WO2023035144A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023035144A1
WO2023035144A1 PCT/CN2021/117184 CN2021117184W WO2023035144A1 WO 2023035144 A1 WO2023035144 A1 WO 2023035144A1 CN 2021117184 W CN2021117184 W CN 2021117184W WO 2023035144 A1 WO2023035144 A1 WO 2023035144A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
uplink signal
terminal device
transmission
information
Prior art date
Application number
PCT/CN2021/117184
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180100157.XA priority Critical patent/CN117652117A/zh
Priority to PCT/CN2021/117184 priority patent/WO2023035144A1/zh
Publication of WO2023035144A1 publication Critical patent/WO2023035144A1/zh
Priority to US18/434,344 priority patent/US20240179656A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method, a terminal device, and a network device.
  • the downlink timing adopted by the terminal device to receive the downlink signals of two transmission and reception points is different (for example, the two TRPs are not completely synchronized), or the terminal device and
  • the propagation delay between the two TRPs is quite different, which may lead to different uplink transmission timings between the terminal equipment and the two TRPs.
  • the terminal device uses the same uplink transmission timing to transmit uplink signals to the two TRPs respectively, performance loss may be caused due to timing asynchrony with the TRP (that is, the synchronization error exceeds the length of the cyclic prefix (CP)). How the terminal equipment determines the transmission timings of the uplink signals respectively sent to different TRPs is an urgent problem to be solved.
  • CP cyclic prefix
  • the embodiment of the present application provides a wireless communication method, terminal equipment, and network equipment.
  • the terminal equipment can determine different transmission timings for uplink signals sent to different TRPs, thereby supporting uplink in asynchronous scenarios or under large transmission delays.
  • Multi-TRP transmission ensures that uplink signals sent to different TRPs are synchronized between TRPs and terminal devices, avoiding performance loss.
  • a wireless communication method includes:
  • the terminal device determines the transmission timing of the target uplink signal according to the reference signal indicated in the first information configured for the target uplink signal, where the first information is TCI state or space related information;
  • the terminal device transmits the target uplink signal according to the transmission timing of the target uplink signal.
  • a wireless communication method in a second aspect, includes:
  • the network device sends first information to the terminal device, the reference signal indicated in the first information is used by the terminal device to determine the transmission timing of the target uplink signal, and the first information is TCI state or space related information;
  • the network device receives the target uplink signal sent by the terminal device according to the transmission timing of the target uplink signal.
  • a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • a network device configured to execute the method in the second aspect above.
  • the network device includes a functional module for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect above.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
  • an apparatus for implementing the method in any one of the first aspect to the second aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
  • the terminal device determines the transmission timing of the uplink signal based on the TCI state configured for the uplink signal or the reference signal indicated in the spatial correlation information, and transmits the uplink signal based on the transmission timing.
  • different uplink signals can have different transmission timings, and one uplink signal can have multiple different transmission timings, that is, uplink signals transmitted to different TRPs can use different transmission timings, thus supporting asynchronous Uplink multi-TRP transmission in the case of high transmission delay or high transmission delay. Ensure that uplink signals sent to different TRPs are synchronized between TRPs and terminal devices to avoid performance loss.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of uplink non-coherent transmission provided by the present application.
  • Fig. 3 is a schematic diagram of a time slot-based PUSCH repeated transmission provided by the present application.
  • Fig. 4 is a schematic diagram of a PUSCH repeated transmission based on multiple TRP/antenna array blocks provided by the present application.
  • Fig. 5 is a schematic diagram of a time slot-based PUCCH repeated transmission provided by the present application.
  • FIG. 6 is a schematic diagram of a PUCCH repeated transmission based on multiple TRP/antenna array blocks provided by the present application.
  • Fig. 7 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 8 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) meshing scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent meshing scene
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to a licensed spectrum, Wherein, the licensed spectrum can also be regarded as a non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device used to communicate with the mobile device, and the network device may be a transmission and reception point (Transmission Reception Point, TRP), an access point (Access Point, AP) in a WLAN, a GSM or A base station (Base Transceiver Station, BTS) in CDMA, a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point , or vehicle-mounted devices, wearable devices, and network devices or base stations (gNBs) in the NR network, or network devices in the future evolved PLMN network or network devices in the NTN network, etc.
  • TRP Transmission Reception Point
  • AP access point
  • BTS Base Transceiver Station
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • vehicle-mounted devices wearable devices
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite, balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, in water, or other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This embodiment of the present application does not limit it.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • a terminal device can use an analog beam to transmit uplink data and uplink control information.
  • the terminal device can perform uplink beam management based on a sounding reference signal (Sounding Reference Signal, SRS) signal, so as to determine the analog beam used for uplink transmission.
  • the network device may configure an SRS resource set for the terminal device, select an SRS resource with the best reception quality based on the SRS transmitted by the terminal device in the SRS resource set, and indicate the corresponding SRS resource indicator (SRS resource indicator, SRI ) to notify the terminal device.
  • SRS resource indicator, SRI SRS resource indicator
  • the terminal device determines the analog beam used for the SRS resource indicated by the SRI as the analog beam used for transmitting the Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the SRI is indicated through the SRI indication field in the DCI; for the PUSCH scheduled by Radio Resource Control (Radio Resource Control, RRC), the SRI is notified by corresponding scheduling signaling.
  • Radio Resource Control Radio
  • Downlink and uplink non-coherent transmission based on multiple TRPs is introduced in the NR system.
  • the backhaul (backhaul) connection between TRPs can be ideal or non-ideal.
  • TRPs can quickly and dynamically exchange information. It can conduct information exchange quasi-statically.
  • multiple TRPs can use different control channels to independently schedule multiple Physical Downlink Shared Channel (PDSCH) transmissions of a terminal, or use the same control channel to schedule transmissions of different TRPs.
  • PDSCH Physical Downlink Shared Channel
  • the data of different TRPs uses different transport layers, and the latter can only be used in the case of ideal backhaul.
  • different TRPs can also independently schedule the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) transmission of the same terminal.
  • PUSCH transmissions can be configured with independent transmission parameters, such as beam, precoding matrix, number of layers, etc.
  • the scheduled PUSCH transmissions can be transmitted in the same slot or in different slots. If the terminal is scheduled to transmit two PUSCHs simultaneously in the same time slot, it needs to determine how to perform the transmission according to its own capabilities. If the terminal is configured with multiple antenna array blocks (panels) and supports simultaneous transmission of PUSCHs on multiple panels, the two PUSCHs can be transmitted at the same time, and the PUSCHs transmitted on different panels are aligned with the corresponding TRP for analog shaping.
  • PUSCH Uplink spectrum efficiency
  • the terminal has only a single panel, or does not support simultaneous transmission of multiple panels
  • PUSCH can only be transmitted on one panel.
  • the PUSCH transmitted by different TRPs can be scheduled based on multiple downlink control information (Downlink Control Information, DCI), and these DCIs can be carried by different control resource sets (Control Resource Set, CORESET).
  • DCI Downlink Control Information
  • CORESET Control Resource Set
  • multiple CORESET groups are configured on the network side, and each TRP is scheduled using a CORESET in its own CORESET group, that is, different TRPs can be distinguished by the CORESET group.
  • the network device may configure a CORESET group index for each CORESET, and different CORESET group indexes correspond to different TRPs.
  • the PUSCHs transmitted to different TRPs can be scheduled based on a single DCI.
  • the DCI needs to indicate the beams and demodulation reference signal (Demodulation Reference Signal, DMRS) ports used by the PUSCHs transmitted to different TRPs respectively (as shown in Figure 2 shown in B).
  • DMRS Demodulation Reference Signal
  • NR introduces the repeated transmission of PUSCH, that is, the PUSCH carrying the same data is transmitted multiple times through different resources/antennas/redundancy versions, etc., so as to obtain diversity gain and reduce the probability of false detection (such as error block Rate (block error rate, BLER)).
  • the repeated transmission of the PUSCH may be performed on multiple time slots (as shown in FIG. 3 ), or may be performed on multiple Panels (as shown in FIG. 4 ).
  • one DCI can schedule multiple PUSCHs to be transmitted on multiple consecutive time slots, carrying the same data but using different redundancy versions.
  • the PUSCH carrying the same data is transmitted on different Panels simultaneously, and the receiving end can be the same TRP or different TRPs.
  • the Physical Uplink Control Channel can also support repeated transmission, that is, the PUCCH carrying the same uplink control information is transmitted multiple times through different resources or antennas, so as to obtain diversity gain and reduce the probability of false detection (such as BLER).
  • the repeated transmission of the PUCCH can be performed in multiple time slots (as shown in FIG. 5 ), or can be performed on multiple panels (as shown in FIG. 6 , multiple panels transmit the same PUCCH at the same time).
  • the network device configures the corresponding number of repetitions N(nrofSlots) for each PUCCH format through RRC signaling. After receiving the RRC signaling, the terminal device uses the same physical resource transmission in consecutive N time slots.
  • a PUCCH resource can be indicated with N pieces of spatial correlation information (PUCCH-spatialrelationinfo) or N pieces of transmission configuration indicator (Transmission Configuration Indicator, TCI) status, which are used for repeated transmission of PUCCH in different time slots, PUCCH transmission beam and
  • TCI Transmission Configuration Indicator
  • the power control parameter may be obtained from the N pieces of spatial correlation information (PUCCH-spatialrelationinfo) or the N pieces of TCI states.
  • the current timing used for uplink signal transmission is determined by the following method:
  • Timing advance offset N TA,offset from the RRC parameter timing advance offset n (n-TimingAdvanceOffset) of the cell. If this RRC parameter is not configured, the default offset is used. If the cell has multiple uplink carriers, the same N TA,offset is used. All cells in a timing advance group (timing advance group, TAG) also use the same N TA,offset .
  • timing advance command (timing advance command) of a TAG from the Media Access Control Control Element (MAC CE), and adjust all the timing advance commands in the TAG based on the time advance offset N TA, offset and the timing advance command.
  • MAC CE Media Access Control Control Element
  • the uplink timing is determined according to the downlink timing, the timing advance offset configured by RRC, and the timing advance command indicated by the MAC CE, and they are the same within a TAG. Moreover, if two adjacent time slots overlap due to a Timing Advance (TA) command, the subsequent time slot is shortened within the duration of the previous time slot.
  • TA Timing Advance
  • the downlink timing used by the terminal device to receive the downlink signals of the two TRPs is different (for example, the two TRPs are not completely synchronized), or the propagation delay between the terminal device and the two TRPs is quite different, which may cause the terminal device and the two TRPs
  • the required uplink transmission timings will also be different.
  • the terminal device uses the same uplink transmission timing to transmit uplink signals to the two TRPs respectively, performance loss may be caused due to timing asynchrony with the TRPs (that is, the synchronization error exceeds the CP length). How the terminal equipment determines the transmission timings of the uplink signals respectively sent to different TRPs is an urgent problem to be solved.
  • this application proposes a transmission scheme for uplink signals.
  • Terminal equipment can determine different transmission timings for uplink signals sent to different TRPs, thereby supporting uplink multi-TRP transmission in asynchronous scenarios or under large transmission delays. , to ensure that the uplink signals sent to different TRPs are synchronized between the TRPs and the terminal equipment, so as to avoid performance loss.
  • FIG. 7 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 7 , the wireless communication method 200 may include at least part of the following content:
  • the terminal device determines the transmission timing of the target uplink signal according to the reference signal indicated in the first information configured for the target uplink signal, where the first information is TCI state or space related information;
  • the terminal device transmits the target uplink signal according to the transmission timing of the target uplink signal.
  • the terminal device determines the transmission timing of the target uplink signal based on the TCI state configured by the network device for the target uplink signal or the reference signal indicated in the spatial correlation information, and transmits the target uplink signal based on the transmission timing of the target uplink signal.
  • target uplink signal different uplink signals can have different transmission timings, and one uplink signal can have multiple different transmission timings, that is, uplink signals transmitted to different TRPs can use different transmission timings, thus supporting asynchronous Uplink multi-TRP transmission in the case of high transmission delay or high transmission delay. Ensure that uplink signals sent to different TRPs are synchronized between TRPs and terminal devices to avoid performance loss.
  • the first information may also be parameters other than the TCI state and space-related information.
  • the first information is a parameter configured by the network device for the target uplink signal to determine transmission timing. This application This is not limited.
  • transmission timing may also be referred to as “sending timing”, which is not limited in the present application.
  • the reference signal indicated in the first information configured for the target uplink signal may also be referred to as "the reference signal included in the first information configured for the target uplink signal”, and this application does not refer to this Not limited.
  • the quasi-co-located (QCL) type of the TCI state is one of the following: transmission timing, uplink timing, and synchronization parameters.
  • the QCL type (type) of the TCI state is: QCL typeD, i.e. the spatial transmission/reception parameter (filter); ) reference signal to determine the transmission timing of the uplink signal.
  • the TCI status may be indicated by higher layer signaling or DCI.
  • DCI Media Access Control
  • the spatial correlation information is used to determine the transmission beam (spatial transmission filter) of the uplink signal.
  • the terminal device can determine the uplink signal according to the reference signal used to determine the transmission beam (spatial transmission filter).
  • the transmission timing of the space correlation information may additionally include a reference signal for determining the uplink timing.
  • the spatial correlation information may be indicated through higher layer signaling or DCI.
  • DCI For example, for PUCCH, it can be indicated by MAC layer signaling; for PUSCH, it can be indicated by DCI; for SRS, it can be indicated by RRC signaling.
  • the sending beam may also be referred to as a spatial domain transmission filter (Spatial domain transmission filter or Spatial domain filter for transmission) or a spatial relationship (Spatial relation) or a spatial configuration (spatial setting).
  • the receiving beam can also be called a spatial domain reception filter (Spatial domain reception filter or Spatial domain filter for reception) or a spatial reception parameter (Spatial Rx parameter).
  • the target uplink signal is PUSCH or PUCCH.
  • the target uplink signal may be other uplink signals, which is not limited in the present application.
  • the reference signal is an uplink reference signal.
  • the uplink reference signal is SRS.
  • the uplink reference signal may also be some other uplink reference signals, which is not limited in this application.
  • the reference signal is a downlink reference signal.
  • the downlink reference signal is a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) or a synchronization signal block (Synchronization Signal Block, SSB).
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronization Signal Block
  • the downlink reference signal may also be some other downlink reference signals, which is not limited in this application.
  • the SSB may also be called a synchronization signal/physical broadcast channel block (SS/PBCH block).
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • the reference signal is an uplink reference signal
  • the uplink reference signal is an SRS.
  • the above S210 may specifically include:
  • the terminal equipment uses the transmission timing of the uplink reference signal as the transmission timing of the target uplink signal.
  • the terminal device may use the transmission timing of the SRS as the transmission timing of the PUSCH.
  • the reference signal is a downlink reference signal, for example, the downlink reference signal is CSI-RS or SSB.
  • the above S210 may specifically include:
  • the terminal device determines the first downlink timing according to the downlink reference signal; and the terminal device determines the transmission timing of the target uplink signal according to the first downlink timing and the timing advance determined through high layer signaling.
  • the timing advance determined through high-layer signaling includes multiple timing advances of one TAG.
  • the terminal device determines the transmission timing of the target uplink signal according to the first downlink timing and a target timing advance in the multiple timing advances.
  • the multiple timing advances may respectively correspond to multiple uplink signals, and the terminal device may respectively determine transmission timings of the multiple uplink signals.
  • the terminal device may use the following formula 1 or formula 2 to calculate the transmission timing of the target uplink signal.
  • N UL N DL +N TA Formula 1
  • N UL N DL -N TA Formula 2
  • N UL represents the transmission timing of the target uplink signal
  • N DL represents the first downlink timing
  • N TA represents the target timing advance
  • the timing advance determined through high-layer signaling includes multiple timing advances of one TAG.
  • the terminal device respectively determines multiple transmission timings of the target uplink signal according to the first downlink timing and the multiple timing advances.
  • the terminal device respectively transmits the target uplink signal according to the N transmission timings. That is, the terminal device can determine multiple transmission timings of one uplink signal.
  • the first information is multiple TCI states or multiple spatial correlation information
  • the multiple TCI states or multiple spatial correlation information indicate multiple reference signals.
  • the above S210 may specifically include: the terminal device respectively determining multiple transmission timings of the target uplink signal according to the multiple reference signals.
  • the above S220 may specifically include: the terminal device transmitting the target uplink signal according to multiple transmission timings of the target uplink signal.
  • the terminal device uses the multiple transmission timings on different time domain resources to respectively transmit the target uplink signal; or, the terminal device uses the multiple transmission timings on different antenna array blocks to respectively transmit the target uplink signal target uplink signal.
  • the multiple transmission timings can be used for repeated transmission of PUSCH or PUCCH on different time domain resources, that is, different repetitions (repetition) can use different transmission timings; or, the multiple transmission timings can be used As for the transmission of PUSCH or PUCCH on different antenna array blocks (panels), these transmissions may be simultaneous or may occupy different time domain resources.
  • the TCI state configured by the network device for the target uplink signal is N TCI states (N>1), or the spatial correlation information configured by the network device for the target uplink signal is N spatial correlation information (N>1 ), the terminal device determines N downlink timings respectively according to the N TCI states or the N downlink reference signals indicated in the N space-related information; N timing advances, respectively calculating N transmission timings of the target uplink signal; and respectively transmitting the target uplink signal according to the N transmission timings.
  • the number of timing advances determined from high-layer signaling may be 1, or the values of the N timing advances determined from high-layer signaling may be the same.
  • the TCI state configured by the network device for the target uplink signal is N TCI states (N>1)
  • the space-related information configured by the network device for the target uplink signal is N pieces of space-related information (N>1)
  • the terminal device determines N downlink timings respectively according to the N TCI states or the N downlink reference signals indicated in the N space-related information
  • the terminal device determines N downlink timings based on the N downlink timings and a timing advance determined from high-layer signaling Calculate N transmission timings of the target uplink signal respectively; and respectively transmit the target uplink signal according to the N transmission timings.
  • the network device may configure N TCI states for the PUSCH, and each TCI state includes a downlink reference signal for determining transmission timing, such as a CSI-RS.
  • the terminal device determines N downlink timings according to the downlink reference signals contained in the N TCI states; in addition, the terminal device obtains N timing advances from the RRC signaling and/or MAC CE configured by the network device, and the terminal device according to The N downlink timings and the N timing advances are combined one by one to determine N uplink transmission timings, which are used to transmit the PUSCH.
  • the reference signal types included in the N TCI states may be the same (for example, all are CSI-RS), or different (for example, one TCI state includes CSI-RS, and the other is SSB).
  • the network device may configure multiple TCI states for the PUSCH, and each TCI state includes an uplink reference signal for determining transmission timing, such as SRS.
  • the terminal device determines multiple transmission timings according to the uplink reference signals included in the multiple TCI states, and the terminal device uses the multiple transmission timings to respectively send the PUSCH.
  • the multiple transmission timings can be used for the repeated transmission of PUSCH on different time domain resources, that is, different repetitions can use different transmission timings; or, the multiple transmission timings can be used for the transmission of PUSCH on different panels, and these transmissions It may be at the same time, or may occupy different time domain resources.
  • the reference signal types included in the multiple TCI states may be the same (for example, all are SRS), or may be different (for example, one TCI state includes SRS, and the other is CSI-RS).
  • the multiple timing advances correspond to different CORESET group indexes one by one
  • the target timing advance is the timing advance corresponding to the CORESET group index associated with the target uplink signal.
  • the timing advance corresponds to a TA offset.
  • the first TA offset and the second TA offset are associated with CORESET group indexes 0 and 1, respectively, and the CORESET group index associated with the first PUSCH is 0 (that is, the CORESET configuration where the PDCCH that schedules the first PUSCH is located The group index is 0), the CORESET group index associated with the second PUSCH is 1 (that is, the group index of the CORESET configuration where the PDCCH that schedules the second PUSCH is located is 1), then the terminal device determines the first PUSCH according to the first TA offset Transmission timing, and determining the transmission timing of the second PUSCH according to the second TA offset.
  • the multiple timing advances are in one-to-one correspondence with different cell identities (Identities, IDs), and the target timing advance is the timing advance corresponding to the cell identity associated with the target uplink signal.
  • the timing advance corresponds to a TA command.
  • the first TA command and the second TA command are respectively associated with the Physical Cell Identifier (Physical Cell Identifier, PCI) (primary cell ID) of the serving cell and the PCI (secondary cell ID) of the neighboring cell, and the first PUSCH associated
  • the cell ID is the PCI of the serving cell (that is, the transmission beam of the first PUSCH or the path loss reference signal comes from the SSB carrying the PCI)
  • the cell ID associated with the second PUSCH is the PCI of the neighboring cell (that is, the transmission beam of the second PUSCH or The path loss reference signal comes from the SSB carrying the PCI)
  • the terminal device determines the transmission timing of the first PUSCH according to the first TA command, and determines the transmission timing of the second PUSCH according to the second TA command.
  • the target uplink signal includes a first uplink signal and a second uplink signal, wherein the first information configured for the first uplink signal indicates a first reference signal, and the first information configured for the second uplink signal The first information indicates the second reference signal.
  • the above S210 may specifically include: the terminal device determining a first transmission timing of the first uplink signal according to the first reference signal, and the terminal device determining a second transmission timing of the second uplink signal according to the second reference signal.
  • the above S220 may specifically include: the terminal device respectively transmitting the first uplink signal and the second uplink signal according to the first transmission timing and the second transmission timing. In this case, the terminal device may respectively determine transmission timings of multiple uplink signals.
  • the first transmission timing is different from the second transmission timing.
  • the time domain resource occupied by the first uplink signal does not overlap with the time domain resource occupied by the second uplink signal.
  • the time domain resources occupied by the first uplink signal may overlap with the time domain resources occupied by the second uplink signal due to different transmission timings.
  • the first uplink signal and the second uplink signal occupy different time domain resources, that is, the terminal device uses the first transmission timing and the second transmission timing on different time domain resources respectively transmitting the first uplink signal and the second uplink signal; and/or, the first uplink signal and the second uplink signal are transmitted through different antenna array blocks, that is, the terminal device uses different antenna array blocks The first transmission timing and the second transmission timing respectively transmit the first uplink signal and the second uplink signal.
  • the first uplink signal and the second uplink signal occupy different time-domain resources, and the time-domain resources occupied by the first uplink signal and the time-domain resources occupied by the second uplink signal are due to transmission timing In the case of different overlapping occurs, the terminal device does not send the later uplink signal in the time domain among the first uplink signal and the second uplink signal in the overlapping area.
  • the uplink signal is PUSCH (it may also be PUCCH or other uplink signals), and the TCI state configured for PUSCH or the reference signal indicated in the spatial correlation information is CSI-RS.
  • the TCI state configured by the network device for the first PUSCH includes the first CSI-RS, and the first CSI-RS is the CSI-RS sent by the first TRP;
  • the TCI state (which may also be spatial correlation information) configured by PUSCH includes the second CSI-RS, the second CSI-RS is the CSI-RS sent by the second TRP, and the first CSI-RS and the second CSI-RS RS adopts independent downlink timing (determined by two TRPs respectively).
  • the terminal device can also obtain two timing advances from high-layer signaling, which are respectively recorded as the first timing advance and the second timing advance.
  • the terminal device determines the first downlink timing according to the first CSI-RS, and then determines the transmission timing of the first PUSCH according to the first downlink timing and the first timing advance; and the terminal device determines the transmission timing of the first PUSCH according to the second CSI -
  • the RS determines the second downlink timing, and then determines the uplink transmission timing of the second PUSCH according to the second downlink timing and the second timing advance. Therefore, the terminal device can send the first PUSCH and the second PUSCH at independent uplink transmission timings.
  • the uplink signal is PUSCH (which may also be used for PUCCH or other uplink signals), and the TCI status configured for PUSCH or the reference signal indicated in the spatial correlation information is SRS.
  • the TCI state configured by the network device for the first PUSCH (which may also be space-related information) includes the first SRS, which is the SRS sent to the first TRP;
  • the TCI state configured by the network device for the second PUSCH (which may also be is spatial correlation information) includes a second SRS, where the second SRS is an SRS sent to a second TRP, and the first SRS and the second SRS use different transmission timings.
  • the terminal device may use the transmission timing of the first SRS as the transmission timing of the first PUSCH, and use the transmission timing of the second SRS as the transmission timing of the second PUSCH, so as to transmit the first PUSCH using an independent uplink transmission timing and the second PUSCH.
  • the terminal device may respectively send the first PUSCH and the second PUSCH on different time domain resources by using independent uplink transmission timings. That is, the terminal device may have only one transmission timing at the same time, but may have multiple different transmission timings according to different reference signals at different times. If two uplink signals are transmitted on different time domain resources, and resource overlap in the time domain occurs due to different transmission timings, the terminal device does not send the later uplink signal within the overlapping time. For example, the first PUSCH and the second PUSCH are transmitted in adjacent time slots, but because the timing of the second PUSCH is advanced, there is a time domain overlap with the first PUSCH. At this time, the terminal device will normally transmit the first PUSCH, but in The overlapping part does not send the second PUSCH.
  • the terminal device may respectively send the first PUSCH and the second PUSCH on different panels using independent uplink transmission timings. At this time, the transmission timing on different panels can be different.
  • the terminal device determines multiple timing advances of a TAG through one of the following manners 1 to 3.
  • the network device configures multiple TA offsets of the TAG through RRC, and the MAC CE sends a TA command of the TAG each time, and the terminal device uses each TA offset in the multiple TA offsets and the TA command to determine multiple timing advances for this TAG.
  • the network device configures multiple TA offsets of the TAG through RRC, and the MAC CE sends multiple TA commands of the TAG each time, and the multiple TA offsets correspond to the multiple TA commands one by one.
  • the terminal device determines multiple timing advances of the TAG according to each TA offset and each TA command.
  • the network device configures a TA offset of the TAG (ie, the initial TA offset) through RRC, and the MAC CE sends multiple TA commands of the TAG each time, and the terminal device uses the initial TA offset and each TA command , to determine multiple timing advances of the TAG.
  • a TA offset of the TAG ie, the initial TA offset
  • the target uplink signal can also be used for the PUCCH, for example, multiple spatial correlation information (PUCCH-spatialrelatininfo) is configured for one PUCCH, so as to obtain multiple transmission timings. It can also be used for other uplink signals such as SRS.
  • PUCCH-spatialrelatininfo multiple spatial correlation information
  • the types of reference signals corresponding to different uplink signals may be different, not necessarily all uplink reference signals or all downlink reference signals.
  • reference signals used to determine transmission timing corresponding to three different uplink signals may be CSI-RS, SSB and SRS respectively.
  • the first information further includes timing state indication information; the terminal device determines the timing state associated with the transmission timing of the target uplink signal according to the timing state indication information.
  • the terminal device determines the downlink timing according to the TCI state configured for the target uplink signal or the downlink reference signal indicated in the space related information, and based on the downlink timing and the timing corresponding to the timing state indicated in the TCI state or the space related information The advance amount is used to calculate the transmission timing of the target uplink signal.
  • uplink signals configured with the same timing state adopt the same transmission timing.
  • the terminal device may use the transmission timing of the uplink reference signal as the transmission timing of all uplink signals using the first timing state, the first The timing state is the TCI state or the timing state indicated in the space related information. That is to say, the terminal device may assume that uplink signals configured with the same timing state adopt the same transmission timing. For example, suppose that for another uplink signal, the timing state index configured by the network device is 0, then the terminal device adopts the transmission timing 1 corresponding to the timing state index 0 when transmitting the uplink signal; if the timing state index configured by the network device is 1, then The terminal adopts the transmission timing 2 corresponding to the timing state index 1 when transmitting the uplink signal. At this time, the network device may not configure a reference signal for transmission timing for the uplink signal, but configure only one timing state index, and the terminal device may determine the transmission timing corresponding to the timing state index.
  • the terminal device uses the transmission timing of the uplink reference signal as the transmission timing of the uplink signal in the first timing state; wherein , the first timing state is the timing state indicated by the timing state indication information in the first information, and the uplink signal includes the target uplink signal.
  • the terminal device determines the first downlink timing according to the downlink reference signal; and the terminal device determines the first downlink timing according to the first downlink timing
  • the timing advance corresponding to the second timing state determines the transmission timing of the target uplink signal; wherein the second timing state is the timing state indicated by the timing state indication information in the first information.
  • the terminal device determines timing advances respectively corresponding to at least one timing state according to high-level signaling, where the at least one timing state includes the second timing state.
  • the terminal device may determine the timing advance corresponding to each timing state in the at least one timing state from high-layer signaling. For example, if the network device is configured with two timing states, the TA offset and/or TA command corresponding to each timing state can be indicated through high-level signaling, so that the corresponding timing can be determined through the TA offset and/or TA command Amount in advance. For example, two TA offsets can be configured through high-level signaling, or two TA commands can be indicated through the MAC CE, so that the terminal device can obtain two timing advances.
  • a TCI state or space related information may include the following information:
  • the downlink reference signal may be a downlink reference signal used to determine transmission timing.
  • the terminal device determines the downlink timing 1 according to the downlink reference signal in the TCI state, and the timing state index associated with the downlink timing 1 is 0.
  • the terminal device determines the downlink timing 2 according to the downlink reference signal in the spatial correlation information, and the timing state index associated with the downlink timing 2 is 1.
  • the terminal device obtains the timing advance 1 and the timing advance 2 respectively corresponding to the timing state 0 and the timing state 1 through high-layer signaling.
  • the terminal device determines the transmission timing corresponding to the timing state 0 according to the downlink timing 1 and the timing advance 1, as the transmission timing of the PUSCH.
  • the terminal device determines the transmission timing corresponding to the timing state 1 according to the downlink timing 2 and the timing advance 2 as the transmission timing of the PUCCH.
  • a TCI state or space related information may include the following information:
  • the uplink reference signal may be an uplink reference signal used to determine transmission timing.
  • the terminal device determines the transmission timing 1 according to the uplink reference signal in the TCI state, and the timing state index associated with the transmission timing 1 is 0.
  • the terminal device determines the transmission timing 2 according to the uplink reference signal in the spatial correlation information, and the timing state index associated with the transmission timing 2 is 1. Then the terminal device needs to maintain the transmission timings corresponding to the two timing states respectively.
  • the terminal device uses the transmission timing corresponding to timing state 0 as the transmission timing of the PUSCH.
  • the terminal device uses the transmission timing corresponding to the timing state 1 as the transmission timing of the PUCCH.
  • two TCI states or space-related information can be configured for one uplink signal (such as a target uplink signal), each TCI state or space-related information contains a timing state index, two TCI states or space-related information
  • the timing state index in can be different. That is, the same uplink signal (such as a target uplink signal) can be associated with multiple timing states.
  • the terminal device may determine transmission timings corresponding to the two timing states, for transmitting target uplink signals at different times or panels.
  • the terminal device assumes that the timing state associated with the transmission timing of the target uplink signal is 0. In this case, the terminal device may determine the transmission timing of the target uplink signal according to the downlink timing of the serving cell and the first timing advance configured by high-layer signaling. Alternatively, the terminal device may determine the uplink timing of the serving cell as the transmission timing of the target uplink signal. That is, no additional reference signal is required for determining transmission timing.
  • the timing advance is obtained based on a timing advance offset configured by RRC signaling and/or a timing advance command indicated by MAC layer signaling; or, the timing advance includes timing configured by RRC signaling advance the offset and/or the timing advance command indicated by the MAC layer signaling.
  • a timing advance can be calculated according to a TA offset configured by RRC and a TA command indicated by a Modulation and Coding Scheme (MCS) layer.
  • MCS Modulation and Coding Scheme
  • the terminal device determines the transmission timing of the target uplink signal based on the TCI state configured by the network device for the target uplink signal or the reference signal indicated in the space related information, and based on the transmission timing of the target uplink signal transmit the target uplink signal.
  • different uplink signals can have different transmission timings, and one uplink signal can have multiple different transmission timings, that is, uplink signals transmitted to different TRPs can use different transmission timings, thus supporting asynchronous Uplink multi-TRP transmission in the case of high transmission delay or high transmission delay. Ensure that uplink signals sent to different TRPs are synchronized between TRPs and terminal devices to avoid performance loss.
  • the embodiment of the present application may also support determining multiple different transmission timings for one uplink signal, thereby supporting uplink repeated transmission based on multiple TRPs, and guaranteeing the gain of uplink repeated transmission in an asynchronous scenario.
  • terminal-side embodiment of the present application is described in detail above with reference to FIG. 7
  • network-side embodiment of the present application is described in detail below in conjunction with FIG. 8 . It should be understood that the network-side embodiment and the terminal-side embodiment correspond to each other, similar descriptions You can refer to the embodiment on the terminal side.
  • FIG. 8 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 8 , the wireless communication method 300 may include at least part of the following content:
  • the network device sends first information to the terminal device, the reference signal indicated in the first information is used by the terminal device to determine the transmission timing of the target uplink signal, and the first information is TCI state or space related information;
  • the network device receives the target uplink signal sent by the terminal device according to the transmission timing of the target uplink signal.
  • the terminal device determines the transmission timing of the target uplink signal based on the TCI state configured by the network device for the target uplink signal or the reference signal indicated in the spatial correlation information, and transmits the target uplink signal based on the transmission timing of the target uplink signal.
  • target uplink signal different uplink signals can have different transmission timings, and one uplink signal can have multiple different transmission timings, that is, uplink signals transmitted to different TRPs can use different transmission timings, thus supporting asynchronous Uplink multi-TRP transmission in the case of high transmission delay or high transmission delay. Ensure that uplink signals sent to different TRPs are synchronized between TRPs and terminal devices to avoid performance loss.
  • the network device receives the target uplink signal sent by the terminal device according to the transmission timing of the target uplink signal according to the receiving timing of the target uplink signal.
  • the first information may also be parameters other than the TCI state and space-related information.
  • the first information is a parameter configured by the network device for the target uplink signal to determine transmission timing. This application This is not limited.
  • transmission timing may also be referred to as “sending timing”, which is not limited in the present application.
  • the reference signal indicated in the first information is used by the terminal device to determine the transmission timing of the target uplink signal
  • the reference signal included in the first information is used by the terminal device to determine the target uplink signal transmission timing.
  • the transmission timing of the uplink signal which is not limited in this application.
  • the QCL type of the TCI state is one of the following: transmission timing, uplink timing, and synchronization parameters.
  • the QCL type of the TCI state is: QCL typeD, that is, spatial transmission/reception parameters (filters); at this time, the terminal device can determine the transmission beam (spatial transmission filter) according to the reference signal to determine the transmission timing of the uplink signal.
  • the TCI status may be indicated by higher layer signaling or DCI.
  • DCI For example, for PUCCH, it can be indicated by MAC layer signaling; for PUSCH, it can be indicated by DCI; for SRS, it can be indicated by RRC signaling.
  • the spatial correlation information is used to determine the transmission beam (spatial transmission filter) of the uplink signal.
  • the terminal device can determine the uplink signal according to the reference signal used to determine the transmission beam (spatial transmission filter).
  • the transmission timing of the space correlation information may additionally include a reference signal for determining the uplink timing.
  • the spatial correlation information may be indicated through higher layer signaling or DCI.
  • DCI For example, for PUCCH, it can be indicated by MAC layer signaling; for PUSCH, it can be indicated by DCI; for SRS, it can be indicated by RRC signaling.
  • the sending beam may also be referred to as a spatial domain transmission filter (Spatial domain transmission filter or Spatial domain filter for transmission) or a spatial relationship (Spatial relation) or a spatial configuration (spatial setting).
  • the receiving beam can also be called a spatial domain reception filter (Spatial domain reception filter or Spatial domain filter for reception) or a spatial reception parameter (Spatial Rx parameter).
  • the target uplink signal is PUSCH or PUCCH.
  • the target uplink signal may be other uplink signals, which is not limited in the present application.
  • the network device uses the receiving timing of the uplink reference signal as the receiving timing of the target uplink signal.
  • the uplink reference signal is SRS.
  • the uplink reference signal may also be some other uplink reference signals, which is not limited in this application.
  • the network device determines the receiving timing of the target uplink signal according to the transmission timing of the downlink reference signal and a timing advance determined through high layer signaling.
  • the downlink reference signal is CSI-RS or SSB.
  • the downlink reference signal may also be some other downlink reference signals, which is not limited in this application.
  • the timing advance determined through high-layer signaling includes multiple timing advances of a TAG; the network device advances the timing according to the transmission timing of the downlink reference signal and a target timing among the multiple timing advances amount to determine the receiving timing of the target uplink signal.
  • the multiple timing advances correspond to different CORESET group indexes one by one
  • the target timing advance is the timing advance corresponding to the CORESET group index associated with the target uplink signal.
  • the timing advance corresponds to a TA offset.
  • the first TA offset and the second TA offset are associated with CORESET group indexes 0 and 1, respectively, and the CORESET group index associated with the first PUSCH is 0 (that is, the CORESET configuration where the PDCCH that schedules the first PUSCH is located The group index is 0), the CORESET group index associated with the second PUSCH is 1 (that is, the group index of the CORESET configuration where the PDCCH that schedules the second PUSCH is located is 1), then the terminal device determines the first PUSCH according to the first TA offset Transmission timing, and determining the transmission timing of the second PUSCH according to the second TA offset.
  • the multiple timing advances correspond to different cell identities one by one
  • the target timing advance is the timing advance corresponding to the cell id associated with the target uplink signal.
  • the timing advance corresponds to a TA command.
  • the first TA command and the second TA command are respectively associated with the PCI (primary cell ID) of the serving cell and the PCI (secondary cell ID) of the neighboring cell
  • the cell ID associated with the first PUSCH is the PCI of the serving cell
  • the transmission beam or path loss reference signal of the first PUSCH comes from the SSB carrying the PCI
  • the cell ID associated with the second PUSCH is the PCI of the neighboring cell (that is, the transmission beam or path loss reference signal of the second PUSCH comes from the PCI carrying the PCI SSB)
  • the terminal device determines the transmission timing of the first PUSCH according to the first TA command
  • the multiple timing advances correspond to different TRPs one by one
  • the target timing advance is a timing advance corresponding to the received TRP of the target uplink signal.
  • the timing advance determined through high-layer signaling includes multiple timing advances of a TAG; the network device respectively determines the target uplink according to the transmission timing of the downlink reference signal and the multiple timing advances. Multiple reception timings of signals.
  • the target uplink signal includes a first uplink signal and a second uplink signal, wherein the first information configured for the first uplink signal indicates a first reference signal, and the first information configured for the second uplink signal The first information indicates the second reference signal.
  • the network device determines the first receiving timing of the first uplink signal according to the first reference signal, and the terminal device determines the second receiving timing of the second uplink signal according to the second reference signal.
  • the above S310 specifically includes: the network device respectively receiving the first uplink signal and the second uplink signal sent by the terminal device according to the first receiving timing and the second receiving timing.
  • the first receive timing is different from the second receive timing.
  • the first uplink signal and the second uplink signal occupy different time domain resources, and/or, the first uplink signal and the second uplink signal are received on different TRPs.
  • the first uplink signal and the second uplink signal occupy different time-domain resources, and the time-domain resources occupied by the first uplink signal and the time-domain resources occupied by the second uplink signal are due to transmission timing In the case of different overlapping occurs, the network device does not receive the later uplink signal in the time domain among the first uplink signal and the second uplink signal in the overlapping area.
  • the first information is multiple TCI states or multiple spatial correlation information
  • the multiple TCI states or multiple spatial correlation information indicate multiple reference signals.
  • the network device respectively determines multiple receiving timings of the target uplink signal according to the multiple reference signals.
  • the above S310 specifically includes: the network device receiving the target uplink signal according to multiple receiving timings of the target uplink signal.
  • the network device uses multiple receiving timings of the target uplink signal on different time domain resources to respectively receive the target uplink signal; or, the network device uses multiple reception timings of the target uplink signal on different TRPs receive the target uplink signal at receiving timings respectively.
  • the network device configures a plurality of TA offsets of the TAG through RRC, and the MAC CE sends a TA command of the TAG each time, and the terminal device is configured according to each TA offset in the plurality of TA offsets and the TA command to determine a number of timing advances for the TAG.
  • the network device configures multiple TA offsets of the TAG through RRC, and the MAC CE sends multiple TA commands of the TAG each time, and the multiple TA offsets are in one-to-one correspondence with the multiple TA commands.
  • the terminal device determines multiple timing advances of the TAG according to each TA offset and each TA command.
  • the network device configures a TA offset (i.e. initial TA offset) of the TAG through RRC, and the MAC CE sends multiple TA commands of the TAG each time, and the terminal device bases the initial TA offset and each A TA command determines multiple timing advances of the TAG.
  • a TA offset i.e. initial TA offset
  • the target uplink signal can also be used for the PUCCH, for example, multiple spatial correlation information (PUCCH-spatialrelatininfo) is configured for one PUCCH, so as to obtain multiple transmission timings. It can also be used for other uplink signals such as SRS.
  • PUCCH-spatialrelatininfo multiple spatial correlation information
  • the types of reference signals corresponding to different uplink signals may be different, not necessarily all uplink reference signals or all downlink reference signals.
  • reference signals used to determine transmission timing corresponding to three different uplink signals may be CSI-RS, SSB and SRS respectively.
  • the first information further includes timing state indication information, where the timing state indication information is used by the terminal device to determine the timing state associated with the transmission timing of the target uplink signal.
  • uplink signals configured with the same timing state adopt the same transmission timing.
  • the terminal device uses the transmission timing 1 corresponding to the timing state index 0 when transmitting the uplink signal; if the timing state index configured by the network device is 1, the terminal device transmits the uplink signal when Transmission timing 2 corresponding to timing state index 1 is adopted.
  • the network device may not configure a reference signal for transmission timing for the uplink signal, but configure only one timing state index, and the terminal device may determine the transmission timing corresponding to the timing state index.
  • the network device uses the receiving timing of the uplink reference signal as the receiving timing of the uplink signal adopting the first timing state; wherein , the first timing state is the timing state indicated by the timing state indication information in the first information, and the uplink signal includes the target uplink signal.
  • the network device determines the target uplink according to the transmission timing of the downlink reference signal and the timing advance corresponding to the second timing state.
  • the receiving timing of the signal; wherein, the second timing state is the timing state indicated by the timing state indication information in the first information.
  • the network device indicates to the terminal device the timing advance corresponding to at least one timing state through high-level signaling, where the at least one timing state includes the second timing state.
  • the terminal device may determine the timing advance corresponding to each timing state in the at least one timing state from high-layer signaling. For example, if the network device is configured with two timing states, the TA offset and/or TA command corresponding to each timing state can be indicated through high-level signaling, so that the corresponding timing can be determined through the TA offset and/or TA command Amount in advance. For example, two TA offsets can be configured through high-level signaling, or two TA commands can be indicated through the MAC CE, so that the terminal device can obtain two timing advances.
  • a TCI state or space related information may include the following information:
  • the downlink reference signal may be a downlink reference signal used to determine transmission timing.
  • the terminal device determines the downlink timing 1 according to the downlink reference signal in the TCI state, and the timing state index associated with the downlink timing 1 is 0.
  • the terminal device determines the downlink timing 2 according to the downlink reference signal in the spatial correlation information, and the timing state index associated with the downlink timing 2 is 1.
  • the terminal device obtains the timing advance 1 and the timing advance 2 respectively corresponding to the timing state 0 and the timing state 1 through high-layer signaling.
  • the terminal device determines the transmission timing corresponding to the timing state 0 according to the downlink timing 1 and the timing advance 1, as the transmission timing of the PUSCH.
  • the terminal device determines the transmission timing corresponding to the timing state 1 according to the downlink timing 2 and the timing advance 2 as the transmission timing of the PUCCH.
  • a TCI state or space related information may include the following information:
  • the uplink reference signal may be an uplink reference signal used to determine transmission timing.
  • the terminal device determines the transmission timing 1 according to the uplink reference signal in the TCI state, and the timing state index associated with the transmission timing 1 is 0.
  • the terminal device determines the transmission timing 2 according to the uplink reference signal in the spatial correlation information, and the timing state index associated with the transmission timing 2 is 1. Then the terminal device needs to maintain the transmission timings corresponding to the two timing states respectively.
  • the terminal device uses the transmission timing corresponding to timing state 0 as the transmission timing of the PUSCH.
  • the terminal device uses the transmission timing corresponding to the timing state 1 as the transmission timing of the PUCCH.
  • two TCI states or space-related information can be configured for one uplink signal (such as a target uplink signal), each TCI state or space-related information contains a timing state index, two TCI states or space-related information
  • the timing state index in can be different. That is, the same uplink signal (such as a target uplink signal) can be associated with multiple timing states.
  • the terminal device may determine transmission timings corresponding to the two timing states, for transmitting target uplink signals at different times or panels.
  • the terminal device assumes that the timing state associated with the transmission timing of the target uplink signal is 0. In this case, the terminal device may determine the transmission timing of the target uplink signal according to the downlink timing of the serving cell and the first timing advance configured by high-layer signaling. Alternatively, the terminal device may determine the uplink timing of the serving cell as the transmission timing of the target uplink signal. That is, no additional reference signal is required for determining transmission timing.
  • the timing advance is obtained based on a timing advance offset configured by RRC signaling and/or a timing advance command indicated by MAC layer signaling; or, the timing advance includes timing configured by RRC signaling advance the offset and/or the timing advance command indicated by the MAC layer signaling.
  • a timing advance can be calculated according to a TA offset configured by RRC and a TA command indicated by the MCS layer.
  • the terminal device determines the transmission timing of the target uplink signal based on the TCI state configured by the network device for the target uplink signal or the reference signal indicated in the space related information, and based on the transmission timing of the target uplink signal transmit the target uplink signal.
  • different uplink signals can have different transmission timings, and one uplink signal can have multiple different transmission timings, that is, uplink signals transmitted to different TRPs can use different transmission timings, thus supporting asynchronous Uplink multi-TRP transmission in the case of high transmission delay or high transmission delay. Ensure that uplink signals sent to different TRPs are synchronized between TRPs and terminal devices to avoid performance loss.
  • the embodiment of the present application may also support determining multiple different transmission timings for one uplink signal, thereby supporting uplink repeated transmission based on multiple TRPs, and guaranteeing the gain of uplink repeated transmission in an asynchronous scenario.
  • Fig. 9 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine the transmission timing of the target uplink signal according to the reference signal indicated in the first information configured for the target uplink signal, where the first information indicates the TCI state or spatial correlation information for the transmission configuration;
  • the communication unit 420 is configured to transmit the target uplink signal according to the transmission timing of the target uplink signal.
  • the reference signal is an uplink reference signal
  • the processing unit 410 is specifically used for:
  • the transmission timing of the uplink reference signal is used as the transmission timing of the target uplink signal.
  • the reference signal is a downlink reference signal
  • the processing unit 410 is specifically used for:
  • the transmission timing of the target uplink signal is determined according to the first downlink timing and the timing advance determined through high layer signaling.
  • the timing advance determined through high-layer signaling includes multiple timing advances of a timing advance group TAG;
  • the processing unit 410 is specifically used for:
  • the transmission timing of the target uplink signal is determined according to the first downlink timing and a target timing advance in the multiple timing advances.
  • the multiple timing advances correspond to different control resource set CORESET group indexes one by one
  • the target timing advance is the timing advance corresponding to the CORESET group index associated with the target uplink signal
  • the multiple timing advances are in one-to-one correspondence with different cell identities, and the target timing advance is the timing advance corresponding to the cell identifier associated with the target uplink signal.
  • the timing advance determined through high-layer signaling includes multiple timing advances of one TAG
  • the processing unit 410 is specifically used for:
  • Multiple transmission timings of the target uplink signal are respectively determined according to the first downlink timing and the multiple timing advances.
  • the target uplink signal includes a first uplink signal and a second uplink signal, wherein the first information configured for the first uplink signal indicates a first reference signal, and the first information configured for the second uplink signal The second reference signal is indicated in the first information;
  • the processing unit 410 is specifically used for:
  • the communication unit 420 is specifically used for:
  • the first uplink signal and the second uplink signal are respectively transmitted according to the first transmission timing and the second transmission timing.
  • the first transmission timing is different from the second transmission timing.
  • the first uplink signal and the second uplink signal occupy different time domain resources, and/or, the first uplink signal and the second uplink signal are transmitted through different antenna array blocks.
  • the first uplink signal and the second uplink signal occupy different time-domain resources, and the time-domain resources occupied by the first uplink signal and the time-domain resources occupied by the second uplink signal are due to transmission timing In the case of different overlapping occurs, the terminal device does not send the later uplink signal in the time domain among the first uplink signal and the second uplink signal in the overlapping area.
  • the first information is multiple TCI states or multiple spatial correlation information, and the multiple TCI states or multiple spatial correlation information indicate multiple reference signals;
  • the processing unit 410 is specifically used for:
  • the communication unit 420 is specifically used for:
  • the target uplink signal is transmitted according to multiple transmission timings of the target uplink signal.
  • the communication unit 420 is specifically used for:
  • the target uplink signal is respectively transmitted on different antenna array blocks using the multiple transmission timings.
  • the first information further includes timing status indication information
  • the processing unit 410 is further configured to determine a timing state associated with the transmission timing of the target uplink signal according to the timing state indication information.
  • uplink signals configured with the same timing state adopt the same transmission timing.
  • the processing unit 410 is specifically configured to:
  • the transmission timing of the uplink reference signal is used as the transmission timing of the uplink signal using the first timing state; wherein the first timing state is the timing state indicated by the timing state indication information in the first information, and the uplink signal includes The target uplink signal.
  • the processing unit 410 when the reference signal indicated in the first information is a downlink reference signal, the processing unit 410 is specifically configured to:
  • the timing advance corresponding to the first downlink timing and the second timing state determine the transmission timing of the target uplink signal; wherein, the second timing state is the timing state indicated by the timing state indication information in the first information .
  • the processing unit is further configured to determine timing advances respectively corresponding to at least one timing state according to high layer signaling, where the at least one timing state includes the second timing state.
  • the terminal device assumes that the timing state associated with the transmission timing of the target uplink signal is 0.
  • the quasi-co-location QCL type of the TCI state is one of the following: transmission timing, uplink timing, and synchronization parameters.
  • the timing advance is obtained based on a timing advance offset configured by radio resource control RRC signaling and/or a timing advance command indicated by medium access control MAC layer signaling; or,
  • the timing advance includes a timing advance offset configured by RRC signaling and/or a timing advance command indicated by MAC layer signaling.
  • the downlink reference signal is a channel state information reference signal CSI-RS or a synchronization signal block SSB.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are for realizing the method shown in FIG. 7
  • the corresponding process of the terminal device in 200 will not be repeated here.
  • Fig. 10 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • the communication unit 510 is configured to send first information to the terminal device, the reference signal indicated in the first information is used by the terminal device to determine the transmission timing of the target uplink signal, and the first information indicates TCI status or spatial correlation information for the transmission configuration;
  • the communication unit 510 is further configured to receive the target uplink signal sent by the terminal device according to the transmission timing of the target uplink signal.
  • the network device 500 further includes: a processing unit 520,
  • the processing unit 520 is configured to use the receiving timing of the uplink reference signal as the receiving timing of the target uplink signal.
  • the network device 500 further includes: a processing unit 520,
  • the processing unit 520 is configured to determine the receiving timing of the target uplink signal according to the transmission timing of the downlink reference signal and the timing advance determined through high layer signaling.
  • the timing advance determined through high-layer signaling includes multiple timing advances of a timing advance group TAG;
  • the processing unit 520 is specifically used for:
  • the receiving timing of the target uplink signal is determined according to the transmission timing of the downlink reference signal and a target timing advance in the multiple timing advances.
  • the multiple timing advances correspond to different control resource set CORESET group indexes one by one
  • the target timing advance is the timing advance corresponding to the CORESET group index associated with the target uplink signal
  • the multiple timing advances are in one-to-one correspondence with different cell identities, and the target timing advance is the timing advance corresponding to the cell identity associated with the target uplink signal; or,
  • the multiple timing advances are in one-to-one correspondence with different transmitting and receiving points TRP, and the target timing advance is the timing advance corresponding to the receiving TRP of the target uplink signal.
  • the timing advance determined through high-layer signaling includes multiple timing advances of one TAG
  • the processing unit 520 is specifically used for:
  • Multiple receiving timings of the target uplink signal are respectively determined according to the transmission timing of the downlink reference signal and the multiple timing advances.
  • the target uplink signal includes a first uplink signal and a second uplink signal, wherein the first information configured for the first uplink signal indicates a first reference signal, and the first information configured for the second uplink signal The first information indicates a second reference signal;
  • the network device 500 also includes: a processing unit 520,
  • the processing unit 520 is configured to determine a first receiving timing of the first uplink signal according to the first reference signal, and the processing unit is configured to determine a second receiving timing of the second uplink signal according to the second reference signal;
  • the communication unit 510 is specifically used for:
  • the first uplink signal and the second uplink signal sent by the terminal device are respectively received according to the first receiving timing and the second receiving timing.
  • the first receive timing is different from the second receive timing.
  • the first uplink signal and the second uplink signal occupy different time domain resources, and/or, the first uplink signal and the second uplink signal are received on different TRPs.
  • the first uplink signal and the second uplink signal occupy different time-domain resources, and the time-domain resources occupied by the first uplink signal and the time-domain resources occupied by the second uplink signal are due to transmission timing In the case of different overlapping occurs, the network device does not receive the later uplink signal in the time domain among the first uplink signal and the second uplink signal in the overlapping area.
  • the first information is multiple TCI states or multiple spatial correlation information, and the multiple TCI states or multiple spatial correlation information indicate multiple reference signals;
  • the network device 500 also includes: a processing unit 520,
  • the processing unit 520 is configured to respectively determine multiple receiving timings of the target uplink signal according to the multiple reference signals;
  • the communication unit 510 is specifically used for:
  • the target uplink signal is received according to multiple receiving timings of the target uplink signal.
  • the processing unit 520 is specifically used for:
  • the target uplink signal is respectively received on different TRPs by using multiple receiving timings of the target uplink signal.
  • the first information further includes timing state indication information, where the timing state indication information is used by the terminal device to determine the timing state associated with the transmission timing of the target uplink signal.
  • uplink signals configured with the same timing state adopt the same transmission timing.
  • the network device 500 when the reference signal indicated in the first information is an uplink reference signal, the network device 500 further includes: a processing unit 520,
  • the processing unit 520 is configured to use the receiving timing of the uplink reference signal as the receiving timing of the uplink signal adopting a first timing state; wherein the first timing state is the timing indicated by the timing state indication information in the first information state, the uplink signal includes the target uplink signal.
  • the network device 500 when the reference signal indicated in the first information is a downlink reference signal, the network device 500 further includes: a processing unit 520,
  • the processing unit 520 is configured to determine the receiving timing of the target uplink signal according to the transmission timing of the downlink reference signal and the timing advance corresponding to the second timing state; wherein the second timing state is the timing state in the first information Indicates the timing status indicated by the message.
  • the communication unit 510 is further configured to indicate to the terminal device a timing advance corresponding to at least one timing state through high-layer signaling, where the at least one timing state includes the second timing state.
  • the terminal device assumes that the timing state associated with the transmission timing of the target uplink signal is 0.
  • the quasi-co-location QCL type of the TCI state is one of the following: transmission timing, uplink timing, and synchronization parameters.
  • the timing advance is obtained based on a timing advance offset configured by radio resource control RRC signaling and/or a timing advance command indicated by medium access control MAC layer signaling; or,
  • the timing advance includes a timing advance offset configured by RRC signaling and/or a timing advance command indicated by MAC layer signaling.
  • the downlink reference signal is a channel state information reference signal CSI-RS or a synchronization signal block SSB.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are for realizing the method shown in FIG. 8
  • the corresponding processes of the network devices in 300 will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 11 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 600 may specifically be the terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. Let me repeat.
  • Fig. 12 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 12 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the device 700 may further include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 13 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 13 , the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 820 can be used to realize the corresponding functions realized by the network device in the above method. repeat.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法、终端设备和网络设备,终端设备可以为发给不同TRP的上行信号确定不同的传输定时,从而支持非同步场景下或者大传输时延下的上行多TRP传输,保证发给不同TRP的上行信号在TRP和终端设备之间是同步的,避免性能损失。该无线通信的方法,包括:终端设备根据为目标上行信号配置的第一信息中指示的参考信号确定该目标上行信号的传输定时,该第一信息为TCI状态或者空间相关信息;该终端设备根据该目标上行信号的传输定时,传输该目标上行信号。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)***中,终端设备接收两个发送接收点(Transmission Reception Point,TRP)的下行信号采用的下行定时不同(如两个TRP不是完全同步),或者,终端设备和两个TRP之间的传播时延差别较大,可能导致终端设备和两个TRP之间需要的上行传输定时也会不同。此时,如果终端设备采用相同的上行传输定时分别给两个TRP传输上行信号,可能因为与TRP之间的定时不同步(即同步误差超过循环前缀(cyclic prefix,CP)长度)导致性能损失。终端设备如何确定分别发送给不同TRP的上行信号的传输定时,是一个亟待解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,终端设备可以为发给不同TRP的上行信号确定不同的传输定时,从而支持非同步场景下或者大传输时延下的上行多TRP传输,保证发给不同TRP的上行信号在TRP和终端设备之间是同步的,避免性能损失。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备根据为目标上行信号配置的第一信息中指示的参考信号确定该目标上行信号的传输定时,该第一信息为TCI状态或者空间相关信息;
该终端设备根据该目标上行信号的传输定时,传输该目标上行信号。
第二方面,提供了一种无线通信的方法,该方法包括:
网络设备向终端设备发送第一信息,该第一信息中指示的参考信号用于终端设备确定目标上行信号的传输定时,该第一信息为TCI状态或者空间相关信息;
该网络设备接收该终端设备根据该目标上行信号的传输定时发送的该目标上行信号。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,终端设备基于为上行信号配置的TCI状态或者空间相关信息中指示的参考信号,确定该上行信号的传输定时,并基于该传输定时传输该上行信号。此种情况下,不同的上行信号可以有不同的传输定时,且一个上行信号可以有多个不同的传输定时,也即,传输给不同TRP的上行信号可以采用不同的传输定时,从而支持非同步情况下或者大传输时延场景下的上行多TRP传输。保证发给不同TRP的上行信号在TRP和终端设备之间是同步的,避免性能损失。
附图说明
图1是本申请实施例应用的一种通信***架构的示意性图。
图2是本申请提供的一种上行非相干传输的示意性图。
图3是本申请提供的一种基于时隙的PUSCH重复传输的示意性图。
图4是本申请提供的一种基于多TRP/天线阵列块的PUSCH重复传输的示意性图。
图5是本申请提供的一种基于时隙的PUCCH重复传输的示意性图。
图6是本申请提供的一种基于多TRP/天线阵列块的PUCCH重复传输的示意性图。
图7是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图8是根据本申请实施例提供的另一种无线通信的方法的示意性流程图。
图9是根据本申请实施例提供的一种终端设备的示意性框图。
图10是根据本申请实施例提供的一种网络设备的示意性框图。
图11是根据本申请实施例提供的一种通信设备的示意性框图。
图12是根据本申请实施例提供的一种装置的示意性框图。
图13是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
在一些实施例中,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一些实施例中,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称, 如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是发送接收点(Transmission Reception Point,TRP),WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技 术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
在NR***中,终端设备可以采用模拟波束来传输上行数据和上行控制信息。终端设备可以基于探测参考信号(Sounding Reference Signal,SRS)信号来进行上行波束管理,从而确定上行传输所用的模拟波束。具体的,网络设备可以给终端设备配置SRS资源集合,基于终端设备在SRS资源集合中传输的SRS,选择出接收质量最好的一个SRS资源,并将对应的SRS资源指示(SRS resource indicator,SRI)通知给终端设备。终端设备接收到SRI后,将SRI指示的SRS资源所用的模拟波束确定为传输物理上行共享信道(Physical Uplink Shared Channel,PUSCH)所用的模拟波束。对于DCI调度的PUSCH,所述SRI通过DCI中的SRI指示域来指示;对于无线资源控制(Radio Resource Control,RRC)调度的PUSCH,所述SRI通过相应的调度信令通知。
为便于更好的理解本申请实施例,对本申请相关的上行多TRP传输进行说明。
在NR***中引入了基于多个TRP的下行和上行的非相干传输。其中,TRP之间的回传(backhaul)连接可以是理想的或者非理想的,理想的backhaul下TRP之间可以快速动态的进行信息交互,非理想的backhaul下由于时延较大TRP之间只能准静态的进行信息交互。在下行非相干传输中,多个TRP可以采用不同的控制信道独立调度一个终端的多个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输,也可以采用同一个控制信道调度不同TRP的传输,其中不同TRP的数据采用不同的传输层,后者只能用于理想backhaul的情况。
在上行非相干传输中,不同TRP同样可以独立调度同一个终端的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输。不同PUSCH传输可以配置独立的传输参数,例如波束、预编码矩阵、层数等。所调度的PUSCH传输可以在同样的时隙或不同的时隙传输。如果终端在同一个时隙被同时调度了两个PUSCH传输,则需要根据自身能力确定如何进行传输。如果终端配置有多个天线阵列块(panel),且支持在多个panel上同时传输PUSCH,则可以同时传输这两个PUSCH,且不同panel上传输的PUSCH对准相应的TRP进行模拟赋形,从而通过空间域区分不同的PUSCH,提供上行的频谱效率(如图2中的A所示)。如果终端只有单个panel,或者不支持多个panel同时传输,则只能在一个panel上传输PUSCH。与下行类似,不同TRP传输的PUSCH可以基于多个下行控制信息(Downlink Control Information,DCI)进行调度,这些DCI可以通过不同的控制资源集(Control Resource Set,CORESET)来承载。具体的,网络侧配置多个CORESET组,每个TRP采用各自的CORESET组中的CORESET进行调度,即可以通过CORESET组来区分不同的TRP。例如,网络设备可以为每个CORESET配置一个CORESET组索引,不同的CORESET组索引对应不同的TRP。同样的,向不同TRP传输的PUSCH可以基于单个DCI进行调度,此时该DCI中需要指示向不同TRP传输的PUSCH分别采用的波束和解调参考信号(Demodulation Reference Signal,DMRS)端口(如图2中的B所示)。
为了提高PUSCH的传输可靠性,NR引入了PUSCH的重复传输,即携带相同数据的PUSCH通过不同的资源/天线/冗余版本等多次传输,从而获得分集增益,降低误检概率(如误块率(block error rate,BLER))。具体的,PUSCH的重复传输可以在多个时隙进行(如图3所示),也可以在多个Panel上进行(如图4所示)。对于多时隙重复,一个DCI可以调度多个PUSCH在连续的多个时隙上传输,携带相同的数据但采用不同的冗余版本。对于多Panel重复,携带相同数据的PUSCH在不同Panel上同时传输,接收端可以是同一个TRP也可以是不同的TRP。
与PUSCH类似,物理上行控制信道(Physical Uplink Control Channel,PUCCH)也可以支持重复传输,即携带相同上行控制信息的PUCCH通过不同的资源或天线多次传输,从而获得分集增益,降低误检概率(如BLER)。具体的,PUCCH的重复传输可以在多个时隙进行(如图5所示),也可以在多个panel上进行(如图6所示,多Panel同时传输同一PUCCH)。对于多时隙重复,网络设备通过RRC信令为每个PUCCH格式配置相应的重复次数N(nrofSlots),终端设备收到该RRC信令后,在连续的N个时隙中采用相同的物理资源传输相同的上行控制信息。由于不同时隙中的PUCCH是发给不同的TRP的,所使用的发送波束和功率控制参数(如路损测量参考信号)也是独立配置的。例如,可以给一个PUCCH资源指示N个空间相关信息(PUCCH-spatialrelationinfo)或者N个传输配置指示(Transmission Configuration Indicator,TCI)状态,分别用于不同时隙中的PUCCH重复传输,PUCCH的发送波束和功率控制参数可以从所述N个空间相关信息(PUCCH-spatialrelationinfo)或者N个TCI状态中得到。其中,N为协作TRP或Panel的数量,对于两个TRP的情况,N=2,如图6所示。
为便于更好的理解本申请实施例,对本申请相关的上行传输定时的确定进行说明。
目前上行信号传输采用的定时通过如下方法确定:
1.获取下行定时,即用于下行信号接收的定时;
2.从小区的RRC参数定时提前偏移n(n-TimingAdvanceOffset)获得定时提前偏移量(timing advance offset)N TA,offset。如果没有配置这个RRC参数,则采用默认的偏移量。如果小区有多个上行载波,则采用相同的N TA,offset。在一个定时提前组(timing advance group,TAG)中的所有小区也采用相同的N TA,offset
3.从媒体接入控制控制元素(Media Access Control Control Element,MAC CE)获取一个TAG的定时提前命令(timing advance command),基于时提前偏移量N TA,offset和定时提前命令调整TAG中所有服务小区的PUSCH/SRS/PUCCH传输的上行传输定时。
可以看出,上行定时是根据下行定时、RRC配置的定时提前偏移量以及MAC CE指示的定时提前命令确定的,且在一个TAG内是相同的。而且,如果两个相邻的时隙因为一个定时提前(Timing Advance,TA)命令产生重叠,后面的时隙在前面时隙的持续时间内被缩短。
为便于更好的理解本申请实施例,对现阶段存在的技术问题进行说明。
终端设备接收两个TRP的下行信号采用的下行定时不同(如两个TRP不是完全同步),或者,终端设备和两个TRP之间的传播时延差别较大,可能导致终端设备和两个TRP之间需要的上行传输定时也会不同。此时,如果终端设备采用相同的上行传输定时分别给两个TRP传输上行信号,可能因为与TRP之间的定时不同步(即同步误差超过CP长度)导致性能损失。终端设备如何确定分别发送给不同TRP的上行信号的传输定时,是一个亟待解决的问题。
基于上述问题,本申请提出了一种上行信号的传输方案,终端设备可以为发给不同TRP的上行信号确定不同的传输定时,从而支持非同步场景下或者大传输时延下的上行多TRP传输,保证发给不同TRP的上行信号在TRP和终端设备之间是同步的,避免性能损失。
以下通过具体实施例详述本申请的技术方案。
图7是根据本申请实施例的无线通信的方法200的示意性流程图,如图7所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,终端设备根据为目标上行信号配置的第一信息中指示的参考信号确定该目标上行信号的传输定时,该第一信息为TCI状态或者空间相关信息;
S220,该终端设备根据该目标上行信号的传输定时,传输该目标上行信号。
在本申请实施例中,终端设备基于网络设备为目标上行信号配置的TCI状态或者空间相关信息中指示的参考信号,确定该目标上行信号的传输定时,并基于该目标上行信号的传输定时传输该目标上行信号。此种情况下,不同的上行信号可以有不同的传输定时,且一个上行信号可以有多个不同的传输定时,也即,传输给不同TRP的上行信号可以采用不同的传输定时,从而支持非同步情况下或者大传输时延场景下的上行多TRP传输。保证发给不同TRP的上行信号在TRP和终端设备之间是同步的,避免性能损失。
在一些实施例中,该第一信息还可以是除TCI状态和空间相关信息之外的其他参数,例如,第一信息为网络设备为目标上行信号配置的用于确定传输定时的参数,本申请对此并不限定。
在本申请实施例中,“传输定时”也可以称之为“发送定时”,本申请对此并不限定。
在本申请实施例中,“为目标上行信号配置的第一信息中指示的参考信号”也可以称之为“为目标上行信号配置的第一信息中包括的参考信号”,本申请对此并不限定。
在一些实施例中,该TCI状态的准共址(Quasi-co-located,QCL)类型为以下之一:传输定时,上行定时,同步参数。在另一种实施方式中,该TCI状态的QCL类型(type)为:QCL typeD,即空间传输/接收参数(滤波器);此时,终端设备可以根据用于确定发送波束(空间传输滤波器)的参考信号,确定上行信号的传输定时。
在一些实施例中,该TCI状态可以通过高层信令或者DCI指示。例如,对于PUCCH,可以用媒体接入控制(Media Access Control,MAC)层信令指示;对于PUSCH,可以用DCI指示;对于SRS,可以用RRC信令指示。
在一些实施例中,该空间相关信息用于确定上行信号的发送波束(空间传输滤波器),此时,终端设备可以根据用于确定发送波束(空间传输滤波器)的参考信号,确定上行信号的传输定时,或者,该空间相关信息中可以额外包含一个用于确定上行定时的参考信号。
在一些实施例中,该空间相关信息可以通过高层信令或者DCI指示。例如,对于PUCCH,可以用MAC层信令指示;对于PUSCH,可以用DCI指示;对于SRS,可以用RRC信令指示。
在本申请实施例中,发送波束也可以称为空间域传输滤波器(Spatial domain transmission filter或者Spatial domain filter for transmission)或者空间关系(Spatial relation)或者空间配置(spatial setting)。接收波束也可以称为空间域接收滤波器(Spatial domain reception filter或者Spatial domain filter for  reception)或者空间接收参数(Spatial Rx parameter)。
在一些实施例中,该目标上行信号为PUSCH或PUCCH。当然,该目标上行信号可以为其他的上行信号,本申请对此并不限定。
在一些实施例中,该参考信号为上行参考信号。例如,该上行参考信号为SRS。当然,该上行参考信号也可以是其他的一些上行参考信号,本申请对此并不限定。
在一些实施例中,该参考信号为下行参考信号。例如,该下行参考信号为信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或同步信号块(Synchronization Signal Block,SSB)。当然,该下行参考信号也可以是其他的一些下行参考信号,本申请对此并不限定。
需要说明的是,SSB也可以称为同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。
在一些实施例中,该参考信号为上行参考信号,例如,该上行参考信号为SRS。此种情况下,上述S210具体可以包括:
该终端设备将该上行参考信号的传输定时,作为该目标上行信号的传输定时。
例如,目标上行信号为PUSCH,TCI状态或者空间相关信息中包含的参考信号为SRS,则终端设备可以将该SRS的传输定时作为该PUSCH的传输定时。
在一些实施例中,该参考信号为下行参考信号,例如,该下行参考信号为CSI-RS或SSB。此种情况下,上述S210具体可以包括:
该终端设备根据该下行参考信号确定第一下行定时;以及该终端设备根据该第一下行定时和通过高层信令确定的定时提前量,确定该目标上行信号的传输定时。
在一些实施例中,该通过高层信令确定的定时提前量包括一个TAG的多个定时提前量。此种情况下,该终端设备根据该第一下行定时和该多个定时提前量中的一个目标定时提前量,确定该目标上行信号的传输定时。此种情况下,该多个定时提前量可以分别对应多个上行信号,终端设备可以分别确定多个上行信号各自的传输定时。
例如,终端设备可以采用如下公式1或公式2,计算目标上行信号的传输定时。
N UL=N DL+N TA公式1
N UL=N DL-N TA公式2
其中,N UL表示目标上行信号的传输定时,N DL表示第一下行定时,N TA表示目标定时提前量。
在一些实施例中,该通过高层信令确定的定时提前量包括一个TAG的多个定时提前量。此种情况下,该终端设备根据该第一下行定时和该多个定时提前量,分别确定该目标上行信号的多个传输定时。此种情况下,该终端设备根据该N个传输定时分别传输该目标上行信号。也即,终端设备可以确定一个上行信号的多个传输定时。
在一些实施例中,该第一信息为多个TCI状态或者多个空间相关信息,且该多个TCI状态或者多个空间相关信息指示多个参考信号。上述S210具体可以包括:该终端设备根据该多个参考信号,分别确定该目标上行信号的多个传输定时。上述S220具体可以包括:该终端设备根据该目标上行信号的多个传输定时传输该目标上行信号。
在一些实施例中,该终端设备在不同的时域资源上采用该多个传输定时分别传输该目标上行信号;或者,该终端设备在不同的天线阵列块上采用该多个传输定时分别传输该目标上行信号。
在一些实施例中,该多个传输定时可以用于PUSCH或PUCCH在不同时域资源上的重复传输,即不同的重复(repetition)可以采用不同的传输定时;或者,该多个传输定时可以用于PUSCH或PUCCH在不同天线阵列块(panel)上的传输,这些传输可以是同时的,也可以占用不同的时域资源。
在一些实施例中,网络设备为目标上行信号配置的TCI状态为N个TCI状态(N>1),或者,网络设备为目标上行信号配置的空间相关信息为N个空间相关信息(N>1),则终端设备根据该N个TCI状态或者该N个空间相关信息中指示的N个下行参考信号,分别确定N个下行定时;该终端设备基于该N个下行定时和从高层信令确定的N个定时提前量,分别计算该目标上行信号的N个传输定时;以及根据该N个传输定时分别传输该目标上行信号。
在一些实施例中,从高层信令确定的定时提前量的数量可以为1,或者,从高层信令确定的N个定时提前量的取值可以相同。具体例如,网络设备为目标上行信号配置的TCI状态为N个TCI状态(N>1),或者,网络设备为目标上行信号配置的空间相关信息为N个空间相关信息(N>1),则终端设备根据该N个TCI状态或者该N个空间相关信息中指示的N个下行参考信号,分别确定N个下行定时;该终端设备基于该N个下行定时和从高层信令确定的一个定时提前量,分别计算该目标上行信号的N个传输定时;以及根据该N个传输定时分别传输该目标上行信号。
具体例如,假设目标上行信号为一个PUSCH,网络设备可以为该PUSCH配置N个TCI状态, 每个TCI状态中包含一个用于确定传输定时的下行参考信号,如CSI-RS。终端设备根据该N个TCI状态中包含的下行参考信号,确定N个下行定时;另外,终端设备从网络设备配置的RRC信令和/或MAC CE中获得N个定时提前量,该终端设备根据该N个下行定时和该N个定时提前量,分别一一组合确定N个上行传输定时,用于传输该PUSCH。
在一些实施例中,该N个TCI状态中包含的参考信号类型可以相同(例如都是CSI-RS),也可以不同(例如一个TCI状态包含的是CSI-RS,另一个是SSB)。
在一些实施例中,假设目标上行信号为一个PUSCH,网络设备可以为该PUSCH配置多个TCI状态,每个TCI状态中包含一个用于确定传输定时的上行参考信号,如SRS。终端设备根据该多个TCI状态中包含的上行参考信号,确定多个传输定时,且该终端设备采用该多个传输定时分别发送该PUSCH。该多个传输定时可以用于PUSCH在不同时域资源上的重复传输,即不同的repetition可以采用不同的传输定时;或者,该多个传输定时可以用于PUSCH在不同panel上的传输,这些传输可以是同时的,也可以是占用不同的时域资源。另外,该多个TCI状态中包含的参考信号类型可以相同(例如都是SRS),也可以不同(例如一个TCI状态包含的是SRS,另一个是CSI-RS)。
在一些实施例中,该多个定时提前量与不同的CORESET组索引一一对应,且该目标定时提前量为与该目标上行信号关联的CORESET组索引对应的定时提前量。
在一些实施例中,定时提前量对应TA偏移量。具体例如,假设第一TA偏移量和第二TA偏移量分别关联CORESET组索引0和1,且第一PUSCH关联的CORESET组索引为0(即调度第一PUSCH的PDCCH所在的CORESET配置的组索引为0),第二PUSCH关联的CORESET组索引为1(即调度第二PUSCH的PDCCH所在的CORESET配置的组索引为1),则终端设备根据第一TA偏移量确定第一PUSCH的传输定时,以及根据第二TA偏移量确定第二PUSCH的传输定时。
在一些实施例中,该多个定时提前量与不同的小区标识(Identity,ID)一一对应,且该目标定时提前量为与该目标上行信号关联的小区标识对应的定时提前量。
在一些实施例中,定时提前量对应TA命令。具体例如,假设第一TA命令和第二TA命令分别关联服务小区的物理小区标识(Physical Cell Identifier,PCI)(主小区ID)和邻小区的PCI(辅小区ID),且第一PUSCH关联的小区ID为服务小区的PCI(即第一PUSCH的发送波束或者路损参考信号来自于携带该PCI的SSB),第二PUSCH关联的小区ID为邻小区的PCI(即第二PUSCH的发送波束或者路损参考信号来自于携带该PCI的SSB),则终端设备根据第一TA命令确定第一PUSCH的传输定时,以及根据第二TA命令确定第二PUSCH的传输定时。
在一些实施例中,该目标上行信号包括第一上行信号和第二上行信号,其中,为该第一上行信号配置的该第一信息中指示第一参考信号,为该第二上行信号配置的该第一信息中指示第二参考信号。上述S210具体可以包括:该终端设备根据该第一参考信号确定该第一上行信号的第一传输定时,以及该终端设备根据该第二参考信号确定该第二上行信号的第二传输定时。上述S220具体可以包括:该终端设备根据该第一传输定时和该第二传输定时分别传输该第一上行信号和该第二上行信号。此种情况下,该终端设备可以分别确定多个上行信号各自的传输定时。
在一些实施例中,该第一传输定时与该第二传输定时不同。
例如,该第一上行信号占用的时域资源与该第二上行信号占用的时域资源不重叠。
又例如,该第一上行信号占用的时域资源与该第二上行信号占用的时域资源可能因为传输定时不同而发生重叠。
在一些实施例中,该第一上行信号和该第二上行信号占用不同的时域资源,也即,该终端设备在不同的时域资源上采用该第一传输定时和该第二传输定时分别传输该第一上行信号和该第二上行信号;和/或,该第一上行信号和该第二上行信号通过不同的天线阵列块传输,也即,该终端设备在不同的天线阵列块上采用该第一传输定时和该第二传输定时分别传输该第一上行信号和该第二上行信号。
在一些实施例中,在该第一上行信号和该第二上行信号占用不同的时域资源,且该第一上行信号占用的时域资源与该第二上行信号占用的时域资源因为传输定时不同而发生了重叠的情况下,该终端设备在重叠区域不发送该第一上行信号和该第二上行信号中在时域上靠后的上行信号。
在一些实施例中,上行信号为PUSCH(也可以为PUCCH或者其他上行信号),为PUSCH配置的TCI状态或者空间相关信息中指示的参考信号为CSI-RS。具体例如,网络设备为第一PUSCH配置的TCI状态(也可以是空间相关信息)中包含第一CSI-RS,该第一CSI-RS为第一TRP发送的CSI-RS;网络设备为第二PUSCH配置的TCI状态(也可以是空间相关信息)中包含第二CSI-RS,该第二CSI-RS为第二TRP发送的CSI-RS,且该第一CSI-RS和该第二CSI-RS采用独立的下行定时(由两个TRP各自确定)。此时,终端设备还可以从高层信令获得两个定时提前量,分别记为第一定时提前量和第 二定时提前量。该终端设备根据该第一CSI-RS确定第一下行定时,再根据该第一下行定时和该第一定时提前量确定该第一PUSCH的传输定时;以及该终端设备根据该第二CSI-RS确定该第二下行定时,再根据该第二下行定时和该第二定时提前量确定该第二PUSCH的上行传输定时。从而,终端设备可以采用独立的上行传输定时发送第一PUSCH和第二PUSCH。
在一些实施例中,上行信号为PUSCH(也可以用于PUCCH或者其他上行信号),为PUSCH配置的TCI状态或者空间相关信息中指示的参考信号为SRS。网络设备为第一PUSCH配置的TCI状态(也可以是空间相关信息)中包含第一SRS,该第一SRS为发送给第一TRP的SRS;网络设备为第二PUSCH配置的TCI状态(也可以是空间相关信息)中包含第二SRS,该第二SRS为发送给第二TRP的SRS,且该第一SRS和该第二SRS采用不同的传输定时。此时,该终端设备可以将第一SRS的传输定时作为第一PUSCH的传输定时,以及将第二SRS的传输定时作为第二PUSCH的传输定时,从而采用独立的上行传输定时发送该第一PUSCH和该第二PUSCH。
在一些实施例中,终端设备可以在不同的时域资源上采用独立的上行传输定时分别发送第一PUSCH和第二PUSCH。即终端设备在同一时刻可以只有一个传输定时,但是不同的时刻根据参考信号的不同,可以有多种不同的传输定时。如果两个上行信号在不同的时域资源上传输,且因为传输定时不同而发生了时域上的资源重叠,则终端设备在重叠时间内不发送时间在后的上行信号。例如,第一PUSCH和第二PUSCH在相邻的时隙传输,但因为第二PUSCH定时提前导致与第一PUSCH发生了时域上的重叠,此时终端设备会正常传输第一PUSCH,但是在重叠部分不发送第二PUSCH。
在一些实施例中,终端设备可以在不同的panel上采用独立的上行传输定时分别发送该第一PUSCH和该第二PUSCH。此时,不同panel上的传输定时可以不同。
在一些实施例中,该终端设备通过如下方式1至方式3之一确定一个TAG的多个定时提前量。
方式1,网络设备通过RRC配置TAG的多个TA偏移量,MAC CE每次发送TAG的一个TA命令,该终端设备根据该多个TA偏移量中的每个TA偏移量和该TA命令,确定该TAG的多个定时提前量。
方式2,网络设备通过RRC配置TAG的多个TA偏移量,MAC CE每次发送TAG的多个TA命令,该多个TA偏移量与该多个TA命令一一对应。该终端设备根据每个TA偏移量和每个TA命令,确定该TAG的多个定时提前量。
方式3,网络设备通过RRC配置TAG的一个TA偏移量(即初始TA偏移量),MAC CE每次发送TAG的多个TA命令,该终端设备根据初始TA偏移量和每个TA命令,确定该TAG的多个定时提前量。
在一些实施例中,目标上行信号也可以用于PUCCH,例如为一个PUCCH配置多个空间相关信息(PUCCH-spatialrelatininfo),从而获得多个传输定时。也可以用于SRS等其他上行信号。
在一些实施例中,不同上行信号对应的参考信号的类型可以不同,不一定都是上行参考信号或者都是下行参考信号。例如,三个不同的上行信号对应的用于确定传输定时的参考信号可以分别为CSI-RS,SSB和SRS。
在一些实施例中,该第一信息中进一步包括定时状态指示信息;该终端设备根据该定时状态指示信息确定该目标上行信号的传输定时所关联的定时状态。
具体的,该终端设备根据为目标上行信号配置的TCI状态或者空间相关信息中指示的下行参考信号确定下行定时,并基于该下行定时以及该TCI状态或者空间相关信息中指示的定时状态对应的定时提前量,计算目标上行信号的传输定时。
在一些实施例中,配置有相同的定时状态的上行信号采用相同的传输定时。
具体例如,在TCI状态或者空间相关信息中指示的参考信号为上行参考信号时,终端设备可以将该上行参考信号的传输定时,作为所有采用第一定时状态的上行信号的传输定时,该第一定时状态为该TCI状态或者空间相关信息中指示的定时状态。也就是说,终端设备可以假设配置相同定时状态的上行信号采用相同的传输定时。例如,假设对于另一个上行信号,网络设备配置的定时状态索引为0,则终端设备传输该上行信号时采用定时状态索引0对应的传输定时1;如果网络设备配置的定时状态索引为1,则终端传输该上行信号时采用定时状态索引1对应的传输定时2。此时,网络设备可以不为该上行信号配置用于传输定时的参考信号,而是只配置一个定时状态索引,终端设备就可以确定定时状态索引对应的传输定时。
在一些实施例中,在该第一信息中指示的参考信号为上行参考信号的情况下,该终端设备将该上行参考信号的传输定时,作为采用第一定时状态的上行信号的传输定时;其中,该第一定时状态为该第一信息中的定时状态指示信息所指示的定时状态,该上行信号包含该目标上行信号。
在一些实施例中,在该第一信息中指示的参考信号为下行参考信号的情况下,该终端设备根据该 下行参考信号确定第一下行定时;以及该终端设备根据该第一下行定时和第二定时状态对应的定时提前量,确定该目标上行信号的传输定时;其中,该第二定时状态为该第一信息中的定时状态指示信息所指示的定时状态。
在一些实施例中,该终端设备根据高层信令确定至少一个定时状态分别对应的定时提前量,其中,该至少一个定时状态包括该第二定时状态。
具体例如,终端设备可以从高层信令中确定至少一个定时状态中的每个定时状态分别对应的定时提前量。例如,如果网络设备配置了两个定时状态,则可以通过高层信令指示每个定时状态对应的TA偏移量和/或TA命令,从而通过TA偏移量和/或TA命令确定对应的定时提前量。比如,可以通过高层信令配置两个TA偏移量,或者,通过MAC CE指示两个TA命令,从而终端设备可以得到两个定时提前量。
在一些实施例中,一个TCI状态或者空间相关信息中可以包括如下信息:
下行参考信号的指示信息,定时状态索引。其中,该下行参考信号可以是用于确定传输定时的下行参考信号。
具体例如,对于一个PUSCH,终端设备根据TCI状态中的下行参考信号确定下行定时1,且下行定时1关联的定时状态索引为0。对于一个PUCCH,终端设备根据空间相关信息中的下行参考信号确定下行定时2,且下行定时2关联的定时状态索引为1。另外,终端设备通过高层信令获知定时状态0和定时状态1分别对应的定时提前量1和定时提前量2。终端设备根据下行定时1和定时提前量1确定定时状态0对应的传输定时,作为该PUSCH的传输定时。终端设备根据下行定时2和定时提前量2确定定时状态1对应的传输定时,作为该PUCCH的传输定时。
在一些实施例中,一个TCI状态或者空间相关信息中可以包括如下信息:
上行参考信号的指示信息,定时状态索引。其中,该上行参考信号可以是用于确定传输定时的上行参考信号。
具体例如,对于一个PUSCH,终端设备根据TCI状态中的上行参考信号确定传输定时1,且传输定时1关联的定时状态索引为0。对于一个PUCCH,终端设备根据空间相关信息中的上行参考信号确定传输定时2,且传输定时2关联的定时状态索引为1。则终端设备需要分别维护这两个定时状态对应的传输定时。终端设备将定时状态0对应的传输定时,作为该PUSCH的传输定时。终端设备将定时状态1对应的传输定时,作为该PUCCH的传输定时。
在一些实施例中,可以为一个上行信号(如目标上行信号)配置两个TCI状态或者空间相关信息,每个TCI状态或者空间相关信息中都包含定时状态索引,两个TCI状态或者空间相关信息中的定时状态索引可以不同。即同一个上行信号(如目标上行信号)可以关联多个定时状态。终端设备可以确定两个定时状态各自对应的传输定时,用于在不同的时间或者panel上传输目标上行信号。
在一些实施例中,在该第一信息中不包括定时状态指示信息的情况下,该终端设备假设该目标上行信号的传输定时关联的定时状态为0。此种情况下,该终端设备可以根据服务小区的下行定时和高层信令配置的第一个定时提前量确定该目标上行信号的传输定时。或者,该终端设备可以将服务小区的上行定时确定为该目标上行信号的传输定时。也即,不需要额外的参考信号用于确定传输定时。
在一些实施例中,该定时提前量为基于RRC信令配置的定时提前偏移量和/或MAC层信令指示的定时提前命令得到的;或者,该定时提前量包括RRC信令配置的定时提前偏移量和/或MAC层信令指示的定时提前命令。例如,一个定时提前量可以根据RRC配置的TA偏移量和调制编码方案(Modulation and Coding Scheme,MCS)层指示的一个TA命令计算得到。
因此,在本申请实施例中,终端设备基于网络设备为目标上行信号配置的TCI状态或者空间相关信息中指示的参考信号,确定该目标上行信号的传输定时,并基于该目标上行信号的传输定时传输该目标上行信号。此种情况下,不同的上行信号可以有不同的传输定时,且一个上行信号可以有多个不同的传输定时,也即,传输给不同TRP的上行信号可以采用不同的传输定时,从而支持非同步情况下或者大传输时延场景下的上行多TRP传输。保证发给不同TRP的上行信号在TRP和终端设备之间是同步的,避免性能损失。
本申请实施例也可以支持为一个上行信号确定多个不同的传输定时,从而支持基于多TRP的上行重复传输,在非同步场景下保证上行重复传输的增益。
上文结合图7,详细描述了本申请的终端侧实施例,下文结合图8,详细描述本申请的网络侧实施例,应理解,网络侧实施例与终端侧实施例相互对应,类似的描述可以参照终端侧实施例。
图8是根据本申请实施例的无线通信的方法300的示意性流程图,如图8所示,该无线通信的方法300可以包括如下内容中的至少部分内容:
S310,网络设备向终端设备发送第一信息,该第一信息中指示的参考信号用于终端设备确定目标 上行信号的传输定时,该第一信息为TCI状态或者空间相关信息;
S320,该网络设备接收该终端设备根据该目标上行信号的传输定时发送的该目标上行信号。
在本申请实施例中,终端设备基于网络设备为目标上行信号配置的TCI状态或者空间相关信息中指示的参考信号,确定该目标上行信号的传输定时,并基于该目标上行信号的传输定时传输该目标上行信号。此种情况下,不同的上行信号可以有不同的传输定时,且一个上行信号可以有多个不同的传输定时,也即,传输给不同TRP的上行信号可以采用不同的传输定时,从而支持非同步情况下或者大传输时延场景下的上行多TRP传输。保证发给不同TRP的上行信号在TRP和终端设备之间是同步的,避免性能损失。
在一些实施例中,该网络设备根据该目标上行信号的接收定时,接收该终端设备根据该目标上行信号的传输定时发送的该目标上行信号。
在一些实施例中,该第一信息还可以是除TCI状态和空间相关信息之外的其他参数,例如,第一信息为网络设备为目标上行信号配置的用于确定传输定时的参数,本申请对此并不限定。
在本申请实施例中,“传输定时”也可以称之为“发送定时”,本申请对此并不限定。
在本申请实施例中,“该第一信息中指示的参考信号用于终端设备确定目标上行信号的传输定时”也可以称之为“该第一信息中包括的参考信号用于终端设备确定目标上行信号的传输定时”,本申请对此并不限定。
在一些实施例中,该TCI状态的QCL类型为以下之一:传输定时,上行定时,同步参数。在另一种实施方式中,该TCI状态的QCL类型为:QCL typeD,即空间传输/接收参数(滤波器);此时,终端设备可以根据用于确定发送波束(空间传输滤波器)的参考信号,确定上行信号的传输定时。
在一些实施例中,该TCI状态可以通过高层信令或者DCI指示。例如,对于PUCCH,可以用MAC层信令指示;对于PUSCH,可以用DCI指示;对于SRS,可以用RRC信令指示。
在一些实施例中,该空间相关信息用于确定上行信号的发送波束(空间传输滤波器),此时,终端设备可以根据用于确定发送波束(空间传输滤波器)的参考信号,确定上行信号的传输定时,或者,该空间相关信息中可以额外包含一个用于确定上行定时的参考信号。
在一些实施例中,该空间相关信息可以通过高层信令或者DCI指示。例如,对于PUCCH,可以用MAC层信令指示;对于PUSCH,可以用DCI指示;对于SRS,可以用RRC信令指示。
在本申请实施例中,发送波束也可以称为空间域传输滤波器(Spatial domain transmission filter或者Spatial domain filter for transmission)或者空间关系(Spatial relation)或者空间配置(spatial setting)。接收波束也可以称为空间域接收滤波器(Spatial domain reception filter或者Spatial domain filter for reception)或者空间接收参数(Spatial Rx parameter)。
在一些实施例中,该目标上行信号为PUSCH或PUCCH。当然,该目标上行信号可以为其他的上行信号,本申请对此并不限定。
在一些实施例中,在该参考信号为上行参考信号的情况下,该网络设备将该上行参考信号的接收定时,作为该目标上行信号的接收定时。例如,该上行参考信号为SRS。当然,该上行参考信号也可以是其他的一些上行参考信号,本申请对此并不限定。
在一些实施例中,在该参考信号为下行参考信号的情况下,该网络设备根据该下行参考信号的传输定时和通过高层信令确定的定时提前量,确定该目标上行信号的接收定时。例如,该下行参考信号为CSI-RS或SSB。当然,该下行参考信号也可以是其他的一些下行参考信号,本申请对此并不限定。
在一些实施例中,该通过高层信令确定的定时提前量包括一个TAG的多个定时提前量;该网络设备根据该下行参考信号的传输定时和该多个定时提前量中的一个目标定时提前量,确定该目标上行信号的接收定时。
在一些实施例中,该多个定时提前量与不同的CORESET组索引一一对应,且该目标定时提前量为与该目标上行信号关联的CORESET组索引对应的定时提前量。
在一些实施例中,定时提前量对应TA偏移量。具体例如,假设第一TA偏移量和第二TA偏移量分别关联CORESET组索引0和1,且第一PUSCH关联的CORESET组索引为0(即调度第一PUSCH的PDCCH所在的CORESET配置的组索引为0),第二PUSCH关联的CORESET组索引为1(即调度第二PUSCH的PDCCH所在的CORESET配置的组索引为1),则终端设备根据第一TA偏移量确定第一PUSCH的传输定时,以及根据第二TA偏移量确定第二PUSCH的传输定时。
在一些实施例中,该多个定时提前量与不同的小区标识一一对应,且该目标定时提前量为与该目标上行信号关联的小区标识对应的定时提前量。
在一些实施例中,定时提前量对应TA命令。具体例如,假设第一TA命令和第二TA命令分别关联服务小区的PCI(主小区ID)和邻小区的PCI(辅小区ID),且第一PUSCH关联的小区ID为 服务小区的PCI(即第一PUSCH的发送波束或者路损参考信号来自于携带该PCI的SSB),第二PUSCH关联的小区ID为邻小区的PCI(即第二PUSCH的发送波束或者路损参考信号来自于携带该PCI的SSB),则终端设备根据第一TA命令确定第一PUSCH的传输定时,以及根据第二TA命令确定第二PUSCH的传输定时。
在一些实施例中,该多个定时提前量与不同的TRP一一对应,且该目标定时提前量为该目标上行信号的接收TRP对应的定时提前量。
在一些实施例中,该通过高层信令确定的定时提前量包括一个TAG的多个定时提前量;该网络设备根据该下行参考信号的传输定时和该多个定时提前量,分别确定该目标上行信号的多个接收定时。
在一些实施例中,该目标上行信号包括第一上行信号和第二上行信号,其中,为该第一上行信号配置的该第一信息中指示第一参考信号,为该第二上行信号配置的该第一信息中指示第二参考信号。该网络设备根据该第一参考信号确定该第一上行信号的第一接收定时,以及该终端设备根据该第二参考信号确定该第二上行信号的第二接收定时。此种情况下,上述S310具体包括:该网络设备根据该第一接收定时和该第二接收定时分别接收该终端设备发送的该第一上行信号和该第二上行信号。
在一些实施例中,该第一接收定时与该第二接收定时不同。
在一些实施例中,该第一上行信号和该第二上行信号占用不同的时域资源,和/或,该第一上行信号和该第二上行信号在不同的TRP上接收。
在一些实施例中,在该第一上行信号和该第二上行信号占用不同的时域资源,且该第一上行信号占用的时域资源与该第二上行信号占用的时域资源因为传输定时不同而发生了重叠的情况下,该网络设备在重叠区域不接收该第一上行信号和该第二上行信号中在时域上靠后的上行信号。
在一些实施例中,该第一信息为多个TCI状态或者多个空间相关信息,且该多个TCI状态或者多个空间相关信息指示多个参考信号。该网络设备根据该多个参考信号,分别确定该目标上行信号的多个接收定时。此种情况下,上述S310具体包括:该网络设备根据该目标上行信号的多个接收定时接收该目标上行信号。
在一些实施例中,该网络设备在不同的时域资源上采用该目标上行信号的多个接收定时分别接收该目标上行信号;或者,该网络设备在不同的TRP上采用该目标上行信号的多个接收定时分别接收该目标上行信号。
在一些实施例中,网络设备通过RRC配置TAG的多个TA偏移量,MAC CE每次发送TAG的一个TA命令,该终端设备根据该多个TA偏移量中的每个TA偏移量和该TA命令,确定该TAG的多个定时提前量。
在一些实施例中,网络设备通过RRC配置TAG的多个TA偏移量,MAC CE每次发送TAG的多个TA命令,该多个TA偏移量与该多个TA命令一一对应。该终端设备根据每个TA偏移量和每个TA命令,确定该TAG的多个定时提前量。
在一些实施例中,网络设备通过RRC配置TAG的一个TA偏移量(即初始TA偏移量),MAC CE每次发送TAG的多个TA命令,该终端设备根据初始TA偏移量和每个TA命令,确定该TAG的多个定时提前量。
在一些实施例中,目标上行信号也可以用于PUCCH,例如为一个PUCCH配置多个空间相关信息(PUCCH-spatialrelatininfo),从而获得多个传输定时。也可以用于SRS等其他上行信号。
在一些实施例中,不同上行信号对应的参考信号的类型可以不同,不一定都是上行参考信号或者都是下行参考信号。例如,三个不同的上行信号对应的用于确定传输定时的参考信号可以分别为CSI-RS,SSB和SRS。
在一些实施例中,该第一信息中进一步包括定时状态指示信息,其中,该定时状态指示信息用于该终端设备确定该目标上行信号的传输定时所关联的定时状态。
在一些实施例中,配置有相同的定时状态的上行信号采用相同的传输定时。
具体例如,网络设备配置的定时状态索引为0,则终端设备传输该上行信号时采用定时状态索引0对应的传输定时1;如果网络设备配置的定时状态索引为1,则终端传输该上行信号时采用定时状态索引1对应的传输定时2。此时,网络设备可以不为该上行信号配置用于传输定时的参考信号,而是只配置一个定时状态索引,终端设备就可以确定定时状态索引对应的传输定时。
在一些实施例中,在该第一信息中指示的参考信号为上行参考信号的情况下,该网络设备将该上行参考信号的接收定时,作为采用第一定时状态的上行信号的接收定时;其中,该第一定时状态为该第一信息中的定时状态指示信息所指示的定时状态,该上行信号包含该目标上行信号。
在一些实施例中,在该第一信息中指示的参考信号为下行参考信号的情况下,该网络设备根据该下行参考信号的传输定时和第二定时状态对应的定时提前量,确定该目标上行信号的接收定时;其中, 该第二定时状态为该第一信息中的定时状态指示信息所指示的定时状态。
在一些实施例中,该网络设备通过高层信令向该终端设备指示至少一个定时状态对应的定时提前量,其中,该至少一个定时状态包括该第二定时状态。
具体例如,终端设备可以从高层信令中确定至少一个定时状态中的每个定时状态分别对应的定时提前量。例如,如果网络设备配置了两个定时状态,则可以通过高层信令指示每个定时状态对应的TA偏移量和/或TA命令,从而通过TA偏移量和/或TA命令确定对应的定时提前量。比如,可以通过高层信令配置两个TA偏移量,或者,通过MAC CE指示两个TA命令,从而终端设备可以得到两个定时提前量。
在一些实施例中,一个TCI状态或者空间相关信息中可以包括如下信息:
下行参考信号的指示信息,定时状态索引。其中,该下行参考信号可以是用于确定传输定时的下行参考信号。
具体例如,对于一个PUSCH,终端设备根据TCI状态中的下行参考信号确定下行定时1,且下行定时1关联的定时状态索引为0。对于一个PUCCH,终端设备根据空间相关信息中的下行参考信号确定下行定时2,且下行定时2关联的定时状态索引为1。另外,终端设备通过高层信令获知定时状态0和定时状态1分别对应的定时提前量1和定时提前量2。终端设备根据下行定时1和定时提前量1确定定时状态0对应的传输定时,作为该PUSCH的传输定时。终端设备根据下行定时2和定时提前量2确定定时状态1对应的传输定时,作为该PUCCH的传输定时。
在一些实施例中,一个TCI状态或者空间相关信息中可以包括如下信息:
上行参考信号的指示信息,定时状态索引。其中,该上行参考信号可以是用于确定传输定时的上行参考信号。
具体例如,对于一个PUSCH,终端设备根据TCI状态中的上行参考信号确定传输定时1,且传输定时1关联的定时状态索引为0。对于一个PUCCH,终端设备根据空间相关信息中的上行参考信号确定传输定时2,且传输定时2关联的定时状态索引为1。则终端设备需要分别维护这两个定时状态对应的传输定时。终端设备将定时状态0对应的传输定时,作为该PUSCH的传输定时。终端设备将定时状态1对应的传输定时,作为该PUCCH的传输定时。
在一些实施例中,可以为一个上行信号(如目标上行信号)配置两个TCI状态或者空间相关信息,每个TCI状态或者空间相关信息中都包含定时状态索引,两个TCI状态或者空间相关信息中的定时状态索引可以不同。即同一个上行信号(如目标上行信号)可以关联多个定时状态。终端设备可以确定两个定时状态各自对应的传输定时,用于在不同的时间或者panel上传输目标上行信号。
在一些实施例中,在该第一信息中不包括定时状态指示信息的情况下,该终端设备假设该目标上行信号的传输定时关联的定时状态为0。此种情况下,该终端设备可以根据服务小区的下行定时和高层信令配置的第一个定时提前量确定该目标上行信号的传输定时。或者,该终端设备可以将服务小区的上行定时确定为该目标上行信号的传输定时。也即,不需要额外的参考信号用于确定传输定时。
在一些实施例中,该定时提前量为基于RRC信令配置的定时提前偏移量和/或MAC层信令指示的定时提前命令得到的;或者,该定时提前量包括RRC信令配置的定时提前偏移量和/或MAC层信令指示的定时提前命令。例如,一个定时提前量可以根据RRC配置的TA偏移量和MCS层指示的一个TA命令计算得到。
因此,在本申请实施例中,终端设备基于网络设备为目标上行信号配置的TCI状态或者空间相关信息中指示的参考信号,确定该目标上行信号的传输定时,并基于该目标上行信号的传输定时传输该目标上行信号。此种情况下,不同的上行信号可以有不同的传输定时,且一个上行信号可以有多个不同的传输定时,也即,传输给不同TRP的上行信号可以采用不同的传输定时,从而支持非同步情况下或者大传输时延场景下的上行多TRP传输。保证发给不同TRP的上行信号在TRP和终端设备之间是同步的,避免性能损失。
本申请实施例也可以支持为一个上行信号确定多个不同的传输定时,从而支持基于多TRP的上行重复传输,在非同步场景下保证上行重复传输的增益。
上文结合图7至图8,详细描述了本申请的方法实施例,下文结合图9至图10,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图9示出了根据本申请实施例的终端设备400的示意性框图。如图9所示,该终端设备400包括:
处理单元410,用于根据为目标上行信号配置的第一信息中指示的参考信号确定该目标上行信号的传输定时,该第一信息为传输配置指示TCI状态或者空间相关信息;
通信单元420,用于根据该目标上行信号的传输定时,传输该目标上行信号。
在一些实施例中,该参考信号为上行参考信号;
该处理单元410具体用于:
将该上行参考信号的传输定时,作为该目标上行信号的传输定时。
在一些实施例中,该参考信号为下行参考信号;
该处理单元410具体用于:
根据该下行参考信号确定第一下行定时;以及
根据该第一下行定时和通过高层信令确定的定时提前量,确定该目标上行信号的传输定时。
在一些实施例中,该通过高层信令确定的定时提前量包括一个定时提前组TAG的多个定时提前量;
该处理单元410具体用于:
根据该第一下行定时和该多个定时提前量中的一个目标定时提前量,确定该目标上行信号的传输定时。
在一些实施例中,该多个定时提前量与不同的控制资源集CORESET组索引一一对应,且该目标定时提前量为与该目标上行信号关联的CORESET组索引对应的定时提前量;或者,
该多个定时提前量与不同的小区标识一一对应,且该目标定时提前量为与该目标上行信号关联的小区标识对应的定时提前量。
在一些实施例中,该通过高层信令确定的定时提前量包括一个TAG的多个定时提前量;
该处理单元410具体用于:
根据该第一下行定时和该多个定时提前量,分别确定该目标上行信号的多个传输定时。
在一些实施例中,该目标上行信号包括第一上行信号和第二上行信号,其中,为该第一上行信号配置的该第一信息中指示第一参考信号,为该第二上行信号配置的该第一信息中指示第二参考信号;
该处理单元410具体用于:
根据该第一参考信号确定该第一上行信号的第一传输定时,以及根据该第二参考信号确定该第二上行信号的第二传输定时;
该通信单元420具体用于:
根据该第一传输定时和该第二传输定时分别传输该第一上行信号和该第二上行信号。
在一些实施例中,该第一传输定时与该第二传输定时不同。
在一些实施例中,该第一上行信号和该第二上行信号占用不同的时域资源,和/或,该第一上行信号和该第二上行信号通过不同的天线阵列块传输。
在一些实施例中,在该第一上行信号和该第二上行信号占用不同的时域资源,且该第一上行信号占用的时域资源与该第二上行信号占用的时域资源因为传输定时不同而发生了重叠的情况下,该终端设备在重叠区域不发送该第一上行信号和该第二上行信号中在时域上靠后的上行信号。
在一些实施例中,该第一信息为多个TCI状态或者多个空间相关信息,且该多个TCI状态或者多个空间相关信息指示多个参考信号;
该处理单元410具体用于:
根据该多个参考信号,分别确定该目标上行信号的多个传输定时;
该通信单元420具体用于:
根据该目标上行信号的多个传输定时传输该目标上行信号。
在一些实施例中,该通信单元420具体用于:
在不同的时域资源上采用该多个传输定时分别传输该目标上行信号;或者,
在不同的天线阵列块上采用该多个传输定时分别传输该目标上行信号。
在一些实施例中,该第一信息中进一步包括定时状态指示信息;
该处理单元410还用于根据该定时状态指示信息确定该目标上行信号的传输定时所关联的定时状态。
在一些实施例中,配置有相同的定时状态的上行信号采用相同的传输定时。
在一些实施例中,在该第一信息中指示的参考信号为上行参考信号的情况下,该处理单元410具体用于:
将该上行参考信号的传输定时,作为采用第一定时状态的上行信号的传输定时;其中,该第一定时状态为该第一信息中的定时状态指示信息所指示的定时状态,该上行信号包含该目标上行信号。
在一些实施例中,在该第一信息中指示的参考信号为下行参考信号的情况下,该处理单元410具体用于:
根据该下行参考信号确定第一下行定时;以及
根据该第一下行定时和第二定时状态对应的定时提前量,确定该目标上行信号的传输定时;其中, 该第二定时状态为该第一信息中的定时状态指示信息所指示的定时状态。
在一些实施例中,该处理单元还用于根据高层信令确定至少一个定时状态分别对应的定时提前量,其中,该至少一个定时状态包括该第二定时状态。
在一些实施例中,在该第一信息中不包括定时状态指示信息的情况下,该终端设备假设该目标上行信号的传输定时关联的定时状态为0。
在一些实施例中,该TCI状态的准共址QCL类型为以下之一:传输定时,上行定时,同步参数。
在一些实施例中,该定时提前量为基于无线资源控制RRC信令配置的定时提前偏移量和/或媒体接入控制MAC层信令指示的定时提前命令得到的;或者,
该定时提前量包括RRC信令配置的定时提前偏移量和/或MAC层信令指示的定时提前命令。
在一些实施例中,该下行参考信号为信道状态信息参考信号CSI-RS或同步信号块SSB。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图7所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图10示出了根据本申请实施例的网络设备500的示意性框图。如图10所示,该网络设备500包括:
通信单元510,用于向终端设备发送第一信息,该第一信息中指示的参考信号用于终端设备确定目标上行信号的传输定时,该第一信息为传输配置指示TCI状态或者空间相关信息;
该通信单元510,还用于接收该终端设备根据该目标上行信号的传输定时发送的该目标上行信号。
在一些实施例中,该网络设备500还包括:处理单元520,
在该参考信号为上行参考信号的情况下,该处理单元520用于将该上行参考信号的接收定时,作为该目标上行信号的接收定时。
在一些实施例中,该网络设备500还包括:处理单元520,
在该参考信号为下行参考信号的情况下,该处理单元520用于根据该下行参考信号的传输定时和通过高层信令确定的定时提前量,确定该目标上行信号的接收定时。
在一些实施例中,该通过高层信令确定的定时提前量包括一个定时提前组TAG的多个定时提前量;
该处理单元520具体用于:
根据该下行参考信号的传输定时和该多个定时提前量中的一个目标定时提前量,确定该目标上行信号的接收定时。
在一些实施例中,该多个定时提前量与不同的控制资源集CORESET组索引一一对应,且该目标定时提前量为与该目标上行信号关联的CORESET组索引对应的定时提前量;或者,
该多个定时提前量与不同的小区标识一一对应,且该目标定时提前量为与该目标上行信号关联的小区标识对应的定时提前量;或者,
该多个定时提前量与不同的发送接收点TRP一一对应,且该目标定时提前量为该目标上行信号的接收TRP对应的定时提前量。
在一些实施例中,该通过高层信令确定的定时提前量包括一个TAG的多个定时提前量;
该处理单元520具体用于:
根据该下行参考信号的传输定时和该多个定时提前量,分别确定该目标上行信号的多个接收定时。
在一些实施例中,该目标上行信号包括第一上行信号和第二上行信号,其中,为该第一上行信号配置的该第一信息中指示第一参考信号,为该第二上行信号配置的该第一信息中指示第二参考信号;
该网络设备500还包括:处理单元520,
该处理单元520用于根据该第一参考信号确定该第一上行信号的第一接收定时,以及该处理单元用于根据该第二参考信号确定该第二上行信号的第二接收定时;
该通信单元510具体用于:
根据该第一接收定时和该第二接收定时分别接收该终端设备发送的该第一上行信号和该第二上行信号。
在一些实施例中,该第一接收定时与该第二接收定时不同。
在一些实施例中,该第一上行信号和该第二上行信号占用不同的时域资源,和/或,该第一上行信号和该第二上行信号在不同的TRP上接收。
在一些实施例中,在该第一上行信号和该第二上行信号占用不同的时域资源,且该第一上行信号 占用的时域资源与该第二上行信号占用的时域资源因为传输定时不同而发生了重叠的情况下,该网络设备在重叠区域不接收该第一上行信号和该第二上行信号中在时域上靠后的上行信号。
在一些实施例中,该第一信息为多个TCI状态或者多个空间相关信息,且该多个TCI状态或者多个空间相关信息指示多个参考信号;
该网络设备500还包括:处理单元520,
该处理单元520用于根据该多个参考信号,分别确定该目标上行信号的多个接收定时;
该通信单元510具体用于:
根据该目标上行信号的多个接收定时接收该目标上行信号。
在一些实施例中,该处理单元520具体用于:
在不同的时域资源上采用该目标上行信号的多个接收定时分别接收该目标上行信号;或者,
在不同的TRP上采用该目标上行信号的多个接收定时分别接收该目标上行信号。
在一些实施例中,该第一信息中进一步包括定时状态指示信息,其中,该定时状态指示信息用于该终端设备确定该目标上行信号的传输定时所关联的定时状态。
在一些实施例中,配置有相同的定时状态的上行信号采用相同的传输定时。
在一些实施例中,在该第一信息中指示的参考信号为上行参考信号的情况下,该网络设备500还包括:处理单元520,
该处理单元520用于将该上行参考信号的接收定时,作为采用第一定时状态的上行信号的接收定时;其中,该第一定时状态为该第一信息中的定时状态指示信息所指示的定时状态,该上行信号包含该目标上行信号。
在一些实施例中,在该第一信息中指示的参考信号为下行参考信号的情况下,该网络设备500还包括:处理单元520,
该处理单元520用于根据该下行参考信号的传输定时和第二定时状态对应的定时提前量,确定该目标上行信号的接收定时;其中,该第二定时状态为该第一信息中的定时状态指示信息所指示的定时状态。
在一些实施例中,该通信单元510还用于通过高层信令向该终端设备指示至少一个定时状态对应的定时提前量,其中,该至少一个定时状态包括该第二定时状态。
在一些实施例中,在该第一信息中不包括定时状态指示信息的情况下,该终端设备假设该目标上行信号的传输定时关联的定时状态为0。
在一些实施例中,该TCI状态的准共址QCL类型为以下之一:传输定时,上行定时,同步参数。
在一些实施例中,该定时提前量为基于无线资源控制RRC信令配置的定时提前偏移量和/或媒体接入控制MAC层信令指示的定时提前命令得到的;或者,
该定时提前量包括RRC信令配置的定时提前偏移量和/或MAC层信令指示的定时提前命令。
在一些实施例中,该下行参考信号为信道状态信息参考信号CSI-RS或同步信号块SSB。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备600示意性结构图。图11所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图11所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,如图11所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的装置的示意性结构图。图12所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图12所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
在一些实施例中,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是***级芯片,***芯片,芯片***或片上***芯片等。
图13是本申请实施例提供的一种通信***800的示意性框图。如图13所示,该通信***800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (94)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备根据为目标上行信号配置的第一信息中指示的参考信号确定所述目标上行信号的传输定时,所述第一信息为传输配置指示TCI状态或者空间相关信息;
    所述终端设备根据所述目标上行信号的传输定时,传输所述目标上行信号。
  2. 如权利要求1所述的方法,其特征在于,所述参考信号为上行参考信号;
    所述终端设备根据为目标上行信号配置的第一信息中指示的参考信号确定所述目标上行信号的传输定时,包括:
    所述终端设备将所述上行参考信号的传输定时,作为所述目标上行信号的传输定时。
  3. 如权利要求1所述的方法,其特征在于,所述参考信号为下行参考信号;
    所述终端设备根据为目标上行信号配置的第一信息中指示的参考信号确定所述目标上行信号的传输定时,包括:
    所述终端设备根据所述下行参考信号确定第一下行定时;以及
    所述终端设备根据所述第一下行定时和通过高层信令确定的定时提前量,确定所述目标上行信号的传输定时。
  4. 如权利要求3所述的方法,其特征在于,所述通过高层信令确定的定时提前量包括一个定时提前组TAG的多个定时提前量;
    所述终端设备根据所述第一下行定时和通过高层信令确定的定时提前量,确定所述目标上行信号的传输定时,包括:
    所述终端设备根据所述第一下行定时和所述多个定时提前量中的一个目标定时提前量,确定所述目标上行信号的传输定时。
  5. 如权利要求4所述的方法,其特征在于,
    所述多个定时提前量与不同的控制资源集CORESET组索引一一对应,且所述目标定时提前量为与所述目标上行信号关联的CORESET组索引对应的定时提前量;或者,
    所述多个定时提前量与不同的小区标识一一对应,且所述目标定时提前量为与所述目标上行信号关联的小区标识对应的定时提前量。
  6. 如权利要求3所述的方法,其特征在于,所述通过高层信令确定的定时提前量包括一个TAG的多个定时提前量;
    所述终端设备根据所述第一下行定时和通过高层信令确定的定时提前量,确定所述目标上行信号的传输定时,包括:
    所述终端设备根据所述第一下行定时和所述多个定时提前量,分别确定所述目标上行信号的多个传输定时。
  7. 如权利要求1所述的方法,其特征在于,所述目标上行信号包括第一上行信号和第二上行信号,其中,为所述第一上行信号配置的所述第一信息中指示第一参考信号,为所述第二上行信号配置的所述第一信息中指示第二参考信号;
    所述终端设备根据为目标上行信号配置的第一信息中指示的参考信号确定所述目标上行信号的传输定时,包括:
    所述终端设备根据所述第一参考信号确定所述第一上行信号的第一传输定时,以及所述终端设备根据所述第二参考信号确定所述第二上行信号的第二传输定时;
    所述终端设备根据所述目标上行信号的传输定时,传输所述目标上行信号,包括:
    所述终端设备根据所述第一传输定时和所述第二传输定时分别传输所述第一上行信号和所述第二上行信号。
  8. 如权利要求7所述的方法,其特征在于,所述第一传输定时与所述第二传输定时不同。
  9. 如权利要求7或8所述的方法,其特征在于,所述第一上行信号和所述第二上行信号占用不同的时域资源,和/或,所述第一上行信号和所述第二上行信号通过不同的天线阵列块传输。
  10. 如权利要求7至9中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一上行信号和所述第二上行信号占用不同的时域资源,且所述第一上行信号占用的时域资源与所述第二上行信号占用的时域资源因为传输定时不同而发生了重叠的情况下,所述终端设备在重叠区域不发送所述第一上行信号和所述第二上行信号中在时域上靠后的上行信号。
  11. 如权利要求1所述的方法,其特征在于,所述第一信息为多个TCI状态或者多个空间相关信息,且所述多个TCI状态或者多个空间相关信息指示多个参考信号;
    所述终端设备根据为目标上行信号配置的第一信息中指示的参考信号确定所述目标上行信号的 传输定时,包括:
    所述终端设备根据所述多个参考信号,分别确定所述目标上行信号的多个传输定时;
    所述终端设备根据所述目标上行信号的传输定时,传输所述目标上行信号,包括:
    所述终端设备根据所述目标上行信号的多个传输定时传输所述目标上行信号。
  12. 如权利要求11所述的方法,其特征在于,所述终端设备根据所述目标上行信号的多个传输定时传输所述目标上行信号,包括:
    所述终端设备在不同的时域资源上采用所述多个传输定时分别传输所述目标上行信号;或者,
    所述终端设备在不同的天线阵列块上采用所述多个传输定时分别传输所述目标上行信号。
  13. 如权利要求1所述的方法,其特征在于,所述第一信息中进一步包括定时状态指示信息;
    所述方法还包括:
    所述终端设备根据所述定时状态指示信息确定所述目标上行信号的传输定时所关联的定时状态。
  14. 如权利要求13所述的方法,其特征在于,配置有相同的定时状态的上行信号采用相同的传输定时。
  15. 如权利要求13或14所述的方法,其特征在于,在所述第一信息中指示的参考信号为上行参考信号的情况下,所述终端设备根据为目标上行信号配置的第一信息中指示的参考信号确定所述目标上行信号的传输定时,包括:
    所述终端设备将所述上行参考信号的传输定时,作为采用第一定时状态的上行信号的传输定时;其中,所述第一定时状态为所述第一信息中的定时状态指示信息所指示的定时状态,所述上行信号包含所述目标上行信号。
  16. 如权利要求13或14所述的方法,其特征在于,在所述第一信息中指示的参考信号为下行参考信号的情况下,所述终端设备根据为目标上行信号配置的第一信息中指示的参考信号确定所述目标上行信号的传输定时,包括:
    所述终端设备根据所述下行参考信号确定第一下行定时;以及
    所述终端设备根据所述第一下行定时和第二定时状态对应的定时提前量,确定所述目标上行信号的传输定时;其中,所述第二定时状态为所述第一信息中的定时状态指示信息所指示的定时状态。
  17. 如权利要求16所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据高层信令确定至少一个定时状态分别对应的定时提前量,其中,所述至少一个定时状态包括所述第二定时状态。
  18. 如权利要求1所述的方法,其特征在于,在所述第一信息中不包括定时状态指示信息的情况下,所述终端设备假设所述目标上行信号的传输定时关联的定时状态为0。
  19. 如权利要求1至18中任一项所述的方法,其特征在于,
    所述TCI状态的准共址QCL类型为以下之一:传输定时,上行定时,同步参数。
  20. 如权利要求3至6,及16至17中任一项所述的方法,其特征在于,
    所述定时提前量为基于无线资源控制RRC信令配置的定时提前偏移量和/或媒体接入控制MAC层信令指示的定时提前命令得到的;或者,
    所述定时提前量包括RRC信令配置的定时提前偏移量和/或MAC层信令指示的定时提前命令。
  21. 如权利要求3至6,及16至17中任一项所述的方法,其特征在于,所述下行参考信号为信道状态信息参考信号CSI-RS或同步信号块SSB。
  22. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一信息,所述第一信息中指示的参考信号用于终端设备确定目标上行信号的传输定时,所述第一信息为传输配置指示TCI状态或者空间相关信息;
    所述网络设备接收所述终端设备根据所述目标上行信号的传输定时发送的所述目标上行信号。
  23. 如权利要求22所述的方法,其特征在于,所述方法还包括:
    在所述参考信号为上行参考信号的情况下,所述网络设备将所述上行参考信号的接收定时,作为所述目标上行信号的接收定时。
  24. 如权利要求22所述的方法,其特征在于,所述方法还包括:
    在所述参考信号为下行参考信号的情况下,所述网络设备根据所述下行参考信号的传输定时和通过高层信令确定的定时提前量,确定所述目标上行信号的接收定时。
  25. 如权利要求24所述的方法,其特征在于,所述通过高层信令确定的定时提前量包括一个定时提前组TAG的多个定时提前量;
    所述网络设备根据所述下行参考信号的传输定时和通过高层信令确定的定时提前量,确定所述目标上行信号的接收定时,包括:
    所述网络设备根据所述下行参考信号的传输定时和所述多个定时提前量中的一个目标定时提前量,确定所述目标上行信号的接收定时。
  26. 如权利要求25所述的方法,其特征在于,
    所述多个定时提前量与不同的控制资源集CORESET组索引一一对应,且所述目标定时提前量为与所述目标上行信号关联的CORESET组索引对应的定时提前量;或者,
    所述多个定时提前量与不同的小区标识一一对应,且所述目标定时提前量为与所述目标上行信号关联的小区标识对应的定时提前量;或者,
    所述多个定时提前量与不同的发送接收点TRP一一对应,且所述目标定时提前量为所述目标上行信号的接收TRP对应的定时提前量。
  27. 如权利要求24所述的方法,其特征在于,所述通过高层信令确定的定时提前量包括一个TAG的多个定时提前量;
    所述网络设备根据所述下行参考信号的传输定时和通过高层信令确定的定时提前量,确定所述目标上行信号的接收定时,包括:
    所述网络设备根据所述下行参考信号的传输定时和所述多个定时提前量,分别确定所述目标上行信号的多个接收定时。
  28. 如权利要求22所述的方法,其特征在于,所述目标上行信号包括第一上行信号和第二上行信号,其中,为所述第一上行信号配置的所述第一信息中指示第一参考信号,为所述第二上行信号配置的所述第一信息中指示第二参考信号;
    所述方法还包括:
    所述网络设备根据所述第一参考信号确定所述第一上行信号的第一接收定时,以及所述终端设备根据所述第二参考信号确定所述第二上行信号的第二接收定时;
    所述网络设备接收所述终端设备根据所述目标上行信号的传输定时发送的所述目标上行信号,包括:
    所述网络设备根据所述第一接收定时和所述第二接收定时分别接收所述终端设备发送的所述第一上行信号和所述第二上行信号。
  29. 如权利要求28所述的方法,其特征在于,所述第一接收定时与所述第二接收定时不同。
  30. 如权利要求28或29所述的方法,其特征在于,所述第一上行信号和所述第二上行信号占用不同的时域资源,和/或,所述第一上行信号和所述第二上行信号在不同的TRP上接收。
  31. 如权利要求28至30中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一上行信号和所述第二上行信号占用不同的时域资源,且所述第一上行信号占用的时域资源与所述第二上行信号占用的时域资源因为传输定时不同而发生了重叠的情况下,所述网络设备在重叠区域不接收所述第一上行信号和所述第二上行信号中在时域上靠后的上行信号。
  32. 如权利要求22所述的方法,其特征在于,所述第一信息为多个TCI状态或者多个空间相关信息,且所述多个TCI状态或者多个空间相关信息指示多个参考信号;
    所述方法还包括:
    所述网络设备根据所述多个参考信号,分别确定所述目标上行信号的多个接收定时;
    所述网络设备接收所述终端设备根据所述目标上行信号的传输定时发送的所述目标上行信号,包括:
    所述网络设备根据所述目标上行信号的多个接收定时接收所述目标上行信号。
  33. 如权利要求32所述的方法,其特征在于,所述网络设备根据所述目标上行信号的多个接收定时接收所述目标上行信号,包括:
    所述网络设备在不同的时域资源上采用所述目标上行信号的多个接收定时分别接收所述目标上行信号;或者,
    所述网络设备在不同的TRP上采用所述目标上行信号的多个接收定时分别接收所述目标上行信号。
  34. 如权利要求22所述的方法,其特征在于,所述第一信息中进一步包括定时状态指示信息,其中,所述定时状态指示信息用于所述终端设备确定所述目标上行信号的传输定时所关联的定时状态。
  35. 如权利要求34所述的方法,其特征在于,配置有相同的定时状态的上行信号采用相同的传输定时。
  36. 如权利要求34或35所述的方法,其特征在于,在所述第一信息中指示的参考信号为上行参考信号的情况下,所述方法还包括:
    所述网络设备将所述上行参考信号的接收定时,作为采用第一定时状态的上行信号的接收定时; 其中,所述第一定时状态为所述第一信息中的定时状态指示信息所指示的定时状态,所述上行信号包含所述目标上行信号。
  37. 如权利要求34或35所述的方法,其特征在于,在所述第一信息中指示的参考信号为下行参考信号的情况下,所述方法还包括:
    所述网络设备根据所述下行参考信号的传输定时和第二定时状态对应的定时提前量,确定所述目标上行信号的接收定时;其中,所述第二定时状态为所述第一信息中的定时状态指示信息所指示的定时状态。
  38. 如权利要求37所述的方法,其特征在于,所述方法还包括:
    所述网络设备通过高层信令向所述终端设备指示至少一个定时状态对应的定时提前量,其中,所述至少一个定时状态包括所述第二定时状态。
  39. 如权利要求22所述的方法,其特征在于,在所述第一信息中不包括定时状态指示信息的情况下,所述终端设备假设所述目标上行信号的传输定时关联的定时状态为0。
  40. 如权利要求22至39中任一项所述的方法,其特征在于,
    所述TCI状态的准共址QCL类型为以下之一:传输定时,上行定时,同步参数。
  41. 如权利要求24至27,及37至38中任一项所述的方法,其特征在于,
    所述定时提前量为基于无线资源控制RRC信令配置的定时提前偏移量和/或媒体接入控制MAC层信令指示的定时提前命令得到的;或者,
    所述定时提前量包括RRC信令配置的定时提前偏移量和/或MAC层信令指示的定时提前命令。
  42. 如权利要求24至27,及37至38中任一项所述的方法,其特征在于,所述下行参考信号为信道状态信息参考信号CSI-RS或同步信号块SSB。
  43. 一种终端设备,其特征在于,包括:
    处理单元,用于根据为目标上行信号配置的第一信息中指示的参考信号确定所述目标上行信号的传输定时,所述第一信息为传输配置指示TCI状态或者空间相关信息;
    通信单元,用于根据所述目标上行信号的传输定时,传输所述目标上行信号。
  44. 如权利要求43所述的终端设备,其特征在于,所述参考信号为上行参考信号;
    所述处理单元具体用于:
    将所述上行参考信号的传输定时,作为所述目标上行信号的传输定时。
  45. 如权利要求43所述的终端设备,其特征在于,所述参考信号为下行参考信号;
    所述处理单元具体用于:
    根据所述下行参考信号确定第一下行定时;以及
    根据所述第一下行定时和通过高层信令确定的定时提前量,确定所述目标上行信号的传输定时。
  46. 如权利要求45所述的终端设备,其特征在于,所述通过高层信令确定的定时提前量包括一个定时提前组TAG的多个定时提前量;
    所述处理单元具体用于:
    根据所述第一下行定时和所述多个定时提前量中的一个目标定时提前量,确定所述目标上行信号的传输定时。
  47. 如权利要求46所述的终端设备,其特征在于,
    所述多个定时提前量与不同的控制资源集CORESET组索引一一对应,且所述目标定时提前量为与所述目标上行信号关联的CORESET组索引对应的定时提前量;或者,
    所述多个定时提前量与不同的小区标识一一对应,且所述目标定时提前量为与所述目标上行信号关联的小区标识对应的定时提前量。
  48. 如权利要求45所述的终端设备,其特征在于,所述通过高层信令确定的定时提前量包括一个TAG的多个定时提前量;
    所述处理单元具体用于:
    根据所述第一下行定时和所述多个定时提前量,分别确定所述目标上行信号的多个传输定时。
  49. 如权利要求43所述的终端设备,其特征在于,所述目标上行信号包括第一上行信号和第二上行信号,其中,为所述第一上行信号配置的所述第一信息中指示第一参考信号,为所述第二上行信号配置的所述第一信息中指示第二参考信号;
    所述处理单元具体用于:
    根据所述第一参考信号确定所述第一上行信号的第一传输定时,以及根据所述第二参考信号确定所述第二上行信号的第二传输定时;
    所述通信单元具体用于:
    根据所述第一传输定时和所述第二传输定时分别传输所述第一上行信号和所述第二上行信号。
  50. 如权利要求49所述的终端设备,其特征在于,所述第一传输定时与所述第二传输定时不同。
  51. 如权利要求49或50所述的终端设备,其特征在于,所述第一上行信号和所述第二上行信号占用不同的时域资源,和/或,所述第一上行信号和所述第二上行信号通过不同的天线阵列块传输。
  52. 如权利要求49至51中任一项所述的终端设备,其特征在于,
    在所述第一上行信号和所述第二上行信号占用不同的时域资源,且所述第一上行信号占用的时域资源与所述第二上行信号占用的时域资源因为传输定时不同而发生了重叠的情况下,所述终端设备在重叠区域不发送所述第一上行信号和所述第二上行信号中在时域上靠后的上行信号。
  53. 如权利要求43所述的终端设备,其特征在于,所述第一信息为多个TCI状态或者多个空间相关信息,且所述多个TCI状态或者多个空间相关信息指示多个参考信号;
    所述处理单元具体用于:
    根据所述多个参考信号,分别确定所述目标上行信号的多个传输定时;
    所述通信单元具体用于:
    根据所述目标上行信号的多个传输定时传输所述目标上行信号。
  54. 如权利要求53所述的终端设备,其特征在于,所述通信单元具体用于:
    在不同的时域资源上采用所述多个传输定时分别传输所述目标上行信号;或者,
    在不同的天线阵列块上采用所述多个传输定时分别传输所述目标上行信号。
  55. 如权利要求43所述的终端设备,其特征在于,所述第一信息中进一步包括定时状态指示信息;
    所述处理单元还用于根据所述定时状态指示信息确定所述目标上行信号的传输定时所关联的定时状态。
  56. 如权利要求55所述的终端设备,其特征在于,配置有相同的定时状态的上行信号采用相同的传输定时。
  57. 如权利要求55或56所述的终端设备,其特征在于,在所述第一信息中指示的参考信号为上行参考信号的情况下,所述处理单元具体用于:
    将所述上行参考信号的传输定时,作为采用第一定时状态的上行信号的传输定时;其中,所述第一定时状态为所述第一信息中的定时状态指示信息所指示的定时状态,所述上行信号包含所述目标上行信号。
  58. 如权利要求55或56所述的终端设备,其特征在于,在所述第一信息中指示的参考信号为下行参考信号的情况下,所述处理单元具体用于:
    根据所述下行参考信号确定第一下行定时;以及
    根据所述第一下行定时和第二定时状态对应的定时提前量,确定所述目标上行信号的传输定时;其中,所述第二定时状态为所述第一信息中的定时状态指示信息所指示的定时状态。
  59. 如权利要求58所述的终端设备,其特征在于,所述处理单元还用于根据高层信令确定至少一个定时状态分别对应的定时提前量,其中,所述至少一个定时状态包括所述第二定时状态。
  60. 如权利要求43所述的终端设备,其特征在于,在所述第一信息中不包括定时状态指示信息的情况下,所述终端设备假设所述目标上行信号的传输定时关联的定时状态为0。
  61. 如权利要求43至60中任一项所述的终端设备,其特征在于,
    所述TCI状态的准共址QCL类型为以下之一:传输定时,上行定时,同步参数。
  62. 如权利要求45至48,及58至59中任一项所述的终端设备,其特征在于,
    所述定时提前量为基于无线资源控制RRC信令配置的定时提前偏移量和/或媒体接入控制MAC层信令指示的定时提前命令得到的;或者,
    所述定时提前量包括RRC信令配置的定时提前偏移量和/或MAC层信令指示的定时提前命令。
  63. 如权利要求45至48,及58至59中任一项所述的终端设备,其特征在于,所述下行参考信号为信道状态信息参考信号CSI-RS或同步信号块SSB。
  64. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送第一信息,所述第一信息中指示的参考信号用于终端设备确定目标上行信号的传输定时,所述第一信息为传输配置指示TCI状态或者空间相关信息;
    所述通信单元,还用于接收所述终端设备根据所述目标上行信号的传输定时发送的所述目标上行信号。
  65. 如权利要求64所述的网络设备,其特征在于,所述网络设备还包括:处理单元,
    在所述参考信号为上行参考信号的情况下,所述处理单元用于将所述上行参考信号的接收定时, 作为所述目标上行信号的接收定时。
  66. 如权利要求64所述的网络设备,其特征在于,所述网络设备还包括:处理单元,
    在所述参考信号为下行参考信号的情况下,所述处理单元用于根据所述下行参考信号的传输定时和通过高层信令确定的定时提前量,确定所述目标上行信号的接收定时。
  67. 如权利要求66所述的网络设备,其特征在于,所述通过高层信令确定的定时提前量包括一个定时提前组TAG的多个定时提前量;
    所述处理单元具体用于:
    根据所述下行参考信号的传输定时和所述多个定时提前量中的一个目标定时提前量,确定所述目标上行信号的接收定时。
  68. 如权利要求67所述的网络设备,其特征在于,
    所述多个定时提前量与不同的控制资源集CORESET组索引一一对应,且所述目标定时提前量为与所述目标上行信号关联的CORESET组索引对应的定时提前量;或者,
    所述多个定时提前量与不同的小区标识一一对应,且所述目标定时提前量为与所述目标上行信号关联的小区标识对应的定时提前量;或者,
    所述多个定时提前量与不同的发送接收点TRP一一对应,且所述目标定时提前量为所述目标上行信号的接收TRP对应的定时提前量。
  69. 如权利要求66所述的网络设备,其特征在于,所述通过高层信令确定的定时提前量包括一个TAG的多个定时提前量;
    所述处理单元具体用于:
    根据所述下行参考信号的传输定时和所述多个定时提前量,分别确定所述目标上行信号的多个接收定时。
  70. 如权利要求64所述的网络设备,其特征在于,所述目标上行信号包括第一上行信号和第二上行信号,其中,为所述第一上行信号配置的所述第一信息中指示第一参考信号,为所述第二上行信号配置的所述第一信息中指示第二参考信号;
    所述网络设备还包括:处理单元,
    所述处理单元用于根据所述第一参考信号确定所述第一上行信号的第一接收定时,以及所述处理单元用于根据所述第二参考信号确定所述第二上行信号的第二接收定时;
    所述通信单元具体用于:
    根据所述第一接收定时和所述第二接收定时分别接收所述终端设备发送的所述第一上行信号和所述第二上行信号。
  71. 如权利要求70所述的网络设备,其特征在于,所述第一接收定时与所述第二接收定时不同。
  72. 如权利要求70或71所述的网络设备,其特征在于,所述第一上行信号和所述第二上行信号占用不同的时域资源,和/或,所述第一上行信号和所述第二上行信号在不同的TRP上接收。
  73. 如权利要求70至72中任一项所述的网络设备,其特征在于,
    在所述第一上行信号和所述第二上行信号占用不同的时域资源,且所述第一上行信号占用的时域资源与所述第二上行信号占用的时域资源因为传输定时不同而发生了重叠的情况下,所述网络设备在重叠区域不接收所述第一上行信号和所述第二上行信号中在时域上靠后的上行信号。
  74. 如权利要求64所述的网络设备,其特征在于,所述第一信息为多个TCI状态或者多个空间相关信息,且所述多个TCI状态或者多个空间相关信息指示多个参考信号;
    所述网络设备还包括:处理单元,
    所述处理单元用于根据所述多个参考信号,分别确定所述目标上行信号的多个接收定时;
    所述通信单元具体用于:
    根据所述目标上行信号的多个接收定时接收所述目标上行信号。
  75. 如权利要求74所述的网络设备,其特征在于,所述处理单元具体用于:
    在不同的时域资源上采用所述目标上行信号的多个接收定时分别接收所述目标上行信号;或者,
    在不同的TRP上采用所述目标上行信号的多个接收定时分别接收所述目标上行信号。
  76. 如权利要求64所述的网络设备,其特征在于,所述第一信息中进一步包括定时状态指示信息,其中,所述定时状态指示信息用于所述终端设备确定所述目标上行信号的传输定时所关联的定时状态。
  77. 如权利要求76所述的网络设备,其特征在于,配置有相同的定时状态的上行信号采用相同的传输定时。
  78. 如权利要求76或77所述的网络设备,其特征在于,在所述第一信息中指示的参考信号为上 行参考信号的情况下,所述网络设备还包括:处理单元,
    所述处理单元用于将所述上行参考信号的接收定时,作为采用第一定时状态的上行信号的接收定时;其中,所述第一定时状态为所述第一信息中的定时状态指示信息所指示的定时状态,所述上行信号包含所述目标上行信号。
  79. 如权利要求76或77所述的网络设备,其特征在于,在所述第一信息中指示的参考信号为下行参考信号的情况下,所述网络设备还包括:处理单元,
    所述处理单元用于根据所述下行参考信号的传输定时和第二定时状态对应的定时提前量,确定所述目标上行信号的接收定时;其中,所述第二定时状态为所述第一信息中的定时状态指示信息所指示的定时状态。
  80. 如权利要求79所述的网络设备,其特征在于,所述通信单元还用于通过高层信令向所述终端设备指示至少一个定时状态对应的定时提前量,其中,所述至少一个定时状态包括所述第二定时状态。
  81. 如权利要求64所述的网络设备,其特征在于,在所述第一信息中不包括定时状态指示信息的情况下,所述终端设备假设所述目标上行信号的传输定时关联的定时状态为0。
  82. 如权利要求64至81中任一项所述的网络设备,其特征在于,
    所述TCI状态的准共址QCL类型为以下之一:传输定时,上行定时,同步参数。
  83. 如权利要求66至69,及79至80中任一项所述的网络设备,其特征在于,
    所述定时提前量为基于无线资源控制RRC信令配置的定时提前偏移量和/或媒体接入控制MAC层信令指示的定时提前命令得到的;或者,
    所述定时提前量包括RRC信令配置的定时提前偏移量和/或MAC层信令指示的定时提前命令。
  84. 如权利要求66至69,及79至80中任一项所述的网络设备,其特征在于,所述下行参考信号为信道状态信息参考信号CSI-RS或同步信号块SSB。
  85. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至21中任一项所述的方法。
  86. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求22至42中任一项所述的方法。
  87. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21中任一项所述的方法。
  88. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求22至42中任一项所述的方法。
  89. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  90. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求22至42中任一项所述的方法。
  91. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至21中任一项所述的方法。
  92. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求22至42中任一项所述的方法。
  93. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  94. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求22至42中任一项所述的方法。
PCT/CN2021/117184 2021-09-08 2021-09-08 无线通信的方法、终端设备和网络设备 WO2023035144A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180100157.XA CN117652117A (zh) 2021-09-08 2021-09-08 无线通信的方法、终端设备和网络设备
PCT/CN2021/117184 WO2023035144A1 (zh) 2021-09-08 2021-09-08 无线通信的方法、终端设备和网络设备
US18/434,344 US20240179656A1 (en) 2021-09-08 2024-02-06 Wireless communication method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/117184 WO2023035144A1 (zh) 2021-09-08 2021-09-08 无线通信的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/434,344 Continuation US20240179656A1 (en) 2021-09-08 2024-02-06 Wireless communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2023035144A1 true WO2023035144A1 (zh) 2023-03-16

Family

ID=85506033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117184 WO2023035144A1 (zh) 2021-09-08 2021-09-08 无线通信的方法、终端设备和网络设备

Country Status (3)

Country Link
US (1) US20240179656A1 (zh)
CN (1) CN117652117A (zh)
WO (1) WO2023035144A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831145A (zh) * 2018-08-09 2020-02-21 华为技术有限公司 无线通信的方法和装置
CN111447672A (zh) * 2020-03-10 2020-07-24 中国信息通信研究院 一种定时提前量指示方法和设备
CN111757459A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种通信方法及装置
CN112640543A (zh) * 2018-09-25 2021-04-09 华为技术有限公司 新无线电中的定时提前
WO2021155608A1 (zh) * 2020-02-07 2021-08-12 Oppo广东移动通信有限公司 信息传输方法及相关装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831145A (zh) * 2018-08-09 2020-02-21 华为技术有限公司 无线通信的方法和装置
CN112640543A (zh) * 2018-09-25 2021-04-09 华为技术有限公司 新无线电中的定时提前
CN111757459A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种通信方法及装置
WO2021155608A1 (zh) * 2020-02-07 2021-08-12 Oppo广东移动通信有限公司 信息传输方法及相关装置
CN111447672A (zh) * 2020-03-10 2020-07-24 中国信息通信研究院 一种定时提前量指示方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Analysis on TRP- and/or UE panel-specific UL timing synchronization", 3GPP DRAFT; R1-2107821, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052038692 *

Also Published As

Publication number Publication date
US20240179656A1 (en) 2024-05-30
CN117652117A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
US20230063901A1 (en) Sidelink feedback method and terminal device
WO2021168661A1 (zh) 信息传输方法、终端设备和网络设备
US20230262696A1 (en) Method for determining uplink transmission parameter, and terminal device
WO2021253455A1 (zh) 无线通信方法、终端设备和网络设备
US20220394503A1 (en) Wireless communication method and device
WO2022016342A1 (zh) 信道加扰方法和终端设备
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021062869A1 (zh) 无线通信方法和终端设备
WO2023102848A1 (zh) 无线通信的方法和终端设备
WO2023102813A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024026678A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023123399A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023206004A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024026839A1 (zh) 无线通信的方法和终端设备
WO2024007336A1 (zh) 信息处理方法、终端设备和网络设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2023108638A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050146A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2023115583A1 (zh) 通信方法、终端设备和网络设备
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
US20230127036A1 (en) Method and device for channel listening
WO2023065335A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024031237A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100157.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE