WO2024077446A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2024077446A1
WO2024077446A1 PCT/CN2022/124403 CN2022124403W WO2024077446A1 WO 2024077446 A1 WO2024077446 A1 WO 2024077446A1 CN 2022124403 W CN2022124403 W CN 2022124403W WO 2024077446 A1 WO2024077446 A1 WO 2024077446A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptrs
port
ports
antenna
transmission layer
Prior art date
Application number
PCT/CN2022/124403
Other languages
English (en)
French (fr)
Inventor
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/124403 priority Critical patent/WO2024077446A1/zh
Publication of WO2024077446A1 publication Critical patent/WO2024077446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically to a wireless communication method, terminal equipment, and network equipment.
  • uplink transmission supports PUSCH transmission of up to 4 Physical Uplink Shared Channel (PUSCH) antenna ports.
  • PUSCH Physical Uplink Shared Channel
  • the network equipment can configure up to 2 PTRS ports to be associated with the PUSCH antenna port.
  • some advanced terminals can be configured with more transmission links or RF channels.
  • they may support more PUSCH antenna ports, such as 8 PUSCH antenna ports, to further improve uplink transmission performance.
  • how to transmit PTRS to support more PUSCH antenna ports to improve uplink transmission performance is an urgent problem to be solved.
  • the present application provides a wireless communication method, terminal equipment and network equipment, which are conducive to improving uplink transmission performance.
  • a method for wireless communication including: a terminal device determines the number N of phase tracking reference signal PTRS ports for uplink X antenna ports transmission, where X is an integer greater than 4; determines the antenna port and transmission layer associated with each of the N PTRS ports; determines a power boost value for each of the N PTRS ports; and transmits PTRS on at least some of the N PTRS ports according to the antenna port and transmission layer associated with each PTRS port, and the power boost value.
  • a method for wireless communication including: a network device determines the number N of phase tracking reference signal PTRS ports for uplink X antenna ports transmission, where X is an integer greater than 4; determines the antenna port and transmission layer associated with each PTRS port in the N PTRS ports; and performs PTRS reception on at least some of the N PTRS ports according to the number N of PTRS ports. According to the phase measurement result of the PTRS, phase adjustment or demodulation reference signal DMRS channel estimation of the transmission layer associated with the N PTRS ports is performed.
  • a terminal device for executing the method in the first aspect or its various implementations.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or its various implementation modes.
  • a network device for executing the method in the second aspect or its respective implementation manners.
  • the network device includes a functional module for executing the method in the above-mentioned second aspect or its various implementation modes.
  • a terminal device comprising a processor and a memory, wherein the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect or its implementations.
  • a network device comprising a processor and a memory, wherein the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or its implementation manners.
  • a chip is provided for implementing the method in any one of the first to second aspects or in each of their implementations.
  • the chip includes: a processor, which is used to call and run a computer program from a memory, so that a device equipped with the device executes a method as described in any one of the first to second aspects or their respective implementations.
  • a computer-readable storage medium for storing a computer program, wherein the computer program enables a computer to execute the method of any one of the first to second aspects or any of their implementations.
  • a computer program product comprising computer program instructions, wherein the computer program instructions enable a computer to execute the method in any one of the first to second aspects or any of their implementations.
  • a computer program which, when executed on a computer, enables the computer to execute the method in any one of the first to second aspects or in each of their implementations.
  • the uplink transmission performance can be improved by using PTRS.
  • the number of PTRS ports used for uplink transmission of uplink X antenna ports, the antenna port and transmission layer associated with each PTRS port, and the power boost value of each PTRS port are determined. Further, according to the antenna port and transmission layer associated with each PTRS port and the power boost value of each PTRS port, PTRS transmission is performed, which is conducive to expanding PTRS transmission to support more PTRS ports, more antenna ports, and more transmission layers, and ensuring the performance of uplink DMRS channel estimation.
  • FIG1 is a schematic diagram of a communication system architecture provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a wireless communication method provided according to an embodiment of the present application.
  • FIG3 is a schematic diagram of another wireless communication method provided according to an embodiment of the present application.
  • FIG4 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • FIG5 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • FIG6 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • FIG8 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • LTE-based access to unlicensed spectrum (LTE-U) systems LTE-based access to unlicensed spectrum (LTE-U) systems
  • NR-based access to unlicensed spectrum (NR-U) systems NTN-based access to unlicensed spectrum (NR-U) systems
  • NTN non-terrestrial communication networks
  • UMTS universal mobile telecommunication systems
  • WLAN wireless local area networks
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (CA) scenario, a dual connectivity (DC) scenario, or a standalone (SA) networking scenario.
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, wherein the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to an authorized spectrum, wherein the authorized spectrum can also be considered as an unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in the next generation communication system such as the NR network, or a terminal device in the future evolved Public Land Mobile Network (PLMN) network, etc.
  • STATION, ST in a WLAN
  • a cellular phone a cordless phone
  • Session Initiation Protocol (SIP) phone Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on the water surface (such as ships, etc.); it can also be deployed in the air (for example, on airplanes, balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in self-driving, a wireless terminal device in remote medical, a wireless terminal device in smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city, or a wireless terminal device in a smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices, which are a general term for wearable devices that are intelligently designed and developed using wearable technology for daily wear, such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and fully or partially independent of smartphones, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the network device may be a device for communicating with a mobile device.
  • the network device may be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device (gNB) in an NR network, or a network device in a future evolved PLMN network, or a network device in an NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) satellite, etc.
  • the network device may also be a base station set up in a location such as land or water.
  • a network device can provide services for a cell, and a terminal device communicates with the network device through transmission resources used by the cell (for example, frequency domain resources, or spectrum resources).
  • the cell can be a cell corresponding to a network device (for example, a base station), and the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (or referred to as a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area and may communicate with terminal devices located in the coverage area.
  • FIG1 exemplarily shows a network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include another number of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the device with communication function in the network/system in the embodiment of the present application can be called a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here; the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobile management entity, which is not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • corresponding may indicate a direct or indirect correspondence between two items, or an association relationship between the two items, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the existing LTE protocol, NR protocol, Wi-Fi protocol, the evolution of protocols related to other communication systems related thereto, and related protocols applied in future communication systems.
  • the present application does not limit the specific protocol type.
  • the terminal can support uplink transmission of up to 4 antenna ports.
  • the terminal can be configured with 1-2 Phase Tracking Reference Signal (PTRS) ports.
  • PTRS Phase Tracking Reference Signal
  • Each PTRS port is associated with a different transport layer or demodulation reference signal (DMRS).
  • DMRS demodulation reference signal
  • PTRS can be used for phase tracking and adjustment of the associated transport layer or DMRS, thereby ensuring the performance of DMRS channel estimation and data demodulation.
  • all transport layer/DMRS ports are associated with the same PTRS port (in this case, the network device will only configure one PTRS port).
  • the number of PTRS ports actually transmitted depends on the indication of the Transmitted Precoding Matrix Indicator (TPMI) and the number of transport layers.
  • TPMI Transmitted Precoding Matrix Indicator
  • the physical uplink shared channel (PUSCH) antenna ports 1000 and 1002 and the DMRS (transport layer) transmitted on these two ports are associated with PTRS port 0 (that is, the phase estimation result on the PTRS port can be used for the PUSCH and DMRS transmitted on these two antenna ports), and the PUSCH antenna ports 1001 and 1003 and the DMRS (transport layer) transmitted on these two ports are associated with PTRS port 1.
  • the PTRS port and the associated DMRS port use the same sequence, frequency domain resources and precoding matrix.
  • the power of PTRS needs to be adjusted according to the number of configured transmission layers.
  • the power increase of PTRS relative to the associated DMRS port can be obtained from Table 1, and the specific power increase scheme is configured by the network device.
  • the power increase value is the increase value of the transmission power of a PTRS port relative to the DMRS port or transmission layer associated with the PTRS port.
  • Qp is the number of PTRS ports currently configured (1 or 2), and the coherent configuration of the codebook (fully coherent codebook/partially coherent codebook/non-coherent) and the transmission scheme configuration (codebook based or non-codebook based) are obtained by high-level signaling.
  • uplink transmission supports up to 4 PUSCH antenna ports, and at the same time, a maximum of 2 PTRS ports can be configured in the FR2 network device to be associated with the PUSCH antenna port.
  • some advanced terminals can be configured with more transmission links or RF channels.
  • they may support more PUSCH antenna ports, such as 8 PUSCH antenna ports, to further improve uplink transmission performance.
  • how to transmit PTRS to support more PUSCH antenna ports to improve uplink transmission performance is an urgent problem to be solved.
  • FIG. 2 is a schematic flow chart of a method 200 for wireless communication according to an embodiment of the present application.
  • the method 200 may be executed by a terminal device in the communication system shown in FIG. 1 .
  • the method 200 includes the following contents:
  • the terminal device determines the number N of phase tracking reference signal PTRS ports for uplink X antenna ports transmission;
  • S240 Transmit PTRS on at least some of the N PTRS ports according to the antenna port and the transmission layer associated with each PTRS port, and the power boost value.
  • the antenna port is also called a PUSCH antenna port, and the antenna port is used for PUSCH transmission.
  • a PTRS port may refer to a port used for PTRS transmission.
  • the transmission PTRS port may refer to the transmission of the PTRS signal through the PTRS port, and the two are equivalent and can be replaced with each other.
  • the transmission DMRS port may refer to the transmission of the DMRS signal through the DMRS port, and the two are equivalent and can be replaced with each other;
  • the transmission antenna port may refer to the transmission of the PUSCH through the antenna port, and the two are equivalent and can be replaced with each other.
  • S220 may be replaced by:
  • the terminal device determines the transport layer associated with each PTRS port, which is equivalent to determining the DMRS port associated with each PTRS port.
  • Embodiment 1 Determination of the number N of PTRS ports used for uplink X antenna port transmissions.
  • Embodiment 1-1 The terminal device determines the number N of the PTRS ports according to the number K of antenna port groups included in the X antenna ports.
  • the number N of PTRS ports is less than or equal to K.
  • the terminal device may determine the number N of the PTRS ports according to the number K of antenna port groups included in the X antenna ports and the coherent configuration of the codebook.
  • the relevant configuration of the codebook may include a fully coherent codebook, a partially coherent codebook, and a non-coherent codebook.
  • the number N of the PTRS ports is equal to K; or,
  • the number N of the PTRS ports is equal to K.
  • the terminal device may report the number of antenna port groups to the network device.
  • the number of antenna port groups may be carried in the UE capability information and reported to the network device, and the number of PTRS ports may be configured by the network device.
  • the network device shall ensure that the two are equal when configuring the number of PTRS ports, that is, the network device shall configure the number of PTRS ports for the number of antenna port groups currently in the terminal device. This requirement is not required when configuring a fully coherent codebook.
  • the terminal device may report the number of antenna port groups to the network device.
  • the number of antenna port groups may be carried in the UE capability information and reported to the network device.
  • the terminal device directly determines the number N of PTRS ports according to the number of antenna port groups reported in the UE capability information, and the network device does not need to configure.
  • N is fixed to 1, which is independent of the UE capability.
  • the number N of the PTRS ports is equal to K;
  • the number N of the PTRS ports is less than or equal to K;
  • the number N of the PTRS ports is 1.
  • the number N of PTRS ports may be configured by the network device.
  • the number N of the PTRS ports is 1, and no network device configuration is required.
  • the number N of the PTRS ports is less than or equal to K;
  • the number N of the PTRS ports is equal to K;
  • the number N of the PTRS ports is 1.
  • the number N of PTRS ports may be configured by the network device.
  • whether the codebook is a fully coherent codebook, a partially coherent codebook, or an incoherent codebook is configured by a network device through high-level signaling.
  • the high-level signaling may include but is not limited to Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the number K of antenna port groups included in the X antenna ports is pre-configured by the network device to the terminal device.
  • the network device notifies the terminal device of the number K in advance through high-layer signaling. That is, the network device and the terminal device have the same understanding of the number K of the antenna port group.
  • the antenna ports included in the antenna port group can be pre-agreed by the network device and the terminal device, or can be configured by the network device to the terminal device.
  • antenna port group k includes antenna port k, where the value of k is 0,1,...,7.
  • the terminal device reports to the network device the number K of antenna port groups included in the X antenna ports, where K is used to determine at least one of the number N of PTRS ports, the antenna port and transmission layer associated with each PTRS port, and the power boost value of each PTRS port. That is, the network device and the terminal device have the same understanding of the number K of antenna port groups.
  • Embodiment 1-2 The number N of the PTRS ports is configured by the network device, wherein N is less than or equal to K.
  • the terminal device may report the capabilities related to the PTRS port to the network device, and the network device may determine the number N of the PTRS ports according to the capabilities related to the PTRS port reported by the terminal device.
  • the PTRS port-related capabilities may include the number of PTRS ports expected (or required) or supported by the terminal device, and/or the number K of antenna port groups included in the X antenna ports.
  • the number of PTRS ports N here may be the maximum number of PTRS ports used for uplink X antenna port transmission.
  • the number of PTRS ports actually used needs to be determined according to the antenna ports actually used to transmit data (eg, PUSCH), for example, according to TPMI indication information.
  • the terminal device when supporting uplink 8-antenna port transmission, can determine the appropriate number of PTRS ports N based on the number K of antenna port groups included in the X antenna ports, so that different numbers of PTRS ports can be determined for different antenna port grouping methods, thereby ensuring the phase tracking performance of the uplink 8-antenna port transmission under different antenna arrays.
  • Embodiment 2 Determination of the antenna port and the transmission layer associated with the PTRS port.
  • the terminal device may determine the antenna port and transmission layer associated with each PTRS port based on the coherent configuration of the codebook.
  • the network device when the network device configures a fully coherent codebook for the terminal device, the network device will only configure one PTRS port, and the one PTRS port will be associated with all antenna ports.
  • Embodiment 2-1 Determine the antenna port associated with each PTRS port according to the number K of antenna port groups included in X antenna ports.
  • the terminal device may determine the antenna port associated with each PTRS port according to the number K of antenna port groups included in the X antenna ports and the coherent configuration of the codebook.
  • the terminal device determines the antenna port associated with each PTRS port according to the number K of antenna port groups included in the X antenna ports.
  • the terminal device may determine the antenna port associated with each PTRS port according to the number K of antenna port groups included in the X antenna ports and the first association relationship.
  • the first association relationship includes the relationship between the PTRS port and the antenna port when K takes at least one value.
  • the first association relationship may include at least one of the following association relationships:
  • PTRS port 0 is associated with antenna ports ⁇ 0, 1, 4, 5 ⁇ , and PTRS port 1 is associated with antenna ports ⁇ 2, 3, 6, 7 ⁇ ;
  • PTRS port 0 is associated with antenna ports ⁇ 0, 2, 4, 6 ⁇ , and PTRS port 1 is associated with antenna ports ⁇ 1, 3, 5, 7 ⁇ ;
  • PTRS port 0 is associated with antenna ports ⁇ 0, 4 ⁇
  • PTRS port 1 is associated with antenna ports ⁇ 1, 5 ⁇
  • PTRS port 2 is associated with antenna ports ⁇ 2, 6 ⁇
  • PTRS port 3 is associated with antenna ports ⁇ 3, 7 ⁇ .
  • Embodiment 2-2 Determine the antenna port associated with each PTRS port according to the configuration of the antenna port group.
  • each PTRS port is associated with one of the antenna port groups included in the X antenna ports.
  • the antenna ports associated with one PTRS port include all antenna ports in one antenna port group.
  • the antenna ports included in each antenna port group may be pre-configured by the network device.
  • the network device may configure 2 or 4 antenna port groups.
  • Embodiment 2-3 Determine the antenna port associated with each PTRS port according to the number N of PTRS ports.
  • the terminal device may determine the antenna port associated with each PTRS port according to the number N of PTRS ports and the second association relationship, wherein the second association relationship includes the relationship between the PTRS port and the antenna port when N takes at least one value.
  • the second association relationship may include at least one of the following association relationships:
  • the PTRS port is associated with all antenna ports
  • PTRS port 0 is associated with antenna ports ⁇ 0, 1, 4, 5 ⁇ , and PTRS port 1 is associated with antenna ports ⁇ 2, 3, 6, 7 ⁇ ;
  • PTRS port 0 is associated with antenna ports ⁇ 0, 4 ⁇
  • PTRS port 1 is associated with antenna ports ⁇ 1, 5 ⁇
  • PTRS port 2 is associated with antenna ports ⁇ 2, 6 ⁇
  • PTRS port 3 is associated with antenna ports ⁇ 3, 7 ⁇ .
  • Embodiment 2-4 Determine the antenna port associated with each PTRS port according to the transmission layer transmitted on the antenna port.
  • the terminal device may determine that one PTRS port is associated with an antenna port that transmits the same transmission layer, that is, the antenna port associated with one PTRS port is used to transmit the same transmission layer.
  • the first PTRS port is associated with the first antenna port set
  • the second PTRS port is associated with the second antenna port set
  • the antenna ports in the first antenna port set are all used to transmit the first transmission layer
  • the antenna ports in the second antenna port set are all used to transmit the second transmission layer
  • the first transmission layer and the second transmission layer are different PUSCH transmission layers
  • the first antenna port set and the second antenna port set are different
  • the first PTRS port is different from the second PTRS port.
  • the antenna port associated with the PTRS port needs to be determined according to the antenna port actually used by the transport layer, for example, according to the TPMI indication information.
  • the precoding matrix indicated by the TPMI indication information is:
  • antenna ports 0 and 4 transmitting the first transmission layer are associated with PTRS port 0, and antenna ports 1 and 5 transmitting the second transmission layer are associated with PTRS port 1.
  • the precoding matrix indicated by the TPMI indication information is:
  • the antenna ports ⁇ 0, 1, 4, 5 ⁇ transmitting the first transmission layer are associated with PTRS port 0, and the antenna ports ⁇ 2, 3, 6, 7 ⁇ transmitting the second transmission layer are associated with PTRS port 1.
  • the precoding matrix indicated by the TPMI indication information is:
  • the antenna ports ⁇ 0, 2, 4, 6 ⁇ transmitting the first transmission layer are associated with PTRS port 0, and the antenna ports ⁇ 1, 3, 5, 7 ⁇ transmitting the second transmission layer are associated with PTRS port 1.
  • the association relationship between the antenna port and the PTRS port is not fixed, but is determined according to the antenna port actually used for transmission layer transmission in the precoding matrix indicated by the TPMI indication information.
  • the antenna port associated with each PTRS port can be used to determine the number M of PTRS ports actually used for uplink X antenna ports transmission and/or the DMRS port associated with the PTRS port.
  • the method 200 further includes:
  • the number M of PTRS ports actually used for uplink X antenna port transmission is determined.
  • the TPMI indication information is used to indicate a precoding matrix (ie, a codeword in a predefined codebook).
  • the number of all PTRS ports associated with the antenna ports corresponding to the non-zero elements in the precoding matrix indicated by the TPMI indication information is determined as the number M of PTRS ports actually used for uplink X antenna port transmission.
  • the number M of PTRS ports actually used for uplink X antenna ports transmission can be used to determine the PTRS actually transmitted, that is, the terminal device actually only needs to transmit M PTRS ports instead of N PTRS ports.
  • the number M can be used to determine the DMRS ports associated with the PTRS, that is, the terminal device only needs to determine the DMRS ports associated with the M PTRS ports actually transmitted, and does not need to determine the DMRS ports associated with the N PTRS ports.
  • the specific determination method is described below.
  • the number M may be used to determine the power boost value of the PTRS port.
  • N in the table or formula exemplified below may be replaced by the number M.
  • the precoding matrix indicated by the TPMI indication information is:
  • the precoding matrix indicated by the TPMI indication information is:
  • Embodiment 2-5 Determine the transmission layer associated with the PTRS port according to the transmission layer transmitted on the antenna port associated with the PTRS port.
  • the S220 includes:
  • the transmission layer associated with the PTRS port is determined in the first transmission layer set, wherein the first transmission layer set includes the transmission layer transmitted on the antenna port associated with the PTRS port.
  • the DMRS-PTRS association indication information is used to indicate the association relationship between the DMRS port and the PTRS port.
  • the terminal device can determine the target transmission layer associated with the PTRS port from the multiple transmission layers according to the DMRS-PTRS association indication information.
  • 1-bit DMRS-PTRS association indication information may be used to indicate a target transmission layer associated with the first PTRS port among the two transmission layers.
  • 2-bit DMRS-PTRS association indication information may be used to indicate a target transmission layer associated with the first PTRS port among the four transmission layers.
  • 3-bit DMRS-PTRS association indication information may be used to indicate a target transmission layer associated with the first PTRS port among the 8 transmission layers.
  • the method 200 further includes:
  • a DMRS port associated with the PTRS port is determined in a first DMRS port set, wherein the first DMRS port set includes the DMRS port transmitted on the antenna port associated with the PTRS port.
  • the terminal device can determine the target DMRS port associated with the PTRS port among the multiple DMRS ports based on the DMRS-PTRS association indication information.
  • 1-bit DMRS-PTRS association indication information may be used to indicate a target DMRS port associated with the first PTRS port among the two DMRS ports.
  • 2-bit DMRS-PTRS association indication information may be used to indicate a target DMRS port associated with the first PTRS port among the four DMRS ports.
  • 3-bit DMRS-PTRS association indication information may be used to indicate a target DMRS port associated with the first PTRS port among the 8 DMRS ports.
  • a PTRS port is associated with a transport layer
  • the PTRS port is also associated with the DMRS port used by the transport layer.
  • the DMRS port of the transport layer is used to transmit the PTRS port, that is, the PTRS port and the associated DMRS port use the same sequence, frequency domain position, precoding matrix and beam. That is, the signal transmitted by the PTRS port and the signal transmission method are the same as those of the associated DMRS port, so that the receiving end can use the signals on the associated DMRS port and the PTRS port for joint channel estimation or phase estimation.
  • the precoding matrix indicated by the TPMI indication information is:
  • the terminal device can determine the one transmission layer associated with the PTRS port 0 among the two transmission layers transmitted on the antenna port associated with PTRS port 0 according to the DMRS-PTRS association indication information in the DCI, and use the DMRS port used by the transmission layer to transmit PTRS port 0.
  • the terminal device when supporting uplink 8-antenna port transmission, can determine the mapping relationship between the PTRS port and the 8 antenna ports, so that different mapping methods can be determined for different antenna port grouping methods, thereby supporting uplink 8-antenna port transmission under different antenna arrays.
  • the power boost value is the boost value (in dB) of the transmit power of a PTRS port relative to the transmit power of the DMRS port or the transport layer associated with the PTRS port.
  • PTRS Only one PTRS port is transmitted on the resource element (RE) of PTRS, while multiple DMRS ports/transmission layers are often transmitted on the RE of DMRS or data. At this time, PTRS needs to be powered up relative to DMRS to ensure that the power on each OFDM symbol is constant (regardless of whether PTRS is present or not), otherwise it will affect the RF performance.
  • RE resource element
  • the resources occupied by other PTRS ports need to be reserved on the antenna port that transmits one PTRS port. No signals are sent on these reserved resources. Therefore, the power of the reserved resources on these antenna ports can be used for the transmission of the PTRS port, thereby improving the transmission power of the PTRS port.
  • Embodiment 3 Determination of the power boost value of a PTRS port.
  • the terminal device may determine the power boost value of each PTRS port based on the number K of antenna port groups included in the X antenna ports and/or the number of transmission layers of the PUSCH to be transmitted and/or the number N of configured PTRS ports.
  • the terminal device determines the power boost value of each PTRS port according to the coherent configuration of the codebook, the number K of antenna port groups included in the X antenna ports and/or the number of transmission layers of the PUSCH to be transmitted.
  • the terminal device determines the power boost value of each PTRS port according to the number K of antenna port groups included in the X antenna ports and/or the number of transmission layers of the PUSCH to be transmitted.
  • the power boost value is 10*lg(N)dB.
  • the power boost value is 10*lg(4N/K)dB.
  • the power boost value is
  • the power boost value is 10*lg(8N/K)dB.
  • the power boost value is Wherein, L is the number of transmission layers of the PUSCH.
  • the power boost value is Wherein L is the number of transmission layers of the PUSCH.
  • the network device configures only one PTRS port for the terminal device, and the terminal device can determine that the power boost value on the PTRS port is 10*lg(L)dB, where L represents the number of transmission layers of PUSCH.
  • the terminal device may determine that the power boost value of each PTRS port is 10*lg(N)dB.
  • the maximum allowed number of PTRS ports Nmax is 2, 10*lg(N)dB may also be expressed as 3N-3.
  • the terminal device may determine the power boost value of each PTRS port in the manner described in the following embodiment 3-1.
  • the maximum number of PTRS ports may be predefined or configured by the network device.
  • the terminal device may determine the power boost value of each PTRS port in the manner described in the following embodiment 3-2, or, alternatively, may determine the power boost value of each PTRS port in the manner described in the following embodiment 3-1.
  • the maximum number of PTRS ports may be predefined or configured by the network device.
  • Example 3-1 Applicable to the case where the maximum allowed number of PTRS ports Nmax is 4, that is, the value range of N is ⁇ 1, 2, 4 ⁇ .
  • the power boost value can be determined in the following manner.
  • the power boost value of each PTRS port is determined to be 10*lg(N)dB, where N is the number of PTRS ports.
  • the power boost value of each PTRS port is determined to be 10*lg(4N/K)dB.
  • the power boost value of each PTRS port is determined to be in, Indicates rounding down, where the rounding down can also be replaced by other rounding methods, such as rounding up, rounding off, etc.
  • the power boost value of each PTRS port is 10*lg(8N/K)dB.
  • Table 2 is an example of the power boost value when the number of transmission layers of the PUSCH is 1-4
  • Table 3 is an example of the power boost value when the number of transmission layers of the PUSCH is 5-8.
  • Example 3-2 Applicable to the case where the maximum allowed number of PTRS ports Nmax is 2, that is, the value range of N is ⁇ 1,2 ⁇ .
  • different power boost values can be determined according to whether the value of K is 2 or 4.
  • the power boost value of each PTRS port is wherein, L is the number of transmission layers of the PUSCH.
  • the power boost value of each PTRS port is 3N-3.
  • the power boost value of each PTRS port is 3N.
  • the power boost value of each PTRS port is 3N+1.77 (or 1.76/1.78).
  • the power boost value of each PTRS port is 3N+3.
  • Table 4 is an example of the power boost value when the number of transmission layers of the PUSCH is 1-4
  • Table 5 is an example of the power boost value when the number of transmission layers of the PUSCH is 5-8.
  • the power boost value of each PTRS port is wherein, L is the number of transmission layers of the PUSCH.
  • Table 6 is an example table of power boost values when the number of transmission layers of the PUSCH is 1-4
  • Table 7 is a comparison table of power boost values when the number of transmission layers of the PUSCH is 5-8.
  • the power boost value of each PTRS port is 3N-3.
  • the power boost value of each PTRS port is 3N.
  • 7.78 in the above table may also be expressed as 7.77, and 1.77 may also be expressed as 1.76 or 1.78.
  • the above table only provides a general expression of the power boost value. In practical applications, other expressions may also be used, as long as the power boost values corresponding to different transmission layers obtained in the end are the same as the values obtained by the above expression or table.
  • the embodiments of the present application do not limit the specific expression. For example, in Table 3, when the number of transmission layers is 6 or 7, It can also be expressed as 10*lg(N)+10*lg(5-K) or 10*lg(N)+10*lg(8/K-1).
  • the terminal device when supporting uplink 8-antenna port transmission, can determine the power boost value of each PTRS port, so as to ensure that the power on different orthogonal frequency-division multiplexing (OFDM) symbols is constant when the 8-antenna port is transmitted under different antenna array conditions, thereby ensuring the RF performance, and the power boost is beneficial to enhance the measurement performance on the PTRS port.
  • OFDM orthogonal frequency-division multiplexing
  • a method for wireless communication according to an embodiment of the present application is described in detail from the perspective of a terminal device.
  • a method for wireless communication according to another embodiment of the present application is described in detail from the perspective of a network device. It should be understood that the description on the network device side corresponds to the description on the terminal device side. Similar descriptions can be found above. To avoid repetition, they will not be repeated here.
  • FIG3 is a schematic flow chart of a wireless communication method 300 according to another embodiment of the present application.
  • the method 300 may be executed by a network device in the communication system shown in FIG1 .
  • the method 300 includes the following contents:
  • the network device determines the number N of phase tracking reference signal PTRS ports used for uplink X antenna ports transmission;
  • S340 Perform phase adjustment or demodulation reference signal DMRS channel estimation on the transmission layer associated with the N PTRS ports according to the PTRS phase measurement result.
  • the network device may determine the number N of PTRS ports, the antenna port and the transmission layer associated with each PTRS port in a manner similar to that of the terminal device.
  • the specific implementation is described in reference method 200, which will not be repeated here for brevity.
  • the S310 includes:
  • the number N of the PTRS ports is determined according to the number K of antenna port groups included in the X antenna ports.
  • the number N of PTRS ports is less than or equal to K.
  • the number N of the PTRS ports is equal to K.
  • the number N of PTRS ports is equal to K;
  • the number N of the PTRS ports is less than or equal to K;
  • the number N of the PTRS ports is 1.
  • the S320 may include:
  • the antenna port and the transmission layer associated with each PTRS port are determined according to the number K of antenna port groups included in the X antenna ports.
  • X 8
  • PTRS port 0 is associated with antenna ports ⁇ 0, 1, 4, 5 ⁇ , and PTRS port 1 is associated with antenna ports ⁇ 2, 3, 6, 7 ⁇ ;
  • PTRS port 0 is associated with antenna ports ⁇ 0, 4 ⁇
  • PTRS port 1 is associated with antenna ports ⁇ 1, 5 ⁇
  • PTRS port 2 is associated with antenna ports ⁇ 2, 6 ⁇
  • PTRS port 3 is associated with antenna ports ⁇ 3, 7 ⁇ .
  • the S320 may include:
  • each PTRS port is associated with one of the antenna port groups included in the X antenna ports, wherein the antenna ports included in each antenna port group are preconfigured by the network device.
  • the S320 may include:
  • PTRS port 0 is associated with antenna ports ⁇ 0, 4 ⁇
  • PTRS port 1 is associated with antenna ports ⁇ 1, 5 ⁇
  • PTRS port 2 is associated with antenna ports ⁇ 2, 6 ⁇
  • PTRS port 3 is associated with antenna ports ⁇ 3, 7 ⁇ .
  • the S320 may include:
  • the method 300 further includes:
  • the number M of PTRS ports actually used for uplink X antenna ports transmission is determined according to the antenna port associated with each PTRS port and the transmit precoding matrix indication TPMI indication information in the downlink control information DCI.
  • the number M of PTRS ports actually used for uplink X antenna port transmission is the number of all PTRS ports associated with the antenna ports corresponding to the non-zero elements in the precoding matrix indicated by the TPMI indication information.
  • the S320 may include:
  • the transmission layer associated with the PTRS port is determined in the first transmission layer set, wherein the first transmission layer set includes the transmission layer transmitted on the antenna port associated with the PTRS port.
  • the method 300 further includes:
  • a DMRS port associated with the PTRS port is determined in a first DMRS port set, wherein the first DMRS port set includes the DMRS port transmitted on the antenna port associated with the PTRS port.
  • the number K of antenna port groups included in the X antenna ports is configured by a network device.
  • the number K of antenna port groups included in the X antenna ports is configured through high-layer signaling.
  • the method 300 further includes:
  • the network device receives the number K of antenna port groups included in the X antenna ports reported by the terminal device, where K is used to determine the number N of PTRS ports and/or the antenna port and transmission layer associated with each PTRS port.
  • Fig. 4 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine the number N of phase tracking reference signal PTRS ports for uplink X antenna ports transmission, where X is an integer greater than 4; determine the antenna port and transmission layer associated with each PTRS port in the N PTRS ports; and determine the power boost value of each PTRS port in the N PTRS ports;
  • the communication unit 420 is configured to transmit PTRS on at least some of the N PTRS ports according to the antenna port and the transmission layer associated with each PTRS port, and the power boost value.
  • processing unit 410 is further configured to:
  • the number N of the PTRS ports is determined according to the number K of antenna port groups included in the X antenna ports.
  • the number N of PTRS ports is less than or equal to K.
  • the number N of the PTRS ports is equal to K.
  • the number N of PTRS ports is equal to K;
  • the number N of the PTRS ports is configured by the network device and N is less than or equal to K;
  • the number N of the PTRS ports is 1.
  • processing unit 410 is further configured to:
  • the antenna port and the transmission layer associated with each PTRS port are determined according to the number K of antenna port groups included in the X antenna ports.
  • X 8
  • PTRS port 0 is associated with antenna ports ⁇ 0, 1, 4, 5 ⁇ , and PTRS port 1 is associated with antenna ports ⁇ 2, 3, 6, 7 ⁇ ;
  • PTRS port 0 is associated with antenna ports ⁇ 0, 4 ⁇
  • PTRS port 1 is associated with antenna ports ⁇ 1, 5 ⁇
  • PTRS port 2 is associated with antenna ports ⁇ 2, 6 ⁇
  • PTRS port 3 is associated with antenna ports ⁇ 3, 7 ⁇ .
  • processing unit 410 is further configured to:
  • each PTRS port is associated with one of the antenna port groups included in the X antenna ports, wherein the antenna ports included in each antenna port group are preconfigured by the network device.
  • processing unit 410 is further configured to:
  • PTRS port 0 is associated with antenna ports ⁇ 0, 4 ⁇
  • PTRS port 1 is associated with antenna ports ⁇ 1, 5 ⁇
  • PTRS port 2 is associated with antenna ports ⁇ 2, 6 ⁇
  • PTRS port 3 is associated with antenna ports ⁇ 3, 7 ⁇ .
  • processing unit 410 is further configured to:
  • processing unit 410 is further configured to:
  • the number M of PTRS ports actually used for uplink X antenna ports transmission is determined according to the antenna port associated with each PTRS port and the transmit precoding matrix indication TPMI indication information in the downlink control information DCI.
  • the number M of PTRS ports actually used for uplink X antenna port transmission is the number of all PTRS ports associated with the antenna ports corresponding to the non-zero elements in the precoding matrix indicated by the TPMI indication information.
  • processing unit 410 is further configured to:
  • the transmission layer associated with the PTRS port is determined in the first transmission layer set, wherein the first transmission layer set includes the transmission layer transmitted on the antenna port associated with the PTRS port.
  • processing unit 410 is further configured to:
  • a DMRS port associated with the PTRS port is determined in a first DMRS port set, wherein the first DMRS port set includes the DMRS port transmitted on the antenna port associated with the PTRS port.
  • processing unit 410 is further configured to:
  • the power boost value of each PTRS port is determined according to the number K of antenna port groups included in the X antenna ports and the number of transmission layers of the physical uplink shared channel PUSCH to be transmitted.
  • the power boost value is 10*lg(N)dB;
  • the power boost value is 10*lg(4N/K)dB;
  • the power boost value is
  • the power boost value is 10*lg 10*lg(8N/K)dB.
  • the power boost value is Wherein, L is the number of transmission layers of the PUSCH;
  • the power boost value is Wherein L is the number of transmission layers of the PUSCH.
  • processing unit 410 is further configured to:
  • the power boost value of each PTRS port is determined to be 10*lg(N)dB.
  • the number K of antenna port groups included in the X antenna ports is configured by the network device through high-layer signaling.
  • the communication unit 420 is further configured to:
  • K is used to determine at least one of the number N of PTRS ports, the antenna port and transmission layer associated with each PTRS port, and the power boost value of each PTRS port.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively for realizing the corresponding processes of the terminal device in the method 200 shown in Figure 2, which will not be repeated here for the sake of brevity.
  • FIG5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 of FIG5 includes:
  • the processing unit 510 is configured to determine the number N of phase tracking reference signal PTRS ports for uplink X antenna ports transmission, where X is an integer greater than 4; determine the antenna port and transmission layer associated with each PTRS port in the N PTRS ports; and receive PTRS on at least some of the N PTRS ports according to the number N of PTRS ports;
  • the communication unit 520 is used to perform phase adjustment or demodulation reference signal DMRS channel estimation of the transmission layer associated with the N PTRS ports according to the phase measurement result of the PTRS.
  • processing unit 510 is further configured to:
  • the number N of the PTRS ports is determined according to the number K of antenna port groups included in the X antenna ports.
  • the number N of PTRS ports is less than or equal to K.
  • the number N of the PTRS ports is equal to K.
  • the number N of PTRS ports is equal to K;
  • the number N of the PTRS ports is less than or equal to K;
  • the number N of the PTRS ports is 1.
  • processing unit 510 is further configured to:
  • the antenna port and the transmission layer associated with each PTRS port are determined according to the number K of antenna port groups included in the X antenna ports.
  • X 8
  • PTRS port 0 is associated with antenna ports ⁇ 0, 1, 4, 5 ⁇ , and PTRS port 1 is associated with antenna ports ⁇ 2, 3, 6, 7 ⁇ ;
  • PTRS port 0 is associated with antenna ports ⁇ 0,4 ⁇
  • PTRS port 1 is associated with antenna ports ⁇ 1,5 ⁇
  • PTRS port 2 is associated with antenna ports ⁇ 2,6 ⁇
  • PTRS port 3 is associated with antenna ports ⁇ 3,7 ⁇ .
  • processing unit 510 is further configured to:
  • each PTRS port is associated with one of the antenna port groups included in the X antenna ports, wherein the antenna ports included in each antenna port group are preconfigured by the network device.
  • processing unit 510 is further configured to:
  • PTRS port 0 is associated with antenna ports ⁇ 0, 4 ⁇
  • PTRS port 1 is associated with antenna ports ⁇ 1, 5 ⁇
  • PTRS port 2 is associated with antenna ports ⁇ 2, 6 ⁇
  • PTRS port 3 is associated with antenna ports ⁇ 3, 7 ⁇ .
  • processing unit 510 is further configured to:
  • processing unit 510 is further configured to:
  • the number M of PTRS ports actually used for uplink X antenna ports transmission is determined according to the antenna port associated with each PTRS port and the transmit precoding matrix indication TPMI indication information in the downlink control information DCI.
  • the number M of PTRS ports actually used for uplink X antenna port transmission is the number of all PTRS ports associated with the antenna ports corresponding to the non-zero elements in the precoding matrix indicated by the TPMI indication information.
  • processing unit 510 is further configured to:
  • the transmission layer associated with the PTRS port is determined in the first transmission layer set, wherein the first transmission layer set includes the transmission layer transmitted on the antenna port associated with the PTRS port.
  • processing unit 510 is further configured to:
  • a DMRS port associated with the PTRS port is determined in a first DMRS port set, wherein the first DMRS port set includes the DMRS port transmitted on the antenna port associated with the PTRS port.
  • the number K of antenna port groups included in the X antenna ports is configured by the network device through high-layer signaling.
  • the communication unit 520 is further configured to:
  • the number K of antenna port groups included in the X antenna ports reported by the receiving terminal device is used to determine the number N of PTRS ports and/or the antenna port and transmission layer associated with each PTRS port.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the embodiment of the method of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively for implementing the corresponding processes of the network device in the method 300 shown in Figure 3. For the sake of brevity, they will not be repeated here.
  • Fig. 6 is a schematic structural diagram of a communication device 600 provided in an embodiment of the present application.
  • the communication device 600 shown in Fig. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the communication device 600 may further include a transceiver 630 , and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of the antennas may be one or more.
  • the communication device 600 may specifically be a network device of an embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • the communication device 600 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • Fig. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in Fig. 7 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • FIG8 is a schematic block diagram of a communication system 900 provided in an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding functions implemented by the network device in the above method. For the sake of brevity, they will not be repeated here.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program runs on a computer, the computer executes the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not described here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on a computer, the computer executes the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

一种无线通信的方法、终端设备和网络设备,该方法包括:终端设备确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N,其中,X是大于4的整数;确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;确定所述N个PTRS端口中每个PTRS端口的功率提升值;根据所述每个PTRS端口所关联的天线端口和传输层,以及所述功率提升值,在所述N个PTRS端口中的至少部分PTRS端口上传输PTRS。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在相关技术中,上行传输最多支持4个物理上行共享信道(Physical Uplink Shared Channel,PUSCH)天线端口的PUSCH传输,同时在FR2,网络设备可以配置最多2个PTRS端口与PUSCH天线端口关联。
在一些场景中,一些高级的终端可以配置更多的发送链路或射频通道,此时它们可能支持更多个PUSCH天线端口,例如8个PUSCH天线端口,以进一步提高上行的传输性能。此情况下,如何进行PTRS的传输以支持更多的PUSCH天线端口从而提升上行传输性能是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法、终端设备和网络设备,有利于提升上行传输性能。
第一方面,提供了一种无线通信的方法,包括:终端设备确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N,其中,X是大于4的整数;确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;确定所述N个PTRS端口中每个PTRS端口的功率提升值;根据所述每个PTRS端口所关联的天线端口和传输层,以及所述功率提升值,在所述N个PTRS端口中的至少部分PTRS端口上传输PTRS。
第二方面,提供了一种无线通信的方法,包括:网络设备确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N,其中,X是大于4的整数;确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;根据所述PTRS端口的数量N,在所述N个PTRS端口中的至少部分PTRS端口上进行PTRS的接收。根据所述PTRS的相位测量结果,进行所述N个PTRS端口所关联的传输层的相位调整或解调参考信号DMRS信道估计。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,在支持上行X天线端口的上行传输时,可以通过使用PTRS来提升上行传输性能,具体地,确定用于上行X个天线端口的上行传输的PTRS端口的数量,每个PTRS端口关联的天线端口和传输层,每个PTRS端口的功率提升值,进一步根据每个PTRS端口关联的天线端口和传输层以及每个PTRS端口的功率提升值,进行PTRS的传输,有利于将PTRS的传输扩展到支持更多的PTRS端口,更多的天线端口,更多的传输层数,保证上行DMRS信道估计的性能。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图。
图2是根据本申请实施例提供的一种无线通信的方法的示意性图。
图3是根据本申请实施例提供的另一种无线通信的方法的示意性图。
图4是根据本申请实施例提供的一种终端设备的示意性框图。
图5是根据本申请实施例提供的一种网络设备的示意性框图。
图6是根据本申请实施例提供的一种通信设备的示意性框图。
图7是根据本申请实施例提供的一种芯片的示意性框图。
图8是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合 使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括现有LTE协议、NR协议、Wi-Fi协议,与之相关的其他通信***相关的协议的演进,以及应用于未来的通信***中的相关协议,本申请对于具体的协议类型不做限定。
在一些场景中,终端最多可以支持4个天线端口的上行传输。为了支持FR2的上行传输,终端可以被配置1-2个相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)端口,每个PTRS端口关联不同的传输层或解调参考信号(Demodulation Reference Signal,DMRS),PTRS可以用于所关联的传输层或DMRS的相位跟踪和调整,从而保证DMRS信道估计和数据解调的性能。对于全相干的码本,所有的传输层/DMRS端口关联同一个PTRS端口(此时网络设备只会配置一个PTRS端口)。对于配置部分相干和非相干码本的情况,实际传输的PTRS端口的数量决定于传输预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)的指示和传输层数。其中,物理上行共享信道(Physical Uplink Shared Channel,PUSCH)天线端口1000和1002以及这两个端口上传输的DMRS(传输层)关联PTRS端口0(即该PTRS端口上的相位估计结果可以用于这两个天线端口上传输的PUSCH和DMRS),PUSCH天线端口1001和1003以及这两个端口上传输的DMRS(传输层)关联PTRS端 口1。其中,如果天线端口上传输的DMRS端口为多个,则其中哪个DMRS端口实际与相应的PTRS端口关联需要根据下行控制信息(Downlink Control Information,DCI)中的指示信息确定。PTRS端口与关联的DMRS端口采用相同的序列,频域资源和预编码矩阵。
另外,由于一个PTRS端口可以关联多个传输层,为了保证不同正交频分复用(Orthogonal frequency-division multiplexing,OFDM)符号上的功率是一致的,PTRS的功率需要根据配置的传输层数进行调整。具体的,根据传输层数的大小,码本的相干配置以及传输方案(基于码本或者非码本传输)的不同,PTRS相对于关联的DMRS端口的功率提升可以由表1得到,具体采用哪个功率提升方案由网络设备配置。这里功率提升值为一个PTRS端口相对于该PTRS端口关联的DMRS端口或传输层的发送功率的提升值。其中,Q p为当前配置的PTRS端口数量(1或2),码本的相干配置(全相干码本/部分相干码本/non-coherent)和传输方案配置(codebook based or non-codebook based)由高层信令得到。
表1
Figure PCTCN2022124403-appb-000001
在相关技术中,上行传输最多支持4个PUSCH天线端口,同时在FR2网络设备可以配置最多2个PTRS端口与PUSCH天线端口关联。
在一些场景中,一些高级的终端可以配置更多的发送链路或射频通道,此时它们可能支持更多个PUSCH天线端口,例如8个PUSCH天线端口,以进一步提高上行的传输性能。此情况下,如何进行PTRS的传输以支持更多的PUSCH天线端口从而提升上行传输性能是一项亟需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图2是根据本申请实施例的无线通信的方法200的示意性流程图,该方法200可以由图1所示的通信***中的终端设备执行,如图2所示,该方法200包括如下内容:
S210,终端设备确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N;
S220,确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;
S230,确定所述N个PTRS端口中每个PTRS端口的功率提升值;
S240,根据所述每个PTRS端口所关联的天线端口和传输层,以及所述功率提升值,在所述N个PTRS端口中的至少部分PTRS端口上传输PTRS。
在一些实施例中,X是大于4的整数,例如X=6,8或12,16等。以下,以X=8为例进行说明,但本申请并不限于此。
在一些实施例中,天线端口或称PUSCH天线端口,该天线端口用于PUSCH传输。
在一些实施例中,PTRS端口可以指用于PTRS传输的端口。
需要说明的是,在本申请实施例中,传输PTRS端口可以指通过该PTRS端口传输PTRS信号,二者是等价的,可以相互替换。类似地,传输DMRS端口可以指通过该DMRS端口传输DMRS信号,二者是等价的,可以相互替换;传输天线端口可以指通过该天线端口传输PUSCH,二者是等价的,可以相互替换。
在一些实施例中,该S220可以替换为:
确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和DMRS端口。
由于PTRS端口关联的传输层和PTRS端口关联的DMRS端口具有映射关系,终端设备确定每个PTRS端口关联的传输层,也就相当于确定每个PTRS端口关联的DMRS端口。
以下,结合实施例1,说明用于上行X个天线端口传输的PTRS端口的数量N的确定方法。
实施例1:用于上行X个天线端口传输的PTRS端口的数量N的确定。
实施例1-1:终端设备根据X个天线端口包含的天线端口组的数量K,确定所述PTRS端口的数量N。
在一些实施例中,所述PTRS端口的数量N小于或等于K。
在一些实施例中,终端设备可以根据X个天线端口包含的天线端口组的数量K和码本的相干配置,确定所述PTRS端口的数量N。
可选地,码本的相关配置可以包括全相干(Full coherent)码本、部分相干(partial-coherent)码本、非相干(non-coherent)码本。
方式1:
在配置了部分相干码本的情况下,所述PTRS端口的数量N等于K;或者,
在配置了非相干码本的情况下,所述PTRS端口的数量N等于K。
在一种实施方式中,终端设备可以向网络设备上报天线端口组的数量,例如该天线端口组的数量可以携带在UE能力信息中上报给网络设备,而PTRS端口的数量可以由网络设备配置,在配置了非相干码本或者配置了部分相干码本的情况下,网络设备在配置PTRS端口的数量时要保证二者相等,即,终端设备当前有几个天线端口组,网络设备就配置几个PTRS端口。而在配置全相干码本时则没有这个要求。
在另一种实施方式中,终端设备可以向网络设备上报天线端口组的数量,例如该天线端口组的数量可以携带在UE能力信息中上报给网络设备,在配置了非相干码本或者配置了部分相干码本的情况下,终端设备直接根据UE能力信息中上报的天线端口组的数量,确定所述PTRS端口的数量N,不需要网络设备进行配置。而在配置全相干码本时则需要假设N固定为1,与UE能力无关。
方式2:
在配置了非相干码本的情况下,所述PTRS端口的数量N等于K;
在配置了部分相干码本的情况下,所述PTRS端口的数量N小于或等于K;
在配置了全相干码本的情况下,所述PTRS端口的数量N为1。
在一些实施例中,在配置了部分相干码本的情况下,PTRS端口的数量N可以是网络设备配置的。
例如,在X=8,并且网络设备给终端设备配置了非相干码本时,N=K=8。
又例如,在X=8,并且网络设备给终端设备配置了部分相干码本时,如果K=4,则N可以是1,2,4中的一个,具体取值可以由网络设备配置,如果K=2,则N可以是1,2中的一个,具体取值可以由网络设备配置。
再例如,在X=8,并且网络设备给终端设备配置了全相干码本时,所述PTRS端口的数量N为1,不需要网络设备配置。
方式3:
在配置了非相干码本的情况下,所述PTRS端口的数量N小于或等于K;
在配置了部分相干码本的情况下,所述PTRS端口的数量N等于K;
在配置了全相干码本的情况下,所述PTRS端口的数量N为1。
在一些实施例中,在配置了非相干码本的情况下,PTRS端口的数量N可以是网络设备配置的。
例如,在X=8,并且网络设备给终端设备配置了非相干码本时,K=8,N的取值可以是1,2,4,8中的一个,具体取值可以由网络设备配置。
又例如,在X=8,并且网络设备给终端设备配置了部分相干码本时,N=K=4或者N=K=2。
可选地,在本申请实施例中,码本是全相干码本,部分相干码本还是非相干码本(即码本的相干配置)由网络设备通过高层信令配置。例如,该高层信令可以包括但不限于无线资源控制(Radio Resource Control,RRC)信令。
在一种实现方式中,所述X个天线端口包含的天线端口组的数量K由网络设备预先配置给终端设备的。例如,网络设备预先通过高层信令将该数量K通知终端设备。即网络设备和终端设备对于该天线端口组的数量K的理解一致。进一步的,在K为不同的取值时,天线端口组包含的天线端口可 以由网络设备与终端设备预先约定好,也可以由网络设备配置给终端设备。
例如,以X=8为例,当K=1时,该一个天线端口组包含所有的天线端口;当K=2时,天线端口组0包含天线端口{0,1,4,5},天线端口组1包含天线端口{2,3,6,7};当K=4时,天线端口组0包含天线端口{0,4},天线端口组1包含天线端口{1,5},天线端口组2包含天线端口{2,6},天线端口组3包含天线端口{3,7}。当K=8时,天线端口组k包含天线端口k,其中,k的取值为0,1,…,7。
在另一种实现方式中,终端设备向网络设备上报X个天线端口包含的天线端口组的数量K,所述K用于确定PTRS端口的数量N,每个PTRS端口所关联的天线端口和传输层,以及每个PTRS端口的功率提升值中的至少一项。即网络设备和终端设备对于该天线端口组的数量K的理解一致。
实施例1-2:所述PTRS端口的数量N是网络设备配置的。其中,N小于或等于K。
例如,终端设备可以向网络设备上报PTRS端口相关的能力,网络设备可以根据终端设备上报的PTRS端口相关的能力,确定所述PTRS端口的数量N。
可选地,所述PTRS端口相关的能力可以包括终端设备期望的(或者说,需要的)或者支持的PTRS端口的数量,和/或,X个天线端口包含的天线端口组的数量K。
需要说明的是,这里的PTRS端口数量N可以是用于上行X天线端口传输的PTRS端口的最大数量。其中,实际使用的PTRS端口的数量需要根据实际用于传输数据(例如PUSCH)的天线端口确定,例如根据TPMI指示信息确定。
因此,在本申请实施例中,在支持上行8天线端口传输时,终端设备可以根据X个天线端口包含的天线端口组的数量K确定合适的PTRS端口的数量N,从而能够为不同的天线端口分组方式确定不同的PTRS端口数量,从而保证不同天线阵列下的上行8天线端口传输的相位跟踪性能。
以下,结合实施例2,说明每个PTRS端口所关联的天线端口和传输层的确定方法。
实施例2:PTRS端口所关联的天线端口和传输层的确定。
在一些实施例中,终端设备可以根据码本的相干配置,确定每个PTRS端口所关联的天线端口和传输层。
例如,在网络设备给终端设备配置了全相干码本时,网络设备只会配置一个PTRS端口,则该一个PTRS端口会关联所有的天线端口。
实施例2-1:根据X个天线端口包含的天线端口组的数量K,确定每个PTRS端口所关联的天线端口。
在一些实施例中,终端设备可以根据X个天线端口包含的天线端口组的数量K和码本的相干配置,确定每个PTRS端口所关联的天线端口。
例如,在配置了部分相干码本的情况下,终端设备根据X个天线端口包含的天线端口组的数量K,确定每个PTRS端口所关联的天线端口。
在一些具体实施例中,在配置了部分相干码本的情况下,终端设备可以根据X个天线端口包含的天线端口组的数量K和第一关联关系,确定每个PTRS端口所关联的天线端口。其中,第一关联关系包括在K取至少一个值时,PTRS端口和天线端口的关系。
以X=8为例,第一关联关系可以包括如下至少一个关联关系:
在K=2时,PTRS端口0关联天线端口{0,1,4,5},PTRS端口1关联天线端口{2,3,6,7};
在K=2时,PTRS端口0关联天线端口{0,2,4,6},PTRS端口1关联天线端口{1,3,5,7};
在K=4时,PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5}关联,PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
实施例2-2:根据天线端口组的配置,确定每个PTRS端口所关联的天线端口。
例如,确定每个PTRS端口关联X个天线端口包含的天线端口组中的一个天线端口组。
即,一个PTRS端口关联的天线端口包括一个天线端口组中的所有天线端口。
可选地,每个天线端口组包含的天线端口可以由网络设备预先配置。例如,在X=8时,网络设备可以配置2个或者4个天线端口组。
实施例2-3:根据PTRS端口的数量N确定每个PTRS端口所关联的天线端口。
在一些实施例中,终端设备可以根据PTRS端口的数量N和第二关联关系,确定每个PTRS端口所关联的天线端口。其中,第二关联关系包括在N取至少一个值时,PTRS端口和天线端口的关系。
以X=8为例,第二关联关系可以包括如下至少一个关联关系:
当所述PTRS端口的数量N=1时,PTRS端口关联所有的天线端口;
当所述PTRS端口的数量N=2时,PTRS端口0关联天线端口{0,1,4,5},PTRS端口1关联天线端口{2,3,6,7};
当所述PTRS端口的数量N=4时,PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5},PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
实施例2-4:根据天线端口上传输的传输层确定每个PTRS端口所关联的天线端口。
在一些实施例中,终端设备可以确定一个PTRS端口关联传输相同传输层的天线端口。即,一个PTRS端口关联的天线端口用于传输相同的传输层。
例如,确定第一PTRS端口关联第一天线端口集合,第二PTRS端口关联第二天线端口集合,其中,第一天线端口集合中的天线端口均用于传输第一传输层,第二天线端口集合中的天线端口均用于传输第二传输层,所述第一传输层和所述第二传输层为不同的PUSCH传输层,所述第一天线端口集合和所述第二天线端口集合不同,所述第一PTRS端口与所述第二PTRS端口不同。
也就是说,与PTRS端口关联的天线端口需要根据传输层实际使用的天线端口来确定,例如根据TPMI指示信息确定。
例如,假设TPMI指示信息指示的预编码矩阵为:
Figure PCTCN2022124403-appb-000002
则传输第一个传输层的天线端口0和4关联PTRS端口0,传输第二个传输层的天线端口1和5关联PTRS端口1。
又例如,假设TPMI指示信息指示的预编码矩阵为:
Figure PCTCN2022124403-appb-000003
则传输第一个传输层的天线端口{0,1,4,5}关联PTRS端口0,传输第二个传输层的天线端口{2,3,6,7}关联PTRS端口1。
再例如,假设TPMI指示信息指示的预编码矩阵为:
Figure PCTCN2022124403-appb-000004
则传输第一个传输层的天线端口{0,2,4,6}关联PTRS端口0,传输第二个传输层的天线端口{1,3,5,7}关联PTRS端口1。
因此,在该实施例2-4中,天线端口与PTRS端口之间的关联关系不是固定的,而是根据TPMI指示信息所指示的预编码矩阵中实际用于传输层传输的天线端口来确定的。
在本申请一些实施例中,每个PTRS端口所关联的天线端口,可以用于确定实际用于上行X个天线端口传输的PTRS端口数量M,和/或,PTRS端口所关联的DMRS端口。
在一些实施例中,所述方法200还包括:
根据每个PTRS端口所关联的天线端口,以及DCI中的TPMI指示信息,确定实际用于上行X个天线端口传输的PTRS端口的数量M。其中,所述TPMI指示信息用于指示一个预编码矩阵(即预定义码本中的一个码字)。
例如,将TPMI指示信息指示的预编码矩阵中非零元素对应的天线端口所关联的所有PTRS端口的数量确定为实际用于上行X个天线端口传输的PTRS端口的数量M。
在一些实施例中,实际用于上行X个天线端口传输的PTRS端口的数量M可以用于确定实际传输的PTRS,即,终端设备实际上只需要传输M个PTRS端口,而不是N个PTRS端口。
在一些实施例中,该数量M可以用于确定PTRS关联的DMRS端口,即,终端设备只需要确定实际传输的M个PTRS端口关联的DMRS端口,不需要确定N个PTRS端口关联的DMRS端口,具体确定方式在下文中描述。
在一些实施例中,该数量M可以用于确定PTRS端口的功率提升值,例如下文示例的表格或公式中的N可以用数量M代替。
作为一个示例,假设TPMI指示信息指示的预编码矩阵为:
Figure PCTCN2022124403-appb-000005
且天线端口{0,1,4,5}关联PTRS端口0,天线端口{2,3,6,7}关联PTRS端口1,则由于上述8个天线端口均用于传输数据(所对应的行包含非零元素),此时,PTRS端口的实际数量M=2。
作为另一个示例,假设TPMI指示信息指示的预编码矩阵为:
Figure PCTCN2022124403-appb-000006
且天线端口{0,1,4,5}关联PTRS端口0,天线端口{2,3,6,7}关联PTRS端口1,则由于只有天线端口{0,1,4,5}用于传输数据(所对应的行包含非零元素),此时,PTRS端口的实际数量M=1,即只有PTRS端口0实际用于传输。
实施例2-5:根据与PTRS端口关联的天线端口上传输的传输层确定该PTRS端口所关联的传输层。
在一些实施例中,所述S220包括:
根据DCI中的DMRS-PTRS关联指示信息,在第一传输层集合中确定与所述PTRS端口关联的传输层,其中,所述第一传输层集合包括与所述PTRS端口关联的天线端口上所传输的传输层。
其中,DMRS-PTRS关联指示信息用于指示DMRS端口和PTRS端口之间的关联关系。
也即,当一个PTRS端口关联的天线端口上传输多个传输层时,即第一传输层集合包括多个传输层时,终端设备可以根据DMRS-PTRS关联指示信息,在该多个传输层中确定与该PTRS端口关联的目标传输层。
可选地,若与第一PTRS端口关联的天线端口上最多传输2个传输层,则可以采用1比特的DMRS-PTRS关联指示信息来指示该2个传输层中与该第一PTRS端口关联的目标传输层。
可选地,若与第一PTRS端口关联的天线端口上最多传输4个传输层,则可以采用2比特的DMRS-PTRS关联指示信息来指示该4个传输层中与该第一PTRS端口关联的目标传输层。
可选地,若与第一PTRS端口关联的天线端口上最多传输8个传输层,则可以采用3比特的DMRS-PTRS关联指示信息来指示该8个传输层中与该第一PTRS端口关联的目标传输层。
在一些实施例中,所述方法200还包括:
根据DCI中的DMRS-PTRS关联指示信息,在第一DMRS端口集合中确定与所述PTRS端口关联的DMRS端口,其中,所述第一DMRS端口集合包括与PTRS端口关联的天线端口上所传输的DMRS端口。
也即,当一个PTRS端口关联的天线端口上传输多个DMRS端口时,即第一DMRS端口集合包括多个DMRS端口时,终端设备可以根据DMRS-PTRS关联指示信息,在该多个DMRS端口中确定与该PTRS端口关联的目标DMRS端口。
可选地,若与第一PTRS端口关联的天线端口上最多传输2个DMRS端口,则可以采用1比特的DMRS-PTRS关联指示信息来指示该2个DMRS端口中与该第一PTRS端口关联的目标DMRS端口。
可选地,若与第一PTRS端口关联的天线端口上最多传输4个DMRS端口,则可以采用2比特的DMRS-PTRS关联指示信息来指示该4个DMRS端口中与该第一PTRS端口关联的目标DMRS端口。
可选地,若与第一PTRS端口关联的天线端口上最多传输8个DMRS端口,则可以采用3比特的DMRS-PTRS关联指示信息来指示该8个DMRS端口中与该第一PTRS端口关联的目标DMRS端口。
在一些实施例中,如果一个PTRS端口与一个传输层关联,则该PTRS端口同时也与该传输层所用的DMRS端口关联。进一步的,采用该传输层的DMRS端口来传输该PTRS端口,即该PTRS端口与关联的DMRS端口使用相同的序列、频域位置、预编码矩阵和波束。即,该PTRS端口传输的信号以及信号传输的方式与关联的DMRS端口相同,这样,接收端可以利用关联的DMRS端口和PTRS端口上的信号进行联合信道估计或相位估计。
作为一个示例,假设TPMI指示信息指示的预编码矩阵为:
Figure PCTCN2022124403-appb-000007
其中,PTRS端口0关联的天线端口{0,1,4,5}上传输两个传输层,PTRS端口1关联的天线端口{2,3,6,7}上传输一个传输层,则此时终端设备可以根据DCI中的DMRS-PTRS关联指示信息,确定与PTRS端口0关联的天线端口上所传输的两个传输层中,与所述PTRS端口0关联的一个传输层,并采用该传输层所用的DMRS端口来传输PTRS端口0。
因此,在本申请实施例中,在支持上行8天线端口传输时,终端设备可以确定PTRS端口与8个天线端口之间的映射关系,从而能够为不同的天线端口分组方式确定不同的映射方式,从而支持不同天线阵列下的上行8天线端口传输。
在本申请一些实施例中,该功率提升值为一个PTRS端口的发送功率相对于该PTRS端口关联的DMRS端口或传输层的发送功率的提升值(以dB为单位)。在传输PTRS端口时,之所以需要对PTRS进行功率提升,主要有两个方面的原因:
1、PTRS的资源元素(Resource Element,RE)上只传输一个PTRS端口,而DMRS或数据的RE上经常会传输多个DMRS端口/传输层,此时PTRS相对于DMRS需要做功率提升以保证每个OFDM符号上的功率是恒定的(无论是否有PTRS均相同),否则会影响射频性能。
2、如果配置了多个PTRS端口,在传输一个PTRS端口的天线端口上需要对其他PTRS端口占用的资源做预留,预留的这部分资源上不发送信号,因此,可以将这些天线端口上的预留资源上的功率用于该PTRS端口的传输从而提升该PTRS端口的发送功率。
以下,结合实施例3,说明每个PTRS端口的功率提升值的确定方法。
实施例3:PTRS端口的功率提升值的确定。
在一些实施例中,终端设备可以根据X个天线端口包含的天线端口组的数量K和/或待传输的PUSCH的传输层数和/或配置的PTRS端口的数量N,确定每个PTRS端口的功率提升值。
在一些实施例中,终端设备根据码本的相干配置,以及X个天线端口包含的天线端口组的数量K和/或待传输的PUSCH的传输层数,确定每个PTRS端口的功率提升值。
例如,在配置了部分相干码本的情况下,终端设备根据X个天线端口包含的天线端口组的数量K和/或待传输的PUSCH的传输层数,确定每个PTRS端口的功率提升值。
示例性地,在所述PUSCH的传输层数为2或3时,所述功率提升值为10*lg(N)dB。
示例性地,在所述PUSCH的传输层数为4或5时,所述功率提升值为10*lg(4N/K)dB。
示例性地,在所述PUSCH的传输层数为6或7时,所述功率提升值为
Figure PCTCN2022124403-appb-000008
示例性地,在所述PUSCH的传输层数为8时,所述功率提升值为10*lg(8N/K)dB。
示例性地,在K=2,所述PUSCH的传输层数为2-8时,所述功率提升值为
Figure PCTCN2022124403-appb-000009
其中,L为所述PUSCH的传输层数。
示例性地,在K=4,所述PUSCH的传输层数为2-8时,所述功率提升值为
Figure PCTCN2022124403-appb-000010
其中L为所述PUSCH的传输层数。
又例如,在配置了全相干码本时,网络设备通过只给终端设备配置一个PTRS端口,终端设备可以确定该PTRS端口上的功率提升值为10*lg(L)dB,其中,L表示PUSCH的传输层数。
再例如,在配置了非相干码本时或者配置了非码本传输时,终端设备可以确定每个PTRS端口的功率提升值为10*lg(N)dB。可选地,如果最大允许的PTRS端口数Nmax为2,则10*lg(N)dB也可以表示为3N-3。
可选地,如果最大允许的PTRS端口数Nmax为4,终端设备可以采用以下实施例3-1中所述的方式确定每个PTRS端口的功率提升值,该最大的PTRS端口数可以是预定义的,或网络设备配置的。
可选地,如果最大允许的PTRS端口数Nmax为2,则终端设备可以采用以下实施例3-2中所述的方式确定每个PTRS端口的功率提升值,或者,也可以采用如下实施例3-1确定每个PTRS端口的功率提升值,该最大的PTRS端口数可以是预定义的,或网络设备配置的。
实施例3-1:适用于最大允许的PTRS端口数Nmax为4的情况,即,N的取值范围为{1,2,4}。
此时,假设K的取值为2或4,则当PUSCH的传输层数L大于1时,可以采用以下方式确定功率提升值。
作为一个示例,在PUSCH的传输层数为2或3时,确定每个PTRS端口的功率提升值为10*lg(N)dB,N是PTRS端口的数量。
作为另一个示例,在PUSCH的传输层数为4或5时,确定每个PTRS端口的功率提升值为10*lg(4N/K)dB。例如,当K=2时,所述每个PTRS端口的功率提升值为10*lg(2N)dB;当K=4时,所述每个PTRS端口的功率提升值为10*lg(N)dB。
作为又一个示例,在PUSCH的传输层数为6或7时,确定每个PTRS端口的功率提升值为
Figure PCTCN2022124403-appb-000011
Figure PCTCN2022124403-appb-000012
其中,
Figure PCTCN2022124403-appb-000013
表示向下取整,这里的向下取整也可以替换为其他取整方式,例如向上取整,四舍五入等。例如,当K=2时,所述每个PTRS端口的功率提升值为10*lg(3N)dB;当K=4时,所述每个PTRS端口的功率提升值为10*lg(N)dB。
作为再一个示例,在PUSCH的传输层数为8时,所述每个PTRS端口的功率提升值为10*lg(8N/K)dB。例如,当K=2时,所述每个PTRS端口的功率提升值为10*lg(4N)dB;当K=4时,所述每个PTRS端口的功率提升值为10*lg(2N)dB。
表2是当PUSCH的传输层数为1-4时的功率提升值的示例,表3是当PUSCH的传输层数为5-8时的功率提升值的示例。
表2 PUSCH的传输层数为1-4层时的功率提升值(K=2/4,Nmax=2/4)
Figure PCTCN2022124403-appb-000014
表3 PUSCH的传输层数为5-8层时的功率提升值(K=2/4,Nmax=2/4)
Figure PCTCN2022124403-appb-000015
实施例3-2:适用于最大允许的PTRS端口数Nmax为2的情况,即N的取值范围为{1,2}。
此情况下,可以根据K的取值为2还是4,可以确定不同的功率提升值。
在一些实施例中,在K=2时,终端设备确定所述PUSCH的传输层数为2-8时,所述每个PTRS端口的功率提升值为
Figure PCTCN2022124403-appb-000016
其中,L为所述PUSCH的传输层数。
示例性地,当传输层数为2或3时,所述每个PTRS端口的功率提升值为3N-3。
示例性地,当传输层数为4或5时,所述每个PTRS端口的功率提升值为3N。
示例性地,当传输层数为6或7时,所述每个PTRS端口的功率提升值为3N+1.77(或者1.76/1.78)。
示例性地,当传输层数为8时,所述每个PTRS端口的功率提升值为3N+3。
表4是当PUSCH的传输层数为1-4时的功率提升值的示例,表5是当PUSCH的传输层数为5-8时的功率提升值的示例。
表4 PUSCH的传输层数为1-4层时的功率提升值(K=2,Nmax=2)
Figure PCTCN2022124403-appb-000017
表5 PUSCH的传输层数为5-8层时的功率提升值(K=2,Nmax=2)
Figure PCTCN2022124403-appb-000018
在另一些实施例中,在K=4时,终端设备确定所述PUSCH的传输层数为2-8时,所述每个PTRS端口的功率提升值为
Figure PCTCN2022124403-appb-000019
其中,L为所述PUSCH的传输层数。表6是当PUSCH的传输层数为1-4时的功率提升值的示例表,表7是当PUSCH的传输层数为5-8时的功率提升值对照表。
例如,当PUSCH的传输层数为2-7时,所述每个PTRS端口的功率提升值为3N-3。
又例如,当PUSCH的传输层数为8时,所述每个PTRS端口的功率提升值为3N。
表6 PUSCH的传输层数为1-4层时的功率提升值(K=4,Nmax=2)
Figure PCTCN2022124403-appb-000020
表7 PUSCH的传输层数为5-8层时的功率提升值(K=4,Nmax=2)
Figure PCTCN2022124403-appb-000021
在一些实施例中,以上表格中的7.78也可以表示为7.77,1.77也可以表示为1.76或者1.78。
需要说明的是,以上表格只是给出了功率提升值的一种概括的表达方式,在实际应用中,也可以采用其他的表达方式,只要最后得到的不同传输层对应的功率提升值与上述表达式或表格得到的值相同即可,本申请实施例对于具体的表达方式不做限制。例如,在表3中,在传输层数为6或者7时,
Figure PCTCN2022124403-appb-000022
也可以表示为10*lg(N)+10*lg(5-K)或者10*lg(N)+10*lg(8/K-1)。
因此,在本申请实施例中,在支持上行8天线端口传输时,终端设备可以确定每个PTRS端口的功率提升值,从而在不同天线阵列情况下的8天线端口传输时,保证不同正交频分复用(Orthogonal frequency-division multiplexing,OFDM)符号上的功率是恒定的从而保证射频性能,且通过功率提升有利于增强PTRS端口上的测量性能。
上文结合图2,从终端设备的角度详细描述了根据本申请实施例的无线通信的方法,下文结合图3,从网络设备的角度详细描述根据本申请另一实施例的无线通信的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图3是根据本申请另一实施例的无线通信的方法300的示意性流程图,该方法300可以由图1所示的通信***中的网络设备执行,如图3所示,该方法300包括如下内容:
S310,网络设备确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N;
S320,确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;
S330,根据所述PTRS端口的数量N,在所述N个PTRS端口中的至少部分PTRS端口上进行PTRS的接收;
S340,根据所述PTRS的相位测量结果,进行所述N个PTRS端口所关联的传输层的相位调整或解调参考信号DMRS信道估计。
在该方法300中,网络设备可以采用和终端设备类似的方式确定PTRS端口的数量N,每个PTRS端口所关联的天线端口和传输层,具体实现参考方法200中的相关描述,为了简洁,这里不再赘述。
在一些实施例中,所述S310包括:
根据所述X个天线端口包含的天线端口组的数量K,确定所述PTRS端口的数量N。
在一些实施例中,所述PTRS端口的数量N小于或等于K。
在一些实施例中,在配置了部分相干码本或者在配置了非相干码本的情况下,所述PTRS端口的数量N等于K。
在一些实施例中,在配置了非相干码本的情况下,所述PTRS端口的数量N等于K;
在配置了部分相干码本的情况下,所述PTRS端口的数量N小于或等于K;
在配置了全相干码本的情况下,所述PTRS端口的数量N为1。
在一些实施例中,所述S320可以包括:
在配置了部分相干码本的情况下,根据所述X个天线端口包含的天线端口组的数量K,确定每个PTRS端口所关联的天线端口和传输层。
在一些实施例中,X=8,其中,
在K=2时,PTRS端口0关联天线端口{0,1,4,5},PTRS端口1关联天线端口{2,3,6,7};
在K=4时,PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5}关联,PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
在一些实施例中,所述S320可以包括:
确定每个PTRS端口关联所述X个天线端口包含的天线端口组中的一个天线端口组,其中,每个天线端口组包含的天线端口由网络设备预先配置。
在一些实施例中,所述S320可以包括:
当所述PTRS端口的数量N=2时,确定PTRS端口0关联天线端口{0,1,4,5},以及PTRS端口1关联天线端口{2,3,6,7};
当所述PTRS端口的数量N=4时,确定PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5},PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
在一些实施例中,所述S320可以包括:
确定第一PTRS端口关联传输第一传输层的第一天线端口集合,第二PTRS端口关联传输第二传输层的第二天线端口集合,其中,所述第一传输层和所述第二传输层不同,所述第一天线端口集合和所述第二天线端口集合不同,所述第一PTRS端口与所述第二PTRS端口不同。
在一些实施例中,所述方法300还包括:
根据每个PTRS端口所关联的天线端口,以及下行控制信息DCI中的发送预编码矩阵指示TPMI指示信息,确定实际用于上行X个天线端口传输的PTRS端口的数量M。
在一些实施例中,所述实际用于上行X个天线端口传输的PTRS端口的数量M为所述TPMI指示信息指示的预编码矩阵中非零元素对应的天线端口所关联的所有PTRS端口的数量。
在一些实施例中,所述S320可以包括:
根据DCI中的解调参考信号DMRS-PTRS关联指示信息,在第一传输层集合中确定与所述PTRS 端口关联的传输层,其中,所述第一传输层集合包括与所述PTRS端口关联的天线端口上所传输的传输层。
在一些实施例中,所述方法300还包括:
根据DCI中的DMRS-PTRS关联指示信息,在第一DMRS端口集合中确定与所述PTRS端口关联的DMRS端口,其中,所述第一DMRS端口集合包括与PTRS端口关联的天线端口上所传输的DMRS端口。
在一些实施例中,所述X个天线端口包含的天线端口组的数量K由网络设备配置的。
在一些实施例中,所述X个天线端口包含的天线端口组的数量K是通过高层信令配置的。
在一些实施例中,所述方法300还包括:
所述网络设备接收终端设备上报的X个天线端口包含的天线端口组的数量K,所述K用于确定PTRS端口的数量N,和/或,每个PTRS端口所关联的天线端口和传输层。
上文结合图2至图3,详细描述了本申请的方法实施例,下文结合图4至图7,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图4示出了根据本申请实施例的终端设备400的示意性框图。如图4所示,该终端设备400包括:
处理单元410,用于确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N,其中,X是大于4的整数;确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;以及确定所述N个PTRS端口中每个PTRS端口的功率提升值;
通信单元420,用于根据所述每个PTRS端口所关联的天线端口和传输层,以及所述功率提升值,在所述N个PTRS端口中的至少部分PTRS端口上传输PTRS。
在一些实施例中,所述处理单元410还用于:
根据所述X个天线端口包含的天线端口组的数量K,确定所述PTRS端口的数量N。
在一些实施例中,所述PTRS端口的数量N小于或等于K。
在一些实施例中,在配置了部分相干码本或者在配置了非相干码本的情况下,所述PTRS端口的数量N等于K。
在一些实施例中,在配置了非相干码本的情况下,所述PTRS端口的数量N等于K;
在配置了部分相干码本的情况下,所述PTRS端口的数量N由网络设备配置且N小于或等于K;
在配置了全相干码本的情况下,所述PTRS端口的数量N为1。
在一些实施例中,所述处理单元410还用于:
在配置了部分相干码本的情况下,根据所述X个天线端口包含的天线端口组的数量K,确定每个PTRS端口所关联的天线端口和传输层。
在一些实施例中,X=8,其中,
在K=2时,PTRS端口0关联天线端口{0,1,4,5},PTRS端口1关联天线端口{2,3,6,7};
在K=4时,PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5}关联,PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
在一些实施例中,所述处理单元410还用于:
确定每个PTRS端口关联所述X个天线端口包含的天线端口组中的一个天线端口组,其中,每个天线端口组包含的天线端口由网络设备预先配置。
在一些实施例中,所述处理单元410还用于:
当所述PTRS端口的数量N=2时,确定PTRS端口0关联天线端口{0,1,4,5},以及PTRS端口1关联天线端口{2,3,6,7};
当所述PTRS端口的数量N=4时,确定PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5},PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
在一些实施例中,所述处理单元410还用于:
确定第一PTRS端口关联传输第一传输层的第一天线端口集合,第二PTRS端口关联传输第二传输层的第二天线端口集合,其中,所述第一传输层和所述第二传输层为不同的PUSCH传输层,所述第一天线端口集合和所述第二天线端口集合不同,所述第一PTRS端口与所述第二PTRS端口不同。
在一些实施例中,所述处理单元410还用于:
根据每个PTRS端口所关联的天线端口,以及下行控制信息DCI中的发送预编码矩阵指示TPMI指示信息,确定实际用于上行X个天线端口传输的PTRS端口的数量M。
在一些实施例中,所述实际用于上行X个天线端口传输的PTRS端口的数量M为所述TPMI指示信息指示的预编码矩阵中非零元素对应的天线端口所关联的所有PTRS端口的数量。
在一些实施例中,所述处理单元410还用于:
根据DCI中的解调参考信号DMRS-PTRS关联指示信息,在第一传输层集合中确定与所述PTRS端口关联的传输层,其中,所述第一传输层集合包括与所述PTRS端口关联的天线端口上所传输的传输层。
在一些实施例中,所述处理单元410还用于:
根据DCI中的DMRS-PTRS关联指示信息,在第一DMRS端口集合中确定与所述PTRS端口关联的DMRS端口,其中,所述第一DMRS端口集合包括与PTRS端口关联的天线端口上所传输的DMRS端口。
在一些实施例中,所述处理单元410还用于:
在配置了部分相干码本的情况下,根据所述X个天线端口包含的天线端口组的数量K以及待传输的物理上行共享信道PUSCH的传输层数,确定每个PTRS端口的功率提升值。
在一些实施例中,在所述PUSCH的传输层数为2或3时,所述功率提升值为10*lg(N)dB;
在所述PUSCH的传输层数为4或5时,所述功率提升值为10*lg(4N/K)dB;
在所述PUSCH的传输层数为6或7时,所述功率提升值为
Figure PCTCN2022124403-appb-000023
在所述PUSCH的传输层数为8时,所述功率提升值为10*lg 10*lg(8N/K)dB。
在一些实施例中,在K=2,所述PUSCH的传输层数为2-8时,所述功率提升值为
Figure PCTCN2022124403-appb-000024
Figure PCTCN2022124403-appb-000025
其中,L为所述PUSCH的传输层数;
在K=4,所述PUSCH的传输层数为2-8时,所述功率提升值为
Figure PCTCN2022124403-appb-000026
其中L为所述PUSCH的传输层数。
在一些实施例中,所述处理单元410还用于:
在配置了非相干码本的情况下,确定每个PTRS端口的功率提升值为10*lg(N)dB。
在一些实施例中,所述X个天线端口包含的天线端口组的数量K由网络设备通过高层信令配置的。
在一些实施例中,所述通信单元420还用于:
向网络设备上报X个天线端口包含的天线端口组的数量K,所述K用于确定PTRS端口的数量N,每个PTRS端口所关联的天线端口和传输层,每个PTRS端口的功率提升值中的至少一项。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图5是根据本申请实施例的网络设备的示意性框图。图5的网络设备500包括:
处理单元510,用于确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N,其中,X是大于4的整数;确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;以及根据所述PTRS端口的数量N,在所述N个PTRS端口中的至少部分PTRS端口上进行PTRS的接收;
通信单元520,用于根据所述PTRS的相位测量结果,进行所述N个PTRS端口所关联的传输层的相位调整或解调参考信号DMRS信道估计。
在一些实施例中,所述处理单元510还用于:
根据所述X个天线端口包含的天线端口组的数量K,确定所述PTRS端口的数量N。
在一些实施例中,所述PTRS端口的数量N小于或等于K。
在一些实施例中,在配置了部分相干码本或者在配置了非相干码本的情况下,所述PTRS端口的数量N等于K。
在一些实施例中,在配置了非相干码本的情况下,所述PTRS端口的数量N等于K;
在配置了部分相干码本的情况下,所述PTRS端口的数量N小于或等于K;
在配置了全相干码本的情况下,所述PTRS端口的数量N为1。
在一些实施例中,所述处理单元510还用于:
在配置了部分相干码本的情况下,根据所述X个天线端口包含的天线端口组的数量K,确定每个PTRS端口所关联的天线端口和传输层。
在一些实施例中,X=8,其中,
在K=2时,PTRS端口0关联天线端口{0,1,4,5},PTRS端口1关联天线端口{2,3,6,7};
在K=4时,PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5}关联,PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
在一些实施例中,所述处理单元510还用于:
确定每个PTRS端口关联所述X个天线端口包含的天线端口组中的一个天线端口组,其中,每个天线端口组包含的天线端口由网络设备预先配置。
在一些实施例中,所述处理单元510还用于:
当所述PTRS端口的数量N=2时,确定PTRS端口0关联天线端口{0,1,4,5},以及PTRS端口1关联天线端口{2,3,6,7};
当所述PTRS端口的数量N=4时,确定PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5},PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
在一些实施例中,所述处理单元510还用于:
确定第一PTRS端口关联传输第一传输层的第一天线端口集合,第二PTRS端口关联传输第二传输层的第二天线端口集合,其中,所述第一传输层和所述第二传输层不同,所述第一天线端口集合和所述第二天线端口集合不同,所述第一PTRS端口与所述第二PTRS端口不同。
在一些实施例中,所述处理单元510还用于::
根据每个PTRS端口所关联的天线端口,以及下行控制信息DCI中的发送预编码矩阵指示TPMI指示信息,确定实际用于上行X个天线端口传输的PTRS端口的数量M。
在一些实施例中,所述实际用于上行X个天线端口传输的PTRS端口的数量M为所述TPMI指示信息指示的预编码矩阵中非零元素对应的天线端口所关联的所有PTRS端口的数量。
在一些实施例中,所述处理单元510还用于:
根据DCI中的解调参考信号DMRS-PTRS关联指示信息,在第一传输层集合中确定与所述PTRS端口关联的传输层其中,所述第一传输层集合包括与所述PTRS端口关联的天线端口上所传输的传输层。
在一些实施例中,所述处理单元510还用于:
根据DCI中的DMRS-PTRS关联指示信息,在第一DMRS端口集合中确定与所述PTRS端口关联的DMRS端口,其中,所述第一DMRS端口集合包括与PTRS端口关联的天线端口上所传输的DMRS端口。
在一些实施例中,所述X个天线端口包含的天线端口组的数量K由网络设备通过高层信令配置的。
在一些实施例中,所述通信单元520还用于:
接收终端设备上报的X个天线端口包含的天线端口组的数量K,所述K用于确定PTRS端口的数量N,和/或,每个PTRS端口所关联的天线端口和传输层。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例提供的一种通信设备600示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图8是本申请实施例提供的一种通信***900的示意性框图。如图8所示,该通信***900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (44)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N,其中,X是大于4的整数;
    确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;
    确定所述N个PTRS端口中每个PTRS端口的功率提升值;
    根据所述每个PTRS端口所关联的天线端口和传输层,以及所述功率提升值,在所述N个PTRS端口中的至少部分PTRS端口上传输PTRS。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定用于上行X个天线端口传输的PTRS端口的数量N,包括:
    根据所述X个天线端口包含的天线端口组的数量K,确定所述PTRS端口的数量N。
  3. 根据权利要求2所述的方法,其特征在于,所述PTRS端口的数量N小于或等于K。
  4. 根据权利要求2或3所述的方法,其特征在于,在配置了部分相干码本或者在配置了非相干码本的情况下,所述PTRS端口的数量N等于K。
  5. 根据权利要求2或3所述的方法,其特征在于,
    在配置了非相干码本的情况下,所述PTRS端口的数量N等于K;
    在配置了部分相干码本的情况下,所述PTRS端口的数量N由网络设备配置且N小于或等于K;
    在配置了全相干码本的情况下,所述PTRS端口的数量N为1。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层,包括:
    在配置了部分相干码本的情况下,根据所述X个天线端口包含的天线端口组的数量K,确定每个PTRS端口所关联的天线端口和传输层。
  7. 根据权利要求6所述的方法,其特征在于,X=8,其中,
    在K=2时,PTRS端口0关联天线端口{0,1,4,5},PTRS端口1关联天线端口{2,3,6,7};
    在K=4时,PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5}关联,PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
  8. 根据权利要求1-5中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层,包括:
    确定每个PTRS端口关联所述X个天线端口包含的天线端口组中的一个天线端口组,其中,每个天线端口组包含的天线端口由网络设备预先配置。
  9. 根据权利要求1-5中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层,包括:
    当所述PTRS端口的数量N=2时,确定PTRS端口0关联天线端口{0,1,4,5},以及PTRS端口1关联天线端口{2,3,6,7};
    当所述PTRS端口的数量N=4时,确定PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5},PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
  10. 根据权利要求1-5中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层,包括:
    确定第一PTRS端口关联传输第一传输层的第一天线端口集合,第二PTRS端口关联传输第二传输层的第二天线端口集合,其中,所述第一传输层和所述第二传输层为不同的PUSCH传输层,所述第一天线端口集合和所述第二天线端口集合不同,所述第一PTRS端口与所述第二PTRS端口不同。
  11. 根据权利要求6-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据每个PTRS端口所关联的天线端口,以及下行控制信息DCI中的发送预编码矩阵指示TPMI指示信息,确定实际用于上行X个天线端口传输的PTRS端口的数量M。
  12. 根据权利要求11所述的方法,其特征在于,所述实际用于上行X个天线端口传输的PTRS端口的数量M为所述TPMI指示信息指示的预编码矩阵中非零元素对应的天线端口所关联的所有PTRS端口的数量。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层,包括:
    所述终端设备根据DCI中的解调参考信号DMRS-PTRS关联指示信息,在第一传输层集合中确定与所述PTRS端口关联的传输层,其中,所述第一传输层集合包括与所述PTRS端口关联的天线端口上所传输的传输层。
  14. 根据权利要求1-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据DCI中的DMRS-PTRS关联指示信息,在第一DMRS端口集合中确定与所述PTRS端口关联的DMRS端口,其中,所述第一DMRS端口集合包括与所述PTRS端口关联的天线端口上所传输的DMRS端口。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口的功率提升值,包括:
    在配置了部分相干码本的情况下,根据所述X个天线端口包含的天线端口组的数量K以及待传输的物理上行共享信道PUSCH的传输层数,确定每个PTRS端口的功率提升值。
  16. 根据权利要求15所述的方法,其特征在于,
    在所述PUSCH的传输层数为2或3时,所述功率提升值为10*lg(N)dB;
    在所述PUSCH的传输层数为4或5时,所述功率提升值为10*lg(4N/K)dB;
    在所述PUSCH的传输层数为6或7时,所述功率提升值为
    Figure PCTCN2022124403-appb-100001
    在所述PUSCH的传输层数为8时,所述功率提升值为10*lg 10*lg(8N/K)dB。
  17. 根据权利要求15所述的方法,其特征在于,
    在K=2,所述PUSCH的传输层数为2-8时,所述功率提升值为
    Figure PCTCN2022124403-appb-100002
    其中,L为所述PUSCH的传输层数;
    在K=4,所述PUSCH的传输层数为2-8时,所述功率提升值为
    Figure PCTCN2022124403-appb-100003
    其中L为所述PUSCH的传输层数。
  18. 根据权利要求1-14中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口的功率提升值,包括:
    在配置了非相干码本的情况下,确定每个PTRS端口的功率提升值为10*lg(N)dB。
  19. 根据权利要求1-18中任一项所述的方法,其特征在于,所述X个天线端口包含的天线端口组的数量K由网络设备通过高层信令配置的。
  20. 根据权利要求1-18中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备上报X个天线端口包含的天线端口组的数量K,所述K用于确定PTRS端口的数量N,每个PTRS端口所关联的天线端口和传输层,每个PTRS端口的功率提升值中的至少一项。
  21. 一种无线通信的方法,其特征在于,包括:
    网络设备确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N,其中,X是大于4的整数;
    确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;
    根据所述PTRS端口的数量N,在所述N个PTRS端口中的至少部分PTRS端口上进行PTRS的接收;
    根据所述PTRS的相位测量结果,进行所述N个PTRS端口所关联的传输层的相位调整或解调参考信号DMRS信道估计。
  22. 根据权利要求21所述的方法,其特征在于,所述网络设备确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N,包括:
    根据所述X个天线端口包含的天线端口组的数量K,确定所述PTRS端口的数量N。
  23. 根据权利要求22所述的方法,其特征在于,所述PTRS端口的数量N小于或等于K。
  24. 根据权利要求22或23所述的方法,其特征在于,在配置了部分相干码本或者在配置了非相干码本的情况下,所述PTRS端口的数量N等于K。
  25. 根据权利要求22或23所述的方法,其特征在于,
    在配置了非相干码本的情况下,所述PTRS端口的数量N等于K;
    在配置了部分相干码本的情况下,所述PTRS端口的数量N小于或等于K;
    在配置了全相干码本的情况下,所述PTRS端口的数量N为1。
  26. 根据权利要求21-25中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层,包括:
    在配置了部分相干码本的情况下,根据所述X个天线端口包含的天线端口组的数量K,确定每个PTRS端口所关联的天线端口和传输层。
  27. 根据权利要求26所述的方法,其特征在于,X=8,其中,
    在K=2时,PTRS端口0关联天线端口{0,1,4,5},PTRS端口1关联天线端口{2,3,6,7};
    在K=4时,PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5}关联,PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
  28. 根据权利要求21-25中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层,包括:
    确定每个PTRS端口关联所述X个天线端口包含的天线端口组中的一个天线端口组,其中,每个天线端口组包含的天线端口由网络设备预先配置。
  29. 根据权利要求21-25中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层,包括:
    当所述PTRS端口的数量N=2时,确定PTRS端口0关联天线端口{0,1,4,5},以及PTRS端口1关联天线端口{2,3,6,7};
    当所述PTRS端口的数量N=4时,确定PTRS端口0关联天线端口{0,4},PTRS端口1关联天线端口{1,5},PTRS端口2关联天线端口{2,6},PTRS端口3关联天线端口{3,7}。
  30. 根据权利要求21-25中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层,包括:
    确定第一PTRS端口关联传输第一传输层的第一天线端口集合,第二PTRS端口关联传输第二传输层的第二天线端口集合,其中,所述第一传输层和所述第二传输层不同,所述第一天线端口集合和所述第二天线端口集合不同,所述第一PTRS端口与所述第二PTRS端口不同。
  31. 根据权利要求26-30中任一项所述的方法,其特征在于,所述方法还包括:
    根据每个PTRS端口所关联的天线端口,以及下行控制信息DCI中的发送预编码矩阵指示TPMI指示信息,确定实际用于上行X个天线端口传输的PTRS端口的数量M。
  32. 根据权利要求31所述的方法,其特征在于,所述实际用于上行X个天线端口传输的PTRS端口的数量M为所述TPMI指示信息指示的预编码矩阵中非零元素对应的天线端口所关联的所有PTRS端口的数量。
  33. 根据权利要求21-32中任一项所述的方法,其特征在于,所述确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层,包括:
    根据DCI中的解调参考信号DMRS-PTRS关联指示信息,在第一传输层集合中确定与所述PTRS端口关联的传输层其中,所述第一传输层集合包括与所述PTRS端口关联的天线端口上所传输的传输层。
  34. 根据权利要求21-33中任一项所述的方法,其特征在于,所述方法还包括:
    根据DCI中的DMRS-PTRS关联指示信息,在第一DMRS端口集合中确定与所述PTRS端口关联的DMRS端口,其中,所述第一DMRS端口集合包括与PTRS端口关联的天线端口上所传输的DMRS端口。
  35. 根据权利要求21-34中任一项所述的方法,其特征在于,所述X个天线端口包含的天线端口组的数量K由网络设备通过高层信令配置的。
  36. 根据权利要求21-35中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收终端设备上报的X个天线端口包含的天线端口组的数量K,所述K用于确定PTRS端口的数量N,和/或,每个PTRS端口所关联的天线端口和传输层。
  37. 一种终端设备,其特征在于,包括:
    处理单元,用于确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N,其中,X是大于4的整数;确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;以及确定所述N个PTRS端口中每个PTRS端口的功率提升值;
    通信单元,用于根据所述每个PTRS端口所关联的天线端口和传输层,以及所述功率提升值,在所述N个PTRS端口中的至少部分PTRS端口上传输PTRS。
  38. 一种网络设备,其特征在于,包括:
    处理单元,用于确定用于上行X个天线端口传输的相位跟踪参考信号PTRS端口的数量N,其中,X是大于4的整数;确定所述N个PTRS端口中每个PTRS端口所关联的天线端口和传输层;以及根据所述PTRS端口的数量N,在所述N个PTRS端口中的至少部分PTRS端口上进行PTRS的接收;
    通信单元,用于根据所述PTRS的相位测量结果,进行所述N个PTRS端口所关联的传输层的相位调整或解调参考信号DMRS信道估计。
  39. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至20中任一项所述的方法。
  40. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求21至36中任一项所述的方法。
  41. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至20中任一项所述的方法,或如权利要求21至36中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法,或如权利要求21至36中任一项所述的方法。
  43. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至20中任一项所述的方法,或如权利要求21至36中任一项所述的方法。
  44. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法,或如权利要求21至36中任一项所述的方法。
PCT/CN2022/124403 2022-10-10 2022-10-10 无线通信的方法、终端设备和网络设备 WO2024077446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124403 WO2024077446A1 (zh) 2022-10-10 2022-10-10 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124403 WO2024077446A1 (zh) 2022-10-10 2022-10-10 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2024077446A1 true WO2024077446A1 (zh) 2024-04-18

Family

ID=90668554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124403 WO2024077446A1 (zh) 2022-10-10 2022-10-10 无线通信的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2024077446A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194453A (zh) * 2017-11-17 2019-01-11 华为技术有限公司 相位跟踪参考信号的发送方法及装置
US20190182777A1 (en) * 2017-06-16 2019-06-13 Huawei Technologies Co., Ltd. Transmit power determining method, processing chip, and communications device
US20190306809A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Apparatus and method for reference signal power boosting in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182777A1 (en) * 2017-06-16 2019-06-13 Huawei Technologies Co., Ltd. Transmit power determining method, processing chip, and communications device
CN109194453A (zh) * 2017-11-17 2019-01-11 华为技术有限公司 相位跟踪参考信号的发送方法及装置
WO2019095701A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 相位跟踪参考信号的发送方法及装置
US20190306809A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Apparatus and method for reference signal power boosting in a wireless communication system

Similar Documents

Publication Publication Date Title
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
WO2022193320A1 (zh) 信息传输方法、终端设备、网络设备、芯片和存储介质
US20230262696A1 (en) Method for determining uplink transmission parameter, and terminal device
WO2020073257A1 (zh) 无线通信方法和终端设备
US20240098738A1 (en) Uplink transmission method, terminal device, and network device
WO2021184224A1 (zh) 侧行链路能力发送方法和终端设备
WO2024077446A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022155975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022016342A1 (zh) 信道加扰方法和终端设备
WO2023070459A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023150998A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102814A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050320A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023197154A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
US11924893B2 (en) Method for establishing connection, and terminal device
US12022303B2 (en) Information transmission method, terminal device, network device, chip and storage medium
WO2022236697A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151111A1 (zh) 信号配置方法、终端设备、网络设备、芯片和存储介质
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2023102848A1 (zh) 无线通信的方法和终端设备
WO2023123409A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961642

Country of ref document: EP

Kind code of ref document: A1