WO2024075637A1 - イオン電流測定方法およびイオン電流測定用デバイス - Google Patents

イオン電流測定方法およびイオン電流測定用デバイス Download PDF

Info

Publication number
WO2024075637A1
WO2024075637A1 PCT/JP2023/035451 JP2023035451W WO2024075637A1 WO 2024075637 A1 WO2024075637 A1 WO 2024075637A1 JP 2023035451 W JP2023035451 W JP 2023035451W WO 2024075637 A1 WO2024075637 A1 WO 2024075637A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
electrolytic solution
ion current
dielectric constant
filled
Prior art date
Application number
PCT/JP2023/035451
Other languages
English (en)
French (fr)
Inventor
真楠 筒井
知二 川合
一道 横田
Original Assignee
国立大学法人大阪大学
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 国立研究開発法人産業技術総合研究所 filed Critical 国立大学法人大阪大学
Publication of WO2024075637A1 publication Critical patent/WO2024075637A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the disclosure in this application relates to a device for measuring ion current and a method for measuring the ion current of a sample using the device for measuring ion current.
  • a device that forms nanopores in a substrate and measures the change in ionic current as a sample passes through the nanopores is attracting attention as a device with broad applications for sensing bacteria, viruses, DNA, proteins, etc.
  • Known related technologies include, for example, analyzing the shape distribution of exosomes by measuring the ion current when exosomes pass through through-holes formed in a substrate (see Patent Document 1), forming molecules in through-holes formed in a substrate that interact with the passing sample, thereby lengthening the time it takes for a sample to pass through the through-hole (see Patent Document 2), and forming two or more through-holes in a substrate (see Patent Document 3).
  • Patent Documents 1 to 3 it is well known to measure the change in ion current when a sample passes through a through hole formed in a substrate. However, it is desirable for the measurement results of the change in ion current to have a high S/N ratio.
  • the inventors conducted further research to increase the S/N ratio and discovered that (1) for a first electrolyte filled in a first chamber on the first surface side of a substrate forming a through hole and a second electrolyte filled in a second chamber on the second surface side of the substrate, (2) by making the dielectric constant of the first electrolyte different from that of the second electrolyte, (3) it is possible to increase the S/N ratio of the measurement results of the change in ion current when a charged sample passes through a through hole.
  • the disclosure of this application is to provide an ion current measurement method that can increase the S/N ratio of the measurement results of changes in ion current, and an ion current measurement device for use in said ion current measurement method.
  • the disclosure in this application relates to a device for measuring ion current and a device for measuring ion current, as shown below.
  • a method for measuring an ion current of a charged sample using a device for measuring an ion current comprising the steps of:
  • the ion current measuring device comprises: a substrate having a first side and a second side; a through hole extending from the first surface to the second surface through which the charged sample passes;
  • the first chamber member forms a first chamber filled with a first electrolytic solution together with the first surface including at least a surface of the first opening of the through hole;
  • the second chamber member forms a second chamber filled with a second electrolytic solution together with at least a surface of the second surface including the second opening of the through hole;
  • the method for measuring the ion current comprises: A charged sample passing step; an ion current measuring step; Including,
  • the charged sample passing step includes: A voltage is applied to the first electrolytic solution filled in the first chamber and the second electrolytic solution filled in the second chamber, Passing the charged sample contained in the first chamber through the through hole toward the second chamber, or passing
  • Ion current measurement method (2) An organic solvent having a dielectric constant lower than that of water is dissolved in one of the first electrolytic solution or the second electrolytic solution. The ion current measuring method according to (1) above. (3) The organic solvent is at least one selected from the group consisting of monohydric alcohols, dihydric alcohols, and trihydric alcohols. The ion current measuring method according to (2) above. (4) When the higher of the dielectric constants of the first electrolytic solution and the second electrolytic solution is taken as 1, the lower one has a dielectric constant of 0.1 or more and 0.9 or less. The ion current measuring method according to (1) above. (5) The organic solvent is selected from solvents that can increase the viscosity of the first electrolytic solution or the second electrolytic solution.
  • the dielectric constant of the first electrolytic solution is higher than the dielectric constant of the second electrolytic solution.
  • the dielectric constant of the first electrolytic solution is lower than the dielectric constant of the second electrolytic solution.
  • the charged sample is DNA or RNA.
  • a device for measuring an ion current comprising: a substrate having a first side and a second side; a through hole extending from the first surface to the second surface through which the charged sample passes; A first chamber member; A second chamber member; Including, the first chamber member forms a first chamber filled with a first electrolytic solution together with the first surface including at least a surface of the first opening of the through hole; the second chamber member forms a second chamber filled with a second electrolytic solution together with at least a surface of the second surface including the second opening of the through hole; The dielectric constant of the first electrolytic solution filled in the first chamber is different from the dielectric constant of the second electrolytic solution filled in the second chamber.
  • a device for measuring ion current comprising: a substrate having a first side and a second side; a through hole extending from the first surface to the second surface through which the charged sample passes; A first chamber member; A second chamber member; Including, the first chamber member forms a first chamber filled with a first electrolytic solution together with the first surface including at least
  • the first chamber is filled with a first electrolyte;
  • the second chamber is filled with a second electrolyte.
  • the first electrolytic solution filled in the first chamber and the second electrolytic solution filled in the second chamber are each contained in a container.
  • An organic solvent having a dielectric constant lower than that of water is dissolved in one of the first electrolytic solution or the second electrolytic solution.
  • the organic solvent is at least one selected from the group consisting of monohydric alcohols, dihydric alcohols, and trihydric alcohols.
  • the organic solvent is selected from solvents that can increase the viscosity of the first electrolytic solution or the second electrolytic solution. The device for measuring ion current according to (12) above.
  • the ion current measurement device and ion current measurement method disclosed in this application can increase the signal-to-noise ratio of the measurement results of changes in ion current.
  • FIG. 1 is a schematic cross-sectional view of a device 1 according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of a device 1a.
  • 3 is a flowchart of a measurement method according to an embodiment.
  • FIG. 1 is a diagram showing the measurement results of the ion current I ion measured in Example 2, Example 3, and Comparative Example 1.
  • FIG. 13 is a diagram showing the measurement results of the ion current I ion measured in Example 4.
  • FIG. 13 is a diagram showing the measurement results of the ion current I ion measured in Comparative Example 2.
  • FIG. 13 is a diagram showing combinations of the electrolytes filled in the first chamber and the second chamber in Example 5, and the measurement results of the ionic current I ion .
  • the ion current measurement method (hereinafter, sometimes simply referred to as the "measurement method") and the ion current measurement device (hereinafter, sometimes simply referred to as the “device”) are described in detail below. Note that in this specification, components having the same type of function are given the same or similar reference symbols. Furthermore, repeated descriptions of components given the same or similar reference symbols may be omitted.
  • a numerical range expressed using “ ⁇ ” means a range including the numerical values before and after “ ⁇ ” as the lower and upper limits
  • Numerical values, numerical ranges, and qualitative expressions indicate numerical values, numerical ranges, and properties that include errors generally accepted in the relevant technical field.
  • FIG. 1 is a schematic cross-sectional view of the device 1 according to an embodiment.
  • the device 1 includes a substrate 2, a through-hole 3, a first chamber member 51, and a second chamber member 61.
  • the substrate 2 has a first surface 21 and a second surface 22, and the through-hole 3 penetrates the substrate 2 from the first surface 21 to the second surface 22.
  • a charged sample passes through the through-hole 3.
  • the first chamber member 51 together with the surface of the first surface 21 including at least the first opening 31 of the through hole 3, forms a first chamber 5 filled with a first electrolyte solution.
  • the second chamber member 61 together with the surface of the second surface 22 including at least the second opening 32 of the through hole 3, forms a second chamber 6 filled with a second electrolyte solution.
  • the device 1 disclosed in this application is characterized in that the dielectric constant of the first electrolyte solution filled in the first chamber 5 is different from the dielectric constant of the second electrolyte solution filled in the second chamber 6. As shown in the examples and comparative examples described later, by making the dielectric constant of the first electrolyte solution different from the dielectric constant of the second electrolyte solution, the S/N ratio of the measurement results of the change in ionic current can be increased.
  • the material for forming the substrate 2 is not particularly limited as long as it can form the through-hole 3 and can measure the ion current of the charged sample passing through the through-hole 3.
  • materials for forming the substrate 2 include insulating materials that are commonly used in the field of semiconductor manufacturing technology. Examples of insulating materials include Si, Ge, Se, Te, GaAs, GaP, GaN, InSb, InP, SiN, and the like.
  • the substrate 2 may be formed in a thin film shape called a solid membrane using materials such as SiN, SiO 2 , and HfO 2 , or in a sheet shape called a two-dimensional material using materials such as graphene, graphene oxide, molybdenum dioxide (MoS 2 ), and boron nitride (BN).
  • the substrate 2 may be formed using an artificial membrane such as a lipid bilayer membrane or a naturally occurring membrane. Measurement devices using lipid bilayer membranes are described in JP-A-2011-527191 and JP-A-2020-000056, etc. The matters described in JP-T-2011-527191 and JP-A-2020-000056 are incorporated herein by reference.
  • a commercially available product may be used as the measurement device using a lipid bilayer membrane.
  • Examples of commercially available products that can perform nanopore analysis using a lipid bilayer membrane include MinION, GridION X5 , SmidgION, and PromethION manufactured by Oxford Nanopore Technologies.
  • the substrate 2 in which the through-hole 3 is formed is thin.
  • examples include 5 ⁇ m or less, 1 ⁇ m or less, 750 nm or less, 500 nm or less, 250 nm or less, 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, 10 nm or less, etc.
  • the film thickness can be made very thin, for example, graphene can be used to fabricate a substrate 2 with a film thickness of 1 nm or less.
  • the substrate 2 may have a laminated structure in which a solid membrane or a two-dimensional material is laminated on a support plate formed of the above-mentioned insulating material.
  • a solid membrane or two-dimensional material is laminated on a support plate with holes larger than the through-holes 3, and the through-holes 3 are formed in the solid membrane or two-dimensional material.
  • the through-hole 3 is formed so as to penetrate the substrate 2 from the first surface 21 of the substrate 2 in the direction of the second surface 22, which is the surface opposite to the first surface 21.
  • the charged sample is very small, such as DNA
  • the size of the through-hole 3 is not particularly limited as long as the charged sample can pass through it, but if the through-hole 3 is made too small, there is a risk that the error in making each through-hole 3 will be large and the measurement error between devices will be large.
  • the lower limit of the through-hole 3 can be, for example, 0.8 nm or more, 1 nm or more, 1.5 nm or more, 2 nm or more, 3 nm or more, 4 nm or more, 5 nm or more, 10 nm or more, 20 nm or more, 30 nm or more, 40 nm or more, 50 nm or more, etc.
  • the size may be such that the cell can pass through, for example, about 10 ⁇ m. As described above, the smaller the volume of the through-hole 3, the higher the sensitivity.
  • the lower limit of the through-hole 3 may be, for example, 10 ⁇ m or less, 7.5 ⁇ m or less, 5 ⁇ m or less, 2.5 ⁇ m or less, 1 ⁇ m or less, 750 nm or less, 500 nm or less, 250 nm or less, 100 nm or less, etc., depending on the size of the charged sample.
  • the size of the through-hole 3 means the diameter.
  • the size of the through-hole 3 means the diameter of the inscribed circle of the cross section.
  • the through-hole 3 may be formed by etching or the like, as shown in the examples described later.
  • the through-hole 3 may be formed so that the first opening 31 of the through-hole 3 on the first surface 21 side and the second opening 32 of the through-hole 3 on the second surface 22 side have the same shape.
  • the first opening 31 and the second opening 32 may be different in size, for example, the through-hole 3 may be formed so as to expand from the first surface 21 to the second surface 22 in the base material 2.
  • FIG. 1 shows an example in which one through-hole 3 is formed in the substrate 2, two or more through-holes 3 may be formed.
  • the distance between adjacent through-holes 3 may be adjusted as necessary to increase the measurement accuracy of the charged sample.
  • the extent to which the distance between adjacent through-holes 3 is set is described in detail in Patent Document 3, so a detailed description will be omitted in the disclosure of this application. The matters described in Patent Document 3 are incorporated herein by reference.
  • the first chamber member 51 and the second chamber member 61 are preferably formed from an electrically and chemically inert material, such as, but not limited to, glass, sapphire, ceramic, resin, rubber, elastomer, SiO2 , SiN , Al2O3 , and the like.
  • the first chamber 5 and the second chamber 6 are formed to sandwich the through hole 3, and there is no particular restriction as long as the charged sample introduced into the first chamber 5 can move through the through hole 3 to the second chamber 6, or the charged sample introduced into the second chamber 6 can move through the through hole 3 to the first chamber 5.
  • the first chamber member 51 and the second chamber member 61 may be separately manufactured and bonded to the substrate 2 so as to be liquid-tight.
  • a roughly rectangular box member with one side open may be formed, the substrate 2 may be inserted and fixed in the center of the box, and then the open side may be sealed liquid-tight.
  • the first chamber member 51 and the second chamber member 61 do not mean separate members, but rather mean parts of the box member separated by the substrate 2.
  • the first chamber member 51 and the second chamber member 61 may be formed with holes for filling and discharging the electrolyte and the charged sample liquid, and for inserting electrodes and/or leads, as necessary.
  • Fig. 2 is a schematic cross-sectional view showing a configuration example of the device 1a
  • Fig. 3 is a flowchart of the measurement method according to the embodiment.
  • the second electrode 2 includes at least a first electrode 52 formed at a location in contact with the first electrolyte in the first chamber 5, a second electrode 62 formed at a location in contact with the second electrolyte in the second chamber 6, a power source 54 for applying a voltage between the first electrode 52 and the second electrode 62, and an ammeter 7 for measuring the ion current when the charged sample S passes through the through hole 3, in addition to the device 1 according to the embodiment.
  • the first electrode 52, the second electrode 62, the power source 54, and the ammeter 7 may be prepared separately from the device 1 and attached to the device 1 when performing the measurement method, or may be built into the device 1 from the beginning.
  • the device 1a may optionally include an analysis unit 8 for analyzing the ion current measured by the ammeter 7, a display unit 9 for displaying the measured ion current value and/or the result of the analysis by the analysis unit 8, a program memory 10 in which programs for operating the analysis unit 8 and the display unit 9 are stored in advance, and a control unit 11 for reading and executing the program stored in the program memory 10.
  • the program may be stored in advance in the program memory 10, or may be recorded on a recording medium and then stored in the program memory 10 using an installation means.
  • the first electrode 52 and the second electrode 62 can be made of known conductive metals such as aluminum, copper, platinum, gold, silver, silver/silver chloride, and titanium.
  • the first electrode 52 and the second electrode 62 are formed to sandwich the through-hole 3, and an example is shown in which a voltage is applied so that a direct current flows with the first electrode 52 side as a negative pole and the second electrode 62 side as a positive pole, but alternatively, the first electrode 52 side may be a positive pole and the second electrode 62 side as a negative pole.
  • the first electrode 52 there are no particular limitations on the first electrode 52, so long as it is formed in a location that contacts the first electrolyte in the first chamber 5.
  • the first electrode 52 is disposed on the inner surface of the first chamber member 51 via a lead 53.
  • the first electrode 52 may be disposed on the first surface 21 of the substrate 2 or in the space within the first chamber 5 via a lead 53.
  • the first electrode 52 may be disposed so as to penetrate the first chamber member 51 from a hole formed in the first chamber member 51.
  • the second electrode 62 is not particularly limited as long as it is formed in a location that contacts the second electrolyte in the second chamber 6.
  • the second electrode 62 is disposed on the inner surface of the second chamber member 61 via a lead 63.
  • the second electrode 62 may be disposed on the second surface 22 of the substrate 2 or in the space within the second chamber 6 via a lead 63.
  • the second electrode 62 may be disposed so as to penetrate the second chamber member 61 from a hole formed in the second chamber member 61.
  • the first electrode 52 is connected to a power source 54 and earth 55 via a lead 53.
  • the second electrode 62 is connected to an ammeter 7 and earth 64 via a lead 63.
  • the power source 54 is connected to the first electrode 52 side and the ammeter 7 is connected to the second electrode 62 side, but the power source 54 and ammeter 7 may be provided on the same electrode side.
  • the power supply 54 there are no particular limitations on the power supply 54, so long as it can pass a direct current through the first electrode 52 and the second electrode 62.
  • the ammeter 7 there are no particular limitations on the ammeter 7, so long as it can measure over time the ion current generated when a current is passed through the first electrode 52 and the second electrode 62.
  • the device 1a may also include a noise removal circuit, a voltage stabilization circuit, etc., as necessary.
  • the analysis unit 8 analyzes the change in the ion current measured by the ammeter 7.
  • a device 1a having a through-hole (nanopore) 3 when a charged sample passes through the through-hole 3, the ion current flowing through the through-hole 3 is blocked by the charged sample, and the ion current decreases. Therefore, the charged sample can be identified by analyzing the data in the analysis unit 8 based on the change in the measured ion current (the peak value of the changed ion current, the waveform of the ion current, etc.).
  • the display unit 9 may be any known display device capable of displaying the changes in the measured ion current and the results of the analysis performed by the analysis unit 8, such as a liquid crystal display, plasma display, or organic electroluminescence display.
  • the program memory 10 is not particularly limited as long as it can store programs for operating the analysis unit 8 and the display unit 9, and examples of such memory include ROMs such as mask ROM, PROM, EPROM, and EEPROM.
  • the control unit 11 is not particularly limited as long as it can read and execute the programs stored in the program memory 10, and examples of such memory include a processor (CPU) or a general-purpose computer equipped with a CPU.
  • An embodiment of the measurement method includes a charged sample passing step (ST1) and an ion current measuring step (ST2).
  • the charged sample passing step (ST1) applies a voltage to the first electrolyte filled in the first chamber 5 and the second electrolyte filled in the second chamber 6, causing the charged sample S contained in the first chamber 5 to pass through the through hole 3 in the direction of the second chamber 6, or causing the charged sample S contained in the second chamber 6 to pass through the through hole 3 in the direction of the second chamber 6.
  • the S/N ratio is improved by the difference between the dielectric constant of the first electrolyte and the dielectric constant of the second electrolyte.
  • the reason for this is thought to be that, as described above, in addition to the volume of the charged sample S, the ion concentration in the through hole 3 increases due to the ions that gather around the charged sample S. Therefore, it is desirable that the surface of the charged sample S measured by the measurement method disclosed in this application is charged. There is no particular restriction on whether the surface of the charged sample S is positively or negatively charged.
  • Examples of the charged sample S include, but are not limited to, charged biological substances such as bacteria, cells, viruses, DNA, RNA, proteins, and liposomes, or charged non-biological substances such as polymer microparticles and metal microparticles.
  • charged biological substances such as bacteria, cells, viruses, DNA, RNA, proteins, and liposomes
  • charged non-biological substances such as polymer microparticles and metal microparticles.
  • the charged biological substances vary depending on the type, many bacteria, cells, and viruses are negatively charged.
  • DNA and RNA are also negatively charged.
  • proteins are amphoteric molecules that constitute proteins, and may be positively or negatively charged depending on the pH environment. Therefore, when measuring proteins, the measurement conditions should be set taking into account the pH of the first and second electrolyte solutions.
  • the first and second electrolyte solutions must be capable of conducting electricity between the first electrode 52 and the second electrode 62, and therefore typically use ion-containing solutions (electrolytes) such as TE buffer, PBS buffer, HEPES buffer, and KCl aqueous solution.
  • electrolytes such as TE buffer, PBS buffer, HEPES buffer, and KCl aqueous solution.
  • To make the dielectric constants of the first and second electrolyte solutions different it is possible, without any particular limitation, to dissolve an organic solvent with a lower dielectric constant than water in the solution (electrolyte) whose dielectric constant is desired to be lower.
  • the dielectric constant varies depending on the temperature, but the dielectric constant of water is 80.4 (20°C), 79.6 (22°C), 78.6 (25°C), and 76.8 (30°C).
  • organic solvents with a lower dielectric constant than water include monohydric alcohols, dihydric alcohols, trihydric alcohols, and other organic solvents.
  • organic solvents listed below the dielectric constant of representative ones is also listed in parentheses after the name of the organic solvent. Note that the dielectric constants listed below were measured at temperatures of around 20°C to 25°C, and may include some error depending on the measurement conditions, but it is clear that the values are much lower than the dielectric constant of water.
  • Monohydric alcohols examples include methanol (33.0), ethanol (24.0), 1-propanol (20.0), 2-propanol (18.0), 1-butanol (17.5), 2-butanol (16.6), isobutyl alcohol (17.9), isopentyl alcohol (15.2), cyclohexanol (15.0), and the like, as well as aliphatic saturated monohydric alcohols, aliphatic unsaturated alcohols, alicyclic alcohols, and aromatic alcohols.
  • the aliphatic saturated monohydric alcohols include, for example, straight-chain and branched alcohols such as natural alcohols and synthetic alcohols (e.g., Ziegler alcohols or oxo alcohols), specifically 2-ethylbutanol, 2-methylpentanol, 4-methylpentanol, 1-hexanol, 2-ethylpentanol, 2-methylhexanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-ethylhexanol, 1-octanol, 2-octanol, 1-nonanol, decanol, undecanol, dodecanol, and tridecanol.
  • natural alcohols and synthetic alcohols e.g., Ziegler alcohols or oxo alcohols
  • 2-ethylbutanol 2-methylpentanol
  • 4-methylpentanol 1-hexanol
  • the aliphatic unsaturated alcohols include, for example, alkenols and alkadienols, and specific examples thereof include 2-propylallyl alcohol, 2-methyl-4-pentenol, 1-hexenol, 2-ethyl-4-pentenol, 2-methyl-5-hexenol, 1-heptenol, 2-ethyl-5-hexenol, 1-octenol, 1-nonenol, undecenol, dodecenol, and geraniol.
  • Alicyclic alcohols include, for example, cycloalkanols and cycloalkenols, and specific examples thereof include methylcyclohexanol and ⁇ -terpineol.
  • Aromatic alcohols include phenethyl alcohol and salicyl alcohol.
  • dihydric alcohols examples include ethylene glycol (37.7), diethylene glycol (31.7), triethylene glycol (23.7), and propylene glycol (32.0).
  • Trihydric alcohols examples include 1,2,4-butanetriol (38) and glycerin (glycerol: 44).
  • Other organic solvents examples include acetic acid (6.15), pyridine (12.3), tetrahydrofuran (THF) (7.5), acetone (20.7), methyl ethyl ketone (MEK) (15.45), ethyl acetate (6.4), aniline (6.89), N-methyl-2-pyrrolidone (NMP) (32.2), dimethyl sulfoxide (DMSO) (45), N,N-dimethylformamide (DMF) (38), hexane (1.8), toluene (2.4), diethyl ether (4.3), and chloroform (4.8).
  • acetic acid (6.15), pyridine (12.3), tetrahydrofuran (THF) (7.5), acetone (20.7), methyl ethyl ketone (MEK) (15.45), ethyl a
  • the organic solvents exemplified in (1) to (4) above may be used in combination of two or more kinds.
  • the organic solvents exemplified in (1) to (4) above may be added only to the electrolyte solution for which the dielectric constant is desired to be reduced, but organic solvents with different dielectric constants may be added to both the first electrolyte solution and the second electrolyte solution.
  • the dielectric constant of the first electrolyte solution is made different from that of the second electrolyte solution by adding an organic solvent with a lower dielectric constant than water, but the dielectric constants may also be made different by adding an organic solvent with a higher dielectric constant than water to one of the electrolyte solutions.
  • organic solvents with a higher dielectric constant than water include ethylene carbonate (89.8), formamide (111.0), N-methylformamide (182.4), and N-methylacetamide (191.3).
  • an electrolyte solution to which a highly viscous organic solvent such as glycerin or DMSO has been added has a high viscosity. Therefore, when carrying out the measurement method, the time it takes for the charged sample S to pass through the through-hole 3 is lengthened, which has the effect of enabling more detailed information about the charged sample S to be obtained.
  • an organic solvent with a high viscosity performs both the function of adjusting the dielectric constant of the electrolyte solution and the completely different function of lengthening the time it takes for the charged sample S to pass through the through-hole 3.
  • the S/N ratio of the change in the measured ion current is increased by making the dielectric constant of the first electrolyte solution different from that of the second electrolyte solution. Therefore, even a small difference in the dielectric constant will produce the effect disclosed in this application.
  • the lower dielectric constant may be 0.99 or less, 0.98 or less, 0.97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, 0.92 or less, 0.91 or less, 0.9 or less, 0.85 or less, 0.8 or less, 0.75 or less, 0.7 or less, etc.
  • increasing the difference between the dielectric constants of the first electrolyte solution and the second electrolyte solution means that a larger amount of organic solvent is added to the electrolyte solution if the type (dielectric constant) of the organic solvent added is the same. And the more the amount of organic solvent added, the more the composition of the electrolyte contained in the first electrolyte solution and the second electrolyte solution changes.
  • the dielectric constant of the lower one may be 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, 0.45 or more, 0.5 or more, 0.55 or more, 0.6 or more, or 0.65 or more, when the higher of the dielectric constants of the first electrolytic solution and the second electrolytic solution is set to 1, but is not limited thereto.
  • first electrolytic solution and the second electrolytic solution it is also possible to prepare the first electrolytic solution and the second electrolytic solution so that the dielectric constants are different but the salt concentrations are the same by preparing a high-concentration electrolytic solution, an organic solvent, and ultrapure water and mixing them in appropriate amounts to prepare the first electrolytic solution and the second electrolytic solution.
  • the charged sample is placed in the first chamber 5 or the second chamber 6, and the charged sample passing step (ST1) is carried out.
  • a preparation step may be carried out before carrying out the charged sample passing step (ST1).
  • the preparation step may be carried out in the following manner.
  • (1) The first chamber 5 is filled with a first electrolytic solution, and the second chamber 6 is filled with a second electrolytic solution.
  • a liquid junction is established between the first chamber 5 and the second chamber 6 via the through hole 3.
  • (2) The charged sample S is placed into the first chamber 5 or the second chamber 6 .
  • the above steps (1) and (2) may be carried out separately, or the electrolyte solution already containing the charged sample S may be introduced into the first chamber 5 or the second chamber 6 .
  • the first electrolyte solution and the second electrolyte solution may be filled in containers such as bottles and provided together with the device 1a.
  • a current is passed through the first electrode 52 arranged in the first chamber 5 and the second electrode 62 arranged in the second chamber 6, and in addition to normal diffusion, the charged sample S passes through the through-hole 3 formed in the substrate 2 by electrophoresis.
  • the ion current measurement step (ST2) the change in the ion current caused by the current flow is measured over time by the ammeter 7.
  • the dielectric constant of the first electrolyte solution is different from the dielectric constant of the second electrolyte solution, so that when the charged sample S passes through the through-hole 3, a measurement result with a large S/N ratio is obtained.
  • the measurement method may optionally include an analysis step (ST3) in which information about the obtained charged sample is analyzed from the change in the ion current measured in the ion current measurement step (ST2).
  • the measurement result reflects the increase in the ion concentration in the through-hole 3 due to the volume of the charged sample and the ions gathering around the charged sample, so that the information about the charged sample can be analyzed in more detail compared to the analysis of only the volume information of the sample.
  • information that can be analyzed include types of bacteria, cells, viruses, exosomes, etc., nucleic acid sequences such as DNA and RNA, and amino acid sequences of proteins.
  • Example 1 [Fabrication of Device 1] A 4-inch silicon wafer coated on both sides with a 50 nm thick SiNx layer was diced into 30 mm x 30 mm chips. One side of the SiNx was partially removed by reactive ion etching (Samco) with CHF3 etching gas through a metal mask. The silicon layer was then wet etched in KOH aq. (Wako) at 50 °C through the exposed 1 mm x 1 mm square area. As a result, a 50 nm thick SiNx film was formed. An electron beam resist (ZEP520A, Zeon) was spin-coated on the formed film and baked at 180 °C.
  • the fabricated nanopore chip was sealed with two polymer blocks (first and second chamber members) made of polydimethylsiloxane (PDMS) to create the first and second chambers.
  • PDMS polydimethylsiloxane
  • These blocks were fabricated by polymerizing a PDMS precursor (Sylgard 184, Dow) on a SU-8 mold at 80°C.
  • the mold had an I-shaped pattern with sub-millimeter width and height to form trenches on the polymer block that act as channels for the flow of charged sample solutions into the nanopore. Three holes were punched in the block before sealing.
  • the nanopore chip and the polymer blocks (first and second chamber members) were then exposed to oxygen plasma for surface activation, and the nanopore chip and the polymer blocks were then bonded to create device 1.
  • Example 2 (1) Preparation of electrolyte and charged sample Electrolyte with low dielectric constant: An equal amount of glycerol (manufactured by Aldrich: CAS 56-81-5) was added to 1.37 M NaCl (manufactured by Nippon Gene Co., Ltd.: 10x PBS Buffer (-), model number: 314-90185) to prepare a first electrolyte with a salt concentration of 0.69 M NaCl (5x PBS) and a glycerol concentration of 50%. The dielectric constant of the prepared first electrolyte at 20°C was 63.5.
  • Electrolyte solution with high dielectric constant A second electrolytic solution with a salt concentration of 0.69 M NaCl (5xPBS) was prepared by adding the same amount of ultrapure water to the above 10xPBS Buffer. The dielectric constant of the prepared second electrolytic solution at 20°C was 80.
  • Charged sample Double-stranded DNA (48.5 kbp) was used as the charged sample.
  • a first electrolyte solution having a low dielectric constant was filled into the first chamber through a hole formed in the block. Double-stranded DNA was also filled into the first chamber.
  • a second electrolyte solution having a high dielectric constant was filled into the second chamber through a hole formed in the block. A voltage of 0.3 V was applied so that the first electrode 52 was the negative electrode and the second electrode 62 was the positive electrode, and the ionic current I ion was measured.
  • Example 3 The ionic current I ion was measured in the same manner as in Example 2, except that the electrolyte solution having a higher dielectric constant was used as the first electrolyte solution, and the electrolyte solution having a lower dielectric constant was used as the second electrolyte solution.
  • Figure 4 shows the measurement results of Example 2, Example 3, and Comparative Example 1.
  • the electrolyte filled in the first chamber and the second chamber had the same composition as shown in Comparative Example 1.
  • the change in ion current when DNA passed through the nanopore was 0.4 nA from the baseline.
  • Example 2 the peak value of the change in ion current when DNA passed through the nanopore was 3.5 nA from the baseline, which was about 8 times stronger than in Comparative Example 1; and (2) in Example 3, the peak value of the change in ion current when DNA passed through the nanopore was 7.5 nA from the baseline, which was about 20 times stronger than in Comparative Example 1.
  • the S/N ratio (calculated using the wave heights of multiple signals and the rms noise of the ion current) was approximately 1.1 in Comparative Example 1, whereas it was approximately 4.3 in Example 2 and approximately 5.0 in Example 3, which shows a significantly higher S/N ratio.
  • Example 2 in which DNA migrates from the electrolyte with a low dielectric constant to the electrolyte with a high dielectric constant (positive dielectric constant gradient), the direction in which the ion current measurement signal was obtained was reversed from Comparative Example 1, even though the sample was the same.
  • Example 3 in which DNA migrates from the electrolyte with a high dielectric constant to the electrolyte with a low dielectric constant (negative dielectric constant gradient), the direction in which the ion current measurement signal was obtained was the same as in Comparative Example 1, but the change in ion current increased significantly.
  • Example 4 0.69M NaCl was used as the first electrolytic solution.
  • 1.37M NaCl (10xPBS), glycerol (manufactured by Aldrich: CAS 56-81-5), and ultrapure water were mixed in appropriate amounts to prepare three types of second electrolytic solutions with a salt concentration of 0.69M NaCl and glycerol concentrations of 10%, 30%, and 50%.
  • I ion was measured in the same manner as in Example 3, except that the prepared first and second electrolytic solutions were used.
  • the viscosity of the second electrolytic solution when 10% glycerol was added was 1.5 mPas
  • the viscosity of the second electrolytic solution when 50% glycerol was added was 14 mPas.
  • the dielectric constant of the first electrolytic solution was 80, the dielectric constant of the second electrolytic solution when 10% glycerol was added was 76.7, and the dielectric constant of the second electrolytic solution when 50% glycerol was added was 63.5.
  • Electrolyte with low dielectric constant Three types of electrolyte solutions with salt concentration of 0.69 M NaCl and ethanol concentration of 10%, 20%, and 30% were prepared by mixing appropriate amounts of 1.37 M NaCl (10x PBS), ethanol (Kishida Chemical Co., Ltd.: 000-28553), and ultrapure water. The dielectric constants of the prepared electrolyte solutions at 20°C were 74.4 (10% ethanol), 68.8 (20% ethanol), and 63.2 (30% ethanol). High dielectric constant electrolyte: An electrolyte similar to the "high dielectric constant electrolyte" in Example 2 was used.
  • the ion current I ion was measured in the same manner as in Example 2, except that the combination of low-dielectric constant and high-dielectric constant electrolytes was changed and filled in the first and second chambers.
  • Figure 7 shows the combinations of electrolytes filled in the first and second chambers and the measurement results.
  • 10% ethanol, which is an electrolyte with a low dielectric constant is described as "10% Eth”
  • 20% ethanol is described as "20% Eth”
  • 30% ethanol is described as "10% Eth”
  • the electrolyte with a high dielectric constant is described as "5xPBS”.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Sustainable Development (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 イオン電流の変化の測定結果のS/N比を大きくできるイオン電流測定方法およびイオン電流測定用デバイスを提供する。前記イオン電流測定用デバイスは、第1面および第2面を有する基板、前記第1面から前記第2面に向けて貫通し、荷電サンプルが通過する貫通孔、前記第1面の前記貫通孔の第1開口を含む面とで第1電解液を充填する第1チャンバーを形成する第1チャンバー部材、および前記第2面の前記貫通孔の第2開口を含む面とで第2電解液を充填する第2チャンバーを形成する第2チャンバー部材を含み、前記イオン電流測定方法は、前記第1電解液および前記第2電解液に電圧を印加することで一方のチャンバーに含まれる前記荷電サンプルを他方のチャンバーへの方向に前記貫通孔を通過させる工程と、前記荷電サンプルが前記貫通孔を通過する時のイオン電流の変化を測定する工程とを含む。そして、前記第1電解液と前記第2電解液とは誘電率が異なる。

Description

イオン電流測定方法およびイオン電流測定用デバイス
 本出願における開示は、イオン電流測定用デバイスおよびイオン電流測定用デバイスを用いたサンプルのイオン電流測定方法に関する。
 基板に貫通孔(ナノポア)を形成し、サンプルが貫通孔を通過する際のイオン電流の変化を測定するデバイスは、細菌、ウイルス、DNA、タンパク質等のセンシングに幅広く応用可能なデバイスとして注目されている。
 関連する技術としては、例えば、基板に形成した貫通孔をエクソソームが通過する際のイオン電流を測定することで、エクソソームの形状分布を解析すること(特許文献1参照)、通過するサンプルと相互作用する分子を基板に形成した貫通孔に形成することで、サンプルが貫通孔を通過する時間を長くできること(特許文献2参照)、基板に貫通孔を2以上形成すること(特許文献3参照)等が知られている。
特開2017-156168号公報 国際公開第2017/183716号公報 国際公開第2020/138021号公報
 上記特許文献1乃至3に記載のとおり、サンプルが基板に形成した貫通孔を通過する際のイオン電流の変化を測定することは公知である。ところで、イオン電流の変化の測定結果は、S/Nが大きいことが望ましい。
 本発明者らは、S/N比を大きくするための更なる研究を行ったところ、(1)貫通孔を形成する基板の第1面側の第1チャンバーに充填する第1電解液および基板の第2面側の第2チャンバーに充填する第2電解液について、(2)第1電解液の誘電率と第2電解液の誘電率とが異なるようにすることで、(3)荷電サンプルが貫通孔を通過する際のイオン電流の変化の測定結果のS/N比を大きくできること、を新たに見出した。
 すなわち、本出願における開示は、イオン電流の変化の測定結果のS/N比を大きくできるイオン電流測定方法および当該イオン電流測定方法に用いるイオン電流測定用デバイスを提供することである。
 本出願における開示は、以下に示す、イオン電流測定用デバイスおよびイオン電流測定用デバイスに関する。
(1)イオン電流測定用デバイスを用いた荷電サンプルのイオン電流測定方法であって、
 前記イオン電流測定用デバイスは、
  第1面および第2面を有する基板と、
  前記第1面から前記第2面に向けて貫通し、前記荷電サンプルが通過する貫通孔と、
  第1チャンバー部材と、
  第2チャンバー部材と、
を含み、
  前記第1チャンバー部材は、前記第1面の少なくとも前記貫通孔の第1開口を含む面とで第1電解液を充填する第1チャンバーを形成し、
  前記第2チャンバー部材は、前記第2面の少なくとも前記貫通孔の第2開口を含む面とで第2電解液を充填する第2チャンバーを形成し、
 前記イオン電流の測定方法は、
  荷電サンプル通過工程と、
  イオン電流測定工程と、
を含み、
 前記荷電サンプル通過工程は、
  前記第1チャンバーに充填した前記第1電解液および前記第2チャンバーに充填した前記第2電解液に電圧を印加することで、
  前記第1チャンバーに含まれる前記荷電サンプルを前記第2チャンバー方向に前記貫通孔を通過、または、前記第2チャンバーに含まれる前記荷電サンプルを前記第1チャンバー方向に前記貫通孔を通過させ、
 前記イオン電流測定工程は、
  前記荷電サンプルが、前記貫通孔を通過する時のイオン電流の変化を測定し、
 前記第1電解液の誘電率と前記第2電解液の誘電率とが異なる、
 イオン電流測定方法。
(2)前記第1電解液または前記第2電解液の一方には、水より誘電率が低い有機溶媒が溶解されている、
 上記(1)に記載のイオン電流測定方法。
(3)前記有機溶媒が、1価アルコール、2価アルコールおよび3価アルコールからなる群から選択した少なくとも1種である、
 上記(2)に記載のイオン電流測定方法。
(4)前記第1電解液の誘電率または前記第2電解液の誘電率の高い方を1とした時に、低い方の誘電率が0.1以上、0.9以下である、
 上記(1)に記載のイオン電流測定方法。
(5)前記有機溶媒が、前記第1電解液または前記第2電解液の粘度を大きくできる溶媒から選択される、
 上記(2)に記載のイオン電流測定方法。
(6)前記第1電解液の誘電率が、前記第2電解液の誘電率より高い、
 上記(1)~(5)の何れか一つに記載のイオン電流測定方法。
(7)前記第1電解液の誘電率が、前記第2電解液の誘電率より低い、
 上記(1)~(5)の何れか一つに記載のイオン電流測定方法。
(8)前記荷電サンプルが、DNAまたはRNAである、
 上記(1)~(5)の何れか一つに記載のイオン電流測定方法。
(9)イオン電流測定用デバイスであって、該イオン電流測定用デバイスは、
  第1面および第2面を有する基板と、
  前記第1面から前記第2面に向けて貫通し、前記荷電サンプルが通過する貫通孔と、
  第1チャンバー部材と、
  第2チャンバー部材と、
を含み、
  前記第1チャンバー部材は、前記第1面の少なくとも前記貫通孔の第1開口を含む面とで第1電解液を充填する第1チャンバーを形成し、
  前記第2チャンバー部材は、前記第2面の少なくとも前記貫通孔の第2開口を含む面とで第2電解液を充填する第2チャンバーを形成し、
 前記第1チャンバーに充填される前記第1電解液の誘電率と前記第2チャンバーに充填される前記第2電解液の誘電率とが異なる、
 イオン電流測定用デバイス。
(10)前記第1チャンバーに第1電解液が充填され、
 前記第2チャンバーに第2電解液が充填されている、
 上記(9)に記載のイオン電流測定用デバイス。
(11)前記第1チャンバーに充填される第1電解液および前記第2チャンバーに充填される第2電解液が、それぞれ容器に入れられている、
 上記(9)に記載のイオン電流測定用デバイス。
(12)前記第1電解液または前記第2電解液の一方には、水より誘電率が低い有機溶媒が溶解されている、
 上記(10)または(11)に記載のイオン電流測定用デバイス。
(13)前記有機溶媒が、1価アルコール、2価アルコールおよび3価アルコールからなる群から選択した少なくとも1種である、
 上記(12)に記載のイオン電流測定用デバイス。
(14)前記第1電解液の誘電率または前記第2電解液の誘電率の高い方を1とした時に、低い方の誘電率が0.1以上、0.9以下である、
 上記(10)または(11)に記載のイオン電流測定用デバイス。
(15)前記有機溶媒が、前記第1電解液または前記第2電解液の粘度を大きくできる溶媒から選択される、
 上記(12)に記載のイオン電流測定用デバイス。
 本出願で開示するイオン電流測定用デバイスおよびイオン電流測定方法により、イオン電流の変化の測定結果のS/N比を大きくできる。
実施形態に係るデバイス1の概略断面図である。 デバイス1aの構成例を示す概略断面図である。 実施形態に係る測定方法のフローチャートである。 実施例2、実施例3および比較例1で測定したイオン電流Iionの測定結果を示す図である。 実施例4で測定したイオン電流Iionの測定結果を示す図である。 比較例2で測定したイオン電流Iionの測定結果を示す図である。 実施例5で第1チャンバーおよび第2チャンバーに充填した各電解液の組み合わせ、および、測定したイオン電流Iionの測定結果を示す図である。
 以下に、イオン電流測定方法(以下、単に「測定方法」と記載することがある。)およびイオン電流測定用デバイス(以下、単に「デバイス」と記載することがある。)について詳しく説明する。なお、本明細書において、同種の機能を有する部材には、同一または類似の符号が付されている。そして、同一または類似の符号の付された部材について、繰り返しとなる説明が省略される場合がある。
 また、図面において示す各構成の位置、大きさ、範囲などは、理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、本出願における開示は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
 また、本明細書において、
(1)「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味し、
(2)数値、数値範囲、及び定性的な表現(例えば、「同一」、「同じ」等の表現)については、当該技術分野において一般的に許容される誤差を含む数値、数値範囲及び性質を示している、
(3)「略〇〇状」と記載した場合、正確な〇〇状に加え、凡そ〇〇状と把握される形状を含む、
と解釈される。
(デバイス1の実施形態)
 図1を参照して、実施形態に係るデバイス1について説明する。図1は、実施形態に係るデバイス1の概略断面図である。
 デバイス1は、基板2と、貫通孔3と、第1チャンバー部材51と、第2チャンバー部材61と、を含む。基板2は第1面21および第2面22を有し、貫通孔3は基板2の第1面21から第2面22に向けて貫通している。イオン電流測定方法を実施する際に、荷電サンプルは貫通孔3を通過する。
 第1チャンバー部材51は、第1面21の少なくとも貫通孔3の第1開口31を含む面とで第1電解液を充填する第1チャンバー5を形成する。第2チャンバー部材61は、第2面22の少なくとも貫通孔3の第2開口32を含む面とで第2電解液を充填する第2チャンバー6を形成する。本出願で開示するデバイス1は、第1チャンバー5に充填される第1電解液の誘電率と第2チャンバー6に充填される第2電解液の誘電率とが異なることが特徴である。後述する実施例および比較例に示す通り、第1電解液の誘電率と第2電解液の誘電率が異なるようにすることで、イオン電流の変化の測定結果のS/N比を大きくできる。
 基板2を形成する材料は、貫通孔3を形成することができ、貫通孔3を通過する荷電サンプルのイオン電流を測定できれば特に制限はない。基板2を形成する材料としては、例えば、半導体製造技術の分野で一般的に用いられている絶縁性の材料が挙げられる。絶縁性の材料としては、例えば、Si、Ge、Se、Te、GaAs、GaP、GaN、InSb、InP、SiN等が挙げられる。また、基板2は、SiN、SiO2、HfO2等の材料を用い、固体メンブレンと呼ばれる薄膜状、または、グラフェン、酸化グラフェン、二酸化モリブデン(MoS2)、窒化ホウ素(BN)等の材料を用い、2次元材料と呼ばれるシート状に形成してもよい。また、基板2は、脂質二重膜等の人工膜または天然産生膜を用いて形成してもよい。脂質二重膜を用いた測定デバイスは、特表2011-527191号公報および特開2020-000056号公報等に記載されている。特表2011-527191号公報および特開2020-000056号公報に記載されている事項は、参照により本明細書に含まれる。また、脂質二重膜を用いた測定デバイスは、市販品を用いてもよい。脂質二重膜を用いたナノポア分析が可能な市販品としては、例えば、オックスフォード・ナノポア・テクノロジーズ社製のMinION、GridIONX5、SmidgION、PromethION等が挙げられる。
 荷電サンプルの測定感度は、貫通孔3の体積が小さいほど高くなることから、貫通孔3を形成する基板2は薄い方が好ましい。限定されるものではないが、例えば、5μm以下、1μm以下、750nm以下、500nm以下、250nm以下、100nm以下、90nm以下、80nm以下、70nm以下、60nm以下、50nm以下、40nm以下、30nm以下、20nm以下、10nm以下、等が挙げられる。なお、例えば、グラフェンは1nm以下の膜厚の基板2の作製が可能である等、基板2として固体メンブレンまたは2次元材料を用いた場合は、膜厚を非常に薄くできる。しかしながら、基板2の膜厚が非常に薄いと、破損せずに取り扱うことが困難な場合がある。そのため、基板2は、上記の絶縁性の材料で形成した支持板の上に固体メンブレンまたは2次元材料を積層した積層構造としてもよい。積層構造にする場合は、貫通孔3より大きな孔を形成した支持板の上に固体メンブレンまたは2次元材料を積層し、固体メンブレンまたは2次元材料に貫通孔3を形成すればよい。
 貫通孔3は、基板2の第1面21から、該第1面21の反対側の面である第2面22の方向に、基板2を貫通するように形成されている。イオン電流を測定する際には、貫通孔3の体積が小さいほど感度が高くなる。したがって、基板2を薄くするとともに、貫通孔3の大きさは、荷電サンプルよりは大きいが、大き過ぎないように適宜調整すればよい。例えば、荷電サンプルがDNA等の非常に小さい場合、貫通孔3の大きさは当該荷電サンプルが通過できれば特に制限はないが、貫通孔3を小さくし過ぎると、個々の貫通孔3を作製する際の誤差が大きくなり、デバイス間の測定誤差が大きくなるおそれがある。限定されるものではないが、貫通孔3の下限としては、例えば、0.8nm以上、1nm以上、1.5nm以上、2nm以上、3nm以上、4nm以上、5nm以上、10nm以上、20nm以上、30nm以上、40nm以上、50nm以上、等が挙げられる。また、荷電サンプルが細胞等の場合は当該細胞が通過できる大きさであればよく、例えば、10μm程度が挙げられる。上記のとおり、貫通孔3の体積が小さいほど感度が高くなる。したがって、限定されるものではないが、貫通孔3の下限としては荷電サンプルのサイズに応じて、例えば、10μm以下、7.5μm以下、5μm以下、2.5μm以下、1μm以下、750nm以下、500nm以下、250nm以下、100nm以下等とすればよい。なお、貫通孔3の第1面21と平行となる断面形状が円形の場合、貫通孔3の大きさと記載した場合は直径を意味する。貫通孔3の第1面21と平行となる断面形状が円形でない場合、貫通孔3の大きさとは断面の内接円の直径を意味する。貫通孔3は、基板2の材料として脂質二重膜以外の例示した材料を用いる場合は、後述する実施例に示すとおり、エッチング等により形成すればよい。また、貫通孔3は、第1面21側の貫通孔3の第1開口31と第2面22側の貫通孔3の第2開口32とが同じ形状となるように形成されていてもよい。代替的に、第1開口31と第2開口32の大きさが異なる、例えば、貫通孔3が、基材2の中で第1面21から第2面22に向けて広がるように形成されていてもよい。また、図1には基板2に形成される貫通孔3が一つの例が示されているが、貫通孔3は2以上形成されてもよい。なお、基板2に貫通孔3を2以上形成する際に、荷電サンプルの測定精度を高くするため、必要に応じて隣り合う貫通孔3同士の距離を調整してもよい。隣り合う貫通孔3同士の距離をどの程度に設定するのかは、特許文献3に詳しく記載されていることから、本出願における開示では、詳細な説明は省略する。特許文献3に記載されている事項は、参照により本明細書に含まれる。
 第1チャンバー部材51および第2チャンバー部材61は、電気的および化学的に不活性な材料で形成することが好ましい。限定されるものではないが、材料としては、例えば、ガラス、サファイア、セラミック、樹脂、ゴム、エラストマー、SiO2、SiN、Al23などが挙げられる。
 第1チャンバー5および第2チャンバー6は貫通孔3を挟むように形成され、第1チャンバー5に投入した荷電サンプルが貫通孔3を通り第2チャンバー6に移動できる、または、第2チャンバー6に投入した荷電サンプルが貫通孔3を通り第1チャンバー5に移動できるように形成されていれば特に制限はない。例えば、第1チャンバー部材51および第2チャンバー部材61を別々に作製し、基板2に液密となるように接着すればよい。または、1つの面が解放状態の略直方体の箱部材を形成し、箱の中央に基板2を挿入・固定し、その後、解放状態の面を液密に封止してもよい。その場合、第1チャンバー部材51および第2チャンバー部材61は別々の部材を意味するのではなく、基板2を境に分けた箱部材の一部を意味する。なお、図示はしていないが、第1チャンバー部材51および第2チャンバー部材61には、電解液および荷電サンプル液を充填・排出、電極および/またはリードを挿入するための孔を必要に応じて形成してもよい。
(測定方法の実施形態および測定方法を実施する際のデバイス1aの構成例)
 図2および図3を参照して、測定方法の実施形態および測定方法を実施する際のデバイス1aの構成例について説明する。図2はデバイス1aの構成例を示す概略断面図、図3は実施形態に係る測定方法のフローチャートである。
 図2に示すデバイス1aは、実施形態に係るデバイス1に加え、第1チャンバー5内の第1電解液と接する箇所に形成された第1電極52と、第2チャンバー6内の第2電解液と接する箇所に形成された第2電極62と、第1電極52と第2電極62との間に電圧を印加する電源54と、貫通孔3を荷電サンプルSが通過する時のイオン電流を測定するための電流計7と、を少なくとも含んでいる。第1電極52と、第2電極62と、電源54と、電流計7は、デバイス1とは別に準備し、測定方法を実施する際にデバイス1に取り付けてもよいし、デバイス1に最初から組み込まれていてもよい。また、デバイス1aは任意付加的に、電流計7で測定したイオン電流を解析する解析部8、測定したイオン電流値および/または解析部8が解析した結果を表示するための表示部9、予め解析部8や表示部9を機能させるためのプログラムを格納したプログラムメモリ10、プログラムメモリ10に格納されているプログラムを読み出し実行するための制御部11を含んでいてもよい。プログラムは、予めプログラムメモリ10に記憶しておいても良いし、記録媒体に記録され、インストール手段を用いてプログラムメモリ10に格納されるようにしてもよい。
 第1電極52および第2電極62は、アルミニウム、銅、白金、金、銀、銀/塩化銀、チタン等の公知の導電性金属で形成することができる。図2には、第1電極52および第2電極62は貫通孔3を挟むように形成され、第1電極52側がマイナス極となり第2電極62側がプラス極として直流電流が流れるように電圧が印加される例が示されているが、代替的に、第1電極52側がプラス極となり第2電極62側がマイナス極となってもよい。後述する荷電サンプルが有する電荷に応じて、第1電極52と第2電極62の何れの側をプラスとするのかは適宜決めればよい。
 第1電極52は、第1チャンバー5内の第1電解液に接する箇所に形成されていれば特に制限はない。図2に示す例では、第1電極52は第1チャンバー部材51の内面にリード53を介して配置されている。代替的に、第1電極52は、基板2の第1面21上、または、第1チャンバー5内の空間にリード53を介して配置されてもよい。更に代替的に、第1電極52は、第1チャンバー部材51に形成した孔から第1チャンバー部材51を貫通するように配置してもよい。
 第2電極62も第1電極52と同様に、第2チャンバー6内の第2電解液に接する箇所に形成されていれば特に制限はない。図2に示す例では、第2電極62は第2チャンバー部材61の内面にリード63を介して配置されている。代替的に、第2電極62は、基板2の第2面22上、または、第2チャンバー6内の空間にリード63を介して配置されてもよい。更に代替的に、第2電極62は、第2チャンバー部材61に形成した孔から第2チャンバー部材61を貫通するように配置してもよい。
 図2に示す例では、第1電極52はリード53を介して電源54、アース55に接続している。第2電極62は、リード63を介して電流計7、アース64に接続している。なお、図2に示す例では、電源54は第1電極52側に、電流計7は第2電極62側に接続しているが、電源54と電流計7は、同じ電極側に設けてもよい。
 電源54は、第1電極52および第2電極62に直流電流を通電できるものであれば特に制限はない。電流計7は、第1電極52および第2電極62に通電した際に、発生するイオン電流を経時的に測定できるものであれば特に制限はない。なお、図2には図示していないが、デバイス1aは、必要に応じてノイズ除去回路や電圧安定化回路等を具備してもよい。
 解析部8は、電流計7で測定したイオン電流の変化を解析する。一般的に、貫通孔(ナノポア)3を有するデバイス1aは、荷電サンプルが貫通孔3を通過すると、貫通孔3を流れるイオン電流が荷電サンプルにより遮断され、イオン電流が減少する。したがって、測定したイオン電流の変化(変化したイオン電流のピーク値やイオン電流の波形等)に基づき解析部8でデータ解析をすることで、荷電サンプルを識別できる。
 なお、後述する実施例に示すとおり、本出願では荷電サンプルとして細長いDNAを用いた場合にも、DNAが貫通孔3を通過する際のイオン電流の変化を大きなS/N比で測定ができた。更に、第1電解液の誘電率が、第2電解液の誘電率より高い場合と低い場合とでは、イオン電流の変化の方向(プラス方向、マイナス方向)が逆転した。このことから、本出願で開示する測定方法で測定した結果は、貫通孔3を通過する荷電サンプルのサイズに単純に比例するのではなく、電荷サンプルの周りに集まるイオンによって貫通孔3のイオン濃度が増大すると推測される。したがって、予め多数の既知の荷電サンプルを測定しておき、既知の荷電サンプルを測定した時と同一条件(第1電解液の成分および誘電率、第2電解液の成分および誘電率、印加する電圧の大きさ等)で未知の荷電サンプルを測定し、既知の荷電サンプルの測定結果と未知の荷電サンプルの測定結果を対比することで、未知の荷電サンプルを識別することもできる。
 表示部9は、測定したイオン電流の変化、解析部8で解析した結果を表示できればよく、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなど、公知の表示装置を用いればよい。プログラムメモリ10は、解析部8や表示部9を機能させるためのプログラムを格納できれば特に制限はなく、マスクROM、PROM、EPROM、EEPROM等のROMが挙げられる。制御部11は、プログラムメモリ10に格納されているプログラムを読み出し実行することができれば特に制限はなく、プロセッサ(CPU)あるいはCPUを搭載した汎用コンピュータ等が挙げられる。
 測定方法の実施形態は、荷電サンプル通過工程(ST1)と、イオン電流測定工程(ST2)と、を含む。
 荷電サンプル通過工程(ST1)は、第1チャンバー5に充填した第1電解液および第2チャンバー6に充填した第2電解液に電圧を印加することで、第1チャンバー5に含まれる荷電サンプルSを第2チャンバー6方向に貫通孔3を通過、または、第2チャンバー6に含まれる荷電サンプルSを第2チャンバー6方向に貫通孔3を通過させる。
 本出願で開示する測定方法は、第1電解液の誘電率と第2電解液の誘電率とが異なることでS/N比が向上するが、その理由としては、上記のとおり、荷電サンプルSが有する体積に加え、荷電サンプルSの周りに集まるイオンによって貫通孔3のイオン濃度が増大すると考えられる。そのため、本出願で開示する測定方法で測定する荷電サンプルSは、表面が荷電していることが望ましい。荷電サンプルSは、表面がプラスに荷電していてもマイナスに荷電していても特に制限はない。限定されるものではないが、例えば、細菌、細胞、ウイルス、DNA、RNA、タンパク質、リポソーム等の荷電した生体物質、あるいは、ポリマー微粒子や金属微粒子等の荷電した非生体物質等が挙げられる。荷電した生体物質は種類にもよるが、細菌、細胞、ウイルスの多くはマイナスに荷電している。また、DNAおよびRNAもマイナスに荷電している。一方、タンパク質は、タンパク質を構成するアミノ酸は両性分子でpH環境によりプラスに荷電する場合とマイナスに荷電する場合がある。したがって、タンパク質を測定する場合は、第1電解液および第2電解液のpHを考慮しながら、測定条件を設定すればよい。
 第1電解液および第2電解液は、第1電極52および第2電極62が通電できるようにする必要があるため、一般的に、TEバッファー、PBSバッファー、HEPESバッファー、KCl水溶液等のイオンを含む溶液(電解液)が用いられる。第1電解液と第2電解液の誘電率を異なるようにするためには、限定されるものではないが、例えば、誘電率を低くしたい方の溶液(電解液)に、水より比誘電率が低い有機溶媒を溶解すればよい。比誘電率は温度により異なるが、水の比誘電率は80.4(20℃)、79.6(22℃)、78.6(25℃)、76.8(30℃)である。
 水より比誘電率が低い有機溶媒の具体例としては、例えば、1価アルコール、2価アルコール、3価アルコール、その他有機溶媒などが挙げられる。なお、以下に例示する有機溶媒の中で、代表的なものについては有機溶媒の名称の後の()の中に比誘電率を併せて記載する。なお、以下に記載の比誘電率は20℃~25℃前後の温度で測定したものであり、測定条件により多少の誤差を含むものであるが、水の比誘電率より非常に低い値であることは明らかである。
(1)1価アルコール
 メタノール(33.0)、エタノール(24.0)、1-プロパノール(20.0)、2-プロパノール(18.0)、1-ブタノール(17.5)、2-ブタノール(16.6)、イソブチルアルコール(17.9)、イソペンチルアルコール(15.2)、シクロヘキサノール(15.0)、等の他に、脂肪族飽和1価アルコール、脂肪族不飽和アルコール、脂環式アルコール及び芳香族アルコール等が挙げられる。
 脂肪族飽和1価アルコールには、例えば天然アルコールおよび合成アルコール(例えばチーグラーアルコールもしくはオキソアルコール)などの直鎖および分岐アルコールが含まれ、具体的には2-エチルブタノール、2-メチルペンタノール、4-メチルペンタノール、1-ヘキサノール、2-エチルペンタノール、2-メチルヘキサノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、2-エチルヘキサノール、1-オクタノール、2-オクタノール、1-ノナノール、デカノール、ウンデカノール、ドデカノールおよびトリデカノールが挙げられる。
 脂肪族不飽和アルコールには、例えばアルケノールおよびアルカジエノールが含まれ、具体的には2-プロピルアリルアルコール、2-メチル-4-ペンテノール、1-ヘキセノール、2-エチル-4-ペンテノール、2-メチル-5-ヘキセノール、1-ヘプテノール、2-エチル-5-ヘキセノール、1-オクテノール、1-ノネノール、ウンデセノール、ドデセノールおよびゲラニオール等が挙げられる。
 脂環式アルコールには、例えばシクロアルカノールおよびシクロアルケノールが含まれ、具体的にはメチルシクロヘキサノールおよびα-テルピネオール等が挙げられる。
 芳香族アルコールとしては、フェネチルアルコールおよびサリチルアルコールなどが挙げられる。
(2)2価アルコール
 エチレングリコール(37.7)、ジエチレングリコール(31.7)、トリエチレングリコール(23.7)、プロピレングリコール(32.0)などが挙げられる。
(3)3価アルコール
 1,2,4-ブタントリオール(38)、グリセリン(グリセロール:44)などが挙げられる。
(4)その他有機溶媒
 酢酸(6.15)、ピリジン(12.3)、テトラヒドロフラン(THF)(7.5)、アセトン(20.7)、メチルエチルケトン(MEK)(15.45)、酢酸エチル(6.4)、アニリン(6.89)、N-メチル-2-ピロリドン(NMP)(32.2)、ジメチルスルホキシド(DMSO)(45)、N,N-ジメチルホルムアミド(DMF)(38)、ヘキサン(1.8)、トルエン(2.4)、ジエチルエーテル(4.3)、クロロホルム(4.8)、等を挙げることができる。
 上記(1)~(4)に例示した有機溶媒は、2種以上を組み合わせて用いてもよい。また、上記(1)~(4)に例示した有機溶媒は、誘電率を小さくしたい方の電解液のみに添加すればよいが、誘電率の異なる有機溶媒を第1電解液および第2電解液の両方に添加してもよい。
 なお、上記の例示は、水より誘電率が低い有機溶媒を添加することで、第1電解液の誘電率と第2電解液の誘電率が異なるようにしているが、水より誘電率が高い有機溶媒を電解液の一方に添加することで、誘電率が異なるようにしてもよい。水より誘電率が高い有機溶媒としては、炭酸エチレン(89.8)、ホルムアミド(111.0)、N-メチルホルムアミド(182.4)、N-メチルアセトアミド(191.3)等が挙げられる。
 また、上記に例示した有機溶媒の中で、例えば、グリセリン、DMSO等の粘度が高い有機溶媒を添加した電解液は粘度が高くなる。そのため、測定方法を実施する際に、荷電サンプルSが貫通孔3を通過する時間が長くなることから、荷電サンプルSが有する情報をより詳しく得られるという効果を奏する。つまり、粘度が高い有機溶媒は、測定方法を実施するにあたり、電解液の誘電率を調整するという機能と、荷電サンプルSが貫通孔3を通過する時間を長くするという全く異なる機能を併せて奏する。
 本出願で開示する測定方法およびデバイス1aは、第1電解液の誘電率と第2電解液の誘電率が異なるようにすることで、測定したイオン電流の変化のS/N比が大きくなる。したがって、誘電率に少しでも差があれば本出願で開示する効果を奏する。限定されるものではないが、第1電解液の誘電率と第2電解液の誘電率の高い方を1とした時に、低い方の誘電率は、0.99以下、0.98以下、0.97以下、0.96以下、0.95以下、0.94以下、0.93以下、0.92以下、0.91以下、0.9以下、0.85以下、0.8以下、0.75以下、0.7以下等とすればよい。一方、第1電解液の誘電率と第2電解液の誘電率の差を大きくするということは、添加する有機溶媒の種類(誘電率)が同じであれば、電解液により多くの有機溶媒を投与することになる。そして、有機溶媒を投与する量が多くなるほど、第1電解液および第2電解液に含まれる電解質の組成が変わる。第1電解液および第2電解液に含まれる電解質の量が異なっていても測定方法を実施することは可能であるが、誘電率以外の測定条件を大幅に変更しないとの観点では、限定されるものではないが、第1電解液の誘電率と第2電解液の誘電率の高い方を1とした時に、低い方の誘電率は、0.1以上、0.2以上、0.3以上、0.4以上、0.45以上、0.5以上、0.55以上、0.6以上、0.65以上としてもよい。なお、第1電解液および第2電解液の準備に手間はかかるが、高濃度の電解液、有機溶媒、超純水を準備し、適量混合することで誘電率は異なるが塩濃度が同じとなるように第1電解液および第2電解液を作製してもよい。
 第1チャンバー5に第1電解液が既に充填され、第2チャンバー6に第2電解液が既に充填されている場合は、第1チャンバー5または第2チャンバー6に荷電サンプルを投入し、荷電サンプル通過工程(ST1)を実施すればよい。
 デバイス1aの第1チャンバー5に第1電解液が充填されてなく、第2チャンバー6に第2電解液が充填されていない場合は、荷電サンプル通過工程(ST1)を実施する前に、準備工程を実施すればよい。準備工程は、以下の手順で行うことができる。
(1)第1チャンバー5に第1電解液を充填し、第2チャンバー6に第2電解液を充填する。第1チャンバー5内と第2チャンバー6内との間は、貫通孔3を介して液絡が取れる。
(2)荷電サンプルSを第1チャンバー5または第2チャンバー6に投入する。
 なお、上記(1)と(2)に記載の手順は、別々に行ってもよいが、荷電サンプルSが既に含まれている電解液を第1チャンバー5または第2チャンバー6に投入してもよい。
 なお、デバイス1aの第1チャンバー5に第1電解液が充填されてなく、第2チャンバー6に第2電解液が充填されていない場合、予め誘電率を調整した第1電解液および第2電解液を、例えば、ボトル等の容器にそれぞれ充填してデバイス1aと共に提供してもよい。入手した荷電サンプルSを測定し、測定結果に基づき荷電サンプルSの識別等の解析を行う場合には、第1電解液の誘電率および第2電解液の誘電率を所定の条件にすることが望ましい。予め誘電率を調整した第1電解液および第2電解液が容器に充填して提供される場合は、測定方法の再現性が高くなる。
 図3に示す荷電サンプル通過工程(ST1)は、第1チャンバー5に配置した第1電極52および第2チャンバー6に配置した第2電極62を通電することで、通常の拡散に加え、荷電サンプルSが電気泳動により基板2に形成した貫通孔3を通過する。
 イオン電流測定工程(ST2)では、通電により発生するイオン電流の変化を電流計7で経時的に測定する。本出願で開示する測定方法では、第1電解液の誘電率と第2電解液の誘電率とが異なるようにすることで、荷電サンプルSが貫通孔3を通過する際に、S/Nの大きい測定結果が得られる。測定方法は、任意付加的に、イオン電流測定工程(ST2)により測定したイオン電流の変化から、入手した荷電サンプルが有する情報を解析する解析工程(ST3)を実施してもよい。後述する実施例に示すとおり、本出願で開示する測定方法では、荷電サンプルの体積および荷電サンプルの周りに集まるイオンによって貫通孔3のイオン濃度が増大することが測定結果に反映されることから、サンプルの体積情報のみの解析と比較して、荷電サンプルが有する情報をより詳しく解析できる。解析できる情報としては、細菌、細胞、ウイルスおよびエクソソーム等の種類、DNAおよびRNA等の核酸配列、タンパク質のアミノ酸配列等が挙げられる。
 以下に実施例を掲げ、本出願で開示する実施形態を具体的に説明するが、この実施例は単に実施形態の説明のためのものである。本出願で開示する範囲を限定したり、あるいは制限することを表すものではない。
<実施例1>
〔デバイス1の作製〕
 厚さ50nmのSiNx層で両面をコーティングした4インチシリコンウェーハを、30mm×30mmチップにダイシングした。SiNxの片面を、メタルマスクを介してCHFエッチングガスによる反応性イオンエッチング(Samco)により部分的に除去した。次いで、シリコン層を、露出した1mm×1mm角の領域を通して50℃のKOH aq.(Wako)中でウェットエッチングした。その結果、厚さ50nmのSiNx膜を形成した。形成した膜上に、電子線レジスト(ZEP520A、Zeon)をスピンコートし、180℃で焼成した。続いて、電子線リソグラフィー(125kV、エリオニクス)により直径100nmの円を描いた。現像後、レジストマスクを介した反応性エッチングを介してSiNxを除去してナノポアを開放した。最後に、残留レジスト層をN,N-ジメチルホルムアミドに完全に溶解させ、続いてエタノールおよびアセトンでリンスすることで、SiNx基板にナノポア(貫通孔)を形成したナノポアチップを作製した。
 作製したナノポアチップを、ポリジメチルシロキサン(PDMS)からなる2つのポリマーブロック(第1チャンバー部材および第2チャンバー部材)で封止することで第1チャンバーおよび第2チャンバーを作製した。これらのブロックは、PDMS前駆体(Sylgard184、Dow)をSU-8鋳型上で80℃でポリマー化させることによって作製した。モールドは、荷電サンプル溶液をナノポアに流すためのチャネルとして機能するポリマーブロック上にトレンチを形成するために、サブミリメートル幅および高さのI字型パターンを有していた。シーリングの前に、ブロックに3つの穴を打ち抜いた。続いて、ナノポアチップおよびポリマーブロック(第1チャンバー部材および第2チャンバー部材)を酸素プラズマに曝露して表面活性化を行った後、ナノポアチップおよびポリマーブロックを接合することで、デバイス1を作製した。
〔測定方法を実施するためのデバイス1aの作製〕
 第1電極および第2電極としてAg/AgClロッドを用い、ポリマーブロックの両側の穴から第1チャンバーおよび第2チャンバーに挿入した。ナノポアを通るイオン電流は、カスタム設計のアンプを使用してロッドの1つを通る出力電流を事前に増幅した後、高速デジタイザ(PXI-5922、NI)を使用してデジタル化し、印加された電圧Vbの下で1 MHzのサンプリングレートでソリッドステートドライブ(PXI-8267、NI)に蓄積することによって測定した。
〔測定方法の実施〕
<実施例2>
(1)電解液および荷電サンプルの準備
・誘電率が低い電解液:1.37M NaCl(日本ジーン社製:10×PBS Buffer(-)、型番:314-90185)に、グリセロール(アルドリッチ社製:CAS 56-81-5)を同量添加することで、塩濃度が0.69M NaCl(5×PBS)、グリセロール濃度が50%の第1電解液を作製した。作製した第1電解液の20℃における誘電率は63.5であった。
・誘電率が高い電解液:上記10×PBS Bufferに、超純水を同量添加することで、塩濃度が0.69M NaCl(5×PBS)の第2電解液を作製した。作製した第2電解液の20℃における誘電率は80であった。
・荷電サンプル:荷電サンプルとして、二本鎖DNA(48.5kbp)を用いた。
 誘電率が低い第1電解液をブロックに形成した穴を通じて第1チャンバーに充填した。また、二本鎖DNAも第1チャンバーに充填した。誘電率が高い第2電解液をブロックに形成した穴を通じて第2チャンバーに充填した。第1電極52がマイナス極、第2電極62がプラス極となるように0.3Vの電圧を印加し、イオン電流Iionを測定した。
<実施例3>
 誘電率が高い電解液を第1電解液とし、誘電率が低い電解液を第2電解液とした以外は、実施例2と同様にイオン電流Iionを測定した。
<比較例1>
 第1電解液および第2電解液として何れも誘電率が高い電解液を用いた以外は、実施例2と同様にイオン電流Iionを測定した。
 図4に、実施例2、実施例3および比較例1の測定結果を示す。従来、サンプルがナノポアを通過する際のイオン電流の変化を測定する際に、第1チャンバーおよび第2チャンバーに充填する電解液は比較例1に示すように同じ組成であった。比較例1では、DNAがナノポアを通過する際のイオン電流の変化は、ベースラインから0.4nAであった。一方、第1チャンバーおよび第2チャンバーに充填する電解液の誘電率が異なるようにすることで、(1)実施例2ではDNAがナノポアを通過する際のイオン電流の変化のピーク値はベースラインから3.5nAであり比較例1の約8倍にピーク値が増強すること、(2)実施例3ではDNAがナノポアを通過する際のイオン電流の変化のピーク値はベースラインから7.5nAであり比較例1の約20倍にピーク値が増強する、という顕著な効果が得られた。また、S/N比(多数の信号の波高と、イオン電流のrmsノイズを使って計算したもの)は、比較例1では約1.1であったのに対し、実施例2では約4.3、実施例3では約5.0であり、S/N比が顕著に大きくなった。
 また、図4に示すように、誘電率が低い電解液側から誘電率が高い電解液側にDNAが移動(正の誘電率勾配)する実施例2では、同じサンプルであるにもかかわらず、イオン電流の測定信号が得られる方向が比較例1と反転した。一方、誘電率が高い電解液側から誘電率が低い電解液側にDNAが移動(負の誘電率勾配)する実施例3では、イオン電流の測定信号が得られる方向は比較例1と同じであるが、イオン電流の変化が顕著に増加した。電解液の誘電率を異なるようにすることで、実施例2、実施例3および比較例1に示すようにイオン電流の変化が顕著に異なる理由は不明であるが、DNAはマイナスに帯電しているが誘電率が低いとDNAにプラスのイオンが集まりにくくなることから、DNAが貫通孔を通過する際に誘電率の違いによりDNAの周りに集まるイオンによって貫通孔3のイオン濃度が増大する等の影響があったためと考えられる。
<実施例4>
 0.69M NaClを第1電解液として用いた。また、1.37M NaCl(10×PBS)と、グリセロール(アルドリッチ社製:CAS 56-81-5)と、超純水と、を適量混合することで、塩濃度が0.69M NaCl、グリセロール濃度が10%、30%、50%の3種類の第2電解液を作製した。作製した第1電解液および第2電解液を用いた以外は、実施例3と同様にIionを測定した。なお、グリセロールを10%添加した時の第2電解液の粘度は1.5mPas、グリセロールを50%添加した時の第2電解液の粘度は14mPasであった。また、第1電解液の誘電率は80、グリセロールを10%添加した時の第2電解液の誘電率は76.7、グリセロールを50%添加した時の第2電解液の誘電率は63.5であった。
 図5に結果を示す。図5から明らかなように、第2電解液のグリセロールの割合を多くする、換言すると、第1電解液に対する第2電解液の誘電率を低くし且つ第2電解液の粘度を高くするほど、DNAがナノポアを通過する時間が長くなり且つイオン電流の変化が大きくなった。図5から明らかなように、グリセロールが10%と50%との比較では、DNAがナノポアを通過する時間が長くなり且つイオン電流の変化が大きくなったことから、DNAがナノポアを通過した際の情報を測定信号の波形としてより詳細に取得できた。以上のとおり、電解液の粘度を高くできる有機溶媒により電解液の誘電率を調整した場合、イオン電流の変化量を大きくし且つ測定時間を長くすることで、荷電サンプルが有する情報をより詳しく測定できるという顕著な効果を奏することを確認した。
<比較例2>
 第1電解液および第2電解液に添加するグリセロールの量は変化するが(10%、20%、30%、40%、50%、塩濃度は0.69M NaClで同じ。)、第1チャンバーに充填する第1電解液の誘電率と第2チャンバーに充填する第2電解液の誘電率は同じとなるようにした以外は、比較例1と同様にイオン電流Iionを測定した。
 図6に結果を示す。図6から明らかなように、第1チャンバーに充填する第1電解液の誘電率と第2チャンバーに充填する第2電解液の有機溶媒の量を同じ、つまり、同じ誘電率にした場合は、イオン電流の変化の値は増強しなかった。以上の結果から、第1チャンバーに充填する第1電解液と第2チャンバーに充填する第2電解液の誘電率が異なる(差をつける)ようにすることで、本出願で開示する効果が得られることを確認した。
<実施例5>
・誘電率が低い電解液:1.37M NaCl(10×PBS)と、エタノール(キシダ化学社製:000-28553)と、超純水と、を適量混合することで、塩濃度が0.69M NaCl、エタノール濃度が10%、20%、30%の3種類の電解液を作製した。作製した電解液の20℃における誘電率は、74.4(エタノール10%)、68.8(エタノール20%)、63.2(エタノール30%)であった。
・誘電率が高い電解液:実施例2の「誘電率が高い電解液」と同様の電解液を用いた。
 誘電率が低い電解液と高い電解液の組み合わせを変え、第1チャンバーおよび第2チャンバーに充填した以外は、実施例2と同様にイオン電流Iionを測定した。図7に第1チャンバー(First chamber)および第2チャンバー(Second chamber)に充填した各電解液の組み合わせおよび測定結果を示す。なお、図7において、誘電率が低い電解液であるエタノール10%は“10%Eth”、エタノール20%は“20%Eth”、エタノール30%は“10%Eth”と記載し、誘電率が高い電解液は“5×PBS”と記載する。
 図7から明らかなように、グリセロールに替えエタノールを用いた場合でも、第1チャンバーおよび第2チャンバーに充填する電解液の誘電率が異なるようにすることで、DNAがナノポアを通過する際のイオン電流の変化のピーク値が増強することを確認した。また、イオン電流の測定信号が得られる方向は、有機溶媒としてエタノールを用いた場合でもグリセロールと同じ結果が得られた。第1チャンバーにエタノール30%を充填し、第2チャンバーに5xPBSを充填した時のS/N比は、3.1であった。第1チャンバーに5xPBSを充填し、第2チャンバーに20%エタノールを充填した時のS/N比は、2.5であった。
 以上の結果より、第1チャンバーに充填する電解液の誘電率と、第2チャンバーに充填する電解液の誘電率を異なるようにすることで、イオン電流の変化の値が増強すると共に、S/N比が大きくなることを確認した。
 本出願で開示するデバイスを用いてイオン電流の測定方法を実施すると、イオン電流の変化の値が増強する。したがって、分析機器産業における分析装置の開発に有用である。
1、1a…イオン電流測定用デバイス、2…基板、3…貫通孔、5…第1チャンバー、6…第2チャンバー、7…電流計、8…解析部、9…表示部、10…プログラムメモリ、11…制御部、21…第1面、22…第2面、31…第1開口、32…第2開口、51…第1チャンバー部材、52…第1電極、53…リード、54…電源、55…アース、61…第2チャンバー部材、62…第2電極、63…リード、64…アース、S…サンプル

Claims (15)

  1.  イオン電流測定用デバイスを用いた荷電サンプルのイオン電流測定方法であって、
     前記イオン電流測定用デバイスは、
      第1面および第2面を有する基板と、
      前記第1面から前記第2面に向けて貫通し、前記荷電サンプルが通過する貫通孔と、
      第1チャンバー部材と、
      第2チャンバー部材と、
    を含み、
      前記第1チャンバー部材は、前記第1面の少なくとも前記貫通孔の第1開口を含む面とで第1電解液を充填する第1チャンバーを形成し、
      前記第2チャンバー部材は、前記第2面の少なくとも前記貫通孔の第2開口を含む面とで第2電解液を充填する第2チャンバーを形成し、
     前記イオン電流の測定方法は、
      荷電サンプル通過工程と、
      イオン電流測定工程と、
    を含み、
     前記荷電サンプル通過工程は、
      前記第1チャンバーに充填した前記第1電解液および前記第2チャンバーに充填した前記第2電解液に電圧を印加することで、
      前記第1チャンバーに含まれる前記荷電サンプルを前記第2チャンバー方向に前記貫通孔を通過、または、前記第2チャンバーに含まれる前記荷電サンプルを前記第1チャンバー方向に前記貫通孔を通過させ、
     前記イオン電流測定工程は、
      前記荷電サンプルが、前記貫通孔を通過する時のイオン電流の変化を測定し、
     前記第1電解液の誘電率と前記第2電解液の誘電率とが異なる、
     イオン電流測定方法。
  2.  前記第1電解液または前記第2電解液の一方には、水より誘電率が低い有機溶媒が溶解されている、
     請求項1に記載のイオン電流測定方法。
  3.  前記有機溶媒が、1価アルコール、2価アルコールおよび3価アルコールからなる群から選択した少なくとも1種である、
     請求項2に記載のイオン電流測定方法。
  4.  前記第1電解液の誘電率または前記第2電解液の誘電率の高い方を1とした時に、低い方の誘電率が0.1以上、0.9以下である、
     請求項1に記載のイオン電流測定方法。
  5.  前記有機溶媒が、前記第1電解液または前記第2電解液の粘度を大きくできる溶媒から選択される、
     請求項2に記載のイオン電流測定方法。
  6.  前記第1電解液の誘電率が、前記第2電解液の誘電率より高い、
     請求項1~5の何れか一項に記載のイオン電流測定方法。
  7.  前記第1電解液の誘電率が、前記第2電解液の誘電率より低い、
     請求項1~5の何れか一項に記載のイオン電流測定方法。
  8.  前記荷電サンプルが、DNAまたはRNAである、
     請求項1~5の何れか一項に記載のイオン電流測定方法。
  9.  イオン電流測定用デバイスであって、該イオン電流測定用デバイスは、
      第1面および第2面を有する基板と、
      前記第1面から前記第2面に向けて貫通し、前記荷電サンプルが通過する貫通孔と、
      第1チャンバー部材と、
      第2チャンバー部材と、
    を含み、
      前記第1チャンバー部材は、前記第1面の少なくとも前記貫通孔の第1開口を含む面とで第1電解液を充填する第1チャンバーを形成し、
      前記第2チャンバー部材は、前記第2面の少なくとも前記貫通孔の第2開口を含む面とで第2電解液を充填する第2チャンバーを形成し、
     前記第1チャンバーに充填される前記第1電解液の誘電率と前記第2チャンバーに充填される前記第2電解液の誘電率とが異なる、
     イオン電流測定用デバイス。
  10.  前記第1チャンバーに第1電解液が充填され、
     前記第2チャンバーに第2電解液が充填されている、
     請求項9に記載のイオン電流測定用デバイス。
  11.  前記第1チャンバーに充填される第1電解液および前記第2チャンバーに充填される第2電解液が、それぞれ容器に入れられている、
     請求項9に記載のイオン電流測定用デバイス。
  12.  前記第1電解液または前記第2電解液の一方には、水より誘電率が低い有機溶媒が溶解されている、
     請求項10または11に記載のイオン電流測定用デバイス。
  13.  前記有機溶媒が、1価アルコール、2価アルコールおよび3価アルコールからなる群から選択した少なくとも1種である、
     請求項12に記載のイオン電流測定用デバイス。
  14.  前記第1電解液の誘電率または前記第2電解液の誘電率の高い方を1とした時に、低い方の誘電率が0.1以上、0.9以下である、
     請求項10または11に記載のイオン電流測定用デバイス。
  15.  前記有機溶媒が、前記第1電解液または前記第2電解液の粘度を大きくできる溶媒から選択される、
     請求項12に記載のイオン電流測定用デバイス。
PCT/JP2023/035451 2022-10-04 2023-09-28 イオン電流測定方法およびイオン電流測定用デバイス WO2024075637A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022160261 2022-10-04
JP2022-160261 2022-10-04

Publications (1)

Publication Number Publication Date
WO2024075637A1 true WO2024075637A1 (ja) 2024-04-11

Family

ID=90607746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035451 WO2024075637A1 (ja) 2022-10-04 2023-09-28 イオン電流測定方法およびイオン電流測定用デバイス

Country Status (1)

Country Link
WO (1) WO2024075637A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040120854A1 (en) * 2002-04-04 2004-06-24 Heath James R Silicon-wafer based devices and methods for analyzing biological material
JP2011501806A (ja) * 2007-10-02 2011-01-13 プレジデント アンド フェロウズ オブ ハーバード カレッジ ナノポアによる分子の捕捉、再捕捉およびトラッピング
JP2020524271A (ja) * 2017-06-20 2020-08-13 イラミーナ インコーポレーテッド ナノポアシーケンサー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040120854A1 (en) * 2002-04-04 2004-06-24 Heath James R Silicon-wafer based devices and methods for analyzing biological material
JP2011501806A (ja) * 2007-10-02 2011-01-13 プレジデント アンド フェロウズ オブ ハーバード カレッジ ナノポアによる分子の捕捉、再捕捉およびトラッピング
JP2020524271A (ja) * 2017-06-20 2020-08-13 イラミーナ インコーポレーテッド ナノポアシーケンサー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALESSIO FRAGASSO: "Comparing Current Noise in Biological and Solid-State Nanopores", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 14, no. 2, 25 February 2020 (2020-02-25), US , pages 1338 - 1349, XP093156694, ISSN: 1936-0851, DOI: 10.1021/acsnano.9b09353 *

Similar Documents

Publication Publication Date Title
TWI245073B (en) Biological identification system with integrated sensor chip
US8557567B2 (en) Method for fabricating nanogap and nanogap sensor
CN102242062B (zh) 一种高分辨率的生物传感器
ES2630064T3 (es) Fabricación de nanoporos utilizando campos eléctricos potentes
JP2016187353A (ja) 超高速の核酸配列決定のための電界効果トランジスタ装置
Larsen et al. Characterization of poly (3, 4-ethylenedioxythiophene): tosylate conductive polymer microelectrodes for transmitter detection
Tsukada et al. Long-life multiple-ISFETs with polymeric gates
US9304100B2 (en) Miniaturised electrochemical sensor
WO2015137356A1 (ja) 微生物夾雑物の濃度検出方法、電極チップおよびオリゴペプチド
US10877021B2 (en) Device for biological material detection, detection apparatus for biological material detection, method for measuring ion current, and method for identifying biological material
KR20130125686A (ko) 전기화학적 검출을 위한 전기영동칩
WO2011154589A4 (en) Accurate integrated low-cost electrode chips for point- of-need analysis and a method of utilization in hot electron-induced electrochemiluminescent systems
Majak et al. Delta-9-tetrahydrocannabinol (Δ 9-THC) sensing using an aerosol jet printed organic electrochemical transistor (OECT)
Li et al. In-channel indirect amperometric detection of heavy metal ions for electrophoresis on a poly (dimethylsiloxane) microchip
Siegel et al. Optimization of a microchip electrophoresis method with electrochemical detection for the determination of nitrite in macrophage cells as an indicator of nitric oxide production
CN109564182A (zh) 在固体元件之间具有开口的电化学传感器
WO2024075637A1 (ja) イオン電流測定方法およびイオン電流測定用デバイス
US20190170682A1 (en) Apparatus based on a nanowire cross for measuring small potentials of a sample, method for producing the apparatus, and use of the apparatus
CN101358941A (zh) 一种可裁剪的双面纳米带电极阵列集成传感器及制备方法
CN108845017B (zh) 一种基于二硒化钨的柔性离子传感器
US9823270B2 (en) Membrane electrochemical signal detection system
Yin et al. Batch microfabrication and testing of a novel silicon-base miniaturized reference electrode with an ion-exchanging nanochannel array for nitrite determination
US20220106187A1 (en) Stable lipid bilayers on nanopore arrays
US10690647B2 (en) Chemical sensor for heavy metal detection
Gatty et al. Wafer-level fabrication of individual solid-state nanopores for sensing single DNAs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874764

Country of ref document: EP

Kind code of ref document: A1