WO2024080032A1 - Beam combining device and laser processing machine - Google Patents

Beam combining device and laser processing machine Download PDF

Info

Publication number
WO2024080032A1
WO2024080032A1 PCT/JP2023/031951 JP2023031951W WO2024080032A1 WO 2024080032 A1 WO2024080032 A1 WO 2024080032A1 JP 2023031951 W JP2023031951 W JP 2023031951W WO 2024080032 A1 WO2024080032 A1 WO 2024080032A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
wedge prism
light
laser
coating
Prior art date
Application number
PCT/JP2023/031951
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 小林
陽亮 有本
Original Assignee
株式会社アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ filed Critical 株式会社アマダ
Publication of WO2024080032A1 publication Critical patent/WO2024080032A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • This disclosure relates to a beam combining device and a laser processing machine.
  • Laser processing machines In recent years, the laser beams used by laser processing machines to process sheet metal workpieces have become increasingly powerful (higher brightness). Laser processing machines sometimes superimpose two laser beams with different wavelengths emitted from two laser oscillators using optical components with wavelength-selective coatings to increase the power of the laser beam.
  • Increasing the power of the laser beam as described above makes it easier for unwanted light to be generated due to stimulated Raman scattering in the optical fiber that transmits the laser beam to the processing head.
  • unwanted light is generated due to stimulated Raman scattering, the quality of the laser beam deteriorates, which may result in a deterioration in the processing quality of the workpiece.
  • the processing speed may have to be reduced, which may result in a decrease in processing efficiency.
  • unwanted light due to stimulated Raman scattering may enter the laser oscillator, causing damage to the laser oscillator (see Patent Document 1).
  • a first aspect of one or more embodiments includes a first collimating lens that converts a first laser beam of divergent light having a first wavelength emitted from a first laser oscillator into collimated light, a second collimating lens that converts a second laser beam of divergent light having a second wavelength emitted from a second laser oscillator into collimated light, a first surface that is provided with a first coating having a property of reflecting the first laser beam converted into collimated light by the first collimating lens, and a second collimating lens that transmits the second laser beam converted into collimated light by the second collimating lens.
  • the present invention provides a beam combining device that includes a second surface coated with a second coating having a characteristic of transmitting the second laser beam transmitted through the second surface, a wedge prism that emits a combined laser beam by superimposing the first laser beam reflected by the first surface and the second laser beam transmitted through the second surface and the first surface in this order, and a focusing lens that focuses the combined laser beam emitted from the wedge prism and inputs it into an optical fiber that transmits the combined laser beam.
  • the second coating has a characteristic of reflecting at least the second unwanted light of the first unwanted light generated based on the first laser beam by stimulated Raman scattering and traveling from the optical fiber to the wedge prism, and the second unwanted light generated based on the second laser beam by stimulated Raman scattering and traveling from the optical fiber to the wedge prism, and the wedge prism reflects at least the second unwanted light in a third direction different from the first direction, which is the direction of the optical axis of the combined laser beam traveling from the wedge prism to the focusing lens, and the second direction, which is the direction of the optical axis of the first laser beam traveling from the first collimating lens to the wedge prism.
  • the wedge prism superimposes the first laser beam and the second laser beam on each other to emit a combined laser beam, thereby enabling the laser beam to have a high output.
  • at least the second unwanted light is not directed toward the first and second collimating lenses, thereby reducing defects caused by the unwanted light due to stimulated Raman scattering.
  • a second aspect of one or more of the embodiments provides a laser processing machine including the first laser oscillator, the second laser oscillator, the beam combining device of the first aspect, and a processing head that irradiates the combined laser beam transmitted by the optical fiber onto a workpiece to be processed.
  • the wedge prism superimposes the first laser beam and the second laser beam on each other to emit a combined laser beam, thereby enabling the laser beam to be made high-powered.
  • at least the second unwanted light is not directed toward the first and second collimating lenses, thereby reducing defects caused by the unwanted light due to stimulated Raman scattering.
  • the workpiece can be processed with a high-power laser beam.
  • the beam combining device and laser processing machine can superimpose two laser beams with different wavelengths to produce a high-power laser beam, thereby reducing defects caused by unwanted light due to stimulated Raman scattering.
  • FIG. 1 illustrates a beam combining device and a laser processing machine according to one or more embodiments.
  • FIG. 2A is a cross-sectional view of a position adjustment mechanism for a first collimating lens included in a beam combining device according to one or more embodiments, taken along a plane perpendicular to the Z axis.
  • FIG. 2B is a cross-sectional view of a position adjustment mechanism for a first collimating lens included in a beam combining device according to one or more embodiments, taken along a plane perpendicular to the X-axis.
  • FIG. 3 is a characteristic diagram illustrating a first example of the operation of a wedge prism included in a beam combining device according to one or more embodiments.
  • FIG. 4 is a characteristic diagram showing a second example, which is more preferable than the first example, for explaining the operation of a wedge prism included in a beam combining device according to one or more embodiments of the present invention.
  • the beam combining device includes a first collimating lens, a second collimating lens, a wedge prism, and a focusing lens.
  • the first collimating lens converts a first laser beam of divergent light having a first wavelength emitted from a first laser oscillator into collimated light.
  • the second collimating lens converts a second laser beam of divergent light having a second wavelength emitted from a second laser oscillator into collimated light.
  • the wedge prism includes a first surface having a first coating with a characteristic of reflecting the first laser beam converted into collimated light by the first collimating lens, and a second surface having a second coating with a characteristic of transmitting the second laser beam converted into collimated light by the second collimating lens.
  • the first coating has a characteristic of transmitting the second laser beam transmitted through the second surface.
  • the wedge prism emits a combined laser beam obtained by combining the first laser beam reflected by the first surface and the second laser beam transmitted through the second surface and the first surface in this order by superimposing them on each other.
  • the focusing lens focuses the combined laser beam emitted from the wedge prism and makes it incident on the optical fiber that transmits the combined laser beam.
  • the second coating has a characteristic of reflecting at least the second unwanted light of a first unwanted light generated by stimulated Raman scattering based on the first laser beam and traveling from the optical fiber to the wedge prism, and a second unwanted light generated by stimulated Raman scattering based on the second laser beam and traveling from the optical fiber to the wedge prism.
  • the wedge prism reflects at least the second unwanted light in a third direction different from a first direction which is the direction of the optical axis of the combined laser beam traveling from the wedge prism to the focusing lens, and a second direction which is the direction of the optical axis of the first laser beam traveling from the first collimating lens to the wedge prism.
  • the laser processing machine includes the first laser oscillator, the second laser oscillator, a beam combining device according to one or more embodiments, and a processing head that irradiates the combined laser beam transmitted by the optical fiber onto a workpiece to be processed.
  • FIG. 1 shows a beam combining device and a laser processing machine according to one or more embodiments.
  • the laser processing machine 100 according to one or more embodiments shown in FIG. 1 includes a first laser oscillator 11, a second laser oscillator 12, a beam coupler 20 which is a beam combining device according to one or more embodiments, and a processing head 40.
  • the first laser oscillator 11 and the second laser oscillator 12 are, for example, a fiber laser oscillator, a disk laser oscillator, or a direct diode laser oscillator.
  • the connector 13c of the feeding fiber 13 that transmits the first laser beam emitted from the first laser oscillator 11 is connected to the end of the protrusion 201p in the housing 201 of the beam coupler 20.
  • the connector 14c of the feeding fiber 14 that transmits the second laser beam emitted from the second laser oscillator 12 is connected to one end of the main body 201m in the housing 201.
  • the first connector 30c1 of the process fiber 30 is connected to the other end of the main body 201m, and the second connector 30c2 is connected to the housing 401 of the processing head 40.
  • the beam coupler 20 includes a first collimating lens 21, a second collimating lens 22, a wedge prism 23, a focusing lens 24, and a beam damper 25 within a housing 201. Although it is not essential that the beam coupler 20 includes the beam damper 25, it is preferable that the beam coupler 20 includes the beam damper 25.
  • a first coating which will be described later, is applied to the first surface 23a of the wedge prism 23.
  • a second coating which will be described later, is applied to the second surface 23b, which faces the first surface 23a of the wedge prism 23.
  • the first laser beam emitted from the first laser oscillator 11 has a wavelength ⁇ 1
  • the second laser beam emitted from the second laser oscillator 12 has a wavelength ⁇ 2 that is longer than the wavelength ⁇ 1.
  • the first laser beam, the second laser beam, and a combined laser beam described below are indicated by dashed dotted lines. It is preferable that the difference between the wavelengths ⁇ 1 and ⁇ 2 is less than 50 nm. The reason for this will be described later. Note that in order to superimpose two laser beams with different wavelengths on each other, the difference in the wavelengths of the two laser beams must be at least 5 nm. Therefore, the difference between the wavelengths ⁇ 1 and ⁇ 2 is at least 5 nm.
  • the first laser beam emitted from the first laser oscillator 11 is transmitted to the beam coupler 20 by the feeding fiber 13.
  • the second laser beam emitted from the second laser oscillator 12 is transmitted to the beam coupler 20 by the feeding fiber 14.
  • the first collimating lens 21 converts the first laser beam of diverging light emitted from the end of the feeding fiber 13 into collimated light.
  • the first laser beam converted into collimated light is incident on the first surface 23a of the wedge prism 23.
  • the second collimating lens 22 converts the second laser beam of diverging light emitted from the end of the feeding fiber 14 into collimated light.
  • the second laser beam converted into collimated light is incident on the second surface 23b of the wedge prism 23.
  • the first collimating lens 21 and the second collimating lens 22 are biconvex lenses in which both the entrance surface and the exit surface of the laser beam are convex, but they may also be plano-convex lenses in which the entrance surface is flat and the exit surface is convex.
  • the lens shapes of the first collimating lens 21 and the second collimating lens 22 are not limited.
  • the focusing lens 24 and the collimating lens 41 or focusing lens 43 in the processing head 40 which will be described later, may also be biconvex lenses or plano-convex lenses, and the lens shapes are not limited.
  • FIG. 2A is a cross-sectional view of the position adjustment mechanism 50 of the first collimator lens 21 provided in the beam coupler 20, cut along a plane perpendicular to the Z axis.
  • FIG. 2B is a cross-sectional view of the position adjustment mechanism 50 of the first collimator lens 21 provided in the beam coupler 20, cut along a plane perpendicular to the X axis.
  • the position of the first collimator lens 21 is adjusted by the position adjustment mechanism 50 as shown in FIG. 2A and FIG. 2B.
  • the position of the second collimator lens 22 is also adjusted by a position adjustment mechanism similar to the position adjustment mechanism 50 shown in FIG. 2A and FIG. 2B.
  • the optical axis direction of the first laser beam emitted from the first collimator lens 21 is the Z axis, and the two orthogonal directions perpendicular to the Z axis are the X axis and the Y axis.
  • the first collimator lens 21 is a plano-convex lens.
  • the first collimator lens 21 is held in the position adjustment mechanism 50 by the lens holder 51.
  • two coil springs 53x extending in the X-axis direction apply a force in the X-axis direction to the lens holder 51
  • two coil springs 53y extending in the Y-axis direction apply a force in the Y-axis direction to the lens holder 51.
  • the position of the lens holder 51 in the X-axis direction can be adjusted by turning the X-axis adjustment screw member 52x
  • the position of the lens holder 51 in the Y-axis direction can be adjusted by turning the Y-axis adjustment screw member 52y.
  • the connector 13c is attached to a receiver 20R (not shown in FIG. 1) provided at the end of the protrusion 201p.
  • Two coil springs 53z extending in the Z-axis direction apply a force in the Z-axis direction to the lens holder 51.
  • a movable inner cylinder 54 is provided adjacent to the lens holder 51 inside the protrusion 201p.
  • a male thread 54sw is formed on the outer peripheral surface of the end of the movable inner cylinder 54, and a female thread 20sw that meshes with the male thread 54sw is formed on the opposing inner peripheral surface of the protrusion 201p.
  • the first coating applied to the first surface 23a of the wedge prism 23 has the property of reflecting the first laser beam converted into collimated light. Therefore, the first laser beam is reflected by the first surface 23a and heads toward the focusing lens 24.
  • the second coating applied to the second surface 23b of the wedge prism 23 has the property of transmitting the second laser beam converted into collimated light.
  • the first coating has the property of transmitting the second laser beam that has passed through the second surface 23b. Therefore, the second laser beam passes through the second surface 23b and the first surface 23a in this order and heads toward the focusing lens 24.
  • the positions of the first collimating lens 21 and the second collimating lens 22 are adjusted so that the first laser beam reflected by the first surface 23a and the second laser beam transmitted through the second surface 23b and the first surface 23a are superimposed on each other.
  • the position of the first collimating lens 21 is adjusted in the X-axis, Y-axis, and Z-axis directions of the first collimating lens 21 by the position adjustment mechanism 50.
  • the position of the second collimating lens 22 is adjusted in the X-axis, Y-axis, and Z-axis directions of the second collimating lens 22 by a position adjustment mechanism similar to the position adjustment mechanism 50.
  • the wedge prism 23 generates and emits a combined laser beam by superimposing the first laser beam and the second laser beam on each other.
  • the focusing lens 24 focuses the combined laser beam and makes it incident on the core of the process fiber 30.
  • the process fiber 30 is an optical fiber that transmits the combined laser beam to the processing head 40.
  • the processing head 40 includes a collimating lens 41, a bend mirror 42, and a focusing lens 43 in a housing 401.
  • the collimating lens 41 converts the divergent combined laser beam emitted from the end of the process fiber 30 into collimated light.
  • the collimating lens 41 bends the traveling direction of the combined laser beam converted into collimated light by 90 degrees.
  • the focusing lens 43 focuses the incident combined laser beam and irradiates it onto the sheet metal W to be processed.
  • the laser processing machine 100 may be a processing machine that cuts the sheet metal W, or may be a processing machine that welds the sheet metal W.
  • the sheet metal W is an example of a workpiece, and the workpiece is not limited to sheet metal.
  • the process fiber 30 has a length of 10 m to 20 m.
  • unwanted light is likely to be generated due to stimulated Raman scattering, which is one of the nonlinear phenomena of optical fibers.
  • SRS light the unwanted light due to stimulated Raman scattering
  • the generation threshold Pth at which SRS light is generated is given by the following formula (1) using the effective core area Aeff, polarization factor fp, Raman gain gR, and effective fiber length Leff of the process fiber 30.
  • Pth 16 ⁇ ⁇ Aeff / (fp gR Leff) ⁇ ...
  • the generation threshold Pth becomes larger and SRS light becomes less likely to be generated.
  • the beam quality deteriorates, and the processing quality decreases, especially when the metal plate W is a thin plate. Therefore, it is difficult to adopt a measure to suppress the generation of SRS light by increasing the core diameter of the process fiber 30.
  • the generation threshold Pth becomes larger and SRS light becomes less likely to be generated.
  • the process fiber 30 is long, at 10 m to 20 m, and it is also difficult to adopt a measure to suppress the generation of SRS light by shortening the process fiber 30.
  • the SRS light generated in the process fiber 30 may travel toward the beam coupler 20. If the SRS light that has entered the beam coupler 20 is incident on the first laser oscillator 11 or the second laser oscillator 12, there is a risk of damaging the first laser oscillator 11 or the second laser oscillator 12, so the beam coupler 20 is configured as follows.
  • FIG. 3 is a characteristic diagram showing a first example for explaining the operation of the wedge prism 23 provided in the beam coupler 20.
  • FIG. 3 shows the reflection/transmission characteristic C11 of the first coating and the reflection/transmission characteristic C21 of the second coating when the difference between the wavelength ⁇ 1 of the first laser beam and the wavelength ⁇ 2 of the second laser beam greatly exceeds 50 nm.
  • the first SRS light (first unwanted light) generated based on the first laser beam is generated at a wavelength ⁇ s1 that is about 50 nm longer than the wavelength ⁇ 1
  • the second SRS light (second unwanted light) generated based on the second laser beam is generated at a wavelength ⁇ s2 that is about 50 nm longer than the wavelength ⁇ 2.
  • FIG. 3 also shows the light intensity characteristic LB1 of the first laser beam, the light intensity characteristic LB2 of the second laser beam, the light intensity characteristic SRS1 of the first SRS light, and the light intensity characteristic SRS2 of the second SRS light.
  • the reflection/transmission characteristic C21 of the second coating is a characteristic that transmits the second laser beam and reflects the second SRS light.
  • the reflection/transmission characteristic C11 of the first coating is a characteristic that reflects the first laser beam and the first SRS light. Therefore, when the wavelengths ⁇ 1, ⁇ 2, ⁇ s1, and ⁇ s2 are in the wavelength positional relationship shown in FIG. 3 and the first and second coatings have the reflection/transmission characteristics C11 and C21 shown in FIG. 3, respectively, the wedge prism 23 reflects the second SRS light in the direction shown in FIG. 1.
  • the direction of the optical axis of the combined laser beam traveling from the wedge prism 23 to the focusing lens 24 is defined as a first direction.
  • the direction of the optical axis of the first laser beam traveling from the first collimating lens 21 to the wedge prism 23 is defined as a second direction.
  • the wedge prism 23 reflects the second SRS light in a third direction different from the first and second directions.
  • the beam damper 25 is made of an aluminum material that has been black anodized.
  • the beam damper 25 absorbs the incident second SRS light and prevents it from traveling toward the first collimator lens 21 or the second collimator lens 22.
  • FIG. 4 is a characteristic diagram showing a second example, which is more preferable than the first example, for explaining the operation of the wedge prism 23 provided in the beam coupler 20.
  • FIG. 4 shows the preferred reflection/transmission characteristics C12 of the reflectance of the first coating and the preferred reflection/transmission characteristics C22 of the reflectance of the second coating, with the difference between the wavelength ⁇ 1 of the first laser beam and the wavelength ⁇ 2 of the second laser beam being less than 50 nm. Since the difference between the wavelength ⁇ 1 and the wavelength ⁇ 2 is less than 50 nm, the wavelengths ⁇ 1, ⁇ 2, ⁇ s1, and ⁇ s2 are in the wavelength positional relationship shown in FIG. 4.
  • the reflection/transmission characteristic C22 of the second coating is a characteristic that transmits the second laser beam and reflects the first and second SRS lights.
  • the reflection/transmission characteristic C12 of the first coating is a characteristic that reflects the first laser beam. Therefore, when the wavelengths ⁇ 1, ⁇ 2, ⁇ s1, and ⁇ s2 are in the wavelength positional relationship shown in FIG. 4 and the first and second coatings have the reflection/transmission characteristics C12 and C22 shown in FIG. 4, respectively, the wedge prism 23 reflects the first and second SRS lights in the third direction.
  • the beam damper 25 absorbs the incident first and second SRS lights and prevents them from traveling toward the first collimating lens 21 or the second collimating lens 22.
  • the second coating applied to the second surface 23b of the wedge prism 23 has the property of reflecting at least the second SRS light of the first SRS light and the second SRS light, and preferably has the property of reflecting both the first and second SRS lights.
  • the difference between the wavelength ⁇ 1 and the wavelength ⁇ 2 is less than 50 nm.
  • the beam coupler 20 is configured so that the wedge prism 23 superimposes the first laser beam and the second laser beam on each other to emit a combined laser beam, thereby enabling the laser beam to have a high output.
  • the beam coupler 20 is configured so that the wedge prism 23 reflects at least the second SRS light in the third direction, so that at least the second SRS light does not travel toward the first collimator lens 21 and the second collimator lens 22. Therefore, the beam coupler 20 can reduce problems caused by the SRS light.
  • the beam coupler 20 is preferably configured so that the wedge prism 23 reflects the first and second SRS lights in a third direction. With this configuration, the first and second SRS lights do not travel toward the first collimator lens 21 and the second collimator lens 22. Therefore, with the beam coupler 20 configured to reflect the first and second SRS lights in the third direction, problems caused by the SRS lights can be further reduced.
  • the beam coupler 20 described above has the advantage of being able to combine the first and second laser beams with a small number of optical components, while also reducing problems caused by SRS light.
  • the laser processing machine 100 includes a processing head 40 that irradiates the combined laser beam transmitted by the first laser oscillator 11, the second laser oscillator 12, the beam coupler 20, and the process fiber 30 onto the metal sheet W to be processed.
  • the laser processing machine 100 reduces defects caused by SRS light and can process the metal sheet W with a high-output laser beam.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

A first surface (23a) of a wedge prism (23) has a first coating, and a second surface (23b) thereof has a second coating. The wedge prism (23) emits a combined laser beam obtained by superimposing on one another a first laser beam reflected by the first surface (23a) and a second laser beam that has been transmitted through the second surface (23b) and the first surface (23a) in the stated order. The second coating has the characteristic of reflecting at least second unnecessary light among first unnecessary light, which is generated by means of stimulated Raman scattering on the basis of the first laser beam and which is directed toward the wedge prism (23) from an optical fiber (process fiber (30)), and said second unnecessary light, which is generated by means of stimulated Raman scattering on the basis of the second laser beam and which is directed toward the wedge prism (23) from the optical fiber.

Description

ビーム結合装置及びレーザ加工機Beam combining device and laser processing machine
 本開示は、ビーム結合装置及びレーザ加工機に関する。 This disclosure relates to a beam combining device and a laser processing machine.
 近年、レーザ加工機が被加工材である板金を加工する際に使用するレーザビームの高出力化(高輝度化)が進んでいる。レーザ加工機は、2つのレーザ発振器より射出された波長が異なる2つのレーザビームを、波長選択性コーティングを施した光学部品で互いに重畳してレーザビームを高出力化することがある。 In recent years, the laser beams used by laser processing machines to process sheet metal workpieces have become increasingly powerful (higher brightness). Laser processing machines sometimes superimpose two laser beams with different wavelengths emitted from two laser oscillators using optical components with wavelength-selective coatings to increase the power of the laser beam.
特開2019-202342号公報JP 2019-202342 A
 上記のようにレーザビームの高出力化すると、レーザビームを加工ヘッドへと伝送する光ファイバ内で誘導ラマン散乱による不要光が発生しやすくなる。誘導ラマン散乱による不要光が発生すると、レーザビームの品質が悪化するため、被加工材の加工品質を悪化させることがある。加工品質の悪化を回避するために加工速度を低下させざるを得なくなり、加工の効率が落ちてしまうことがある。また、誘導ラマン散乱による不要光がレーザ発振器に入射して、レーザ発振器が破損するおそれがある(特許文献1参照)。 Increasing the power of the laser beam as described above makes it easier for unwanted light to be generated due to stimulated Raman scattering in the optical fiber that transmits the laser beam to the processing head. When unwanted light is generated due to stimulated Raman scattering, the quality of the laser beam deteriorates, which may result in a deterioration in the processing quality of the workpiece. In order to avoid the deterioration of the processing quality, the processing speed may have to be reduced, which may result in a decrease in processing efficiency. In addition, unwanted light due to stimulated Raman scattering may enter the laser oscillator, causing damage to the laser oscillator (see Patent Document 1).
 波長が異なる2つのレーザビームを重畳することによりレーザビームを高出力化しながら、誘導ラマン散乱による不要光に起因する不具合を軽減させることができる新たな構成の登場が望まれる。 There is a need for a new configuration that can increase the output of a laser beam by superimposing two laser beams with different wavelengths while reducing defects caused by unwanted light due to stimulated Raman scattering.
 1またはそれ以上の実施形態の第1の態様は、第1のレーザ発振器より射出される第1の波長を有する発散光の第1のレーザビームをコリメート光に変換する第1のコリメートレンズと、第2のレーザ発振器より射出される第2の波長を有する発散光の第2のレーザビームをコリメート光に変換する第2のコリメートレンズと、前記第1のコリメートレンズによってコリメート光に変換された前記第1のレーザビームを反射する特性を有する第1のコーティングが施された第1の面と、前記第2のコリメートレンズによってコリメート光に変換された前記第2のレーザビームを透過させる特性を有する第2のコーティングが施された第2の面とを含み、前記第1のコーティングは、前記第2の面を透過した前記第2のレーザビームを透過させる特性を有し、前記第1の面で反射した前記第1のレーザビームと、前記第2の面及び前記第1の面をこの順で透過した前記第2のレーザビームとを互いに重畳させることにより結合させた結合レーザビームを射出するウェッジプリズムと、前記ウェッジプリズムより射出された前記結合レーザビームを集束させて、前記結合レーザビームを伝送する光ファイバに入射させる集束レンズとを備えるビーム結合装置を提供する。 A first aspect of one or more embodiments includes a first collimating lens that converts a first laser beam of divergent light having a first wavelength emitted from a first laser oscillator into collimated light, a second collimating lens that converts a second laser beam of divergent light having a second wavelength emitted from a second laser oscillator into collimated light, a first surface that is provided with a first coating having a property of reflecting the first laser beam converted into collimated light by the first collimating lens, and a second collimating lens that transmits the second laser beam converted into collimated light by the second collimating lens. The present invention provides a beam combining device that includes a second surface coated with a second coating having a characteristic of transmitting the second laser beam transmitted through the second surface, a wedge prism that emits a combined laser beam by superimposing the first laser beam reflected by the first surface and the second laser beam transmitted through the second surface and the first surface in this order, and a focusing lens that focuses the combined laser beam emitted from the wedge prism and inputs it into an optical fiber that transmits the combined laser beam.
 第1の態様のビーム結合装置において、前記第2のコーティングは、誘導ラマン散乱によって前記第1のレーザビームに基づいて発生する、前記光ファイバから前記ウェッジプリズムへと向かう第1の不要光と、誘導ラマン散乱によって前記第2のレーザビームに基づいて発生する、前記光ファイバから前記ウェッジプリズムへと向かう第2の不要光とのうち、少なくとも前記第2の不要光を反射する特性を有し、前記ウェッジプリズムは、少なくとも前記第2の不要光を、前記ウェッジプリズムから前記集束レンズへと向かう前記結合レーザビームの光軸の方向である第1の方向と、前記第1のコリメートレンズから前記ウェッジプリズムへと向かう前記第1のレーザビームの光軸の方向である第2の方向とは異なる第3の方向に反射させる。 In the beam combining device of the first aspect, the second coating has a characteristic of reflecting at least the second unwanted light of the first unwanted light generated based on the first laser beam by stimulated Raman scattering and traveling from the optical fiber to the wedge prism, and the second unwanted light generated based on the second laser beam by stimulated Raman scattering and traveling from the optical fiber to the wedge prism, and the wedge prism reflects at least the second unwanted light in a third direction different from the first direction, which is the direction of the optical axis of the combined laser beam traveling from the wedge prism to the focusing lens, and the second direction, which is the direction of the optical axis of the first laser beam traveling from the first collimating lens to the wedge prism.
 1またはそれ以上の実施形態の第1の態様によれば、ウェッジプリズムが第1のレーザビームと第2のレーザビームとを互いに重畳させることにより結合させた結合レーザビームを射出するので、レーザビームを高出力化することができる。1またはそれ以上の実施形態の第1の態様によれば、少なくとも第2の不要光が第1及び第2のコリメートレンズに向かうことがないので、誘導ラマン散乱による不要光に起因する不具合を軽減させることができる。 According to a first aspect of one or more embodiments, the wedge prism superimposes the first laser beam and the second laser beam on each other to emit a combined laser beam, thereby enabling the laser beam to have a high output. According to a first aspect of one or more embodiments, at least the second unwanted light is not directed toward the first and second collimating lenses, thereby reducing defects caused by the unwanted light due to stimulated Raman scattering.
 1またはそれ以上の実施形態の第2の態様は、前記第1のレーザ発振器と、前記第2のレーザ発振器と、第1の態様のビーム結合装置と、前記光ファイバによって伝送される前記結合レーザビームを加工対象の被加工材に照射する加工ヘッドとを備えるレーザ加工機を提供する。 A second aspect of one or more of the embodiments provides a laser processing machine including the first laser oscillator, the second laser oscillator, the beam combining device of the first aspect, and a processing head that irradiates the combined laser beam transmitted by the optical fiber onto a workpiece to be processed.
 1またはそれ以上の実施形態の第2の態様によれば、ウェッジプリズムが第1のレーザビームと第2のレーザビームとを互いに重畳させることにより結合させた結合レーザビームを射出するので、レーザビームを高出力化することができる。1またはそれ以上の実施形態の第2の態様によれば、少なくとも第2の不要光が第1及び第2のコリメートレンズに向かうことがないので、誘導ラマン散乱による不要光に起因する不具合を軽減させることができる。1またはそれ以上の実施形態の第2の態様によれば、高出力のレーザビームで被加工材を加工することができる。 According to the second aspect of one or more of the embodiments, the wedge prism superimposes the first laser beam and the second laser beam on each other to emit a combined laser beam, thereby enabling the laser beam to be made high-powered. According to the second aspect of one or more of the embodiments, at least the second unwanted light is not directed toward the first and second collimating lenses, thereby reducing defects caused by the unwanted light due to stimulated Raman scattering. According to the second aspect of one or more of the embodiments, the workpiece can be processed with a high-power laser beam.
 1またはそれ以上の実施形態に係るビーム結合装置及びレーザ加工機によれば、波長が異なる2つのレーザビームを互いに重畳することによりレーザビームを高出力化することができ、誘導ラマン散乱による不要光に起因する不具合を軽減させることができる。 The beam combining device and laser processing machine according to one or more embodiments can superimpose two laser beams with different wavelengths to produce a high-power laser beam, thereby reducing defects caused by unwanted light due to stimulated Raman scattering.
図1は、1またはそれ以上の実施形態に係るビーム結合装置及びレーザ加工機を示す図である。FIG. 1 illustrates a beam combining device and a laser processing machine according to one or more embodiments. 図2Aは、1またはそれ以上の実施形態に係るビーム結合装置が備える第1のコリメートレンズの位置調整機構をZ軸と直交する面で切断した断面図である。FIG. 2A is a cross-sectional view of a position adjustment mechanism for a first collimating lens included in a beam combining device according to one or more embodiments, taken along a plane perpendicular to the Z axis. 図2Bは、1またはそれ以上の実施形態に係るビーム結合装置が備える第1のコリメートレンズの位置調整機構をX軸と直交する面で切断した断面図である。FIG. 2B is a cross-sectional view of a position adjustment mechanism for a first collimating lens included in a beam combining device according to one or more embodiments, taken along a plane perpendicular to the X-axis. 図3は、1またはそれ以上の実施形態に係るビーム結合装置が備えるウェッジプリズムの動作を説明するための第1の例を示す特性図である。FIG. 3 is a characteristic diagram illustrating a first example of the operation of a wedge prism included in a beam combining device according to one or more embodiments. 図4は、1またはそれ以上の実施形態に係るビーム結合装置が備えるウェッジプリズムの動作を説明するための、第1の例より好ましい第2の例を示す特性図である。FIG. 4 is a characteristic diagram showing a second example, which is more preferable than the first example, for explaining the operation of a wedge prism included in a beam combining device according to one or more embodiments of the present invention.
 1またはそれ以上の実施形態に係るビーム結合装置は、第1のコリメートレンズ、第2のコリメートレンズ、ウェッジプリズム、集束レンズを備える。前記第1のコリメートレンズは、第1のレーザ発振器より射出される第1の波長を有する発散光の第1のレーザビームをコリメート光に変換する。前記第2のコリメートレンズは、第2のレーザ発振器より射出される第2の波長を有する発散光の第2のレーザビームをコリメート光に変換する。 The beam combining device according to one or more embodiments includes a first collimating lens, a second collimating lens, a wedge prism, and a focusing lens. The first collimating lens converts a first laser beam of divergent light having a first wavelength emitted from a first laser oscillator into collimated light. The second collimating lens converts a second laser beam of divergent light having a second wavelength emitted from a second laser oscillator into collimated light.
 前記ウェッジプリズムは、前記第1のコリメートレンズによってコリメート光に変換された前記第1のレーザビームを反射する特性を有する第1のコーティングが施された第1の面と、前記第2のコリメートレンズによってコリメート光に変換された前記第2のレーザビームを透過させる特性を有する第2のコーティングが施された第2の面とを含む。前記第1のコーティングは、前記第2の面を透過した前記第2のレーザビームを透過させる特性を有する。前記ウェッジプリズムは、前記第1の面で反射した前記第1のレーザビームと、前記第2の面及び前記第1の面をこの順で透過した前記第2のレーザビームとを互いに重畳させることにより結合させた結合レーザビームを射出する。 The wedge prism includes a first surface having a first coating with a characteristic of reflecting the first laser beam converted into collimated light by the first collimating lens, and a second surface having a second coating with a characteristic of transmitting the second laser beam converted into collimated light by the second collimating lens. The first coating has a characteristic of transmitting the second laser beam transmitted through the second surface. The wedge prism emits a combined laser beam obtained by combining the first laser beam reflected by the first surface and the second laser beam transmitted through the second surface and the first surface in this order by superimposing them on each other.
 前記集束レンズは、前記ウェッジプリズムより射出された前記結合レーザビームを集束させて、前記結合レーザビームを伝送する光ファイバに入射させる。 The focusing lens focuses the combined laser beam emitted from the wedge prism and makes it incident on the optical fiber that transmits the combined laser beam.
 1またはそれ以上の実施形態に係るビーム結合装置において、前記第2のコーティングは、誘導ラマン散乱によって前記第1のレーザビームに基づいて発生する、前記光ファイバから前記ウェッジプリズムへと向かう第1の不要光と、誘導ラマン散乱によって前記第2のレーザビームに基づいて発生する、前記光ファイバから前記ウェッジプリズムへと向かう第2の不要光とのうち、少なくとも前記第2の不要光を反射する特性を有する。前記ウェッジプリズムは、少なくとも前記第2の不要光を、前記ウェッジプリズムから前記集束レンズへと向かう前記結合レーザビームの光軸の方向である第1の方向と、前記第1のコリメートレンズから前記ウェッジプリズムへと向かう前記第1のレーザビームの光軸の方向である第2の方向とは異なる第3の方向に反射させる。 In one or more embodiments of the beam combining device, the second coating has a characteristic of reflecting at least the second unwanted light of a first unwanted light generated by stimulated Raman scattering based on the first laser beam and traveling from the optical fiber to the wedge prism, and a second unwanted light generated by stimulated Raman scattering based on the second laser beam and traveling from the optical fiber to the wedge prism. The wedge prism reflects at least the second unwanted light in a third direction different from a first direction which is the direction of the optical axis of the combined laser beam traveling from the wedge prism to the focusing lens, and a second direction which is the direction of the optical axis of the first laser beam traveling from the first collimating lens to the wedge prism.
 1またはそれ以上の実施形態に係るレーザ加工機は、前記第1のレーザ発振器と、前記第2のレーザ発振器と、1またはそれ以上の実施形態に係るビーム結合装置と、前記光ファイバによって伝送される前記結合レーザビームを加工対象の被加工材に照射する加工ヘッドとを備える。 The laser processing machine according to one or more embodiments includes the first laser oscillator, the second laser oscillator, a beam combining device according to one or more embodiments, and a processing head that irradiates the combined laser beam transmitted by the optical fiber onto a workpiece to be processed.
 以下、1またはそれ以上の実施形態に係るビーム結合装置及びレーザ加工機について、添付図面を参照して具体的に説明する。図1は、1またはそれ以上の実施形態に係るビーム結合装置及びレーザ加工機を示す。図1に示す1またはそれ以上の実施形態に係るレーザ加工機100は、第1のレーザ発振器11、第2のレーザ発振器12、1またはそれ以上の実施形態に係るビーム結合装置であるビームカプラ20、加工ヘッド40を備える。第1のレーザ発振器11及び第2のレーザ発振器12は、例えば、ファイバレーザ発振器、ディスクレーザ発振器、またはダイレクトダイオードレーザ発振器である。 Below, a beam combining device and a laser processing machine according to one or more embodiments will be specifically described with reference to the accompanying drawings. FIG. 1 shows a beam combining device and a laser processing machine according to one or more embodiments. The laser processing machine 100 according to one or more embodiments shown in FIG. 1 includes a first laser oscillator 11, a second laser oscillator 12, a beam coupler 20 which is a beam combining device according to one or more embodiments, and a processing head 40. The first laser oscillator 11 and the second laser oscillator 12 are, for example, a fiber laser oscillator, a disk laser oscillator, or a direct diode laser oscillator.
 第1のレーザ発振器11より射出される第1のレーザビームを伝送するフィーディングファイバ13のコネクタ13cは、ビームカプラ20の筐体201における突出部201pの端部に接続されている。第2のレーザ発振器12より射出される第2のレーザビームを伝送するフィーディングファイバ14のコネクタ14cは、筐体201における本体部201mの一方の端部に接続されている。プロセスファイバ30の第1のコネクタ30c1は本体部201mの他方の端部に接続され、第2のコネクタ30c2は加工ヘッド40の筐体401に接続されている。 The connector 13c of the feeding fiber 13 that transmits the first laser beam emitted from the first laser oscillator 11 is connected to the end of the protrusion 201p in the housing 201 of the beam coupler 20. The connector 14c of the feeding fiber 14 that transmits the second laser beam emitted from the second laser oscillator 12 is connected to one end of the main body 201m in the housing 201. The first connector 30c1 of the process fiber 30 is connected to the other end of the main body 201m, and the second connector 30c2 is connected to the housing 401 of the processing head 40.
 ビームカプラ20は、筐体201内に、第1のコリメートレンズ21、第2のコリメートレンズ22、ウェッジプリズム23、集束レンズ24、ビームダンパ25を備える。ビームカプラ20がビームダンパ25を備えることは必須ではないが、ビームダンパ25を備えることが好ましい。ウェッジプリズム23の第1の面23aには、後述する第1のコーティングが施されている。ウェッジプリズム23の第1の面23aと対向する第2の面23bには、後述する第2のコーティングが施されている。 The beam coupler 20 includes a first collimating lens 21, a second collimating lens 22, a wedge prism 23, a focusing lens 24, and a beam damper 25 within a housing 201. Although it is not essential that the beam coupler 20 includes the beam damper 25, it is preferable that the beam coupler 20 includes the beam damper 25. A first coating, which will be described later, is applied to the first surface 23a of the wedge prism 23. A second coating, which will be described later, is applied to the second surface 23b, which faces the first surface 23a of the wedge prism 23.
 第1のレーザ発振器11より射出される第1のレーザビームは波長λ1を有し、第2のレーザ発振器12より射出される第2のレーザビームは波長λ1より長波長である波長λ2を有する。第1のレーザビーム、第2のレーザビーム、及び後述する結合レーザビームを一点鎖線で示す。波長λ1と波長λ2との差は50nm未満とするのがよい。その理由については後述する。なお、波長が異なる2つのレーザビームを互いに重畳させるためには、2つのレーザビームの波長の差は少なくとも5nm必要である。よって、波長λ1と波長λ2との差は少なくとも5nmである。 The first laser beam emitted from the first laser oscillator 11 has a wavelength λ1, and the second laser beam emitted from the second laser oscillator 12 has a wavelength λ2 that is longer than the wavelength λ1. The first laser beam, the second laser beam, and a combined laser beam described below are indicated by dashed dotted lines. It is preferable that the difference between the wavelengths λ1 and λ2 is less than 50 nm. The reason for this will be described later. Note that in order to superimpose two laser beams with different wavelengths on each other, the difference in the wavelengths of the two laser beams must be at least 5 nm. Therefore, the difference between the wavelengths λ1 and λ2 is at least 5 nm.
 第1のレーザ発振器11より射出された第1のレーザビームは、フィーディングファイバ13によってビームカプラ20へと伝送される。第2のレーザ発振器12より射出された第2のレーザビームは、フィーディングファイバ14によってビームカプラ20へと伝送される。 The first laser beam emitted from the first laser oscillator 11 is transmitted to the beam coupler 20 by the feeding fiber 13. The second laser beam emitted from the second laser oscillator 12 is transmitted to the beam coupler 20 by the feeding fiber 14.
 第1のコリメートレンズ21は、フィーディングファイバ13の端部より射出される発散光の第1のレーザビームをコリメート光に変換する。コリメート光に変換された第1のレーザビームは、ウェッジプリズム23の第1の面23aに入射する。第2のコリメートレンズ22は、フィーディングファイバ14の端部より射出される発散光の第2のレーザビームをコリメート光に変換する。コリメート光に変換された第2のレーザビームは、ウェッジプリズム23の第2の面23bに入射する。 The first collimating lens 21 converts the first laser beam of diverging light emitted from the end of the feeding fiber 13 into collimated light. The first laser beam converted into collimated light is incident on the first surface 23a of the wedge prism 23. The second collimating lens 22 converts the second laser beam of diverging light emitted from the end of the feeding fiber 14 into collimated light. The second laser beam converted into collimated light is incident on the second surface 23b of the wedge prism 23.
 図1においては、第1のコリメートレンズ21及び第2のコリメートレンズ22をレーザビームの入射面及び射出面の双方が凸面である両凸レンズとしているが、入射面が平面で射出面が凸面である平凸レンズであってもよい。第1のコリメートレンズ21及び第2のコリメートレンズ22のレンズの形状は限定されない。同様に、集束レンズ24及び加工ヘッド40内の後述するコリメートレンズ41または集束レンズ43も、両凸レンズであってもよいし、平凸レンズであってもよく、レンズの形状は限定されない。 In FIG. 1, the first collimating lens 21 and the second collimating lens 22 are biconvex lenses in which both the entrance surface and the exit surface of the laser beam are convex, but they may also be plano-convex lenses in which the entrance surface is flat and the exit surface is convex. The lens shapes of the first collimating lens 21 and the second collimating lens 22 are not limited. Similarly, the focusing lens 24 and the collimating lens 41 or focusing lens 43 in the processing head 40, which will be described later, may also be biconvex lenses or plano-convex lenses, and the lens shapes are not limited.
 図2Aは、ビームカプラ20が備える第1のコリメートレンズ21の位置調整機構50をZ軸と直交する面で切断した断面図である。図2Bは、ビームカプラ20が備える第1のコリメートレンズ21の位置調整機構50をX軸と直交する面で切断した断面図である。第1のコリメートレンズ21は、図2A及び図2Bに示すような位置調整機構50によって位置が調整されている。第2のコリメートレンズ22も、図2A及び図2Bに示す位置調整機構50と同様の位置調整機構によって位置が調整されている。第1のコリメートレンズ21より射出される第1のレーザビームの光軸方向をZ軸、Z軸に直交する2つの直交する方向をX軸及びY軸とする。図2Bに示すように、ここでは第1のコリメートレンズ21を平凸レンズとしている。 2A is a cross-sectional view of the position adjustment mechanism 50 of the first collimator lens 21 provided in the beam coupler 20, cut along a plane perpendicular to the Z axis. FIG. 2B is a cross-sectional view of the position adjustment mechanism 50 of the first collimator lens 21 provided in the beam coupler 20, cut along a plane perpendicular to the X axis. The position of the first collimator lens 21 is adjusted by the position adjustment mechanism 50 as shown in FIG. 2A and FIG. 2B. The position of the second collimator lens 22 is also adjusted by a position adjustment mechanism similar to the position adjustment mechanism 50 shown in FIG. 2A and FIG. 2B. The optical axis direction of the first laser beam emitted from the first collimator lens 21 is the Z axis, and the two orthogonal directions perpendicular to the Z axis are the X axis and the Y axis. As shown in FIG. 2B, the first collimator lens 21 is a plano-convex lens.
 図2A及び図2Bに示すように、第1のコリメートレンズ21はレンズホルダ51によって位置調整機構50に保持されている。図2Aに示すように、X軸方向に伸びる2つのコイルスプリング53xはレンズホルダ51にX軸方向の力を与えており、Y軸に伸びる2つのコイルスプリング53yはレンズホルダ51にY軸方向の力を与えている。X軸調整用ねじ部材52xを回すことによってレンズホルダ51のX軸方向の位置を調整することができ、Y軸調整用ねじ部材52yを回すことによってレンズホルダ51のY軸方向の位置を調整することができる。 As shown in Figures 2A and 2B, the first collimator lens 21 is held in the position adjustment mechanism 50 by the lens holder 51. As shown in Figure 2A, two coil springs 53x extending in the X-axis direction apply a force in the X-axis direction to the lens holder 51, and two coil springs 53y extending in the Y-axis direction apply a force in the Y-axis direction to the lens holder 51. The position of the lens holder 51 in the X-axis direction can be adjusted by turning the X-axis adjustment screw member 52x, and the position of the lens holder 51 in the Y-axis direction can be adjusted by turning the Y-axis adjustment screw member 52y.
 図2Bに示すように、コネクタ13cは、突出部201pの端部に設けられている図1では図示が省略されているレシーバ20Rに装着されている。Z軸方向に伸びる2つのコイルスプリング53zはレンズホルダ51にZ軸方向の力を与えている。突出部201p内には、レンズホルダ51に隣接して可動内筒54が設けられている。可動内筒54の端部の外周面には雄ねじ54swが形成されており、突出部201pの対向する内周面には雄ねじ54swと噛み合う螺合雌ねじ20swが形成されている。可動内筒54の位置をZ軸方向に調整することにより、レンズホルダ51のZ軸方向の位置を調整することができる。 As shown in FIG. 2B, the connector 13c is attached to a receiver 20R (not shown in FIG. 1) provided at the end of the protrusion 201p. Two coil springs 53z extending in the Z-axis direction apply a force in the Z-axis direction to the lens holder 51. A movable inner cylinder 54 is provided adjacent to the lens holder 51 inside the protrusion 201p. A male thread 54sw is formed on the outer peripheral surface of the end of the movable inner cylinder 54, and a female thread 20sw that meshes with the male thread 54sw is formed on the opposing inner peripheral surface of the protrusion 201p. By adjusting the position of the movable inner cylinder 54 in the Z-axis direction, the position of the lens holder 51 in the Z-axis direction can be adjusted.
 図1に戻り、ウェッジプリズム23の第1の面23aに施されている第1のコーティングは、コリメート光に変換された第1のレーザビームを反射する特性を有する。従って、第1のレーザビームは、第1の面23aで反射して集束レンズ24へと向かう。ウェッジプリズム23の第2の面23bに施されている第2のコーティングは、コリメート光に変換された第2のレーザビームを透過させる特性を有する。第1のコーティングは、第2の面23bを透過した第2のレーザビームを透過させる特性を有する。従って、第2のレーザビームは、第2の面23b及び第1の面23aをこの順で透過して集束レンズ24へと向かう。 Returning to FIG. 1, the first coating applied to the first surface 23a of the wedge prism 23 has the property of reflecting the first laser beam converted into collimated light. Therefore, the first laser beam is reflected by the first surface 23a and heads toward the focusing lens 24. The second coating applied to the second surface 23b of the wedge prism 23 has the property of transmitting the second laser beam converted into collimated light. The first coating has the property of transmitting the second laser beam that has passed through the second surface 23b. Therefore, the second laser beam passes through the second surface 23b and the first surface 23a in this order and heads toward the focusing lens 24.
 第1のコリメートレンズ21及び第2のコリメートレンズ22は、第1の面23aで反射した第1のレーザビームと、第2の面23b及び第1の面23aを透過した第2のレーザビームとが互いに重畳するように位置が調整されている。上記のように、第1のコリメートレンズ21は位置調整機構50によって第1のコリメートレンズ21におけるX軸、Y軸、Z軸の各方向の位置が調整されている。第2のコリメートレンズ22は、位置調整機構50と同様の位置調整機構によって第2のコリメートレンズ22におけるX軸、Y軸、Z軸の各方向の位置が調整されている。 The positions of the first collimating lens 21 and the second collimating lens 22 are adjusted so that the first laser beam reflected by the first surface 23a and the second laser beam transmitted through the second surface 23b and the first surface 23a are superimposed on each other. As described above, the position of the first collimating lens 21 is adjusted in the X-axis, Y-axis, and Z-axis directions of the first collimating lens 21 by the position adjustment mechanism 50. The position of the second collimating lens 22 is adjusted in the X-axis, Y-axis, and Z-axis directions of the second collimating lens 22 by a position adjustment mechanism similar to the position adjustment mechanism 50.
 従って、ウェッジプリズム23は、第1のレーザビームと第2のレーザビームとを互いに重畳させることにより結合させた結合レーザビームを生成して射出する。集束レンズ24は、結合レーザビームを集束させてプロセスファイバ30のコアに入射させる。プロセスファイバ30は、結合レーザビームを加工ヘッド40へと伝送する光ファイバである。 Therefore, the wedge prism 23 generates and emits a combined laser beam by superimposing the first laser beam and the second laser beam on each other. The focusing lens 24 focuses the combined laser beam and makes it incident on the core of the process fiber 30. The process fiber 30 is an optical fiber that transmits the combined laser beam to the processing head 40.
 加工ヘッド40は、筐体401内に、コリメートレンズ41、ベンドミラー42、集束レンズ43を備える。コリメートレンズ41は、プロセスファイバ30の端部より射出される発散光の結合レーザビームをコリメート光に変換する。コリメートレンズ41は、コリメート光に変換された結合レーザビームの進行方向を90度曲げる。集束レンズ43は、入射された結合レーザビームを集束させて、加工対象の板金Wに照射する。レーザ加工機100は、板金Wを切断する加工機であってもよいし、板金Wを溶接する加工機であってもよい。板金Wは被加工材の一例であり、被加工材は板金に限定されない。 The processing head 40 includes a collimating lens 41, a bend mirror 42, and a focusing lens 43 in a housing 401. The collimating lens 41 converts the divergent combined laser beam emitted from the end of the process fiber 30 into collimated light. The collimating lens 41 bends the traveling direction of the combined laser beam converted into collimated light by 90 degrees. The focusing lens 43 focuses the incident combined laser beam and irradiates it onto the sheet metal W to be processed. The laser processing machine 100 may be a processing machine that cuts the sheet metal W, or may be a processing machine that welds the sheet metal W. The sheet metal W is an example of a workpiece, and the workpiece is not limited to sheet metal.
 以上のように構成されるレーザ加工機100において、プロセスファイバ30は10m~20mの長さを有する。結合レーザビームをプロセスファイバ30によって伝送するとき、光ファイバの非線形現象の1つである誘導ラマン散乱による不要光が発生しやすい。以下、誘導ラマン散乱による不要光をSRS光と称することとする。SRS光が発生する発生閾値Pthは、プロセスファイバ30の有効コア断面積Aeff、偏光因子fp、ラマン利得gR、有効ファイバ長Leffを用いて、次の式(1)で与えられる。
 Pth=16×{Aeff/(fp・gR・Leff)}  …(1)
In the laser processing machine 100 configured as above, the process fiber 30 has a length of 10 m to 20 m. When the combined laser beam is transmitted through the process fiber 30, unwanted light is likely to be generated due to stimulated Raman scattering, which is one of the nonlinear phenomena of optical fibers. Hereinafter, the unwanted light due to stimulated Raman scattering will be referred to as SRS light. The generation threshold Pth at which SRS light is generated is given by the following formula (1) using the effective core area Aeff, polarization factor fp, Raman gain gR, and effective fiber length Leff of the process fiber 30.
Pth = 16 × {Aeff / (fp gR Leff)} ... (1)
 式(1)より、プロセスファイバ30のコアを大口径化すれば、発生閾値Pthが大きくなってSRS光が発生しにくくなる。しかしながら、プロセスファイバ30のコアを大口径化するとビーム品質が悪化し、特に板金Wが薄板である場合の加工品質が低下する。従って、プロセスファイバ30のコアを大口径化することによってSRS光の発生を抑えるという対策を採用することは困難である。また、式(1)より、プロセスファイバ30を短くすれば、発生閾値Pthが大きくなってSRS光が発生しにくくなる。しかしながら、上記のようにプロセスファイバ30は10m~20mと長く、プロセスファイバ30を短くすることによってSRS光の発生を抑えるという対策を採用することも困難である。 According to formula (1), if the core of the process fiber 30 is made larger, the generation threshold Pth becomes larger and SRS light becomes less likely to be generated. However, if the core of the process fiber 30 is made larger, the beam quality deteriorates, and the processing quality decreases, especially when the metal plate W is a thin plate. Therefore, it is difficult to adopt a measure to suppress the generation of SRS light by increasing the core diameter of the process fiber 30. Furthermore, according to formula (1), if the process fiber 30 is shortened, the generation threshold Pth becomes larger and SRS light becomes less likely to be generated. However, as described above, the process fiber 30 is long, at 10 m to 20 m, and it is also difficult to adopt a measure to suppress the generation of SRS light by shortening the process fiber 30.
 従って、結合レーザビームをプロセスファイバ30によって伝送するときにSRS光が発生することを回避することは実質的に困難である。プロセスファイバ30で発生するSRS光は、ビームカプラ20へと向かうことがある。仮に、ビームカプラ20内に侵入したSRS光が第1のレーザ発振器11または第2のレーザ発振器12に入射すると第1のレーザ発振器11または第2のレーザ発振器12が破損するおそれがあるため、ビームカプラ20を次のように構成している。 Therefore, it is practically difficult to avoid the generation of SRS light when the combined laser beam is transmitted through the process fiber 30. The SRS light generated in the process fiber 30 may travel toward the beam coupler 20. If the SRS light that has entered the beam coupler 20 is incident on the first laser oscillator 11 or the second laser oscillator 12, there is a risk of damaging the first laser oscillator 11 or the second laser oscillator 12, so the beam coupler 20 is configured as follows.
 図3は、ビームカプラ20が備えるウェッジプリズム23の動作を説明するための第1の例を示す特性図である。図3には、第1のレーザビームの波長λ1と第2のレーザビームの波長λ2との差が50nmを大きく超える場合における、第1のコーティングの反射・透過特性C11と第2のコーティングの反射・透過特性C21を示している。例えば、第1のレーザビームに基づいて発生する第1のSRS光(第1の不要光)は波長λ1より50nm程度、長波長側の波長λs1に発生し、第2のレーザビームに基づいて発生する第2のSRS光(第2の不要光)は波長λ2より50nm程度、長波長側の波長λs2に発生する。 FIG. 3 is a characteristic diagram showing a first example for explaining the operation of the wedge prism 23 provided in the beam coupler 20. FIG. 3 shows the reflection/transmission characteristic C11 of the first coating and the reflection/transmission characteristic C21 of the second coating when the difference between the wavelength λ1 of the first laser beam and the wavelength λ2 of the second laser beam greatly exceeds 50 nm. For example, the first SRS light (first unwanted light) generated based on the first laser beam is generated at a wavelength λs1 that is about 50 nm longer than the wavelength λ1, and the second SRS light (second unwanted light) generated based on the second laser beam is generated at a wavelength λs2 that is about 50 nm longer than the wavelength λ2.
 また、図3には、第1のレーザビームの光強度特性LB1、第2のレーザビームの光強度特性LB2、第1のSRS光の光強度特性SRS1、第2のSRS光の光強度特性SRS2を併せて示している。 FIG. 3 also shows the light intensity characteristic LB1 of the first laser beam, the light intensity characteristic LB2 of the second laser beam, the light intensity characteristic SRS1 of the first SRS light, and the light intensity characteristic SRS2 of the second SRS light.
 図3に示すように、第2のコーティングの反射・透過特性C21は、第2のレーザビームを透過させ、第2のSRS光を反射する特性である。第1のコーティングの反射・透過特性C11は、第1のレーザビーム及び第1のSRS光を反射する特性である。従って、波長λ1、λ2、λs1、λs2が図3に示す波長上の位置関係にあり、第1及び第2のコーティングがそれぞれ図3に示す反射・透過特性C11及びC21を有するとき、ウェッジプリズム23は、第2のSRS光を図1に示す方向に反射させる。 As shown in FIG. 3, the reflection/transmission characteristic C21 of the second coating is a characteristic that transmits the second laser beam and reflects the second SRS light. The reflection/transmission characteristic C11 of the first coating is a characteristic that reflects the first laser beam and the first SRS light. Therefore, when the wavelengths λ1, λ2, λs1, and λs2 are in the wavelength positional relationship shown in FIG. 3 and the first and second coatings have the reflection/transmission characteristics C11 and C21 shown in FIG. 3, respectively, the wedge prism 23 reflects the second SRS light in the direction shown in FIG. 1.
 ウェッジプリズム23から集束レンズ24へと向かう結合レーザビームの光軸の方向を第1の方向とする。第1のコリメートレンズ21からウェッジプリズム23へと向かう第1のレーザビームの光軸の方向を第2の方向とする。ウェッジプリズム23は、第2のSRS光を第1及び第2の方向とは異なる第3の方向に反射させる。 The direction of the optical axis of the combined laser beam traveling from the wedge prism 23 to the focusing lens 24 is defined as a first direction. The direction of the optical axis of the first laser beam traveling from the first collimating lens 21 to the wedge prism 23 is defined as a second direction. The wedge prism 23 reflects the second SRS light in a third direction different from the first and second directions.
 例えば、ビームダンパ25は、黒アルマイト処理を施したアルミニウム素材で形成されている。ビームダンパ25は、入射する第2のSRS光を吸収して、第1のコリメートレンズ21または第2のコリメートレンズ22へと向かうことを防止する。 For example, the beam damper 25 is made of an aluminum material that has been black anodized. The beam damper 25 absorbs the incident second SRS light and prevents it from traveling toward the first collimator lens 21 or the second collimator lens 22.
 図4は、ビームカプラ20が備えるウェッジプリズム23の動作を説明するための、第1の例より好ましい第2の例を示す特性図である。図4は、第1のレーザビームの波長λ1と第2のレーザビームの波長λ2との差を50nm未満として、第1のコーティングの反射率の好ましい反射・透過特性C12と第2のコーティングの反射率の好ましい反射・透過特性C22を示している。波長λ1と波長λ2との差が50nm未満であるから、波長λ1、λ2、λs1、λs2は図4に示す波長上の位置関係にある。 FIG. 4 is a characteristic diagram showing a second example, which is more preferable than the first example, for explaining the operation of the wedge prism 23 provided in the beam coupler 20. FIG. 4 shows the preferred reflection/transmission characteristics C12 of the reflectance of the first coating and the preferred reflection/transmission characteristics C22 of the reflectance of the second coating, with the difference between the wavelength λ1 of the first laser beam and the wavelength λ2 of the second laser beam being less than 50 nm. Since the difference between the wavelength λ1 and the wavelength λ2 is less than 50 nm, the wavelengths λ1, λ2, λs1, and λs2 are in the wavelength positional relationship shown in FIG. 4.
 図4に示すように、第2のコーティングの反射・透過特性C22は、第2のレーザビームを透過させ、第1及び第2のSRS光を反射する特性である。第1のコーティングの反射・透過特性C12は、第1のレーザビームを反射する特性である。従って、波長λ1、λ2、λs1、λs2が図4に示す波長上の位置関係にあり、第1及び第2のコーティングがそれぞれ図4に示す反射・透過特性C12及びC22を有するとき、ウェッジプリズム23は、第1及び第2のSRS光を第3の方向に反射させる。 As shown in FIG. 4, the reflection/transmission characteristic C22 of the second coating is a characteristic that transmits the second laser beam and reflects the first and second SRS lights. The reflection/transmission characteristic C12 of the first coating is a characteristic that reflects the first laser beam. Therefore, when the wavelengths λ1, λ2, λs1, and λs2 are in the wavelength positional relationship shown in FIG. 4 and the first and second coatings have the reflection/transmission characteristics C12 and C22 shown in FIG. 4, respectively, the wedge prism 23 reflects the first and second SRS lights in the third direction.
 ビームダンパ25は、入射する第1及び第2のSRS光を吸収して、第1のコリメートレンズ21または第2のコリメートレンズ22へと向かうことを防止する。 The beam damper 25 absorbs the incident first and second SRS lights and prevents them from traveling toward the first collimating lens 21 or the second collimating lens 22.
 このように、ウェッジプリズム23の第2の面23bに施されている第2のコーティングは、第1のSRS光と第2のSRS光とのうち、少なくとも第2のSRS光を反射する特性を有し、好ましくは、第1及び第2のSRS光を反射する特性を有する。ウェッジプリズム23の第2の面23bで第1及び第2のSRS光を反射させるために、波長λ1と波長λ2との差を50nm未満とするのがよい。 In this way, the second coating applied to the second surface 23b of the wedge prism 23 has the property of reflecting at least the second SRS light of the first SRS light and the second SRS light, and preferably has the property of reflecting both the first and second SRS lights. In order to reflect the first and second SRS lights on the second surface 23b of the wedge prism 23, it is preferable that the difference between the wavelength λ1 and the wavelength λ2 is less than 50 nm.
 以上のように、ビームカプラ20は、ウェッジプリズム23が第1のレーザビームと第2のレーザビームとを互いに重畳させることにより結合させた結合レーザビームを射出するように構成されているので、レーザビームを高出力化することができる。ビームカプラ20は、ウェッジプリズム23が少なくとも第2のSRS光を第3の方向に反射させるように構成されているので、少なくとも第2のSRS光が第1のコリメートレンズ21及び第2のコリメートレンズ22に向かうことがない。よって、ビームカプラ20によれば、SRS光に起因する不具合を軽減させることができる。 As described above, the beam coupler 20 is configured so that the wedge prism 23 superimposes the first laser beam and the second laser beam on each other to emit a combined laser beam, thereby enabling the laser beam to have a high output. The beam coupler 20 is configured so that the wedge prism 23 reflects at least the second SRS light in the third direction, so that at least the second SRS light does not travel toward the first collimator lens 21 and the second collimator lens 22. Therefore, the beam coupler 20 can reduce problems caused by the SRS light.
 ビームカプラ20は、ウェッジプリズム23が第1及び第2のSRS光を第3の方向に反射させるように構成されていることが好ましい。このように構成されていれば、第1及び第2のSRS光が第1のコリメートレンズ21及び第2のコリメートレンズ22に向かうことがない。よって、第1及び第2のSRS光を第3の方向に反射させるように構成されているビームカプラ20によれば、SRS光に起因する不具合をさらに軽減させることができる。 The beam coupler 20 is preferably configured so that the wedge prism 23 reflects the first and second SRS lights in a third direction. With this configuration, the first and second SRS lights do not travel toward the first collimator lens 21 and the second collimator lens 22. Therefore, with the beam coupler 20 configured to reflect the first and second SRS lights in the third direction, problems caused by the SRS lights can be further reduced.
 ところで、ビームカプラを構成する光学部品が増えると各光学部品の位置調整機構が必要となり、調整作業の煩雑さを招き、ビームカプラが大型化してしまう。レーザビームが高出力になればなるほど熱レンズの影響を受けやすくなるため、レンズまたはミラー等の光学部品をできるだけ少なくすることが望まれる。以上説明したビームカプラ20によれば、少ない光学部品で第1のレーザビームと第2のレーザビームと結合させることができるという特長を有しつつ、SRS光に起因する不具合を軽減させることができる。 However, increasing the number of optical components constituting a beam coupler requires a mechanism for adjusting the position of each optical component, which complicates the adjustment work and increases the size of the beam coupler. The higher the power of the laser beam, the more susceptible it is to the effects of thermal lenses, so it is desirable to reduce the number of optical components such as lenses and mirrors as much as possible. The beam coupler 20 described above has the advantage of being able to combine the first and second laser beams with a small number of optical components, while also reducing problems caused by SRS light.
 レーザ加工機100は、第1のレーザ発振器11、第2のレーザ発振器12、ビームカプラ20、プロセスファイバ30によって伝送される結合レーザビームを加工対象の板金Wに照射する加工ヘッド40を備える。レーザ加工機100によれば、SRS光に起因する不具合を軽減させ、高出力のレーザビームで板金Wを加工することができる。 The laser processing machine 100 includes a processing head 40 that irradiates the combined laser beam transmitted by the first laser oscillator 11, the second laser oscillator 12, the beam coupler 20, and the process fiber 30 onto the metal sheet W to be processed. The laser processing machine 100 reduces defects caused by SRS light and can process the metal sheet W with a high-output laser beam.
 本発明は以上説明した1またはそれ以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。 The present invention is not limited to one or more of the embodiments described above, and various modifications are possible without departing from the spirit of the present invention.
 本願は、2022年10月12日に日本国特許庁に出願された特願2022-164303号に基づく優先権を主張するものであり、その全ての開示内容は引用によりここに援用される。 This application claims priority to Patent Application No. 2022-164303, filed with the Japan Patent Office on October 12, 2022, the entire disclosure of which is incorporated herein by reference.

Claims (4)

  1.  第1のレーザ発振器より射出される第1の波長を有する発散光の第1のレーザビームをコリメート光に変換する第1のコリメートレンズと、
     第2のレーザ発振器より射出される第2の波長を有する発散光の第2のレーザビームをコリメート光に変換する第2のコリメートレンズと、
     前記第1のコリメートレンズによってコリメート光に変換された前記第1のレーザビームを反射する特性を有する第1のコーティングが施された第1の面と、前記第2のコリメートレンズによってコリメート光に変換された前記第2のレーザビームを透過させる特性を有する第2のコーティングが施された第2の面とを含み、前記第1のコーティングは、前記第2の面を透過した前記第2のレーザビームを透過させる特性を有し、前記第1の面で反射した前記第1のレーザビームと、前記第2の面及び前記第1の面をこの順で透過した前記第2のレーザビームとを互いに重畳させることにより結合させた結合レーザビームを射出するウェッジプリズムと、
     前記ウェッジプリズムより射出された前記結合レーザビームを集束させて、前記結合レーザビームを伝送する光ファイバに入射させる集束レンズと、
     を備え、
     前記第2のコーティングは、誘導ラマン散乱によって前記第1のレーザビームに基づいて発生する、前記光ファイバから前記ウェッジプリズムへと向かう第1の不要光と、誘導ラマン散乱によって前記第2のレーザビームに基づいて発生する、前記光ファイバから前記ウェッジプリズムへと向かう第2の不要光とのうち、少なくとも前記第2の不要光を反射する特性を有し、
     前記ウェッジプリズムは、少なくとも前記第2の不要光を、前記ウェッジプリズムから前記集束レンズへと向かう前記結合レーザビームの光軸の方向である第1の方向と、前記第1のコリメートレンズから前記ウェッジプリズムへと向かう前記第1のレーザビームの光軸の方向である第2の方向とは異なる第3の方向に反射させる
     ビーム結合装置。
    a first collimating lens for converting a first laser beam of divergent light having a first wavelength emitted from a first laser oscillator into a collimated light;
    a second collimating lens for converting a second laser beam of divergent light having a second wavelength emitted from a second laser oscillator into a collimated light;
    a wedge prism including a first surface on which a first coating having a property of reflecting the first laser beam converted into collimated light by the first collimating lens and a second surface on which a second coating having a property of transmitting the second laser beam converted into collimated light by the second collimating lens, the first coating having a property of transmitting the second laser beam transmitted through the second surface, the wedge prism emitting a combined laser beam obtained by combining the first laser beam reflected at the first surface and the second laser beam transmitted through the second surface and the first surface in this order by superimposing them on each other;
    a focusing lens for focusing the combined laser beam emitted from the wedge prism and inputting the combined laser beam into an optical fiber that transmits the combined laser beam;
    Equipped with
    the second coating has a characteristic of reflecting at least the second unwanted light of a first unwanted light generated based on the first laser beam by stimulated Raman scattering and traveling from the optical fiber to the wedge prism, and a second unwanted light generated based on the second laser beam by stimulated Raman scattering and traveling from the optical fiber to the wedge prism;
    A beam combining device, wherein the wedge prism reflects at least the second unwanted light in a third direction different from a first direction which is the direction of the optical axis of the combined laser beam traveling from the wedge prism to the focusing lens and a second direction which is the direction of the optical axis of the first laser beam traveling from the first collimating lens to the wedge prism.
  2.  前記第2のコーティングは、前記第1及び第2の不要光を反射する特性を有し、
     前記ウェッジプリズムは、前記第1及び第2の不要光を、前記第3の方向に反射させる
     請求項1に記載のビーム結合装置。
    the second coating has a characteristic of reflecting the first and second unwanted lights;
    The beam combining device according to claim 1 , wherein the wedge prism reflects the first and second unwanted light beams in the third direction.
  3.  前記第2のコーティングで反射した前記第1の不要光または前記第1及び第2の不要光を吸収するビームダンパをさらに備える請求項1または2に記載のビーム結合装置。 The beam combining device according to claim 1 or 2, further comprising a beam damper that absorbs the first unwanted light or the first and second unwanted light reflected by the second coating.
  4.  前記第1のレーザ発振器と、
     前記第2のレーザ発振器と、
     請求項1~3のいずれか1項に記載のビーム結合装置と、
     前記光ファイバによって伝送される前記結合レーザビームを被加工材に照射する加工ヘッドと、
     を備えるレーザ加工機。
    the first laser oscillator;
    the second laser oscillator;
    A beam combining device according to any one of claims 1 to 3;
    a processing head that irradiates a workpiece with the combined laser beam transmitted by the optical fiber;
    A laser processing machine comprising:
PCT/JP2023/031951 2022-10-12 2023-08-31 Beam combining device and laser processing machine WO2024080032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-164303 2022-10-12
JP2022164303A JP7377932B1 (en) 2022-10-12 2022-10-12 Beam combiner and laser processing machine

Publications (1)

Publication Number Publication Date
WO2024080032A1 true WO2024080032A1 (en) 2024-04-18

Family

ID=88650823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031951 WO2024080032A1 (en) 2022-10-12 2023-08-31 Beam combining device and laser processing machine

Country Status (2)

Country Link
JP (1) JP7377932B1 (en)
WO (1) WO2024080032A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014068A1 (en) * 2012-07-18 2014-01-23 古河電気工業株式会社 Optical fiber laser device
JP2016201558A (en) * 2011-05-31 2016-12-01 古河電気工業株式会社 Processing device
JP2019197081A (en) * 2018-05-07 2019-11-14 ファナック株式会社 Laser oscillator
JP2019202342A (en) * 2018-05-25 2019-11-28 株式会社アマダホールディングス Processing head
JP2020151758A (en) * 2019-03-20 2020-09-24 株式会社フジクラ Laser processing device, laser processing method and method for manufacturing secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201558A (en) * 2011-05-31 2016-12-01 古河電気工業株式会社 Processing device
WO2014014068A1 (en) * 2012-07-18 2014-01-23 古河電気工業株式会社 Optical fiber laser device
JP2019197081A (en) * 2018-05-07 2019-11-14 ファナック株式会社 Laser oscillator
JP2019202342A (en) * 2018-05-25 2019-11-28 株式会社アマダホールディングス Processing head
JP2020151758A (en) * 2019-03-20 2020-09-24 株式会社フジクラ Laser processing device, laser processing method and method for manufacturing secondary battery

Also Published As

Publication number Publication date
JP2024057508A (en) 2024-04-24
JP7377932B1 (en) 2023-11-10

Similar Documents

Publication Publication Date Title
US5212710A (en) Laser light beam synthesizing apparatus
US10254552B2 (en) Laser array
US10734783B2 (en) Laser oscillator
WO2021145358A1 (en) Laser processing device
US20200408992A1 (en) Optical fiber bundle with beam overlapping mechanism
JP6227216B1 (en) Laser processing equipment
CN110036544B (en) Laser oscillator
WO2024080032A1 (en) Beam combining device and laser processing machine
JP7488445B2 (en) Light source unit
JP4544014B2 (en) Laser device and fiber coupling module
WO2024080033A1 (en) Beam combining device and laser processing machine
JP7398649B2 (en) Laser processing equipment and laser processing method
JP2020060725A (en) Laser oscillator and laser processing equipment using the same
JP2016078051A (en) Direct diode laser processing device and processing method for metal plate using the same
WO2021145205A1 (en) Laser device, and laser processing device in which same is used
JP2019181534A (en) Laser oscillator and laser processing device using the same
JP2956152B2 (en) Laser light source
WO2021157546A1 (en) Laser processing apparatus
US20230163550A1 (en) Laser system
CN118091966B (en) Composite facula laser output device
WO2021192730A1 (en) Optical device, laser beam output system, and laser processing apparatus
JP7015989B2 (en) Optical transmission equipment
WO2023144995A1 (en) Laser apparatus and laser processing machine
WO2021145357A1 (en) Laser apparatus and laser machining apparatus using same
KR20100049393A (en) Drilling apparatus and drilling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877039

Country of ref document: EP

Kind code of ref document: A1