記第2のコリメートレンズは、第2のレーザ発振器より射出される第2の波長を有する発散光の第2のレーザビームをコリメート光に変換する。 The beam combining device according to one or more embodiments includes a first collimating lens, a second collimating lens, a wedge prism, and a focusing lens. The first collimating lens converts a first laser beam of divergent light having a first wavelength emitted from a first laser oscillator into collimated light. The second collimating lens converts a second laser beam of divergent light having a second wavelength emitted from a second laser oscillator into collimated light.
 前記ウェッジプリズムは、前記第1のコリメートレンズによってコリメート光に変換された前記第1のレーザビームを反射し、かつ可視光よりなるガイド光を透過させる特性を有する第1のコーティングが施された第1の面と、前記第2のコリメートレンズによってコリメート光に変換された前記第2のレーザビームを透過させ、かつ前記ガイド光を反射する特性を有する第2のコーティングが施された第2の面とを含む。前記第1のコーティングは、前記第2の面を透過した前記第2のレーザビームを透過させる特性を有する。 The wedge prism includes a first surface that is coated with a first coating having a property of reflecting the first laser beam converted into collimated light by the first collimating lens and transmitting a guide light consisting of visible light, and a second surface that is coated with a second coating having a property of transmitting the second laser beam converted into collimated light by the second collimating lens and reflecting the guide light. The first coating has a property of transmitting the second laser beam that has passed through the second surface.
 前記ウェッジプリズムは、前記第1の面で反射した前記第1のレーザビームと、前記第2の面及び前記第1の面をこの順で透過した前記第2のレーザビームとを結合させた結合レーザビームを射出し、前記第2の面で反射して前記第1の面を透過した前記ガイド光を前記結合レーザビームの光軸と同じ光軸上に射出する。 The wedge prism emits a combined laser beam that combines the first laser beam reflected by the first surface with the second laser beam that has been transmitted through the second surface and the first surface in that order, and emits the guide light that has been reflected by the second surface and transmitted through the first surface onto the same optical axis as the optical axis of the combined laser beam.
 前記集束レンズは、前記ウェッジプリズムより射出された前記結合レーザビームまたは前記ガイド光を集束させて、前記結合レーザビームまたは前記ガイド光を伝送する光ファイバに入射させる。 The focusing lens focuses the combined laser beam or the guide light emitted from the wedge prism and makes it incident on the optical fiber that transmits the combined laser beam or the guide light.
 1またはそれ以上の実施形態に係るレーザ加工機は、前記第1のレーザ発振器と、前記第2のレーザ発振器と、第1の態様のビーム結合装置と、前記ガイド光を前記ウェッジプリズムに向けて射出するガイド光射出部と、前記光ファイバによって伝送される前記結合レーザビームまたは前記ガイド光を加工対象の被加工材に照射する加工ヘッドとを備える。 The laser processing machine according to one or more embodiments includes the first laser oscillator, the second laser oscillator, a beam combining device of the first aspect, a guide light emitting unit that emits the guide light toward the wedge prism, and a processing head that irradiates the combined laser beam or the guide light transmitted by the optical fiber onto a workpiece to be processed.
 以下、1またはそれ以上の実施形態に係るビーム結合装置及びレーザ加工機について、添付図面を参照して具体的に説明する。図1は、1またはそれ以上の実施形態に係るビーム結合装置及びレーザ加工機を示す。図1に示す1またはそれ以上の実施形態に係るレーザ加工機100は、第1のレーザ発振器11、第2のレーザ発振器12、1またはそれ以上の実施形態に係るビーム結合装置であるビームカプラ20、加工ヘッド40を備える。第1のレーザ発振器11及び第2のレーザ発振器12は、例えば、ファイバレーザ発振器、ディスクレーザ発振器、またはダイレクトダイオードレーザ発振器である。 Below, a beam combining device and a laser processing machine according to one or more embodiments will be specifically described with reference to the accompanying drawings. FIG. 1 shows a beam combining device and a laser processing machine according to one or more embodiments. The laser processing machine 100 according to one or more embodiments shown in FIG. 1 includes a first laser oscillator 11, a second laser oscillator 12, a beam coupler 20 which is a beam combining device according to one or more embodiments, and a processing head 40. The first laser oscillator 11 and the second laser oscillator 12 are, for example, a fiber laser oscillator, a disk laser oscillator, or a direct diode laser oscillator.
 第1のレーザ発振器11より射出される第1のレーザビームを伝送するフィーディングファイバ13のコネクタ13cは、ビームカプラ20の筐体201における突出部201pの端部に接続されている。第2のレーザ発振器12より射出される第2のレーザビームを伝送するフィーディングファイバ14のコネクタ14cは、筐体201における本体部201mの一方の端部に接続されている。プロセスファイバ30の第1のコネクタ30c1は本体部201mの他方の端部に接続され、第2のコネクタ30c2は加工ヘッド40の筐体401に接続されている。 The connector 13c of the feeding fiber 13 that transmits the first laser beam emitted from the first laser oscillator 11 is connected to the end of the protrusion 201p in the housing 201 of the beam coupler 20. The connector 14c of the feeding fiber 14 that transmits the second laser beam emitted from the second laser oscillator 12 is connected to one end of the main body 201m in the housing 201. The first connector 30c1 of the process fiber 30 is connected to the other end of the main body 201m, and the second connector 30c2 is connected to the housing 401 of the processing head 40.
 ビームカプラ20は、筐体201内に、第1のコリメートレンズ21、第2のコリメートレンズ22、ウェッジプリズム23、集束レンズ24を備える。ビームカプラ20の外部には、加工開始位置を決めたり、加工の軌跡を確認したりするための可視光よりなるガイド光を射出するガイド光射出部26が設けられている。図1においては、ガイド光射出部26は筐体201の外面に取り付けられており、筐体201に設けた開口を介して破線で示すガイド光をウェッジプリズム23に照射する。ガイド光射出部26が筐体201内に設けられていてもよい。 The beam coupler 20 includes a first collimating lens 21, a second collimating lens 22, a wedge prism 23, and a focusing lens 24 in a housing 201. A guide light emitting unit 26 is provided on the outside of the beam coupler 20, which emits guide light consisting of visible light for determining the processing start position and checking the processing trajectory. In FIG. 1, the guide light emitting unit 26 is attached to the outer surface of the housing 201, and irradiates the guide light shown by the dashed line to the wedge prism 23 through an opening provided in the housing 201. The guide light emitting unit 26 may be provided inside the housing 201.
 ウェッジプリズム23の第1の面23aには、後述する第1のコーティングが施されている。ウェッジプリズム23の第1の面23aと対向する第2の面23bには、後述する第2のコーティングが施されている。 The first surface 23a of the wedge prism 23 is coated with a first coating, which will be described later. The second surface 23b, which faces the first surface 23a of the wedge prism 23, is coated with a second coating, which will be described later.
 第1のレーザ発振器11より射出される第1のレーザビームは波長λ1を有し、第2のレーザ発振器12より射出される第2のレーザビームは波長λ1より短波長である波長λ2を有する。第1のレーザビーム、第2のレーザビーム、及び後述する結合レーザビームを一点鎖線で示す。ガイド光は波長λ3を有し、λ1>λ2>λ3の関係を有する。例えば、波長λ1及び波長λ2は1030nm~1090nmの波長であり、波長λ3は600nm~700nmである。 The first laser beam emitted from the first laser oscillator 11 has a wavelength λ1, and the second laser beam emitted from the second laser oscillator 12 has a wavelength λ2 that is shorter than the wavelength λ1. The first laser beam, the second laser beam, and the combined laser beam described below are indicated by dashed dotted lines. The guide light has a wavelength λ3, and has a relationship of λ1>λ2>λ3. For example, the wavelength λ1 and the wavelength λ2 are 1030 nm to 1090 nm, and the wavelength λ3 is 600 nm to 700 nm.
 第1のレーザ発振器11より射出された第1のレーザビームは、フィーディングファイバ13によってビームカプラ20へと伝送される。第2のレーザ発振器12より射出された第2のレーザビームは、フィーディングファイバ14によってビームカプラ20へと伝送される。 The first laser beam emitted from the first laser oscillator 11 is transmitted to the beam coupler 20 by the feeding fiber 13. The second laser beam emitted from the second laser oscillator 12 is transmitted to the beam coupler 20 by the feeding fiber 14.
 第1のコリメートレンズ21は、フィーディングファイバ13の端部より射出される発散光の第1のレーザビームをコリメート光に変換する。コリメート光に変換された第1のレーザビームは、ウェッジプリズム23の第1の面23aに入射する。第2のコリメートレンズ22は、フィーディングファイバ14の端部より射出される発散光の第2のレーザビームをコリメート光に変換する。コリメート光に変換された第2のレーザビームは、ウェッジプリズム23の第2の面23bに入射する。 The first collimating lens 21 converts the first laser beam of diverging light emitted from the end of the feeding fiber 13 into collimated light. The first laser beam converted into collimated light is incident on the first surface 23a of the wedge prism 23. The second collimating lens 22 converts the second laser beam of diverging light emitted from the end of the feeding fiber 14 into collimated light. The second laser beam converted into collimated light is incident on the second surface 23b of the wedge prism 23.
 図1においては、第1のコリメートレンズ21及び第2のコリメートレンズ22をレーザビームの入射面及び射出面の双方が凸面である両凸レンズとしているが、入射面が平面で射出面が凸面である平凸レンズであってもよい。第1のコリメートレンズ21及び第2のコリメートレンズ22のレンズの形状は限定されない。同様に、集束レンズ24及び加工ヘッド40内の後述するコリメートレンズ41または集束レンズ43も、両凸レンズであってもよいし、平凸レンズであってもよく、レンズの形状は限定されない。 In FIG. 1, the first collimating lens 21 and the second collimating lens 22 are biconvex lenses in which both the entrance surface and the exit surface of the laser beam are convex, but they may also be plano-convex lenses in which the entrance surface is flat and the exit surface is convex. The lens shapes of the first collimating lens 21 and the second collimating lens 22 are not limited. Similarly, the focusing lens 24 and the collimating lens 41 or focusing lens 43 in the processing head 40, which will be described later, may also be biconvex lenses or plano-convex lenses, and the lens shapes are not limited.
 図2Aは、ビームカプラ20が備える第1のコリメートレンズ21の位置調整機構50をZ軸と直交する面で切断した断面図である。図2Bは、ビームカプラ20が備える第1のコリメートレンズ21の位置調整機構50をX軸と直交する面で切断した断面図である。第1のコリメートレンズ21は、図2A及び図2Bに示すような位置調整機構50によって位置が調整されている。第2のコリメートレンズ22も、図2A及び図2Bに示す位置調整機構50と同様の位置調整機構によって位置が調整されている。第1のコリメートレンズ21より射出される第1のレーザビームの光軸方向をZ軸、Z軸に直交する2つの直交する方向をX軸及びY軸とする。図2Bに示すように、ここでは第1のコリメートレンズ21を平凸レンズとしている。 2A is a cross-sectional view of the position adjustment mechanism 50 of the first collimator lens 21 provided in the beam coupler 20, cut along a plane perpendicular to the Z axis. FIG. 2B is a cross-sectional view of the position adjustment mechanism 50 of the first collimator lens 21 provided in the beam coupler 20, cut along a plane perpendicular to the X axis. The position of the first collimator lens 21 is adjusted by the position adjustment mechanism 50 as shown in FIG. 2A and FIG. 2B. The position of the second collimator lens 22 is also adjusted by a position adjustment mechanism similar to the position adjustment mechanism 50 shown in FIG. 2A and FIG. 2B. The optical axis direction of the first laser beam emitted from the first collimator lens 21 is the Z axis, and the two orthogonal directions perpendicular to the Z axis are the X axis and the Y axis. As shown in FIG. 2B, the first collimator lens 21 is a plano-convex lens.
 図2A及び図2Bに示すように、第1のコリメートレンズ21はレンズホルダ51によって位置調整機構50に保持されている。図2Aに示すように、X軸方向に伸びる2つのコイルスプリング53xはレンズホルダ51にX軸方向の力を与えており、Y軸に伸びる2つのコイルスプリング53yはレンズホルダ51にY軸方向の力を与えている。X軸調整用ねじ部材52xを回すことによってレンズホルダ51のX軸方向の位置を調整することができ、Y軸調整用ねじ部材52yを回すことによってレンズホルダ51のY軸方向の位置を調整することができる。 As shown in Figures 2A and 2B, the first collimator lens 21 is held in the position adjustment mechanism 50 by the lens holder 51. As shown in Figure 2A, two coil springs 53x extending in the X-axis direction apply a force in the X-axis direction to the lens holder 51, and two coil springs 53y extending in the Y-axis direction apply a force in the Y-axis direction to the lens holder 51. The position of the lens holder 51 in the X-axis direction can be adjusted by turning the X-axis adjustment screw member 52x, and the position of the lens holder 51 in the Y-axis direction can be adjusted by turning the Y-axis adjustment screw member 52y.
 図2Bに示すように、コネクタ13cは、突出部201pの端部に設けられている図1では図示が省略されているレシーバ20Rに装着されている。Z軸方向に伸びる2つのコイルスプリング53zはレンズホルダ51にZ軸方向の力を与えている。突出部201p内には、レンズホルダ51に隣接して可動内筒54が設けられている。可動内筒54の端部にはねじ54swが形成されており、突出部201pの対向する内周面にはねじ20swが形成されている。可動内筒54の位置をZ軸方向に調整することにより、レンズホルダ51のZ軸方向の位置を調整することができる。 As shown in FIG. 2B, the connector 13c is attached to a receiver 20R (not shown in FIG. 1) provided at the end of the protrusion 201p. Two coil springs 53z extending in the Z-axis direction apply a force in the Z-axis direction to the lens holder 51. A movable inner cylinder 54 is provided adjacent to the lens holder 51 inside the protrusion 201p. A thread 54sw is formed at the end of the movable inner cylinder 54, and a thread 20sw is formed on the opposing inner circumferential surface of the protrusion 201p. By adjusting the position of the movable inner cylinder 54 in the Z-axis direction, the position of the lens holder 51 in the Z-axis direction can be adjusted.
 図1に戻り、ウェッジプリズム23の第1の面23aに施されている第1のコーティングは、コリメート光に変換された第1のレーザビームを反射する特性を有する。従って、第1のレーザビームは、第1の面23aで反射して集束レンズ24へと向かう。ウェッジプリズム23の第2の面23bに施されている第2のコーティングは、コリメート光に変換された第2のレーザビームを透過させる特性を有する。第1のコーティングは、第2の面23bを透過した第2のレーザビームを透過させる特性を有する。従って、第2のレーザビームは、第2の面23b及び第1の面23aをこの順で透過して集束レンズ24へと向かう。 Returning to FIG. 1, the first coating applied to the first surface 23a of the wedge prism 23 has the property of reflecting the first laser beam converted into collimated light. Therefore, the first laser beam is reflected by the first surface 23a and heads toward the focusing lens 24. The second coating applied to the second surface 23b of the wedge prism 23 has the property of transmitting the second laser beam converted into collimated light. The first coating has the property of transmitting the second laser beam that has passed through the second surface 23b. Therefore, the second laser beam passes through the second surface 23b and the first surface 23a in this order and heads toward the focusing lens 24.
 第1のコーティングは、さらに、ガイド光射出部26より射出されるガイド光を透過させる特性を有する。第2のコーティングは、さらに、ガイド光を反射する特性を有する。従って、ガイド光は、第1の面23aを透過して第2の面23bで反射し、第1の面23aを再び透過して集束レンズ24へと向かう。 The first coating also has the property of transmitting the guide light emitted from the guide light emission section 26. The second coating also has the property of reflecting the guide light. Therefore, the guide light passes through the first surface 23a, is reflected by the second surface 23b, and passes through the first surface 23a again to proceed toward the focusing lens 24.
 第1のコリメートレンズ21及び第2のコリメートレンズ22は、第1の面23aで反射した第1のレーザビームと、第2の面23b及び第1の面23aを透過した第2のレーザビームとが互いに重畳するように位置が調整されている。ガイド光射出部26は、第2の面23bで反射したガイド光が、結合したレーザビームの光軸と同じ光軸上を進行して集束レンズ24へと向かうように、筐体201に対する取り付け位置及びガイド光を照射する向きが調整されている。 The positions of the first collimating lens 21 and the second collimating lens 22 are adjusted so that the first laser beam reflected by the first surface 23a and the second laser beam transmitted through the second surface 23b and the first surface 23a are superimposed on each other. The attachment position of the guide light emitting unit 26 relative to the housing 201 and the direction in which the guide light is emitted are adjusted so that the guide light reflected by the second surface 23b travels along the same optical axis as the optical axis of the combined laser beam toward the focusing lens 24.
 上記のように、第1のコリメートレンズ21は位置調整機構50によって第1のコリメートレンズ21におけるX軸、Y軸、Z軸の各方向の位置が調整されている。第2のコリメートレンズ22は、位置調整機構50と同様の位置調整機構によって第2のコリメートレンズ22におけるX軸、Y軸、Z軸の各方向の位置が調整されている。 As described above, the position of the first collimator lens 21 in the X-axis, Y-axis, and Z-axis directions is adjusted by the position adjustment mechanism 50. The position of the second collimator lens 22 in the X-axis, Y-axis, and Z-axis directions is adjusted by a position adjustment mechanism similar to the position adjustment mechanism 50.
 従って、ウェッジプリズム23は、第1のレーザビームと第2のレーザビームとを互いに重畳させることにより結合させた結合レーザビームを生成して射出する。集束レンズ24は、結合レーザビームを集束させてプロセスファイバ30のコアに入射させる。プロセスファイバ30は、結合レーザビームを加工ヘッド40へと伝送する光ファイバである。ウェッジプリズム23にガイド光が入射されるときには、集束レンズ24はガイド光を集束させてプロセスファイバ30のコアに入射させる。 Therefore, the wedge prism 23 generates and emits a combined laser beam by combining the first laser beam and the second laser beam by superimposing them on each other. The focusing lens 24 focuses the combined laser beam and makes it incident on the core of the process fiber 30. The process fiber 30 is an optical fiber that transmits the combined laser beam to the processing head 40. When the guide light is incident on the wedge prism 23, the focusing lens 24 focuses the guide light and makes it incident on the core of the process fiber 30.
 加工ヘッド40は、筐体401内に、コリメートレンズ41、ベンドミラー42、集束レンズ43を備える。コリメートレンズ41は、プロセスファイバ30の端部より射出される発散光の結合レーザビームをコリメート光に変換する。コリメートレンズ41は、コリメート光に変換された結合レーザビームの進行方向を90度曲げる。集束レンズ43は、入射された結合レーザビームを集束させて、加工対象の板金Wに照射する。レーザ加工機100は、板金Wを切断する加工機であってもよいし、板金Wを溶接する加工機であってもよい。板金Wは被加工材の一例であり、被加工材は板金に限定されない。 The processing head 40 includes a collimating lens 41, a bend mirror 42, and a focusing lens 43 in a housing 401. The collimating lens 41 converts the divergent combined laser beam emitted from the end of the process fiber 30 into collimated light. The collimating lens 41 bends the traveling direction of the combined laser beam converted into collimated light by 90 degrees. The focusing lens 43 focuses the incident combined laser beam and irradiates it onto the sheet metal W to be processed. The laser processing machine 100 may be a processing machine that cuts the sheet metal W, or may be a processing machine that welds the sheet metal W. The sheet metal W is an example of a workpiece, and the workpiece is not limited to sheet metal.
 加工ヘッド40にガイド光が入射されるときには、集束レンズ43は、入射されたガイド光を集束させて板金Wに照射する。ガイド光を板金Wに照射することにより、オペレータは、加工開始位置を決めたり、加工の軌跡を確認したりすることができる。なお、図1においては、破線で示すガイド光が加工ヘッド40に入射されて板金Wに照射される様子を図示していないが、一点鎖線で示す結合レーザビームと同様に板金Wに照射される。 When the guide light is incident on the processing head 40, the focusing lens 43 focuses the incident guide light and irradiates it on the metal sheet W. By irradiating the metal sheet W with the guide light, the operator can determine the processing start position and check the processing trajectory. Note that in FIG. 1, the guide light shown by the dashed line is not shown as being incident on the processing head 40 and irradiated on the metal sheet W, but it is irradiated on the metal sheet W in the same way as the combined laser beam shown by the dashed line.
 図3は、ビームカプラ20が備えるウェッジプリズム23の第1の面23a及び第2の面23bに施されている第1及び第2のコーティングに施されている反射・透過特性を示す特性図である。図3には、第1のコーティングの反射・透過特性Caと第2のコーティングの反射・透過特性Cbを示している。図3に示すように、第1のコーティングの反射・透過特性Caは、波長λ1を有する第1のレーザビームを反射し、波長λ2を有する第2のレーザビーム及び波長λ3を有するガイド光を透過させる特性である。第2のコーティングの反射・透過特性Cbは、波長λ3を反射し、波長λ2を有する第2のレーザビームを透過させる特性である。 FIG. 3 is a characteristic diagram showing the reflection and transmission characteristics of the first and second coatings applied to the first surface 23a and second surface 23b of the wedge prism 23 provided in the beam coupler 20. FIG. 3 shows the reflection and transmission characteristics Ca of the first coating and the reflection and transmission characteristics Cb of the second coating. As shown in FIG. 3, the reflection and transmission characteristics Ca of the first coating are characteristics that reflect the first laser beam having a wavelength λ1 and transmit the second laser beam having a wavelength λ2 and the guide light having a wavelength λ3. The reflection and transmission characteristics Cb of the second coating are characteristics that reflect the wavelength λ3 and transmit the second laser beam having a wavelength λ2.
 従って、ウェッジプリズム23を備えるビームカプラ20は、上記のように、第1及び第2のレーザビームが入射されるときには、結合レーザビームを加工ヘッド40へと供給し、ガイド光が入射されるときには、ガイド光を加工ヘッド40へと供給することができる。 Therefore, as described above, the beam coupler 20 equipped with the wedge prism 23 can supply a combined laser beam to the processing head 40 when the first and second laser beams are incident, and can supply the guide light to the processing head 40 when the guide light is incident.
 以上のように、ビームカプラ20は、ウェッジプリズム23が第1のレーザビームと第2のレーザビームとを互いに重畳させることにより結合させた結合レーザビームを射出するように構成されているので、レーザビームを高出力化することができる。ビームカプラ20は、ウェッジプリズム23がガイド光を結合レーザビームの光軸と同じ光軸上に射出するように構成されているので、少ない光学部品で結合レーザビームとガイド光とを同じ光軸上に射出する構成を実現している。 As described above, the beam coupler 20 is configured so that the wedge prism 23 emits a combined laser beam obtained by superimposing the first laser beam and the second laser beam on each other, thereby enabling the laser beam to have a high output. The beam coupler 20 is configured so that the wedge prism 23 emits the guide light onto the same optical axis as the optical axis of the combined laser beam, thereby realizing a configuration in which the combined laser beam and the guide light are emitted onto the same optical axis with a small number of optical components.
 レーザ加工機100は、第1のレーザ発振器11、第2のレーザ発振器12、ビームカプラ20、プロセスファイバ30によって伝送される結合レーザビームを加工対象の板金Wに照射する加工ヘッド40を備える。レーザ加工機100によれば、少ない光学部品で結合レーザビームとガイド光とを同じ光軸上に射出することができ、オペレータは、加工開始位置を決めたり、加工の軌跡を確認したりした上で、板金Wを加工することができる。 The laser processing machine 100 includes a processing head 40 that irradiates the combined laser beam transmitted by the first laser oscillator 11, the second laser oscillator 12, the beam coupler 20, and the process fiber 30 onto the metal sheet W to be processed. The laser processing machine 100 can emit the combined laser beam and the guide light on the same optical axis with a small number of optical components, and the operator can process the metal sheet W after determining the processing start position and checking the processing trajectory.
 本発明は以上説明した1またはそれ以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。 The present invention is not limited to one or more of the embodiments described above, and various modifications are possible without departing from the spirit of the present invention.
 本願は、2022年10月12日に日本国特許庁に出願された特願2022-164314号に基づく優先権を主張するものであり、その全ての開示内容は引用によりここに援用される。 This application claims priority to Patent Application No. 2022-164314, filed with the Japan Patent Office on October 12, 2022, the entire disclosure of which is incorporated herein by reference.

Claims (2)

  1.  第1のレーザ発振器より射出される第1の波長を有する発散光の第1のレーザビームをコリメート光に変換する第1のコリメートレンズと、
     第2のレーザ発振器より射出される第2の波長を有する発散光の第2のレーザビームをコリメート光に変換する第2のコリメートレンズと、
     前記第1のコリメートレンズによってコリメート光に変換された前記第1のレーザビームを反射し、かつ可視光よりなるガイド光を透過させる特性を有する第1のコーティングが施された第1の面と、前記第2のコリメートレンズによってコリメート光に変換された前記第2のレーザビームを透過させ、かつ前記ガイド光を反射する特性を有する第2のコーティングが施された第2の面とを含み、前記第1のコーティングは、前記第2の面を透過した前記第2のレーザビームを透過させる特性を有し、前記第1の面で反射した前記第1のレーザビームと、前記第2の面及び前記第1の面をこの順で透過した前記第2のレーザビームとを結合させた結合レーザビームを射出し、前記第2の面で反射して前記第1の面を透過した前記ガイド光を前記結合レーザビームの光軸と同じ光軸上に射出するウェッジプリズムと、
     前記ウェッジプリズムより射出された前記結合レーザビームまたは前記ガイド光を集束させて、前記結合レーザビームまたは前記ガイド光を伝送する光ファイバに入射させる集束レンズと、
     を備えるビーム結合装置。
    a first collimating lens for converting a first laser beam of divergent light having a first wavelength emitted from a first laser oscillator into a collimated light;
    a second collimating lens for converting a second laser beam of divergent light having a second wavelength emitted from a second laser oscillator into a collimated light;
    a wedge prism including: a first surface provided with a first coating having a property of reflecting the first laser beam converted into collimated light by the first collimating lens and transmitting a guide light made of visible light; and a second surface provided with a second coating having a property of transmitting the second laser beam converted into collimated light by the second collimating lens and reflecting the guide light, the first coating having a property of transmitting the second laser beam transmitted through the second surface; the wedge prism emitting a combined laser beam obtained by combining the first laser beam reflected at the first surface and the second laser beam transmitted through the second surface and the first surface in this order, and emitting the guide light reflected at the second surface and transmitted through the first surface onto the same optical axis as the optical axis of the combined laser beam;
    a focusing lens for focusing the combined laser beam or the guide light emitted from the wedge prism and inputting the combined laser beam or the guide light into an optical fiber that transmits the combined laser beam or the guide light;
    A beam combining device comprising:
  2.  前記第1のレーザ発振器と、
     前記第2のレーザ発振器と、
     請求項1に記載のビーム結合装置と、
     前記ガイド光を前記ウェッジプリズムに向けて射出するガイド光射出部と、
     前記光ファイバによって伝送される前記結合レーザビームまたは前記ガイド光を被加工材に照射する加工ヘッドと、
     を備えるレーザ加工機。
    the first laser oscillator;
    the second laser oscillator;
    A beam combining device according to claim 1 ;
    a guide light emission section that emits the guide light toward the wedge prism;
    a processing head that irradiates a workpiece with the combined laser beam or the guide light transmitted by the optical fiber;
    A laser processing machine comprising:
PCT/JP2023/031964 2022-10-12 2023-08-31 Beam combining device and laser processing machine WO2024080033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-164314 2022-10-12
JP2022164314A JP7377933B1 (en) 2022-10-12 2022-10-12 Beam combiner and laser processing machine

Publications (1)

Publication Number Publication Date
WO2024080033A1 true WO2024080033A1 (en) 2024-04-18

Family

ID=88650822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031964 WO2024080033A1 (en) 2022-10-12 2023-08-31 Beam combining device and laser processing machine

Country Status (2)

Country Link
JP (1) JP7377933B1 (en)
WO (1) WO2024080033A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225786A (en) * 2002-01-30 2003-08-12 Uht Corp Laser beam machining unit and machining device equipped therewith
JP2003270566A (en) * 2002-03-18 2003-09-25 Fuji Xerox Co Ltd Light source device and optical scanner using it
JP2010153584A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Optical module and wavelength control method
JP2019193944A (en) * 2018-05-01 2019-11-07 株式会社島津製作所 Laser processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225786A (en) * 2002-01-30 2003-08-12 Uht Corp Laser beam machining unit and machining device equipped therewith
JP2003270566A (en) * 2002-03-18 2003-09-25 Fuji Xerox Co Ltd Light source device and optical scanner using it
JP2010153584A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Optical module and wavelength control method
JP2019193944A (en) * 2018-05-01 2019-11-07 株式会社島津製作所 Laser processing device

Also Published As

Publication number Publication date
JP7377933B1 (en) 2023-11-10
JP2024057512A (en) 2024-04-24

Similar Documents

Publication Publication Date Title
JP7040548B2 (en) Manufacturing method of multi-channel light emitting module and multi-channel light emitting module
EP1601070A2 (en) Wavelength stabilized laser
EP0468319A1 (en) Laser generating apparatus
CA2146727A1 (en) Fiber optical coupler
US10254552B2 (en) Laser array
JP2016224376A (en) Laser apparatus
WO2021145358A1 (en) Laser processing device
US20200408992A1 (en) Optical fiber bundle with beam overlapping mechanism
US20090262432A1 (en) Laser beam multiplexer
WO2024080033A1 (en) Beam combining device and laser processing machine
JP6227216B1 (en) Laser processing equipment
CN110036544B (en) Laser oscillator
WO2024080032A1 (en) Beam combining device and laser processing machine
JP7398649B2 (en) Laser processing equipment and laser processing method
JP7390600B2 (en) Optical resonator and laser processing equipment
JP2019005802A (en) Laser processing method, laser processing device and laser emission unit
JP2019181534A (en) Laser oscillator and laser processing device using the same
WO2021157546A1 (en) Laser processing apparatus
WO2021145205A1 (en) Laser device, and laser processing device in which same is used
WO2023144995A1 (en) Laser apparatus and laser processing machine
US20230163550A1 (en) Laser system
WO2021192730A1 (en) Optical device, laser beam output system, and laser processing apparatus
WO2021145357A1 (en) Laser apparatus and laser machining apparatus using same
JP7411851B1 (en) Polarization adjustment device and laser processing machine
US6631155B1 (en) Multi-output laser-radiation source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877040

Country of ref document: EP

Kind code of ref document: A1